0
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
会员中心
创作中心
发布
  • 发文章

  • 发资料

  • 发帖

  • 提问

  • 发视频

创作活动
TLC2274MFKB

TLC2274MFKB

  • 厂商:

    BURR-BROWN(德州仪器)

  • 封装:

    LCCC20

  • 描述:

    TLC2274M-MIL RAIL-TO-RAIL LOW NO

  • 数据手册
  • 价格&库存
TLC2274MFKB 数据手册
Product Folder Order Now Support & Community Tools & Software Technical Documents TLC2274M-MIL SLOS985 – JUNE 2017 TLC2274M-MIL Advanced LinCMOS Rail-to-Rail Operational Amplifier • • • • 1 • • • • • • • Output Swing Includes Both Supply Rails Low Noise: 9 nV/√Hz Typical at f = 1 kHz Low-Input Bias Current: 1-pA Typical Fully-Specified for Both Single-Supply and SplitSupply Operation Common-Mode Input Voltage Range Includes Negative Rail High-Gain Bandwidth: 2.2-MHz Typical High Slew Rate: 3.6-V/μs Typical Low Input Offset Voltage: 2.5 mV Maximum at TA = 25°C Macromodel Included Performance Upgrades for the TLC272 and TLC274 Available in Q-Temp Automotive 2 Applications • • • • • White Goods (Refrigerators, Washing Machines) Hand-held Monitoring Systems Configuration Control and Print Support Transducer Interfaces Battery-Powered Applications 3 Description The TLC2274M-MIL device is a quadruple operational amplifier from Texas Instruments. The device exhibits rail-to-rail output performance for increased dynamic range in single- or split-supply applications. The TLC2274M-MIL device offers 2 MHz of bandwidth and 3 V/μs of slew rate for higherspeed applications. Thee device offers comparable ac performance while having better noise, input offset voltage, and power dissipation than existing CMOS operational amplifiers. The TLC2274M-MIL device has a noise voltage of 9 nV/√Hz, two times lower than competitive solutions. The TLC2274M-MIL device, exhibiting high input impedance and low noise, is excellent for small-signal conditioning for high-impedance sources such as piezoelectric transducers. Because of the micropower dissipation levels, the device works well in hand-held monitoring and remote-sensing applications. In addition, the rail-to-rail output feature, with single- or split-supplies, makes this device a great choice when interfacing with analog-to-digital converters (ADCs). For precision applications, the TLC2272AM-MIL device is available with a maximum input offset voltage of 950 μV. This device is fully characterized at 5 V and ±5 V. The TLC2274M-MIL device also makes a great upgrade to the TLC272 in standard designs, offering increased output dynamic range, lower noise voltage, and lower input offset voltage. This enhanced feature set allows the device to be used in a wider range of applications. For applications that require higher output drive and wider input voltage range, see the TLV2432 and TLV2442 devices. If the design requires single amplifiers, see the TLV2211, TLV2221 and TLV2231 family. These devices are single rail-to-rail operational amplifiers in the SOT-23 package. Their small size and low power consumption make them ideal for high density, battery-powered equipment. Device Information(1) PART NUMBER PACKAGE TLC2274M-MIL BODY SIZE (NOM) SOIC (14) 3,91 mm × 8,65 mm CDIP (14) 6,67 mm × 19,56 mm LCCC (20) 8,89 mm × 8,89 mm CFP (14) 6,35 mm × 19,30 mm PDIP (14) 6,35 mm × 19,30 mm (1) For all available packages, see the orderable addendum at the end of the data sheet. Maximum Peak-to-Peak Output Voltage vs Supply Voltage V(OPP) V O(PP) − Maximum Peak-to-Peak Output Voltage − V 1 Features 16 TA = 25°C 14 12 IO = ± 50 µA 10 IO = ± 500 µA 8 6 4 4 6 8 10 12 14 16 |VDD ±| − Supply Voltage − V 1 An IMPORTANT NOTICE at the end of this data sheet addresses availability, warranty, changes, use in safety-critical applications, intellectual property matters and other important disclaimers. PRODUCTION DATA. TLC2274M-MIL SLOS985 – JUNE 2017 www.ti.com Table of Contents 1 2 3 4 5 6 Features .................................................................. Applications ........................................................... Description ............................................................. Revision History..................................................... Pin Configuration and Functions ......................... Specifications......................................................... 7.3 Feature Description................................................. 19 7.4 Device Functional Modes........................................ 19 1 1 1 2 3 5 8 8.1 Application Information............................................ 20 8.2 Typical Application .................................................. 21 9 Power Supply Recommendations...................... 23 10 Layout................................................................... 24 6.1 6.2 6.3 6.4 6.5 6.6 Absolute Maximum Ratings ...................................... 5 ESD Ratings.............................................................. 5 Recommended Operating Conditions....................... 5 Thermal Information .................................................. 5 TLC2274M-MIL Electrical Characteristics VDD = 5 V 6 TLC2274M-MIL Electrical Characteristics VDD± = ±5 V................................................................................. 8 6.7 Typical Characteristics .............................................. 9 7 Application and Implementation ........................ 20 10.1 Layout Guidelines ................................................. 24 10.2 Layout Example .................................................... 24 11 Device and Documentation Support ................. 25 11.1 11.2 11.3 11.4 11.5 Detailed Description ............................................ 19 Receiving Notification of Documentation Updates Community Resources.......................................... Trademarks ........................................................... Electrostatic Discharge Caution ............................ Glossary ................................................................ 25 25 25 25 25 12 Mechanical, Packaging, and Orderable Information ........................................................... 25 7.1 Overview ................................................................. 19 7.2 Functional Block Diagram ....................................... 19 4 Revision History 2 DATE REVISION NOTE June 2017 * Initial release Submit Documentation Feedback Copyright © 2017, Texas Instruments Incorporated Product Folder Links: TLC2274M-MIL TLC2274M-MIL www.ti.com SLOS985 – JUNE 2017 5 Pin Configuration and Functions D, J, or N Package 14-Pin SOIC, CDIP, or PDIP Top View 3 12 4IN+ VDD+ 4 11 VDD± 2IN+ 5 10 2IN± 6 2OUT 7 4IN± 1IN+ 19 4IN± 4OUT 13 20 2 NC 1IN± 1 4OUT 1OUT 14 2 1 1IN± 1OUT 3 FK Package 20-Pin LCCC Top View 3IN+ NC 5 17 NC 9 3IN± VDD+ 6 16 VDD±/GND 8 3OUT NC 7 15 NC 2IN+ 8 14 3IN+ 3IN± 3OUT NC 2OUT 2IN± 9 Not to scale 13 4IN+ 12 18 11 4 10 1IN+ Not to scale NC – No internal connection W Package 10-Pin CFP Top View 1OUT 1 14 4OUT 1IN± 2 13 4IN± 1IN+ 3 12 4IN+ VDD+ 4 11 VDD±/GND 2IN+ 5 10 3IN+ 2IN± 6 9 3IN± 2OUT 7 8 3OUT Not to scale NC – No internal connection Submit Documentation Feedback Copyright © 2017, Texas Instruments Incorporated Product Folder Links: TLC2274M-MIL 3 TLC2274M-MIL SLOS985 – JUNE 2017 www.ti.com Pin Functions PIN NAME NO. I/O D, J, N, or W FK 1IN+ 3 4 1IN– 2 1OUT 1 2IN+ 2IN– DESCRIPTION I Non-inverting input, Channel 1 3 I Inverting input, Channel 1 2 O Output, Channel 1 5 8 I Non-inverting input, Channel 2 6 9 I Inverting input, Channel 2 2OUT 7 10 O Output, Channel 2 3IN+ 10 14 I Non-inverting input, Channel 3 3IN– 9 13 I Inverting input, Channel 3 3OUT 8 12 O Output, Channel 3 4IN+ 12 18 I Non-inverting input, Channel 4 4IN– 13 19 I Inverting input, Channel 4 4OUT 14 20 O Output, Channel 4 VDD+ 4 6 — Positive (highest) supply VDD– 11 16 — Negative (lowest) supply VDD–/GND — — — Negative (lowest) supply NC — 1, 5, 7, 11, 15, 17 — No connection 4 Submit Documentation Feedback Copyright © 2017, Texas Instruments Incorporated Product Folder Links: TLC2274M-MIL TLC2274M-MIL www.ti.com SLOS985 – JUNE 2017 6 Specifications 6.1 Absolute Maximum Ratings over operating ambient temperature range (unless otherwise noted) (1) MIN MAX UNIT 8 V Supply voltage, VDD+ (2) VDD– (2) –8 V Differential input voltage, VID (3) ±16 V VDD+ V Input current, II (any input) ±5 mA Output current, IO ±50 mA Total current into VDD+ ±50 mA ±50 mA Input voltage, VI (any input) (2) VDD− − 0.3 Total current out of VDD– Duration of short-circuit current at (or below) 25°C (4) Unlimited Operating ambient temperature range, TA –55 125 Storage temperature, Tstg –65 150 (1) (2) (3) (4) °C Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings only, which do not imply functional operation of the device at these or any other conditions beyond those indicated under Recommended Operating Conditions. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability. All voltage values, except differential voltages, are with respect to the midpoint between VDD+ and VDD–. Differential voltages are at IN+ with respect to IN–. Excessive current will flow if input is brought below VDD– – 0.3 V. The output may be shorted to either supply. Temperature or supply voltages must be limited to ensure that the maximum dissipation rating is not exceeded. 6.2 ESD Ratings VALUE V(ESD) (1) Electrostatic discharge Human-body model (HBM), per AEC Q100-002 (1) Devices in D packages ±2000 Charged-device model (CDM), per AEC Q100-011 Devices in D packages ±1000 UNIT V AEC Q100-002 indicates that HBM stressing shall be in accordance with the ANSI/ESDA/JEDEC JS-001 specification. 6.3 Recommended Operating Conditions MIN MAX ±2.2 ±8 V Input voltage VDD− VDD+ − 1.5 V VIC Common-mode input voltage VDD− VDD+ − 1.5 V TA Operating ambient temperature –55 125 °C VDD± Supply voltage VI UNIT 6.4 Thermal Information TLC2274M-MIL THERMAL METRIC (1) (2) (3) RθJA Junction-to-ambient thermal resistance RθJC(top) Junction-to-case (top) thermal resistance RθJB D (SOIC) J (CDIP) FK (LCCC) N (PDIP) W (CFP) 14-PIN 14-PIN 20-PIN 14-PIN 14-PIN UNIT 115.6 — — — °C/W 61.8 16.2 18 121.3 °C/W Junction-to-board thermal resistance 55.9 — — — °C/W ψJT Junction-to-top characterization parameter 14.3 — — — °C/W ψJB Junction-to-board characterization parameter 55.4 — — — °C/W RθJC(bot) Junction-to-case (bottom) thermal resistance — — — 8.68 °C/W (1) (2) (3) (2) (3) For more information about traditional and new thermal metrics, see Semiconductor and IC Package Thermal Metrics. Maximum power dissipation is a function of TJ(max), RθJA, and TA. The maximum allowable power dissipation at any allowable ambient temperature is PD = (TJ(max) − TA) / RθJA. Operating at the absolute maximum TJ of 150°C can affect reliability. The package thermal impedance is calculated in accordance with JESD 51-7 (plastic) or MIL-STD-883 Method 1012 (ceramic). Submit Documentation Feedback Copyright © 2017, Texas Instruments Incorporated Product Folder Links: TLC2274M-MIL 5 TLC2274M-MIL SLOS985 – JUNE 2017 www.ti.com 6.5 TLC2274M-MIL Electrical Characteristics VDD = 5 V at specified ambient temperature, VDD = 5 V; TA = 25°C, unless otherwise noted. PARAMETER VIO Input offset voltage αVIO Temperature coefficient of input offset voltage Input offset voltage long-term drift TEST CONDITIONS VIC = 0 V, VDD± = ±2.5 V, VO = 0 V, RS = 50 Ω (1) MIN TA = 25°C 3000 2 VIC = 0 V, VDD± = ±2.5 V, VO = 0 V, RS = 50 Ω 0.002 Input offset current VIC = 0 V, VDD± = ±2.5 V, VO = 0 V, RS = 50 Ω IIB Input bias current VIC = 0 V, VDD± = ±2.5 V, VO = 0 V, RS = 50 Ω TA = 25°C VICR Common-mode input voltage RS = 50 Ω; |VIO | ≤ 5 mV 0.5 TA = –55°C to 125°C 1 TA = –55°C to 125°C TA = 25°C TA = –55°C to 125°C IOH = –200 μA IOL = 500 μA IOL = 5 mA Large-signal differential voltage amplification AVD 2.5 4 0 2.5 3.5 TA = 25°C 4.85 TA = –55°C to 125°C 4.85 TA = 25°C 4.25 TA = –55°C to 125°C 4.25 VIC = 2.5 V, VO = 1 V to 4 V, RL = 10 kΩ (2) 0.9 TA = –55°C to 125°C 15 TA = –55°C to 125°C 15 35 V/mV 1012 zo Closed-loop output impedance f = 1 MHz, AV = 10 CMRR Common-mode rejection ratio VIC = 0 V to 2.7 V, VO = 2.5 V, RS = 50 Ω TA = 25°C 70 TA = –55°C to 125°C 70 kSVR Supply-voltage rejection ratio (ΔVDD / ΔVIO) VDD = 4.4 V to 16 V, VIC = VDD / 2, no load TA = 25°C 80 TA = –55°C to 125°C 80 IDD Supply currrent VO = 2.5 V, no load SR Slew rate at unity gain VO = 0.5 V to 2.5 V, RL = 10 kΩ (2), CL = 100 pF (2) Vn Equivalent input noise voltage VNPP Peak-to-peak equivalent input noise voltage In Equivalent input noise current Ω 12 Ω 8 pF 140 Ω 10 TA = 25°C 75 4.4 TA = –55°C to 125°C 2.3 TA = –55°C to 125°C 1.7 3.6 50 f = 1 kHz 9 1 f = 0.1 Hz to 10 Hz 1.4 0.6 AV = 1 0.0013% AV = 10 0.004% AV = 100 0.03% Gain-bandwidth product f = 10 kHz, RL = 10 kΩ (2), CL = 100 pF (2) Maximum output-swing bandwidth VO(PP) = 2 V, AV = 1, RL = 10 kΩ (2), CL = 100 pF (2) Settling time AV = –1, RL = 10 kΩ (2), Step = 0.5 V to 2.5 V, CL = 100 pF (2) dB 6 3 TA = 25°C f = 0.1 Hz to 1 Hz dB 95 f = 10 Hz VO = 0.5 V to 2.5 V, f = 20 kHz, RL = 10 kΩ (2) V 1.5 175 f = 10 kHz, P package 6 0.15 1.5 TA = 25°C Common-mode input capacitance (2) V 0.15 TA = 25°C Common-mode input resistance (1) V 4.65 0.09 ci ts pA 4.93 TA = –55°C to 125°C ri BOM pA 0.01 TA = 25°C Differential input resistance THD+N Total harmonic distortion + noise 60 –0.3 VIC = 2.5 V, VO = 1 V to 4 V; RL = 1 MΩ (2) rid μV/mo 60 800 IOL = 50 μA VIC = 2.5 V µV 4.99 IOH = –1 mA Low-level output voltage UNIT μV/°C 800 IOH = –20 μA VOL 2500 VIC = 0 V, VDD± = ±2.5 V, VO = 0 V, RS = 50 Ω IIO High-level output voltage MAX 300 TA = –55°C to 125°C TA = 25°C VOH TYP mA V/µs nV/√Hz µV fA/√Hz 2.18 MHz 1 MHz To 0.1% 1.5 To 0.01% 2.6 µs Typical values are based on the input offset voltage shift observed through 168 hours of operating life test at TA = 150°C extrapolated to TA = 25°C using the Arrhenius equation and assuming an activation energy of 0.96 eV. Referenced to 0 V. Submit Documentation Feedback Copyright © 2017, Texas Instruments Incorporated Product Folder Links: TLC2274M-MIL TLC2274M-MIL www.ti.com SLOS985 – JUNE 2017 TLC2274M-MIL Electrical Characteristics VDD = 5 V (continued) at specified ambient temperature, VDD = 5 V; TA = 25°C, unless otherwise noted. PARAMETER φm TEST CONDITIONS MIN TYP MAX UNIT Phase margin at unity gain RL = 10 kΩ (2), CL = 100 pF (2) 50 ° Gain margin RL = 10 kΩ (2), CL = 100 pF (2) 10 dB Submit Documentation Feedback Copyright © 2017, Texas Instruments Incorporated Product Folder Links: TLC2274M-MIL 7 TLC2274M-MIL SLOS985 – JUNE 2017 www.ti.com 6.6 TLC2274M-MIL Electrical Characteristics VDD± = ±5 V at specified ambient temperature, VDD± = ±5 V; TA = 25°C, unless otherwise noted. PARAMETER TEST CONDITIONS MIN TA = 25°C VIO Input offset voltage VIC = 0 V, VO = 0 V, RS = 50 Ω αVIO Temperature coefficient of input offset voltage VIC = 0 V, VO = 0 V, RS = 50 Ω Input offset voltage long-term drift VIC = 0 V, VO = 0 V, RS = 50 Ω 3000 VIC = 0 V, VO = 0 V, RS = 50 Ω IIB Input bias current VIC = 0 V, VO = 0 V, RS = 50 Ω TA = 25°C VICR Common-mode input voltage RS = 50 Ω; |VIO | ≤ 5 mV 0.5 TA = –55°C to 125°C 1 TA = 25°C TA = –55°C to 125°C –5.3 0 4 –5 0 3.5 IO = –200 μA TA = 25°C 4.85 TA = –55°C to 125°C 4.85 TA = 25°C 4.25 TA = –55°C to 125°C 4.25 IO = 50 μA VIC = 0 V, IO = 500 μA IO = 5 mA AVD Large-signal differential voltage amplification VO = ±4 V; RL = 10 kΩ –4.85 TA = –55°C to 125°C –4.85 TA = 25°C –3.5 TA = –55°C to 125°C –3.5 TA = 25°C 20 TA = –55°C to 125°C 20 V 4.93 V 4.65 –4.91 V –4.1 50 V/mV 300 1012 Differential input resistance ri Common-mode input resistance ci Common-mode input capacitance f = 10 kHz, P package zo Closed-loop output impedance f = 1 MHz, AV = 10 CMRR Common-mode rejection ratio VIC = –5 V to 2.7 V, VO = 0 V, RS = 50 Ω TA = 25°C 75 TA = –55°C to 125°C 75 kSVR Supply-voltage rejection ratio (ΔVDD / ΔVIO) VDD+ = 2.2 V to ±8 V, VIC = 0 V, no load TA = 25°C 80 TA = –55°C to 125°C 80 IDD Supply currrent VO = 0 V, no load SR Slew rate at unity gain VO = ±2.3 V, RL = 10 kΩ, CL = 100 pF Vn Equivalent input noise voltage VNPP Peak-to-peak equivalent input noise voltage In Equivalent input noise current THD+N Total harmonic distortion + noise pA –4.99 TA = 25°C VO = ±4 V; RL = 1 MΩ rid pA 4.99 IO = –1 mA Maximum negative peak output voltage 60 800 IO = –20 μA µV μV/mo 60 800 TA = –55°C to 125°C UNIT μV/°C 0.002 Input offset current VOM– 2500 2 IIO Maximum positive peak output voltage MAX 300 TA = –55°C to 125°C TA = 25°C VOM+ TYP Ω 12 Ω 8 pF 130 Ω 10 TA = 25°C 80 95 4.8 TA = –55°C to 125°C 2.3 TA = –55°C to 125°C 1.7 3.6 f = 10 Hz 50 f = 1 kHz 9 1 f = 0.1 Hz to 10 Hz 1.4 0.6 VO = ±2.3, f = 20 kHz, RL = 10 kΩ dB 6 6 TA = 25°C f = 0.1 Hz to 1 Hz dB AV = 1 0.0011% AV = 10 0.004% AV = 100 0.03% mA V/µs nV/√Hz µV fA/√Hz Gain-bandwidth product f = 10 kHz, RL = 10 kΩ, CL = 100 pF 2.25 MHz Maximum output-swing bandwidth VO(PP) = 4.6 V, AV = 1, RL = 10 kΩ, CL = 100 pF 0.54 MHz ts Settling time AV = –1, RL = 10 kΩ, Step = –2.3 V to 2.3 V, CL = 100 pF φm Phase margin at unity gain RL = 10 kΩ, CL = 100 pF 52 ° Gain margin RL = 10 kΩ, CL = 100 pF 10 dB BOM 8 To 0.1% 1.5 To 0.01% 3.2 Submit Documentation Feedback µs Copyright © 2017, Texas Instruments Incorporated Product Folder Links: TLC2274M-MIL TLC2274M-MIL www.ti.com SLOS985 – JUNE 2017 6.7 Typical Characteristics Table 1. Table of Graphs FIGURE (1) Distribution 1, 2 VIO Input offset voltage αVIO Input offset voltage temperature coefficient Distribution IIB /IIO Input bias and input offset current vs Ambient temperature VI Input voltage VOH vs Common-mode voltage 3, 4 5, 6 (2) 7 (2) vs Supply voltage 8 vs Ambient temperature 9 (2) High-level output voltage vs High-level output current 10 (2) VOL Low-level output voltage vs Low-level output current 11, 12 (2) VOM+ Maximum positive peak output voltage vs Output current 13 (2) VOM- Maximum negative peak output voltage vs Output current 14 (2) VO(PP) Maximum peak-to-peak output voltage vs Frequency 15 vs Supply voltage 16 IOS Short-circuit output current VO Output voltage vs Differential input voltage Large-signal differential voltage amplification vs Load resistance Large-signal differential voltage amplification and phase margin vs Frequency Large-signal differential voltage amplification vs Ambient temperature Output impedance vs Frequency 25, 26 vs Frequency 27 vs Ambient temperature 28 AVD z0 CMRR Common-mode rejection ratio kSVR Supply-voltage rejection ratio IDD Supply current SR Slew rate VO Vn vs Ambient temperature 23 (2), 24 (2) 31 (2) vs Supply voltage (2) vs Ambient temperature (2) vs Load Capacitance vs Ambient temperature , 32 (2) , 33 (2) 34 35 (2) Inverting large-signal pulse response 36, 37 Voltage-follower large-signal pulse response 38, 39 Inverting small-signal pulse response 40, 41 Voltage-follower small-signal pulse response 42, 43 vs Frequency 44, 45 46 Integrated noise voltage vs Frequency 47 Total harmonic distortion + noise vs Frequency 48 Gain-bandwidth product (1) (2) 20 29, 30 vs Ambient temperature Noise voltage over a 10-second period φm 18, 19 21, 22 vs Frequency Equivalent input noise voltage THD+N 17 (2) vs Supply voltage vs Ambient temperature 49 50 (2) Phase margin vs Load capacitance 51 Gain margin vs Load capacitance 52 For all graphs where VDD = 5 V, all loads are referenced to 2.5 V. Data at high and low temperatures are applicable only within the rated operating ambient temperature ranges of the various devices. Submit Documentation Feedback Copyright © 2017, Texas Instruments Incorporated Product Folder Links: TLC2274M-MIL 9 TLC2274M-MIL SLOS985 – JUNE 2017 www.ti.com 20 20 992 Amplifiers From 2 Wafer Lots VDD = ± 5 V Percentage of Amplifiers − % Percentage of Amplifiers − % 992 Amplifiers From 2 Wafer Lots VDD = ± 2.5 V 15 10 5 0 − 1.6 −1.2 − 0.8 −0.4 0 0.4 0.8 1.2 10 5 0 − 1.6 −1.2 −0.8 1.6 0.4 0.8 1.2 1.6 Figure 1. Distribution of Input Offset Voltage Figure 2. Distribution of Input Offset Voltage 1 VIO − Input Offset Voltage − mV VIO VDD = 5 V TA = 25°C RS = 50 Ω 0.5 0 −0.5 0 2 1 3 4 VDD = ± 5 V TA = 25°C RS = 50 Ω 0.5 0 −0.5 −1 −6 −5 −4 −3 −2 5 Figure 3. Input Offset Voltage vs Common-Mode Voltage 0 2 1 3 4 5 Figure 4. Input Offset Voltage vs Common-Mode Voltage 25 25 Percentage of Amplifiers − % 128 Amplifiers From 2 Wafer Lots VDD = ± 2.5 V N Package TA = 25°C to 125°C 20 15 10 5 0 −5 −1 VIC − Common-Mode Voltage − V VIC − Common-Mode Voltage − V Percentage of Amplifiers − % 0 VIO − Input Offset Voltage − mV −1 −1 10 −0.4 VIO − Input Offset Voltage − mV 1 VIO VIO − Input Offset Voltage − mV 15 128 Amplifiers From 2 Wafer Lots VDD = ± 2.5 V N Package TA = 25°C to 125°C 20 15 10 5 0 −4 −3 −2 −1 0 1 2 3 4 5 −5 −4 −3 −2 −1 0 1 2 3 4 5 α VIO − Temperature Coefficient − µV/°C α VIO − Temperature Coefficient − µV/°C Figure 5. Distribution vs Input-Offset-Voltage Temperature Coefficient Figure 6. Distribution vs Input-Offset-Voltage Temperature Coefficient Submit Documentation Feedback Copyright © 2017, Texas Instruments Incorporated Product Folder Links: TLC2274M-MIL TLC2274M-MIL SLOS985 – JUNE 2017 12 35 30 TA = 25°C RS = 50 Ω 10 VDD = ± 2.5 V VIC = 0 V VO = 0 V RS = 50 Ω 8 6 25 V I − Input Voltage − V IIB I IO − Input Bias and Input Offset Currents − pA IIB and IIO www.ti.com 20 IIB 15 IIO 10 4 2 |VIO| ≤ 5 mV 0 −2 −4 −6 5 −8 − 10 0 25 45 65 85 105 2 125 3 4 5 6 7 Figure 8. Input Voltage vs Supply Voltage Figure 7. Input Bias and Input Offset Current vs Ambient Temperature 5 6 VDD = 5 V V0H V OH − High-Level Output Voltage − V VDD = 5 V V I − Input Voltage − V 4 3 |VIO| ≤ 5 mV 2 1 0 −1 −75 − 50 5 4 TA = 125°C 3 TA = 25°C 2 TA = − 55°C 1 0 − 25 0 25 50 75 100 125 0 TA − Free-Air Temperature − °C 2 3 4 Figure 10. High-Level Output Voltage vs High-Level Output Current 1.4 1.2 VOL VOL − Low-Level Output Voltage − V VDD = 5 V TA = 25°C 1 VIC = 0 V 0.8 VIC = 1.25 V 0.6 0.4 1 IOH − High-Level Output Current − mA Figure 9. Input Voltage vs Ambient Temperature VOL VOL − Low-Level Output Voltage − V 8 |VDD ±| − Supply Voltage − V TA − Free-Air Temperature − °C VIC = 2.5 V 0.2 0 VDD = 5 V VIC = 2.5 V 1.2 1 TA = 125°C 0.8 TA = 25°C 0.6 TA = − 55°C 0.4 0.2 0 0 1 2 3 4 IOL − Low-Level Output Current − mA 5 Figure 11. Low-Level Output Voltage vs Low-Level Output Current 0 5 1 2 3 4 IOL − Low-Level Output Current − mA 6 Figure 12. Low-Level Output Voltage vs Low-Level Output Current Submit Documentation Feedback Copyright © 2017, Texas Instruments Incorporated Product Folder Links: TLC2274M-MIL 11 TLC2274M-MIL www.ti.com 5 VDD ± = ± 5 V 4 TA = − 55°C TA = 25°C 3 TA = 125°C 2 1 0 1 2 3 4 5 V OM − − Maximum Negative Peak Output Voltage − V V OM + − Maximum Positive Peak Output Voltage − V SLOS985 – JUNE 2017 − 3.8 VDD = ± 5 V VIC = 0 V −4 TA = 125°C − 4.2 TA = 25°C − 4.4 TA = − 55°C − 4.6 − 4.8 −5 0 1 2 10 8 7 6 VDD = 5 V 5 4 VDD = ± 5 V 3 2 1 6 VID = − 100 mV 12 8 4 0 VID = 100 mV −4 VO = 0 V TA = 25°C −8 0 10 k 100 k 2 10 M 1M 15 4 5 6 7 8 Figure 16. Short-Circuit Output Current vs Supply Voltage 5 VO = 0 V VDD = ± 5 V VID = − 100 mV 11 VO − Output Voltage − V 4 7 −3 −1 VDD = 5 V TA = 25°C RL = 10 kΩ VIC = 2.5 V 3 2 1 VID = 100 mV −5 −50 3 |VDD ±| − Supply Voltage − V Figure 15. Maximum Peak-to-Peak Output Voltage vs Frequency IIOS OS − Short-Circuit Output Current − mA 5 16 RL = 10 kΩ TA = 25°C 9 f − Frequency − Hz −25 0 25 50 75 100 TA − Free-Air Temperature − °C 125 Figure 17. Short-Circuit Output Current vs Ambient Temperature 12 4 Figure 14. Maximum Negative Peak Output Voltage vs Output Current IIOS OS − Short-Circuit Output Current − mA V(OPP) V O(PP) − Maximum Peak-to-Peak Output Voltage − V Figure 13. Maximum Positive Peak Output Voltage vs Output Current − 75 3 IO − Output Current − mA |IO| − Output Current − mA 0 − 800 800 −400 0 400 VID − Differential Input Voltage − µV 1200 Figure 18. Output Voltage vs Differential Input Voltage Submit Documentation Feedback Copyright © 2017, Texas Instruments Incorporated Product Folder Links: TLC2274M-MIL TLC2274M-MIL www.ti.com SLOS985 – JUNE 2017 5 VO = ± 1 V TA = 25°C AVD AVD− Large-Signal Differential Voltage Amplification − dB 3 VO − Output Voltage − V 1000 VDD = ± 5 V TA = 25°C RL = 10 kΩ VIC = 0 V 1 −1 100 VDD = ± 5 V 10 VDD = 5 V 1 −3 0.1 0.1 −5 0 250 500 750 1000 −1000 − 750 − 500 − 250 VID − Differential Input Voltage − µV AVD AVD− Large-Signal Differential Voltage Amplification − dB 60 180° 80 135° 60 40 90° 20 45° 0 0° −20 −45° −40 1k 10 k 100 k 1M Figure 20. Large-Signal Differential Voltage Amplification vs Load Resistance −90° 10 M AVD AVD− Large-Signal Differential Voltage Amplification − dB VDD = 5 V RL = 10 kΩ CL = 100 pF TA = 25°C φ om m − Phase Margin 80 90° 20 45° 0° 0 −20 −45° −40 1k 10 k 100 k 1M f − Frequency − Hz −90° 10 M Figure 22. Large-Signal Differential Voltage Amplification and Phase Margin vs Frequency 1k VDD = 5 V VIC = 2.5 V VO = 1 V to 4 V AVD AVD− Large-Signal Differential Voltage Amplification − V/mV AVD AVD− Large-Signal Differential Voltage Amplification − V/mV 135° 40 1k RL = 1 MΩ 100 RL = 10 kΩ 10 − 75 180° VDD = ± 5 V RL = 10 kΩ CL = 100 pF TA = 25°C f − Frequency − Hz Figure 21. Large-Signal Differential Voltage Amplification and Phase Margin vs Frequency 100 φ om m − Phase Margin Figure 19. Output Voltage vs Differential Input Voltage 1 10 RL − Load Resistance − kΩ −50 − 25 0 25 50 75 100 TA − Free-Air Temperature − °C 125 Figure 23. Large-Signal Differential Voltage Amplification vs Ambient Temperature VDD = ± 5 V VIC = 0 V VO = ± 4 V RL = 1 MΩ 100 RL = 10 kΩ 10 − 75 −50 − 25 0 25 50 75 100 TA − Free-Air Temperature − °C 125 Figure 24. Large-Signal Differential Voltage Amplification vs Ambient Temperature Submit Documentation Feedback Copyright © 2017, Texas Instruments Incorporated Product Folder Links: TLC2274M-MIL 13 TLC2274M-MIL SLOS985 – JUNE 2017 www.ti.com 1000 1000 zo O zo − Output Impedance − Ω VDD = ± 5 V TA = 25°C 100 AV = 100 10 AV = 10 1 AV = 1 0.1 100 1k 10 k 100 k AV = 100 10 AV = 10 1 0.1 100 1M 1k 1M Figure 25. Output Impedance vs Frequency Figure 26. Output Impedance vs Frequency 90 TA = 25°C VDD = ± 5 V 80 VDD = 5 V 60 40 20 10 100 1k 10 k 100 k 1M 86 82 78 VDD = 5 V 74 70 −75 10 M VDD = ± 5 V VIC = − 5 V to 2.7 V VIC = 0 V to 2.7 V −50 Figure 27. Common-Mode Rejection Ratio vs Frequency 0 25 50 75 100 125 Figure 28. Common-Mode Rejection Ratio vs Ambient Temperature 100 100 kSVR k SVR − Supply-Voltage Rejection Ratio − dB VDD = 5 V TA = 25°C 80 60 kSVR+ 40 kSVR − 20 0 −20 10 −25 TA − Free-Air Temperature − °C f − Frequency − Hz kSVR k SVR − Supply-Voltage Rejection Ratio − dB 100 k f − Frequency − Hz 0 100 1k 10 k 100 k 1M 10 M VDD = ± 5 V TA = 25°C 80 60 kSVR+ 40 kSVR − 20 0 −20 10 f − Frequency − Hz 100 1k 10 k 100 k 1M 10 M f − Frequency − Hz Figure 29. Supply-Voltage Rejection Ratio vs Frequency 14 10 k f − Frequency − Hz 100 CMRR − Common-Mode Rejection Ratio − dB 100 AV = 1 CMRR − Common-Mode Rejection Ratio − dB zo O zo − Output Impedance − Ω VDD = 5 V TA = 25°C Figure 30. Supply-Voltage Rejection Ratio vs Frequency Submit Documentation Feedback Copyright © 2017, Texas Instruments Incorporated Product Folder Links: TLC2274M-MIL TLC2274M-MIL www.ti.com SLOS985 – JUNE 2017 6 VDD ± = ± 2.2 V to ± 8 V VO = 0 V VO = 0 V No Load 105 4.8 IIDD DD − Supply Current − mA kSVR k SVR − Supply Voltage Rejection Ratio − dB 110 100 95 3.6 TA = 25°C TA = − 55°C 2.4 TA = 125°C 1.2 90 85 − 75 0 − 50 −25 0 25 50 75 100 125 0 1 2 3 4 5 6 VDD = 5 V AV = − 1 TA = 25°C 4 SR − Slew Rate − V/ µs IIDD DD − Supply Current − mA 4.8 VDD = 5 V VO = 2.5 V 3.6 2.4 SR − 3 2 SR + 1 1.2 − 50 − 25 0 25 50 75 100 0 10 125 100 1k CL − Load Capacitance − pF TA − Free-Air Temperature − °C 5 5 VDD = 5 V RL = 10 kΩ CL = 100 pF TA = 25°C AV = − 1 SR − 4 VO − Output Voltage − mV VO 4 SR + 3 2 VDD = 5 V RL = 10 kΩ CL = 100 pF AV = 1 1 10 k Figure 34. Slew Rate vs Load Capacitance Figure 33. Supply Current vs Ambient Temperature SR − Slew Rate − V/ µs 8 5 VDD = ± 5 V VO = 0 V 0 − 75 7 Figure 32. Supply Current vs Supply Voltage Figure 31. Supply-Voltage Rejection Ratio vs Ambient Temperature 0 − 75 6 |VDD ± | − Supply Voltage − V TA − Free-Air Temperature − °C 3 2 1 0 −50 −25 0 25 50 75 100 125 0 1 2 3 4 5 6 7 8 9 TA − Free-Air Temperature − °C t − Time − µs Figure 35. Slew Rate vs Ambient Temperature Figure 36. Inverting Large-Signal Pulse Response Submit Documentation Feedback Copyright © 2017, Texas Instruments Incorporated Product Folder Links: TLC2274M-MIL 15 TLC2274M-MIL SLOS985 – JUNE 2017 www.ti.com 5 3 2 4 VO − Output Voltage − V VO 4 V VO O − Output Voltage − V 5 VDD = ± 5 V RL = 10 kΩ CL = 100 pF TA = 25°C AV = − 1 1 0 −1 −2 VDD = 5 V RL = 10 kΩ CL = 100 pF AV = 1 TA = 25°C 3 2 1 −3 −4 −5 0 0 1 2 3 4 5 6 7 8 9 0 1 2 3 t − Time − µs Figure 37. Inverting Large-Signal Pulse Response 5 5 6 7 8 9 2 VDD = 5 V RL = 10 kΩ CL = 100 pF TA = 25°C AV = −1 2.6 VO − Output Voltage − V VO 3 Figure 38. Voltage-Follower Large-Signal Pulse Response 2.65 VDD = ± 5 V RL = 10 kΩ CL = 100 pF TA = 25°C AV = 1 4 VO − Output Voltage − V VO 4 t − Time − µs 1 0 −1 −2 −3 2.55 2.5 2.45 −4 −5 2.4 0 1 2 3 4 5 6 7 8 9 0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5 5.5 t − Time − µs t − Time − µs Figure 39. Voltage-Follower Large-Signal Pulse Response Figure 40. Inverting Small-Signal Pulse Response 2.65 VDD = ± 5 V RL = 10 kΩ CL = 100 pF TA = 25°C AV = 1 50 2.6 VO − Output Voltage − V VO VO − Output Voltage − mV VO 100 0 −50 VDD = 5 V RL = 10 kΩ CL = 100 pF TA = 25°C AV = 1 2.55 2.5 2.45 2.4 −100 0 16 0.5 1 1.5 2 2.5 3 3.5 4 0 0.5 1 1.5 t − Time − µs t − Time − µs Figure 41. Inverting Small-Signal Pulse Response Figure 42. Voltage-Follower Small-Signal Pulse Response Submit Documentation Feedback Copyright © 2017, Texas Instruments Incorporated Product Folder Links: TLC2274M-MIL TLC2274M-MIL www.ti.com SLOS985 – JUNE 2017 VDD = ± 5 V RL = 10 kΩ CL = 100 pF TA = 25°C AV = 1 50 Vn nV HzHz Vn − Equivalent Input Noise Voltage − nV/ VO − Output Voltage − mV VO 100 0 −50 60 VDD = 5 V TA = 25°C RS = 20 Ω 40 30 20 10 0 −100 100 1k f − Frequency − Hz Figure 43. Voltage-Follower Small-Signal Pulse Response Figure 44. Equivalent Input Noise Voltage vs Frequency 1 1.5 60 1000 VDD = ± 5 V TA = 25°C RS = 20 Ω 500 40 30 20 250 0 −250 −500 10 −750 0 10 −1000 10 k 100 1k f − Frequency − Hz 10 1 0.1 100 1k 6 8 10 Figure 46. Noise Voltage Over a 10-Second Period THD + N − Total Harmonic Distortion Plus Noise − % Calculated Using Ideal Pass-Band Filter Lower Frequency = 1 Hz TA= 25°C 10 4 t − Time − s 100 1 2 0 Figure 45. Equivalent Input Noise Voltage vs Frequency µ V RMS Integrated Noise Voltage − uVRMS VDD = 5 V f = 0.1 Hz to 10 Hz TA = 25°C 750 Noise Voltage − nV Vn nV HzHz Vn − Equivalent Input Noise Voltage − nV/ 0.5 10 10 k t − Time − µs 0 10 k 100 k 1 VDD = 5 V TA = 25°C RL = 10 kΩ 0.1 AV = 100 0.01 AV = 10 0.001 0.0001 100 AV = 1 1k 10 k 100 k f − Frequency − Hz f − Frequency − Hz Figure 47. Integrated Noise Voltage vs Frequency Figure 48. Total Harmonic Distortion + Noise vs Frequency Submit Documentation Feedback Copyright © 2017, Texas Instruments Incorporated Product Folder Links: TLC2274M-MIL 17 TLC2274M-MIL SLOS985 – JUNE 2017 www.ti.com 3 f = 10 kHz RL = 10 kΩ CL = 100 pF TA = 25°C 2.4 VDD = 5 V f = 10 kHz RL = 10 kΩ CL = 100 pF 2.8 Gain-Bandwidth Product − MHz Gain-Bandwidth Product − MHz 2.5 2.3 2.2 2.1 2.6 2.4 2.2 2 1.8 1.6 1.4 2 0 1 6 2 3 4 5 |VDD ±| − Supply Voltage − V 7 8 Figure 49. Gain-Bandwidth Product vs Supply Voltage 75° −50 −25 0 25 50 75 100 TA − Free-Air Temperature − °C 125 Figure 50. Gain-Bandwidth Product vs Ambient Temperature 15 VDD = ± 5 V TA = 25°C Rnull = 100 Ω 60° 12 Rnull = 50 Ω Gain Margin − dB φ m − Phase Margin om − 75 45° Rnull = 20 Ω 30° VDD = 5 V AV = 1 RL = 10 kΩ TA = 25°C 9 6 10 kΩ 15° 10 kΩ 0° 10 3 VDD + Rnull VI Rnull = 0 CL VDD − Rnull = 10 Ω 100 1000 CL − Load Capacitance − pF 10000 Figure 51. Phase Margin vs Load Capacitance 18 0 10 100 1000 CL − Load Capacitance − pF 10000 Figure 52. Gain Margin vs Load Capacitance Submit Documentation Feedback Copyright © 2017, Texas Instruments Incorporated Product Folder Links: TLC2274M-MIL TLC2274M-MIL www.ti.com SLOS985 – JUNE 2017 7 Detailed Description 7.1 Overview The TLC2274M-MIL device is a rail-to-rail output operational amplifier. The device operates from a 4.4-V to 16-V single supply or ±2.2-V to ±8-V dual supply, is unity-gain stable, and is suitable for a wide range of generalpurpose applications. 7.2 Functional Block Diagram VDD + Q3 Q6 Q9 Q12 Q14 Q16 IN + OUT C1 IN − R5 Q1 Q4 Q13 Q15 Q17 D1 Q2 Q5 R3 R4 Q7 Q8 Q10 Q11 R1 R2 VDD− Table 2. Device Component Count (1) (1) COMPONENT COUNT Transistors 76 Resistors 52 Diodes 18 Capacitors 6 Includes both amplifiers and all ESD, bias, and trim circuitry. 7.3 Feature Description The TLC2274M-MIL device features 2-MHz bandwidth and voltage noise of 9 nV/√Hz with performance rated from 4.4 V to 16 V across a temperature range (–55°C to 125°C). LinMOS suits a wide range of audio, automotive, industrial, and instrumentation applications. 7.4 Device Functional Modes The TLC2274M-MIL device is powered on when the supply is connected. The device may operate with single or dual supply, depending on the application. The device is in its full-performance mode once the supply is above the recommended value. Submit Documentation Feedback Copyright © 2017, Texas Instruments Incorporated Product Folder Links: TLC2274M-MIL 19 TLC2274M-MIL SLOS985 – JUNE 2017 www.ti.com 8 Application and Implementation NOTE Information in the following applications sections is not part of the TI component specification, and TI does not warrant its accuracy or completeness. TI’s customers are responsible for determining suitability of components for their purposes. Customers should validate and test their design implementation to confirm system functionality. 8.1 Application Information 8.1.1 Macromodel Information Macromodel information provided was derived using MicroSim Parts™, the model generation software used with MicroSim PSpice™. The Boyle macromodel (1) and subcircuit in Figure 53 were generated using the TLC2274MMIL typical electrical and operating characteristics at TA = 25°C. Using this information, output simulations of the following key parameters can be generated to a tolerance of 20% (in most cases): • Maximum positive output voltage swing • Maximum negative output voltage swing • Slew rate • Quiescent power dissipation • Input bias current • Open-loop voltage amplification • Unity-gain frequency • Common-mode rejection ratio • Phase margin • DC output resistance • AC output resistance • Short-circuit output current limit 99 DIN 3 EGND + VCC + 9 RSS 10 VC IN − J1 DP J2 11 VAD VCC − DC 12 C1 RD1 R2 − 53 IN + HLIM − + − + VIN 7 + GCM GA VLIM 8 − RD2 RO1 DE 5 54 4 − − C2 6 60 + − + DIP 91 + VIP 90 RO2 VB RP 2 1 92 FB − + ISS − + VE .SUBCKT TLC227x 1 2 3 4 5 C1 11 1214E−12 C2 6 760.00E−12 DC 5 53DX DE 54 5DX DLP 90 91DX DLN 92 90DX DP 4 3DX EGND 99 0POLY (2) (3,0) (4,) 0 .5 .5 FB 99 0POLY (5) VB VC VE VLP VLN 0 + 984.9E3 −1E6 1E6 1E6 −1E6 GA 6 011 12 377.0E−6 GCM 0 6 10 99 134E−9 ISS 3 10DC 216.OE−6 HLIM 90 0VLIM 1K J1 11 210 JX J2 12 110 JX R2 6 9100.OE3 OUT RD1 60 112.653E3 RD2 60 122.653E3 R01 8 550 R02 7 9950 RP 3 44.310E3 RSS 10 99925.9E3 VAD 60 4−.5 VB 9 0DC 0 VC 3 53 DC .78 VE 54 4DC .78 VLIM 7 8DC 0 VLP 91 0DC 1.9 VLN 0 92DC 9.4 .MODEL DX D (IS=800.0E−18) .MODEL JX PJF (IS=1.500E−12BETA=1.316E-3 + VTO=−.270) .ENDS Figure 53. Boyle Macromodel and Subcircuit (1) 20 Macromodeling of Integrated Circuit Operational Amplifiers, IEEE Journal of Solid-State Circuits, SC-9, 353 (1974). Submit Documentation Feedback Copyright © 2017, Texas Instruments Incorporated Product Folder Links: TLC2274M-MIL TLC2274M-MIL www.ti.com SLOS985 – JUNE 2017 8.2 Typical Application 8.2.1 High-Side Current Monitor VBAT V1 ILOUD V2 RS 0.1 µF R1 R ILOAD VOUT + _ R2 47 kΩ Rg Figure 54. Equivalent Schematic (Each Amplifier) 8.2.1.1 Design Requirements For this design example, use the parameters listed in Table 3 as the input parameters. Table 3. Design Parameters PARAMETER VALUE VBAT Battery voltage 12 V RSENSE Sense resistor ILOAD Load current 0.1 Ω 0 A to 10 A Operational amplifier Set in differential configuration with gain = 10 8.2.1.2 Detailed Design Procedure This circuit is designed for measuring the high-side current in automotive body control modules with a 12-V battery or similar applications. The operational amplifier is set as differential with an external resistor network. 8.2.1.2.1 Differential Amplifier Equations Equation 1 and Equation 2 are used to calculate VOUT. VOUT VOUT æ R R 1æ R R ç 1+ ç 1 + - 1 ç 2 è R2 Rg Rg ç Rg R2 V1 + V2 = ´ + ç R R R ç 2 1+ 1 1+ 1 çç R2 R2 è æ R R 1æ R R ç 1+ ç 1 + - 1 2 çè R2 Rg Rg ç Rg R2 = ´ VBAT + ç R1 R R ç 1+ 1+ 1 çç R2 R2 è ö ö ÷ ÷ ÷ ø (V - V ) ÷ 1 2 ÷ ÷ ÷÷ ø (1) ö ö ÷ ÷ ÷ ÷ ø ´R ´I S Load ÷ ÷ ÷÷ ø (2) In an ideal case R1 = R and R2 = Rg, and VOUT can then be calculated using Equation 3: Rg VOUT = ´ RS ´ ILoad R Submit Documentation Feedback Copyright © 2017, Texas Instruments Incorporated Product Folder Links: TLC2274M-MIL (3) 21 TLC2274M-MIL SLOS985 – JUNE 2017 www.ti.com However, as the resistors have tolerances, they cannot be perfectly matched. R1 = R ± ΔR1 R2 = R2 ± ΔR2 R = R ± ΔR Rg = Rg ± ΔRg DR Tol = R (4) By developing the equations and neglecting the second order, the worst case is when the tolerances add up. This is shown by Equation 5. æ æ Rg 2R ö ö Rg VOUT = ± (4 Tol) ´ VBAT + ç 1 ± 2 Tol ç 1 + ÷÷ ´ RS ´ ILOAD ç ÷÷ ç R + Rg è R + Rg ø ø R è where • • Tol = 0.01 for 1% Tol = 0.001 for 0.1% (5) If the resistors are perfectly matched, then Tol = 0 and VOUT is calculated using Equation 6. Rg VOUT = ´ RS ´ ILOAD R (6) The highest error is from the common mode, as shown in Equation 7. Rg 4 (Tol) ´ VBAT R + Rg (7) Gain of 10, Rg / R = 10, and Tol = 1%: Common mode error = ((4 × 0.01) / 1.1) × 12 V = 0.436 V Gain of 10 and Tol = 0.1%: Common mode error = 43.6 mV The resistors were chosen from 2% batches. R1 and R 12 kΩ R2 and Rg 120 kΩ Ideal Gain = 120 / 12 = 10 The measured value of the resistors: R1 = 11.835 kΩ R = 11.85 kΩ R2 = 117.92 kΩ Rg = 118.07 kΩ 22 Submit Documentation Feedback Copyright © 2017, Texas Instruments Incorporated Product Folder Links: TLC2274M-MIL TLC2274M-MIL www.ti.com SLOS985 – JUNE 2017 1.2 12 1 10 Output Voltage (V) Output Voltage (V) 8.2.1.3 Application Curves 0.8 0.6 0.4 0.2 8 6 4 2 Measured Ideal Measured Ideal 0 0 0 0.2 0.4 0.6 0.8 Load Current (A) 1 1.2 0 2 D001 Figure 55. Output Voltage Measured vs Ideal (0 to 1 A) 4 6 8 Load Current (A) 10 12 D001 Figure 56. Output Voltage Measured vs Ideal (0 to 10 A) 9 Power Supply Recommendations Supply voltage for a single supply is from 4.4 V to 16 V, and from ±2.2 V to ±8 V for a dual supply. In the highside sensing application, the supply is connected to a 12-V battery. Submit Documentation Feedback Copyright © 2017, Texas Instruments Incorporated Product Folder Links: TLC2274M-MIL 23 TLC2274M-MIL SLOS985 – JUNE 2017 www.ti.com 10 Layout 10.1 Layout Guidelines The TLC2274M-MIL device is a wideband amplifier. To realize the full operational performance of the device, good high-frequency printed-circuit-board (PCB) layout practices are required. Low-loss 0.1-μF bypass capacitors must be connected between each supply pin and ground as close to the device as possible. The bypass capacitor traces should be designed for minimum inductance. 10.2 Layout Example Figure 57. Layout Example 24 Submit Documentation Feedback Copyright © 2017, Texas Instruments Incorporated Product Folder Links: TLC2274M-MIL TLC2274M-MIL www.ti.com SLOS985 – JUNE 2017 11 Device and Documentation Support 11.1 Receiving Notification of Documentation Updates To receive notification of documentation updates, navigate to the device product folder on ti.com. In the upper right corner, click on Alert me to register and receive a weekly digest of any product information that has changed. For change details, review the revision history included in any revised document. 11.2 Community Resources The following links connect to TI community resources. Linked contents are provided "AS IS" by the respective contributors. They do not constitute TI specifications and do not necessarily reflect TI's views; see TI's Terms of Use. TI E2E™ Online Community TI's Engineer-to-Engineer (E2E) Community. Created to foster collaboration among engineers. At e2e.ti.com, you can ask questions, share knowledge, explore ideas and help solve problems with fellow engineers. Design Support TI's Design Support Quickly find helpful E2E forums along with design support tools and contact information for technical support. 11.3 Trademarks E2E is a trademark of Texas Instruments. MicroSim Parts, PSpice are trademarks of MicroSim. All other trademarks are the property of their respective owners. 11.4 Electrostatic Discharge Caution These devices have limited built-in ESD protection. The leads should be shorted together or the device placed in conductive foam during storage or handling to prevent electrostatic damage to the MOS gates. 11.5 Glossary SLYZ022 — TI Glossary. This glossary lists and explains terms, acronyms, and definitions. 12 Mechanical, Packaging, and Orderable Information The following pages include mechanical, packaging, and orderable information. This information is the mostcurrent data available for the designated device. This data is subject to change without notice and without revision of this document. For browser-based versions of this data sheet, see the left-hand navigation pane. Submit Documentation Feedback Copyright © 2017, Texas Instruments Incorporated Product Folder Links: TLC2274M-MIL 25 PACKAGE OPTION ADDENDUM www.ti.com 4-Dec-2021 PACKAGING INFORMATION Orderable Device Status (1) Package Type Package Pins Package Drawing Qty Eco Plan (2) Lead finish/ Ball material MSL Peak Temp Op Temp (°C) Device Marking (3) (4/5) (6) 5962-9318201M2A ACTIVE LCCC FK 20 1 Non-RoHS & Green SNPB N / A for Pkg Type -55 to 125 59629318201M2A TLC2274 MFKB 5962-9318201MCA ACTIVE CDIP J 14 1 Non-RoHS & Green SNPB N / A for Pkg Type -55 to 125 5962-9318201MC A TLC2274MJB 5962-9318201QDA ACTIVE CFP W 14 1 Non-RoHS & Green SNPB N / A for Pkg Type -55 to 125 5962-9318201QD A TLC2274MWB TLC2274MFKB ACTIVE LCCC FK 20 1 Non-RoHS & Green SNPB N / A for Pkg Type -55 to 125 59629318201M2A TLC2274 MFKB TLC2274MJ ACTIVE CDIP J 14 1 Non-RoHS & Green SNPB N / A for Pkg Type -55 to 125 TLC2274MJ TLC2274MJB ACTIVE CDIP J 14 1 Non-RoHS & Green SNPB N / A for Pkg Type -55 to 125 5962-9318201MC A TLC2274MJB TLC2274MWB ACTIVE CFP W 14 1 Non-RoHS & Green SNPB N / A for Pkg Type -55 to 125 5962-9318201QD A TLC2274MWB (1) The marketing status values are defined as follows: ACTIVE: Product device recommended for new designs. LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect. NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design. PREVIEW: Device has been announced but is not in production. Samples may or may not be available. OBSOLETE: TI has discontinued the production of the device. (2) RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may reference these types of products as "Pb-Free". RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption. Green: TI defines "Green" to mean the content of Chlorine (Cl) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of
TLC2274MFKB 价格&库存

很抱歉,暂时无法提供与“TLC2274MFKB”相匹配的价格&库存,您可以联系我们找货

免费人工找货
TLC2274MFKB
    •  国内价格
    • 1000+246.40000

    库存:4359