Product
Folder
Sample &
Buy
Support &
Community
Tools &
Software
Technical
Documents
TL061, TL061A, TL061B
TL062, TL062A, TL062B, TL064, TL064A, TL064B
SLOS078L – NOVEMBER 1978 – REVISED MAY 2015
TL06xx Low-Power JFET-Input Operational Amplifiers
1 Features
2 Applications
•
•
•
•
•
•
•
1
•
•
•
•
•
•
•
•
Very Low Power Consumption
Typical Supply Current: 200 μA (Per Amplifier)
Wide Common-Mode and Differential Voltage
Ranges
Low Input Bias and Offset Currents
Common-Mode Input Voltage Range
Includes VCC+
Output Short-Circuit Protection
High Input Impedance: JFET-Input Stage
Internal Frequency Compensation
Latch-Up-Free Operation
High Slew Rate: 3.5 V/μs Typical
On Products Compliant to MIL-PRF-38535,
All Parameters Are Tested Unless Otherwise
Noted. On All Other Products, Production
Processing Does Not Necessarily Include Testing
of All Parameters.
Tablets
White goods
Personal electronics
Computers
3 Description
The JFET-input operational amplifiers of the TL06x
series are designed as low-power versions of the
TL08x series amplifiers. They feature high input
impedance, wide bandwidth, high slew rate, and low
input offset and input bias currents. The TL06x series
features the same terminal assignments as the TL07x
and TL08x series.
Device Information(1)
PART NUMBER
PACKAGE
BODY SIZE (NOM)
TL06xxD
SOIC (14)
8.65 mm × 3.91 mm
TL06xxJ
CDIP (14)
19.56 mm × 6.92 mm
TL06xxN
PDIP (14)
19.30 mm × 6.35 mm
TL06xxNS
SO (14)
10.30 mm × 5.30 mm
TL06xxPW
TSSOP (14)
5.00 mm × 4.40 mm
(1) For all available packages, see the orderable addendum at
the end of the data sheet.
Schematic Symbol
IN+
+
IN−
−
OFFSET N1
OUT
OFFSET N2
Offset Null/Compensation
TL061 Only
1
An IMPORTANT NOTICE at the end of this data sheet addresses availability, warranty, changes, use in safety-critical applications,
intellectual property matters and other important disclaimers. PRODUCTION DATA.
TL061, TL061A, TL061B
TL062, TL062A, TL062B, TL064, TL064A, TL064B
SLOS078L – NOVEMBER 1978 – REVISED MAY 2015
www.ti.com
Table of Contents
1
2
3
4
5
6
Features ..................................................................
Applications ...........................................................
Description .............................................................
Revision History.....................................................
Pin Configuration and Functions .........................
Specifications.........................................................
6.1
6.2
6.3
6.4
6.5
6.6
6.7
6.8
6.9
6.10
6.11
7
8
1
1
1
2
3
4
Absolute Maximum Ratings ...................................... 4
ESD Ratings.............................................................. 5
Recommended Operating Conditions....................... 5
Thermal Information - 8 Pins..................................... 5
Thermal Information - 14 Pins................................... 5
Thermal Information - 20 Pins................................... 6
Electrical Characteristics for TL06xC and TL06xxC . 6
Electrical Characteristics for TL06xxC and TL06xI ... 7
Electrical Characteristics for TL06xM and TL064M .. 7
Operating Characteristics........................................ 8
Typical Characteristics ............................................ 9
Parameter Measurement Information ................ 13
Detailed Description ............................................ 14
8.1 Overview ................................................................. 14
8.2 Functional Block Diagram ....................................... 14
8.3 Feature Description................................................. 14
8.4 Device Functional Modes........................................ 15
9
Applications and Implementation ...................... 16
9.1 Application Information............................................ 16
9.2 Typical Applications ................................................ 16
9.3 System Examples ................................................... 17
10 Power Supply Recommendations ..................... 19
11 Layout................................................................... 20
11.1 Layout Guidelines ................................................. 20
11.2 Layout Examples................................................... 20
12 Device and Documentation Support ................. 21
12.1
12.2
12.3
12.4
12.5
12.6
Documentation Support ........................................
Related Links ........................................................
Community Resources..........................................
Trademarks ...........................................................
Electrostatic Discharge Caution ............................
Glossary ................................................................
21
21
21
21
21
21
13 Mechanical, Packaging, and Orderable
Information ........................................................... 21
4 Revision History
NOTE: Page numbers for previous revisions may differ from page numbers in the current version.
Changes from Revision K (January 2014) to Revision L
Page
•
Added Applications ................................................................................................................................................................. 1
•
Added Pin Configuration and Functions section, ESD Ratings table, Feature Description section, Device Functional
Modes, Application and Implementation section, Power Supply Recommendations section, Layout section, Device
and Documentation Support section, and Mechanical, Packaging, and Orderable Information section .............................. 1
Changes from Revision J (September 2004) to Revision K
Page
•
Updated document to new TI data sheet format - no specification changes. ........................................................................ 1
•
Deleted Ordering Information table. ....................................................................................................................................... 1
•
Updated Features with Military Disclaimer. ............................................................................................................................ 1
2
Submit Documentation Feedback
Copyright © 1978–2015, Texas Instruments Incorporated
Product Folder Links: TL061 TL061A TL061B TL062 TL062A TL062B TL064 TL064A TL064B
TL061, TL061A, TL061B
TL062, TL062A, TL062B, TL064, TL064A, TL064B
www.ti.com
SLOS078L – NOVEMBER 1978 – REVISED MAY 2015
5 Pin Configuration and Functions
TL061x D, P, and PS Package
8-Pin SOIC, PDIP, and SO
Top View
1
8
2
7
3
6
4
5
NC
1OUT
NC
VCC+
NC
OFFSET N1
IN−
IN+
VCC−
TL062 FK Package
20-Pin LCCC
Top View
NC
VCC+
OUT
OFFSET N2
NC
1IN−
NC
1IN+
NC
TL062x D, JG, P, PS, and PW Package
8-Pin SOIC, CDIP, PDIP, SO, and TSSOP
Top View
1
8
2
7
3
6
4
5
VCC+
2OUT
2IN−
2IN+
3 2 1 20 19
18
5
17
6
16
7
15
8
14
9 10 11 12 13
NC
2OUT
NC
2IN−
NC
NC
VCC−
NC
2IN+
NC
1OUT
1IN−
1IN+
VCC−
4
TL064 FK Package
20-Pin LCCC
Top View
1
14
2
13
3
12
4
11
5
10
6
9
7
8
4OUT
4IN−
4IN+
VCC−
3IN+
3IN−
3OUT
1IN+
NC
VCC+
NC
2IN+
4
3 2 1 20 19
18
5
17
6
16
7
15
8
14
9 10 11 12 13
4IN+
NC
VCC−
NC
3IN+
2IN−
2OUT
NC
3OUT
3IN−
1OUT
1IN−
1IN+
VCC+
2IN+
2IN−
2OUT
1IN−
1OUT
NC
4OUT
4IN−
TL064x D, J, N, NS, PW, and W Package
14-Pin SOIC, CDIP, PDIP, SO, TSSOP and CFP
Top View
Pin Functions
PIN
TL061
NAME
TL062
D, P, PS
D, JG, P,
PS, PW
1IN–
—
1IN+
—
1OUT
—
2IN–
—
2IN+
—
2OUT
3IN–
TL064
TYPE
DESCRIPTION
FK
D, J, N, NS,
PW, W
FK
2
5
2
3
I
Negative input
3
7
3
4
I
Positive input
1
2
1
2
O
Output
6
15
6
9
I
Negative input
5
12
5
8
I
Positive input
—
7
17
7
10
O
Output
—
—
—
9
13
I
Negative input
3IN+
—
—
—
10
14
I
Positive input
3OUT
—
—
—
8
12
O
Output
4IN–
—
—
—
13
19
I
Negative input
4IN+
—
—
—
12
18
I
Positive input
4OUT
—
—
—
14
20
O
Output
IN–
2
—
—
—
—
I
Negative input
Copyright © 1978–2015, Texas Instruments Incorporated
Submit Documentation Feedback
Product Folder Links: TL061 TL061A TL061B TL062 TL062A TL062B TL064 TL064A TL064B
3
TL061, TL061A, TL061B
TL062, TL062A, TL062B, TL064, TL064A, TL064B
SLOS078L – NOVEMBER 1978 – REVISED MAY 2015
www.ti.com
Pin Functions (continued)
PIN
TL061
NAME
IN+
TL062
TL064
D, JG, P,
PS, PW
FK
D, J, N, NS,
PW, W
FK
3
—
—
—
—
1
4
8
—
Positive input
5
6
8
I
DESCRIPTION
1
3
NC
TYPE
D, P, PS
7
9
—
11
—
Do not connect
11
13
14
15
16
18
17
19
OFFSET N1
1
—
—
—
—
—
Input offset adjustment
OFFSET N2
5
—
—
—
—
—
Input offset adjustment
OUT
6
—
—
—
—
O
Output
VCC–
4
4
10
11
16
—
Power supply
VCC+
7
8
20
4
6
—
Power supply
6 Specifications
6.1 Absolute Maximum Ratings
over operating free-air temperature range (unless otherwise noted) (1)
MIN
VCC+
VCC–
MAX
18
Supply voltage (2)
–18
UNIT
V
VID
Differential input voltage (3)
±30
V
VI
Input voltage (2) (4)
±15
V
Duration of output short circuit (5)
TJ
Tstg
(1)
(2)
(3)
(4)
(5)
4
Unlimited
Operating virtual junction temperature
150
°C
Case temperature for 60 seconds
FK package
260
°C
Lead temperature 1.6 mm (1/16 inch) from
case for 60 seconds
J, JG, U, or W package
300
°C
Lead temperature 1.6 mm (1/16 inch) from
case for 10 seconds
D, N, NS, P, PS, or PW package
260
°C
150
°C
Storage temperature
–65
Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings
only, and functional operation of the device at these or any other conditions beyond those indicated under Recommended Operating
Conditions is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.
All voltage values, except differential voltages, are with respect to the midpoint between VCC+ and VCC−.
Differential voltages are at IN+, with respect to IN−.
The magnitude of the input voltage must never exceed the magnitude of the supply voltage or 15 V, whichever is less.
The output may be shorted to ground or to either supply. Temperature and/or supply voltages must be limited to ensure that the
dissipation rating is not exceeded.
Submit Documentation Feedback
Copyright © 1978–2015, Texas Instruments Incorporated
Product Folder Links: TL061 TL061A TL061B TL062 TL062A TL062B TL064 TL064A TL064B
TL061, TL061A, TL061B
TL062, TL062A, TL062B, TL064, TL064A, TL064B
www.ti.com
SLOS078L – NOVEMBER 1978 – REVISED MAY 2015
6.2 ESD Ratings
VALUE
V(ESD)
(1)
(2)
Electrostatic discharge
Human body model (HBM), per ANSI/ESDA/JEDEC JS-001 (1)
2000
Charged-device model (CDM), per JEDEC specification JESD22C101 (2)
2000
UNIT
V
JEDEC document JEP155 states that 500-V HBM allows safe manufacturing with a standard ESD control process.
JEDEC document JEP157 states that 250-V CDM allows safe manufacturing with a standard ESD control process.
6.3 Recommended Operating Conditions
over operating free-air temperature range (unless otherwise noted)
MIN
MAX
UNIT
VCC+
Supply voltage
5
15
V
VCC–
Supply voltage
–5
–15
V
VCM
Common-mode voltage
VCC– + 4
VCC+ – 4
V
TL06xM
–55
125
TL06xQ
–40
125
TL06xI
–40
85
0
70
TA
Ambient temperature
TL06xC
°C
6.4 Thermal Information - 8 Pins
TL06xx
THERMAL METRIC (1)
RθJ
A
RθJ
C(to
p)
(1)
(2)
(3)
(4)
(5)
D (SOIC)
P (PDIP)
PS (SO)
PW (TSSOP)
JG (CDIP)
8 PINS
8 PINS
8 PINS
8 PINS
8 PINS
UNIT
Junction-to-ambient thermal
resistance (2) (3)
97
85
95
149
—
°C/W
Junction-to-case (top) thermal
resistance (4) (5)
—
—
—
—
14.5
°C/W
For more information about traditional and new thermal metrics, see the Semiconductor and IC Package Thermal Metrics application
report, SPRA953.
Maximum power dissipation is a function of TJ(max), RθJA, and TA. The maximum allowable power dissipation at any allowable ambient
temperature is PD = (TJ(max) – TA)/RθJA. Operating at the absolute maximum TJ of 150°C can affect reliability.
The package thermal impedance is calculated in accordance with JESD 51-7.
Maximum power dissipation is a function of TJ(max), RθJC, and TC. The maximum allowable power dissipation at any allowable ambient
temperature is PD = (TJ(max) – TC) / RθJC. Operating at the absolute maximum TJ of 150°C can affect reliability.
The package thermal impedance is calculated in accordance with MIL-STD-883.
6.5 Thermal Information - 14 Pins
TL06xx
THERMAL METRIC (1)
RθJ Junction-to-ambient thermal
resistance (2) (3)
A
RθJ
C(to
p)
(1)
(2)
(3)
Junction-to-case (top) thermal
resistance (2) (3)
D (SOIC)
N (PDIP)
NS (SO)
PS (SO)
PW
(TSSOP)
J (CDIP)
W (CFP)
14 PINS
14 PINS
14 PINS
8 PINS
14 PINS
14 PINS
14 PINS
86
80
76
95
—
—
°C/W
—
—
—
—
15.05
14.65
°C/W
113
—
UNIT
For more information about traditional and new thermal metrics, see the Semiconductor and IC Package Thermal Metrics application
report, SPRA953.
Maximum power dissipation is a function of TJ(max), RθJC, and TC. The maximum allowable power dissipation at any allowable ambient
temperature is PD = (TJ(max) – TC) / RθJC. Operating at the absolute maximum TJ of 150°C can affect reliability.
The package thermal impedance is calculated in accordance with MIL-STD-883.
Copyright © 1978–2015, Texas Instruments Incorporated
Submit Documentation Feedback
Product Folder Links: TL061 TL061A TL061B TL062 TL062A TL062B TL064 TL064A TL064B
5
TL061, TL061A, TL061B
TL062, TL062A, TL062B, TL064, TL064A, TL064B
SLOS078L – NOVEMBER 1978 – REVISED MAY 2015
www.ti.com
6.6 Thermal Information - 20 Pins
TL06xx
THERMAL METRIC (1)
FK (LCCC)
UNIT
20 PINS
Junction-to-ambient thermal resistance (2) (3)
RθJA
RθJC(top)
(1)
(2)
(3)
(4)
(5)
Junction-to-case (top) thermal resistance
(4) (5)
—
°C/W
5.61
°C/W
For more information about traditional and new thermal metrics, see the Semiconductor and IC Package Thermal Metrics application
report, SPRA953.
Maximum power dissipation is a function of TJ(max), RθJA, and TA. The maximum allowable power dissipation at any allowable ambient
temperature is PD = (TJ(max) – TA)/RθJA. Operating at the absolute maximum TJ of 150°C can affect reliability.
The package thermal impedance is calculated in accordance with JESD 51-7.
Maximum power dissipation is a function of TJ(max), RθJC, and TC. The maximum allowable power dissipation at any allowable ambient
temperature is PD = (TJ(max) – TC) / RθJC. Operating at the absolute maximum TJ of 150°C can affect reliability.
The package thermal impedance is calculated in accordance with MIL-STD-883.
6.7 Electrical Characteristics for TL06xC and TL06xxC
VCC± = ±15 V (unless otherwise noted)
TEST CONDITIONS (1)
PARAMETER
MIN
TA = 25°C
VIO
Input offset voltage
VO = 0, RS = 50 Ω
αVIO
Temperature coefficient
of input offset voltage
VO = 0, RS = 50 Ω, TA = Full range
IIO
Input offset current
VO = 0
TL061AC, TL062AC,
TL064AC
TL061C, TL062C, TL064C
TYP
MAX
3
15
TA = Full range
MIN
TYP
3
20
5
TA = Full range
200
5
30
400
30
mV
μV/°C
10
5
TA = 25°C
6
7.5
10
TA = 25°C
UNIT
MAX
100
pA
3
nA
200
pA
7
nA
IIB
Input bias current (2)
VO = 0
VICR
Common-mode input
voltage range
TA = 25°C
±11
–12
to
15
±11
–12
to
15
VOM
Maximum peak output
voltage swing
RL = 10 kΩ, TA = 25°C
±10
±13.5
±10
±13.5
RL ≥ 10 kΩ, TA = Full range
±10
AVD
Large-signal differential
voltage amplification
VO = ±10 V,
RL ≥ 2 kΩ
B1
Unity-gain bandwidth
RL = 10 kΩ, TA = 25°C
ri
Input resistance
TA = 25°C
CMRR
Common-mode
rejection ratio
VIC = VICRmin,
VO = 0, RS = 50 Ω, TA = 25°C
70
86
kSVR
Supply-voltage
rejection ratio
(ΔVCC±/ΔVIO)
VCC = ±9 V to ±15 V,
VO = 0, RS = 50 Ω, TA = 25°C
70
95
PD
Total power dissipation
(each amplifier)
VO = 0, No load, TA = 25°C
6
7.5
6
7.5
mW
ICC
Supply current
(each amplifier)
VO = 0, No load, TA = 25°C
200
250
200
250
µA
VO1/VO2
Crosstalk attenuation
AVD = 100, TA = 25°C
120
(1)
(2)
6
TA = Full range
10
TA = 25°C
3
TA = Full range
3
V
V
±10
6
4
6
V/mV
4
1
1
1012
1012
Ω
80
86
dB
80
95
dB
120
MHz
dB
All characteristics are measured under open-loop conditions with zero common-mode input voltage unless otherwise specified. Full
range for TA is 0°C to 70°C for TL06xC, TL06xAC, and TL06xBC and –40°C to 85°C for TL06xI.
Input bias currents of an FET-input operational amplifier are normal junction reverse currents, which are temperature sensitive, as
shown in Figure 12. Pulse techniques are used to maintain the junction temperature as close to the ambient temperature as possible.
Submit Documentation Feedback
Copyright © 1978–2015, Texas Instruments Incorporated
Product Folder Links: TL061 TL061A TL061B TL062 TL062A TL062B TL064 TL064A TL064B
TL061, TL061A, TL061B
TL062, TL062A, TL062B, TL064, TL064A, TL064B
www.ti.com
SLOS078L – NOVEMBER 1978 – REVISED MAY 2015
6.8 Electrical Characteristics for TL06xxC and TL06xI
VCC± = ±15 V (unless otherwise noted)
TEST CONDITIONS (1)
PARAMETER
TL061BC, TL062BC,
TL064BC
MIN
TA = 25°C
VIO
Input offset voltage
VO = 0, RS = 50 Ω
αVIO
Temperature coefficient
of input offset voltage
VO = 0, RS = 50 Ω, TA = Full range
IIO
Input offset current
VO = 0
Input bias current (2)
IIB
TYP
MAX
2
3
TA = Full range
MIN
MAX
3
6
9
10
5
TA = Full range
100
5
30
TA = Full range
200
30
7
pA
20
nA
Maximum peak output
voltage swing
RL = 10 kΩ, TA = 25°C
±10
±13.5
RL ≥ 10 kΩ, TA = Full range
±10
AVD
Large-signal differential
voltage amplification
VO = ±10 V,
RL ≥ 2 kΩ
B1
Unity-gain bandwidth
RL = 10 kΩ, TA = 25°C
ri
Input resistance
TA = 25°C
CMRR
Common-mode
rejection ratio
VIC = VICRmin,
VO = 0, RS = 50 Ω, TA = 25°C
80
86
kSVR
Supply-voltage
rejection ratio
(ΔVCC±/ΔVIO)
VCC = ±9 V to ±15 V,
VO = 0, RS = 50 Ω, TA = 25°C
80
95
PD
Total power dissipation
(each amplifier)
VO = 0, No load, TA = 25°C
6
7.5
6
7.5
mW
ICC
Supply current
(each amplifier)
VO = 0, No load, TA = 25°C
200
250
200
250
µA
VO1/VO2
Crosstalk attenuation
AVD = 100, TA = 25°C
120
(1)
(2)
TA = 25°C
4
TA = Full range
4
±13.5
nA
200
±11
VOM
±10
pA
10
TA = 25°C
Common-mode input
voltage range
±11
100
–12
to
15
VICR
–12
to
15
mV
μV/°C
10
3
TA = 25°C
UNIT
TYP
5
TA = 25°C
VO = 0
TL061I, TL062I, TL064I
V
V
±10
6
4
6
V/mV
4
1
1
1012
1012
MHz
Ω
80
86
dB
80
95
dB
120
dB
All characteristics are measured under open-loop conditions with zero common-mode input voltage, unless otherwise specified. Full
range for TA is 0°C to 70°C for TL06xC, TL06xAC, and TL06xBC and –40°C to 85°C for TL06xI.
Input bias currents of an FET-input operational amplifier are normal junction reverse currents, which are temperature sensitive, as
shown in Figure 12. Pulse techniques are used to maintain the junction temperature as close to the ambient temperature as possible.
6.9 Electrical Characteristics for TL06xM and TL064M
VCC± = ±15 V (unless otherwise noted)
TEST CONDITIONS (1)
PARAMETER
TL061M, TL062M
MIN
TA = 25°C
VIO
Input offset voltage
VO = 0, RS = 50 Ω
αVIO
Temperature coefficient
of input offset voltage
VO = 0, RS = 50 Ω,
TA = –55°C to 125°C
IIO
Input offset current
VO = 0
VICR
(1)
(2)
(3)
Common-mode input
voltage range
VO = 0
TA = 25°C
3
6
MIN
TYP
MAX
3
9
9
15
10
5
100
5
100
20 (2)
20 (2)
TA = 125°C
20
20
30
200
30
200
TA = –55°C
50 (2)
50 (2)
TA = 125°C
50
50
±11
–12
to
15
±11
UNIT
mV
μV/°C
10
TA = –55°C
TA = 25°C
Input bias current (3)
MAX
TA = –55°C to
125°C
TA = 25°C
IIB
TL064M
TYP
–12
to
15
pA
nA
pA
nA
V
All characteristics are measured under open-loop conditions, with zero common-mode voltage, unless otherwise specified.
This parameter is not production tested.
Input bias currents of an FET-input operational amplifier are normal junction reverse currents, which are temperature sensitive, as
shown in Figure 12. Pulse techniques are used to maintain the junction temperature as close to the ambient temperature as possible.
Copyright © 1978–2015, Texas Instruments Incorporated
Submit Documentation Feedback
Product Folder Links: TL061 TL061A TL061B TL062 TL062A TL062B TL064 TL064A TL064B
7
TL061, TL061A, TL061B
TL062, TL062A, TL062B, TL064, TL064A, TL064B
SLOS078L – NOVEMBER 1978 – REVISED MAY 2015
www.ti.com
Electrical Characteristics for TL06xM and TL064M (continued)
VCC± = ±15 V (unless otherwise noted)
TEST CONDITIONS (1)
PARAMETER
TL061M, TL062M
MIN
TYP
±13.5
VOM
Maximum peak output
voltage swing
RL = 10 kΩ, TA = 25°C
±10
RL ≥ 10 kΩ, TA = –55°C to 125°C
±10
AVD
Large-signal differential
voltage amplification
VO = ±10 V,
RL ≥ 2 kΩ
B1
Unity-gain bandwidth
RL = 10 kΩ, TA = 25°C
TA = 25°C
4
TA = –55°C to
125°C
4
TL064M
MAX
MIN
TYP
±10
±13.5
MAX
V
±10
6
4
UNIT
6
V/mV
4
MHz
12
12
Ω
ri
Input resistance
TA = 25°C
CMRR
Common-mode
rejection ratio
VIC = VICRmin,
VO = 0, RS = 50 Ω, TA = 25°C
80
86
80
86
dB
kSVR
Supply-voltage
rejection ratio
(ΔVCC±/ΔVIO)
VCC = ±9 V to ±15 V,
VO = 0, RS = 50 Ω, TA = 25°C
80
95
80
95
dB
PD
Total power dissipation
(each amplifier)
VO = 0, No load, TA = 25°C
6
7.5
6
7.5
mW
ICC
Supply current
(each amplifier)
VO = 0, No load, TA = 25°C
200
250
200
250
µA
VO1/VO2
Crosstalk attenuation
AVD = 100, TA = 25°C
120
10
10
120
dB
6.10 Operating Characteristics
VCC± = ±15 V, TA= 25°C
PARAMETER
TEST CONDITIONS
SR
Slew rate at unity gain (1)
VI = 10 V,
RL = 10 kΩ,
CL = 100 pF,
see Figure 16
tr
Rise-time
Overshoot factor
VI = 20 V,
RL = 10 kΩ,
CL = 100 pF,
see Figure 16
Equivalent input noise voltage
RS = 20 Ω
f = 1 kHz
Vn
(1)
8
MIN
TYP
MAX
UNIT
1.5
3.5
V/μs
0.2
μs
10%
42
nV/√Hz
Slew rate at –55°C to 125°C is 0.7 V/μs min.
Submit Documentation Feedback
Copyright © 1978–2015, Texas Instruments Incorporated
Product Folder Links: TL061 TL061A TL061B TL062 TL062A TL062B TL064 TL064A TL064B
TL061, TL061A, TL061B
TL062, TL062A, TL062B, TL064, TL064A, TL064B
www.ti.com
SLOS078L – NOVEMBER 1978 – REVISED MAY 2015
6.11 Typical Characteristics
Data at high and low temperatures are applicable only within the specified operating free-air temperature ranges of the
various devices.
Table 1. Table of Graphs
FIGURE
Maximum peak output voltage versus Supply voltage
Figure 1
Maximum peak output voltage versus Free-air temperature
Figure 2
Maximum peak output voltage versus Load resistance
Figure 3
Maximum peak output voltage versus Frequency
Figure 4
Differential voltage amplification versus Free-air temperature
Figure 5
Large-signal differential voltage amplification versus Frequency
Figure 6
Phase shift versus Frequency
Figure 6
Supply current versus Supply voltage
Figure 7
Supply current versus Free-air temperature
Figure 8
Total power dissipation versus Free-air temperature
Figure 9
Common-mode rejection ratio versus Free-air temperature
Figure 10
Normalized unity-gain bandwidth versus Free-air temperature
Figure 11
Normalized slew rate versus Free-air temperature
Figure 11
Normalized phase shift versus Free-air temperature
Figure 11
Input bias current versus Free-air temperature
Figure 12
Voltage-follower large-signal pulse response versus Time
Figure 13
Output voltage versus Elapsed time
Figure 14
Equivalent input noise voltage versus Frequency
Figure 15
Copyright © 1978–2015, Texas Instruments Incorporated
Submit Documentation Feedback
Product Folder Links: TL061 TL061A TL061B TL062 TL062A TL062B TL064 TL064A TL064B
9
TL061, TL061A, TL061B
TL062, TL062A, TL062B, TL064, TL064A, TL064B
SLOS078L – NOVEMBER 1978 – REVISED MAY 2015
www.ti.com
±15
VOM − Maximum Peak Output Voltage − V
RL = 10 kΩ
TA = 25°C
See Figure 2
±12.5
±12.5
±10
±7.5
±5
±2.5
±10
±7.5
±5
±2.5
0
2
0
4
6
8
10
12
14
0
−75
16
VCC± = ±15 V
RL = 10 kΩ
See Figure 2
−50
|VCC±| − Supply Voltage − V
Figure 1. Maximum Peak Output Voltage vs Supply Voltage
VOM − Maximum Peak Output Voltage − V
VOM − Maximum Peak Output Voltage − V
VCC± = ±15 V
TA = 25°C
See Figure 2
±10
±7.5
±5
±2.5
100
50
VCC± = ±15 V
75
100
125
RL = 10 kΩ
TA = 25°C
See Figure 2
±12.5
VCC± = ±12 V
±10
±7.5
±5
VCC± = ±5 V
±2.5
200
400
700 1 k
2k
4k
1k
7 k 10 k
10 k
100 k
100
10
AVD − Large-Signal Differential
Voltage Amplification − V/mV
VCC± = ±15 V
RL = 10 kΩ
4
2
1
−75
10 M
Figure 4. Maximum Peak Output Voltage vs Frequency
Figure 3. Maximum Peak Output Voltage vs Load
Resistance
7
1M
f − Frequency − Hz
RL − Load Resistance − Ω
AVD − Differential Voltage Amplification − V/mV
25
0
0
VCC± = ±15 V
Rext = 0
RL = 10 kΩ
TA = 25°C
10
Phase Shift
(right scale)
1
−25
0
25
50
75 100
TA − Free-Air Temperature − °C
125
Submit Documentation Feedback
0°
45°
90°
0.1
AVD
(left scale)
0.01
135°
0.001
−50
Figure 5. Differential Voltage Amplification vs Free-Air
Temperature
10
0
Figure 2. Maximum Peak Output Voltage vs Free-Air
Temperature
±15
±12.5
−25
TA − Free-Air Temperature − °C
1
10
100
1k
Phase Shift
VOM − Maximum Peak Output Voltage − V
±15
10 k
100 k
1M
180°
10 M
f − Frequency − Hz
Figure 6. Large-Signal Differential Voltage Amplification and
Phase Shift vs Frequency
Copyright © 1978–2015, Texas Instruments Incorporated
Product Folder Links: TL061 TL061A TL061B TL062 TL062A TL062B TL064 TL064A TL064B
TL061, TL061A, TL061B
TL062, TL062A, TL062B, TL064, TL064A, TL064B
www.ti.com
SLOS078L – NOVEMBER 1978 – REVISED MAY 2015
250
TA = 25°C
No Signal
No Load
200
I CC±
ICC − Supply Current − µA
I CC±
ICC − Supply Current − µA
250
150
100
50
150
100
50
0
2
4
6
8
10
12
14
16
|VCC±| − Supply Voltage − V
TA − Free-Air Temperature − °C
Figure 7. Supply Current vs Supply Voltage
Figure 8. Supply Current vs Free-Air Temperature
87
CMRR − Common-Mode Rejection Ratio − dB
30
25
TL064
VCC± = ±15 V
No Signal
No Load
20
15
TL062
10
TL061
5
0
−75
−50
−25
0
25
50
75
100
VCC± = ±15 V
RL = 10 kΩ
86
85
84
83
82
81
−75
125
Slew Rate
(left scale)
0.7
−75
1
0.99
VCC± = ±15 V
RL = 10 kΩ
f = B1 for Phase Shift
−50
−25
0
25
50
75
100
TA − Free-Air Temperature − °C
0.98
0.97
125
Figure 11. Normalized Unity-Gain Bandwidth, Slew Rate,
and Phase Shift vs Free-Air Temperature
Copyright © 1978–2015, Texas Instruments Incorporated
IIB
IIB − Input Bias Current − nA
1.01
0.9
0.8
25
50
75
100
125
VCC± = ±15 V
1.02
Phase Shift
(right scale)
1.1
1
0
100
40
Unity-Gain Bandwidth
(left scale)
−25
Figure 10. All Except TL06_C Common-Mode Rejection
Ratio vs Free-Air Temperature
1.03
Normalized Phase Shift
Normalized Unity-Gain Bandwidth and Slew Rate
Figure 9. Total Power Dissipation vs Free-Air Temperature
1.3
−50
TA − Free-Air Temperature − °C
TA − Free-Air Temperature − °C
1.2
VCC± = ±15 V
No Signal
No Load
0
−75
0
P
PD
D − Total Power Dissipation − mW
200
10
4
1
0.4
0.1
0.04
0.01
−50
−25
0
25
50
75
100
TA − Free-Air Temperature − °C
125
Figure 12. Input Bias Current vs Free-Air Temperature
Submit Documentation Feedback
Product Folder Links: TL061 TL061A TL061B TL062 TL062A TL062B TL064 TL064A TL064B
11
TL061, TL061A, TL061B
TL062, TL062A, TL062B, TL064, TL064A, TL064B
SLOS078L – NOVEMBER 1978 – REVISED MAY 2015
www.ti.com
6
28
Input
24
Overshoot
VO − Output Voltage − mV
Input and Output Voltages − V
4
2
0
Output
−2
VCC± = ±15 V
RL = 10 kΩ
CL = 100 pF
TA = 25°C
−4
−6
20
16
12
8
4
10%
VCC± = ±15 V
RL = 10 kΩ
TA = 25°C
0
tr
−4
0
2
4
6
t − Time − µs
8
0
10
Figure 13. Voltage-Follower Large-Signal Pulse Response
vs Time
0.2
0.4
0.6
0.8
1
t − Elapsed Time − µs
1.2
1.4
Figure 14. Output Voltage vs Elapsed Time
V n − Equivalent Input Noise Voltage − nV/ Hz
100
VCC± = ±15 V
RS = 20 Ω
TA = 25°C
90
80
70
60
50
40
30
20
10
0
10
40
100
400 1 k
4 k 10 k
f − Frequency − Hz
40 k 100 k
Figure 15. Equivalent Input Noise Voltage vs Frequency
12
Submit Documentation Feedback
Copyright © 1978–2015, Texas Instruments Incorporated
Product Folder Links: TL061 TL061A TL061B TL062 TL062A TL062B TL064 TL064A TL064B
TL061, TL061A, TL061B
TL062, TL062A, TL062B, TL064, TL064A, TL064B
www.ti.com
SLOS078L – NOVEMBER 1978 – REVISED MAY 2015
7 Parameter Measurement Information
−
OUT
VI
+
RL = 2 kΩ
CL = 100 pF
Figure 16. Unity-Gain Amplifier
10 kΩ
1 kΩ
−
VI
OUT
+
RL
CL = 100 pF
Figure 17. Gain-of-10 Inverting Amplifier
−
IN−
TL061
N2
+
IN+
OUT
N1
100 kΩ
1.5 kΩ
VCC−
Figure 18. Input Offset-Voltage Null Circuit
Copyright © 1978–2015, Texas Instruments Incorporated
Submit Documentation Feedback
Product Folder Links: TL061 TL061A TL061B TL062 TL062A TL062B TL064 TL064A TL064B
13
TL061, TL061A, TL061B
TL062, TL062A, TL062B, TL064, TL064A, TL064B
SLOS078L – NOVEMBER 1978 – REVISED MAY 2015
www.ti.com
8 Detailed Description
8.1 Overview
The JFET-input operational amplifiers of the TL06x series are designed as low-power versions of the TL08x
series amplifiers. They feature high input impedance, wide bandwidth, high slew rate, and low input offset and
input bias currents. The TL06x series features the same terminal assignments as the TL07x and TL08x series.
Each of these JFET-input operational amplifiers incorporates well-matched, high-voltage JFET and bipolar
transistors in an integrated circuit.
The C-suffix devices are characterized for operation from 0°C to 70°C. The I-suffix devices are characterized for
operation from −40°C to 85°C, and the M-suffix devices are characterized for operation over the full military
temperature range of −55°C to 125°C.
8.2 Functional Block Diagram
VCC+
IN+
50 Ω
IN−
100 Ω
C1
OFFSET N1
OFFSET N2
OUT
VCC−
TL061 Only
C1 = 10 pF on TL061, TL062, and TL064
Component values shown are nominal.
8.3 Feature Description
8.3.1 Common-Mode Rejection Ratio
The common-mode rejection ratio (CMRR) of an amplifier is a measure of how well the device rejects unwanted
input signals common to both input leads. It is found by taking the ratio of the change in input offset voltage to
the change in the input voltage and converting to decibels. Ideally the CMRR is infinite, but in practice, amplifiers
are designed to have it as high as possible. The CMRR of this device is 86 dB.
8.3.2 Slew Rate
The slew rate is the rate at which an operational amplifier can change its output when there is a change on the
input. These devices have a 3.5-V/μs slew rate.
14
Submit Documentation Feedback
Copyright © 1978–2015, Texas Instruments Incorporated
Product Folder Links: TL061 TL061A TL061B TL062 TL062A TL062B TL064 TL064A TL064B
TL061, TL061A, TL061B
TL062, TL062A, TL062B, TL064, TL064A, TL064B
www.ti.com
SLOS078L – NOVEMBER 1978 – REVISED MAY 2015
8.4 Device Functional Modes
These devices are powered on when the supply is connected. This device can be operated as a single supply
operational amplifier or dual supply amplifier depending on the application.
Copyright © 1978–2015, Texas Instruments Incorporated
Submit Documentation Feedback
Product Folder Links: TL061 TL061A TL061B TL062 TL062A TL062B TL064 TL064A TL064B
15
TL061, TL061A, TL061B
TL062, TL062A, TL062B, TL064, TL064A, TL064B
SLOS078L – NOVEMBER 1978 – REVISED MAY 2015
www.ti.com
9 Applications and Implementation
NOTE
Information in the following applications sections is not part of the TI component
specification, and TI does not warrant its accuracy or completeness. TI’s customers are
responsible for determining suitability of components for their purposes. Customers should
validate and test their design implementation to confirm system functionality.
9.1 Application Information
The TL06x series of operational amplifiers can be used in countless applications. The few applications in this
section show principles used in all applications of these parts.
9.2 Typical Applications
9.2.1 Inverting Amplifier Application
A typical application for an operational amplifier in an inverting amplifier. This amplifier takes a positive voltage
on the input, and makes it a negative voltage of the same magnitude. In the same manner, it also makes
negative voltages positive.
RF
RI
Vsup+
VOUT
VIN
+
Vsup-
Figure 19. Schematic for Inverting Amplifier Application
9.2.1.1 Design Requirements
The supply voltage must be chosen such that it is larger than the input voltage range and output range. For
instance, this application will scale a signal of ±0.5 V to ±1.8 V. Setting the supply at ±12 V is sufficient to
accommodate this application.
9.2.1.2 Detailed Design Procedure
Determine the gain required by the inverting amplifier:
(1)
(2)
Once the desired gain is determined, choose a value for RI or RF. Choosing a value in the kilohm range is
desirable because the amplifier circuit will use currents in the milliamp range. This ensures the part will not draw
too much current. This example will choose 10 kΩ for RI which means 36 kΩ will be used for RF. This was
determined by Equation 3.
(3)
16
Submit Documentation Feedback
Copyright © 1978–2015, Texas Instruments Incorporated
Product Folder Links: TL061 TL061A TL061B TL062 TL062A TL062B TL064 TL064A TL064B
TL061, TL061A, TL061B
TL062, TL062A, TL062B, TL064, TL064A, TL064B
www.ti.com
SLOS078L – NOVEMBER 1978 – REVISED MAY 2015
Typical Applications (continued)
9.2.1.3 Application Curve
2
VIN
1.5
VOUT
1
Volts
0.5
0
-0.5
-1
-1.5
-2
0
0.5
1
Time (ms)
1.5
2
Figure 20. Input and Output Voltages of the Inverting Amplifier
9.3 System Examples
9.3.1 General Applications
RF = 100 kΩ
VCC+
10 kΩ
0.1%
10 kΩ
0.1%
−
3.3 kΩ
+
VCC+
VCC−
−
TL061
Output
100 kΩ
+
VCC+
VCC+
+
TL064
CF = 3.3 µF
1 MΩ
+
−
TL064
10 kΩ
0.1%
−
TL064
10 kΩ
0.1%
100 kΩ
3.3 kΩ
+
100 kΩ
f=
VCC−
VCC−
Figure 21. Instrumentation Amplifier
Figure 22. 0.5-Hz Square-Wave Oscillator
−
1 MΩ
−
−
1 µF
+
Figure 23. High-Q Notch Filter
Copyright © 1978–2015, Texas Instruments Incorporated
Output B
100 kΩ
VCC+
VCC+
TL064
Output C
+
C3
= 110 pF
2
1
fO =
= 1 kHz
2π ´ R1´ C1
C1 = C2 =
100 µF
−
C1
TL064
100 kΩ
100 kΩ
R1 = R2 = 2 ´ R3 = 1.5 MΩ
VCC+
+
+
Input
VCC−
TL064
−
Output
R2
R3
C2
Output A
+
C3
VCC+
TL064
VCC+
TL061
R1
9.1 kΩ
1
2π ´ RF ´ CF
VCC+
Input
1 kΩ
−15 V
VCC−
Input B
Output
−
Input A
15 V
TL064
100 kΩ
Figure 24. Audio-Distribution Amplifier
Submit Documentation Feedback
Product Folder Links: TL061 TL061A TL061B TL062 TL062A TL062B TL064 TL064A TL064B
17
TL061, TL061A, TL061B
TL062, TL062A, TL062B, TL064, TL064A, TL064B
SLOS078L – NOVEMBER 1978 – REVISED MAY 2015
www.ti.com
System Examples (continued)
VCC+
15 V
10 kΩ
10 kΩ
0.1 µF
10 kΩ
10 kΩ
+
100 pF
Output
TL061
10 kΩ
−
Output
TL061
50 Ω
10 kΩ
+
N2
10 kΩ
5 kΩ
1 MΩ
−
TIL601
10 kΩ
10 kΩ
0.1 µF
N1
250 kΩ
−15 V
Figure 25. Low-Level Light Detector Preamplifier
10 kΩ
0.1 µF
100 kΩ
0.06 µF
0.06 µF
+
TL061
−
1.2 MΩ
47 kΩ
Figure 26. AC Amplifier
1 kΩ
IN+
+
TL062
−
1 µF
10 kΩ
0.002 µF
100 kΩ
50 kΩ
Output
100 kΩ
2.7 kΩ
100 kΩ
270 Ω
0.003 µF
0.001 µF
+
10 kΩ
100 kΩ
50 kΩ
20 µF
0.02 µF
1 kΩ
1 kΩ
100 kΩ
IN−
Figure 27. Microphone Preamplifier With Tone
Control
18
Submit Documentation Feedback
−
TL062
+
Figure 28. Instrumentation Amplifier
Copyright © 1978–2015, Texas Instruments Incorporated
Product Folder Links: TL061 TL061A TL061B TL062 TL062A TL062B TL064 TL064A TL064B
TL061, TL061A, TL061B
TL062, TL062A, TL062B, TL064, TL064A, TL064B
www.ti.com
SLOS078L – NOVEMBER 1978 – REVISED MAY 2015
System Examples (continued)
IC PREAMPLIFIER RESPONSE CHARACTERISTICS
25
Max Bass
20
VCC± = ±15 V
TA = 25°C
15
Voltage Amplification − dB
Max
Treble
10
5
0
−5
−10
−15
−20
Min
Treble
Min Bass
−25
20
40
100 200 400
1k 2k
4k
10 k 20 k
f − Frequency − Hz
220 kΩ
0.00375 µF
0.003 µF
10 kΩ
0.03 µF
0.01 µF
27 kΩ
MIN
100 kΩ
Bass
MAX
VCC+
100 Ω
1 µF
Input
100 Ω
+
TL062
−
10 kΩ
3.3 kΩ
MIN
100 kΩ
Treble
MAX
VCC+
+
TL062
0.03 µF
VCC−
VCC−
0.003 µF
10 kΩ
Balance
10 pF
75 µF
47 kΩ
+
50 pF
Output
−
5 kΩ
Gain
10 pF
+
68 kΩ
47 µF
Figure 29. IC Preamplifier
10 Power Supply Recommendations
CAUTION
Supply voltages larger than 36 V for a single supply, or outside the range of ±18 V for
a dual supply can permanently damage the device (see the Absolute Maximum
Ratings).
Place 0.1-μF bypass capacitors close to the power-supply pins to reduce errors coupling in from noisy or high
impedance power supplies. For more detailed information on bypass capacitor placement, refer to the Layout.
Copyright © 1978–2015, Texas Instruments Incorporated
Submit Documentation Feedback
Product Folder Links: TL061 TL061A TL061B TL062 TL062A TL062B TL064 TL064A TL064B
19
TL061, TL061A, TL061B
TL062, TL062A, TL062B, TL064, TL064A, TL064B
SLOS078L – NOVEMBER 1978 – REVISED MAY 2015
www.ti.com
11 Layout
11.1 Layout Guidelines
For best operational performance of the device, use good PCB layout practices, including:
• Noise can propagate into analog circuitry through the power pins of the circuit as a whole, as well as the
operational amplifier. Bypass capacitors are used to reduce the coupled noise by providing low impedance
power sources local to the analog circuitry.
– Connect low-ESR, 0.1-μF ceramic bypass capacitors between each supply pin and ground, placed as
close to the device as possible. A single bypass capacitor from V+ to ground is applicable for single
supply applications.
• Separate grounding for analog and digital portions of circuitry is one of the simplest and most-effective
methods of noise suppression. One or more layers on multilayer PCBs are usually devoted to ground planes.
A ground plane helps distribute heat and reduces EMI noise pickup. Make sure to physically separate digital
and analog grounds, paying attention to the flow of the ground current. For more detailed information, refer to
Circuit Board Layout Techniques, (SLOA089).
• To reduce parasitic coupling, run the input traces as far away from the supply or output traces as possible. If
it is not possible to keep them separate, it is much better to cross the sensitive trace perpendicular as
opposed to in parallel with the noisy trace.
• Place the external components as close to the device as possible. Keeping RF and RG close to the inverting
input minimizes parasitic capacitance, as shown in Layout Examples.
• Keep the length of input traces as short as possible. Always remember that the input traces are the most
sensitive part of the circuit.
• Consider a driven, low-impedance guard ring around the critical traces. A guard ring can significantly reduce
leakage currents from nearby traces that are at different potentials.
11.2 Layout Examples
RIN
VIN
RG
+
VOUT
RF
Figure 30. Operational Amplifier Schematic for Noninverting Configuration
Place components close to
device and to each other to
reduce parasitic errors
Run the input traces as far
away from the supply lines
as possible
RF
NC
NC
IN1í
VCC+
IN1+
OUT
VCCí
NC
VS+
Use low-ESR, ceramic
bypass capacitor
RG
GND
VIN
RIN
GND
Only needed for
dual-supply
operation
GND
VS(or GND for single supply)
VOUT
Ground (GND) plane on another layer
Figure 31. Operational Amplifier Board Layout for Noninverting Configuration
20
Submit Documentation Feedback
Copyright © 1978–2015, Texas Instruments Incorporated
Product Folder Links: TL061 TL061A TL061B TL062 TL062A TL062B TL064 TL064A TL064B
TL061, TL061A, TL061B
TL062, TL062A, TL062B, TL064, TL064A, TL064B
www.ti.com
SLOS078L – NOVEMBER 1978 – REVISED MAY 2015
12 Device and Documentation Support
12.1 Documentation Support
12.1.1 Related Documentation
For related documentation, see the following:
Circuit Board Layout Techniques, SLOA089
12.2 Related Links
The table below lists quick access links. Categories include technical documents, support and community
resources, tools and software, and quick access to sample or buy.
Table 2. Related Links
PARTS
PRODUCT FOLDER
SAMPLE & BUY
TECHNICAL
DOCUMENTS
TOOLS &
SOFTWARE
SUPPORT &
COMMUNITY
TL061
Click here
Click here
Click here
Click here
Click here
TL061A
Click here
Click here
Click here
Click here
Click here
TL061B
Click here
Click here
Click here
Click here
Click here
TL062
Click here
Click here
Click here
Click here
Click here
TL062A
Click here
Click here
Click here
Click here
Click here
TL062B
Click here
Click here
Click here
Click here
Click here
TL064
Click here
Click here
Click here
Click here
Click here
TL064A
Click here
Click here
Click here
Click here
Click here
TL064B
Click here
Click here
Click here
Click here
Click here
12.3 Community Resources
The following links connect to TI community resources. Linked contents are provided "AS IS" by the respective
contributors. They do not constitute TI specifications and do not necessarily reflect TI's views; see TI's Terms of
Use.
TI E2E™ Online Community TI's Engineer-to-Engineer (E2E) Community. Created to foster collaboration
among engineers. At e2e.ti.com, you can ask questions, share knowledge, explore ideas and help
solve problems with fellow engineers.
Design Support TI's Design Support Quickly find helpful E2E forums along with design support tools and
contact information for technical support.
12.4 Trademarks
E2E is a trademark of Texas Instruments.
12.5 Electrostatic Discharge Caution
These devices have limited built-in ESD protection. The leads should be shorted together or the device placed in conductive foam
during storage or handling to prevent electrostatic damage to the MOS gates.
12.6 Glossary
SLYZ022 — TI Glossary.
This glossary lists and explains terms, acronyms, and definitions.
13 Mechanical, Packaging, and Orderable Information
The following pages include mechanical packaging and orderable information. This information is the most
current data available for the designated devices. This data is subject to change without notice and revision of
this document. For browser based versions of this data sheet, refer to the left hand navigation.
Copyright © 1978–2015, Texas Instruments Incorporated
Submit Documentation Feedback
Product Folder Links: TL061 TL061A TL061B TL062 TL062A TL062B TL064 TL064A TL064B
21
PACKAGE OPTION ADDENDUM
www.ti.com
14-Oct-2022
PACKAGING INFORMATION
Orderable Device
Status
(1)
Package Type Package Pins Package
Drawing
Qty
Eco Plan
(2)
Lead finish/
Ball material
MSL Peak Temp
Op Temp (°C)
Device Marking
(3)
Samples
(4/5)
(6)
81023022A
ACTIVE
LCCC
FK
20
1
Non-RoHS
& Green
SNPB
N / A for Pkg Type
-55 to 125
81023022A
TL062MFKB
Samples
8102302PA
ACTIVE
CDIP
JG
8
1
Non-RoHS
& Green
SNPB
N / A for Pkg Type
-55 to 125
8102302PA
TL062M
Samples
81023032A
ACTIVE
LCCC
FK
20
1
Non-RoHS
& Green
SNPB
N / A for Pkg Type
-55 to 125
81023032A
TL064MFKB
Samples
8102303CA
ACTIVE
CDIP
J
14
1
Non-RoHS
& Green
SNPB
N / A for Pkg Type
-55 to 125
8102303CA
TL064MJB
Samples
8102303DA
ACTIVE
CFP
W
14
1
Non-RoHS
& Green
SNPB
N / A for Pkg Type
-55 to 125
8102303DA
TL064MWB
Samples
TL061ACD
ACTIVE
SOIC
D
8
75
RoHS & Green
NIPDAU
Level-1-260C-UNLIM
0 to 70
061AC
Samples
TL061ACDR
ACTIVE
SOIC
D
8
2500
RoHS & Green
NIPDAU
Level-1-260C-UNLIM
0 to 70
061AC
Samples
TL061ACP
ACTIVE
PDIP
P
8
50
RoHS & Green
NIPDAU
N / A for Pkg Type
0 to 70
TL061ACP
Samples
TL061BCP
ACTIVE
PDIP
P
8
50
RoHS & Green
NIPDAU
N / A for Pkg Type
0 to 70
TL061BCP
Samples
TL061BCPE4
ACTIVE
PDIP
P
8
50
RoHS & Green
NIPDAU
N / A for Pkg Type
0 to 70
TL061BCP
Samples
TL061CD
ACTIVE
SOIC
D
8
75
RoHS & Green
NIPDAU
Level-1-260C-UNLIM
0 to 70
TL061C
Samples
TL061CDR
ACTIVE
SOIC
D
8
2500
RoHS & Green
NIPDAU
Level-1-260C-UNLIM
0 to 70
TL061C
Samples
TL061CP
ACTIVE
PDIP
P
8
50
RoHS & Green
NIPDAU
N / A for Pkg Type
0 to 70
TL061CP
Samples
TL061CPSR
ACTIVE
SO
PS
8
2000
RoHS & Green
NIPDAU
Level-1-260C-UNLIM
0 to 70
T061
Samples
TL061ID
ACTIVE
SOIC
D
8
75
RoHS & Green
NIPDAU
Level-1-260C-UNLIM
-40 to 85
TL061I
Samples
TL061IDR
ACTIVE
SOIC
D
8
2500
RoHS & Green
NIPDAU
Level-1-260C-UNLIM
-40 to 85
TL061I
Samples
TL061IDRG4
ACTIVE
SOIC
D
8
2500
RoHS & Green
NIPDAU
Level-1-260C-UNLIM
-40 to 85
TL061I
Samples
TL061IP
ACTIVE
PDIP
P
8
50
RoHS & Green
NIPDAU
N / A for Pkg Type
-40 to 85
TL061IP
Samples
TL061IPE4
ACTIVE
PDIP
P
8
50
RoHS & Green
NIPDAU
N / A for Pkg Type
-40 to 85
TL061IP
Samples
Addendum-Page 1
PACKAGE OPTION ADDENDUM
www.ti.com
14-Oct-2022
Orderable Device
Status
(1)
Package Type Package Pins Package
Drawing
Qty
Eco Plan
(2)
Lead finish/
Ball material
MSL Peak Temp
Op Temp (°C)
Device Marking
(3)
Samples
(4/5)
(6)
TL062ACD
ACTIVE
SOIC
D
8
75
RoHS & Green
NIPDAU
Level-1-260C-UNLIM
0 to 70
062AC
Samples
TL062ACDR
ACTIVE
SOIC
D
8
2500
RoHS & Green
NIPDAU
Level-1-260C-UNLIM
0 to 70
062AC
Samples
TL062ACDRG4
ACTIVE
SOIC
D
8
2500
RoHS & Green
NIPDAU
Level-1-260C-UNLIM
0 to 70
062AC
Samples
TL062ACP
ACTIVE
PDIP
P
8
50
RoHS & Green
NIPDAU
N / A for Pkg Type
0 to 70
TL062ACP
Samples
TL062ACPSR
ACTIVE
SO
PS
8
2000
RoHS & Green
NIPDAU
Level-1-260C-UNLIM
0 to 70
T062A
Samples
TL062BCD
ACTIVE
SOIC
D
8
75
RoHS & Green
NIPDAU
Level-1-260C-UNLIM
0 to 70
062BC
Samples
TL062BCDR
ACTIVE
SOIC
D
8
2500
RoHS & Green
NIPDAU
Level-1-260C-UNLIM
0 to 70
062BC
Samples
TL062BCP
ACTIVE
PDIP
P
8
50
RoHS & Green
NIPDAU
N / A for Pkg Type
0 to 70
TL062BCP
Samples
TL062CD
ACTIVE
SOIC
D
8
75
RoHS & Green
NIPDAU
Level-1-260C-UNLIM
0 to 70
TL062C
Samples
TL062CDR
ACTIVE
SOIC
D
8
2500
RoHS & Green
NIPDAU
Level-1-260C-UNLIM
0 to 70
TL062C
Samples
TL062CDRE4
ACTIVE
SOIC
D
8
2500
RoHS & Green
NIPDAU
Level-1-260C-UNLIM
0 to 70
TL062C
Samples
TL062CDRG4
ACTIVE
SOIC
D
8
2500
RoHS & Green
NIPDAU
Level-1-260C-UNLIM
0 to 70
TL062C
Samples
TL062CP
ACTIVE
PDIP
P
8
50
RoHS & Green
NIPDAU
N / A for Pkg Type
0 to 70
TL062CP
Samples
TL062CPE4
ACTIVE
PDIP
P
8
50
RoHS & Green
NIPDAU
N / A for Pkg Type
0 to 70
TL062CP
Samples
TL062CPS
ACTIVE
SO
PS
8
80
RoHS & Green
NIPDAU
Level-1-260C-UNLIM
0 to 70
T062
Samples
TL062CPSR
ACTIVE
SO
PS
8
2000
RoHS & Green
NIPDAU
Level-1-260C-UNLIM
0 to 70
T062
Samples
TL062CPW
ACTIVE
TSSOP
PW
8
150
RoHS & Green
NIPDAU
Level-1-260C-UNLIM
0 to 70
T062
Samples
TL062CPWR
ACTIVE
TSSOP
PW
8
2000
RoHS & Green
NIPDAU
Level-1-260C-UNLIM
0 to 70
T062
Samples
TL062CPWRG4
ACTIVE
TSSOP
PW
8
2000
RoHS & Green
NIPDAU
Level-1-260C-UNLIM
0 to 70
T062
Samples
TL062ID
ACTIVE
SOIC
D
8
75
RoHS & Green
NIPDAU
Level-1-260C-UNLIM
-40 to 85
TL062I
Samples
TL062IDG4
ACTIVE
SOIC
D
8
75
RoHS & Green
NIPDAU
Level-1-260C-UNLIM
-40 to 85
TL062I
Samples
Addendum-Page 2
PACKAGE OPTION ADDENDUM
www.ti.com
14-Oct-2022
Orderable Device
Status
(1)
Package Type Package Pins Package
Drawing
Qty
Eco Plan
(2)
Lead finish/
Ball material
MSL Peak Temp
Op Temp (°C)
Device Marking
(3)
Samples
(4/5)
(6)
TL062IDR
ACTIVE
SOIC
D
8
2500
RoHS & Green
NIPDAU
Level-1-260C-UNLIM
-40 to 85
TL062I
Samples
TL062IDRG4
ACTIVE
SOIC
D
8
2500
RoHS & Green
NIPDAU
Level-1-260C-UNLIM
-40 to 85
TL062I
Samples
TL062IP
ACTIVE
PDIP
P
8
50
RoHS & Green
NIPDAU
N / A for Pkg Type
-40 to 85
TL062IP
Samples
TL062IPWR
ACTIVE
TSSOP
PW
8
2000
RoHS & Green
NIPDAU
Level-1-260C-UNLIM
-40 to 85
Z062
Samples
TL062IPWRG4
ACTIVE
TSSOP
PW
8
2000
RoHS & Green
NIPDAU
Level-1-260C-UNLIM
-40 to 85
Z062
Samples
TL062MFKB
ACTIVE
LCCC
FK
20
1
Non-RoHS
& Green
SNPB
N / A for Pkg Type
-55 to 125
81023022A
TL062MFKB
Samples
TL062MJG
ACTIVE
CDIP
JG
8
1
Non-RoHS
& Green
SNPB
N / A for Pkg Type
-55 to 125
TL062MJG
Samples
TL062MJGB
ACTIVE
CDIP
JG
8
1
Non-RoHS
& Green
SNPB
N / A for Pkg Type
-55 to 125
8102302PA
TL062M
Samples
TL064ACD
ACTIVE
SOIC
D
14
50
RoHS & Green
NIPDAU
Level-1-260C-UNLIM
0 to 70
TL064AC
Samples
TL064ACDR
ACTIVE
SOIC
D
14
2500
RoHS & Green
NIPDAU
Level-1-260C-UNLIM
0 to 70
TL064AC
Samples
TL064ACN
ACTIVE
PDIP
N
14
25
RoHS & Green
NIPDAU
N / A for Pkg Type
0 to 70
TL064ACN
Samples
TL064BCD
ACTIVE
SOIC
D
14
50
RoHS & Green
NIPDAU
Level-1-260C-UNLIM
0 to 70
TL064BC
Samples
TL064BCDG4
ACTIVE
SOIC
D
14
50
RoHS & Green
NIPDAU
Level-1-260C-UNLIM
0 to 70
TL064BC
Samples
TL064BCDR
ACTIVE
SOIC
D
14
2500
RoHS & Green
NIPDAU
Level-1-260C-UNLIM
0 to 70
TL064BC
Samples
TL064BCN
ACTIVE
PDIP
N
14
25
RoHS & Green
NIPDAU
N / A for Pkg Type
0 to 70
TL064BCN
Samples
TL064CD
ACTIVE
SOIC
D
14
50
RoHS & Green
NIPDAU
Level-1-260C-UNLIM
0 to 70
TL064C
Samples
TL064CDR
ACTIVE
SOIC
D
14
2500
RoHS & Green
NIPDAU
Level-1-260C-UNLIM
0 to 70
TL064C
Samples
TL064CN
ACTIVE
PDIP
N
14
25
RoHS & Green
NIPDAU
N / A for Pkg Type
0 to 70
TL064CN
Samples
TL064CNSR
ACTIVE
SO
NS
14
2000
RoHS & Green
NIPDAU
Level-1-260C-UNLIM
0 to 70
TL064
Samples
TL064CPW
ACTIVE
TSSOP
PW
14
90
RoHS & Green
NIPDAU
Level-1-260C-UNLIM
0 to 70
T064
Samples
Addendum-Page 3
PACKAGE OPTION ADDENDUM
www.ti.com
14-Oct-2022
Orderable Device
Status
(1)
Package Type Package Pins Package
Drawing
Qty
Eco Plan
(2)
Lead finish/
Ball material
MSL Peak Temp
Op Temp (°C)
Device Marking
(3)
Samples
(4/5)
(6)
TL064CPWR
ACTIVE
TSSOP
PW
14
2000
RoHS & Green
NIPDAU
Level-1-260C-UNLIM
0 to 70
T064
Samples
TL064ID
ACTIVE
SOIC
D
14
50
RoHS & Green
NIPDAU
Level-1-260C-UNLIM
-40 to 85
TL064I
Samples
TL064IDG4
ACTIVE
SOIC
D
14
50
RoHS & Green
NIPDAU
Level-1-260C-UNLIM
-40 to 85
TL064I
Samples
TL064IDR
ACTIVE
SOIC
D
14
2500
RoHS & Green
NIPDAU | SN
Level-1-260C-UNLIM
-40 to 85
TL064I
Samples
TL064IDRG4
ACTIVE
SOIC
D
14
2500
RoHS & Green
NIPDAU
Level-1-260C-UNLIM
-40 to 85
TL064I
Samples
TL064IN
ACTIVE
PDIP
N
14
25
RoHS & Green
NIPDAU
N / A for Pkg Type
-40 to 85
TL064IN
Samples
TL064INE4
ACTIVE
PDIP
N
14
25
RoHS & Green
NIPDAU
N / A for Pkg Type
-40 to 85
TL064IN
Samples
TL064INS
ACTIVE
SO
NS
14
50
RoHS & Green
NIPDAU
Level-1-260C-UNLIM
-40 to 85
TL064I
Samples
TL064INSR
ACTIVE
SO
NS
14
2000
RoHS & Green
NIPDAU
Level-1-260C-UNLIM
-40 to 85
TL064I
Samples
TL064IPWR
ACTIVE
TSSOP
PW
14
2000
RoHS & Green
NIPDAU
Level-1-260C-UNLIM
-40 to 85
Z064
Samples
TL064MFKB
ACTIVE
LCCC
FK
20
1
Non-RoHS
& Green
SNPB
N / A for Pkg Type
-55 to 125
81023032A
TL064MFKB
Samples
TL064MJ
ACTIVE
CDIP
J
14
1
Non-RoHS
& Green
SNPB
N / A for Pkg Type
-55 to 125
TL064MJ
Samples
TL064MJB
ACTIVE
CDIP
J
14
1
Non-RoHS
& Green
SNPB
N / A for Pkg Type
-55 to 125
8102303CA
TL064MJB
Samples
TL064MWB
ACTIVE
CFP
W
14
1
Non-RoHS
& Green
SNPB
N / A for Pkg Type
-55 to 125
8102303DA
TL064MWB
Samples
(1)
The marketing status values are defined as follows:
ACTIVE: Product device recommended for new designs.
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.
OBSOLETE: TI has discontinued the production of the device.
(2)
RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance
do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may
reference these types of products as "Pb-Free".
RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.
Addendum-Page 4
PACKAGE OPTION ADDENDUM
www.ti.com
14-Oct-2022
Green: TI defines "Green" to mean the content of Chlorine (Cl) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of