0
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
会员中心
创作中心
发布
  • 发文章

  • 发资料

  • 发帖

  • 提问

  • 发视频

创作活动
TIOL1123LYAHR

TIOL1123LYAHR

  • 厂商:

    BURR-BROWN(德州仪器)

  • 封装:

    BGA12

  • 描述:

    半 收发器 1/1 I/O 链路

  • 数据手册
  • 价格&库存
TIOL1123LYAHR 数据手册
TIOL112, TIOL1123, TIOL1125 SLLSFJ1D – FEBRUARY 2022 – REVISED MARCH 2023 TIOL112 and TIOL112x IO-Link Device Transceivers with Low Residual Voltage and Integrated Surge Protection in Small Packages 1 Features 2 Applications • • • • • • • • • • • • • • • Field Transmitters and actuators Factory automation Process automation IO-link PHY in remote IO 3 Description The TIOL112(x) family of transceivers implements the IO-Link interface for industrial bidirectional, point-topoint communication. When the device is connected to an IO-Link master through a three-wire interface, the master initiates communication and exchange data with the remote node while the TIOL112(x) acts as a complete physical layer for the communication. – Configurable driver overcurrent limit: 50 mA to 350 mA – Active reverse polarity protection of up to 65 V on L+, CQ and L– Fault indicator for overcurrent, overtemperature and UVLO faults – Safe and fast demagnetization of inductive loads – Extended ambient temperature operation: –40°C to 125°C Integrated EMC protection on L+ and CQ – ±8 kV IEC 61000-4-2 ESD contact discharge – ±4 kV IEC 61000-4-4 electrical fast transient – ±1.2 kV/500 Ω IEC 61000-4-5 surge Large capacitive load driving capability < 2-µA CQ leakage current < 1.5-mA quiescent supply current Integrated LDO options for up to 20 mA current – TIOL1123: 3.3-V LDO – TIOL1125: 5-V LDO – TIOL1123L (YAH): Selectable 3.3-V/5-V Output Remote wake-up indication and wake-up generation Small space-saving package options – 3 mm x 3 mm 10-pin VSON package: pin-compatible with TIOL111 – 2.45 mm x 1.7 mm DSBGA package Sensor Front-End These devices are capable of withstanding up to 1.2 kV (500 Ω) of IEC 61000-4-5 surge and feature integrated reverse polarity protection. A simple pinprogrammable interface allows easy interfacing with the controller circuits. The output current limit can be configured using an external resistor. TIOL112(x) can be configured to generate wake-up pulse and be used in IO-link master applications. Fault reporting and internal protection functions are provided for undervoltage, overcurrent and overtemperature conditions. Device Information PACKAGE(1) PART NUMBER BODY SIZE (NOM) TIOL112 TIOL1123 VSON (10) 3.00 mm x 3.00 mm DSBGA (12) 2.45 mm x 1.70 mm TIOL1125 TIOL112 TIOL1123 (1) For all available devices, see the orderable addendum at the end of the data sheet. VCC_OUT 1 µF 10 V VOLTAGE REGULATOR Rev. Polarity Protection L+ 0.1 µF 100 V 10 k ESD and Surge Protection RX 10 k TX Microcontroller EN WAKE CONTRO L LOGIC • 7-V to 36-V supply voltage PNP, NPN or IO-Link configurable output – IEC 61131-9 COM1, COM2 and COM3 Data Rate Support Functional safety-capable – Documentation available to aid in functional safety system design Pin-compatible with TIOL111(x) with improved performance – Low residual Voltage of 0.5 V (typical) at 200 mA – Active driver current limiting capability – Improved thermal performance of the package – Slower driver slew rates to reduce overshoots: maximum of 750 ns Integrated protection features for robust systems CQ DIAGNOSTICS & CONTROL Rev. Polarity Protection ESD and Surge Protection NFAULT CUR_OK TMP_OK PWR_OK L- ILIM_ADJ Typical Application Diagram An IMPORTANT NOTICE at the end of this data sheet addresses availability, warranty, changes, use in safety-critical applications, intellectual property matters and other important disclaimers. PRODUCTION DATA. IO-Link Master PHY TIOL112, TIOL1123, TIOL1125 www.ti.com SLLSFJ1D – FEBRUARY 2022 – REVISED MARCH 2023 Table of Contents 1 Features............................................................................1 2 Applications..................................................................... 1 3 Description.......................................................................1 4 Revision History.............................................................. 2 5 Pin Configuration and Functions...................................3 6 Specifications.................................................................. 5 6.1 Absolute Maximum Ratings........................................ 5 6.2 ESD Ratings............................................................... 5 6.3 ESD Ratings - IEC Specifications............................... 5 6.4 Recommended Operating Conditions.........................5 6.5 Thermal Information....................................................6 6.6 Electrical Characteristics.............................................6 6.7 Switching Characteristics............................................8 6.8 Typical Characteristics................................................ 9 7 Parameter Measurement Information.......................... 10 8 Detailed Description......................................................12 8.1 Overview................................................................... 12 8.2 Functional Block Diagrams....................................... 12 8.3 Feature Description...................................................13 8.4 Device Functional Modes..........................................20 9 Application and Implementation.................................. 21 9.1 Application Information............................................. 21 9.2 Typical Application.................................................... 21 9.3 Power Supply Recommendations.............................24 9.4 Layout....................................................................... 25 10 Device and Documentation Support..........................26 10.1 Receiving Notification of Documentation Updates..26 10.2 Support Resources................................................. 26 10.3 Trademarks............................................................. 26 10.4 Electrostatic Discharge Caution..............................26 10.5 Glossary..................................................................26 11 Mechanical, Packaging, and Orderable Information.................................................................... 26 4 Revision History Changes from Revision C (January 2023) to Revision D (March 2023) Page • Added the package outline and land pattern images for the YAH (DSBGA) 12-pin package...........................26 Changes from Revision B (December 2022) to Revision C (January 2023) Page • Deleted the Advanced Information note from the DSBGA package in the Device Information table................. 1 Changes from Revision A (April 2022) to Revision B (December 2022) Page • Removed the conditional note 2 from the IEC Ratings - ESD Specifications table that specified 4.5kV when EN=TX=HIGH .................................................................................................................................................... 5 • Changed the description of I(VCC_OUT) from: (TIOL112L only) to: TIOL1123(L), TIOL1125 only in the Recommended Operating Conditions table........................................................................................................5 • Changed Figure 6-4 and Figure 6-6 .................................................................................................................. 9 • Added application curves Figure 9-6 and Figure 9-7 showing inductive load demagnetization....................... 24 Changes from Revision * (February 2022) to Revision A (April 2022) Page • Deleted the Advanced Information note from the TIOL112 and TIOL1125 for the VSON package in the Device Information table................................................................................................................................................. 1 2 Submit Document Feedback Copyright © 2023 Texas Instruments Incorporated Product Folder Links: TIOL112 TIOL1123 TIOL1125 TIOL112, TIOL1123, TIOL1125 www.ti.com SLLSFJ1D – FEBRUARY 2022 – REVISED MARCH 2023 5 Pin Configuration and Functions VCC_IN 1 10 WAKE NFAULT 2 9 L+ RX 3 8 TX 4 EN 5 Thermal Pad VCC_OUT 1 10 WAKE NFAULT 2 9 L+ CQ RX 3 8 CQ 7 L– TX 4 7 L– 6 ILIM_ADJ EN 5 6 ILIM_ADJ Figure 5-1. TIOL112 DRC (VSON), 10-Pin (Top View) Thermal Pad Figure 5-2. TIOL1123, TIOL1125 DRC (VSON), 10-Pin (Top View) Table 5-1. Pin Functions (VSON Package) PIN NAME PIN NO TIOL112 TIOL1123 TIOL1125 TYPE DESCRIPTION 1 VCC_IN VCC_OUT P VCC_IN (TIOL112): External 3.3-V or 5-V logic supply input pin. VCC_OUT (TIOL1123, TIOL1125): 3.3-V or 5-V linear regulator output 2 NFAULT NFAULT O Fault indicator output signal to the microcontroller. A low level indicates either an over- current, an undervoltage supply or an overtemperature condition. 3 RX RX O Receive data output to the local microcontroller 4 TX TX I Transmit data input from the local microcontroller. No effect if EN is low. Logic high sets low-side switch. Logic low sets high-side switch. Weak internal pull-up. 5 EN EN I Driver enable input signal from the local microcontroller. Logic low sets the CQ output at Hi-Z. Weak internal pull-down. 6 ILIM_ADJ ILIM_ADJ I Input for current limit adjustment. Connect resistor RSET between ILIM_ADJ and L-. 7 L- L- GND 8 CQ CQ I/O 9 L+ L+ P IO-Link supply voltage (24 V nominal) 10 WAKE WAKE O Wake-up indicator to the local microcontroller. Open-drain output, connect this pin via pull-up resistor to VCC_IN/OUT. Thermal Pad Thermal Pad — Connect to L- for optimal thermal and electrical performance IO-Link ground potential IO-Link data signal (bidirectional) Submit Document Feedback Copyright © 2023 Texas Instruments Incorporated Product Folder Links: TIOL112 TIOL1123 TIOL1125 3 TIOL112, TIOL1123, TIOL1125 www.ti.com SLLSFJ1D – FEBRUARY 2022 – REVISED MARCH 2023 1 2 3 1 2 3 A L- CQ L+ A L- CQ L+ B ILIM _ADJ L- VCC_ OUT B ILIM _ADJ L- VCC_ IN C VSEL WAKE NFAU LT C NC WAKE NFAU LT D RX TX EN D RX TX EN Figure 5-3. TIOL1123L YAH (DSBGA), 12-Pin (Top View) Figure 5-4. TIOL112 YAH (DSBGA), 12-Pin (Top View) Table 5-2. Pin Functions (DSBGA) PIN NO PIN NAME TYPE DESCRIPTION VCC_OUT P VCC_IN (TIOL112): External 3.3-V or 5-V logic supply input pin. VCC_OUT (TIOL1123): 3.3-V or 5-V linear regulator output NFAULT NFAULT O Fault indicator output signal to the microcontroller. A low level indicates either an over- current, an undervoltage supply or an overtemperature condition. D1 RX RX O Receive data output to the local controller D2 TX TX I Transmit data input from the local controller. No effect if EN is low. Logic high sets low-side switch. Logic low sets high-side switch. Weak internal pull-up. D3 EN EN I Driver enable input signal from the local controller. Logic low sets the CQ output at Hi-Z. Weak internal pull-down. Input for current limit adjustment. Connect resistor RSET between ILIM_ADJ and L-. TIOL112 TIOL1123L B3 VCC_IN C3 B1 ILIM_ADJ ILIM_ADJ O A1, B2 L- L- GND A2 CQ CQ I/O A3 L+ L+ P IO-Link supply voltage (24 V nominal) C1 NC VSEL I TIOL112 (NC): Leave floating. Do not connect. TIOL1123 (VSEL): Connect to GND for 5V LDO output. Please leave this pin floating for 3.3V LDO output. VSEL has an internal pull-up of 1 MΩ C2 WAKE WAKE O Wake-up indicator to the local controller. Open-drain output, connect this pin via pull-up resistor to IO-Link ground potential IO-Link data signal (bidirectional) VCC_IN/OUT. 4 Submit Document Feedback Copyright © 2023 Texas Instruments Incorporated Product Folder Links: TIOL112 TIOL1123 TIOL1125 TIOL112, TIOL1123, TIOL1125 www.ti.com SLLSFJ1D – FEBRUARY 2022 – REVISED MARCH 2023 6 Specifications 6.1 Absolute Maximum Ratings over operating free-air temperature range (unless otherwise noted)(1) Supply voltage MIN MAX Steady state voltage for L+ and CQ –65 65 UNIT V Transient pulse width < 100 µs for L+ and CQ –70 70 V 65 V Voltage difference |V(L+) – V(CQ)| Logic supply voltage (TIOL112) VCC_IN –0.3 6 V Input logic voltage TX, EN, VSEL min(VCC_IN+ –0.3 0.3, 6) V Output current RX, WAKE, NFAULT Storage temperature, Tstg (1) –5 5 mA -55 170 °C Operation outside the Absolute Maximum Ratings may cause permanent device damage. Absolute maximum ratings do not imply functional operation of the device at these or any other conditions beyond those listed under Recommended Operating Conditions. If briefly operating outside the Recommended Operating Conditions but within the Absolute Maximum Ratings, the device may not sustain damage, but it may not be fully functional. Operating the device in this manner may affect device reliability, functionality, performance, and shorten the device lifetime. All voltages are with reference to the L- pin, unless otherwise specified. 6.2 ESD Ratings VALUE UNIT V(ESD) Electrostatic discharge Human-body model (HBM), per ANSI/ESDA/JEDEC JS-001(1) All pins ±4000 V V(ESD) Electrostatic discharge Charged Device Model (CDM), per ANSI/ESDA/JEDEC JS-002 (2) All pins ±750 V (1) (2) JEDEC document JEP155 states that 500-V HBM allows safe manufacturing with a standard ESD control process. JEDEC document JEP157 states that 250-V CDM allows safe manufacturing with a standard ESD control process. 6.3 ESD Ratings - IEC Specifications VALUE V(ESD) (1) (1) Electrostatic discharge IEC 61000-4-2 ESD (Contact Discharge), L+, CQ and L- Electrostatic discharge IEC 61000-4-5, 1.2 µs/50 µs Surge with 500 Ω in series, L+, CQ and L- (1) ±1,200 Electrostatic discharge IEC 61000-4-4 EFT (Fast transient or burst), L+, CQ and L- (1) ±4,000 UNIT ±8,000 V Minimum 100-nF capacitor is required between L+ and L-. Minimum 1-µF capacitor is required between VCC_IN/VCC_OUT and L-. 6.4 Recommended Operating Conditions over operating free-air temperature range (unless otherwise noted) V(L+) MIN NOM MAX 7 24 36 V 3 3.3 3.6 V 4.5 5 5.5 V Supply voltage 3.3 V configuration V(VCC_IN) Logic level input voltage (TIOL112 only) RSET External resistor for CQ current limit 1/tBIT Data rate (Communication mode) I(VCC_OUT) LDO output current (TIOL1123(L), TIOL1125 only) TA Operating ambient temperature TJ Junction temperature 5 V configuration 0 –40 UNIT 110 kΩ 250 kbps 20 mA 125 °C 150 °C Submit Document Feedback Copyright © 2023 Texas Instruments Incorporated Product Folder Links: TIOL112 TIOL1123 TIOL1125 5 TIOL112, TIOL1123, TIOL1125 www.ti.com SLLSFJ1D – FEBRUARY 2022 – REVISED MARCH 2023 6.5 Thermal Information THERMAL METRIC(1) TIOL112, TIOL1123, TIOL1125 TIOL112, TIOL1123L DRC (10 Pins) YAH (12 Pins) UNIT RθJA Junction-to-ambient thermal resistance 45.9 79.3 °C/W RθJC(top) Junction-to-case (top) thermal resistance 45.9 0.3 °C/W RθJB Junction-to-board thermal resistance 17.9 19.5 °C/W ψJT Junction-to-top characterization parameter 0.7 0.1 °C/W ψJB Junction-to-board characterization parameter 17.8 19.4 °C/W RθJC(bot) Junction-to-case (bottom) thermal resistance 4.7 N/A °C/W (1) For more information about traditional and new thermal metrics, see the Semiconductor and IC Package Thermal Metrics application report. 6.6 Electrical Characteristics Over recommended operating conditions and recommended free-air temperature range (unless otherwise noted). Typical values are at L+ = 24 V, VVCC_IN = 3.3 V, VVCC_OUT = 3.3 V and TA = 25 ℃ unless otherwise specified. PARAMETER TEST CONDITIONS MIN TYP MAX UNIT POWER SUPPLIES (L+) I(L+) Quiescent supply current EN = LOW, no load 1 1.5 mA EN = HIGH, no load 2 2.95 mA 0.8 V LOGIC-LEVEL INPUTS (EN, TX, VSEL) VIL Input logic low voltage VIH Input logic high voltage RPD Pull-down (EN) resistance RPU Pull-up (TX) resistance RPU Pull-up (VSEL) resistance 2 V 100 kΩ 200 kΩ 1000 kΩ CONTROL OUTPUTS (WAKE, NFAULT) VOL Output logic low voltage IO = 4 mA IOZ Output high impedance leakage Output in Hi-Z, VO = 0 V or VCC_IN/OUT –1 0.5 V 1 µA DRIVER OUTPUT (CQ) RDS(ON) High-side driver on-resistance VDS(ON) High-side driver residual voltage RDS(ON) Low-side driver on-resistance 2.5 4.5 Ω I = 200 mA 0.5 0.9 V I = 100 mA 0.25 0.5 V 2.5 4.5 Ω I = 200 mA 0.5 0.9 V I = 100 mA 0.25 0.5 V –2 2 µA 5 15 mA VDS(ON) Low-side driver residual voltage IOZ(CQ) CQ leakage EN = LOW, 0 ≤ V(CQ) ≤ (V(L+) - 0.1 V) ILLM CQ load discharge current EN = LOW, RSET = 0 to 5 kΩ (2), V(CQ) >= 5 V RSET = 110 kΩ; V(CQ)= (VL+ - 3) V or 3 V IO(LIM) Driver output current limit 35 50 70 mA RSET = 10 kΩ 300 350 400 mA RSET = 0 to 5 kΩ (2) V(CQ)= (VL+ - 3) V or 3 V TJ < T(SDN) or t < 200 µs (3) 500 (Fast-detect mode) RSET = OPEN(1)V(CQ)= (VL+ - 3) V or 3V 260 mA 330 400 mA RECEIVER INPUT (CQ) 6 V(THH) Input threshold “H” 10.5 13 V V(THL) Input threshold “L" 8 11.5 V V(HYS) Receiver Hysteresis (V(THH) - V(THL)) V(THH) Input threshold “H” V(L+) > 18 V, EN= LOW 0.75 V(L+) < 18 V, EN= LOW See Note (4) Submit Document Feedback V See Note (5) V Copyright © 2023 Texas Instruments Incorporated Product Folder Links: TIOL112 TIOL1123 TIOL1125 TIOL112, TIOL1123, TIOL1125 www.ti.com SLLSFJ1D – FEBRUARY 2022 – REVISED MARCH 2023 6.6 Electrical Characteristics (continued) Over recommended operating conditions and recommended free-air temperature range (unless otherwise noted). Typical values are at L+ = 24 V, VVCC_IN = 3.3 V, VVCC_OUT = 3.3 V and TA = 25 ℃ unless otherwise specified. PARAMETER TEST CONDITIONS V(THL) Input threshold “L" V(HYS) Receiver Hysteresis (V(THH) - V(THL)) V(L+) < 18 V, EN= LOW VOL RX output low voltage IOL = 4 mA VOH RX output high voltage MIN See Note TYP (6) MAX See Note (7) 0.75 V V 0.4 VCC_IN/ OUT–0.5 IOL = –4 mA UNIT V V PROTECTION CIRCUITS L+ falling; NFAULT = Hi-Z 6 6.3 V V(UVLO) L+ under voltage lockout V(UVLO,HYS) L+ under voltage hysteresis Rising to falling threshold V(UVLO_IN) VCC_IN under voltage lockout (No LDO option) VCC_IN falling; NFAULT = Hi-Z 2.3 V VCC_IN rising; NFAULT = LOW 2.5 V V(UVLO,HYS) VCC_IN under voltage hysteresis Rising to falling threshold (No LDO option) 190 mV T(WRN) Thermal warning T(SDN) Thermal shutdown T(HYS) Thermal hysteresis for shutdown T(WRN) Thermal hysteresis for warning Leakage current in reverse polarity IREV L+ rising; NFAULT = LOW 6.5 6.8 200 125 Die temperature TJ 150 Die temperature TJ V mV °C 160 °C 14 °C 14 °C EN=LOW, TX=x; V(CQ) < V(L-) or V(CQ) > V(L+), up to |36 V| 60 µA EN=LOW, TX=x; V(CQ) < V(L-) or V(CQ) > V(L+), up to |65 V| 110 µA EN = HIGH, TX = LOW; V(CQ to L+) = 3 V 640 µA EN = HIGH, TX = HIGH; V(CQ to L-) = -3 V 10 µA LINEAR REGULATOR (LDO) V(VCC_OUT) Voltage regulator output TIOL1125, TIOL1123L (5V) 4.75 5 5.25 V TIOL1123, TIOL1123L (3.3V) 3.13 3.3 3.46 V TIOL1125, TIOL1123L (5V) 0.75 1.9 V TIOL1123, TIOL1123L (3.3V) 0.75 2.3 V mV/V V(DROP) Voltage regulator drop-out voltage (V(L+) – V(VCC_OUT)) ICC = 20 mA load current REG Line regulation (dV(VCC_OUT)/ dV(L+)) I(VCC_OUT) = 1 mA 1.7 LREG Load regulation (dV(VCC_OUT)/ V(VCC_OUT)) V(L+) = 24 V, I(VCC_OUT) = 100 µA to 20 mA 1% PSSR Power Supply Rejection Ratio 100 kHz, I(VCC_OUT) = 20 mA (1) (2) (3) (4) (5) (6) (7) 40 dB Current fault indication will be active. Current fault auto recovery will be de-activated. Current fault indication and current fault auto recovery will be de-activated. If operating continuosly with this current limit, ensure that the current through the device does not cause the TJ to be greater than T(SDN) for a given ambient temperature and thermal porperty of the system. For pulse durations t < 200 µs, the device can source or sink current of at least 500 mA across the recommended operating conditions. For YAH (DSBGA) package, this parameter is specified by design and characterization. VTHH (min) = 5 V + (11/18) [V(L+) - 8 V] VTHH (max) = 6.5 V + (13/18) [V(L+) - 8 V] VTHL (min) = 4 V + (8/18) [V(L+) -8 V] VTHL (max) = 6 V + (11/18) [V(L+) -8 V] Submit Document Feedback Copyright © 2023 Texas Instruments Incorporated Product Folder Links: TIOL112 TIOL1123 TIOL1125 7 TIOL112, TIOL1123, TIOL1125 www.ti.com SLLSFJ1D – FEBRUARY 2022 – REVISED MARCH 2023 6.7 Switching Characteristics Over recommended operating conditions and recommended free-air temperature range (unless otherwise noted). Typical values are at L+ = 24 V, VVCC_IN = 3.3 V, VVCC_OUT = 3.3 V and TA = 25 ℃ unless otherwise specified. PARAMETER TEST CONDITIONS MIN TYP MAX UNIT 600 1200 ns DRIVER tPLH, tPHL Driver propagation delay tP(skew) Driver propagation delay skew. |tPLH - tPHL | tPZH, tPZL Driver enable delay tPHZ, tPLZ Driver disable delay tr, tf Driver output rise, fall time |tr – tf| Difference in rise and fall time tWU1 Wake-up recognition begin tWU2 Wake-up recognition end tpWAKE Wake-up output delay tSC Current fault blanking time tpSC Current fault indication delay tWUL Wake output pulse duration on wake detection in EN=L mode tSCEN Current fault driver re-enable wait time t(UVLO) (1) CQ re-enable delay after UVLO See Figure 7-1 See Figure 7-2 See Figure 7-3 RL = 2 kΩ CL = 5 nF R(SET) = 10 kΩ 75 200 ns 4 µs 4 µs 700 ns 50 60 75 µs 85 100 145 µs 150 µs See Figure 7-5 175 See Figure 7-6 ns 45 175 200 225 µs 280 µs 285 µs 15 V(UVLO) rising threshold crossing time to CQ enable time 10 30 ms 50 ms 250 ns 300 ns RECEIVER tND Noise suppression time (2) tPLH, tPHL Receiver propagation delay (1) (2) 8 See Figure 7-4 15-pF load on RX, 150 CQ output remains Hi-Z for this time Noise suppression time is defined as the permissible duration of a receive signal above/below the detection threshold without detection taking place. Submit Document Feedback Copyright © 2023 Texas Instruments Incorporated Product Folder Links: TIOL112 TIOL1123 TIOL1125 TIOL112, TIOL1123, TIOL1125 www.ti.com SLLSFJ1D – FEBRUARY 2022 – REVISED MARCH 2023 2.6 0.9 2.4 0.8 EN=L EN=H 2.2 2 1.8 1.6 1.4 1.2 Driver Residual Voltage (V) L+ Supply Current (mA) 6.8 Typical Characteristics 0.7 0.6 0.5 0.4 0.3 0.2 0.1 1 0 0.8 9 12 15 18 21 24 27 30 L+ Supply Voltage (V) No Load 33 36 TX = Open TA = 25°C Figure 6-1. Supply Current vs Supply Voltage 0.9 TA = -40 C TA = 25 C TA = 125 C 0.8 0.7 0.6 0.5 0.4 0.3 0.2 0.1 0 0 25 50 75 100 125 150 175 Load Current (mA) 200 225 0 39 250 spacer Figure 6-3. Residual Voltage vs Load Current: Low Side 25 50 75 100 125 150 175 Load Current (mA) 200 225 250 spacer Figure 6-2. Residual Voltage vs Load Current: High Side Driver Current Limit (mA), High-side and Low-side 6 Driver Residual Voltage (V) TA = -40 C TA = 25 C TA = 125 C 800 Min Typ Max 700 600 For RSET below 5 k, TIOL112(x) can generate wake-up pulse and enables CQ load discharge current (I LLM) 500 400 300 200 100 0 0 10 20 30 40 50 60 RSET (k) 70 80 90 100 110 For RSET in the 0-5 kΩ range, TIOL112(x) can source/sink 500 mA required for wake-up pulse generation in IO-link applications. For RSET in the 0-5 kΩ range, TIOL112(x) also activates a pull-down current source (ILLM) when the driver is disabled. Min and max curves specified by design and characterization across temperature and process variation. TA = 25°C (typ curve) Figure 6-4. Current Limit vs RSET 14 VTHH VTHL 13 Driver Current Limit (mA) Receiver Threshold (V) 12 11 10 9 8 7 6 5 800 750 700 650 600 550 500 450 400 350 300 250 200 150 100 50 0 TIOL111 TIOL112 0 4 7 11 15 19 23 27 31 10 20 30 35 L+ (V) 40 50 60 RSET (k) 70 80 90 100 110 TA = 25°C TA = 25°C Figure 6-5. Receiver Threshold Boundaries Figure 6-6. Current limit vs RSET: TIOL112(x) vs TIOL111(x) Submit Document Feedback Copyright © 2023 Texas Instruments Incorporated Product Folder Links: TIOL112 TIOL1123 TIOL1125 9 TIOL112, TIOL1123, TIOL1125 www.ti.com SLLSFJ1D – FEBRUARY 2022 – REVISED MARCH 2023 7 Parameter Measurement Information L+ RL TX CQ RL CL EN Copyright © 2016, Texas Instruments Incorporated Figure 7-1. Test Circuit for Driver Switching VOH TX VOH 80% 50% tPHL 80% CQ tPLH CQ VOH CQ 50% 20% 20% VOL VOL VOL tr tf Figure 7-2. Waveforms for Driver Output Switching Measurements TX = LOW TX = HIGH EN 50% EN tPZL tPLZ 50% tPZH tPHZ V(L+) / 2 VOH 80% CQ 50% CQ 50% 20% VOL V(L+) / 2 Figure 7-3. Waveforms for Driver Enable or Disable Time Measurements CQ 50% tPLH RX tPHL 50% Figure 7-4. Receiver Switching Measurements 10 Submit Document Feedback Copyright © 2023 Texas Instruments Incorporated Product Folder Links: TIOL112 TIOL1123 TIOL1125 TIOL112, TIOL1123, TIOL1125 www.ti.com SLLSFJ1D – FEBRUARY 2022 – REVISED MARCH 2023 < tWU1 CQ CQ RX CQ tWU1 < t < tWU2 RX high WAKE > tSC RX WAKE high WAKE tpWAKE NFAULT high NFAULT NFAULT tpSC high EN high EN high EN low a) Over-current due to transient b) Valid Wake-up pulse c) Over-current due to fault condition Figure 7-5. Overcurrent and Wake Conditions for EN = H and ILIM_ADJ = 10 kΩ to 110 kΩ, TX = H (Full Lines); and TX = L (Red Dotted Lines) low EN=L 75 s < t < 85 s CQ RX tWUL WAKE tpWAKE high NFAULT Figure 7-6. Wake Conditions for EN = L, RX = H (Full Lines); and RX = L (Red Dotted Lines) < tWU1 CQ RX WAKE tWU1 < t < tWU2 CQ RX high > tSC CQ RX WAKE WAKE high tpWAKE NFAULT NFAULT tpF1 tpF2 a) Over-current due to transient NFAULT tpF1 tpF2 b) Valid Wake-up pulse tpF1 tpF2 c) Over-current due to fault condition Figure 7-7. Overcurrent and Wake Conditions for EN = H and ILIM_ADJ is floating, TX = H (Full Lines); and TX = L (Red Dotted Lines) Submit Document Feedback Copyright © 2023 Texas Instruments Incorporated Product Folder Links: TIOL112 TIOL1123 TIOL1125 11 TIOL112, TIOL1123, TIOL1125 www.ti.com SLLSFJ1D – FEBRUARY 2022 – REVISED MARCH 2023 8 Detailed Description 8.1 Overview Figure 8-1 shows that the TIOL112 or TIOL112x driver output (CQ) can be used in either push-pull, high-side, or low-side configuration using the enable (EN) and transmit data (TX) input pins. The internal receiver converts the 24-V signal on the CQ line to standard logic levels on the receive data (RX) pin. A simple parallel interface is used to receive/transmit data and status information between the device and the local controller. These devices have integrated IEC 61000-4-4/5 EFT and surge protection. In addition, tolerance to ±70-V transients enables flexibility to choose from a wider range of TVS diodes if an application requires higher levels of protection. These integrated robustness features will simplify the system level design by reducing external protection circuitry. TIOL112 or TIOL112x transceivers implement protection features for overcurrent, overvoltage and overtemperature conditions. The devices also provide a current-limit setting of the driver output current using an external resistor. The devices derive the low-voltage supply from the IO-Link L+ voltage (24 V nominal) via an internal linear regulator to provide power to the local controller and sensor circuitry. 8.2 Functional Block Diagrams Rev. Polarity Protection VCC_IN ESD and Surge Protection TX WAKE CONTRO L LOGIC RX EN L+ CQ DIAGNOSTICS & CONTROL Rev. Polarity Protection ESD and Surge Protection NFAULT CUR_OK TMP_OK PWR_OK L- ILIM_ADJ Figure 8-1. Block Diagram TIOL112 12 Submit Document Feedback Copyright © 2023 Texas Instruments Incorporated Product Folder Links: TIOL112 TIOL1123 TIOL1125 TIOL112, TIOL1123, TIOL1125 www.ti.com SLLSFJ1D – FEBRUARY 2022 – REVISED MARCH 2023 VSEL (YAH package only) VOLTAGE REGULATOR VCC_OUT Rev. Polarity Protection ESD and Surge Protection TX WAKE CONTRO L LOGIC RX EN L+ CQ DIAGNOSTICS & CONTROL Rev. Polarity Protection ESD and Surge Protection NFAULT CUR_OK TMP_OK PWR_OK L- ILIM_ADJ Figure 8-2. Block Diagram TIOL1123(L), TIOL1125 8.3 Feature Description 8.3.1 Wake-Up Detection The TIOL112(x) may be operated in IO-Link mode or Standard Input / Output (SIO) mode. If the device is in SIO mode and the IO-link master node wants to initiate communication with the device node, the master drives the CQ line to the opposite of its present state, and will either sink or source the current (≥ 500 mA) for the wake-up duration (typically 80 μs) depending on the CQ logic level as per the IO-Link specification. The TIOL112(x) detects this as a wake-up condition and communicates to the local microcontroller via the WAKE pin. The IO-Link communication specification requires the device node to switch to receive mode within 500 μs after receiving the wake-up signal. For overcurrent conditions shorter or longer than a valid wake-up pulse, the WAKE pin remains in a highimpedance (inactive) state. This is illustrated in Figure 7-5. If the driver of TIOL112(x) is disabled (EN = L), any change in CQ logic level for duration tWU1 < t < tWU2 is detected as a wake-up event and WAKE asserts low for the duration of tWUL. This is illustrated in Figure 7-6. Please refer to Table 8-4 for the summary of the conditions for Wake-Up detection. 8.3.2 Current Limit Configuration The output current can be configured with an external resistor on ILIM_ADJ pin. The highest current limit setting with an external resistor of 10 kΩ provides a minimum of 300 mA over the operating temperature and voltage range. Output disable due to current fault and current fault auto recovery features can be disabled by floating ILIM_ADJ pin. However, the current fault indication is still active in this configuration. This feature is useful when driving large capacitances. When ILIM_ADJ pin is shorted to ground, the TIOL112(x) is configured to be in the IO-link master mode. In this mode, the TIOL112(x) can source or sink minimum of 500 mA to generate a wake-up request. In addition, the TIOL112(x) enables a small current sink of 5 mA (minimum). The current fault indication, output disable, and auto recovery features are disabled in this mode. Submit Document Feedback Copyright © 2023 Texas Instruments Incorporated Product Folder Links: TIOL112 TIOL1123 TIOL1125 13 TIOL112, TIOL1123, TIOL1125 www.ti.com SLLSFJ1D – FEBRUARY 2022 – REVISED MARCH 2023 Table 8-1. Current Limit Configuration ILIM_ADJ Pin Condition CQ Current Limit (Min.) NFAULT Indication During Current Fault Output Disable and Auto Recovery RSET resistor to L(10 kΩ to 110 kΩ) Variable (35 mA to 300 mA) Yes Yes Connected to L(RSET 0 to 5 kΩ) 500 mA No No OPEN 260 mA Yes No 8.3.3 Current Fault Detection, Indication and Auto Recovery If the output current at CQ exceeds the internally-set current limit IO(LIM) for a duration longer than tSC, the NFAULT pin is driven logic low to indicate a fault condition. The output is turned off, but the LDO continues to function. The output periodically retries to check if the output is still in the over current condition. In this mode, the output is switched on for tSC in tSCEN intervals. Current fault auto recovery mode can be disabled by setting ILIM_ADJ = OPEN. See Table 8-5. Toggling EN will clear NFAULT. 8.3.4 Thermal Warning, Thermal Shutdown If the die temperature exceeds T(WRN), the NFAULT flag is held low indicating a potential over temperature problem. When the TJ exceeds T(SDN), The output is disabled but the LDO remains operational. As soon as the temperature drops below the temperature threshold (and after T(HYS)), the internal circuit re-enables the driver, subject to the state of the EN and TX pins. 8.3.5 Fault Reporting (NFAULT) NFAULT is driven low if either a current fault condition is detected, die temperature has exceeded T(WRN) or supply has dropped below the UVLO threshold. NFAULT returns to high-impedance as soon as all three fault conditions clear. Receive Only-Wake CUR_OK = Z WAKE = L for tWUL Driver = OFF LDO = ON th wid 2 U lse pu t < t W CQ < 1 t WU Receive Only CUR_OK = Z WAKE = Z Driver = OFF LDO = ON EN UL t>t W * EN Wake WAKE = L CUR_OK = Z Driver = ON LDO = ON * Receive and Transmit CUR_OK = Z WAKE = Z Driver = ON LDO = ON CQ @ ILIM for tWU1 < t < tWU2 N * Thermal Shutdown CUR_OK = Z TMP_OK = L WAKE = Z Driver = OFF LDO = ON @ ILIM t> tS C T > TWRN T < TWRN & Current Fault Current Fault WAKE = Z CUR_OK = L Driver = OFF LDO=ON CQ NOT @ ILIM T for N &E t = tSCEN T < (TSD + THYS) T< N WR CQ @ ILIM RN EN & RN TW CQ T< T> TW T > TWRN * T > TSD for t > tSC EN Thermal Warning CUR_OK = Z TMP_OK = L WAKE = Z Driver = EN/EN* LDO = ON T WR CQ @ ILIM T> Current Fault Recovery WAKE = Z CUR_OK = L Driver = ON for tsc LDO=ON Note: NFAULT = [CUR_OK && PWR_OK && TMP_OK] Figure 8-3. Device State Diagram 14 Submit Document Feedback Copyright © 2023 Texas Instruments Incorporated Product Folder Links: TIOL112 TIOL1123 TIOL1125 TIOL112, TIOL1123, TIOL1125 www.ti.com SLLSFJ1D – FEBRUARY 2022 – REVISED MARCH 2023 8.3.6 Transceiver Function Tables Table 8-2. Driver Function EN TX CQ COMMENT L / Open X Hi-Z H L H CQ is sourcing current (high-side drive) H H / Open L CQ is sinking current (low-side drive) Device is in ready-to-receive state Table 8-3. Receiver Function CQ VOLTAGE RX COMMENT V(CQ) < V(THL) H Normal receive mode, input low V(THL) < V(CQ) < V(THH) ? Indeterminate output, may be either high or low V(THH) < V(CQ) L Normal receive mode, input high Open ? Indeterminate output, may be either high or low Table 8-4. Wake-Up Function (tWU1 < t < tWU2) EN TX CQ CURRENT WAKE COMMENT L / Open X X Asserts low for tWUL Device asserts low for tWUL if RX output changes highto-low or low-to-high for tWU1 < t < tWU2 H H / Open | I(CQ) | ≥ 500 mA L Device receives high-level wake-up request over the IO-Link bus H L | I(CQ) | ≥ 500 mA L Device receives low-level wake-up request over the IO-Link bus EN TX Table 8-5. Current Limit Indicator Function (t > tSC) H H / Open H L L / Open X CQ CURRENT NFAULT | I(CQ) | > IO(LIM) L CQ current exceeds the set limit for over tSC COMMENT | I(CQ) | < IO(LIM) Z Normal operation | I(CQ) | > IO(LIM) L CQ current exceeds the set limit for over tSC | I(CQ) | < IO(LIM) Z Normal operation X Z Driver is disabled, Current limit indicator is inactive Note Current limit indicator function is disabled when ILIM_ADJ is connected to GND (or RSET < 5 kΩ Submit Document Feedback Copyright © 2023 Texas Instruments Incorporated Product Folder Links: TIOL112 TIOL1123 TIOL1125 15 TIOL112, TIOL1123, TIOL1125 www.ti.com SLLSFJ1D – FEBRUARY 2022 – REVISED MARCH 2023 8.3.7 The Integrated Voltage Regulator (LDO) The TIOL1123 and TIOL1125 each have an integrated linear voltage regulator (LDO) which can supply power to external components. The voltage regulator is specified for L+ voltages in the range of 7 V to 36 V with respect to L-. The LDO is capable of delivering up to 20 mA. In the DSBGA (YAH) package, TIOL1123L offers pin-configurable LDO output via VSEL pin. When VSEL is connected to GND, VCC_OUT is configured to provide a 5-V output. When VSEL is left floating, VCC_OUT provides a 3.3-V output. Table 8-6. LDO Output Configuration via VSEL pin (YAH Package) VSEL pin connection VCC_OUT Connected to L- 5V Floating 3.3 V The LDO is designed to be stable with standard ceramic capacitors with values of 1 μF or larger at the output. X5R- and X7R-type capacitors are best because they have minimal variation in value and ESR over temperature. Maximum ESR should be less than 1 Ω. With tolerance and dc bias effects, the minimum capacitance for stability is 1 μF. The voltage regulator has an internal 35-mA current limit to protect against initial start-up inrush current due to large decoupling capacitors and accidental short circuit conditions. 16 Submit Document Feedback Copyright © 2023 Texas Instruments Incorporated Product Folder Links: TIOL112 TIOL1123 TIOL1125 TIOL112, TIOL1123, TIOL1125 www.ti.com SLLSFJ1D – FEBRUARY 2022 – REVISED MARCH 2023 8.3.8 Reverse Polarity Protection Reverse polarity protection circuitry protects the devices against accidental reverse polarity connections to the L+, CQ and L- pins. The maximum voltage between any of the pins may not exceed 65 V DC at any time. Figure 8-4 and Figure 8-5 shows all the possible connection combinations. L+ L+ DC CQ TIOL112(x) DC CQ TIOL112(x) RL L- L- RL Reverse Polarity Protected Fault Condion Correct Conguraon L+ L+ DC CQ DC CQ TIOL112(x) TIOL112(x) RL L- L- Reverse Polarity Protected Fault Condion RL Reverse Polarity Protected Fault Condion L+ L+ DC CQ TIOL112(x) DC CQ TIOL112(x) RL L- Reverse Polarity Protected Fault Condion L- RL Reverse Polarity Protected Fault Condi on Figure 8-4. High-Side Driver Configuration Submit Document Feedback Copyright © 2023 Texas Instruments Incorporated Product Folder Links: TIOL112 TIOL1123 TIOL1125 17 TIOL112, TIOL1123, TIOL1125 www.ti.com SLLSFJ1D – FEBRUARY 2022 – REVISED MARCH 2023 L+ L+ DC CQ TIOL112(x) DC CQ TIOL112(x) L- RL L- RL Reverse Polarity Protected Fault Condion Correct Conguraon L+ L+ DC CQ DC CQ TIOL112(x) TIOL112(x) L- RL L- Reverse Polarity Protected Fault Condion RL Reverse Polarity Protected Fault Condion L+ L+ DC CQ TIOL112(x) DC CQ TIOL112(x) L- RL Overcurrent Fault Protecon Condion L- RL Reverse Polarity Protected Fault Condi on Figure 8-5. Low-Side Driver Configuration 18 Submit Document Feedback Copyright © 2023 Texas Instruments Incorporated Product Folder Links: TIOL112 TIOL1123 TIOL1125 TIOL112, TIOL1123, TIOL1125 www.ti.com SLLSFJ1D – FEBRUARY 2022 – REVISED MARCH 2023 8.3.9 Integrated Surge Protection and Transient Waveform Tolerance The L+ and CQ pins of the device are capable of withstanding up to 1.2 kV of 1.2/50 – 8/20 μs IEC 61000-4-5 surge with a source impedance of 500 Ω. The surge testing should be performed with a minimum 100 nF supply decoupling capacitor between L+ and L-, and 1 µF between VCC_IN/OUT and L-. External TVS diodes may be required for higher transient protection levels. The system designer should make sure the maximum clamping voltage of the external diodes is < 65 V at the desired current level. The device is capable of withstanding up to ±70-V transient pulses < 100 µs. Combination R wave Generator Protection Equipment Auxiliary Equipment EUT L+ CQ Decoupling > 100 nF Network L- 1.2/50 – 8/20 µs CWG R = 500 Ω Figure 8-6. Surge Test Setup 8.3.10 Power Up Sequence (TIOL112) VCC_IN and L+ domains can be powered up in any sequence. In the event of L+ is powered and VCC_IN is not, the CQ pin will remain in high impedance. 8.3.11 Undervoltage Lock-Out (UVLO) The device enters UVLO if the L+ voltage falls below V(UVLO). (For the device without the integrated LDO, the device monitors VCC_IN in addition to L+. UVLO happens if either supply falls below the threshold.) As soon as the supply falls below V(UVLO), NFAULT is pulled low, and the driver (CQ) is disabled (Hi-Z). Receiver performance is not specified in this mode. When the supply rises above V(UVLO), NFAULT returns to Hi-Z (given no other fault conditions present). The CQ output is turned on after t(UVLO) delay. Submit Document Feedback Copyright © 2023 Texas Instruments Incorporated Product Folder Links: TIOL112 TIOL1123 TIOL1125 19 TIOL112, TIOL1123, TIOL1125 www.ti.com SLLSFJ1D – FEBRUARY 2022 – REVISED MARCH 2023 8.4 Device Functional Modes These devices can operate in three different modes. 8.4.1 NPN Configuration (N-Switch SIO Mode) Set TX pin high (or open) and use EN pin as control for realizing the function of an N-switch (low-side configuration) on CQ. 8.4.2 PNP Configuration (P-Switch SIO Mode) Set TX pin low and use EN pin as control for realizing the function of a P-switch (high-side configuration) on CQ. 8.4.3 Push-Pull, Communication Mode Set EN pin high and toggle TX as control for realizing the function of a push-pull output on CQ. Table 8-7, Table 8-8 and Table 8-9 summarize the pin configurations to accomplish the functional modes. Table 8-7. NPN Mode EN TX CQ L / Open H / Open Hi-Z H H / Open N-Switch Table 8-8. PNP Mode EN TX CQ L / Open L Hi-Z H L P-Switch Table 8-9. Push-Pull, Communication Mode EN 20 TX CQ L / Open X Hi-Z H H N-Switch H L P-Switch Submit Document Feedback Copyright © 2023 Texas Instruments Incorporated Product Folder Links: TIOL112 TIOL1123 TIOL1125 TIOL112, TIOL1123, TIOL1125 www.ti.com SLLSFJ1D – FEBRUARY 2022 – REVISED MARCH 2023 9 Application and Implementation Note Information in the following applications sections is not part of the TI component specification, and TI does not warrant its accuracy or completeness. TI’s customers are responsible for determining suitability of components for their purposes, as well as validating and testing their design implementation to confirm system functionality. 9.1 Application Information When TIOL112(x) is connected to an IO-Link master through a three-wire interface (Figure 9-1), the master can initiate communication and exchange data with a remote node with the TIOL112(x) IO-Link transceiver acting as a complete physical layer for the communication. 9.2 Typical Application VCC_OUT 1 µF 10 V VOLTAGE REGULATOR 0.1 µF 100 V 10 k ESD and Surge Protection RX TX Microcontroller EN WAKE CONTRO L LOGIC 10 k Sensor Front-End L+ Rev. Polarity Protection CQ DIAGNOSTICS & CONTROL IO-Link Master PHY Rev. Polarity Protection ESD and Surge Protection NFAULT CUR_OK TMP_OK PWR_OK L- ILIM_ADJ Figure 9-1. Typical Application Schematic 9.2.1 Design Requirements TIOL112 and TIOL112x IO-Link transceivers can be used to communicate using the IO-Link protocol, or as standard digital outputs to either sense or drive a wide range of sensors and loads. Table 9-1 shows recommended components for a typical system design. Table 9-1. Design Parameters PARAMETERS Design Requirement TIOL112(x) Specification Input voltage range (L+) 24 V (typ), 30 V (max) 7 V to 36 V Output current (CQ) 200 mA Choose 250 mA limit with RSET = 27 kΩ LDO Output voltage 5V Choose TIOL1125; VCC_OUT = 5V LDO output current 5 mA I(VCC_OUT): Up to 20 mA Pull-up resistors for NFAULT and WAKE 10 kΩ 10 kΩ L+ decoupling capacitor 0.1 µF / 100 V 0.1 µF / 100 V LDO output capacitor 1 µF / 10 V 1 µF / 10 V 105 °C TIOL112 can support up to TA of 125 °C if TJ < T(SDN) Maximum Ambient Temperature, TA Submit Document Feedback Copyright © 2023 Texas Instruments Incorporated Product Folder Links: TIOL112 TIOL1123 TIOL1125 21 TIOL112, TIOL1123, TIOL1125 www.ti.com SLLSFJ1D – FEBRUARY 2022 – REVISED MARCH 2023 9.2.2 Detailed Design Procedure 9.2.2.1 Maximum Junction Temperature Check For a 200 mA current limit: • Choose driver output current limit, IO(LIM) = 250 mA (allowing for current limit tolerance); RSET = 27 kΩ • The maximum voltage drop across the high-side switch at 250 mA current is VDS(ON) = 1.1 V. This causes a power consumption of: PDOP = VDS ON ×  IO LIM = 1.1 V  × 250 mA = 275 mW (1) PDLDO = VL + − VVCCOUT ×  IVCC_OUT = 30 − 5 V  × 5 mA = 125 mW (2) PD =  PDLDO + PDOP = 275 mW + 125 mW = 400 mW  (3) ∆ T = T J − TA = PD × θ JA = 400 mW × 45.9 ℃ W = 18.36 ℃ (4) T J = TA +   ∆ T = TA +  PD × θ JA = 105 ℃ +  400 mW × 45.9 ℃ W = 105 ℃ + 18.36 ℃ =  123.36 ℃ (5) For a 5 mA LDO current output, Total power dissipation, Multiply this value with the Junction-to-ambient thermal resistance of θJA = 45.9 °C/W (taken from the Thermal Information table table) to receive the difference between junction temperature, TJ, and ambient temperature, TA: Add this value to the maximum ambient temperature of TA = 105°C to receive the final junction temperature: As long as TJ is below the recommended maximum value of 150°C, no thermal shutdown will occur. However, the junction temperature is closer to TWRN and thermal warning may be generated if the junction temperature rises above TWRN. Note that the modeling of the complete system may be necessary to predict junction temperature in smaller PCBs and/or enclosures without air flow. 9.2.2.2 Driving Capacitive Loads These devices are capable of driving capacitive loads on the CQ output. Assuming a pure capacitive load without series/parallel resistance, the maximum capacitance that can be charged without triggering current fault can be calculated as: CLOAD [IO LIM x t SC ] VL (6) To drive higher capacitive loads and avoid overcurrent condition disabling the driver, it is recommended leave ILIM_ADJ pin floating. With ILIM_ADJ floating, TIOL112(x) indicates overcurrent fault without blanking time delay (tSC) but does not disable the driver. Another approach is to drive high capacitive loads with a series resistor between the CQ output and the load to avoid overcurrent condition. Capacitive loads can be connected to L- or L+. 9.2.2.3 Driving Inductive Loads The TIOL112(x) family is capable of magnetizing and demagnetizing large inductive loads. These devices contain internal circuitry that enables fast and safe demagnetization when configured as either P-switch or N-switch mode. 22 Submit Document Feedback Copyright © 2023 Texas Instruments Incorporated Product Folder Links: TIOL112 TIOL1123 TIOL1125 TIOL112, TIOL1123, TIOL1125 www.ti.com SLLSFJ1D – FEBRUARY 2022 – REVISED MARCH 2023 In P-switch configuration, the load inductor L is magnetized when the CQ output is driven high. When the PNP is turned off, there is a significant amount of negative inductive kick back at the CQ pin. This voltage is safely clamped internally at about -15 V. Similarly, in N-switch configuration, the load inductor L is magnetized when the CQ output is driven low. When the NPN is turned off, there is a significant amount of positive inductive kick back at the CQ pin. This voltage is safely clamped internally at about 15 V. The equivalent protection circuits are shown in Figure 9-2 and Figure 9-3. The minimum value of the resistive load R can be calculated as: R VL IO( LIM ) (7) Rev. Polarity Protection ESD and Surge Protection Rev. Polarity Protection Rev. Polarity Protection L+ ESD and Surge Protection CQ L ESD and Surge Protection Rev. Polarity Protection R L- L+ R CQ L ESD and Surge Protection L- Figure 9-2. P-Switch Mode Figure 9-3. N-Switch Mode Submit Document Feedback Copyright © 2023 Texas Instruments Incorporated Product Folder Links: TIOL112 TIOL1123 TIOL1125 23 TIOL112, TIOL1123, TIOL1125 www.ti.com SLLSFJ1D – FEBRUARY 2022 – REVISED MARCH 2023 4 V/div 4 V/div 300 mA/div 300 mA/div 6 V/div 6 V/div 9.2.3 Application Curves Time 10 ms/div Time 10 ms/div Figure 9-4. CQ in Current Fault Auto Recovery, Low Side Mode L+ = 36 V L = 1.5 H RL = 360 Ω RSET = 10 kΩ TA = 25 °C Figure 9-6. CQ Driving Inductive Load, Low Side Mode (NPN mode) Figure 9-5. CQ in Current Fault Auto Recovery, High Side Mode L+ = 36 V L=1.5 H RL = 360 Ω RSET = 10 kΩ TA = 25 °C Figure 9-7. CQ Driving Inductive Load, High Side Mode (PNP mode) NFAULT is indicated for the duration of charging and discharging of the capacitor but driver is not disabled when ILIM_ADJ is floating L+ = 24 V CL = 20 µF RL = 100 Ω RSET = 1 MΩ (ILIM_ADJ Floating) TA = 25 °C Figure 9-8. CQ Driving Capacitive Load, Push-Pull Mode 9.3 Power Supply Recommendations The TIOL112 and TIOL112x transceivers are designed to operate from a 24-V nominal supply at L+, which can vary by +12 V and -17 V from the nominal value to remain within the device recommended supply voltage range of 7 V to 36 V. This supply should be buffered with at least a 100-nF/100-V capacitor. 24 Submit Document Feedback Copyright © 2023 Texas Instruments Incorporated Product Folder Links: TIOL112 TIOL1123 TIOL1125 TIOL112, TIOL1123, TIOL1125 www.ti.com SLLSFJ1D – FEBRUARY 2022 – REVISED MARCH 2023 9.4 Layout 9.4.1 Layout Guidelines • • • • • • • • Use of a 4-layer board is recommended for good heat conduction. Use layer 1 (top layer) for control signals, layer 2 as power ground layer for L-, layer 3 for the 24-V supply plane (L+), and layer 4 for the regulated output supply (VCC_IN/OUT). Connect the thermal pad to L- with maximum amount of thermal vias for best thermal performance. Use entire planes for L+, VCC_IN/OUT and L- to assure minimum inductance. The L+ terminal must be decoupled to ground with a low-ESR ceramic decoupling capacitor. The recommended minimum capacitor value is 100 nF. The capacitor must have a voltage rating of 50 V minimum (100 V depending on max sensor supply fault rating) and an X5R or X7R dielectric. The optimum placement of the capacitor is closest to the transceiver’s L+ and L- terminals to reduce supply drops during large supply current loads. See Figure 9-9 for a PCB layout example. Connect all open-drain control outputs via 10 kΩ pull-up resistors to the VCC_IN/OUT plane to provide a defined voltage potential to the system controller inputs when the outputs are high-impedance. Connect the RSET resistor between ILIM_ADJ and L-. Decouple the regulated output voltage at VCC_IN/OUT to ground with a low-ESR, ≥ 1-μF, ceramic decoupling capacitor. The capacitor should have a voltage rating of 10 V minimum and an X5R or X7R dielectric. 9.4.2 Layout Example VIA to Layer 2: Power Ground Plane (L-) VIA to Layer 3: 24V Supply Plane (L+) VIA to Layer 4: Regulated Supply Plane (VCC_IN/OUT) WAKE 1uF/10V N _I C VC 100nF/ 50V U /O NFAULT T L+ RX CQ TX L- EN ILIM_ADJ L+ CQ Exposed Thermal Pad Area RSET L- Use Multiple Vias for L+ and L- Figure 9-9. Layout Example Submit Document Feedback Copyright © 2023 Texas Instruments Incorporated Product Folder Links: TIOL112 TIOL1123 TIOL1125 25 TIOL112, TIOL1123, TIOL1125 www.ti.com SLLSFJ1D – FEBRUARY 2022 – REVISED MARCH 2023 10 Device and Documentation Support 10.1 Receiving Notification of Documentation Updates To receive notification of documentation updates, navigate to the device product folder on ti.com. In the upper right corner, click on Alert me to register and receive a weekly digest of any product information that has changed. For change details, review the revision history included in any revised document. 10.2 Support Resources TI E2E™ support forums are an engineer's go-to source for fast, verified answers and design help — straight from the experts. Search existing answers or ask your own question to get the quick design help you need. Linked content is provided "AS IS" by the respective contributors. They do not constitute TI specifications and do not necessarily reflect TI's views; see TI's Terms of Use. 10.3 Trademarks TI E2E™ is a trademark of Texas Instruments. All trademarks are the property of their respective owners. 10.4 Electrostatic Discharge Caution This integrated circuit can be damaged by ESD. Texas Instruments recommends that all integrated circuits be handled with appropriate precautions. Failure to observe proper handling and installation procedures can cause damage. ESD damage can range from subtle performance degradation to complete device failure. Precision integrated circuits may be more susceptible to damage because very small parametric changes could cause the device not to meet its published specifications. 10.5 Glossary TI Glossary This glossary lists and explains terms, acronyms, and definitions. 11 Mechanical, Packaging, and Orderable Information The following pages include mechanical, packaging, and orderable information. This information is the most current data available for the designated devices. This data is subject to change without notice and revision of this document. For browser-based versions of this data sheet, refer to the left-hand navigation. 26 Submit Document Feedback Copyright © 2023 Texas Instruments Incorporated Product Folder Links: TIOL112 TIOL1123 TIOL1125 TIOL112, TIOL1123, TIOL1125 www.ti.com SLLSFJ1D – FEBRUARY 2022 – REVISED MARCH 2023 PACKAGE OUTLINE YAH0012-C01 DSBGA - 0.4 mm max height SCALE 8.000 DIE SIZE BALL GRID ARRAY B A E BALL A1 CORNER D C 0.4 MAX SEATING PLANE 0.17 0.11 0.05 C 1 TYP SYMM D C SYMM 1.5 TYP D: Max = 2.47 mm, Min = 2.43 mm B 0.5 TYP E: Max = 1.72 mm, Min = 1.68 mm A 12X 0.015 0.25 0.21 C A B 1 2 3 0.5 TYP 4227086/A 09/2021 NOTES: 1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing per ASME Y14.5M. 2. This drawing is subject to change without notice. www.ti.com Submit Document Feedback Copyright © 2023 Texas Instruments Incorporated Product Folder Links: TIOL112 TIOL1123 TIOL1125 27 TIOL112, TIOL1123, TIOL1125 www.ti.com SLLSFJ1D – FEBRUARY 2022 – REVISED MARCH 2023 EXAMPLE BOARD LAYOUT YAH0012-C01 DSBGA - 0.4 mm max height DIE SIZE BALL GRID ARRAY (0.5) TYP 12X ( 0.23) 1 2 3 A (0.5) TYP B SYMM C D SYMM LAND PATTERN EXAMPLE EXPOSED METAL SHOWN SCALE: 30X 0.05 MAX 0.05 MIN METAL UNDER SOLDER MASK ( 0.23) METAL SOLDER MASK OPENING EXPOSED METAL ( 0.23) SOLDER MASK OPENING EXPOSED METAL SOLDER MASK DEFINED NON-SOLDER MASK DEFINED (PREFERRED) SOLDER MASK DETAILS NOT TO SCALE 4227086/A 09/2021 NOTES: (continued) 3. Final dimensions may vary due to manufacturing tolerance considerations and also routing constraints. See Texas Instruments Literature No. SNVA009 (www.ti.com/lit/snva009). www.ti.com 28 Submit Document Feedback Copyright © 2023 Texas Instruments Incorporated Product Folder Links: TIOL112 TIOL1123 TIOL1125 TIOL112, TIOL1123, TIOL1125 www.ti.com SLLSFJ1D – FEBRUARY 2022 – REVISED MARCH 2023 EXAMPLE STENCIL DESIGN YAH0012-C01 DSBGA - 0.4 mm max height DIE SIZE BALL GRID ARRAY (0.5) TYP (R0.05) TYP 12X ( 0.25) 1 2 3 A (0.5) TYP B SYMM C METAL TYP D SYMM SOLDER PASTE EXAMPLE BASED ON 0.075 mm THICK STENCIL SCALE: 30X 4227086/A 09/2021 NOTES: (continued) 4. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. www.ti.com Submit Document Feedback Copyright © 2023 Texas Instruments Incorporated Product Folder Links: TIOL112 TIOL1123 TIOL1125 29 PACKAGE OPTION ADDENDUM www.ti.com 9-Jun-2023 PACKAGING INFORMATION Orderable Device Status (1) Package Type Package Pins Package Drawing Qty Eco Plan (2) Lead finish/ Ball material MSL Peak Temp Op Temp (°C) Device Marking (3) Samples (4/5) (6) TIOL1123DRCR ACTIVE VSON DRC 10 5000 RoHS & Green NIPDAU Level-2-260C-1 YEAR -40 to 125 1123 Samples TIOL1123LYAHR ACTIVE DSBGA YAH 12 1500 RoHS & Green SNAGCU Level-1-260C-UNLIM -40 to 125 T1123L Samples TIOL1125DRCR ACTIVE VSON DRC 10 5000 RoHS & Green NIPDAU Level-2-260C-1 YEAR -40 to 125 1125 Samples TIOL112DRCR ACTIVE VSON DRC 10 5000 RoHS & Green NIPDAU Level-2-260C-1 YEAR -40 to 125 112 Samples TIOL112YAHR ACTIVE DSBGA YAH 12 1500 RoHS & Green SNAGCU Level-1-260C-UNLIM -40 to 125 TL112 Samples (1) The marketing status values are defined as follows: ACTIVE: Product device recommended for new designs. LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect. NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design. PREVIEW: Device has been announced but is not in production. Samples may or may not be available. OBSOLETE: TI has discontinued the production of the device. (2) RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may reference these types of products as "Pb-Free". RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption. Green: TI defines "Green" to mean the content of Chlorine (Cl) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of
TIOL1123LYAHR 价格&库存

很抱歉,暂时无法提供与“TIOL1123LYAHR”相匹配的价格&库存,您可以联系我们找货

免费人工找货