0
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
创作中心
发布
  • 发文章

  • 发资料

  • 发帖

  • 提问

  • 发视频

创作活动
TLC2254AQPWRQ1

TLC2254AQPWRQ1

  • 厂商:

    BURR-BROWN(德州仪器)

  • 封装:

    TSSOP14

  • 描述:

    AUTOMOTIVE ADVANCED LINCMOS RAIL

  • 数据手册
  • 价格&库存
TLC2254AQPWRQ1 数据手册
TLC225x-Q1, TLC225xA-Q1 Advanced LinCMOS RAIL-TO-RAIL VERY LOW-POWER OPERATIONAL AMPLIFIERS  SGLS188B − OCTOBER 2003 − REVISED APRIL 2008 D Qualified for Automotive Applications D ESD Protection Exceeds 2000 V Per D D D D D Very Low Power . . . 35 µA Per Channel Typ D Common-Mode Input Voltage Range MIL-STD-883, Method 3015; Exceeds 150 V (TLC2252/52A) and 100 V (TLC2254/54A) Using Machine Model (C = 200 pF, R = 0) Output Swing Includes Both Supply Rails Low Noise . . . 19 nV/√Hz Typ at f = 1 kHz Low Input Bias Current . . . 1 pA Typ Fully Specified for Both Single-Supply and Split-Supply Operation D D D Includes Negative Rail Low Input Offset Voltage 850 µV Max at TA = 25°C (TLC225xA) Macromodel Included Performance Upgrades for the TS27L2/L4 and TLC27L2/L4 description EQUIVALENT INPUT NOISE VOLTAGE vs FREQUENCY The TLC2252 and TLC2254 are dual and quadruple operational amplifiers from Texas Instruments. Both devices exhibit rail-to-rail output performance for increased dynamic range in single- or split-supply applications. The TLC225x family consumes only 35 µA of supply current per channel. This micropower operation makes them good choices for battery-powered applications. The noise performance has been dramatically improved over previous generations of CMOS amplifiers. Looking at Figure 1, the TLC225x has a noise level of 19 nV/√Hz at 1kHz; four times lower than competitive micropower solutions. V n − Equivalent Input Noise Voltage − nV/ VN nv//HzHz 60 50 VDD = 5 V RS = 20 Ω TA = 25°C 40 30 20 10 The TLC225x amplifiers, exhibiting high input impedance and low noise, are excellent for small-signal conditioning for high-impedance 0 sources, such as piezoelectric transducers. 101 10 2 10 3 10 4 Because of the micropower dissipation levels, f − Frequency − Hz these devices work well in hand-held monitoring Figure 1 and remote-sensing applications. In addition, the rail-to-rail output feature with single or split supplies makes this family a great choice when interfacing with analog-to-digital converters (ADCs). For precision applications, the TLC225xA family is available and has a maximum input offset voltage of 850 µV. This family is fully characterized at 5 V and ± 5 V. The TLC2252/4 also makes great upgrades to the TLC27L2/L4 or TS27L2/L4 in standard designs. They offer increased output dynamic range, lower noise voltage, and lower input offset voltage. This enhanced feature set allows them to be used in a wider range of applications. For applications that require higher output drive and wider input voltage ranges, see the TLV2432 and TLV2442 devices. If the design requires single amplifiers, please see the TLV2211/21/31 family. These devices are single rail-to-rail operational amplifiers in the SOT-23 package. Their small size and low power consumption, make them ideal for high density, battery-powered equipment. Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet. Advanced LinCMOS is a trademark of Texas Instruments. Copyright  2008 Texas Instruments Incorporated PRODUCTION DATA information is current as of publication date. Products conform to specifications per the terms of Texas Instruments standard warranty. Production processing does not necessarily include testing of all parameters. • POST OFFICE BOX 655303 DALLAS, TEXAS 75265 POST OFFICE BOX 1443 HOUSTON, TEXAS 77251−1443 • 1 TLC225x-Q1, TLC225xA-Q1 Advanced LinCMOS RAIL-TO-RAIL VERY LOW-POWER OPERATIONAL AMPLIFIERS  SGLS188B − OCTOBER 2003 − REVISED APRIL 2008 ORDERING INFORMATION† VIOmax AT 25°C TA 850 µV V V 1550 µV −40°C 40°C to 125°C 850 µV V 1550 µV V ORDERABLE PART NUMBER PACKAGE} TOP-SIDE MARKING SOIC (D) Tape and reel TLC2252AQDRQ1 2252AQ TSSOP (PW) Tape and reel TLC2252AQPWRQ1 2252AQ SOIC (D) Tape and reel TLC2252QDRQ1 2252Q1 TSSOP (PW) Tape and reel TLC2252QPWRQ1 2252Q1 SOIC (D) Tape and reel TLC2254AQDRQ1 TLC2254AQ1 TSSOP (PW) Tape and reel TLC2254AQPWRQ1 2254AQ SOIC (D) Tape and reel TLC2254QDRQ1 TLC2254Q1 TSSOP (PW) Tape and reel TLC2254QPWRQ1 2254Q1 † For the most current package and ordering information, see the Package Option Addendum at the end of this document, or see the TI web site at http://www.ti.com. ‡ Package drawings, thermal data, and symbolization are available at http://www.ti.com/packaging. TLC2254, TLC2254A D OR PW PACKAGE (TOP VIEW) TLC2252, TLC2252A D OR PW PACKAGE (TOP VIEW) 1OUT 1IN − 1IN + VDD − /GND 2 1 8 2 7 3 6 4 5 VDD + 2OUT 2IN − 2IN + 1OUT 1IN − 1IN + VDD + 2IN + 2IN − 2OUT • 1 14 2 13 3 12 4 11 5 10 6 9 7 8 POST OFFICE BOX 655303 DALLAS, TEXAS 75265 POST OFFICE BOX 1443 HOUSTON, TEXAS 77251−1443 • 4OUT 4IN − 4IN + VDD − / GND 3IN + 3IN − 3OUT TLC225x-Q1, TLC225xA-Q1 Advanced LinCMOS RAIL-TO-RAIL VERY LOW-POWER OPERATIONAL AMPLIFIERS  SGLS188B − OCTOBER 2003 − REVISED APRIL 2008 equivalent schematic (each amplifier) VDD + Q3 Q6 Q9 Q12 Q14 Q16 R6 IN + OUT C1 IN − R5 Q1 Q4 Q13 Q15 Q17 D1 Q2 Q5 R3 R4 Q7 Q8 Q10 Q11 R1 R2 VDD − / GND ACTUAL DEVICE COMPONENT COUNT† COMPONENT † TLC2252 TLC2254 Transistors 38 76 Resistors 30 56 Diodes 9 18 Capacitors 3 6 Includes both amplifiers and all ESD, bias, and trim circuitry • POST OFFICE BOX 655303 DALLAS, TEXAS 75265 POST OFFICE BOX 1443 HOUSTON, TEXAS 77251−1443 • 3 TLC225x-Q1, TLC225xA-Q1 Advanced LinCMOS RAIL-TO-RAIL VERY LOW-POWER OPERATIONAL AMPLIFIERS  SGLS188B − OCTOBER 2003 − REVISED APRIL 2008 absolute maximum ratings over operating free-air temperature range (unless otherwise noted)† Supply voltage, VDD + (see Note 1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 V Supply voltage, VDD − (see Note 1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . −8 V Differential input voltage, VID (see Note 2) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ± 16 V Input voltage, VI (any input, see Note 1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ± 8 V Input current, II (each input) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ± 5 mA Output current, IO . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ± 50 mA Total current into VDD + . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ± 50 mA Total current out of VDD − . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ± 50 mA Duration of short-circuit current at (or below) 25°C (see Note 3) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . unlimited Continuous total dissipation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Dissipation Rating Table Operating free-air temperature range, TA: Q suffix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . −40°C to 125°C Storage temperature range, Tstg . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . −65°C to 150°C Lead temperature 1,6 mm (1/16 inch) from case for 10 seconds . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 260°C † Stresses beyond those listed under “absolute maximum ratings” may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under “recommended operating conditions” is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability. NOTES: 1. All voltage values, except differential voltages, are with respect to the midpoint between VDD+ and VDD − . 2. Differential voltages are at IN+ with respect to IN −. Excessive current flows when input is brought below VDD − − 0.3 V. 3. The output may be shorted to either supply. Temperature and/or supply voltages must be limited to ensure that the maximum dissipation rating is not exceeded. DISSIPATION RATING TABLE PACKAGE TA ≤ 25 25°C C POWER RATING DERATING FACTOR ABOVE TA = 25°C TA = 70 70°C C POWER RATING TA = 85 85°C C POWER RATING TA = 125 125°C C POWER RATING D−8 724 mW 5.8 mW/°C 464 mW 377 mW 144 mW D−14 950 mW 7.6 mW/°C 608 mW 450 mW 190 mW PW−8 525 mW 4.2 mW/°C 336 mW 273 mW 105 mW PW−14 700 mW 5.6 mW/°C 448 mW 364 mW 140 mW recommended operating conditions MIN MAX UNIT Supply voltage, VDD ± ± 2.2 ±8 V Input voltage range, VI VDD − VDD + −1.5 V Common-mode input voltage, VIC VDD − VDD + −1.5 V Operating free-air temperature, TA −40 ‡ 4 Referenced to 2.5 V • POST OFFICE BOX 655303 DALLAS, TEXAS 75265 POST OFFICE BOX 1443 HOUSTON, TEXAS 77251−1443 • 125 °C TLC225x-Q1, TLC225xA-Q1 Advanced LinCMOS RAIL-TO-RAIL VERY LOW-POWER OPERATIONAL AMPLIFIERS  SGLS188B − OCTOBER 2003 − REVISED APRIL 2008 electrical characteristics at specified free-air temperature, VDD = 5 V (unless otherwise noted) PARAMETER VIO Input offset voltage αVIO Temperature coefficient of input offset voltage Input offset voltage long-term drift (see Note 4) IIO Input offset current IIB Input bias current VICR Common mode input Common-mode voltage range TA† TEST CONDITIONS High-level High level output voltage g VIC = 0, RS = 50 Ω 2 5 V, V VIC C = 2.5 L i l diff ti l Large-signal differential voltage amplification 0.003 0.003 µV/mo 25°C 0.5 5V VIC = 2 2.5 V, VO = 1 V to 4 V 1 0 to 4 Full range 0 to 3.5 RL = 1 60 −0.3 to 4.2 4.9 Full range 4.8 25°C 4.8 1 0 to 4 −0.3 to 4.2 4.9 4.88 0.09 Full range 4.94 4.8 0.01 0.15 0.09 10 350 0.15 0.15 1 0.7 1.2 Full range V 4.88 0.15 0.8 pA V 4.8 25°C pA 4.98 4.94 0.01 100 60 1000 0 to 3.5 25°C 25°C 60 1000 4.98 25°C MΩ‡ 0.5 1000 Full range RL = 100 kΩ‡ 60 1000 25°C IOL = 4 mA µV 25°C 25°C IOL O = 500 µA 850 1000 UNIT µV/°C 25°C IOL = 50 µA 200 MAX 0.5 |VIO | ≤ 5 mV IO OH = − 75 µA TYP 0.5 25°C RS = 50 Ω, Ω MIN 1750 Full range VIC = 2.5 2 5 V, V AVD 1500 Full range VIC = 2.5 V, Low level output Low-level voltage 200 25°C to 125°C IOH = − 150 µA VOL MAX 25°C VDD ± = ± 2.5 V, VO = 0, TLC2252A-Q1 TYP Full range IOH = − 20 µA VO OH TLC2252-Q1 MIN V 1 1.2 100 350 10 V/mV 25°C 1700 1700 rid Differential input resistance 25°C 1012 1012 Ω ric Common-mode input resistance 25°C 1012 1012 Ω cic Common-mode input capacitance f = 10 kHz, f = 10 kHz, 25°C 8 8 pF zo Closed-loop output impedance f = 25 kHz, AV = 10 25°C 200 200 Ω CMRR Common mode Common-mode rejection ratio VIC = 0 to 2.7 V, RS = 50 Ω VO = 2.5 V, kSVR Supply-voltage rejection ratio (∆VDD /∆VIO) VDD = 4.4 V to 16 V, VIC = VDD /2, No load IDD Supply current 2 5 V, V VO = 2.5 25°C 70 Full range 70 25°C 80 Full range 80 83 70 83 dB 70 95 80 95 dB 25°C No load Full range 80 70 125 150 70 125 150 µA † Full range is −40°C to 125°C for Q suffix. Referenced to 2.5 V NOTE 4: Typical values are based on the input offset voltage shift observed through 500 hours of operating life test at TA = 150°C extrapolated to TA = 25°C using the Arrhenius equation and assuming an activation energy of 0.96 eV. ‡ • POST OFFICE BOX 655303 DALLAS, TEXAS 75265 POST OFFICE BOX 1443 HOUSTON, TEXAS 77251−1443 • 5 TLC225x-Q1, TLC225xA-Q1 Advanced LinCMOS RAIL-TO-RAIL VERY LOW-POWER OPERATIONAL AMPLIFIERS  SGLS188B − OCTOBER 2003 − REVISED APRIL 2008 operating characteristics at specified free-air temperature, VDD = 5 V PARAMETER TA† TEST CONDITIONS TLC2252-Q1 MIN TYP 25°C 0.07 0.12 Full range 0.05 MAX TLC2252A-Q1 MIN TYP 0.07 0.12 MAX UNIT SR Slew rate at unity gain VO = 0.5 0 5 V to 3.5 3 5 V, V RL = 100 kΩ‡, Equivalent input noise voltage f = 10 Hz 25°C 36 36 Vn f = 1 kHz 25°C 19 19 Peak-to-peak equivalent input noise voltage f = 0.1 Hz to 1 Hz 25°C 0.7 0.7 VN(PP) f = 0.1 Hz to 10 Hz 25°C 1.1 1.1 In Equivalent input noise current 25°C 0.6 0.6 Total harmonic distortion plus noise VO = 0.5 V to 2.5 V, f = 10 kHz kHz, RL = 50 kΩ‡ AV = 1 0.2% 0.2% THD + N 1% 1% Gain-bandwidth product f = 50 kHz, CL = 100 pF‡ RL = 50 kΩ‡, 25°C 0.2 0.2 MHz BOM Maximum outputswing bandwidth VO(PP) = 2 V, RL = 50 kΩ‡, AV = 1, CL = 100 pF‡ 25°C 30 30 kHz φm Phase margin at unity gain RL = 50 kΩ‡, CL = 100 pF‡ 25°C 63° 63° 25°C 15 15 CL = 100 pF‡ ‡ 6 nV/√Hz µV V fA√Hz 25°C AV = 10 Gain margin † V/µs 0.05 Full range is −40°C to 125°C for Q suffix. Referenced to 2.5 V • POST OFFICE BOX 655303 DALLAS, TEXAS 75265 POST OFFICE BOX 1443 HOUSTON, TEXAS 77251−1443 • dB TLC225x-Q1, TLC225xA-Q1 Advanced LinCMOS RAIL-TO-RAIL VERY LOW-POWER OPERATIONAL AMPLIFIERS  SGLS188B − OCTOBER 2003 − REVISED APRIL 2008 electrical characteristics at specified free-air temperature, VDD ± = ±5 V (unless otherwise noted) PARAMETER TA† TEST CONDITIONS TLC2252-Q1 MIN 25°C VIO Input offset voltage αVIO Temperature coefficient of input offset voltage Input offset voltage longterm drift (see Note 4) IIO Input offset current IIB Input bias current MAX 200 1500 Full range VO = 0, Common mode input Common-mode voltage range VOM + 0.003 0.003 µV/mo 25°C 0.5 VOM − Maximum M i negative ti peak output voltage VIC = 0, IO = 50 µA VIC = 0, 0 IO = 500 µA A Large-signal L i l diff differential ti l voltage amplification VO = ± 4 V −5 to 4 Full range −5 to 3.5 RL = 100 kΩ RL = 1 MΩ 60 −5.3 to 4.2 4.9 Full range 4.7 25°C 4.8 1 −5 to 4 −4.85 Full range −4.85 −4 25°C 40 10 pA −5.3 to 4.2 V −5 to 3.5 4.98 4.93 4.9 4.93 V 4.7 4.86 4.8 4.86 −4.99 −4.91 −4.85 −4.91 −4.85 −4.3 −4 −3.8 Full range pA 60 1000 −4.99 25°C 60 1000 4.98 25°C Full range 0.5 1000 25°C IO = 4 mA VIC = 0, 0 AVD 1 25°C 25°C 60 1000 25°C IO = − 200 µA µV V 25°C |VIO | ≤ 5 mV A IO = − 100 µA 850 1000 UNIT µV/°C Full range IO = − 20 µA Maximum positive peak output voltage 200 MAX 0.5 Full range RS = 50 Ω, Ω TYP 0.5 25°C VICR MIN 1750 25°C to 125°C VIC = 0, RS = 50 Ω TLC2252A-Q1 TYP V −4.3 −3.8 150 40 150 10 V/mV 25°C 3000 3000 rid Differential input resistance 25°C 1012 1012 Ω ric Common-mode input resistance 25°C 1012 1012 Ω cic Common-mode input capacitance f = 10 kHz, P package 25°C 8 8 pF zo Closed-loop output impedance f = 25 kHz, AV = 10 25°C 190 190 Ω Common mode Common-mode rejection ratio VIC = − 5 V to 2.7 V, VO = 0, RS = 50 Ω 25°C 75 CMRR Full range 75 Supply voltage rejection Supply-voltage ratio (∆VDD ± /∆VIO) VDD = ±2.2 V to ±8 V, VIC = 0, No load 25°C 80 kSVR Full range 80 IDD Supply current 2 5 V, V VO = 2.5 25°C No load Full range 88 75 88 dB 75 95 80 95 dB 80 80 125 150 80 125 150 A µA † Full range is −40°C to 125°C for Q suffix. NOTE 4: Typical values are based on the input offset voltage shift observed through 500 hours of operating life test at TA = 150°C extrapolated to TA = 25°C using the Arrhenius equation and assuming an activation energy of 0.96 eV. • POST OFFICE BOX 655303 DALLAS, TEXAS 75265 POST OFFICE BOX 1443 HOUSTON, TEXAS 77251−1443 • 7 TLC225x-Q1, TLC225xA-Q1 Advanced LinCMOS RAIL-TO-RAIL VERY LOW-POWER OPERATIONAL AMPLIFIERS  SGLS188B − OCTOBER 2003 − REVISED APRIL 2008 operating characteristics at specified free-air temperature, VDD ± = ±5 V PARAMETER TA† TEST CONDITIONS VO = ± 2 V V, CL = 100 pF RL = 100 kΩ, kΩ TLC2252-Q1 MIN TYP 25°C 0.07 0.12 Full range 0.05 MAX TLC2252A-Q1 MIN TYP 0.07 0.12 MAX UNIT SR Slew rate at unity gain Equivalent input noise voltage f = 10 Hz 25°C 38 38 Vn f = 1 kHz 25°C 19 19 Peak to peak equivalent Peak-to-peak input noise voltage f = 0.1 Hz to 1 Hz 25°C 0.8 0.8 VN(PP) f = 0.1 Hz to 10 Hz 25°C 1.1 1.1 In Equivalent input noise current 25°C 0.6 0.6 Total harmonic distortion plus noise VO = ± 2.3 V, RL = 50 kΩ, kΩ f = 10 kHz AV = 1 0.2% 0.2% THD + N 1% 1% Gain-bandwidth product f =10 kHz, CL = 100 pF RL = 50 kΩ, 25°C 0.21 0.21 MHz BOM Maximum output-swing bandwidth VO(PP) = 4.6 V, RL = 50 kΩ, AV = 1, CL = 100 pF 25°C 14 14 kHz φm Phase margin at unity gain RL = 50 kΩ, CL = 100 pF 25°C 63° 63° 25°C 15 15 8 nV/√Hz µV V fA√Hz 25°C AV = 10 Gain margin † V/µs 0.05 Full range is −40°C to 125°C for Q suffix. • POST OFFICE BOX 655303 DALLAS, TEXAS 75265 POST OFFICE BOX 1443 HOUSTON, TEXAS 77251−1443 • dB TLC225x-Q1, TLC225xA-Q1 Advanced LinCMOS RAIL-TO-RAIL VERY LOW-POWER OPERATIONAL AMPLIFIERS  SGLS188B − OCTOBER 2003 − REVISED APRIL 2008 electrical characteristics at specified free-air temperature, VDD = 5 V (unless otherwise noted) PARAMETER VIO Input offset voltage αVIO Temperature coefficient of input offset voltage Input offset voltage long-term drift (see Note 4) IIO O Input offset current IIB Input bias current VICR Common mode input Common-mode voltage range TA† TEST CONDITIONS 25°C VOH VIC = 0, RS = 50 Ω AVD Large-signal differential voltage amplification 1500 VIC = 2.5 2 5 V, V IOL = 500 µA 2 5 V, V VIC C = 2.5 IOL O = 4 mA VIC = 2 2.5 5V V, VO = 1 V to 4 V RL = 100 kΩ‡ µV 0.003 0.003 µV/mo 25°C 0.5 60 0.5 1000 1 25°C 0 to 4 60 Full range 0 to 3.5 −0.3 to 4.2 1 4.9 Full range 4.8 25°C 4.8 0 to 4 −0.3 to 4.2 4.9 4.94 4.88 0.09 4.8 4.88 0.01 0.15 0.09 0.15 0.8 Full range 25°C 100 10 1 350 0.15 0.15 0.7 1.2 Full range V 4.8 25°C pA 4.98 4.94 0.01 pA V 0 to 3.5 25°C 25°C 60 1000 4.98 25°C 60 1000 1000 Full range RL = 1 MΩ‡ 850 1000 UNIT 25°C 25°C IOL = 50 µA 200 MAX µV/°C |VIO | ≤ 5 mV IOH = − 75 µA TYP 0.5 25°C Ω RS = 50 Ω, MIN 0.5 125°C VIC = 2.5 V, Low-level Low level output voltage 200 125°C IOH = − 150 µA VOL MAX 1750 25°C to 125°C VDD ± = ± 2.5 V, VO = 0, TLC2254A-Q1 TYP Full range IOH = − 20 µA High level output High-level voltage TLC2254-Q1 MIN V 1 1.2 100 350 10 V/mV 25°C 1700 1700 ri(d) Differential input resistance 25°C 1012 1012 Ω ri(c) Common-mode input resistance 25°C 1012 1012 Ω ci(c) Common-mode input capacitance f = 10 kHz, N package 25°C 8 8 pF zo Closed-loop output impedance f = 25 kHz, AV = 10 25°C 200 200 Ω CMRR Common mode Common-mode rejection ratio VIC = 0 to 2.7 V, RS = 50 Ω VO = 2.5 V, 25°C 70 Full range 70 Supply-voltage rejection ratio (∆VDD /∆VIO) VDD = 4.4 V to 16 V, VIC = VDD /2, No load 25°C 80 kSVR Full range 80 IDD Supply current (four amplifiers) VO = 2.5 2 5 V, V 83 70 83 dB 70 95 80 95 dB 25°C No load 80 140 Full range 250 300 140 250 300 µA † Full range is −40°C to 125°C for Q suffix. Referenced to 2.5 V NOTE 4: Typical values are based on the input offset voltage shift observed through 500 hours of operating life test at TA = 150°C extrapolated to TA = 25°C using the Arrhenius equation and assuming an activation energy of 0.96 eV. ‡ • POST OFFICE BOX 655303 DALLAS, TEXAS 75265 POST OFFICE BOX 1443 HOUSTON, TEXAS 77251−1443 • 9 TLC225x-Q1, TLC225xA-Q1 Advanced LinCMOS RAIL-TO-RAIL VERY LOW-POWER OPERATIONAL AMPLIFIERS  SGLS188B − OCTOBER 2003 − REVISED APRIL 2008 operating characteristics at specified free-air temperature, VDD = 5 V PARAMETER TA† TEST CONDITIONS ‡ TYP 0.12 MAX TLC2254A-Q1 MIN TYP 0.07 0.12 MAX UNIT VO = 0.5 V to 3.5 V, RL = 100 kΩ‡, CL = 100 pF‡ 25°C 0.07 Full range 0.05 Equivalent input noise voltage f = 10 Hz 25°C 36 36 f = 1 kHz 25°C 19 19 Peak-to-peak equivalent input noise voltage f = 0.1 Hz to 1 Hz 25°C 0.7 0.7 VN(PP) f = 0.1 Hz to 10 Hz 25°C 1.1 1.1 In Equivalent input noise current 25°C 0.6 0.6 Total harmonic distortion plus noise VO = 0.5 V to 2.5 V, f = 20 kHz kHz, RL = 50 kΩ‡ AV = 1 0.2% 0.2% THD + N 1% 1% Gain-bandwidth product f = 50 kHz, CL = 100 pF‡ RL = 50 kΩ‡, 25°C 0.2 0.2 MHz BOM Maximum outputswing bandwidth VO(PP) = 2 V, RL = 50 kΩ‡, AV = 1, CL = 100 pF‡ 25°C 30 30 kHz φm Phase margin at unity gain RL = 50 kΩ‡, CL = 100 pF‡ 25°C 63° 63° 25°C 15 15 SR Slew rate at unity gain Vn AV = 10 Full range is −40°C to 125°C for Q suffix. Referenced to 2.5 V 10 V/µs 0.05 nV/√Hz µV V fA /√Hz 25°C Gain margin † TLC2254-Q1 MIN • POST OFFICE BOX 655303 DALLAS, TEXAS 75265 POST OFFICE BOX 1443 HOUSTON, TEXAS 77251−1443 • dB TLC225x-Q1, TLC225xA-Q1 Advanced LinCMOS RAIL-TO-RAIL VERY LOW-POWER OPERATIONAL AMPLIFIERS  SGLS188B − OCTOBER 2003 − REVISED APRIL 2008 electrical characteristics at specified free-air temperature, VDD ± = ±5 V (unless otherwise noted) PARAMETER TA† TEST CONDITIONS TLC2254-Q1 MIN 25°C VIO Input offset voltage αVIO Temperature coefficient of input offset voltage Input offset voltage long-term drift (see Note 4) IIO Input offset current IIB Input bias current MAX 200 1500 Full range VO = 0, Common mode input Common-mode voltage range VOM + 0.003 0.003 µV/mo 25°C 0.5 VOM − Maximum M i negative ti peakk output voltage VIC = 0, IO = 50 µA VIC = 0 0, IO = 500 µA A VIC = 0 0, AVD Large-signal L i l diff differential ti l voltage amplification 1 VO = ± 4 V −5 to 4 Full range −5 to 3.5 4.9 Full range 4.7 25°C 4.8 RL = 100 kΩ RL = 1 MΩ 1 −5 to 4 −4.85 Full range −4.85 −4 25°C 40 10 pA −5.3 to 4.2 V −5 to 3.5 4.98 4.93 4.9 4.93 V 4.7 4.86 4.8 4.86 −4.99 −4.91 −4.85 −4.91 −4.85 −4.3 −4 −3.8 Full range pA 60 1000 −4.99 25°C Full range 60 −5.3 to 4.2 60 1000 4.98 25°C 25°C IO = 4 mA 0.5 1000 25°C 25°C 60 1000 25°C IO = − 200 µA µV V 25°C |VIO | ≤ 5 mV IO = − 100 µA A 850 1000 UNIT µV/°C 125°C IO = − 20 µA Maximum positive peak output voltage 200 MAX 0.5 125°C RS = 50 Ω, Ω TYP 0.5 25°C VICR MIN 1750 25°C to 125°C VIC = 0, RS = 50 Ω TLC2254A-Q1 TYP V −4.3 −3.8 150 40 150 10 V/mV 25°C 3000 3000 ri(d) Differential input resistance 25°C 1012 1012 Ω ri(c) Common-mode input resistance 25°C 1012 1012 Ω ci(c) Common-mode input capacitance f = 10 kHz, N package 25°C 8 8 pF zo Closed-loop output impedance f = 25 kHz, AV = 10 25°C 190 190 Ω CMRR Common mode rejection Common-mode ratio VIC = − 5 V to 2.7 V, VO = 0, RS = 50 Ω kSVR Supply voltage rejection Supply-voltage ratio (∆VDD ± /∆VIO) VDD± = ± 2.2 V to ± 8 V, VIC = VDD /2, No load IDD Supply current (four amplifiers) VO = 0 0, 25°C 75 Full range 75 25°C 80 Full range 80 25°C No load 88 75 88 dB 75 95 80 95 dB 80 160 Full range 250 300 160 250 300 µA A † Full range is −40°C to 125°C for Q suffix. NOTE 4: Typical values are based on the input offset voltage shift observed through 500 hours of operating life test at TA = 150°C extrapolated to TA = 25°C using the Arrhenius equation and assuming an activation energy of 0.96 eV. • POST OFFICE BOX 655303 DALLAS, TEXAS 75265 POST OFFICE BOX 1443 HOUSTON, TEXAS 77251−1443 • 11 TLC225x-Q1, TLC225xA-Q1 Advanced LinCMOS RAIL-TO-RAIL VERY LOW-POWER OPERATIONAL AMPLIFIERS  SGLS188B − OCTOBER 2003 − REVISED APRIL 2008 operating characteristics at specified free-air temperature, VDD ± = ±5 V PARAMETER TA† TEST CONDITIONS VO = ± 2 V V, CL = 100 pF RL = 100 kΩ, kΩ TYP 25°C 0.07 0.12 Full range 0.05 MAX TLC2254A-Q1 MIN TYP 0.07 0.12 MAX UNIT SR Slew rate at unity gain Equivalent input noise voltage f = 10 Hz 25°C 38 38 Vn f = 1 kHz 25°C 19 19 Peak-to-peak equivalent input noise voltage f = 0.1 Hz to 1 Hz 25°C 0.8 0.8 VN(PP) f = 0.1 Hz to 10 Hz 25°C 1.1 1.1 In Equivalent input noise current 25°C 0.6 0.6 Total harmonic distortion plus noise VO = ± 2.3 V, RL = 50 kΩ, kΩ f = 20 kHz AV = 1 0.2% 0.2% THD + N 1% 1% Gain-bandwidth product f =10 kHz, CL = 100 pF RL = 50 kΩ, 25°C 0.21 0.21 MHz BOM Maximum output-swing bandwidth VO(PP) = 4.6 V, RL = 50 kΩ, AV = 1, CL = 100 pF 25°C 14 14 kHz φm Phase margin at unity gain RL = 50 kΩ, CL = 100 pF 25°C 63° 63° 25°C 15 15 AV = 10 Full range is −40°C to 125°C for Q suffix. 12 V/µs 0.05 nV/√Hz µV V fA /√Hz 25°C Gain margin † TLC2254-Q1 MIN • POST OFFICE BOX 655303 DALLAS, TEXAS 75265 POST OFFICE BOX 1443 HOUSTON, TEXAS 77251−1443 • dB TLC225x-Q1, TLC225xA-Q1 Advanced LinCMOS RAIL-TO-RAIL VERY LOW-POWER OPERATIONAL AMPLIFIERS  SGLS188B − OCTOBER 2003 − REVISED APRIL 2008 TYPICAL CHARACTERISTICS Table of Graphs FIGURE VIO Input offset voltage Distribution vs Common-mode input voltage 2−5 6, 7 αVIO Input offset voltage temperature coefficient Distribution 8 − 11 IIB/IIO Input bias and input offset currents vs Free-air temperature 12 VI Input voltage range vs Supply voltage vs Free-air temperature 13 14 VOH High-level output voltage vs High-level output current 15 VOL Low-level output voltage vs Low-level output current 16, 17 VOM + Maximum positive peak output voltage vs Output current 18 VOM − Maximum negative peak output voltage vs Output current 19 VO(PP) Maximum peak-to-peak output voltage vs Frequency 20 IOS Short circuit output current Short-circuit vs Supply voltage vs Free-air temperature 21 22 VO Output voltage vs Differential input voltage Differential gain vs Load resistance AVD Large signal differential voltage amplification Large-signal vs Frequency vs Free-air temperature 26, 27 28, 29 zo Output impedance vs Frequency 30, 31 CMRR Common mode rejection ratio Common-mode vs Frequency vs Free-air temperature 32 33 kSVR Supply voltage rejection ratio Supply-voltage vs Frequency vs Free-air temperature 34, 35 36 IDD Supply current vs Supply voltage vs Free-air temperature 37 38 SR Slew rate vs Load capacitance vs Free-air temperature 39 40 VO Inverting large-signal pulse response 41, 42 VO Voltage-follower large-signal pulse response 43, 44 VO Inverting small-signal pulse response 45, 46 VO Voltage-follower small-signal pulse response 47, 48 Vn Equivalent input noise voltage vs Frequency Noise voltage (referred to input) Over a 10-second period 51 Integrated noise voltage vs Frequency 52 Total harmonic distortion plus noise vs Frequency 53 Gain bandwidth product Gain-bandwidth vs Free Free-air air temperature vs Supply voltage 54 55 φm Phase margin vs Frequency vs Load capacitance 26, 27 56 Am Gain margin vs Load capacitance 57 B1 Unity-gain bandwidth vs Load capacitance 58 Overestimation of phase margin vs Load capacitance 59 THD + N • POST OFFICE BOX 655303 DALLAS, TEXAS 75265 POST OFFICE BOX 1443 HOUSTON, TEXAS 77251−1443 • 23, 24 25 49, 50 13 TLC225x-Q1, TLC225xA-Q1 Advanced LinCMOS RAIL-TO-RAIL VERY LOW-POWER OPERATIONAL AMPLIFIERS  SGLS188B − OCTOBER 2003 − REVISED APRIL 2008 TYPICAL CHARACTERISTICS DISTRIBUTION OF TLC2252 INPUT OFFSET VOLTAGE DISTRIBUTION OF TLC2252 INPUT OFFSET VOLTAGE 35 30 Percentage of Amplifiers − % Percentage of Amplifiers − % 30 35 682 Amplifiers From 1 Wafer Lots VDD± = ± 2.5 V P Package TA = 25°C 25 20 15 10 5 682 Amplifiers From 1 Wafer Lots VDD± = ± 5 V P Package TA = 25°C 25 20 15 10 5 0 −1.6 −0.8 0 0.8 0 −1.6 1.6 −0.8 VIO − Input Offset Voltage − mV Figure 2 0.8 1.6 Figure 3 DISTRIBUTION OF TLC2254 INPUT OFFSET VOLTAGE DISTRIBUTION OF TLC2254 INPUT OFFSET VOLTAGE 20 25 Percentage of Amplifiers − % 1020 Amplifiers From 1 Wafer Lot VDD = ± 2.5 V TA = 25°C Percentage of Amplifiers − % 0 VIO − Input Offset Voltage − mV 15 10 5 20 1020 Amplifiers From 1 Wafer Lot VDD ± = ± 5 V TA = 25°C 15 10 5 0 −1.6 −0.8 0 0.8 VIO − Input Offset Voltage − mV 0 −1.6 1.6 Figure 4 14 0 0.8 −0.8 VIO − Input Offset Voltage − mV Figure 5 • POST OFFICE BOX 655303 DALLAS, TEXAS 75265 POST OFFICE BOX 1443 HOUSTON, TEXAS 77251−1443 • 1.6 TLC225x-Q1, TLC225xA-Q1 Advanced LinCMOS RAIL-TO-RAIL VERY LOW-POWER OPERATIONAL AMPLIFIERS  SGLS188B − OCTOBER 2003 − REVISED APRIL 2008 TYPICAL CHARACTERISTICS INPUT OFFSET VOLTAGE† vs COMMON-MODE INPUT VOLTAGE INPUT OFFSET VOLTAGE vs COMMON-MODE INPUT VOLTAGE 1 0.6 0.4 0.2 0 −0.2 ÁÁ ÁÁ ÁÁ ÁÁ ÁÁ −0.4 −0.6 −0.8 −1 −1 0 VDD± = ± 5 V RS = 50 Ω TA = 25°C 0.8 VVIO IO − Input Offset Voltage − mV VVIO IO − Input Offset Voltage − mV 1 VDD = 5 V RS = 50 Ω TA = 25°C 0.8 1 2 3 4 5 VIC − Common-Mode Input Voltage − V 0.6 0.4 0.2 0 −0.2 −0.4 −0.6 −0.8 −1 −6 −5 −4 −3 −2 −1 0 1 2 3 4 VIC − Common-Mode Input Voltage − V Figure 6 Figure 7 DISTRIBUTION OF TLC2252 INPUT OFFSET VOLTAGE TEMPERATURE COEFFICIENT DISTRIBUTION OF TLC2252 INPUT OFFSET VOLTAGE TEMPERATURE COEFFICIENT 25 62 Amplifiers From 1 Wafer Lot VDD = ± 2.5 V 62 Amplifiers From 1 Wafer Lot VDD = ± 5 V P Package TA = 25°C to 125°C P Package TA = 25°C to 125°C Percentage of Amplifiers − % Precentage of Amplifiers − % 25 20 15 10 20 15 10 5 5 0 0 −1 α 0 1 VIO − Temperature Coefficient − µV / °C −1 2 α VIO − 0 1 Temperature Coefficient − µV / °C 2 Figure 9 Figure 8 † 5 For curves where VDD = 5 V, all loads are referenced to 2.5 V. • POST OFFICE BOX 655303 DALLAS, TEXAS 75265 POST OFFICE BOX 1443 HOUSTON, TEXAS 77251−1443 • 15 TLC225x-Q1, TLC225xA-Q1 Advanced LinCMOS RAIL-TO-RAIL VERY LOW-POWER OPERATIONAL AMPLIFIERS  SGLS188B − OCTOBER 2003 − REVISED APRIL 2008 TYPICAL CHARACTERISTICS DISTRIBUTION OF TLC2254 INPUT OFFSET VOLTAGE TEMPERATURE COEFFICIENT 20 25 62 Amplifiers From 1 Wafer Lot VDD ± = ± 2.5 V P Package TA = 25°C to 125°C Percentage of Amplifiers − % Percentage of Amplifiers − % 25 DISTRIBUTION OF TLC2254 INPUT OFFSET VOLTAGE TEMPERATURE COEFFICIENT 15 10 5 0 −2 −1 0 1 αVIO − Temperature Coefficient of Input Offset Voltage − µV / °C 62 Amplifiers From 1 Wafer Lot VDD ± = ± 5 V P Package TA = 25°C to 125°C 20 15 10 5 0 −2 2 −1 ÁÁ ÁÁ † 16 1 2 Figure 11 INPUT VOLTAGE RANGE vs SUPPLY VOLTAGE INPUT BIAS AND INPUT OFFSET CURRENTS† vs FREE-AIR TEMPERATURE 10 35 VDD± = ± 2.5 V VIC = 0 VO = 0 RS = 50 Ω RS = 50 Ω TA = 25°C 8 V VII − Input Voltage Range − V IIO − Input Bias and Input Offset Currents − pA IIIB IB and IIO Figure 10 30 0 αVIO − Temperature Coefficient of Input Offset Voltage − µV / °C 25 IIB 20 15 IIO 10 5 6 4 2 0 | VIO | ≤ 5 mV −2 −4 −6 −8 −10 0 25 45 65 85 105 TA − Free-Air Temperature − °C 2 125 Figure 12 3 4 5 6 7 | VDD ± | − Supply Voltage − V Figure 13 Data at high and low temperatures are applicable only within the rated operating free-air temperature ranges of the various devices. • POST OFFICE BOX 655303 DALLAS, TEXAS 75265 POST OFFICE BOX 1443 HOUSTON, TEXAS 77251−1443 • 8 TLC225x-Q1, TLC225xA-Q1 Advanced LinCMOS RAIL-TO-RAIL VERY LOW-POWER OPERATIONAL AMPLIFIERS  SGLS188B − OCTOBER 2003 − REVISED APRIL 2008 TYPICAL CHARACTERISTICS HIGH-LEVEL OUTPUT VOLTAGE†‡ vs HIGH-LEVEL OUTPUT CURRENT INPUT VOLTAGE RANGE† vs FREE-AIR TEMPERATURE 5 5 VDD = 5 V VOH − High-Level Output Voltage − V VOH VDD = 5 V V VII − Input Voltage Range − V 4 3 2 ÁÁ ÁÁ 1 0 −1 −75 −55 −35 −15 5 25 45 65 85 105 125 TA − Free-Air Temperature − °C ÁÁ ÁÁ ÁÁ TA = − 55°C 4 TA = − 40°C 3 TA = 25°C 2 TA = 125°C 1 0 0 200 400 600 | IOH| − High-Level Output Current − µA Figure 14 Figure 15 LOW-LEVEL OUTPUT VOLTAGE†‡ vs LOW-LEVEL OUTPUT CURRENT LOW-LEVEL OUTPUT VOLTAGE‡ vs LOW-LEVEL OUTPUT CURRENT 1.4 VDD = 5 V TA = 25°C 1 V VOL OL − Low-Level Output Voltage − V VOL VOL − Low-Level Output Voltage − V 1.2 VIC = 1.25 V VIC = 0 0.8 0.6 VIC = 2.5 V ÁÁ ÁÁ ÁÁ ÁÁ ÁÁ ÁÁ 0.4 0.2 0 0 1 2 3 4 VDD = 5 V VIC = 2.5 V 1.2 TA = 125°C 1 0.8 TA = 25°C 0.6 TA = − 40°C 0.2 0 1 2 3 4 5 6 IOL − Low-Level Output Current − mA Figure 16 ‡ TA = − 55°C 0.4 0 5 IOL − Low-Level Output Current − mA † 800 Figure 17 Data at high and low temperatures are applicable only within the rated operating free-air temperature ranges of the various devices. For curves where VDD = 5 V, all loads are referenced to 2.5 V. • POST OFFICE BOX 655303 DALLAS, TEXAS 75265 POST OFFICE BOX 1443 HOUSTON, TEXAS 77251−1443 • 17 TLC225x-Q1, TLC225xA-Q1 Advanced LinCMOS RAIL-TO-RAIL VERY LOW-POWER OPERATIONAL AMPLIFIERS  SGLS188B − OCTOBER 2003 − REVISED APRIL 2008 TYPICAL CHARACTERISTICS ÁÁ ÁÁ ÁÁ MAXIMUM NEGATIVE PEAK OUTPUT VOLTAGE† vs OUTPUT CURRENT VOM − VOM − − Maximum Negative Peak Output Voltage − V VVOM OM ++ − Maximum Positive Peak Output Voltage − V MAXIMUM POSITIVE PEAK OUTPUT VOLTAGE† vs OUTPUT CURRENT 5 4 3 TA = 25°C 2 TA = 125°C TA = − 40°C TA = − 55°C 1 VDD = ± 5 V 0 0 600 200 400 IO − Output Current − µA 800 −3.8 VDD± = ± 5 V VIC = 0 −4 TA = 125°C −4.2 TA = 25°C TA = − 40°C −4.4 −4.6 TA = − 55°C ÁÁ ÁÁ ÁÁ −4.8 −5 0 1 2 3 4 IO − Output Current − mA Figure 18 10 RL = 50 kΩ TA = 25°C VDD± = ± 5 V I OS − Short-Circuit Output Current − mA IOS VO(PP) VO(PP) − Maximum Peak-to-Peak Output Voltage − V ÁÁ ÁÁ ÁÁ SHORT-CIRCUIT OUTPUT CURRENT vs SUPPLY VOLTAGE 10 8 7 6 5 VDD = 5 V 4 3 2 1 0 10 2 10 3 10 4 9 8 VID = − 100 mV 7 5 4 3 2 1 0 −1 10 5 VO = 0 TA = 25°C VIC = 0 6 VID = 100 mV 2 f − Frequency − Hz ‡ 18 3 4 5 6 7 | VDD ± | − Supply Voltage − V Figure 20 † 6 Figure 19 MAXIMUM PEAK-TO-PEAK OUTPUT VOLTAGE‡ vs FREQUENCY 9 5 Figure 21 Data at high and low temperatures are applicable only within the rated operating free-air temperature ranges of the various devices. For curves where VDD = 5 V, all loads are referenced to 2.5 V. • POST OFFICE BOX 655303 DALLAS, TEXAS 75265 POST OFFICE BOX 1443 HOUSTON, TEXAS 77251−1443 • 8 TLC225x-Q1, TLC225xA-Q1 Advanced LinCMOS RAIL-TO-RAIL VERY LOW-POWER OPERATIONAL AMPLIFIERS  SGLS188B − OCTOBER 2003 − REVISED APRIL 2008 TYPICAL CHARACTERISTICS SHORT-CIRCUIT OUTPUT CURRENT† vs FREE-AIR TEMPERATURE OUTPUT VOLTAGE‡ vs DIFFERENTIAL INPUT VOLTAGE 11 5 9 8 4 VID = − 100 mV VO − Output Voltage − V IIOS OS − Short-Circuit Output Current − mA VDD = 5 V RL = 50 kΩ VIC = 2.5 V TA = 25°C VO = 0 VDD± = ± 5 V 10 7 6 5 4 3 3 2 2 1 1 VID = 100 mV 0 −1 −75 −50 −25 0 25 50 75 100 0 0 250 500 750 1000 −1000 −750 −500 −250 VID − Differential Input Voltage − µV 125 TA − Free-Air Temperature − °C Figure 23 Figure 22 DIFFERENTIAL GAIN‡ vs LOAD RESISTANCE OUTPUT VOLTAGE vs DIFFERENTIAL INPUT VOLTAGE VO − Output Voltage − V 3 104 VDD± = ± 5 V VIC = 0 RL = 50 kΩ TA = 25°C VO (PP) = 2 V TA = 25°C Differential Gain − V/ mV 5 1 −1 103 VDD = ± 5 V VDD = 5 V 102 −3 10 −5 0 250 500 750 1000 −1000 −750 −500 −250 VID − Differential Input Voltage − µV 1 ‡ 103 Figure 25 Figure 24 † 102 101 RL − Load Resistance − kΩ Data at high and low temperatures are applicable only within the rated operating free-air temperature ranges of the various devices. For curves where VDD = 5 V, all loads are referenced to 2.5 V. • POST OFFICE BOX 655303 DALLAS, TEXAS 75265 POST OFFICE BOX 1443 HOUSTON, TEXAS 77251−1443 • 19 TLC225x-Q1, TLC225xA-Q1 Advanced LinCMOS RAIL-TO-RAIL VERY LOW-POWER OPERATIONAL AMPLIFIERS  SGLS188B − OCTOBER 2003 − REVISED APRIL 2008 TYPICAL CHARACTERISTICS LARGE-SIGNAL DIFFERENTIAL VOLTAGE AMPLIFICATION AND PHASE MARGIN† vs FREQUENCY AVD AVD − Large-Signal Differential Voltage Amplification − dB 60 180° VDD = 5 V RL = 50 kΩ CL= 100 pF TA = 25°C 135° 40 90° Phase Margin 20 ÁÁ ÁÁ ÁÁ 45° Gain 0 0° −20 φom m − Phase Margin 80 −45° −40 10 3 10 4 10 5 10 6 −90° 10 7 f − Frequency − Hz Figure 26 LARGE-SIGNAL DIFFERENTIAL VOLTAGE AMPLIFICATION AND PHASE MARGIN vs FREQUENCY 60 180° VDD = ± 10 V RL= 50 kΩ CL= 100 pF TA = 25°C 135° 40 Phase Margin 20 ÁÁ ÁÁ ÁÁ 45° Gain 0 0° −20 −45° −40 10 3 10 4 10 5 10 6 f − Frequency − Hz Figure 27 † 20 90° For curves where VDD = 5 V, all loads are referenced to 2.5 V. • POST OFFICE BOX 655303 DALLAS, TEXAS 75265 POST OFFICE BOX 1443 HOUSTON, TEXAS 77251−1443 • −90° 10 7 φom m − Phase Margin AVD AVD − Large-Signal Differential Voltage Amplification − dB 80 TLC225x-Q1, TLC225xA-Q1 Advanced LinCMOS RAIL-TO-RAIL VERY LOW-POWER OPERATIONAL AMPLIFIERS  SGLS188B − OCTOBER 2003 − REVISED APRIL 2008 TYPICAL CHARACTERISTICS LARGE-SIGNAL DIFFERENTIAL VOLTAGE AMPLIFICATION†‡ vs FREE-AIR TEMPERATURE RL = 1 MΩ 10 3 ÁÁ ÁÁ 10 4 VDD = 5 V VIC = 2.5 V VO = 1 V to 4 V AVD AVD − Large-Signal Differential Voltage Amplification − V/mV AVD AVD − Large-Signal Differential Voltage Amplification − V/mV 10 4 LARGE-SIGNAL DIFFERENTIAL VOLTAGE AMPLIFICATION† vs FREE-AIR TEMPERATURE RL = 50 kΩ 10 2 101 −75 −50 ÁÁ ÁÁ −25 0 25 50 75 TA − Free-Air Temperature − °C 100 RL = 1 MΩ 10 3 RL = 50 kΩ 10 2 101 −75 125 VDD± = ± 5 V VIC = 0 VO = ± 4 V −50 −25 0 25 50 75 100 TA − Free-Air Temperature − °C Figure 28 Figure 29 OUTPUT IMPEDANCE vs FREQUENCY OUTPUT IMPEDANCE‡ vs FREQUENCY 1000 1000 VDD± = ± 5 V TA = 25°C z o − Output Impedance − 0 zo Ω VDD = 5 V TA = 25°C z o − Output Impedance − 0 zo Ω 125 100 AV = 100 10 AV = 10 1 AV = 1 100 AV = 100 10 AV = 10 1 AV = 1 0.1 10 2 10 3 10 4 f − Frequency − Hz 10 5 0.1 10 2 10 6 ‡ 10 4 f − Frequency − Hz 10 5 10 6 Figure 31 Figure 30 † 10 3 Data at high and low temperatures are applicable only within the rated operating free-air temperature ranges of the various devices. For curves where VDD = 5 V, all loads are referenced to 2.5 V. • POST OFFICE BOX 655303 DALLAS, TEXAS 75265 POST OFFICE BOX 1443 HOUSTON, TEXAS 77251−1443 • 21 TLC225x-Q1, TLC225xA-Q1 Advanced LinCMOS RAIL-TO-RAIL VERY LOW-POWER OPERATIONAL AMPLIFIERS  SGLS188B − OCTOBER 2003 − REVISED APRIL 2008 TYPICAL CHARACTERISTICS COMMON-MODE REJECTION RATIO†‡ vs FREE-AIR TEMPERATURE COMMON-MODE REJECTION RATIO† vs FREQUENCY 94 CMRR − Common-Mode Rejection Ratio − dB CMRR − Common-Mode Rejection Ratio − dB 100 VDD± = ± 5 V 80 VDD = 5 V 60 40 20 0 101 10 2 10 3 10 4 10 5 VDD± = ± 5 V 92 90 86 84 82 80 −75 16 6 VDD = 5 V 88 −50 f − Frequency − Hz −25 0 25 50 75 100 TA − Free-Air Temperature − °C Figure 32 Figure 33 SUPPLY-VOLTAGE REJECTION RATIO† vs FREQUENCY SUPPLY-VOLTAGE REJECTION RATIO vs FREQUENCY 100 VDD = 5 V TA = 25°C kSVR + KSVR k SVR − Supply-Voltage Rejection Ratio − dB KSVR k SVR − Supply-Voltage Rejection Ratio − dB 100 80 60 kSVR − 40 20 ÁÁ ÁÁ ÁÁ 0 −20 101 10 2 10 3 10 4 f − Frequency − Hz 10 5 10 6 ÁÁ ÁÁ ÁÁ ‡ 22 VDD± = ± 5 V TA = 25°C kSVR + 80 60 kSVR − 40 20 0 −20 101 10 2 Figure 34 † 125 10 3 10 4 f − Frequency − Hz 10 5 Figure 35 For curves where VDD = 5 V, all loads are referenced to 2.5 V. Data at high and low temperatures are applicable only within the rated operating free-air temperature ranges of the various devices. • POST OFFICE BOX 655303 DALLAS, TEXAS 75265 POST OFFICE BOX 1443 HOUSTON, TEXAS 77251−1443 • 10 6 TLC225x-Q1, TLC225xA-Q1 Advanced LinCMOS RAIL-TO-RAIL VERY LOW-POWER OPERATIONAL AMPLIFIERS  SGLS188B − OCTOBER 2003 − REVISED APRIL 2008 TYPICAL CHARACTERISTICS SUPPLY-VOLTAGE REJECTION RATIO† vs FREE-AIR TEMPERATURE SUPPLY CURRENT† vs SUPPLY VOLTAGE 110 240 k KSVR SVR − Supply-Voltage Rejection Ratio − dB VDD± = ± 2.2 V to ± 8 V VO = 0 VO = 0 No Load 200 IDD µA I DD − Supply Current − uA 105 100 ÁÁ ÁÁ ÁÁ TA = − 55°C 160 TA = 25°C 120 ÁÁ ÁÁ ÁÁ 95 TA = 125°C TA = − 40°C 80 40 90 −75 −50 −25 0 25 50 75 100 0 125 0 1 TA − Free-Air Temperature − °C Figure 36 8 SLEW RATE‡ vs LOAD CAPACITANCE 0.2 240 0.18 VDD± = ± 5 V VO = 0 160 VDD = 5 V VO = 2.5 V 120 VDD = 5 V AV = − 1 TA = 25°C 0.16 SR − Slew Rate − V/ v/us µs 200 µA IDD I DD − Supply Current − uA 7 Figure 37 SUPPLY CURRENT†‡ vs FREE-AIR TEMPERATURE ÁÁ ÁÁ 6 2 3 4 5 | VDD ± | − Supply Voltage − V 80 0.14 SR − 0.12 0.1 SR + 0.08 0.06 0.04 40 0.02 0 −75 −50 −25 0 25 50 75 100 TA − Free-Air Temperature − °C 0 101 125 Figure 38 † ‡ 10 2 10 3 CL − Load Capacitance − pF 10 4 Figure 39 Data at high and low temperatures are applicable only within the rated operating free-air temperature ranges of the various devices. For curves where VDD = 5 V, all loads are referenced to 2.5 V. • POST OFFICE BOX 655303 DALLAS, TEXAS 75265 POST OFFICE BOX 1443 HOUSTON, TEXAS 77251−1443 • 23 TLC225x-Q1, TLC225xA-Q1 Advanced LinCMOS RAIL-TO-RAIL VERY LOW-POWER OPERATIONAL AMPLIFIERS  SGLS188B − OCTOBER 2003 − REVISED APRIL 2008 TYPICAL CHARACTERISTICS SLEW RATE†‡ vs FREE-AIR TEMPERATURE INVERTING LARGE-SIGNAL PULSE RESPONSE‡ 0.2 5 SR − Slew Rate − v/uss V/ µ 0.16 VO VO − Output Voltage − V VDD = 5 V RL = 50 kΩ CL = 100 pF AV = 1 SR − 0.12 SR + 0.08 VDD = 5 V RL = 50 kΩ CL = 100 pF 4 A = −1 V TA = 25°C 3 2 1 0.04 0 −75 0 −50 −25 0 25 50 75 100 TA − Free-Air Temperature − °C 0 125 10 20 30 80 90 100 5 VO VO − Output Voltage − V VO VO − Output Voltage − V 2 70 VOLTAGE-FOLLOWER LARGE-SIGNAL PULSE RESPONSE‡ VDD± = ± 5 V RL = 50 kΩ CL = 100 pF AV = − 1 TA = 25°C 3 60 Figure 41 INVERTING LARGE-SIGNAL PULSE RESPONSE 4 50 t − Time − µs Figure 40 5 40 1 0 −1 −2 VDD = 5 V RL = 50 kΩ CL = 100 pF 4 A =1 V TA = 25°C 3 2 1 −3 −4 0 −5 0 10 20 30 40 50 60 t − Time − µs 70 80 0 90 100 10 Figure 42 † ‡ 24 20 30 40 50 60 70 t − Time − µs 80 90 100 Figure 43 Data at high and low temperatures are applicable only within the rated operating free-air temperature ranges of the various devices. For curves where VDD = 5 V, all loads are referenced to 2.5 V. • POST OFFICE BOX 655303 DALLAS, TEXAS 75265 POST OFFICE BOX 1443 HOUSTON, TEXAS 77251−1443 • TLC225x-Q1, TLC225xA-Q1 Advanced LinCMOS RAIL-TO-RAIL VERY LOW-POWER OPERATIONAL AMPLIFIERS  SGLS188B − OCTOBER 2003 − REVISED APRIL 2008 TYPICAL CHARACTERISTICS INVERTING SMALL-SIGNAL PULSE RESPONSE† VOLTAGE-FOLLOWER LARGE-SIGNAL PULSE RESPONSE 5 3 2 VDD = 5 V RL = 50 kΩ CL = 100 pF AV = − 1 TA = 25°C 2.6 VO VO − Output Voltage − V 4 VO VO − Output Voltage − V 2.65 VDD± = ± 5 V RL = 50 kΩ CL = 100 pF AV = 1 TA = 25°C 1 0 −1 −2 −3 2.55 2.5 2.45 −4 −5 2.4 0 10 20 30 40 50 60 t − Time − µs 70 80 0 90 100 10 INVERTING SMALL-SIGNAL PULSE RESPONSE 50 VOLTAGE-FOLLOWER SMALL-SIGNAL PULSE RESPONSE† 0.1 2.65 VDD± = ± 5 V RL = 50 kΩ CL = 100 pF AV = − 1 TA = 25°C VDD = 5 V RL = 50 kΩ CL = 100 pF AV = 1 TA = 25°C 2.6 VO VO − Output Voltage − V VO VO − Output Voltage − mV 40 Figure 45 Figure 44 0.05 20 30 t − Time − µs 0 −0.05 2.55 2.5 2.45 −0.1 0 2.4 10 20 30 40 50 0 t − Time − µs Figure 46 † 10 20 30 t − Time − µs 40 50 Figure 47 For curves where VDD = 5 V, all loads are referenced to 2.5 V. • POST OFFICE BOX 655303 DALLAS, TEXAS 75265 POST OFFICE BOX 1443 HOUSTON, TEXAS 77251−1443 • 25 TLC225x-Q1, TLC225xA-Q1 Advanced LinCMOS RAIL-TO-RAIL VERY LOW-POWER OPERATIONAL AMPLIFIERS  SGLS188B − OCTOBER 2003 − REVISED APRIL 2008 TYPICAL CHARACTERISTICS EQUIVALENT INPUT NOISE VOLTAGE† vs FREQUENCY VOLTAGE-FOLLOWER SMALL-SIGNAL PULSE RESPONSE 60 VDD ± = ± 5 V RL = 50 kΩ CL = 100 pF AV = 1 TA = 25°C 0.05 V n − Equivalent Input Noise Voltage − nV/ VN nv//HzHz VO VO − Output Voltage − V 0.1 0 −0.05 −0.1 0 10 20 30 t − Time − µs 40 50 VDD = 5 V RS = 20 Ω TA = 25°C 50 40 30 20 10 0 101 10 2 10 3 f − Frequency − Hz Figure 49 Figure 48 EQUIVALENT INPUT NOISE VOLTAGE vs FREQUENCY EQUIVALENT INPUT NOISE VOLTAGE OVER A 10-SECOND PERIOD† 1000 VDD± = ± 5 V RS = 20 Ω TA = 25°C VDD = 5 V f = 0.1 Hz to 10 Hz TA = 25°C 750 500 Noise Voltage − nV V n − Equivalent Input Noise Voltage − nv//Hz VN nV/ Hz 60 50 40 30 20 250 0 −250 −500 10 −750 0 101 10 2 10 3 f − Frequency − Hz −1000 10 4 0 Figure 50 † 26 10 4 2 4 6 t − Time − s Figure 51 For curves where VDD = 5 V, all loads are referenced to 2.5 V. • POST OFFICE BOX 655303 DALLAS, TEXAS 75265 POST OFFICE BOX 1443 HOUSTON, TEXAS 77251−1443 • 8 10 TLC225x-Q1, TLC225xA-Q1 Advanced LinCMOS RAIL-TO-RAIL VERY LOW-POWER OPERATIONAL AMPLIFIERS  SGLS188B − OCTOBER 2003 − REVISED APRIL 2008 TYPICAL CHARACTERISTICS TOTAL HARMONIC DISTORTION PLUS NOISE† vs FREQUENCY THD + N − Total Harmonic Distortion Plus Noise − % INTEGRATED NOISE VOLTAGE vs FREQUENCY Integrated Noise Voltage − µ V 100 Calculated Using Ideal Pass-Band Filter Low Frequency = 1 Hz TA = 25°C 10 1 0.1 1 101 10 2 10 3 f − Frequency − Hz 10 4 10 5 1 AV = 100 0.1 AV = 10 0.01 AV = 1 VDD = 5 V RL = 50 kΩ TA = 25°C 0.001 101 10 2 GAIN-BANDWIDTH PRODUCT vs SUPPLY VOLTAGE 250 TA = 25°C VDD = 5 V f = 10 kHz RL = 50 kΩ CL = 100 pF 240 Gain-Bandwidth Product − kHz Gain-Bandwidth Product − kHz 280 200 160 120 230 210 190 170 150 −50 −25 0 25 50 75 100 0 125 1 TA − Free-Air Temperature − °C 2 3 4 5 6 7 8 | VDD ± | − Supply Voltage − V Figure 54 ‡ 10 5 Figure 53 GAIN-BANDWIDTH PRODUCT †‡ vs FREE-AIR TEMPERATURE † 10 4 f − Frequency − Hz Figure 52 80 −75 10 3 Figure 55 For curves where VDD = 5 V, all loads are referenced to 2.5 V. Data at high and low temperatures are applicable only within the rated operating free-air temperature ranges of the various devices. • POST OFFICE BOX 655303 DALLAS, TEXAS 75265 POST OFFICE BOX 1443 HOUSTON, TEXAS 77251−1443 • 27 TLC225x-Q1, TLC225xA-Q1 Advanced LinCMOS RAIL-TO-RAIL VERY LOW-POWER OPERATIONAL AMPLIFIERS  SGLS188B − OCTOBER 2003 − REVISED APRIL 2008 TYPICAL CHARACTERISTICS PHASE MARGIN vs LOAD CAPACITANCE 75° GAIN MARGIN vs LOAD CAPACITANCE 20 Rnull = 200 Ω TA = 25°C Rnull = 500 Ω Rnull = 500 Ω 60° Gain Margin − dB φom m − Phase Margin 15 45° Rnull = 100 Ω Rnull = 50 Ω 30° Rnull = 10 Ω 50 kΩ VI Rnull = 50 Ω 5 VDD + Rnull = 0 Rnull − + Rnull = 0 CL TA = 25°C VDD − 0° 101 Rnull = 100 Ω 10 Rnull = 10 Ω 50 kΩ 15° Rnull = 200 Ω 10 4 10 2 10 3 CL − Load Capacitance − pF 0 101 10 5 10 2 10 3 Figure 57 OVERESTIMATION OF PHASE MARGIN† vs LOAD CAPACITANCE UNITY-GAIN BANDWIDTH† vs LOAD CAPACITANCE 25 200 TA = 25°C TA = 25°C Rnull = 500 Ω Overestimation of Phase Margin B1 − Unity-Gain Bandwidth − kHz 175 150 125 100 75 50 20 15 Rnull = 100 Ω 10 Rnull = 10 Ω 5 10 2 10 3 10 4 0 101 10 5 CL − Load Capacitance − pF Figure 58 28 Rnull = 200 Ω Rnull = 50 Ω 25 0 101 † 10 5 CL − Load Capacitance − pF Figure 56 ÁÁ ÁÁ 10 4 10 2 10 3 10 4 CL − Load Capacitance − pF Figure 59 See application information • POST OFFICE BOX 655303 DALLAS, TEXAS 75265 POST OFFICE BOX 1443 HOUSTON, TEXAS 77251−1443 • 10 5 TLC225x-Q1, TLC225xA-Q1 Advanced LinCMOS RAIL-TO-RAIL VERY LOW-POWER OPERATIONAL AMPLIFIERS  SGLS188B − OCTOBER 2003 − REVISED APRIL 2008 APPLICATION INFORMATION driving large capacitive loads The TLC225x is designed to drive larger capacitive loads than most CMOS operational amplifiers. Figure 56 and Figure 57 illustrate its ability to drive loads up to 1000 pF while maintaining good gain and phase margins (Rnull = 0). A smaller series resistor (Rnull) at the output of the device (see Figure 60) improves the gain and phase margins when driving large capacitive loads. Figure 56 and Figure 57 show the effects of adding series resistances of 10 Ω, 50 Ω, 100 Ω, 200 Ω, and 500 Ω. The addition of this series resistor has two effects: the first is that it adds a zero to the transfer function and the second is that it reduces the frequency of the pole associated with the output load in the transfer function. The zero introduced to the transfer function is equal to the series resistance times the load capacitance. To calculate the improvement in phase margin, equation 1 can be used. ǒ ∆φ m1 + tan –1 2 × π × UGBW × R null ×C Ǔ (1) L Where : ∆φ m1 + Improvement in phase margin UGBW + Unity-gain bandwidth frequency R null + Output series resistance C L + Load capacitance The unity-gain bandwidth (UGBW) frequency decreases as the capacitive load increases (see Figure 58). To use equation 1, UGBW must be approximated from Figure 58. Using equation 1 alone overestimates the improvement in phase margin, as illustrated in Figure 59. The overestimation is caused by the decrease in the frequency of the pole associated with the load, thus providing additional phase shift and reducing the overall improvement in phase margin. Using Figure 60, with equation 1 enables the designer to choose the appropriate output series resistance to optimize the design of circuits driving large capacitance loads. 50 kΩ VDD + 50 kΩ VI Rnull − + CL VDD − / GND Figure 60. Series-Resistance Circuit • POST OFFICE BOX 655303 DALLAS, TEXAS 75265 POST OFFICE BOX 1443 HOUSTON, TEXAS 77251−1443 • 29 TLC225x-Q1, TLC225xA-Q1 Advanced LinCMOS RAIL-TO-RAIL VERY LOW-POWER OPERATIONAL AMPLIFIERS  SGLS188B − OCTOBER 2003 − REVISED APRIL 2008 APPLICATION INFORMATION macromodel information Macromodel information provided was derived using MicroSim Parts, the model generation software used with MicroSim PSpice. The Boyle macromodel (see Note 5) and subcircuit in Figure 61 are generated using the TLC225x typical electrical and operating characteristics at TA = 25°C. Using this information, output simulations of the following key parameters can be generated to a tolerance of 20% (in most cases): D D D D D D D D D D D D Maximum positive output voltage swing Maximum negative output voltage swing Slew rate Quiescent power dissipation Input bias current Open-loop voltage amplification Unity-gain frequency Common-mode rejection ratio Phase margin DC output resistance AC output resistance Short-circuit output current limit NOTE 4: G. R. Boyle, B. M. Cohn, D. O. Pederson, and J. E. Solomon, “Macromodeling of Integrated Circuit Operational Amplifiers”, IEEE Journal of Solid-State Circuits, SC-9, 353 (1974). 99 3 VCC + 9 RSS 92 FB 10 J1 DP VC J2 IN + 11 RD1 VAD R2 − 53 C2 6 GCM GA − + − RD2 − RO1 DE 5 + VE OUT RD1 60 11 37.23E3 RD2 60 12 37.23E3 R01 8 5 84 R02 7 99 84 RP 3 4 71.43E3 RSS 10 99 64.52E6 VAD 60 4 −.5 VB 9 0 DC 0 VC 3 53 DC .605 VE 54 4 DC .605 VLIM 7 8 DC 0 VLP 91 0 DC −.235 VLN 0 92 DC 7.5 .MODEL DX D (IS=800.0E−18) .MODEL JX PJF (IS=500.0E−15 BETA=139E−6 + VTO=−.05) .ENDS .SUBCKT TLC225x 1 2 3 4 5 C1 11 12 6.369E−12 C2 6 7 25.00E−12 DC 5 53 DX DE 54 5 DX DLP 90 91 DX DLN 92 90 DX DP 4 3 DX EGND 99 0 POLY (2) (3,0) (4,0) 0 .5 .5 FB 7 99 POLY (5) VB VC VE VLP + VLN 0 57.62E6 −60E6 60E6 60E6 −60E6 GA 6 0 11 12 26.86E−6 GCM 0 6 10 99 2.686E−9 ISS 3 10 DC 3.1E−6 HLIM 90 0 VLIM 1K J1 11 2 10 JX J2 12 1 10 JX R2 6 9 100.0E3 Figure 61. Boyle Macromodel and Subcircuit PSpice and Parts are trademarks of MicroSim Corporation. 30 − VLIM 8 54 4 − 7 60 + − 91 + VLP + DC 12 C1 HLIM − + + DLP 90 RO2 VB IN − VCC − − + ISS RP 2 1 DLN EGND + • POST OFFICE BOX 655303 DALLAS, TEXAS 75265 POST OFFICE BOX 1443 HOUSTON, TEXAS 77251−1443 • VLN PACKAGE OPTION ADDENDUM www.ti.com 23-Apr-2022 PACKAGING INFORMATION Orderable Device Status (1) Package Type Package Pins Package Drawing Qty Eco Plan (2) Lead finish/ Ball material MSL Peak Temp Op Temp (°C) Device Marking (3) (4/5) (6) TLC2252AQDRG4Q1 ACTIVE SOIC D 8 2500 RoHS & Green NIPDAU Level-1-260C-UNLIM -40 to 125 2252AQ TLC2252AQDRQ1 ACTIVE SOIC D 8 2500 RoHS & Green NIPDAU Level-1-260C-UNLIM -40 to 125 2252AQ TLC2252AQPWRG4Q1 ACTIVE TSSOP PW 8 2000 RoHS & Green NIPDAU Level-1-260C-UNLIM -40 to 125 2252AQ TLC2254AQPWRQ1 ACTIVE TSSOP PW 14 2000 RoHS & Green NIPDAU Level-1-260C-UNLIM -40 to 125 2254AQ (1) The marketing status values are defined as follows: ACTIVE: Product device recommended for new designs. LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect. NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design. PREVIEW: Device has been announced but is not in production. Samples may or may not be available. OBSOLETE: TI has discontinued the production of the device. (2) RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may reference these types of products as "Pb-Free". RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption. Green: TI defines "Green" to mean the content of Chlorine (Cl) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of
TLC2254AQPWRQ1 价格&库存

很抱歉,暂时无法提供与“TLC2254AQPWRQ1”相匹配的价格&库存,您可以联系我们找货

免费人工找货