SLVS024E – FEBRUARY 1983 – REVISED NOVEMBER 1999
CT
RT
ERROR
1IN+
AMPLIFIER 1 1IN–
1FEEDBACK
1DTC
1OUT
GND
1
16
2
15
3
14
4
13
5
12
6
11
7
10
8
9
REF
SCP
2IN+
ERROR
2IN–
AMPLIFIER 2
2FEEDBACK
2DTC
2OUT
VCC
NC
REF
3
2
1
20 19
description
1IN+
4
18 2IN+
1IN–
5
17 2IN–
NC
6
16 NC
1FEEDBACK
7
15 2FEEDBACK
IDTC
8
2OUT
V CC
10 11 12 13
GND
14 2DTC
9
1OUT
The TL1451A incorporates on a single monolithic
chip all the functions required in the construction
of two pulse-width-modulation (PWM) control
circuits. Designed primarily for power-supply
control, the TL1451A contains an on-chip 2.5-V
regulator, two error amplifiers, an adjustable
oscillator, two dead-time comparators, undervoltage lockout circuitry, and dual common-emitter
output transistor circuits.
SCP
FK PACKAGE
(TOP VIEW)
CT
D
D, DB, N, NS, PW, OR J PACKAGE
(TOP VIEW)
NC
D
Complete PWM Power Control Circuitry
Completely Synchronized Operation
Internal Undervoltage Lockout Protection
Wide Supply Voltage Range
Internal Short-Circuit Protection
Oscillator Frequency . . . 500 kHz Max
Variable Dead Time Provides Control Over
Total Range
Internal Regulator Provides a Stable 2.5-V
Reference Supply
Available in Q-Temp Automotive
HighRel Automotive Applications
Configuration Control / Print Support
Qualification to Automotive Standards
RT
D
D
D
D
D
D
D
The uncommitted output transistors provide
common-emitter output capability for each
controller. The internal amplifiers exhibit a common-mode voltage range from 1.04 V to 1.45 V. The dead-time
control (DTC) comparator has no offset unless externally altered and can provide 0% to 100% dead time. The
on-chip oscillator can be operated by terminating RT and CT. During low VCC conditions, the undervoltage
lockout control circuit feature locks the outputs off until the internal circuitry is operational.
The TL1451AC is characterized for operation from –20°C to 85°C. The TL1451AQ is characterized for operation
from –40°C to 125°C. The TL1451AM is characterized for operation from –55°C to 125°C.
AVAILABLE OPTIONS
PACKAGED DEVICES
SMALL
OUTLINE
(D)
SMALL
OUTLINE
(DB)†
PLASTIC DIP
(N)
SMALL
OUTLINE
(NS)
TSSOP
(PW)†
CHIP
CARRIER
(FK)
CERAMIC
DIP
(J)
–20°C to 85°C
TL1451ACD
TL1451ACDB
TL1451ACN
TL1451ACNS
TL1451ACPW
—
—
–40°C to 125°C
TL1451AQD
—
—
—
—
—
—
TA
–55°C to 125°C
—
—
—
—
—
TL1451AMFK
† The DB and PW packages are only available left-end taped and reeled (add LE suffix, i.e., TL1451ACPWLE).
TL1451AMJ
Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of
Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.
Copyright 1999, Texas Instruments Incorporated
!" #!$% &"'
&! #" #" (" " ") !"
&& *+'
&! # ", &" " "%+ %!&"
", %% #""'
#&! #%
-
./.0 %% #"" " ""&
!%" ("*" "&' %% (" #&! 0 #&!
# ", &" " "%+ %!&" ", %% #""'
www.ti.com
1
SLVS024E – FEBRUARY 1983 – REVISED NOVEMBER 1999
functional block diagram
2 DTC
ERROR
AMPLIFIER 2
IN+
IN–
2 FEEDBACK
1 FEEDBACK
SCP
VCC RT
9
2
11
14
13
10
+
12
Oscillator
1/2 Vref
5
15
IN–
4
16
REF
UVLO
S
3
PWM
COMP
Reference
Voltage
12 kΩ
R
IN+
2 OUTPUT
–
170 kΩ
ERROR
AMPLIFIER 1
CT
1
R
+
7
–
1 OUTPUT
PWM
COMP
1 DTC
6
8
COMPONENT COUNT
65
Resistors
Capacitors
8
Transistors
105
JFETs
2
18
www.ti.com
GND
SLVS024E – FEBRUARY 1983 – REVISED NOVEMBER 1999
absolute maximum ratings over operating free-air temperature range†
Supply voltage, VCC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51 V
Amplifier input voltage, VI . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20 V
Collector output voltage, VO . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51 V
Collector output current, IO . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21 mA
Continuous power total dissipation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Dissipation Rating Table
Operating free-air temperature range, TA C suffix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . –20°C to 85°C
Q suffix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . –40°C to 125°C
M suffix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . –55°C to 125°C
Storage temperature range, Tstg . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . –65°C to 150°C
Lead temperature 1,6 mm (1/16 inch) from case for 10 seconds . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 260°C
† Stresses beyond those listed under “absolute maximum ratings” may cause permanent damage to the device. These are stress ratings only, and
functional operation of the device at these or any other conditions beyond those indicated under “recommended operating conditions” is not
implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.
DISSIPATION RATING TABLE
PACKAGE
TA ≤ 25°C
POWER RATING
DERATING FACTOR
ABOVE TA = 25°C
TA = 70°C
POWER RATING
TA = 85°C
POWER RATING
TA = 125°C
POWER RATING
D
1088 mW
8.7 mW/°C
696 mW
566 mW
218 mW
DB
775 mW
6.2 mW/°C
496 mW
403 mW
—
N
1000 mW
8.0 mW/°C
640 mW
520 mW
—
NS
500 mW
4.0 mW/°C
320 mW
260 mW
—
PW
838 mW
6.7 mW/°C
536 mW
436 mW
168 mW
FK
1375 mW
11.0 mW/°C
880 mW
715 mW
275 mW
J
1375 mW
11.0 mW/°C
880 mW
715 mW
275 mW
recommended operating conditions
MIN
Supply voltage, VCC
MAX
UNIT
3.6
50
V
1.05
1.45
V
Collector output voltage, VO
50
V
Collector output current, IO
20
mA
Current into feedback terminal
45
Amplifier input voltage, VI
µA
Feedback resistor, RF
100
Timing capacitor, CT
150
15000
pF
Timing resistor, RT
5.1
100
kΩ
kHz
Oscillator frequency
Operating
g free-air temperature,, TA
www.ti.com
kΩ
1
500
C suffix
–20
85
Q suffix
–40
125
M suffix
–55
125
°C
3
SLVS024E – FEBRUARY 1983 – REVISED NOVEMBER 1999
electrical characteristics over recommended operating free-air temperature range, VCC = 6 V,
f = 200 kHz (unless otherwise noted)
reference section
TL1451AC
PARAMETER
TEST CONDITIONS
Output voltage (pin 16)
IO = 1 mA
TA = –20°C to 25°C
O tp t voltage
Output
oltage change with
ith temperat
temperature
re
Input voltage regulation
Output voltage regulation
Short-circuit output current
† All typical values are at TA = 25°C.
TYP†
MIN
2.4
MAX
UNIT
2.5
2.6
–0.1%
±1%
TA = 25°C to 85°C
VCC = 3.6 V to 40 V
–0.2%
±1%
2
12.5
mV
IO = 0.1 mA to 1 mA
VO = 0
1
7.5
mV
10
30
mA
3
V
undervoltage lockout section
TL1451AC
PARAMETER
TEST CONDITIONS
MIN
TYP†
MAX
UNIT
Upper threshold voltage (VCC)
2.72
V
Lower threshold voltage (VCC)
2.6
V
80
120
mV
1.5
1.9
V
TL1451AC
MIN TYP†
MAX
UNIT
Hysteresis (VCC)
IO(ref)
0.1
1 mA
mA,
O( f) = 0
TA = 25°C
Reset threshold voltage (VCC)
† All typical values are at TA = 25°C.
short-circuit protection control section
PARAMETER
TEST CONDITIONS
Input threshold voltage (SCP)
Standby voltage (SCP)
TA = 25°C
No pullup
Latched input voltage (SCP)
No pullup
Input (source) current
VI = 0.7 V,
TA = 25°C
0.65
0.7
0.75
V
140
185
230
mV
60
120
mV
–10
–15
–20
µA
Comparator threshold voltage (FEEDBACK)
† All typical values are at TA = 25°C.
1.18
V
oscillator section
PARAMETER
TEST CONDITIONS
TL1451C
TYP†
MAX
Frequency
CT = 330 pF,
Standard deviation of frequency
CT = 330 pF,
Frequency change with voltage
VCC = 3.6 V to 40 V
TA = –20°C to 25°C
–0.4%
±2%
TA = 25°C to 85°C
–0.2%
±2%
Frequency change with temperature
† All typical values are at TA = 25°C.
4
www.ti.com
RT = 10 kΩ
RT = 10 kΩ
MIN
200
UNIT
kHz
10%
1%
SLVS024E – FEBRUARY 1983 – REVISED NOVEMBER 1999
dead-time control section
PARAMETER
TEST CONDITIONS
TL1451AC
MIN TYP†
MAX
Input bias current (DTC)
1
Latch mode (source) current (DTC)
TA = 25°C
IO = 40 µA
Latched input voltage (DTC)
–80
Input threshold voltage at f = 10 kHz (DTC)
Maximum duty cycle
V
2.05
1.2
µA
µA
–145
2.3
Zero duty cycle
UNIT
2.25
1.45
V
† All typical values are at TA = 25°C.
error-amplifier section
PARAMETER
Input offset voltage
TEST CONDITIONS
Input offset current
VO (FEEDBACK) = 1.25 V
VO (FEEDBACK) = 1.25 V
Input bias current
VO (FEEDBACK) = 1.25 V
Common-mode
input
Common
mode in
ut voltage range
VCC = 3.6 V to 40 V
Open-loop voltage amplification
RF = 200 kΩ
MIN
TL1451AC
TYP†
160
MAX
±6
mV
±100
nA
500
nA
1.05
to
1.45
V
70
Unity-gain bandwidth
Common-mode rejection ratio
60
Positive output voltage swing
Vref–0.1
80
dB
1.5
MHz
80
dB
V
Negative output voltage swing
1
Output (sink) current (FEEDBACK)
Output (source) current (FEEDBACK)
† All typical values are at TA = 25°C.
VID = –0.1 V,
VID = 0.1 V,
VO = 1.25 V
VO = 1.25 V
UNIT
V
0.5
1.6
mA
–45
–70
µA
output section
PARAMETER
TEST CONDITIONS
Collector off-state current
Output saturation voltage
Short-circuit output current
† All typical values are at TA = 25°C.
TL1451AC
TYP†
MAX
MIN
VO = 50 V
IO = 10 mA
1.2
10
VO = 6 V
90
2
UNIT
µA
V
mA
pwm comparator section
PARAMETER
TEST CONDITIONS
TL1451AC
TYP†
MAX
MIN
Zero duty cycle
Input threshold voltage at f = 10 kHz (FEEDBACK)
Maximum duty cycle
2.05
1.2
2.25
1.45
UNIT
V
† All typical values are at TA = 25°C.
total device
PARAMETER
TEST CONDITIONS
Standby supply current
Average supply current
† All typical values are at TA = 25°C.
www.ti.com
TL1451AC
TYP†
MAX
MIN
UNIT
Off-state
1.3
1.8
mA
RT = 10 kΩ
1.7
2.4
mA
5
SLVS024E – FEBRUARY 1983 – REVISED NOVEMBER 1999
electrical characteristics over recommended operating free-air temperature range, VCC = 6 V,
f = 200 kHz (unless otherwise noted)
reference section
TL1451AQ, TL1451AM
PARAMETER
O tp t voltage
Output
oltage (pin 16)
TEST CONDITIONS
MIN
TYP†
MAX
2.40
2.50
2.60
2.35
2.46
2.65
–0.63%
*±4%
TA = 25°C
TA = 125°C
2.0
12.5
0.7
15
TA = MIN
TA = 25°C
0.3
30
1.0
7.5
TA = 125°C
TA = MIN
0.3
14
0.3
20
10
30
TA = 25°C
TA = MIN and 125°C
IO = 1 mA
Output voltage change with temperature
Input
In
ut voltage regulation
Output
Out
ut voltage regulation
VCC = 3.6 V to 40 V
IO = 0.1 mA to 1 mA
Short-circuit output current
VO = 0
*These parameters are not production tested.
† All typical values are at TA = 25°C unless otherwise indicated.
3
UNIT
V
mV
mV
mA
undervoltage lockout section
TL1451AQ, TL1451AM
PARAMETER
TEST CONDITIONS
Upper
U
er threshold voltage (VCC)
Lower threshold voltage (VCC)
Hysteresis (VCC)
Reset threshold voltage
g (V
( CC)
† All typical values are at TA = 25°C unless otherwise indicated.
6
www.ti.com
MIN
TYP†
TA = 25°C
TA = 125°C
2.72
TA = MIN
TA = 25°C
3.15
TA = 125°C
TA = MIN
1.65
1.70
MAX
UNIT
V
2.60
V
3.09
TA = 25°C
TA = 125°C
80
120
10
50
TA = MIN
TA = 25°C
10
60
1.50
TA = 125°C
0.95
TA = MIN
1.50
mV
V
SLVS024E – FEBRUARY 1983 – REVISED NOVEMBER 1999
short-circuit protection control section
PARAMETER
Input
In
ut threshold voltage (SCP)
TEST CONDITIONS
TA = 25°C
TA = 125°C
650
700
750
400
478
550
TA = MIN
800
880
950
140
185
230
TA = 25°C
TA = 125°C
60
120
70
120
TA = MIN
60
120
Standby voltage (SCP)
Latched input
in ut voltage (SCP)
TL1451AQ, TL1451AM
MIN TYP†
MAX
Equivalent timing resistance
Comparator threshold voltage (FEEDBACK)
† All typical values are at TA = 25°C unless otherwise indicated.
UNIT
mV
mV
mV
170
kΩ
1.18
V
oscillator section
PARAMETER
TEST CONDITIONS
CT = 330 pF,
F
RT = 10 kΩ
Frequency
TL1451AQ, TL1451AM
MIN
TYP†
MAX
TA = 25°C
TA = 125°C
200
193
195
Standard deviation of frequency
CT = 330 pF,
TA = MIN
RT = 10 kΩ
VCC = 3.6 V to 40 V
TA = 25°C
TA = 125°C
1%
Frequency change with voltage
TA = MIN
3%
UNIT
kHz
2%
1%
Frequency change with temperature
1.37%
*±10%
*These parameters are not production tested.
† All typical values are at TA = 25°C unless otherwise indicated.
dead-time control section
PARAMETER
TEST CONDITIONS
TL1451AQ, TL1451AM
MIN TYP†
MAX
TA = 25°C
TA = MIN and 125°C
Inp t bias current
Input
c rrent (DTC)
Latch mode (source) current (DTC)
1
3
–80
input
Latched in
ut voltage (DTC)
Input threshold voltage at f = 10 kHz (DTC)
µA
V
2.30
2.22
2.32
TA = MIN
Zero duty cycle
2.28
2.40
2.05
*1.20
µA
A
–145
TA = 25°C
TA = 125°C
Maximum duty cycle
UNIT
1.45
*2.25
V
*These parameters are not production tested.
† All typical values are at TA = 25°C unless otherwise indicated.
www.ti.com
7
SLVS024E – FEBRUARY 1983 – REVISED NOVEMBER 1999
error-amplifier section
PARAMETER
Input
In
ut offset voltage
TEST CONDITIONS
VO (FEEDBACK) = 1.25 V
TL1451AQ, TL1451AM
MIN
TYP†
MAX
±6
TA = 25°C
TA = 125°C
±10
VO (FEEDBACK) = 1.25 V
Input
In
ut bias current
VO (FEEDBACK) = 1.25 V
Common-mode
Common
mode in
input
ut voltage range
Open-loop
O
en loo voltage am
amplification
lification
±100
±100
TA = 125°C
TA = MIN
160
500
100
500
TA = MIN
142
700
1.05
to
1.45
RF = 200 kΩ
70
80
70
80
TA = MIN
64
80
Common-mode rejection ratio
60
Positive output voltage swing
2
dB
1.5
MHz
80
dB
V
Negative output voltage swing
1
Output ((source)) current ((FEEDBACK))
VID = –0.1
0.1 V, VO = 1.25 V
VID = 0.1 V,, VO = 1.25 V
TA = 25°C
TA = 125°C
0.5
1.6
0.4
1.8
TA = MIN
TA = 25°C
0.3
1.7
–45
–70
–25
–50
–15
–70
TA = 125°C
TA = MIN
nA
V
TA = 25°C
TA = 125°C
Unity-gain bandwidth
Output
Out
ut (sink) current (FEEDBACK)
nA
±200
TA = 25°C
TA = 125°C
VCC = 3.6 V to 40 V
mV
±12
TA = MIN
TA = 25°C
Input
In
ut offset current
UNIT
V
mA
µA
µ
† All typical values are at TA = 25°C unless otherwise indicated.
output section
PARAMETER
Collector off-state current
TEST CONDITIONS
TL1451AQ, TL1451AM
MIN TYP†
MAX
VO = 50 V
TA = 25°C
10
TA = 125°C
TA = MIN
Output
Out
ut saturation voltage
Short-circuit output current
† All typical values are at TA = 25°C unless otherwise indicated.
VO = 6 V
1.20
2.0
1.60
2.4
1.36
2.2
90
UNIT
µA
V
mA
pwm comparator section
PARAMETER
TEST CONDITIONS
Zero duty cycle
Input threshold voltage at f = 10 kHz (FEEDBACK)
Maximum duty cycle
*These parameters are not production tested.
† All typical values are at TA = 25°C unless otherwise indicated.
8
TL1451AQ, TL1451AM
MIN TYP†
MAX
www.ti.com
2.05
*1.20
1.45
*2.25
UNIT
V
SLVS024E – FEBRUARY 1983 – REVISED NOVEMBER 1999
total device
PARAMETER
TEST CONDITIONS
Standby supply current
Average supply current
† All typical values are at TA = 25°C unless otherwise indicated.
TL1451AQ, TL1451AM
MIN TYP†
MAX
UNIT
Off-state
1.3
1.8
mA
RT = 10 kΩ
1.7
2.4
mA
PARAMETER MEASUREMENT INFORMATION
Test
Input
S1
VCC = 5 V
RL
CPE
0.47 µF
4.7 kΩ
OUT1
RL
4.7 kΩ
16 15 14 13 12 11 10
OUT2
9
TL1451A
1
CT
330 pF
2
3
4
5
6
7
8
RT
10 kΩ
Test
Input
Figure 1. Test Circuit
Oscillator Triangle Waveform
Error Amplifier Output
Dead-Time Input Voltage
Short-Circuit Protection
Comparator Input Voltage
PWM Comparator Output Voltage
2.0 V
1.6 V
1.4 V
1.25 V
H
L
Dead Time 100%
H
Output Transistor Collector
Waveform
L
0.6 V
Protection Enable
Terminal Waveform
tpe†
H
Short-Circuit Protection
Comparator Output
Power Supply Voltage
0V
L
3.6 V
2.8 V TYP
0V
† Protection Enable Time, tpe = (0.051 x 106 x Cpe) in seconds
Figure 2. TL1451A Timing Diagram
www.ti.com
9
SLVS024E – FEBRUARY 1983 – REVISED NOVEMBER 1999
TYPICAL CHARACTERISTICS
TRIANGLE OSCILLATOR FREQUENCY
vs
TIMING RESISTANCE
OSCILLATOR FREQUENCY VARIATION
vs
FREE-AIR TEMPERATURE
3
VCC = 5 V
TA = 25°C
f osc – Oscillator Frequency Variation – %
∆afosc
ffosc
osc – Triangle Oscillator Frequency – Hz
1M
CT = 150 pF
100 k
CT = 1500 pF
10 k
CT = 15000 pF
1k
1k
4k
10 k
40 k
100 k
400 k
VCC = 3.6 V
RT = 10 kΩ
CT = 330 pF
fosc = 200 kHz
2
1
0
–1
–2
ÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎ
–3
–25
1M
RT – Timing Resistance – Ω
75
0
25
50
TA – Free-Air Temperature – °C
Figure 3
Figure 4
TRIANGLE WAVEFORM PERIOD
vs
TIMING CAPACITANCE
TRIANGLE WAVEFORM SWING VOLTAGE
vs
TIMING CAPACITANCE
102
VCC = 5 V
RT = 5.1 kΩ
TA = 25°C
s
Triangle Waveform Period – µ
uS
Triangle Waveform Swing Voltage – V
2.6
2.4
100
2.2
2
1.8
1.6
1.4
1.2
VCC = 5 V
RT = 5.1 kΩ
TA = 25°C
101
100
1
0.8
101
102
103
104
CT – Timing Capacitance – pF
105
Figure 5
10
10–1
101
102
103
104
CT – Timing Capacitance – pF
Figure 6
www.ti.com
105
SLVS024E – FEBRUARY 1983 – REVISED NOVEMBER 1999
TYPICAL CHARACTERISTICS
REFERENCE OUTPUT VOLTAGE VARIATION
vs
FREE-AIR TEMPERATURE
30
avref – Reference Output Voltage Variation – mV
∆VO(ref)
avref – Reference Output Voltage Variation – mV
∆VO(ref)
REFERENCE OUTPUT VOLTAGE VARIATION
vs
FREE-AIR TEMPERATURE
VCC = 3.6 V
II(ref) = 1 mA
20
10
0
–10
ÁÁ
ÁÁ
ÁÁ
ÁÁ
– 20
ÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎ
– 30
– 25
75
0
25
50
TA – Free-Air Temperature – °C
100
30
VCC = 40 V
II(ref) = 1 mA
20
ÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎ
10
0
–10
ÁÁ
ÁÁ
ÁÁ
ÁÁ
– 20
– 30
– 25
75
0
25
50
TA – Free-Air Temperature – °C
Figure 7
Figure 8
DROPOUT VOLTAGE VARIATION
vs
FREE-TEMPERATURE
REFERENCE OUTPUT VOLTAGE
vs
SUPPLY VOLTAGE
1.1
II(ref) = 1 mA
TA = 25°C
2.5
1
Dropout Voltage Variation – V
VO(ref)
Vref – Reference Output Voltage – V
3
ÁÁ
ÁÁ
ÁÁ
100
2
1.5
1
0.9
0.8
0.7
0.6
0.5
0
0
5
10
15
20
25
30
VCC – Supply Voltage – V
35
40
Figure 9
– 25
0
25
50
75
TA – Free-Air Temperature – °C
100
Figure 10
www.ti.com
11
SLVS024E – FEBRUARY 1983 – REVISED NOVEMBER 1999
TYPICAL CHARACTERISTICS
UNDERVOLTAGE LOCKOUT
HYSTERESIS CHARACTERISTICS
– Output Collector Voltage – V
VVCE
CE
Undervoltage Lockout Threshold Voltage – V
TA = 25°C
TA = –20°C
TA = 85°C
ÁÁ
ÁÁ
ÁÁ
UNDERVOLTAGE LOCKOUT CHARACTERISTIC
5
4
3
5V
RL
2
7,10
I = IO
8
VDE
1
300
3.5
IO = 10 mA
3.25
Threshold Voltage –VTH
(Left Scale)
3
200
Threshold Voltage –VTL
(Left Scale)
2.75
150
2.5
100
Hysteresis Voltage
(Right Scale)
50
2.25
0
2
0
0
1
2
4
3
5
–25
0
25
50
Figure 11
Figure 12
SHORT-CIRCUIT PROTECTION CHARACTERISTICS
Comparator Threshold Voltage – V
Short-Circuit Protection
Latch Reset Supply Voltage
(Right Scale)
2
1.20
1.15
1.10
– 25
2.5
Short-Circuit Protection
Comparator Threshold Voltage
(Left Scale)
50
75
0
25
TA – Free-Air Temperature – °C
Figure 13
www.ti.com
1.5
1
100
RS – Latch Reset Supply Voltage – V
3
1.30
1.25
75
TA – Free-Air Temperature – °C
VCC – Supply Voltage – V
12
250
100
Undervoltage Lockout Hystersis Voltage – mV
6
SLVS024E – FEBRUARY 1983 – REVISED NOVEMBER 1999
TYPICAL CHARACTERISTICS
PROTECTION ENABLE TIME
vs
PROTECTION ENABLE CAPACITANCE
18
tpe
t pe – Protection Enable Time – s
15
12
9
6
3
0
0
200
50
100
150
CPE – Protection Enable Capacitance – µF
SCP
15
Vref
16
170 kΩ
Short-circuit
Protection
Comparator
12 kΩ
CPE
ERROR AMP 1
ERROR AMP 2
250
Vref
S
R
Protection
Latch
Vref
U.V.L.O.
+
1.25 V
–
Figure 14
www.ti.com
13
SLVS024E – FEBRUARY 1983 – REVISED NOVEMBER 1999
TYPICAL CHARACTERISTICS
OPEN-LOOP VOLTAGE AMPLIFICATION
vs
FREQUENCY
ERROR AMP MAXIMUM OUTPUT VOLTAGE SWING
vs
FREQUENCY
2
90
VCC = 5 V
TA = 25°C
Open-Loop Voltage Amplification – dB
Error Amp Maximum Output Voltage Swing – V
2.25
1.75
1.5
1.25
1
0.75
0.5
0.25
0
1k
10 k
100 k
1M
f – Frequency – Hz
VCC = 5 V
TA = 25°C
80
70
60
50
40
30
20
10
0
100
10 M
1k
Figure 15
Figure 16
GAIN (AMPLIFIER IN
UNITY-GAIN CONFIGURATION)
vs
FREQUENCY
10
VCC = 5 V
TA = 25°C
5
G – Gain – dB
0
–5
–10
–15
–20
1k
10 k
100 k
f – Frequency – Hz
Figure 17
14
10 k
100 k
f – Frequency – Hz
www.ti.com
1M
10 M
1M 2M
SLVS024E – FEBRUARY 1983 – REVISED NOVEMBER 1999
TYPICAL CHARACTERISTICS
CLOSED-LOOP GAIN AND PHASE SHIFT
vs
FREQUENCY
70
Phase Shift
(Right Scale)
50
40
47 pF
470 pF
4700 pF
0°
Closed-Loop Gain
(Left Scale)
–10°
–20°
30
–30°
Phase Shift
Closed-Loop Gain – dB
60
CX:
VCC = 5 V
Rref = 150 Ω
Cref = 470 pF
TA = 25°C
–40°
20
–50°
–60°
–70°
10
–80°
0
100
1k
10 k
100 k
–90°
1M
f – Frequency – Hz
Vref
+
–
39 kΩ
Cx
Rref
Cref
39 kΩ
Test Circuit
Figure 18
www.ti.com
15
SLVS024E – FEBRUARY 1983 – REVISED NOVEMBER 1999
TYPICAL CHARACTERISTICS
CLOSED-LOOP GAIN AND PHASE SHIFT
vs
FREQUENCY
70
CX:
Phase Shift
(Right Scale)
50
Closed-Loop Gain
(Left Scale)
40
47 pF
470 pF
4700 pF
0°
–10°
–20°
30
–30°
–40°
20
–50°
–60°
–70°
10
–80°
0
100
1k
10 k
100 k
f – Frequency – Hz
Vref
+
–
39 kΩ
Cx
Rref
Cref
39 kΩ
Test Circuit
Figure 19
16
www.ti.com
–90°
1M
Phase Shift
Closed-Loop Gain – dB
60
VCC = 5 V
Rref = 15 Ω
Cref = 470 pF
TA = 25°C
SLVS024E – FEBRUARY 1983 – REVISED NOVEMBER 1999
TYPICAL CHARACTERISTICS
CLOSED-LOOP GAIN AND PHASE SHIFT
vs
FREQUENCY
70
CX:
50
40
Phase Shift
(Right Scale)
Closed-Loop Gain
(Left Scale)
47 pF
470 pF
4700 pF
0°
–10°
–20°
30
–30°
Phase Shift
Closed-Loop Gain – dB
60
VCC = 5 V
Rref = 15 Ω
Cref = 470 pF
TA = 25°C
–40°
20
–50°
–60°
–70°
10
–80°
0
100
1k
10 k
100 k
–90°
1M
f – Frequency – Hz
Vref
+
–
39 kΩ
Cx
Rref
Cref
39 kΩ
Test Circuit
Figure 20
www.ti.com
17
SLVS024E – FEBRUARY 1983 – REVISED NOVEMBER 1999
TYPICAL CHARACTERISTICS
CLOSED-LOOP GAIN AND PHASE SHIFT
vs
FREQUENCY
70
50
0°
40
Closed-Loop Gain
(Left Scale)
Phase Shift
(Right Scale)
30
–10°
–20°
–30°
–40°
20
–50°
–60°
–70°
10
–80°
0
100
1k
10 k
100 k
f – Frequency – Hz
Vref
+
–
39 kΩ
Cref
39 kΩ
Test Circuit
Figure 21
18
www.ti.com
–90°
1M
Phase Shift
Closed-Loop Gain – dB
60
VCC = 5 V
Cref = 470 pF
TA = 25°C
SLVS024E – FEBRUARY 1983 – REVISED NOVEMBER 1999
TYPICAL CHARACTERISTICS
OUTPUT SINK CURRENT
vs
COLLECTOR OUTPUT SATURATION VOLTAGE
120
TA = –20°C
110
TA = 25°C
Output Sink Current – mA
100
90
TA = 85°C
80
70
60
50
40
30
20
VCC = 3.6 V
10
0
0
15
5
10
Collector Output Saturation Voltage – V
20
Figure 22
VO(ref) –0.01
1
VO(ref) –0.02
0.9
Maximum Output Voltage
Swing (Right Scale)
VO(ref) –0.03
0.8
VO(ref) –0.04
0.7
Maximum Output
Voltage Swing (Right Scale)
VO(ref) –0.05
0.6
VO(ref) –0.06
0.5
Vref
VOM – Maximum Output Voltage Swing – V
VOM – Maximum Output Voltage Swing – V
MAXIMUM OUTPUT VOLTAGE SWING
vs
FREE-AIR TEMPERATURE
33 kΩ
+
33 kΩ
–
RL
100 kΩ
Vvom – 1
VCC = 3.6 V
RL = 100 kΩ
VOM+1 = 1.25 V
VOM –1 = 1.15 V (Right Scale)
VOM –1 = 1.35 V (Left Scale)
TEST CIRCUIT
VO(ref) –0.07
–25
0
25
50
75
TA – Free-Air Temperature – °C
100
Figure 23
www.ti.com
19
SLVS024E – FEBRUARY 1983 – REVISED NOVEMBER 1999
TYPICAL CHARACTERISTICS
OUTPUT TRANSISTOR ON DUTY CYCLE
vs
DEAD-TIME INPUT VOLTAGE
STANDBY CURRENT
vs
SUPPLY VOLTAGE
VCC = 3.6 V
RT = 10kΩ
CT = 330 pF
10
20
IICC
CC (Standby) – Standby Current – mA
Output Transistor “On” Duty Cycle – %
0
30
40
50
60
70
ÁÁ
ÁÁ
80
90
100
0
0.5
1
1.5
2
2.5
3
3.5
TA = 25°C
2
1.75
1.5
1.25
1
0.75
0.5
0.25
0
4
0
10
20
30
VCC – Supply Voltage – V
Dead-Time Input Voltage – V
Figure 24
40
Figure 25
MAXIMUM CONTINUOUS POWER DISSIPATION
vs
FREE-AIR TEMPERATURE
STANDBY CURRENT
vs
FREE-AIR TEMPERATURE
I CC – Supply Current – mA
ICC
2
ÁÁ
ÁÁ
1.75
1.5
Maximum Continuous Power Dissipation – mW
1200
Average Supply Current
VCC = 6 V, RT = 10 kΩ,
CT = 330 pF
Stand-By Current, VCC = 40 V, No Load
1.25
1
Stand-By Current, VCC = 3.6 V, No Load
0.75
0.5
0.25
0
–25
0
25
50
75
TA – Free-Air Temperature – °C
100
Figure 26
20
1100
16-Pin N Plastic Dip
1000
Thermal Resistance
125°C/W
900
800
700
600
16-Pin NS Plastic SO
500
400
Thermal Resistance
250°C/W
300
200
100
0
–25
0
75
25
50
TA – Free-Air Temperature
Figure 27
www.ti.com
100
SLVS024E – FEBRUARY 1983 – REVISED NOVEMBER 1999
APPLICATION INFORMATION
VCC
220 kΩ
0.47 µF
150 Ω
470 Ω
50 kΩ
33 kΩ
L1
330 pF
R1
R2
33 kΩ
R3
33 kΩ
33 kΩ
Step-Up
C2 Output
R4
C1
500 pF
Vref
16 15 14 13 12 11 10
9
TL1451A
1
2
3
4
5
6
7
8
470 Ω
470 Ω
R5
C5
220 Ω
500
pF
1 µF
L2
R6
470 Ω
33 kΩ
Step-Down
C4 Output
R7
33 kΩ
NOTE A: Values for R1 through R7, C1 through C4, and L1 and L2 depend upon individual application.
Figure 28. High-Speed Dual Switching Regulator
www.ti.com
21
PACKAGE OPTION ADDENDUM
www.ti.com
14-Oct-2022
PACKAGING INFORMATION
Orderable Device
Status
(1)
Package Type Package Pins Package
Drawing
Qty
Eco Plan
(2)
Lead finish/
Ball material
MSL Peak Temp
Op Temp (°C)
Device Marking
(3)
Samples
(4/5)
(6)
TL1451ACD
ACTIVE
SOIC
D
16
40
RoHS & Green
NIPDAU
Level-1-260C-UNLIM
-20 to 85
TL1451AC
Samples
TL1451ACDBR
ACTIVE
SSOP
DB
16
2000
RoHS & Green
NIPDAU
Level-1-260C-UNLIM
-20 to 85
T1451A
Samples
TL1451ACDR
ACTIVE
SOIC
D
16
2500
RoHS & Green
NIPDAU
Level-1-260C-UNLIM
-20 to 85
TL1451AC
Samples
TL1451ACN
ACTIVE
PDIP
N
16
25
RoHS & Green
NIPDAU
N / A for Pkg Type
-20 to 85
TL1451ACN
Samples
TL1451ACNS
ACTIVE
SO
NS
16
50
RoHS & Green
NIPDAU
Level-1-260C-UNLIM
0 to 0
TL1451A
Samples
TL1451ACNSR
ACTIVE
SO
NS
16
2000
RoHS & Green
NIPDAU
Level-1-260C-UNLIM
-20 to 85
TL1451A
Samples
TL1451ACPW
ACTIVE
TSSOP
PW
16
90
RoHS & Green
NIPDAU
Level-1-260C-UNLIM
-20 to 85
T1451A
Samples
TL1451ACPWR
ACTIVE
TSSOP
PW
16
2000
RoHS & Green
NIPDAU
Level-1-260C-UNLIM
-20 to 85
T1451A
Samples
TL1451ACPWRG4
ACTIVE
TSSOP
PW
16
2000
RoHS & Green
NIPDAU
Level-1-260C-UNLIM
-20 to 85
T1451A
Samples
TL1451AQD
ACTIVE
SOIC
D
16
40
RoHS & Green
NIPDAU
Level-1-260C-UNLIM
-40 to 125
TL1451AQ
Samples
TL1451AQDR
ACTIVE
SOIC
D
16
2500
RoHS & Green
NIPDAU
Level-1-260C-UNLIM
-40 to 125
TL1451AQ
Samples
TL1451CN
ACTIVE
PDIP
N
16
25
RoHS & Green
NIPDAU
N / A for Pkg Type
-20 to 85
TL1451CN
Samples
TL1451CNS
ACTIVE
SO
NS
16
50
RoHS & Green
NIPDAU
Level-1-260C-UNLIM
-20 to 85
TL1451
Samples
TL1451CNSR
ACTIVE
SO
NS
16
2000
RoHS & Green
NIPDAU
Level-1-260C-UNLIM
-20 to 85
TL1451
Samples
TL1451INSR
ACTIVE
SO
NS
16
2000
RoHS & Green
NIPDAU
Level-1-260C-UNLIM
-20 to 85
TL1451I
Samples
(1)
The marketing status values are defined as follows:
ACTIVE: Product device recommended for new designs.
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.
OBSOLETE: TI has discontinued the production of the device.
Addendum-Page 1
PACKAGE OPTION ADDENDUM
www.ti.com
14-Oct-2022
(2)
RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance
do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may
reference these types of products as "Pb-Free".
RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.
Green: TI defines "Green" to mean the content of Chlorine (Cl) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of