0
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
创作中心
发布
  • 发文章

  • 发资料

  • 发帖

  • 提问

  • 发视频

创作活动
TLC2252CDR

TLC2252CDR

  • 厂商:

    BURR-BROWN(德州仪器)

  • 封装:

    SOIC8_150MIL

  • 描述:

    双轨至轨微功耗运算放大器

  • 数据手册
  • 价格&库存
TLC2252CDR 数据手册
TLC225x, TLC225xA Advanced LinCMOS RAIL-TO-RAIL VERY LOW-POWER OPERATIONAL AMPLIFIERS SLOS176D – FEBRUARY 1997 – REVISED MARCH 2001 D D D D D D Output Swing Includes Both Supply Rails Low Noise . . . 19 nV/√Hz Typ at f = 1 kHz Low Input Bias Current . . . 1 pA Typ Fully Specified for Both Single-Supply and Split-Supply Operation Very Low Power . . . 35 µA Per Channel Typ Common-Mode Input Voltage Range Includes Negative Rail D D D D Low Input Offset Voltage 850 µV Max at TA = 25°C (TLC225xA) Macromodel Included Performance Upgrades for the TS27L2/L4 and TLC27L2/L4 Available in Q–Temp Automotive HighRel Automotive Applications Configuration Control / Print Support Qualification to Automotive Standards description 60 V n – Equivalent Input Noise Voltage – nV/ VN nv//HzHz The TLC2252 and TLC2254 are dual and quadruple operational amplifiers from Texas Instruments. Both devices exhibit rail-to-rail output performance for increased dynamic range in single- or split-supply applications. The TLC225x family consumes only 35 µA of supply current per channel. This micropower operation makes them good choices for battery-powered applications. The noise performance has been dramatically improved over previous generations of CMOS amplifiers. Looking at Figure 1, the TLC225x has a noise level of 19 nV/√Hz at 1kHz; four times lower than competitive micropower solutions. EQUIVALENT INPUT NOISE VOLTAGE vs FREQUENCY VDD = 5 V RS = 20 Ω T = 25°C 50 A 40 30 20 10 The TLC225x amplifiers, exhibiting high input impedance and low noise, are excellent for small-signal conditioning for high-impedance 0 sources, such as piezoelectric transducers. 101 10 2 10 3 10 4 Because of the micropower dissipation levels, f – Frequency – Hz these devices work well in hand-held monitoring Figure 1 and remote-sensing applications. In addition, the rail-to-rail output feature with single or split supplies makes this family a great choice when interfacing with analog-to-digital converters (ADCs). For precision applications, the TLC225xA family is available and has a maximum input offset voltage of 850 µV. This family is fully characterized at 5 V and ± 5 V. The TLC2252/4 also makes great upgrades to the TLC27L2/L4 or TS27L2/L4 in standard designs. They offer increased output dynamic range, lower noise voltage, and lower input offset voltage. This enhanced feature set allows them to be used in a wider range of applications. For applications that require higher output drive and wider input voltage ranges, see the TLV2432 and TLV2442 devices. If the design requires single amplifiers, please see the TLV2211/21/31 family. These devices are single rail-to-rail operational amplifiers in the SOT-23 package. Their small size and low power consumption, make them ideal for high density, battery-powered equipment. Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet. Advanced LinCMOS is a trademark of Texas Instruments. Copyright  2001, Texas Instruments Incorporated PRODUCTION DATA information is current as of publication date. Products conform to specifications per the terms of Texas Instruments standard warranty. Production processing does not necessarily include testing of all parameters. On products compliant to MIL-PRF-38535, all parameters are tested unless otherwise noted. On all other products, production processing does not necessarily include testing of all parameters. POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 1 TLC225x, TLC225xA Advanced LinCMOS RAIL-TO-RAIL VERY LOW-POWER OPERATIONAL AMPLIFIERS SLOS176D – FEBRUARY 1997 – REVISED MARCH 2001 TLC2252 AVAILABLE OPTIONS PACKAGED DEVICES TA VIOmax AT 25°C 0°C to 70°C 1500 µV TLC2252CD — — – 40°C to 125°C 850 µV µ 1500 µV TLC2252AID TLC2252ID — — — — – 40°C to 125°C 850 µV µ 1500 µV TLC2252AQD TLC2252QD — — — — – 55°C to 125°C 850 µV 1500 µV — — TLC2252AMFK TLC2252MFK TLC2252AMJG TLC2252MJG SMALL OUTLINE† (D) CHIP CARRIER (FK) CERAMIC DIP (JG) PLASTIC DIP (P) TSSOP‡ (PW) CERAMIC FLATPACK (U) TLC2252CP TLC2252CPW — TLC2252AIP TLC2252IP TLC2252AIPW — — — — — — — — — — — — — TLC2252AMU TLC2252MU † The D packages are available taped and reeled. Add R suffix to device type (e.g., TLC2262CDR). ‡ The PW package is available only left-ended taped and reeled. § Chip forms are tested at 25°C only. TLC2254 AVAILABLE OPTIONS PACKAGED DEVICES TA VIOmax AT 25°C 0°C to 70°C 1500 µV TLC2254CD — — – 40°C to 125°C 850 µ µV 1500 µV TLC2254AID TLC2254ID — — — — – 40°C to 125°C 850 µ µV 1500 µV TLC2254AQD TLC2254QD — — — — – 55°C to 125°C 850 µV µ 1500 µV SMALL OUTLINE† (D) — — CHIP CARRIER (FK) CERAMIC DIP (J) TLC2254AMFK TLC2254MFK TSSOP‡ (PW) CERAMIC FLATPACK (W) TLC2254CN TLC2254CPW — TLC2254AIN TLC2254IN TLC2254AIPW — PLASTIC DIP (N) TLC2254AMJ TLC2254MJ — — — — — — — — — — — TLC2254AMW — TLC2254MW † The D packages are available taped and reeled. Add R suffix to the device type (e.g., TLC2254CDR). ‡ The PW package is available only left-end taped and reeled. Chips are tested at 25°C. § Chip forms are tested at 25°C only. 2 POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 TLC225x, TLC225xA Advanced LinCMOS RAIL-TO-RAIL VERY LOW-POWER OPERATIONAL AMPLIFIERS SLOS176D – FEBRUARY 1997 – REVISED MARCH 2001 TLC2252C, TLC2252AC TLC2252I, TLC2252AI TLC2252Q, TLC2252AQ D, P, OR PW PACKAGE (TOP VIEW) 1 8 2 7 3 6 4 5 NC 1OUT NC VDD+ NC VDD + 2OUT 2IN – 2IN + NC 1IN – NC 1IN + NC 4 3 2 1 20 19 18 5 17 6 16 7 15 8 14 9 10 11 12 13 NC 2OUT NC 2IN – NC NC VDD– /GND NC 2IN+ NC 1OUT 1IN – 1IN + VDD – /GND TLC2252M, TLC2252AM . . . FK PACKAGE (TOP VIEW) TLC2252M, TLC2252AM . . . JG PACKAGE (TOP VIEW) 1 8 2 7 3 6 4 5 VDD + 2OUT 2IN – 2IN + NC 1OUT 1IN – 1IN + VCC – /GND TLC2254C, TLC2254AC TLC2254I, TLC2254AI TLC2254Q, TLC2254AQ D, N, OR PW PACKAGE TLC2254M, TLC2254AM J OR W PACKAGE (TOP VIEW) (TOP VIEW) 1 14 2 13 3 12 4 11 5 10 6 9 7 8 4OUT 4IN – 4IN + VDD – / GND 3IN + 3IN – 3OUT 1OUT 1IN – 1IN + VDD + 2IN + 2IN – 2OUT 1 14 2 13 3 12 4 11 5 10 6 9 7 8 4OUT 4IN – 4IN + VDD – / GND 3IN + 3IN – 3OUT 10 9 3 8 4 7 5 6 NC VCC + 2OUT 2IN – 2IN + TLC2254M, TLC2254AM FK PACKAGE (TOP VIEW) 1IN + NC VCC + NC 2IN + 4 3 2 1 20 19 18 5 17 6 16 7 15 8 14 9 10 11 12 13 4IN + NC VCC – /GND NC 3IN + 2IN – 2OUT NC 3OUT 3IN – 1OUT 1IN – 1IN + VDD + 2IN + 2IN – 2OUT 1 2 1IN – 1OUT NC 4OUT 4IN – 1OUT 1IN – 1IN + VDD – /GND TLC2262M, TLC2252AM . . . U PACKAGE (TOP VIEW) NC – No internal connection POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 3 TLC225x, TLC225xA Advanced LinCMOS RAIL-TO-RAIL VERY LOW-POWER OPERATIONAL AMPLIFIERS SLOS176D – FEBRUARY 1997 – REVISED MARCH 2001 equivalent schematic (each amplifier) VDD + Q3 Q6 Q9 Q12 Q14 Q16 R6 IN + OUT C1 IN – R5 Q1 Q4 Q13 Q15 Q17 D1 Q2 Q5 R3 R4 Q7 Q8 Q10 Q11 R1 VDD – / GND ACTUAL DEVICE COMPONENT COUNT† COMPONENT TLC2252 TLC2254 Transistors 38 76 Resistors 30 56 9 18 Diodes Capacitors 3 6 † Includes both amplifiers and all ESD, bias, and trim circuitry 4 POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 R2 TLC225x, TLC225xA Advanced LinCMOS RAIL-TO-RAIL VERY LOW-POWER OPERATIONAL AMPLIFIERS SLOS176D – FEBRUARY 1997 – REVISED MARCH 2001 absolute maximum ratings over operating free-air temperature range (unless otherwise noted)† Supply voltage, VDD + (see Note 1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 V Supply voltage, VDD – (see Note 1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . – 8 V Differential input voltage, VID (see Note 2) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ± 16 V Input voltage, VI (any input, see Note 1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ± 8 V Input current, II (each input) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ± 5 mA Output current, IO . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ± 50 mA Total current into VDD + . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ± 50 mA Total current out of VDD – . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ± 50 mA Duration of short-circuit current at (or below) 25°C (see Note 3) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . unlimited Continuous total dissipation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Dissipation Rating Table Operating free-air temperature range, TA: C suffix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 0°C to 70°C I suffix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . – 40°C to 125°C Q suffix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . – 40°C to 125°C M suffix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . – 55°C to 125°C Storage temperature range, Tstg . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . – 65°C to 150°C Lead temperature 1,6 mm (1/16 inch) from case for 10 seconds . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 260°C † Stresses beyond those listed under “absolute maximum ratings” may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under “recommended operating conditions” is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability. NOTES: 1. All voltage values, except differential voltages, are with respect to the midpoint between VDD+ and VDD – . 2. Differential voltages are at IN+ with respect to IN –. Excessive current flows when input is brought below VDD – – 0.3 V. 3. The output may be shorted to either supply. Temperature and/or supply voltages must be limited to ensure that the maximum dissipation rating is not exceeded. DISSIPATION RATING TABLE PACKAGE TA ≤ 25°C POWER RATING DERATING FACTOR ABOVE TA = 25°C TA = 70°C POWER RATING TA = 85°C POWER RATING TA = 125°C POWER RATING D–8 724 mW 5.8 mW/°C 464 mW 377 mW 144 mW D–14 950 mW 7.6 mW/°C 608 mW 450 mW 190 mW FK 1375 mW 11.0 mW/°C 880 mW 715 mW 275 mW J 1375 mW 11.0 mW/°C 880 mW 715 mW 275 mW JG 1050 mW 8.4 mW/°C 672 mW 546 mW 275 mW N 1150 mW 9.2 mW/°C 736 mW 736 mW — P 1000 mW 8.0 mW/°C 640 mW 520 mW — PW–8 525 mW 4.2 mW/°C 336 mW 273 mW — PW–14 700 mW 5.6 mW/°C 448 mW 448 mW — U 700 mW 5.5 mW/°C 246 mW 330 mW 150 mW W 700 mW 5.5 mW/°C 246 mW 330 mW 150 mW recommended operating conditions C SUFFIX MIN Supply voltage, VDD ± ± 2.2 Input voltage range, VI Common-mode input voltage, VIC VDD – VDD – Operating free-air temperature, TA 0 MAX ±8 VDD + – 1.5 VDD + – 1.5 70 I SUFFIX MIN ± 2.2 VDD – VDD – – 40 POST OFFICE BOX 655303 MAX ±8 VDD + – 1.5 VDD + – 1.5 125 Q SUFFIX MIN ± 2.2 VDD – VDD – – 40 • DALLAS, TEXAS 75265 MAX ±8 VDD + – 1.5 VDD + – 1.5 125 M SUFFIX MIN ± 2.2 VDD – VDD – – 55 MAX UNIT ±8 V VDD + – 1.5 VDD + – 1.5 V 125 °C V 5 TLC225x, TLC225xA Advanced LinCMOS RAIL-TO-RAIL VERY LOW-POWER OPERATIONAL AMPLIFIERS SLOS176D – FEBRUARY 1997 – REVISED MARCH 2001 electrical characteristics at specified free-air temperature, VDD = 5 V (unless otherwise noted) PARAMETER TEST CONDITIONS Input offset voltage αVIO Temperature coefficient of input offset voltage IIB Input bias current VICR VDD ± = ± 2.5 V, RS = 50 Ω VIC = 0, VO = 0 0, rid 1500 25°C 0.003 25°C 0.5 1 RS = 50 Ω Ω, Common mode input voltage range Common-mode Low-level output voltage Large-signal g g differential voltage g amplification Full range g 0 to 3.5 25°C IOH = – 75 µA High level output voltage High-level 0 to 4 |VIO | ≤ 5 mV IOL = 50 µA IOL = 500 µA 4.9 Full range 4.8 25°C 4.8 0.01 0.09 Full range Full range 5V VIC = 2 2.5 V, IOL = 4 mA Full range Differential input resistance V 4.88 25°C mA pA V 4.94 25°C IOL = 1 RL = 100 kΩ‡ VIC = 2.5 2 5 V, V VO = 1 V to 4 V RL = 1 MΩ‡ – 0.3 to 4.2 pA 4.98 25°C VIC = 2 2.5 5V V, 60 100 25°C µV µV/mo 60 100 25°C UNIT µV/°C 05 0.5 Full range VIC = 2 2.5 5V V, AVD 200 Full range IOH = – 150 µA VIC = 2.5 V, VOL MAX 1750 25°C to 70°C IOH = – 20 µA VOH TYP Full range Input offset voltage long-term drift (see Note 4) Input offset current TLC2252C MIN 25°C VIO IIO TA† 0.15 0.15 25°C 0.2 0.3 V 0.3 25°C 0.7 1 1.2 25°C 100 Full range 10 350 V/mV 25°C 1700 25°C 1012 Ω Ω ric Common-mode input resistance 25°C 1012 cic Common-mode input capacitance f = 10 kHz, P package 25°C 8 pF zo Closed-loop output impedance f = 25 kHz, AV = 10 25°C 200 Ω CMRR Common mode rejection ratio Common-mode VIC = 0 to 2.7 V,, RS = 50 Ω kSVR Supply voltage rejection ratio (∆VDD/∆VIO) Supply-voltage VDD = 4.4 V to 16 V,, VIC = VDD /2, No load IDD Supply current VO = 2 2.5 5V V, VO = 2.5 V,, No load 25°C 70 Full range 70 25°C 80 Full range 80 25°C Full range 83 dB 95 70 dB 125 150 µA † Full range is 0°C to 70°C. ‡ Referenced to 2.5 V NOTE 4: Typical values are based on the input offset voltage shift observed through 500 hours of operating life test at TA = 150°C extrapolated to TA = 25°C using the Arrhenius equation and assuming an activation energy of 0.96 eV. 6 POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 TLC225x, TLC225xA Advanced LinCMOS RAIL-TO-RAIL VERY LOW-POWER OPERATIONAL AMPLIFIERS SLOS176D – FEBRUARY 1997 – REVISED MARCH 2001 operating characteristics at specified free-air temperature, VDD = 5 V PARAMETER SR TEST CONDITIONS VO = 1 1.5 5 V to 3 3.5 5V V, RL = 100 kΩ‡, CL = 100 pF F‡ Slew rate at unity gain Vn Equivalent input noise voltage VN(PP) Peak to peak equivalent input noise voltage Peak-to-peak In Equivalent input noise current THD + N Total harmonic distortion plus noise Gain-bandwidth product BOM Maximum output-swing bandwidth φm Phase margin at unity gain Gain margin TA† TLC2252C MIN TYP 25°C 0.07 0.12 Full range 0 05 0.05 25°C 36 f = 1 kHz 25°C 19 f = 0.1 Hz to 1 Hz 25°C 0.7 f = 0.1 Hz to 10 Hz 25°C 1.1 25°C 0.6 AV = 1 VO(PP) = 2 V, RL = 50 kΩ‡, AV = 1, CL = 100 pF‡ ‡ RL = 50 kΩ‡, CL = 100 pF‡ nV/√Hz µV fA√Hz 0.2% 25°C AV = 10 RL = 50 kΩ‡, UNIT V/µs f = 10 Hz VO = 0.5 V to 2.5 V, f = 10 kHz kHz, RL = 50 kΩ‡ f = 10 kHz, CL = 100 pF‡ MAX 1% 25°C 0.2 MHz 25°C 30 kHz 25°C 63° 25°C 15 dB † Full range is 0°C to 70°C. ‡ Referenced to 2.5 V POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 7 TLC225x, TLC225xA Advanced LinCMOS RAIL-TO-RAIL VERY LOW-POWER OPERATIONAL AMPLIFIERS SLOS176D – FEBRUARY 1997 – REVISED MARCH 2001 electrical characteristics at specified free-air temperature, VDD± = ±5 V (unless otherwise specified) PARAMETER TEST CONDITIONS Input offset voltage αVIO Temperature coefficient of input offset voltage IIB Input bias current VICR 200 1500 VIC = 0, RS = 50 Ω VO = 0, 25°C 0.003 µV/mo 25°C 0.5 1 IO = – 200 µA VIC = 0, Maximum negative peak output voltage Large-signal differential voltage amplification IO = 50 µA IO = 500 µA VIC = 0 0, –5 to 4 Full range g –5 to 3.5 25°C IO = – 100 µA 25°C 4.9 4.7 25°C 4.8 25°C – 4.85 Full range – 4.85 25°C – 4.7 – 4.7 mA Full range VIC = 0 0, IO = 4 mA Full range VO = ± 4 V RL = 100 kΩ RL = 1 MΩ 25°C pA V 4.93 V 4.86 – 4.99 25°C IO = 1 – 5.3 to 4.2 pA 4.98 Full range VIC = 0 0, 60 100 25°C RS = 50 Ω 60 100 Full range |VIO | ≤ 5 mV mV, µV µV/°C 25°C Common mode input voltage range Common-mode UNIT 05 0.5 Full range VOM + Maximum positive peak output voltage AVD MAX 1750 25°C to 70°C IO = – 20 µA VOM – TYP Full range Input offset voltage long-term drift (see Note 4) Input offset current TLC2252C MIN 25°C VIO IIO TA† –4 – 4.91 V – 4.8 – 4.3 – 3.8 25°C 45 Full range 10 650 V/mV 25°C 3000 rid Differential input resistance 25°C 1012 Ω ric Common-mode input resistance 25°C 1012 Ω cic Common-mode input capacitance f = 10 kHz, 25°C 8 pF zo Closed-loop output impedance f = 25 kHz, 25°C 190 Ω P package AV = 10 VIC = – 5 V to 2.7 V, CMRR Common-mode Common mode rejection ratio kSVR Supply voltage rejection ratio (∆VDD ± /∆VIO) Supply-voltage IDD Supply current 25°C 75 VO = 0, RS = 50 Ω VDD ± = 2.2 V to ± 8 V, Full range 75 25°C 80 VIC = 0, No load Full range 80 VO = 0 0, No load 25°C Full range 88 dB 95 80 dB 125 150 µA † Full range is 0°C to 70°C. NOTE 4: Typical values are based on the input offset voltage shift observed through 500 hours of operating life test at TA = 150°C extrapolated to TA = 25°C using the Arrhenius equation and assuming an activation energy of 0.96 eV. 8 POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 TLC225x, TLC225xA Advanced LinCMOS RAIL-TO-RAIL VERY LOW-POWER OPERATIONAL AMPLIFIERS SLOS176D – FEBRUARY 1997 – REVISED MARCH 2001 operating characteristics at specified free-air temperature, VDD± = ±5 V PARAMETER TEST CONDITIONS VO = ± 1 1.9 9V V, CL = 100 pF SR Slew rate at unity gain Vn Equivalent input noise voltage VN(PP) Peak to peak equivalent input noise voltage Peak-to-peak In Equivalent input noise current THD + N Total harmonic distortion pulse duration Gain-bandwidth product BOM Maximum output-swing bandwidth φm Phase margin at unity gain Gain margin RL = 100 kΩ kΩ, TA† TLC2252C MIN TYP 25°C 0.07 0.12 Full range 0.05 25°C 38 f = 1 kHz 25°C 19 f = 0.1 Hz to 1 Hz 25°C 0.8 f = 0.1 Hz to 10 Hz 25°C 1.1 25°C 0.6 AV = 1 VO(PP) = 4.6 V, RL = 50 kΩ, AV = 1, CL = 100 pF RL = 50 kΩ, kΩ CL = 100 pF nV/√Hz µV fA√Hz 0.2% 25°C AV = 10 RL = 50 kΩ, UNIT V/µs f = 10 Hz VO = ± 2.3 V, f = 10 kHz kHz, RL = 50 kΩ f = 10 kHz, CL = 100 pF MAX 1% 25°C 0.21 MHz 25°C 14 kHz 25°C 63° 25°C 15 dB † Full range is 0°C to 70°C. POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 9 TLC225x, TLC225xA Advanced LinCMOS RAIL-TO-RAIL VERY LOW-POWER OPERATIONAL AMPLIFIERS SLOS176D – FEBRUARY 1997 – REVISED MARCH 2001 electrical characteristics at specified free-air temperature, VDD = 5 V (unless otherwise noted) PARAMETER TEST CONDITIONS Input offset voltage αVIO Temperature coefficient of input offset voltage IIB Input bias current VICR VOL MAX 200 1500 1750 25°C to 70°C VDD ± = ± 2.5 V, RS = 50 Ω VIC = 0, VO = 0 0, 25°C 0.003 µV/mo 25°C 0.5 1 Low-level output voltage 0 to 4 Full range 0 to 3.5 25°C IOH = – 75 µA High level output voltage High-level IOH = – 150 µA VIC = 2.5 V, IOL = 50 µA VIC = 2 2.5 5V V, IOL = 500 µA VIC = 2 2.5 5V V, VIC = 2 2.5 5V V, IOL = 1 mA IOL = 4 mA RL = 100 kΩ‡ VIC = 2.5 2 5 V, V VO = 1 V to 4 V RL = 1 MΩ‡ 4.9 Full range 4.8 25°C 4.8 25°C 0.09 Full range 0.2 Full range 0.7 Full range 25°C 100 10 Common-mode input resistance Common-mode input capacitance f = 10 kHz, N package zo Closed-loop output impedance f = 25 kHz, AV = 10 25°C V 1 1.2 Full range ci(c) 0.3 0.3 25°C ri(c) 0.15 0.15 25°C Differential input resistance V 4.88 0.01 ri(d) pA V 4.94 25°C Large-signal g g differential voltage g amplification 350 V/mV 25°C 1700 25°C 1012 25°C 1012 Ω 25°C 8 pF 200 Ω 25°C 70 CMRR Common mode rejection ratio Common-mode VIC = 0 to 2.7 V,, VO = 2.5 V,, RS = 50 Ω Full range 70 kSVR Supply voltage rejection ratio (∆VDD /∆VIO) Supply-voltage VDD = 4.4 V to 16 V,, VIC = VDD /2, No load 25°C 80 Full range 80 IDD Supply current (four amplifiers) VO = 2 2.5 5V V, No load – 0.3 to 4.2 pA 4.98 25°C AVD 60 100 25°C |VIO | ≤ 5 mV 60 100 Full range RS = 50 Ω Ω, µV µV/°C 25°C Common mode input voltage range Common-mode UNIT 0.5 Full range IOH = – 20 µA VOH TYP Full range Input offset voltage long-term drift (see Note 4) Input offset current TLC2254C MIN 25°C VIO IIO TA† 25°C Full range Ω 83 dB 95 140 dB 250 300 µA † Full range is 0°C to 70°C. ‡ Referenced to 2.5 V NOTE 4: Typical values are based on the input offset voltage shift observed through 500 hours of operating life test at TA = 150°C extrapolated to TA = 25°C using the Arrhenius equation and assuming an activation energy of 0.96 eV. 10 POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 TLC225x, TLC225xA Advanced LinCMOS RAIL-TO-RAIL VERY LOW-POWER OPERATIONAL AMPLIFIERS SLOS176D – FEBRUARY 1997 – REVISED MARCH 2001 operating characteristics at specified free-air temperature, VDD = 5 V PARAMETER SR Slew rate at unity gain Vn Equivalent input noise voltage VN(PP) Peak-to-peak equivalent input noise q voltage In Equivalent input noise current THD + N Total harmonic distortion plus noise TEST CONDITIONS VO = 1.4 V to 2.6 V CL = 100 pF‡ RL = 100 kΩ‡, TLC2254C MIN TYP 25°C 0.07 0.12 Full range 0.05 f = 10 Hz 25°C 36 f = 1 kHz 25°C 19 f = 0.1 Hz to 1 Hz 25°C 0.7 f = 0.1 Hz to 10 Hz 25°C 1.1 25°C 0.6 VO = 0.5 V to 2.5 V, f = 10 kHz kHz, RL = 50 kΩ‡ AV = 1 Gain-bandwidth product f = 10 kHz, CL = 100 pF‡ RL = 50 kΩ‡, BOM Maximum output-swing bandwidth VO(PP) = 2 V, RL = 50 kΩ‡, AV = 1, CL = 100 pF‡ φm Phase margin at unity gain RL = 50 kΩ‡, CL = 100 pF‡ Gain margin TA† MAX UNIT V/µs nV/√Hz µV fA /√Hz 0.2% 25°C AV = 10 1% 25°C 0.2 MHz 25°C 30 kHz 25°C 63° 25°C 15 dB † Full range is 0°C to 70°C. ‡ Referenced to 2.5 V POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 11 TLC225x, TLC225xA Advanced LinCMOS RAIL-TO-RAIL VERY LOW-POWER OPERATIONAL AMPLIFIERS SLOS176D – FEBRUARY 1997 – REVISED MARCH 2001 electrical characteristics at specified free-air temperature, VDD± = ±5 V (unless otherwise specified) PARAMETER TEST CONDITIONS Input offset voltage αVIO Temperature coefficient of input offset voltage IIB Input bias current VICR MAX 200 1500 1750 25°C to 70°C VIC = 0, RS = 50 Ω VO = 0, 25°C 0.003 25°C 0.5 25°C 1 |VIO | ≤ 5 mV mV, Common mode input voltage range Common-mode IO = – 200 µA VIC = 0, Maximum negative peak output voltage IO = 50 µA VIC = 0 0, IO = 500 µA VIC = 0 0, IO = 1 mA VIC = 0 0, IO = 4 mA VO = ± 4 V Full range –5 to 3.5 25°C IO = – 100 µA VOM + Maximum positive peak output voltage –5 to 4 RS = 50 Ω RL = 100 kΩ 4.9 Full range 4.7 25°C 4.8 25°C – 4.85 Full range – 4.85 25°C – 4.7 Full range – 4.7 40 10 ri(d) Differential input resistance ri(c) Common-mode input resistance ci(c) Common-mode input capacitance f = 10 kHz, N package zo Closed-loop output impedance f = 25 kHz, AV = 10 25°C CMRR Common-mode Common mode rejection ratio 150 V/mV 1012 Ω 8 pF 190 Ω 25°C 80 80 No load – 4.3 25°C Full range VO = 0 0, V – 4.8 25°C 75 Supply current (four amplifiers) – 4.91 1012 Full range IDD 4.86 3000 VIC = – 5 V to 2.7 V,, VO = 0, RS = 50 Ω VDD ± = ± 2.2 V to ± 8 V,, VIC = 0, No load V 25°C 75 Supply voltage rejection ratio (∆VDD ± /∆VIO) Supply-voltage 4.93 25°C 25°C kSVR V – 3.8 Full range Large-signal differential voltage amplification RL = 1 MΩ –4 25°C AVD pA – 4.99 25°C Full range – 5.3 to 4.2 pA 4.98 25°C 25°C 60 100 25°C µV µV/mo 60 100 Full range UNIT µV/°C 0.5 Full range IO = – 20 µA VOM – TYP Full range Input offset voltage long-term drift (see Note 4) Input offset current TLC2254C MIN 25°C VIO IIO TA† 25°C Full range Ω 88 dB 95 160 dB 250 300 µA † Full range is 0°C to 70°C. NOTE 4: Typical values are based on the input offset voltage shift observed through 500 hours of operating life test at TA = 150°C extrapolated to TA = 25°C using the Arrhenius equation and assuming an activation energy of 0.96 eV. 12 POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 TLC225x, TLC225xA Advanced LinCMOS RAIL-TO-RAIL VERY LOW-POWER OPERATIONAL AMPLIFIERS SLOS176D – FEBRUARY 1997 – REVISED MARCH 2001 operating characteristics at specified free-air temperature, VDD± = ±5 V PARAMETER TEST CONDITIONS VO = ± 1.9 V,, CL = 100 pF SR Slew rate at unity gain Vn Equivalent input noise voltage VN(PP) Peak to peak equivalent input noise voltage Peak-to-peak In Equivalent input noise current THD + N Total harmonic distortion plus noise RL = 100 kΩ,, TLC2254C MIN TYP 25°C 0.07 0.12 Full range 0.05 f = 10 Hz 25°C 38 f = 1 kHz 25°C 19 f = 0.1 Hz to 1 Hz 25°C 0.8 f = 0.1 Hz to 10 Hz 25°C 1.1 25°C 0.6 VO = ± 2.3 V, f = 20 kHz kHz, RL = 50 kΩ AV = 1 Gain-bandwidth product f = 10 kHz, CL = 100 pF RL = 50 kΩ, BOM Maximum output-swing bandwidth VO(PP) = 4.6 V, RL = 50 kΩ, AV = 1, CL = 100 pF φm Phase margin at unity gain RL = 50 kΩ, kΩ CL = 100 pF Gain margin † Full range is 0°C to 70°C. TA† POST OFFICE BOX 655303 UNIT V/µs nV/√Hz µV fA /√Hz 0.2% 25°C AV = 10 • DALLAS, TEXAS 75265 MAX 1% 25°C 0.21 MHz 25°C 14 kHz 25°C 63° 25°C 15 dB 13 TLC225x, TLC225xA Advanced LinCMOS RAIL-TO-RAIL VERY LOW-POWER OPERATIONAL AMPLIFIERS SLOS176D – FEBRUARY 1997 – REVISED MARCH 2001 electrical characteristics at specified free-air temperature, VDD = 5 V (unless otherwise noted) PARAMETER VIO Input offset voltage αVIO Temperature coefficient of input offset voltage Input offset voltage long-term drift (see Note 4) IIO Input offset current IIB Input bias current VICR Common-mode input voltage range TA† TEST CONDITIONS 25°C High-level output g voltage Low level output Low-level voltage Large signal differential Large-signal lification voltage am amplification 1500 5V VIC = 2 2.5 V, IOL = 500 µA IOL = 4 mA RL = 100 kΩ‡ 5V VIC = 2 2.5 V, VO = 1 V to 4 V RL = 1 MΩ‡ 850 1000 UNIT µV 25°C 0.003 0.003 µV/mo 25°C 0.5 60 0.5 1000 1 25°C 0 to 4 60 Full range 0 to 3.5 – 0.3 to 4.2 1 4.9 Full range 4.8 25°C 4.8 0 to 4 – 0.3 to 4.2 4.9 4.94 4.88 0.09 Full range 4.8 4.88 0.01 0.15 0.09 0.15 0.8 Full range 100 Full range 10 350 0.15 0.15 1 0.7 1.2 25°C V 4.8 25°C pA 4.98 4.94 0.01 pA V 0 to 3.5 25°C 25°C 60 1000 4.98 25°C 60 1000 1000 25°C IOL = 50 µA 200 MAX µV/°C |VIO | ≤ 5 mV IOH = – 75 µA TYP 0.5 25°C RS = 50 Ω Ω, MIN 0.5 Full range VIC = 2 2.5 5V V, AVD 200 Full range IOH = – 150 µA VIC = 2.5 V, VOL MAX 1750 25°C to 85°C VDD ± = ± 2.5 V V, VO = 0, VIC = 0, RS = 50 Ω TLC2252AI TYP Full range IOH = – 20 µA VOH TLC2252I MIN V 1 1.2 100 350 10 V/mV 25°C 1700 1700 rid Differential input resistance 25°C 1012 1012 Ω ric Common-mode input resistance 25°C 1012 1012 Ω cic Common-mode input capacitance f = 10 kHz, P package 25°C 8 8 pF zo Closed-loop output impedance f = 25 kHz, AV = 10 25°C 200 200 Ω CMRR Common-mode rejection ratio VIC = 0 to 2.7 V,, VO = 2.5 V,, RS = 50 Ω kSVR Supply-voltage rejection ratio (∆VDD /∆VIO) VDD = 4.4 V to 16 V, VIC = VDD /2, No load IDD Supply Su ly current VO = 2 2.5 5V V, No load 25°C 70 Full range 70 25°C 80 Full range 80 83 70 83 dB 70 95 80 95 dB 25°C Full range 80 70 125 150 70 125 150 µA † Full range is – 40°C to 125°C. ‡ Referenced to 2.5 V NOTE 4: Typical values are based on the input offset voltage shift observed through 500 hours of operating life test at TA = 150°C extrapolated to TA = 25°C using the Arrhenius equation and assuming an activation energy of 0.96 eV. 14 POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 TLC225x, TLC225xA Advanced LinCMOS RAIL-TO-RAIL VERY LOW-POWER OPERATIONAL AMPLIFIERS SLOS176D – FEBRUARY 1997 – REVISED MARCH 2001 operating characteristics at specified free-air temperature, VDD = 5 V PARAMETER TEST CONDITIONS TA† TLC2252I MIN TYP 25°C 0.07 0.12 Full range 0.05 TLC2252AI MAX MIN TYP 0.07 0.12 MAX UNIT SR Slew rate at unity gain VO = 1.5 V to 3.5 V,, RL = 100 kΩ‡, CL = 100 pF‡ Vn Equivalent input q noise voltage f = 10 Hz 25°C 36 36 f = 1 kHz 25°C 19 19 Peak-to-peak equivalent input noise voltage f = 0.1 Hz to 1 Hz 25°C 0.7 0.7 VN(PP) f = 0.1 Hz to 10 Hz 25°C 1.1 1.1 In Equivalent input noise current 25°C 0.6 0.6 Total harmonic distortion plus noise VO = 0.5 V to 2.5 V, f = 10 kHz kHz, RL = 50 kΩ‡ AV = 1 0.2% 0.2% THD + N 1% 1% Gain-bandwidth product f = 50 kHz, CL = 100 pF‡ RL = 50 kΩ‡, 25°C 0.2 0.2 MHz BOM Maximum outputswing bandwidth VO(PP) = 2 V, RL = 50 kΩ‡, AV = 1, RL = 50 kΩ‡, 25°C 30 30 kHz φm Phase margin at unity gain RL = 50 kΩ‡, CL = 100 pF‡ 25°C 63° 63° 25°C 15 15 POST OFFICE BOX 655303 nV/√Hz µV fA√Hz 25°C AV = 10 Gain margin † Full range is – 40°C to 125°C. ‡ Referenced to 2.5 V V/µs 0.05 • DALLAS, TEXAS 75265 dB 15 TLC225x, TLC225xA Advanced LinCMOS RAIL-TO-RAIL VERY LOW-POWER OPERATIONAL AMPLIFIERS SLOS176D – FEBRUARY 1997 – REVISED MARCH 2001 electrical characteristics at specified free-air temperature, VDD ± = ±5 V (unless otherwise noted) PARAMETER VIO Input offset voltage αVIO Temperature coefficient of input offset voltage Input offset voltage longterm drift (see Note 4) IIO Input offset current IIB Input bias current VICR Common-mode input voltage range TA† TEST CONDITIONS 25°C VO = 0, VOM – Large-signal L i l diff differential ti l voltage am lification amplification 1500 IO = 4 VO = ± 4 V mA RL = 50 kΩ µV 0.003 0.003 µV/mo 25°C 0.5 1 Full range –5 to 3.5 60 – 5.3 to 4.2 4.9 Full range 4.7 25°C 4.8 25°C 1 – 4.85 Full range – 4.85 –4 –5 to 4 25°C 40 10 – 5.3 to 4.2 pA pA V –5 to 3.5 4.98 4.93 4.9 4.93 V 4.7 4.86 4.8 4.86 – 4.99 – 4.91 – 4.85 – 4.91 V – 4.85 – 4.3 –4 – 3.8 Full range 60 1000 – 4.99 25°C 60 1000 4.98 25°C Full range 0.5 1000 –5 to 4 25°C 60 1000 25°C RL = 1 MΩ 850 1000 UNIT 25°C 25°C IO = 500 µA VIC = 0 0, 200 MAX µV/°C |VIO | ≤ 5 mV IO = – 100 µA TYP 0.5 25°C RS = 50 Ω Ω, MIN 0.5 Full range VIC = 0 0, AVD 200 Full range IO = – 200 µA VIC = 0, IO = 50 µA Maximum M i negative ti peak eak out output ut voltage MAX 1750 25°C to 85°C VIC = 0, RS = 50 Ω TLC2252AI TYP Full range IO = – 20 µA Maximum positive peak VOM + output voltage TLC2252I MIN – 4.3 – 3.8 150 40 150 V/mV 10 25°C 3000 3000 rid Differential input resistance 25°C 1012 1012 Ω ric Common-mode input resistance 25°C 1012 1012 Ω cic Common-mode input capacitance f = 10 kHz, P package 25°C 8 8 pF zo Closed-loop output impedance f = 25 kHz, AV = 10 25°C 190 190 Ω CMRR Common-mode rejection ratio VIC = – 5 V to 2.7 V,, VO = 0, RS = 50 Ω 25°C 75 Full range 75 kSVR Supply-voltage y g rejection j ratio (∆VDD ± /∆VIO) VDD = 4.4 V to 16 V,, VIC = VDD /2, No load 25°C 80 Full range 80 IDD Supply current 5V VO = 2 2.5 V, No load 25°C Full range 88 75 88 dB 75 95 80 95 dB 80 80 125 150 80 125 150 µA † Full range is – 40°C to 125°C. NOTE 4: Typical values are based on the input offset voltage shift observed through 500 hours of operating life test at TA = 150°C extrapolated to TA = 25°C using the Arrhenius equation and assuming an activation energy of 0.96 eV. 16 POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 TLC225x, TLC225xA Advanced LinCMOS RAIL-TO-RAIL VERY LOW-POWER OPERATIONAL AMPLIFIERS SLOS176D – FEBRUARY 1997 – REVISED MARCH 2001 operating characteristics at specified free-air temperature, VDD± = ±5 V PARAMETER TEST CONDITIONS VO = ± 1 1.9 9V V, CL = 100 pF RL = 100 kΩ kΩ, TA† TLC2252I MIN TYP 25°C 0.07 0.12 Full range 0.05 TLC2252AI MAX MIN TYP 0.07 0.12 MAX UNIT SR Slew rate at unity gain Vn Equivalent input noise q voltage f = 10 Hz 25°C 38 38 f = 1 kHz 25°C 19 19 VN(PP) Peak-to-peak equivalent q input noise voltage f = 0.1 Hz to 1 Hz 25°C 0.8 0.8 f = 0.1 Hz to 10 Hz 25°C 1.1 1.1 In Equivalent input noise current 25°C 0.6 0.6 Total harmonic distortion plus noise VO = ± 2.3 V, RL = 50 kΩ, kΩ f = 10 kHz AV = 1 0.2% 0.2% THD + N 1% 1% Gain-bandwidth product f =10 kHz, CL = 100 pF RL = 50 kΩ, 25°C 0.21 0.21 MHz BOM Maximum output-swing bandwidth VO(PP) = 4.6 V,AV = 1, RL = 50 kΩ, CL = 100 pF 25°C 14 14 kHz φm Phase margin at unity gain RL = 50 kΩ, 25°C 63° 63° 25°C 15 15 Gain margin † Full range is – 40°C to 125°C. POST OFFICE BOX 655303 nV/√Hz µV fA√Hz 25°C AV = 10 CL = 100 pF V/µs 0.05 • DALLAS, TEXAS 75265 dB 17 TLC225x, TLC225xA Advanced LinCMOS RAIL-TO-RAIL VERY LOW-POWER OPERATIONAL AMPLIFIERS SLOS176D – FEBRUARY 1997 – REVISED MARCH 2001 electrical characteristics at specified free-air temperature, VDD = 5 V (unless otherwise noted) PARAMETER VIO Input In ut offset voltage αVIO Temperature coefficient of input offset voltage Input offset voltage long-term drift (see Note 4) IIO Input In ut offset current IIB Input In ut bias current VICR VOH Common-mode input voltage range High-level g output voltage TEST CONDITIONS AVD Low-level Low level output voltage Large signal Large-signal differential voltage amplification TLC2254I MIN 25°C MAX 200 1500 850 1000 UNIT µV µV/°C 25°C 0.003 0.003 µV/mo 25°C 0.5 1 0.5 0 to 4 60 Full range 0 to 3.5 IOH = – 20 µA 25°C IOH = – 75 µA 25°C 4.9 Full range 4.8 25°C 4.8 – 0.3 to 4.2 1 0 to 4 – 0.3 to 4.2 4.9 4.94 4.88 VIC = 2 2.5 5V V, IOL = 500 µA 25°C 0.09 5V VIC = 2 2.5 V, IOL = 4 Full range 4.8 4.88 0.01 0.15 0.09 0.15 0.8 Full range 100 10 1 350 0.15 0.15 0.7 1.2 25°C V 4.8 0.01 pA A 4.98 4.94 25°C pA A V 0 to 3.5 IOL = 50 µA Full range 60 1000 4.98 25°C 60 1000 1000 25°C |VIO | ≤ 5 mV 60 1000 25°C RL = 100 kΩ‡ VIC = 2 2.5 5V V, VO = 1 V to 4 V RL = 1 MΩ‡ 200 MAX 0.5 Full range mA TYP 0.5 Full range RS = 50 Ω Ω, MIN 1750 25°C to 125°C VDD ± = ± 2.5 V, VIC = 0, VO = 0, RS = 50 Ω TLC2254AI TYP Full range IOH = – 150 µA VIC = 2.5 V, VOL TA† V 1 1.2 100 350 10 V/mV 25°C 1700 1700 ri(d) Differential input resistance 25°C 1012 1012 Ω ri(c) Common-mode input resistance 25°C 1012 1012 Ω ci(c) Common-mode input capacitance f = 10 kHz, N package 25°C 8 8 pF zo Closed-loop output impedance f = 25 kHz, AV = 10 25°C 200 200 Ω CMRR Common-mode rejection ratio VIC = 0 to 2.7 V, VO = 2.5 V, RS = 50 Ω kSVR Supply-voltage rejection ratio (∆VDD /∆VIO) VDD = 4.4 V to 16 V, VIC = VDD /2, No load IDD Supply y current (four amplifiers) VO = 2 2.5 5V V, No load 25°C 70 Full range 70 25°C 80 Full range 80 83 70 83 dB 70 95 80 95 dB 25°C Full range 80 140 250 300 140 250 300 µA † Full range is – 40°C to 125°C. ‡ Referenced to 2.5 V NOTE 4: Typical values are based on the input offset voltage shift observed through 500 hours of operating life test at TA = 150°C extrapolated to TA = 25°C using the Arrhenius equation and assuming an activation energy of 0.96 eV. 18 POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 TLC225x, TLC225xA Advanced LinCMOS RAIL-TO-RAIL VERY LOW-POWER OPERATIONAL AMPLIFIERS SLOS176D – FEBRUARY 1997 – REVISED MARCH 2001 operating characteristics at specified free-air temperature, VDD = 5 V PARAMETER TEST CONDITIONS TA† TLC2254I MIN TYP 0.12 TLC2254AI MAX MIN TYP 0.07 0.12 MAX UNIT VO = 1.4 V to 2.6 V,, RL = 100 kΩ‡, CL = 100 pF‡ 25°C 0.07 Full range 0.05 Equivalent input q noise voltage f = 10 Hz 25°C 36 36 f = 1 kHz 25°C 19 19 Peak-to-peak equivalent input noise voltage f = 0.1 Hz to 1 Hz 25°C 0.7 0.7 VN(PP) f = 0.1 Hz to 10 Hz 25°C 1.1 1.1 In Equivalent input noise current 25°C 0.6 0.6 Total harmonic distortion plus noise VO = 0.5 V to 2.5 V, f = 20 kHz kHz, RL = 50 kΩ‡ AV = 1 0.2% 0.2% THD + N 1% 1% Gain-bandwidth product f = 50 kHz, CL = 100 pF‡ RL = 50 kΩ‡, 25°C 0.2 0.2 MHz BOM Maximum outputswing bandwidth VO(PP) = 2 V, RL = 50 kΩ‡, AV = 1, CL = 100 pF‡ 25°C 30 30 kHz φm Phase margin at unity gain RL = 50 kΩ‡, CL = 100 pF‡ 25°C 63° 63° 25°C 15 15 SR Slew rate at unity gain Vn POST OFFICE BOX 655303 nV/√Hz µV fA /√Hz 25°C AV = 10 Gain margin † Full range is – 40°C to 125°C. ‡ Referenced to 2.5 V V/µs 0.05 • DALLAS, TEXAS 75265 dB 19 TLC225x, TLC225xA Advanced LinCMOS RAIL-TO-RAIL VERY LOW-POWER OPERATIONAL AMPLIFIERS SLOS176D – FEBRUARY 1997 – REVISED MARCH 2001 electrical characteristics at specified free-air temperature, VDD ± = ±5 V (unless otherwise noted) PARAMETER VIO Input offset voltage αVIO Temperature coefficient of input offset voltage Input offset voltage long-term drift (see Note 4) IIO Input offset current IIB Input bias current VICR Common-mode input voltage range TA† TEST CONDITIONS 25°C VO = 0, VOM – Large-signal L i l diff differential ti l voltage am lification amplification 1500 VIC = 0 0, VO = ± 4 V IO = 4 mA RL = 100 kΩ µV 0.003 0.003 µV/mo 25°C 0.5 1 Full range –5 to 3.5 60 – 5.3 to 4.2 4.9 Full range 4.7 25°C 4.8 25°C 1 – 4.85 Full range – 4.85 –4 –5 to 4 25°C 40 10 – 5.3 to 4.2 pA pA V –5 to 3.5 4.98 4.93 4.9 4.93 V 4.7 4.86 4.8 4.86 – 4.99 – 4.91 – 4.85 – 4.91 V – 4.85 – 4.3 –4 – 3.8 Full range 60 1000 – 4.99 25°C 60 1000 4.98 25°C Full range 0.5 1000 –5 to 4 25°C 60 1000 25°C RL = 1 MΩ 850 1000 UNIT 25°C 25°C IO = 500 µA 200 MAX µV/°C |VIO | ≤ 5 mV IO = – 100 µA TYP 0.5 25°C RS = 50 Ω Ω, MIN 0.5 Full range VIC = 0 0, AVD 200 Full range IO = – 200 µA VIC = 0, IO = 50 µA Maximum M i negative ti peak k output out ut voltage MAX 1750 25°C to 125°C VIC = 0, RS = 50 Ω TLC2254AI TYP Full range IO = – 20 µA Maximum positive peak VOM + output voltage TLC2254I MIN – 4.3 – 3.8 150 40 150 V/mV 10 25°C 3000 3000 ri(d) Differential input resistance 25°C 1012 1012 Ω ri(c) Common-mode input resistance 25°C 1012 1012 Ω ci(c) Common-mode input capacitance f = 10 kHz, N package 25°C 8 8 pF zo Closed-loop output impedance f = 25 kHz, AV = 10 25°C 190 190 Ω CMRR Common-mode rejection j ratio VIC = – 5 V to 2.7 V,, VO = 0, RS = 50 Ω kSVR Supply-voltage y g rejection j ratio (∆VDD ± /∆VIO) VDD± = ± 2.2 V to ± 8 V,, VIC = VDD /2, No load IDD Supplyy current (four amplifiers) VO = 0 0, No load 25°C 75 Full range 75 25°C 80 Full range 80 25°C Full range 88 75 88 dB 75 95 80 95 dB 80 160 250 300 160 250 300 µA † Full range is – 40°C to 125°C. NOTE 4: Typical values are based on the input offset voltage shift observed through 500 hours of operating life test at TA = 150°C extrapolated to TA = 25°C using the Arrhenius equation and assuming an activation energy of 0.96 eV. 20 POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 TLC225x, TLC225xA Advanced LinCMOS RAIL-TO-RAIL VERY LOW-POWER OPERATIONAL AMPLIFIERS SLOS176D – FEBRUARY 1997 – REVISED MARCH 2001 operating characteristics at specified free-air temperature, VDD± = ±5 V PARAMETER TEST CONDITIONS VO = ± 1 1.9 9V V, CL = 100 pF RL = 100 kΩ kΩ, TA† TLC2254I MIN TYP 25°C 0.07 0.12 Full range 0.05 TLC2254AI MAX MIN TYP 0.07 0.12 SR Slew rate at unity gain Vn Equivalent input noise q voltage f = 10 Hz 25°C 38 38 f = 1 kHz 25°C 19 19 Peak-to-peak equivalent input noise voltage f = 0.1 Hz to 1 Hz 25°C 0.8 0.8 VN(PP) f = 0.1 Hz to 10 Hz 25°C 1.1 1.1 In Equivalent input noise current 25°C 0.6 0.6 Total harmonic distortion plus noise VO = ± 2.3 V, RL = 50 kΩ, kΩ f = 20 kHz AV = 1 0.2% 0.2% THD + N Gain-bandwidth product f =10 kHz, CL = 100 pF RL = 50 kΩ, BOM Maximum output-swing bandwidth VO(PP) = 4.6 V, RL = 50 kΩ, AV = 1, CL = 100 pF φm Phase margin at unity gain RL = 50 kΩ, CL = 100 pF POST OFFICE BOX 655303 UNIT V/µs 0.05 nV/√Hz µV fA /√Hz 25°C AV = 10 Gain margin † Full range is – 40°C to 125°C. MAX 1% 1% 25°C 0.21 0.21 MHz 25°C 14 14 kHz 25°C 63° 63° 25°C 15 15 • DALLAS, TEXAS 75265 dB 21 TLC225x, TLC225xA Advanced LinCMOS RAIL-TO-RAIL VERY LOW-POWER OPERATIONAL AMPLIFIERS SLOS176D – FEBRUARY 1997 – REVISED MARCH 2001 electrical characteristics at specified free-air temperature, VDD = 5 V (unless otherwise noted) PARAMETER TA† TEST CONDITIONS TLC2252Q TLC2252M MIN VIO Input offset voltage αVIO Temperature coefficient of input offset voltage Input offset voltage long-term drift (see Note 4) IIO Input offset current IIB Input bias current VICR Common-mode input voltage range 25°C VOH VOL Low-level Low level output voltage Large-signal Large signal differential lification voltage am amplification 200 1500 VIC = 0, RS = 50 Ω 0.003 µV/mo 25°C 0.5 1 25°C 0 to 4 Full range 0 to 3.5 1 4.9 Full range 4.8 25°C 4.8 0 to 4 – 0.3 to 4.2 4.9 4.94 25°C 0.09 Full range 4.88 4.8 4.88 0.01 0.15 0.09 0.15 0.8 Full range 100 Full range 10 350 0.15 0.15 1 0.7 1.2 25°C V 4.8 IOL = 500 µA pA 4.98 4.94 VIC = 2 2.5 5V V, pA V 0 to 3.5 0.01 25°C 60 1000 4.98 25°C 60 1000 60 – 0.3 to 4.2 25°C RL = 1 MΩ‡ 0.5 1000 IOL = 50 µA RL = 100 kΩ‡ 60 1000 IOH = – 150 µA VIC = 2.5 V, VIC = 2 2.5 5V V, VO = 1 V to 4 V µV 0.003 25°C mA 850 1000 25°C |VIO | ≤ 5 mV IOL = 4 200 UNIT MAX µV/°C 25°C IOH = – 75 µA TYP 0.5 Full range RS = 50 Ω Ω, MIN 0.5 Full range 5V VIC = 2 2.5 V, AVD MAX 1750 25°C to 125°C IOH = – 20 µA High-level g output voltage TYP Full range VDD ± = ± 2.5 V V, VO = 0, TLC2252AQ TLC2252AM V 1 1.2 100 350 10 V/mV 25°C 1700 1700 rid Differential input resistance 25°C 1012 1012 Ω ric Common-mode input resistance 25°C 1012 1012 Ω cic Common-mode input capacitance f = 10 kHz, f = 10 kHz, 25°C 8 8 pF zo Closed-loop output impedance f = 25 kHz, AV = 10 25°C 200 200 Ω CMRR Common-mode rejection ratio VIC = 0 to 2.7 V,, RS = 50 Ω VO = 2.5 V,, kSVR Supply-voltage rejection ratio (∆VDD /∆VIO) VDD = 4.4 V to 16 V, VIC = VDD /2, No load IDD Supply Su ly current VO = 2 2.5 5V V, No load 25°C 70 Full range 70 25°C 80 Full range 80 83 70 83 dB 70 95 80 95 dB 25°C Full range 80 70 125 150 70 125 150 µA † Full range is – 40°C to 125°C for Q suffix, – 55°C to 125°C for M suffix. ‡ Referenced to 2.5 V NOTE 4: Typical values are based on the input offset voltage shift observed through 500 hours of operating life test at TA = 150°C extrapolated to TA = 25°C using the Arrhenius equation and assuming an activation energy of 0.96 eV. 22 POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 TLC225x, TLC225xA Advanced LinCMOS RAIL-TO-RAIL VERY LOW-POWER OPERATIONAL AMPLIFIERS SLOS176D – FEBRUARY 1997 – REVISED MARCH 2001 operating characteristics at specified free-air temperature, VDD = 5 V PARAMETER TEST CONDITIONS TA† TLC2252Q TLC2252M MIN TYP 25°C 0.07 0.12 Full range 0.05 TLC2252AQ TLC2252AM MAX MIN TYP 0.07 0.12 UNIT MAX SR Slew rate at unity gain VO = 0 0.5 5 V to 3 3.5 5V V, RL = 100 kΩ‡, Vn Equivalent q input noise voltage f = 10 Hz 25°C 36 36 f = 1 kHz 25°C 19 19 Peak-to-peak equivalent input noise voltage f = 0.1 Hz to 1 Hz 25°C 0.7 0.7 VN(PP) f = 0.1 Hz to 10 Hz 25°C 1.1 1.1 In Equivalent input noise current 25°C 0.6 0.6 Total harmonic distortion plus noise VO = 0.5 V to 2.5 V, f = 10 kHz kHz, RL = 50 kΩ‡ AV = 1 0.2% 0.2% THD + N 1% 1% Gain-bandwidth product f = 50 kHz, CL = 100 pF‡ RL = 50 kΩ‡, 25°C 0.2 0.2 MHz BOM Maximum outputswing bandwidth VO(PP) = 2 V, RL = 50 kΩ‡, AV = 1, CL = 100 pF‡ 25°C 30 30 kHz φm Phase margin at unity gain RL = 50 kΩ‡, CL = 100 pF‡ 25°C 63° 63° Gain margin 25°C † Full range is – 40°C to 125°C for Q suffix, – 55°C to 125°C for M suffix. ‡ Referenced to 2.5 V 15 15 CL = 100 pF‡ nV/√Hz µV fA√Hz 25°C AV = 10 POST OFFICE BOX 655303 V/µs 0.05 • DALLAS, TEXAS 75265 dB 23 TLC225x, TLC225xA Advanced LinCMOS RAIL-TO-RAIL VERY LOW-POWER OPERATIONAL AMPLIFIERS SLOS176D – FEBRUARY 1997 – REVISED MARCH 2001 electrical characteristics at specified free-air temperature, VDD ± = ±5 V (unless otherwise noted) PARAMETER TA† TEST CONDITIONS TLC2252Q TLC2252M MIN VIO Input offset voltage αVIO Temperature coefficient of input offset voltage Input offset voltage longterm drift (see Note 4) IIO Input offset current IIB Input bias current VICR Common-mode input voltage range 25°C VO = 0, AVD M i ti Maximum negative eak out ut voltage peak output L i l diff ti l Large-signal differential voltage am lification amplification 200 1500 VIC = 0 0, IO = 4 VO = ± 4 V mA RL = 100 kΩ 1000 µV 0.003 µV/mo 25°C 0.5 1 Full range –5 to 3.5 60 – 5.3 to 4.2 25°C 4.9 4.7 25°C 4.8 25°C 1 – 4.85 Full range – 4.85 –4 –5 to 4 40 Full range 10 – 5.3 to 4.2 pA pA V –5 to 3.5 4.98 4.93 4.9 4.93 V 4.7 4.86 4.8 4.86 – 4.99 – 4.91 – 4.85 – 4.91 V – 4.85 – 4.3 –4 – 3.8 25°C 60 1000 – 4.99 25°C 60 1000 4.98 Full range 25°C 0.5 1000 –5 to 4 Full range 60 1000 25°C RL = 1 MΩ 850 0.003 25°C IO = 500 µA 200 25°C |VIO | ≤ 5 mV VIC = 0 0, MAX µV/°C 25°C IO = – 100 µA UNIT TYP 0.5 Full range RS = 50 Ω Ω, MIN 0.5 Full range IO = – 200 µA VIC = 0, IO = 50 µA VOM – MAX 1750 25°C to 125°C IO = – 20 µA Maximum positive peak VOM + output voltage TYP Full range VIC = 0, RS = 50 Ω TLC2252AQ TLC2252AM – 4.3 – 3.8 150 40 150 V/mV 10 25°C 3000 3000 rid Differential input resistance 25°C 1012 1012 Ω ric Common-mode input resistance 25°C 1012 1012 Ω cic Common-mode input capacitance f = 10 kHz, P package 25°C 8 8 pF zo Closed-loop output impedance f = 25 kHz, AV = 10 25°C 190 190 Ω CMRR Common-mode rejection ratio VIC = – 5 V to 2.7 V,, VO = 0, RS = 50 Ω kSVR Supply-voltage y g rejection j ratio (∆VDD ± /∆VIO) VDD = ±2.2 V to ±8 V,, VIC = 0, No load IDD Supply current VO = 2 2.5 5V V, No load 25°C 75 Full range 75 25°C 80 Full range 80 25°C Full range 88 75 88 dB 75 95 80 95 dB 80 80 125 150 80 125 150 µA † Full range is – 40°C to 125°C for Q suffix, – 55°C to 125°C for M suffix. NOTE 4: Typical values are based on the input offset voltage shift observed through 500 hours of operating life test at TA = 150°C extrapolated to TA = 25°C using the Arrhenius equation and assuming an activation energy of 0.96 eV. 24 POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 TLC225x, TLC225xA Advanced LinCMOS RAIL-TO-RAIL VERY LOW-POWER OPERATIONAL AMPLIFIERS SLOS176D – FEBRUARY 1997 – REVISED MARCH 2001 operating characteristics at specified free-air temperature, VDD± = ±5 V PARAMETER TEST CONDITIONS VO = ± 2 V V, CL = 100 pF RL = 100 kΩ kΩ, SR Slew rate at unity gain Vn Equivalent q input noise voltage VN(PP) Peak-to-peak equivalent q input noise voltage In Equivalent input noise current THD + N Total harmonic distortion plus noise VO = ± 2.3 V, RL = 50 kΩ, kΩ f = 10 kHz AV = 1 Gain-bandwidth product f =10 kHz, CL = 100 pF RL = 50 kΩ, BOM Maximum output-swing bandwidth VO(PP) = 4.6 V, AV = 1, RL = 50 kΩ, CL = 100 pF φm Phase margin at unity gain RL = 50 kΩ, TA† TLC2252Q TLC2252M MIN TYP 25°C 0.07 0.12 Full range 0.05 TLC2252AQ TLC2252AM MAX MIN TYP 0.07 0.12 UNIT MAX V/µs 0.05 f = 10 Hz 25°C 38 38 f = 1 kHz 25°C 19 19 f = 0.1 Hz to 1 Hz 25°C 0.8 0.8 f = 0.1 Hz to 10 Hz 25°C 1.1 1.1 25°C 0.6 0.6 0.2% 0.2% 1% 1% 25°C 0.21 0.21 MHz 25°C 14 14 kHz 25°C 63° 63° Gain margin 25°C † Full range is – 40°C to 125°C for Q suffix, – 55°C to 125°C for M suffix. 15 15 POST OFFICE BOX 655303 µV fA√Hz 25°C AV = 10 CL = 100 pF nV/√Hz • DALLAS, TEXAS 75265 dB 25 TLC225x, TLC225xA Advanced LinCMOS RAIL-TO-RAIL VERY LOW-POWER OPERATIONAL AMPLIFIERS SLOS176D – FEBRUARY 1997 – REVISED MARCH 2001 electrical characteristics at specified free-air temperature, VDD = 5 V (unless otherwise noted) PARAMETER TEST CONDITIONS TA† TLC2254Q TLC2254M MIN VIO Input In ut offset voltage αVIO Temperature coefficient of input offset voltage Input offset voltage long-term drift (see Note 4) IIO Input In ut offset current IIB Input In ut bias current VICR VOH Common-mode input voltage range High-level g output voltage 25°C Low-level Low level output voltage Large-signal Large signal differential voltage amplification 200 1500 VIC = 0, RS = 50 Ω 0.003 µV/mo 25°C 0.5 1 25°C 0 to 4 Full range 0 to 3.5 IOH = – 75 µA 4.9 Full range 4.8 25°C 4.8 1 0 to 4 – 0.3 to 4.2 4.9 4.94 4.88 IOL = 500 µA 0.09 Full range 4.8 4.88 0.01 0.15 0.09 0.15 0.8 Full range Full range 10 350 0.15 0.15 1 0.7 1.2 100 V 4.8 25°C pA A 4.98 4.94 0.01 pA A V 0 to 3.5 25°C 25°C 60 1000 4.98 25°C 60 1000 60 – 0.3 to 4.2 IOL = 50 µA RL = 1 MΩ‡ 0.5 1000 25°C RL = 100 kΩ‡ 60 1000 25°C 5V VIC = 2 2.5 V, VO = 1 V to 4 V µV 0.003 IOH = – 20 µA mA 850 1000 25°C |VIO | ≤ 5 mV IOL = 4 200 UNIT MAX µV/°C 25°C VIC = 2 2.5 5V V, TYP 0.5 125°C RS = 50 Ω Ω, MIN 0.5 125°C VIC = 2 2.5 5V V, AVD MAX 1750 25°C to 125°C IOH = – 150 µA VIC = 2.5 V, VOL TYP Full range VDD ± = ± 2.5 V, VO = 0, TLC2254AQ TLC2254AM V 1 1.2 100 350 10 V/mV 25°C 1700 1700 ri(d) Differential input resistance 25°C 1012 1012 Ω ri(c) Common-mode input resistance 25°C 1012 1012 Ω ci(c) Common-mode input capacitance f = 10 kHz, N package 25°C 8 8 pF zo Closed-loop output impedance f = 25 kHz, AV = 10 25°C 200 200 Ω CMRR Common-mode rejection ratio VIC = 0 to 2.7 V, VO = 2.5 V, RS = 50 Ω kSVR IDD Supply-voltage rejection ratio (∆VDD /∆VIO) Supply y current (four amplifiers) VDD = 4.4 V to 16 V, VIC = VDD /2, No load VO = 2 2.5 5V V, No load 25°C 70 Full range 70 25°C 80 Full range 80 83 70 83 dB 70 95 80 95 dB 25°C Full range 80 140 250 300 140 250 300 µA † Full range is – 40°C to 125°C for Q suffix, – 55°C to 125°C for M suffix. ‡ Referenced to 2.5 V NOTE 4: Typical values are based on the input offset voltage shift observed through 500 hours of operating life test at TA = 150°C extrapolated to TA = 25°C using the Arrhenius equation and assuming an activation energy of 0.96 eV. 26 POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 TLC225x, TLC225xA Advanced LinCMOS RAIL-TO-RAIL VERY LOW-POWER OPERATIONAL AMPLIFIERS SLOS176D – FEBRUARY 1997 – REVISED MARCH 2001 operating characteristics at specified free-air temperature, VDD = 5 V PARAMETER TEST CONDITIONS TA† TLC2254Q TLC2254M MIN TYP 0.12 VO = 0.5 V to 3.5 V,, RL = 100 kΩ‡, CL = 100 pF‡ 25°C 0.07 Full range 0.05 TLC2254AQ TLC2254AM MAX MIN TYP 0.07 0.12 UNIT MAX SR Slew rate at unity gain Vn Equivalent q input noise voltage f = 10 Hz 25°C 36 36 f = 1 kHz 25°C 19 19 Peak-to-peak equivalent input noise voltage f = 0.1 Hz to 1 Hz 25°C 0.7 0.7 VN(PP) f = 0.1 Hz to 10 Hz 25°C 1.1 1.1 In Equivalent input noise current 25°C 0.6 0.6 Total harmonic distortion plus noise VO = 0.5 V to 2.5 V, f = 20 kHz kHz, RL = 50 kΩ‡ AV = 1 0.2% 0.2% THD + N 1% 1% Gain-bandwidth product f = 50 kHz, CL = 100 pF‡ RL = 50 kΩ‡, 25°C 0.2 0.2 MHz BOM Maximum outputswing bandwidth VO(PP) = 2 V, RL = 50 kΩ‡, AV = 1, CL = 100 pF‡ 25°C 30 30 kHz φm Phase margin at unity gain RL = 50 kΩ‡, CL = 100 pF‡ 25°C 63° 63° Gain margin 25°C † Full range is – 40°C to 125°C for Q suffix, – 55°C to 125°C for M suffix. ‡ Referenced to 2.5 V 15 15 nV/√Hz µV fA /√Hz 25°C AV = 10 POST OFFICE BOX 655303 V/µs 0.05 • DALLAS, TEXAS 75265 dB 27 TLC225x, TLC225xA Advanced LinCMOS RAIL-TO-RAIL VERY LOW-POWER OPERATIONAL AMPLIFIERS SLOS176D – FEBRUARY 1997 – REVISED MARCH 2001 electrical characteristics at specified free-air temperature, VDD ± = ±5 V (unless otherwise noted) PARAMETER TA† TEST CONDITIONS TLC2254Q TLC2254M MIN VIO Input offset voltage αVIO Temperature coefficient of input offset voltage Input offset voltage long-term drift (see Note 4) IIO Input offset current IIB Input bias current VICR Common-mode input voltage range 25°C VO = 0, AVD M i ti peak k Maximum negative out ut voltage output L i l diff ti l Large-signal differential voltage am lification amplification 200 1500 VIC = 0 0, IO = 4 VO = ± 4 V mA RL = 100 kΩ 1000 µV 0.003 µV/mo 25°C 0.5 1 Full range –5 to 3.5 60 – 5.3 to 4.2 25°C 4.9 4.7 25°C 4.8 25°C 1 – 4.85 Full range – 4.85 –4 –5 to 4 40 Full range 10 – 5.3 to 4.2 pA pA V –5 to 3.5 4.98 4.93 4.9 4.93 V 4.7 4.86 4.8 4.86 – 4.99 – 4.91 – 4.85 – 4.91 V – 4.85 – 4.3 –4 – 3.8 25°C 60 1000 – 4.99 25°C 60 1000 4.98 Full range 25°C 0.5 1000 –5 to 4 Full range 60 1000 25°C RL = 1 MΩ 850 0.003 25°C IO = 500 µA 200 25°C |VIO | ≤ 5 mV VIC = 0 0, MAX µV/°C 25°C IO = – 100 µA UNIT TYP 0.5 125°C RS = 50 Ω Ω, MIN 0.5 125°C IO = – 200 µA VIC = 0, IO = 50 µA VOM – MAX 1750 25°C to 125°C IO = – 20 µA Maximum positive peak VOM + output voltage TYP Full range VIC = 0, RS = 50 Ω TLC2254AQ TLC2254AM – 4.3 – 3.8 150 40 150 V/mV 10 25°C 3000 3000 ri(d) Differential input resistance 25°C 1012 1012 Ω ri(c) Common-mode input resistance 25°C 1012 1012 Ω ci(c) Common-mode input capacitance f = 10 kHz, N package 25°C 8 8 pF zo Closed-loop output impedance f = 25 kHz, AV = 10 25°C 190 190 Ω CMRR Common-mode rejection j ratio VIC = – 5 V to 2.7 V,, VO = 0, RS = 50 Ω 25°C 75 Full range 75 kSVR Supply-voltage y g rejection j ratio (∆VDD ± /∆VIO) VDD± = ± 2.2 V to ± 8 V,, VIC = VDD /2, No load 25°C 80 Full range 80 IDD Supplyy current (four amplifiers) VO = 0 0, No load 25°C Full range 88 75 88 dB 75 95 80 95 dB 80 160 250 300 160 250 300 µA † Full range is – 40°C to 125°C for Q suffix, – 55°C to 125°C for M suffix. NOTE 4: Typical values are based on the input offset voltage shift observed through 500 hours of operating life test at TA = 150°C extrapolated to TA = 25°C using the Arrhenius equation and assuming an activation energy of 0.96 eV. 28 POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 TLC225x, TLC225xA Advanced LinCMOS RAIL-TO-RAIL VERY LOW-POWER OPERATIONAL AMPLIFIERS SLOS176D – FEBRUARY 1997 – REVISED MARCH 2001 operating characteristics at specified free-air temperature, VDD± = ±5 V PARAMETER TEST CONDITIONS VO = ± 2 V V, CL = 100 pF RL = 100 kΩ kΩ, TA† TLC2254Q TLC2254M MIN TYP 25°C 0.07 0.12 Full range 0.05 TLC2254AQ TLC2254AM MAX MIN TYP 0.07 0.12 UNIT MAX SR Slew rate at unity gain Vn Equivalent q input noise voltage f = 10 Hz 25°C 38 38 f = 1 kHz 25°C 19 19 Peak-to-peak equivalent input noise voltage f = 0.1 Hz to 1 Hz 25°C 0.8 0.8 VN(PP) f = 0.1 Hz to 10 Hz 25°C 1.1 1.1 In Equivalent input noise current 25°C 0.6 0.6 Total harmonic distortion plus noise VO = ± 2.3 V, RL = 50 kΩ, kΩ f = 20 kHz AV = 1 0.2% 0.2% THD + N 1% 1% Gain-bandwidth product f =10 kHz, CL = 100 pF RL = 50 kΩ, 25°C 0.21 0.21 MHz BOM Maximum output-swing bandwidth VO(PP) = 4.6 V, RL = 50 kΩ, AV = 1, CL = 100 pF 25°C 14 14 kHz φm Phase margin at unity gain RL = 50 kΩ, CL = 100 pF 25°C 63° 63° Gain margin 25°C † Full range is – 40°C to 125°C for Q suffix, – 55°C to 125°C for M suffix. 15 15 nV/√Hz µV fA /√Hz 25°C AV = 10 POST OFFICE BOX 655303 V/µs 0.05 • DALLAS, TEXAS 75265 dB 29 TLC225x, TLC225xA Advanced LinCMOS RAIL-TO-RAIL VERY LOW-POWER OPERATIONAL AMPLIFIERS SLOS176D – FEBRUARY 1997 – REVISED MARCH 2001 TYPICAL CHARACTERISTICS Table of Graphs FIGURE VIO Input offset voltage Distribution vs Common-mode input voltage 2–5 6, 7 αVIO IIB/IIO Input offset voltage temperature coefficient Distribution 8 – 11 Input bias and input offset currents vs Free-air temperature 12 VI Input voltage range vs Supplyy voltage g vs Free-air temperature 13 14 VOH VOL High-level output voltage vs High-level output current 15 Low-level output voltage vs Low-level output current 16, 17 VOM + VOM – Maximum positive peak output voltage vs Output current 18 Maximum negative peak output voltage vs Output current 19 VO(PP) Maximum peak-to-peak output voltage vs Frequency 20 IOS Short circuit output current Short-circuit vs Supply y voltage g vs Free-air temperature 21 22 VO Output voltage vs Differential input voltage Differential gain vs Load resistance AVD Large signal differential voltage amplification Large-signal vs Frequency q y vs Free-air temperature 26,, 27 28, 29 zo Output impedance vs Frequency 30, 31 CMRR Common mode rejection ratio Common-mode vs Frequency q y vs Free-air temperature 32 33 kSVR Supply voltage rejection ratio Supply-voltage vs Frequency q y vs Free-air temperature 34,, 35 36 IDD Supply current vs Supplyy voltage g vs Free-air temperature 37 38 SR Slew rate vs Load capacitance vs Free-air temperature 39 40 VO VO Inverting large-signal pulse response 41, 42 Voltage-follower large-signal pulse response 43, 44 VO VO Inverting small-signal pulse response 45, 46 Voltage-follower small-signal pulse response 47, 48 Vn Equivalent input noise voltage vs Frequency Noise voltage (referred to input) Over a 10-second period 51 Integrated noise voltage vs Frequency 52 Total harmonic distortion plus noise vs Frequency 53 Gain bandwidth product Gain-bandwidth vs Free-air temperature vs Supply voltage 54 55 φm Phase margin vs Frequency q y vs Load capacitance 26,, 27 56 Am Gain margin vs Load capacitance 57 B1 Unity-gain bandwidth vs Load capacitance 58 Overestimation of phase margin vs Load capacitance 59 THD + N 30 POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 23, 24 25 49, 50 TLC225x, TLC225xA Advanced LinCMOS RAIL-TO-RAIL VERY LOW-POWER OPERATIONAL AMPLIFIERS SLOS176D – FEBRUARY 1997 – REVISED MARCH 2001 TYPICAL CHARACTERISTICS DISTRIBUTION OF TLC2252 INPUT OFFSET VOLTAGE DISTRIBUTION OF TLC2252 INPUT OFFSET VOLTAGE 35 30 Percentage of Amplifiers – % Percentage of Amplifiers – % 30 35 682 Amplifiers From 1 Wafer Lots VDD± = ± 2.5 V P Package TA = 25°C 25 20 15 10 5 682 Amplifiers From 1 Wafer Lots VDD± = ± 5 V P Package TA = 25°C 25 20 15 10 5 0 – 1.6 – 0.8 0 0.8 0 – 1.6 1.6 – 0.8 VIO – Input Offset Voltage – mV Figure 2 0.8 1.6 Figure 3 DISTRIBUTION OF TLC2254 INPUT OFFSET VOLTAGE DISTRIBUTION OF TLC2254 INPUT OFFSET VOLTAGE 20 25 Percentage of Amplifiers – % 1020 Amplifiers From 1 Wafer Lot VDD = ± 2.5 V TA = 25°C Percentage of Amplifiers – % 0 VIO – Input Offset Voltage – mV 15 10 5 20 1020 Amplifiers From 1 Wafer Lot VDD ± = ± 5 V TA = 25°C 15 10 5 0 – 1.6 – 0.8 0 0.8 VIO – Input Offset Voltage – mV 1.6 0 – 1.6 Figure 4 0 0.8 – 0.8 VIO – Input Offset Voltage – mV 1.6 Figure 5 POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 31 TLC225x, TLC225xA Advanced LinCMOS RAIL-TO-RAIL VERY LOW-POWER OPERATIONAL AMPLIFIERS SLOS176D – FEBRUARY 1997 – REVISED MARCH 2001 TYPICAL CHARACTERISTICS INPUT OFFSET VOLTAGE† vs COMMON-MODE INPUT VOLTAGE INPUT OFFSET VOLTAGE vs COMMON-MODE INPUT VOLTAGE 1 VDD± = ± 5 V RS = 50 Ω TA = 25°C 0.8 0.6 VVIO IO – Input Offset Voltage – mV VVIO IO – Input Offset Voltage – mV 1 VDD = 5 V RS = 50 Ω TA = 25°C 0.8 0.4 0.2 0 – 0.2 ÁÁÁ ÁÁÁ 0.6 0.4 0.2 0 – 0.2 ÁÁ ÁÁ ÁÁ – 0.4 – 0.6 – 0.8 – 0.4 – 0.6 – 0.8 –1 –1 0 1 2 3 4 5 VIC – Common-Mode Input Voltage – V –1 –6 –5 –4 –3 –2 –1 0 1 2 3 4 VIC – Common-Mode Input Voltage – V Figure 6 Figure 7 DISTRIBUTION OF TLC2252 INPUT OFFSET VOLTAGE TEMPERATURE COEFFICIENT DISTRIBUTION OF TLC2252 INPUT OFFSET VOLTAGE TEMPERATURE COEFFICIENT 25 62 Amplifiers From 1 Wafer Lot VDD = ± 2.5 V 62 Amplifiers From 1 Wafer Lot VDD = ± 5 V P Package TA = 25°C to 125°C P Package TA = 25°C to 125°C Percentage of Amplifiers – % Precentage of Amplifiers – % 25 20 15 10 20 15 10 5 5 0 0 –1 0 1 αVIO – Temperature Coefficient – µV / °C 2 –1 0 1 αVIO – Temperature Coefficient – µV / °C Figure 9 Figure 8 † For curves where VDD = 5 V, all loads are referenced to 2.5 V. 32 5 POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 2 TLC225x, TLC225xA Advanced LinCMOS RAIL-TO-RAIL VERY LOW-POWER OPERATIONAL AMPLIFIERS SLOS176D – FEBRUARY 1997 – REVISED MARCH 2001 TYPICAL CHARACTERISTICS DISTRIBUTION OF TLC2254 INPUT OFFSET VOLTAGE TEMPERATURE COEFFICIENT 20 25 62 Amplifiers From 1 Wafer Lot VDD ± = ± 2.5 V P Package TA = 25°C to 125°C Percentage of Amplifiers – % Percentage of Amplifiers – % 25 15 10 5 0 –2 DISTRIBUTION OF TLC2254 INPUT OFFSET VOLTAGE TEMPERATURE COEFFICIENT –1 0 1 αVIO – Temperature Coefficient of Input Offset Voltage – µV / °C 62 Amplifiers From 1 Wafer Lot VDD ± = ± 5 V P Package TA = 25°C to 125°C 20 15 10 5 0 –2 2 –1 ÁÁ ÁÁ 1 2 Figure 11 INPUT VOLTAGE RANGE vs SUPPLY VOLTAGE INPUT BIAS AND INPUT OFFSET CURRENTS† vs FREE-AIR TEMPERATURE 10 35 VDD± = ± 2.5 V VIC = 0 VO = 0 RS = 50 Ω RS = 50 Ω TA = 25°C 8 25 IIB 20 15 IIO 10 5 V VII – Input Voltage Range – V IIO – Input Bias and Input Offset Currents – pA IIIB IB and IIO Figure 10 30 0 αVIO – Temperature Coefficient of Input Offset Voltage – µV / °C 6 4 2 0 | VIO | ≤ 5 mV –2 –4 –6 –8 – 10 0 25 45 65 85 105 TA – Free-Air Temperature – °C 125 2 Figure 12 3 6 7 4 5 | VDD ± | – Supply Voltage – V 8 Figure 13 † Data at high and low temperatures are applicable only within the rated operating free-air temperature ranges of the various devices. POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 33 TLC225x, TLC225xA Advanced LinCMOS RAIL-TO-RAIL VERY LOW-POWER OPERATIONAL AMPLIFIERS SLOS176D – FEBRUARY 1997 – REVISED MARCH 2001 TYPICAL CHARACTERISTICS HIGH-LEVEL OUTPUT VOLTAGE†‡ vs HIGH-LEVEL OUTPUT CURRENT INPUT VOLTAGE RANGE† vs FREE-AIR TEMPERATURE 5 5 VDD = 5 V V VOH OH – High-Level Output Voltage – V VDD = 5 V V VII – Input Voltage Range – V 4 ÁÁ ÁÁ 3 2 1 0 –1 – 75 – 55 – 35 – 15 5 25 45 65 85 105 125 TA – Free-Air Temperature – °C TA = – 55°C 4 TA = – 40°C 3 TA = 25°C 2 ÁÁ ÁÁ ÁÁ TA = 125°C 1 0 0 200 400 600 | IOH| – High-Level Output Current – µA Figure 14 Figure 15 LOW-LEVEL OUTPUT VOLTAGE†‡ vs LOW-LEVEL OUTPUT CURRENT LOW-LEVEL OUTPUT VOLTAGE‡ vs LOW-LEVEL OUTPUT CURRENT 1.4 1.2 VDD = 5 V TA = 25°C 1 V VOL OL – Low-Level Output Voltage – V VOL VOL – Low-Level Output Voltage – V 800 VIC = 1.25 V VIC = 0 0.8 0.6 VIC = 2.5 V ÁÁÁ ÁÁÁ ÁÁÁ 1.2 TA = 125°C 1 0.8 TA = 25°C 0.6 ÁÁ ÁÁ ÁÁ 0.4 0.2 0 0 1 2 3 4 5 IOL – Low-Level Output Current – mA VDD = 5 V VIC = 2.5 V TA = – 40°C TA = – 55°C 0.4 0.2 0 0 1 2 3 4 5 IOL – Low-Level Output Current – mA Figure 16 Figure 17 † Data at high and low temperatures are applicable only within the rated operating free-air temperature ranges of the various devices. ‡ For curves where VDD = 5 V, all loads are referenced to 2.5 V. 34 POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 6 TLC225x, TLC225xA Advanced LinCMOS RAIL-TO-RAIL VERY LOW-POWER OPERATIONAL AMPLIFIERS SLOS176D – FEBRUARY 1997 – REVISED MARCH 2001 TYPICAL CHARACTERISTICS MAXIMUM NEGATIVE PEAK OUTPUT VOLTAGE† vs OUTPUT CURRENT 5 4 3 TA = 25°C 2 TA = 125°C ÁÁ ÁÁ ÁÁ TA = – 40°C TA = – 55°C 1 VDD = ± 5 V 0 0 600 200 400 IO – Output Current – µA 800 VOM – VOM – – Maximum Negative Peak Output Voltage – V VVOM OM ++ – Maximum Positive Peak Output Voltage – V MAXIMUM POSITIVE PEAK OUTPUT VOLTAGE† vs OUTPUT CURRENT – 3.8 VDD± = ± 5 V VIC = 0 –4 TA = 125°C – 4.2 TA = 25°C TA = – 40°C – 4.4 – 4.6 TA = – 55°C ÁÁ ÁÁ ÁÁ – 4.8 –5 0 1 2 3 4 IO – Output Current – mA Figure 18 ÁÁ ÁÁ ÁÁ RL = 50 kΩ TA = 25°C VDD± = ± 5 V 8 7 6 VDD = 5 V 4 3 2 1 0 10 2 10 3 10 4 10 5 10 I OS – Short-Circuit Output Current – mA IOS VO(PP) VO(PP) – Maximum Peak-to-Peak Output Voltage – V SHORT-CIRCUIT OUTPUT CURRENT vs SUPPLY VOLTAGE 10 5 6 Figure 19 MAXIMUM PEAK-TO-PEAK OUTPUT VOLTAGE‡ vs FREQUENCY 9 5 9 8 VID = – 100 mV 7 VO = 0 TA = 25°C VIC = 0 6 5 4 3 2 1 0 –1 VID = 100 mV 2 f – Frequency – Hz 3 4 5 6 7 8 | VDD ± | – Supply Voltage – V Figure 20 Figure 21 † Data at high and low temperatures are applicable only within the rated operating free-air temperature ranges of the various devices. ‡ For curves where VDD = 5 V, all loads are referenced to 2.5 V. POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 35 TLC225x, TLC225xA Advanced LinCMOS RAIL-TO-RAIL VERY LOW-POWER OPERATIONAL AMPLIFIERS SLOS176D – FEBRUARY 1997 – REVISED MARCH 2001 TYPICAL CHARACTERISTICS SHORT-CIRCUIT OUTPUT CURRENT† vs FREE-AIR TEMPERATURE OUTPUT VOLTAGE‡ vs DIFFERENTIAL INPUT VOLTAGE 5 VDD = 5 V RL = 50 kΩ VIC = 2.5 V TA = 25°C VO = 0 VDD± = ± 5 V 10 9 8 4 VID = – 100 mV VO – Output Voltage – V IIOS OS – Short-Circuit Output Current – mA 11 7 6 5 4 3 3 2 2 1 1 VID = 100 mV 0 –1 – 75 – 50 – 25 0 25 50 75 100 0 0 250 500 750 1000 – 1000 – 750 – 500 – 250 VID – Differential Input Voltage – µV 125 TA – Free-Air Temperature – °C Figure 23 Figure 22 DIFFERENTIAL GAIN‡ vs LOAD RESISTANCE OUTPUT VOLTAGE vs DIFFERENTIAL INPUT VOLTAGE VO – Output Voltage – V 3 104 VDD± = ± 5 V VIC = 0 RL = 50 kΩ TA = 25°C VO (PP) = 2 V TA = 25°C Differential Gain – V/ mV 5 1 –1 103 VDD = ± 5 V VDD = 5 V 102 –3 –5 0 250 500 750 1000 – 1000 – 750 – 500 – 250 VID – Differential Input Voltage – µV 10 1 101 102 RL – Load Resistance – kΩ Figure 25 Figure 24 † Data at high and low temperatures are applicable only within the rated operating free-air temperature ranges of the various devices. ‡ For curves where VDD = 5 V, all loads are referenced to 2.5 V. 36 POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 103 TLC225x, TLC225xA Advanced LinCMOS RAIL-TO-RAIL VERY LOW-POWER OPERATIONAL AMPLIFIERS SLOS176D – FEBRUARY 1997 – REVISED MARCH 2001 TYPICAL CHARACTERISTICS LARGE-SIGNAL DIFFERENTIAL VOLTAGE AMPLIFICATION AND PHASE MARGIN† vs FREQUENCY ÁÁ ÁÁ ÁÁ 60 180° VDD = 5 V RL = 50 kΩ CL= 100 pF TA = 25°C 135° 40 90° Phase Margin 20 45° Gain 0 0° – 20 φom m – Phase Margin AVD AVD – Large-Signal Differential Voltage Amplification – dB 80 – 45° – 40 10 3 10 4 10 5 10 6 – 90° 10 7 f – Frequency – Hz Figure 26 LARGE-SIGNAL DIFFERENTIAL VOLTAGE AMPLIFICATION AND PHASE MARGIN vs FREQUENCY ÁÁ ÁÁ ÁÁ 60 180° VDD = ± 10 V RL= 50 kΩ CL= 100 pF TA = 25°C 135° 40 Phase Margin 20 45° Gain 0 0° – 20 – 40 10 3 90° φom m – Phase Margin AVD AVD – Large-Signal Differential Voltage Amplification – dB 80 – 45° 10 4 10 5 10 6 – 90° 10 7 f – Frequency – Hz Figure 27 † For curves where VDD = 5 V, all loads are referenced to 2.5 V. POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 37 TLC225x, TLC225xA Advanced LinCMOS RAIL-TO-RAIL VERY LOW-POWER OPERATIONAL AMPLIFIERS SLOS176D – FEBRUARY 1997 – REVISED MARCH 2001 TYPICAL CHARACTERISTICS LARGE-SIGNAL DIFFERENTIAL VOLTAGE AMPLIFICATION†‡ vs FREE-AIR TEMPERATURE Á Á 10 4 VDD = 5 V VIC = 2.5 V VO = 1 V to 4 V AVD AVD – Large-Signal Differential Voltage Amplification – V/mV AVD AVD – Large-Signal Differential Voltage Amplification – V/mV 10 4 LARGE-SIGNAL DIFFERENTIAL VOLTAGE AMPLIFICATION† vs FREE-AIR TEMPERATURE RL = 1 MΩ 10 3 RL = 50 kΩ 10 2 101 – 75 – 50 – 25 0 25 50 75 100 TA – Free-Air Temperature – °C VDD± = ± 5 V VIC = 0 VO = ± 4 V RL = 1 MΩ 10 3 RL = 50 kΩ 10 2 ÁÁ ÁÁ 101 – 75 125 – 50 – 25 0 25 50 75 100 TA – Free-Air Temperature – °C Figure 28 Figure 29 OUTPUT IMPEDANCE‡ vs FREQUENCY OUTPUT IMPEDANCE vs FREQUENCY 1000 1000 VDD± = ± 5 V TA = 25°C z o – Output Impedance – 0 zo Ω VDD = 5 V TA = 25°C z o – Output Impedance – 0 zo Ω 125 100 AV = 100 10 AV = 10 1 AV = 1 100 AV = 100 10 AV = 10 1 AV = 1 0.1 10 2 10 3 10 4 10 5 f – Frequency – Hz 10 6 0.1 10 2 10 3 10 4 10 5 f – Frequency – Hz Figure 31 Figure 30 † Data at high and low temperatures are applicable only within the rated operating free-air temperature ranges of the various devices. ‡ For curves where VDD = 5 V, all loads are referenced to 2.5 V. 38 POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 10 6 TLC225x, TLC225xA Advanced LinCMOS RAIL-TO-RAIL VERY LOW-POWER OPERATIONAL AMPLIFIERS SLOS176D – FEBRUARY 1997 – REVISED MARCH 2001 TYPICAL CHARACTERISTICS COMMON-MODE REJECTION RATIO†‡ vs FREE-AIR TEMPERATURE COMMON-MODE REJECTION RATIO† vs FREQUENCY 94 CMRR – Common-Mode Rejection Ratio – dB CMRR – Common-Mode Rejection Ratio – dB 100 VDD± = ± 5 V 80 VDD = 5 V 60 40 20 0 101 10 2 10 3 10 4 10 5 VDD± = ± 5 V 92 90 86 84 82 80 – 75 16 6 VDD = 5 V 88 – 50 f – Frequency – Hz – 25 0 25 50 75 100 TA – Free-Air Temperature – °C Figure 32 Figure 33 SUPPLY-VOLTAGE REJECTION RATIO† vs FREQUENCY SUPPLY-VOLTAGE REJECTION RATIO vs FREQUENCY 100 kSVR + VDD = 5 V TA = 25°C KSVR k SVR – Supply-Voltage Rejection Ratio – dB KSVR k SVR – Supply-Voltage Rejection Ratio – dB 100 80 60 kSVR – 40 20 ÁÁ ÁÁ ÁÁ 0 – 20 101 125 10 2 10 3 10 4 f – Frequency – Hz 10 5 10 6 VDD± = ± 5 V TA = 25°C kSVR + 80 60 kSVR – 40 20 ÁÁÁ ÁÁÁ ÁÁÁ 0 – 20 101 Figure 34 10 2 10 3 10 4 f – Frequency – Hz 10 5 10 6 Figure 35 † For curves where VDD = 5 V, all loads are referenced to 2.5 V. ‡ Data at high and low temperatures are applicable only within the rated operating free-air temperature ranges of the various devices. POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 39 TLC225x, TLC225xA Advanced LinCMOS RAIL-TO-RAIL VERY LOW-POWER OPERATIONAL AMPLIFIERS SLOS176D – FEBRUARY 1997 – REVISED MARCH 2001 TYPICAL CHARACTERISTICS SUPPLY-VOLTAGE REJECTION RATIO† vs FREE-AIR TEMPERATURE SUPPLY CURRENT† vs SUPPLY VOLTAGE 240 VDD± = ± 2.2 V to ± 8 V VO = 0 VO = 0 No Load 200 105 IDD µA I DD – Supply Current – uA k KSVR SVR – Supply-Voltage Rejection Ratio – dB 110 100 ÁÁ ÁÁ ÁÁ ÁÁ ÁÁ ÁÁ 95 90 – 75 – 50 – 25 0 25 50 75 100 TA = – 55°C 160 TA = 25°C 120 TA = 125°C TA = – 40°C 80 40 0 125 0 1 TA – Free-Air Temperature – °C 6 2 3 4 5 | VDD ± | – Supply Voltage – V Figure 36 SLEW RATE‡ vs LOAD CAPACITANCE 0.2 240 0.18 VDD± = ± 5 V VO = 0 160 VDD = 5 V VO = 2.5 V 120 VDD = 5 V AV = – 1 TA = 25°C 0.16 SR – Slew Rate – V/ v/us µs 200 µA IDD I DD – Supply Current – uA 8 Figure 37 SUPPLY CURRENT†‡ vs FREE-AIR TEMPERATURE ÁÁ ÁÁ 7 80 0.14 SR – 0.12 0.1 SR + 0.08 0.06 0.04 40 0.02 0 – 75 – 50 – 25 0 25 50 75 100 TA – Free-Air Temperature – °C 125 0 101 Figure 38 10 2 10 3 CL – Load Capacitance – pF Figure 39 † Data at high and low temperatures are applicable only within the rated operating free-air temperature ranges of the various devices. ‡ For curves where VDD = 5 V, all loads are referenced to 2.5 V. 40 POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 10 4 TLC225x, TLC225xA Advanced LinCMOS RAIL-TO-RAIL VERY LOW-POWER OPERATIONAL AMPLIFIERS SLOS176D – FEBRUARY 1997 – REVISED MARCH 2001 TYPICAL CHARACTERISTICS SLEW RATE†‡ vs FREE-AIR TEMPERATURE INVERTING LARGE-SIGNAL PULSE RESPONSE‡ 0.2 5 SR – Slew Rate – v/uss V/ µ 0.16 VO VO – Output Voltage – V VDD = 5 V RL = 50 kΩ CL = 100 pF AV = 1 SR – 0.12 SR + 0.08 VDD = 5 V RL = 50 kΩ CL = 100 pF 4 A = –1 V TA = 25°C 3 2 1 0.04 0 – 75 0 – 50 – 25 0 25 50 75 100 TA – Free-Air Temperature – °C 0 125 10 20 VO VO – Output Voltage – V 2 60 70 80 90 100 VOLTAGE-FOLLOWER LARGE-SIGNAL PULSE RESPONSE‡ 5 VO VO – Output Voltage – V VDD± = ± 5 V RL = 50 kΩ CL = 100 pF AV = – 1 TA = 25°C 3 50 Figure 41 INVERTING LARGE-SIGNAL PULSE RESPONSE 4 40 t – Time – µs Figure 40 5 30 1 0 –1 –2 VDD = 5 V RL = 50 kΩ CL = 100 pF 4 A =1 V TA = 25°C 3 2 1 –3 –4 0 –5 0 10 20 30 40 50 60 t – Time – µs 70 80 90 100 0 10 Figure 42 20 30 40 50 60 70 t – Time – µs 80 90 100 Figure 43 † Data at high and low temperatures are applicable only within the rated operating free-air temperature ranges of the various devices. ‡ For curves where VDD = 5 V, all loads are referenced to 2.5 V. POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 41 TLC225x, TLC225xA Advanced LinCMOS RAIL-TO-RAIL VERY LOW-POWER OPERATIONAL AMPLIFIERS SLOS176D – FEBRUARY 1997 – REVISED MARCH 2001 TYPICAL CHARACTERISTICS INVERTING SMALL-SIGNAL PULSE RESPONSE† VOLTAGE-FOLLOWER LARGE-SIGNAL PULSE RESPONSE 5 3 2 VDD = 5 V RL = 50 kΩ CL = 100 pF AV = – 1 TA = 25°C 2.6 VO VO – Output Voltage – V 4 VO VO – Output Voltage – V 2.65 VDD± = ± 5 V RL = 50 kΩ CL = 100 pF AV = 1 TA = 25°C 1 0 –1 –2 –3 2.55 2.5 2.45 –4 –5 2.4 0 10 20 30 40 50 60 t – Time – µs 70 80 0 90 100 10 INVERTING SMALL-SIGNAL PULSE RESPONSE 0 – 0.05 2.65 VDD = 5 V RL = 50 kΩ CL = 100 pF AV = 1 TA = 25°C 2.6 VO VO – Output Voltage – V VO VO – Output Voltage – mV 50 VOLTAGE-FOLLOWER SMALL-SIGNAL PULSE RESPONSE† VDD± = ± 5 V RL = 50 kΩ CL = 100 pF AV = – 1 TA = 25°C 0.05 40 Figure 45 Figure 44 0.1 20 30 t – Time – µs 2.55 2.5 2.45 – 0.1 0 2.4 10 20 30 40 50 0 t – Time – µs Figure 46 20 30 t – Time – µs Figure 47 † For curves where VDD = 5 V, all loads are referenced to 2.5 V. 42 10 POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 40 50 TLC225x, TLC225xA Advanced LinCMOS RAIL-TO-RAIL VERY LOW-POWER OPERATIONAL AMPLIFIERS SLOS176D – FEBRUARY 1997 – REVISED MARCH 2001 TYPICAL CHARACTERISTICS EQUIVALENT INPUT NOISE VOLTAGE† vs FREQUENCY VOLTAGE-FOLLOWER SMALL-SIGNAL PULSE RESPONSE 60 VDD ± = ± 5 V RL = 50 kΩ CL = 100 pF AV = 1 TA = 25°C 0.05 V n – Equivalent Input Noise Voltage – nV/ VN nv//HzHz VO VO – Output Voltage – V 0.1 0 – 0.05 – 0.1 0 10 20 30 t – Time – µs 40 50 VDD = 5 V RS = 20 Ω TA = 25°C 50 40 30 20 10 0 101 10 2 10 3 f – Frequency – Hz Figure 49 Figure 48 EQUIVALENT INPUT NOISE VOLTAGE vs FREQUENCY EQUIVALENT INPUT NOISE VOLTAGE OVER A 10-SECOND PERIOD† 1000 VDD± = ± 5 V RS = 20 Ω TA = 25°C VDD = 5 V f = 0.1 Hz to 10 Hz TA = 25°C 750 500 Noise Voltage – nV V n – Equivalent Input Noise Voltage – nv//Hz VN nV/ Hz 60 50 10 4 40 30 20 250 0 – 250 – 500 10 – 750 0 101 10 2 10 3 f – Frequency – Hz 10 4 – 1000 0 Figure 50 2 4 6 t – Time – s 8 10 Figure 51 † For curves where VDD = 5 V, all loads are referenced to 2.5 V. POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 43 TLC225x, TLC225xA Advanced LinCMOS RAIL-TO-RAIL VERY LOW-POWER OPERATIONAL AMPLIFIERS SLOS176D – FEBRUARY 1997 – REVISED MARCH 2001 TYPICAL CHARACTERISTICS TOTAL HARMONIC DISTORTION PLUS NOISE† vs FREQUENCY THD + N – Total Harmonic Distortion Plus Noise – % INTEGRATED NOISE VOLTAGE vs FREQUENCY Integrated Noise Voltage – µ V 100 Calculated Using Ideal Pass-Band Filter Low Frequency = 1 Hz TA = 25°C 10 1 0.1 1 101 10 2 10 3 f – Frequency – Hz 10 4 10 5 1 AV = 100 0.1 AV = 10 0.01 AV = 1 VDD = 5 V RL = 50 kΩ TA = 25°C 0.001 101 10 2 10 5 Figure 53 GAIN-BANDWIDTH PRODUCT †‡ vs FREE-AIR TEMPERATURE GAIN-BANDWIDTH PRODUCT vs SUPPLY VOLTAGE 280 250 TA = 25°C VDD = 5 V f = 10 kHz RL = 50 kΩ CL = 100 pF 240 Gain-Bandwidth Product – kHz Gain-Bandwidth Product – kHz 10 4 f – Frequency – Hz Figure 52 200 160 120 80 – 75 10 3 230 210 190 170 150 – 50 – 25 0 25 50 75 100 125 0 1 TA – Free-Air Temperature – °C 2 3 4 5 6 7 | VDD ± | – Supply Voltage – V Figure 54 Figure 55 † For curves where VDD = 5 V, all loads are referenced to 2.5 V. ‡ Data at high and low temperatures are applicable only within the rated operating free-air temperature ranges of the various devices. 44 POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 8 TLC225x, TLC225xA Advanced LinCMOS RAIL-TO-RAIL VERY LOW-POWER OPERATIONAL AMPLIFIERS SLOS176D – FEBRUARY 1997 – REVISED MARCH 2001 TYPICAL CHARACTERISTICS PHASE MARGIN vs LOAD CAPACITANCE 75° GAIN MARGIN vs LOAD CAPACITANCE 20 Rnull = 200 Ω TA = 25°C Rnull = 500 Ω Rnull = 500 Ω 60° Gain Margin – dB φom m – Phase Margin 15 45° Rnull = 100 Ω Rnull = 50 Ω 30° Rnull = 10 Ω 50 kΩ VI Rnull = 50 Ω 5 VDD + Rnull – + Rnull = 0 Rnull = 0 CL TA = 25°C VDD – 0° 101 Rnull = 100 Ω 10 Rnull = 10 Ω 50 kΩ 15° Rnull = 200 Ω 10 4 10 2 10 3 CL – Load Capacitance – pF 0 101 10 5 10 2 10 3 Figure 57 OVERESTIMATION OF PHASE MARGIN† vs LOAD CAPACITANCE UNITY-GAIN BANDWIDTH† vs LOAD CAPACITANCE 25 200 TA = 25°C TA = 25°C Rnull = 500 Ω Overestimation of Phase Margin 175 B1 – Unity-Gain Bandwidth – kHz 10 5 CL – Load Capacitance – pF Figure 56 ÁÁ ÁÁ 10 4 150 125 100 75 50 20 15 Rnull = 100 Ω 10 Rnull = 200 Ω Rnull = 50 Ω Rnull = 10 Ω 5 25 0 101 10 2 10 3 10 4 10 5 0 101 CL – Load Capacitance – pF Figure 58 10 2 10 3 10 4 CL – Load Capacitance – pF 10 5 Figure 59 † See application information POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 45 TLC225x, TLC225xA Advanced LinCMOS RAIL-TO-RAIL VERY LOW-POWER OPERATIONAL AMPLIFIERS SLOS176D – FEBRUARY 1997 – REVISED MARCH 2001 APPLICATION INFORMATION driving large capacitive loads The TLC225x is designed to drive larger capacitive loads than most CMOS operational amplifiers. Figure 56 and Figure 57 illustrate its ability to drive loads up to 1000 pF while maintaining good gain and phase margins (Rnull = 0). A smaller series resistor (Rnull) at the output of the device (see Figure 60) improves the gain and phase margins when driving large capacitive loads. Figure 56 and Figure 57 show the effects of adding series resistances of 10 Ω, 50 Ω, 100 Ω, 200 Ω, and 500 Ω. The addition of this series resistor has two effects: the first is that it adds a zero to the transfer function and the second is that it reduces the frequency of the pole associated with the output load in the transfer function. The zero introduced to the transfer function is equal to the series resistance times the load capacitance. To calculate the improvement in phase margin, equation 1 can be used. ∆φ m1 + tan–1 ǒ 2 × π × UGBW × R × C null Ǔ (1) L Where : + Improvement in phase margin UGBW + Unity-gain bandwidth frequency R null + Output series resistance C L + Load capacitance ∆φ m1 The unity-gain bandwidth (UGBW) frequency decreases as the capacitive load increases (see Figure 58). To use equation 1, UGBW must be approximated from Figure 58. Using equation 1 alone overestimates the improvement in phase margin, as illustrated in Figure 59. The overestimation is caused by the decrease in the frequency of the pole associated with the load, thus providing additional phase shift and reducing the overall improvement in phase margin. Using Figure 60, with equation 1 enables the designer to choose the appropriate output series resistance to optimize the design of circuits driving large capacitance loads. 50 kΩ VDD + 50 kΩ VI Rnull – + CL VDD – / GND Figure 60. Series-Resistance Circuit 46 POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 TLC225x, TLC225xA Advanced LinCMOS RAIL-TO-RAIL VERY LOW-POWER OPERATIONAL AMPLIFIERS SLOS176D – FEBRUARY 1997 – REVISED MARCH 2001 APPLICATION INFORMATION macromodel information Macromodel information provided was derived using MicroSim Parts, the model generation software used with MicroSim PSpice . The Boyle macromodel (see Note 5) and subcircuit in Figure 61 are generated using the TLC225x typical electrical and operating characteristics at TA = 25°C. Using this information, output simulations of the following key parameters can be generated to a tolerance of 20% (in most cases): D D D D D D D D D D D D Maximum positive output voltage swing Maximum negative output voltage swing Slew rate Quiescent power dissipation Input bias current Open-loop voltage amplification Unity-gain frequency Common-mode rejection ratio Phase margin DC output resistance AC output resistance Short-circuit output current limit NOTE 5: G. R. Boyle, B. M. Cohn, D. O. Pederson, and J. E. Solomon, “Macromodeling of Integrated Circuit Operational Amplifiers”, IEEE Journal of Solid-State Circuits, SC-9, 353 (1974). 99 3 VCC + 9 RSS 92 FB 10 J1 DP VC J2 IN + 11 RD1 VAD DC 12 C1 R2 – 53 HLIM – + C2 6 – – – + VLN + GCM GA VLIM 8 – RD2 54 4 91 + VLP 7 60 + – + DLP 90 RO2 VB IN – VCC – – + ISS RP 2 1 DLN EGND + – RO1 DE 5 + VE OUT .SUBCKT TLC225x 1 2 3 4 5 C1 11 12 6.369E–12 C2 6 7 25.00E–12 DC 5 53 DX DE 54 5 DX DLP 90 91 DX DLN 92 90 DX DP 4 3 DX EGND 99 0 POLY (2) (3,0) (4,0) 0 .5 .5 FB 7 99 POLY (5) VB VC VE VLP + VLN 0 57.62E6 –60E6 60E6 60E6 –60E6 GA 6 0 11 12 26.86E–6 GCM 0 6 10 99 2.686E–9 ISS 3 10 DC 3.1E–6 HLIM 90 0 VLIM 1K J1 11 2 10 JX J2 12 1 10 JX R2 6 9 100.0E3 RD1 60 11 37.23E3 RD2 60 12 37.23E3 R01 8 5 84 R02 7 99 84 RP 3 4 71.43E3 RSS 10 99 64.52E6 VAD 60 4 –.5 VB 9 0 DC 0 VC 3 53 DC .605 VE 54 4 DC .605 VLIM 7 8 DC 0 VLP 91 0 DC –.235 VLN 0 92 DC 7.5 .MODEL DX D (IS=800.0E–18) .MODEL JX PJF (IS=500.0E–15 BETA=139E–6 + VTO=–.05) .ENDS Figure 61. Boyle Macromodel and Subcircuit PSpice and Parts are trademarks of MicroSim Corporation. POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 47 PACKAGE OPTION ADDENDUM www.ti.com 17-Mar-2017 PACKAGING INFORMATION Orderable Device Status (1) Package Type Package Pins Package Drawing Qty Eco Plan Lead/Ball Finish MSL Peak Temp (2) (6) (3) Op Temp (°C) Device Marking (4/5) 5962-9564001Q2A ACTIVE LCCC FK 20 1 TBD POST-PLATE N / A for Pkg Type -55 to 125 59629564001Q2A TLC2252 MFKB 5962-9564001QHA ACTIVE CFP U 10 1 TBD A42 N / A for Pkg Type -55 to 125 9564001QHA TLC2252M 5962-9564001QPA ACTIVE CDIP JG 8 1 TBD A42 N / A for Pkg Type -55 to 125 9564001QPA TLC2252M 5962-9564002Q2A ACTIVE LCCC FK 20 1 TBD POST-PLATE N / A for Pkg Type -55 to 125 59629564002Q2A TLC2254 MFKB 5962-9564002QDA ACTIVE CFP W 14 1 TBD A42 N / A for Pkg Type -55 to 125 5962-9564002QD A TLC2254MWB 5962-9564003NXD ACTIVE SOIC D 8 2500 Green (RoHS & no Sb/Br) CU NIPDAU Level-1-260C-UNLIM -55 to 125 Q2252A 5962-9564003NXDR ACTIVE SOIC D 8 2500 Green (RoHS & no Sb/Br) CU NIPDAU Level-1-260C-UNLIM -55 to 125 Q2252A 5962-9564003Q2A ACTIVE LCCC FK 20 1 TBD POST-PLATE N / A for Pkg Type -55 to 125 59629564003Q2A TLC2252 AMFKB 5962-9564003QHA ACTIVE CFP U 10 1 TBD A42 N / A for Pkg Type -55 to 125 9564003QHA TLC2252AM 5962-9564003QPA ACTIVE CDIP JG 8 1 TBD A42 N / A for Pkg Type -55 to 125 9564003QPA TLC2252AM 5962-9564004Q2A ACTIVE LCCC FK 20 1 TBD POST-PLATE N / A for Pkg Type -55 to 125 59629564004Q2A TLC2254 AMFKB 5962-9564004QDA ACTIVE CFP W 14 1 TBD A42 N / A for Pkg Type -55 to 125 5962-9564004QD A TLC2254AMWB TLC2252AID ACTIVE SOIC D 8 75 Green (RoHS & no Sb/Br) CU NIPDAU Level-1-260C-UNLIM Addendum-Page 1 2252AI Samples PACKAGE OPTION ADDENDUM www.ti.com 17-Mar-2017 Orderable Device Status (1) Package Type Package Pins Package Drawing Qty Eco Plan Lead/Ball Finish MSL Peak Temp (2) (6) (3) Op Temp (°C) Device Marking (4/5) TLC2252AIDG4 ACTIVE SOIC D 8 75 Green (RoHS & no Sb/Br) CU NIPDAU Level-1-260C-UNLIM 2252AI TLC2252AIDR ACTIVE SOIC D 8 2500 Green (RoHS & no Sb/Br) CU NIPDAU Level-1-260C-UNLIM 2252AI TLC2252AIDRG4 ACTIVE SOIC D 8 2500 Green (RoHS & no Sb/Br) CU NIPDAU Level-1-260C-UNLIM 2252AI TLC2252AIP ACTIVE PDIP P 8 50 Pb-Free (RoHS) CU NIPDAU N / A for Pkg Type TLC2252AI TLC2252AIPE4 ACTIVE PDIP P 8 50 Pb-Free (RoHS) CU NIPDAU N / A for Pkg Type TLC2252AI TLC2252AIPW ACTIVE TSSOP PW 8 150 Green (RoHS & no Sb/Br) CU NIPDAU Level-1-260C-UNLIM Y2252A TLC2252AIPWR ACTIVE TSSOP PW 8 2000 Green (RoHS & no Sb/Br) CU NIPDAU Level-1-260C-UNLIM Y2252A TLC2252AIPWRG4 ACTIVE TSSOP PW 8 2000 Green (RoHS & no Sb/Br) CU NIPDAU Level-1-260C-UNLIM Y2252A TLC2252AMFKB ACTIVE LCCC FK 20 1 TBD POST-PLATE N / A for Pkg Type -55 to 125 59629564003Q2A TLC2252 AMFKB TLC2252AMJGB ACTIVE CDIP JG 8 1 TBD A42 N / A for Pkg Type -55 to 125 9564003QPA TLC2252AM TLC2252AMUB ACTIVE CFP U 10 1 TBD A42 N / A for Pkg Type -55 to 125 9564003QHA TLC2252AM TLC2252AQDR ACTIVE SOIC D 8 2500 Green (RoHS & no Sb/Br) CU NIPDAU Level-1-260C-UNLIM -40 to 125 C2252A TLC2252AQDRG4 ACTIVE SOIC D 8 2500 Green (RoHS & no Sb/Br) CU NIPDAU Level-1-260C-UNLIM TLC2252CD ACTIVE SOIC D 8 75 Green (RoHS & no Sb/Br) CU NIPDAU Level-1-260C-UNLIM 0 to 70 2252C TLC2252CDG4 ACTIVE SOIC D 8 75 Green (RoHS & no Sb/Br) CU NIPDAU Level-1-260C-UNLIM 0 to 70 2252C TLC2252CDR ACTIVE SOIC D 8 2500 Green (RoHS & no Sb/Br) CU NIPDAU Level-1-260C-UNLIM 0 to 70 2252C TLC2252CDRG4 ACTIVE SOIC D 8 2500 Green (RoHS & no Sb/Br) CU NIPDAU Level-1-260C-UNLIM 0 to 70 2252C Addendum-Page 2 C2252A Samples PACKAGE OPTION ADDENDUM www.ti.com 17-Mar-2017 Orderable Device Status (1) Package Type Package Pins Package Drawing Qty Eco Plan Lead/Ball Finish MSL Peak Temp (2) (6) (3) Op Temp (°C) Device Marking (4/5) TLC2252CP ACTIVE PDIP P 8 50 Pb-Free (RoHS) CU NIPDAU N / A for Pkg Type 0 to 70 TLC2252CP TLC2252CPW ACTIVE TSSOP PW 8 150 Green (RoHS & no Sb/Br) CU NIPDAU Level-1-260C-UNLIM 0 to 70 P2252 TLC2252CPWG4 ACTIVE TSSOP PW 8 150 Green (RoHS & no Sb/Br) CU NIPDAU Level-1-260C-UNLIM 0 to 70 P2252 TLC2252CPWR ACTIVE TSSOP PW 8 2000 Green (RoHS & no Sb/Br) CU NIPDAU Level-1-260C-UNLIM 0 to 70 P2252 TLC2252CPWRG4 ACTIVE TSSOP PW 8 2000 Green (RoHS & no Sb/Br) CU NIPDAU Level-1-260C-UNLIM 0 to 70 P2252 TLC2252ID ACTIVE SOIC D 8 75 Green (RoHS & no Sb/Br) CU NIPDAU Level-1-260C-UNLIM -40 to 125 2252I TLC2252IDG4 ACTIVE SOIC D 8 75 Green (RoHS & no Sb/Br) CU NIPDAU Level-1-260C-UNLIM -40 to 125 2252I TLC2252IDR ACTIVE SOIC D 8 2500 Green (RoHS & no Sb/Br) CU NIPDAU Level-1-260C-UNLIM -40 to 125 2252I TLC2252IDRG4 ACTIVE SOIC D 8 2500 Green (RoHS & no Sb/Br) CU NIPDAU Level-1-260C-UNLIM -40 to 125 2252I TLC2252IP ACTIVE PDIP P 8 50 Pb-Free (RoHS) CU NIPDAU N / A for Pkg Type -40 to 125 TLC2252IP TLC2252MFKB ACTIVE LCCC FK 20 1 TBD POST-PLATE N / A for Pkg Type -55 to 125 59629564001Q2A TLC2252 MFKB TLC2252MJGB ACTIVE CDIP JG 8 1 TBD A42 N / A for Pkg Type -55 to 125 9564001QPA TLC2252M TLC2252MUB ACTIVE CFP U 10 1 TBD A42 N / A for Pkg Type -55 to 125 9564001QHA TLC2252M TLC2254AID ACTIVE SOIC D 14 50 Green (RoHS & no Sb/Br) CU NIPDAU Level-1-260C-UNLIM 2254AI TLC2254AIDG4 ACTIVE SOIC D 14 50 Green (RoHS & no Sb/Br) CU NIPDAU Level-1-260C-UNLIM 2254AI TLC2254AIDR ACTIVE SOIC D 14 2500 Green (RoHS & no Sb/Br) CU NIPDAU Level-1-260C-UNLIM 2254AI TLC2254AIDRG4 ACTIVE SOIC D 14 2500 Green (RoHS & no Sb/Br) CU NIPDAU Level-1-260C-UNLIM 2254AI Addendum-Page 3 Samples PACKAGE OPTION ADDENDUM www.ti.com 17-Mar-2017 Orderable Device Status (1) Package Type Package Pins Package Drawing Qty Eco Plan Lead/Ball Finish MSL Peak Temp (2) (6) (3) Op Temp (°C) Device Marking (4/5) TLC2254AIN ACTIVE PDIP N 14 25 Pb-Free (RoHS) CU NIPDAU N / A for Pkg Type TLC2254AIPW ACTIVE TSSOP PW 14 90 Green (RoHS & no Sb/Br) CU NIPDAU Level-1-260C-UNLIM Y2254A TLC2254AIPWR ACTIVE TSSOP PW 14 2000 Green (RoHS & no Sb/Br) CU NIPDAU Level-1-260C-UNLIM Y2254A TLC2254AIPWRG4 ACTIVE TSSOP PW 14 2000 Green (RoHS & no Sb/Br) CU NIPDAU Level-1-260C-UNLIM Y2254A TLC2254AMFKB ACTIVE LCCC FK 20 1 TBD POST-PLATE N / A for Pkg Type -55 to 125 59629564004Q2A TLC2254 AMFKB TLC2254AMWB ACTIVE CFP W 14 1 TBD A42 N / A for Pkg Type -55 to 125 5962-9564004QD A TLC2254AMWB TLC2254AQD ACTIVE SOIC D 14 50 Green (RoHS & no Sb/Br) CU NIPDAU Level-1-260C-UNLIM -40 to 125 TLC2254A TLC2254AQDR ACTIVE SOIC D 14 2500 Green (RoHS & no Sb/Br) CU NIPDAU Level-1-260C-UNLIM -40 to 125 TLC2254A TLC2254AQDRG4 ACTIVE SOIC D 14 2500 Green (RoHS & no Sb/Br) CU NIPDAU Level-1-260C-UNLIM TLC2254CD ACTIVE SOIC D 14 50 Green (RoHS & no Sb/Br) CU NIPDAU | Call TI Level-1-260C-UNLIM 0 to 70 TLC2254C TLC2254CDG4 ACTIVE SOIC D 14 50 Green (RoHS & no Sb/Br) Call TI Level-1-260C-UNLIM 0 to 70 TLC2254C TLC2254CDR ACTIVE SOIC D 14 2500 Green (RoHS & no Sb/Br) CU NIPDAU Level-1-260C-UNLIM 0 to 70 TLC2254C TLC2254CDRG4 ACTIVE SOIC D 14 2500 Green (RoHS & no Sb/Br) CU NIPDAU Level-1-260C-UNLIM 0 to 70 TLC2254C TLC2254CN ACTIVE PDIP N 14 25 Pb-Free (RoHS) CU NIPDAU N / A for Pkg Type 0 to 70 TLC2254CN TLC2254CPW ACTIVE TSSOP PW 14 90 Green (RoHS & no Sb/Br) CU NIPDAU Level-1-260C-UNLIM 0 to 70 P2254 TLC2254CPWG4 ACTIVE TSSOP PW 14 90 Green (RoHS & no Sb/Br) CU NIPDAU Level-1-260C-UNLIM 0 to 70 P2254 TLC2254CPWR ACTIVE TSSOP PW 14 2000 Green (RoHS & no Sb/Br) CU NIPDAU Level-1-260C-UNLIM 0 to 70 P2254 Addendum-Page 4 TLC2254AIN PJ2254A Samples PACKAGE OPTION ADDENDUM www.ti.com 17-Mar-2017 Orderable Device Status (1) Package Type Package Pins Package Drawing Qty Eco Plan Lead/Ball Finish MSL Peak Temp (2) (6) (3) Op Temp (°C) Device Marking (4/5) TLC2254CPWRG4 ACTIVE TSSOP PW 14 2000 Green (RoHS & no Sb/Br) CU NIPDAU Level-1-260C-UNLIM 0 to 70 P2254 TLC2254ID ACTIVE SOIC D 14 50 Green (RoHS & no Sb/Br) CU NIPDAU Level-1-260C-UNLIM TLC2254I TLC2254IDG4 ACTIVE SOIC D 14 50 Green (RoHS & no Sb/Br) CU NIPDAU Level-1-260C-UNLIM TLC2254I TLC2254IDR ACTIVE SOIC D 14 2500 Green (RoHS & no Sb/Br) CU NIPDAU Level-1-260C-UNLIM TLC2254I TLC2254IDRG4 ACTIVE SOIC D 14 2500 Green (RoHS & no Sb/Br) CU NIPDAU Level-1-260C-UNLIM TLC2254I TLC2254IN ACTIVE PDIP N 14 25 Pb-Free (RoHS) CU NIPDAU N / A for Pkg Type TLC2254MFKB ACTIVE LCCC FK 20 1 TBD POST-PLATE N / A for Pkg Type -55 to 125 59629564002Q2A TLC2254 MFKB TLC2254MWB ACTIVE CFP W 14 1 TBD A42 N / A for Pkg Type -55 to 125 5962-9564002QD A TLC2254MWB TLC2254IN (1) The marketing status values are defined as follows: ACTIVE: Product device recommended for new designs. LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect. NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design. PREVIEW: Device has been announced but is not in production. Samples may or may not be available. OBSOLETE: TI has discontinued the production of the device. (2) Eco Plan - The planned eco-friendly classification: Pb-Free (RoHS), Pb-Free (RoHS Exempt), or Green (RoHS & no Sb/Br) - please check http://www.ti.com/productcontent for the latest availability information and additional product content details. TBD: The Pb-Free/Green conversion plan has not been defined. Pb-Free (RoHS): TI's terms "Lead-Free" or "Pb-Free" mean semiconductor products that are compatible with the current RoHS requirements for all 6 substances, including the requirement that lead not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, TI Pb-Free products are suitable for use in specified lead-free processes. Pb-Free (RoHS Exempt): This component has a RoHS exemption for either 1) lead-based flip-chip solder bumps used between the die and package, or 2) lead-based die adhesive used between the die and leadframe. The component is otherwise considered Pb-Free (RoHS compatible) as defined above. Green (RoHS & no Sb/Br): TI defines "Green" to mean Pb-Free (RoHS compatible), and free of Bromine (Br) and Antimony (Sb) based flame retardants (Br or Sb do not exceed 0.1% by weight in homogeneous material) (3) MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature. Addendum-Page 5 Samples PACKAGE OPTION ADDENDUM www.ti.com (4) 17-Mar-2017 There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device. (5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation of the previous line and the two combined represent the entire Device Marking for that device. (6) Lead/Ball Finish - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead/Ball Finish values may wrap to two lines if the finish value exceeds the maximum column width. Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release. In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis. OTHER QUALIFIED VERSIONS OF TLC2252, TLC2252A, TLC2252AM, TLC2252M, TLC2254, TLC2254A, TLC2254AM, TLC2254M : • Catalog: TLC2252A, TLC2252, TLC2254A, TLC2254 • Automotive: TLC2252-Q1, TLC2252A-Q1, TLC2252A-Q1, TLC2252-Q1, TLC2254-Q1, TLC2254A-Q1, TLC2254A-Q1, TLC2254-Q1 • Enhanced Product: TLC2252A-EP, TLC2252A-EP, TLC2254A-EP, TLC2254A-EP • Military: TLC2252M, TLC2252AM, TLC2254M, TLC2254AM NOTE: Qualified Version Definitions: • Catalog - TI's standard catalog product • Automotive - Q100 devices qualified for high-reliability automotive applications targeting zero defects • Enhanced Product - Supports Defense, Aerospace and Medical Applications • Military - QML certified for Military and Defense Applications Addendum-Page 6 PACKAGE MATERIALS INFORMATION www.ti.com 18-Oct-2016 TAPE AND REEL INFORMATION *All dimensions are nominal Device Package Package Pins Type Drawing SPQ Reel Reel A0 Diameter Width (mm) (mm) W1 (mm) B0 (mm) K0 (mm) P1 (mm) W Pin1 (mm) Quadrant 5962-9564003NXDR SOIC D 8 2500 330.0 12.4 6.4 5.2 2.1 8.0 12.0 Q1 TLC2252AIDR SOIC D 8 2500 330.0 12.4 6.4 5.2 2.1 8.0 12.0 Q1 TLC2252AIDR SOIC D 8 2500 330.0 12.4 6.4 5.2 2.1 8.0 12.0 Q1 TLC2252AIPWR TSSOP PW 8 2000 330.0 12.4 7.0 3.6 1.6 8.0 12.0 Q1 TLC2252AQDR SOIC D 8 2500 330.0 12.5 6.4 5.2 2.1 8.0 12.0 Q1 TLC2252CDR SOIC D 8 2500 330.0 12.4 6.4 5.2 2.1 8.0 12.0 Q1 TLC2252CPWR TSSOP PW 8 2000 330.0 12.4 7.0 3.6 1.6 8.0 12.0 Q1 TLC2252IDR SOIC D 8 2500 330.0 12.4 6.4 5.2 2.1 8.0 12.0 Q1 TLC2254AIDR SOIC D 14 2500 330.0 16.4 6.5 9.0 2.1 8.0 16.0 Q1 TLC2254AIPWR TSSOP PW 14 2000 330.0 12.4 6.9 5.6 1.6 8.0 12.0 Q1 TLC2254AQDR SOIC D 14 2500 330.0 16.4 6.5 9.0 2.1 8.0 16.0 Q1 TLC2254CDR SOIC D 14 2500 330.0 16.4 6.5 9.0 2.1 8.0 16.0 Q1 TLC2254CPWR TSSOP PW 14 2000 330.0 12.4 6.9 5.6 1.6 8.0 12.0 Q1 TLC2254IDR SOIC D 14 2500 330.0 16.4 6.5 9.0 2.1 8.0 16.0 Q1 Pack Materials-Page 1 PACKAGE MATERIALS INFORMATION www.ti.com 18-Oct-2016 *All dimensions are nominal Device Package Type Package Drawing Pins SPQ Length (mm) Width (mm) Height (mm) 5962-9564003NXDR SOIC D 8 2500 367.0 367.0 38.0 TLC2252AIDR SOIC D 8 2500 367.0 367.0 38.0 TLC2252AIDR SOIC D 8 2500 340.5 338.1 20.6 TLC2252AIPWR TSSOP PW 8 2000 367.0 367.0 35.0 TLC2252AQDR SOIC D 8 2500 340.5 338.1 20.6 TLC2252CDR SOIC D 8 2500 340.5 338.1 20.6 TLC2252CPWR TSSOP PW 8 2000 367.0 367.0 35.0 TLC2252IDR SOIC D 8 2500 340.5 338.1 20.6 TLC2254AIDR SOIC D 14 2500 367.0 367.0 38.0 TLC2254AIPWR TSSOP PW 14 2000 367.0 367.0 35.0 TLC2254AQDR SOIC D 14 2500 367.0 367.0 38.0 TLC2254CDR SOIC D 14 2500 367.0 367.0 38.0 TLC2254CPWR TSSOP PW 14 2000 367.0 367.0 35.0 TLC2254IDR SOIC D 14 2500 367.0 367.0 38.0 Pack Materials-Page 2 MECHANICAL DATA MCER001A – JANUARY 1995 – REVISED JANUARY 1997 JG (R-GDIP-T8) CERAMIC DUAL-IN-LINE 0.400 (10,16) 0.355 (9,00) 8 5 0.280 (7,11) 0.245 (6,22) 1 0.063 (1,60) 0.015 (0,38) 4 0.065 (1,65) 0.045 (1,14) 0.310 (7,87) 0.290 (7,37) 0.020 (0,51) MIN 0.200 (5,08) MAX Seating Plane 0.130 (3,30) MIN 0.023 (0,58) 0.015 (0,38) 0°–15° 0.100 (2,54) 0.014 (0,36) 0.008 (0,20) 4040107/C 08/96 NOTES: A. B. C. D. E. All linear dimensions are in inches (millimeters). This drawing is subject to change without notice. This package can be hermetically sealed with a ceramic lid using glass frit. Index point is provided on cap for terminal identification. Falls within MIL STD 1835 GDIP1-T8 POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 PACKAGE OUTLINE PW0008A TSSOP - 1.2 mm max height SCALE 2.800 SMALL OUTLINE PACKAGE C 6.6 TYP 6.2 SEATING PLANE PIN 1 ID AREA A 0.1 C 6X 0.65 8 1 3.1 2.9 NOTE 3 2X 1.95 4 5 B 4.5 4.3 NOTE 4 SEE DETAIL A 8X 0.30 0.19 0.1 C A 1.2 MAX B (0.15) TYP 0.25 GAGE PLANE 0 -8 0.15 0.05 0.75 0.50 DETAIL A TYPICAL 4221848/A 02/2015 NOTES: 1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing per ASME Y14.5M. 2. This drawing is subject to change without notice. 3. This dimension does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not exceed 0.15 mm per side. 4. This dimension does not include interlead flash. Interlead flash shall not exceed 0.25 mm per side. 5. Reference JEDEC registration MO-153, variation AA. www.ti.com EXAMPLE BOARD LAYOUT PW0008A TSSOP - 1.2 mm max height SMALL OUTLINE PACKAGE 8X (1.5) 8X (0.45) SYMM 1 8 (R0.05) TYP SYMM 6X (0.65) 5 4 (5.8) LAND PATTERN EXAMPLE SCALE:10X SOLDER MASK OPENING METAL SOLDER MASK OPENING METAL UNDER SOLDER MASK 0.05 MAX ALL AROUND 0.05 MIN ALL AROUND SOLDER MASK DEFINED NON SOLDER MASK DEFINED SOLDER MASK DETAILS NOT TO SCALE 4221848/A 02/2015 NOTES: (continued) 6. Publication IPC-7351 may have alternate designs. 7. Solder mask tolerances between and around signal pads can vary based on board fabrication site. www.ti.com EXAMPLE STENCIL DESIGN PW0008A TSSOP - 1.2 mm max height SMALL OUTLINE PACKAGE 8X (1.5) 8X (0.45) SYMM (R0.05) TYP 1 8 SYMM 6X (0.65) 5 4 (5.8) SOLDER PASTE EXAMPLE BASED ON 0.125 mm THICK STENCIL SCALE:10X 4221848/A 02/2015 NOTES: (continued) 8. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate design recommendations. 9. Board assembly site may have different recommendations for stencil design. www.ti.com IMPORTANT NOTICE Texas Instruments Incorporated (TI) reserves the right to make corrections, enhancements, improvements and other changes to its semiconductor products and services per JESD46, latest issue, and to discontinue any product or service per JESD48, latest issue. Buyers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. TI’s published terms of sale for semiconductor products (http://www.ti.com/sc/docs/stdterms.htm) apply to the sale of packaged integrated circuit products that TI has qualified and released to market. Additional terms may apply to the use or sale of other types of TI products and services. Reproduction of significant portions of TI information in TI data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. TI is not responsible or liable for such reproduced documentation. Information of third parties may be subject to additional restrictions. Resale of TI products or services with statements different from or beyond the parameters stated by TI for that product or service voids all express and any implied warranties for the associated TI product or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements. Buyers and others who are developing systems that incorporate TI products (collectively, “Designers”) understand and agree that Designers remain responsible for using their independent analysis, evaluation and judgment in designing their applications and that Designers have full and exclusive responsibility to assure the safety of Designers' applications and compliance of their applications (and of all TI products used in or for Designers’ applications) with all applicable regulations, laws and other applicable requirements. Designer represents that, with respect to their applications, Designer has all the necessary expertise to create and implement safeguards that (1) anticipate dangerous consequences of failures, (2) monitor failures and their consequences, and (3) lessen the likelihood of failures that might cause harm and take appropriate actions. Designer agrees that prior to using or distributing any applications that include TI products, Designer will thoroughly test such applications and the functionality of such TI products as used in such applications. TI’s provision of technical, application or other design advice, quality characterization, reliability data or other services or information, including, but not limited to, reference designs and materials relating to evaluation modules, (collectively, “TI Resources”) are intended to assist designers who are developing applications that incorporate TI products; by downloading, accessing or using TI Resources in any way, Designer (individually or, if Designer is acting on behalf of a company, Designer’s company) agrees to use any particular TI Resource solely for this purpose and subject to the terms of this Notice. TI’s provision of TI Resources does not expand or otherwise alter TI’s applicable published warranties or warranty disclaimers for TI products, and no additional obligations or liabilities arise from TI providing such TI Resources. TI reserves the right to make corrections, enhancements, improvements and other changes to its TI Resources. TI has not conducted any testing other than that specifically described in the published documentation for a particular TI Resource. Designer is authorized to use, copy and modify any individual TI Resource only in connection with the development of applications that include the TI product(s) identified in such TI Resource. NO OTHER LICENSE, EXPRESS OR IMPLIED, BY ESTOPPEL OR OTHERWISE TO ANY OTHER TI INTELLECTUAL PROPERTY RIGHT, AND NO LICENSE TO ANY TECHNOLOGY OR INTELLECTUAL PROPERTY RIGHT OF TI OR ANY THIRD PARTY IS GRANTED HEREIN, including but not limited to any patent right, copyright, mask work right, or other intellectual property right relating to any combination, machine, or process in which TI products or services are used. Information regarding or referencing third-party products or services does not constitute a license to use such products or services, or a warranty or endorsement thereof. Use of TI Resources may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI. TI RESOURCES ARE PROVIDED “AS IS” AND WITH ALL FAULTS. TI DISCLAIMS ALL OTHER WARRANTIES OR REPRESENTATIONS, EXPRESS OR IMPLIED, REGARDING RESOURCES OR USE THEREOF, INCLUDING BUT NOT LIMITED TO ACCURACY OR COMPLETENESS, TITLE, ANY EPIDEMIC FAILURE WARRANTY AND ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, AND NON-INFRINGEMENT OF ANY THIRD PARTY INTELLECTUAL PROPERTY RIGHTS. TI SHALL NOT BE LIABLE FOR AND SHALL NOT DEFEND OR INDEMNIFY DESIGNER AGAINST ANY CLAIM, INCLUDING BUT NOT LIMITED TO ANY INFRINGEMENT CLAIM THAT RELATES TO OR IS BASED ON ANY COMBINATION OF PRODUCTS EVEN IF DESCRIBED IN TI RESOURCES OR OTHERWISE. IN NO EVENT SHALL TI BE LIABLE FOR ANY ACTUAL, DIRECT, SPECIAL, COLLATERAL, INDIRECT, PUNITIVE, INCIDENTAL, CONSEQUENTIAL OR EXEMPLARY DAMAGES IN CONNECTION WITH OR ARISING OUT OF TI RESOURCES OR USE THEREOF, AND REGARDLESS OF WHETHER TI HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES. Unless TI has explicitly designated an individual product as meeting the requirements of a particular industry standard (e.g., ISO/TS 16949 and ISO 26262), TI is not responsible for any failure to meet such industry standard requirements. Where TI specifically promotes products as facilitating functional safety or as compliant with industry functional safety standards, such products are intended to help enable customers to design and create their own applications that meet applicable functional safety standards and requirements. Using products in an application does not by itself establish any safety features in the application. Designers must ensure compliance with safety-related requirements and standards applicable to their applications. Designer may not use any TI products in life-critical medical equipment unless authorized officers of the parties have executed a special contract specifically governing such use. Life-critical medical equipment is medical equipment where failure of such equipment would cause serious bodily injury or death (e.g., life support, pacemakers, defibrillators, heart pumps, neurostimulators, and implantables). Such equipment includes, without limitation, all medical devices identified by the U.S. Food and Drug Administration as Class III devices and equivalent classifications outside the U.S. TI may expressly designate certain products as completing a particular qualification (e.g., Q100, Military Grade, or Enhanced Product). Designers agree that it has the necessary expertise to select the product with the appropriate qualification designation for their applications and that proper product selection is at Designers’ own risk. Designers are solely responsible for compliance with all legal and regulatory requirements in connection with such selection. Designer will fully indemnify TI and its representatives against any damages, costs, losses, and/or liabilities arising out of Designer’s noncompliance with the terms and provisions of this Notice. Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265 Copyright © 2017, Texas Instruments Incorporated
TLC2252CDR 价格&库存

很抱歉,暂时无法提供与“TLC2252CDR”相匹配的价格&库存,您可以联系我们找货

免费人工找货
TLC2252CDR
  •  国内价格
  • 1+3.20016
  • 10+2.92896
  • 30+2.87472

库存:154

TLC2252CDR
    •  国内价格
    • 200+3.03744

    库存:0