0
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
创作中心
发布
  • 发文章

  • 发资料

  • 发帖

  • 提问

  • 发视频

创作活动
TLC2274QPWRG4Q1

TLC2274QPWRG4Q1

  • 厂商:

    BURR-BROWN(德州仪器)

  • 封装:

    TSSOP14

  • 描述:

    TLC2274-Q1 AUTOMOTIVE ADVANCED L

  • 数据手册
  • 价格&库存
TLC2274QPWRG4Q1 数据手册
TLC2272-Q1, TLC2272A-Q1, TLC2274-Q1, TLC2274A-Q1 SGLS007G – FEBRUARY 2003 – REVISED AUGUST 2022 TLC227x-Q1 Advanced, Rail-To-Rail, LinCMOS™ Operational Amplifiers • • • • • • • • • • • AEC-Q100 qualified for automotive applications – Temperature grade 1: –40°C to 125°C, TA Functional Safety-Capable – Documentation available to aid functional safety system design (TLC2272-Q1) – Documentation available to aid functional safety system design (TLC2272A-Q1) Output swing includes both supply rails Low noise: 9 nV/√Hz typical at f = 1 kHz Low input bias current: 1 pA typical Fully specified for both single-supply and splitsupply operation Common-mode input voltage range includes negative rail High-gain bandwidth: 2.2 MHz typical High slew rate: 3.6 V/μs typical Low input offset voltage: 950 μV maximum at TA = 25°C Macromodel included 2 Applications • • • • • • • • • • • • • Body control module Battery management system Car audio DC/DC converter Electric power steering Engine control unit Gasoline engine Instrument clusters Inverter and motor control On-board charger Telematics control unit Transmission control White goods (refrigerators, washing machines) 3 Description The TLC227x-Q1 are dual and quad, LinCMOS™ operational amplifiers. Both devices exhibit rail-to-rail output performance for increased dynamic range in single- or split-supply applications. The TLC227x-Q1 family offers 2 MHz of bandwidth and 3 V/μs of slew rate for higher-speed applications. These devices offer comparable ac performance while having better noise, input offset voltage, and power dissipation than existing CMOS op amps. The TLC227x‑Q1 has a noise voltage of 9 nV/√Hz—two times lower than competitive solutions. The TLC227x-Q1, exhibiting high input impedance and low noise, are excellent for small-signal conditioning for high-impedance sources, such as piezoelectric transducers. In addition, the rail-to-rail output feature, with single- or split-supplies, makes this family a great choice when interfacing with analog-to-digital converters (ADCs). For precision applications, the TLC227xA-Q1 family is available with a maximum input offset voltage of 950 μV. This family is fully characterized at 5 V and ±5 V. These devices offer increased output dynamic range, lower noise voltage, and lower input offset voltage. This enhanced feature set allows the TLC227x-Q1 to be used in a wider range of applications. For applications that require higher output drive and wider input voltage range, see the TLV2432-Q1 and TLV2442-Q1. All the parameters of the TLC227x-Q1 family enables these devices to be applicable in most automotive applications. Package Information PACKAGE(1) PART NUMBER BODY SIZE (NOM) TLC2272-Q1, TLC2272A-Q1 SOIC (8) 4.90 mm x 3.91 mm TSSOP (8) 3.00 mm × 4.40 mm TLC2274-Q1, TLC2274A-Q1 SOIC (14) 8.65 mm x 3.91 mm TSSOP (14) 5.00 mm × 4.40 mm (1) For all available packages, see the orderable addendum at the end of the data sheet. V(OPP) V O(PP) − Maximum Peak-to-Peak Output Voltage (V) 1 Features 16 TA = 25°C 14 12 IO = ± 50 µA 10 IO = ± 500 µA 8 6 4 4 6 10 12 8 |VDD ±| − Supply Voltage (V) 14 16 Maximum Peak-To-Peak Output Voltage vs Supply Voltage An IMPORTANT NOTICE at the end of this data sheet addresses availability, warranty, changes, use in safety-critical applications, intellectual property matters and other important disclaimers. PRODUCTION DATA. TLC2272-Q1, TLC2272A-Q1, TLC2274-Q1, TLC2274A-Q1 www.ti.com SGLS007G – FEBRUARY 2003 – REVISED AUGUST 2022 Table of Contents 1 Features............................................................................1 2 Applications..................................................................... 1 3 Description.......................................................................1 4 Revision History.............................................................. 2 5 Pin Configuration and Functions...................................3 6 Specifications.................................................................. 4 6.1 Absolute Maximum Ratings........................................ 4 6.2 ESD Ratings............................................................... 4 6.3 Recommended Operating Conditions.........................4 6.4 Thermal Information....................................................5 6.5 Electrical Characteristics: VDD = 5 V (TLC2272Q1 and TLC2272A-Q1)................................................. 5 6.6 Electrical Characteristics: VDD± = ±5 V (TLC2272-Q1 and TLC2272A-Q1)................................ 6 6.7 Electrical Characteristics: VDD = 5 V (TLC2274Q1 and TLC2274A-Q1)................................................. 8 6.8 Electrical Characteristics: VDD± = ±5 V (TLC2274-Q1 and TLC2274A-Q1)................................ 9 6.9 Typical Characteristics.............................................. 11 7 Detailed Description......................................................22 7.1 Overview................................................................... 22 7.2 Functional Block Diagram......................................... 22 7.3 Feature Description...................................................22 7.4 Device Functional Modes..........................................22 8 Application and Implementation.................................. 23 8.1 Application Information............................................. 23 8.2 Typical Application.................................................... 24 8.3 Power Supply Recommendations.............................26 8.4 Layout....................................................................... 26 9 Device and Documentation Support............................27 9.1 Device Support......................................................... 27 9.2 Documentation Support............................................ 27 9.3 Receiving Notification of Documentation Updates....27 9.4 Support Resources................................................... 27 9.5 Trademarks............................................................... 27 9.6 Electrostatic Discharge Caution................................28 9.7 Glossary....................................................................28 10 Mechanical, Packaging, and Orderable Information.................................................................... 28 4 Revision History NOTE: Page numbers for previous revisions may differ from page numbers in the current version. Changes from Revision F (March 2016) to Revision G (August 2022) Page • Updated the numbering format for tables, figures, and cross-references throughout the document..................1 • Added functional safety information to Features bullets..................................................................................... 1 Changes from Revision E (January 2012) to Revision F (March 2016) Page • Added Pin Configuration and Functions section, Feature Description section, Device Functional Modes, Application and Implementation section, Power Supply Recommendations section, Layoutsection, Device and Documentation Support section, and Mechanical, Packaging, and Orderable Information section............ 1 • Added ESD ratings table.................................................................................................................................... 4 Changes from Revision D (March 2009) to Revision E (January 2012) Page • Deleted ESD ratings table.................................................................................................................................. 4 2 Submit Document Feedback Copyright © 2022 Texas Instruments Incorporated Product Folder Links: TLC2272-Q1 TLC2272A-Q1 TLC2274-Q1 TLC2274A-Q1 TLC2272-Q1, TLC2272A-Q1, TLC2274-Q1, TLC2274A-Q1 www.ti.com SGLS007G – FEBRUARY 2003 – REVISED AUGUST 2022 5 Pin Configuration and Functions Figure 5-1. TLC2272-Q1 and TLC2272A-Q1: D (8‑Pin SOIC) or PW (8‑Pin TSSOP) Packages, Top View Figure 5-2. TLC2274-Q1 and TLC2274A-Q1: D (14‑Pin SOIC) or PW (14‑Pin TSSOP) Packages, Top View Table 5-1. Pin Functions PIN NO. NAME TYPE DESCRIPTION TLC2272-Q1, TLC2274-Q1, TLC2272A-Q1 TLC2274A-Q1 1IN+ 3 3 Input Noninverting input, channel 1 1IN– 2 1OUT 1 2 Input Inverting input, channel 1 1 Output 2IN+ 2IN– 5 5 Input Noninverting input, channel 2 6 6 Input Inverting input, channel 2 Output, channel 1 2OUT 7 7 Ouput Output, channel 2 3IN+ — 10 Input Noninverting input, channel 3 3IN– — 9 Input Inverting input, channel 3 3OUT — 8 Output 4IN+ — 12 Input Noninverting input, channel 4 4IN– — 13 Input Inverting input, channel 4 4OUT — 14 Output VDD+ 8 4 Input Positive (highest) supply VDD– 4 11 Input Negative (lowest) supply Copyright © 2022 Texas Instruments Incorporated Output, channel 3 Output, channel 4 Submit Document Feedback Product Folder Links: TLC2272-Q1 TLC2272A-Q1 TLC2274-Q1 TLC2274A-Q1 3 TLC2272-Q1, TLC2272A-Q1, TLC2274-Q1, TLC2274A-Q1 www.ti.com SGLS007G – FEBRUARY 2003 – REVISED AUGUST 2022 6 Specifications 6.1 Absolute Maximum Ratings over operating free-air temperature range (unless otherwise noted)(1) MIN MAX UNIT 8 V Supply voltage, VDD+(2) VDD –(2) –8 V Differential input voltage, VID (3) Input voltage, VI(any ±16 input)(2) VDD− − 0.3 V VDD+ V Input current, II (any input) ±5 mA Output current, IO ±50 mA Total current into VDD+ ±50 mA ±50 mA 125 °C 260 °C 150 °C Total current out of VDD– Duration of short-circuit current at (or below) 25°C(4) Unlimited Operating free-air temperature range, TA Lead temperature 1,6 mm (1/16 inch) from case for 10 seconds –40 D or PW package Storage temperature, Tstg (1) (2) (3) (4) –65 Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings only, which do not imply functional operation of the device at these or any other conditions beyond those indicated under Section 6.3. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability. All voltage values, except differential voltages, are with respect to the midpoint between VDD+ and VDD−. Differential voltages are at IN+ with respect to IN–. Excessive current will flow if input is brought below VDD– − 0.3 V. The output can be shorted to either supply. Temperature or supply voltages must be limited so that the maximum dissipation rating is not exceeded. 6.2 ESD Ratings VALUE V(ESD) (1) Electrostatic discharge Human-body model (HBM), per AEC HBM ESD classification level 2 Q100-002(1) UNIT ±2000 V Charged-device model (CDM), per AEC Q100-011 CDM ESD classification level C6 ±1000 AEC Q100-002 indicates that HBM stressing shall be in accordance with the ANSI/ESDA/JEDEC JS-001 specification. 6.3 Recommended Operating Conditions over operating free-air temperature range (unless otherwise noted) MIN 4 MAX UNIT VDD± Supply voltage ±2.2 ±8 V VI Input voltage VDD− VDD+ −1.5 V VIC Common-mode input voltage VDD− VDD+ −1.5 V TA Operating free-air temperature −40 125 °C Submit Document Feedback Copyright © 2022 Texas Instruments Incorporated Product Folder Links: TLC2272-Q1 TLC2272A-Q1 TLC2274-Q1 TLC2274A-Q1 TLC2272-Q1, TLC2272A-Q1, TLC2274-Q1, TLC2274A-Q1 www.ti.com SGLS007G – FEBRUARY 2003 – REVISED AUGUST 2022 6.4 Thermal Information TLC2272-Q1, TLC2272A-Q1 THERMAL METRIC(1) TLC2274-Q1, TLC2274A-Q1 D (SOIC) PW (TSSOP) D (SOIC) PW (TSSOP) 8 PINS 8 PINS 14 PINS 14 PINS UNIT RθJA Junction-to-ambient thermal resistance 115.6 175.8 83.8 111.6 °C/W RθJC(top) Junction-to-case (top) thermal resistance 61.8 58.8 43.2 41.2 °C/W RθJB Junction-to-board thermal resistance 55.9 104.3 38.4 54.7 °C/W ψJT Junction-to-top characterization parameter 14.3 5.9 9.4 3.9 °C/W ψJB Junction-to-board characterization parameter 55.4 102.3 38.1 53.9 °C/W RθJC(bot) Junction-to-case (bottom) thermal resistance — — — — °C/W (1) For more information about traditional and new thermal metrics, see the Semiconductor and IC Package Thermal Metrics application report. 6.5 Electrical Characteristics: VDD = 5 V (TLC2272-Q1 and TLC2272A-Q1) at specified free-air temperature, VDD = 5 V; TA = 25°C, unless otherwise noted. PARAMETER TEST CONDITIONS TLC2272-Q1 VIO VIC = 0 V, VDD± = ±2.5 V, VO = 0 V, RS = 50 Ω Input offset voltage TLC2272A-Q1 TLC2272-Q1 TLC2272A-Q1 αVIO Temperature coefficient of input offset voltage Input offset voltage long-term MIN TA = 25°C Input offset current VIC = 0 V, VDD± = ±2.5 V, VO = 0 V, RS = 50 Ω IIB Input bias current VIC = 0 V, VDD± = ±2.5 V, VO = 0 V, RS = 50 Ω VICR Common-mode input voltage RS = 50 Ω; |VIO | ≤ 5 mV Full Range(1) High-level output voltage 2 0.5 Full Range(1) 1 Range(1) –0.3 2.5 4 0 2.5 3.5 Full Range(1) Full IOL = 500 μA IOL = 5 mA AVD Large-signal differential voltage amplification VIC = 2.5 V, VO = 1 V to 4 V pA pA V 4.99 TA = 25°C IOH = −200 μA VIC = 2.5 V 60 800 Range(1) 4.85 RL = 10 kΩ(3) 4.93 4.85 TA = 25°C 4.25 Full Range(1) 4.25 IOL = 50 μA Low-level output voltage μV/mo 60 800 TA = 25°C Full µV μV/°C 0.002 TA = 25°C TA = 25°C IOH = −1 mA VOL 950 UNIT 1500 IOH = −20 μA VOH 2500 3000 VIC = 0 V, VDD± = ±2.5 V, VO = 0 V, RS = 50 Ω IIO MAX 300 300 VIC = 0 V, VDD± = ±2.5 V, VO = 0 V, RS = 50 Ω drift(2) TYP V 4.65 0.01 TA = 25°C 0.09 Full Range(1) 0.15 0.15 TA = 25°C 0.9 Full Range(1) V 1.5 1.5 TA = 25°C 10 Full Range(1) 10 RL = 1 MΩ(3) 35 V/mV 175 rid Differential input resistance 1012 ri Common-mode input resistance 1012 Ω ci Common-mode input capacitance f = 10 kHz, P package 8 pF zo Closed-loop output impedance f = 1 MHz, AV = 10 140 Ω CMRR Common-mode rejection ratio VIC = 0 V to 2.7 V, VO = 2.5 V, RS = 50 Ω kSVR Supply-voltage rejection ratio (ΔVDD / ΔVIO) VDD = 4.4 V to 16 V, VIC = VDD / 2, no load Copyright © 2022 Texas Instruments Incorporated TA = 25°C 70 Full Range(1) 70 TA = 25°C 80 Full Range(1) 80 75 95 Ω dB dB Submit Document Feedback Product Folder Links: TLC2272-Q1 TLC2272A-Q1 TLC2274-Q1 TLC2274A-Q1 5 TLC2272-Q1, TLC2272A-Q1, TLC2274-Q1, TLC2274A-Q1 www.ti.com SGLS007G – FEBRUARY 2003 – REVISED AUGUST 2022 6.5 Electrical Characteristics: VDD = 5 V (TLC2272-Q1 and TLC2272A-Q1) (continued) at specified free-air temperature, VDD = 5 V; TA = 25°C, unless otherwise noted. PARAMETER TEST CONDITIONS IDD Supply current VO = 2.5 V, no load SR Slew rate at unity gain VO = 0.5 V to 2.5 V, RL = 10 kΩ(3), CL = 100 pF(3) Vn Equivalent input noise voltage VNPP Peak-to-peak equivalent input noise voltage In Equivalent input noise current THD+N Total harmonic distortion + noise BOM MIN TA = 25°C TYP MAX 2.2 3 Full Range(1) 3 TA = 25°C 2.3 Full Range(1) 1.7 3.6 f = 10 Hz 50 f = 1 kHz 9 f = 0.1 Hz to 1 Hz AV = 1 0.0013% AV = 10 0.004% AV = 100 0.03% Gain-bandwidth product f = 10 kHz, RL = 10 kΩ(3), CL = 100 pF(3) Maximum output-swing bandwidth VO(PP) = 2 V, AV = 1, RL = 10 kΩ(3), CL = 100 pF(3) kΩ(3), fA/√Hz 2.18 MHz 1 MHz To 0.1% 1.5 To 0.01% 2.6 Settling time AV = –1, RL = 10 Step = 0.5 V to 2.5 V, CL = 100 pF(3) φm Phase margin at unity gain RL = 10 kΩ(3), CL = 100 pF(3) 50° Gain margin RL = 10 kΩ(3), CL = 100 pF(3) 10 (3) µV 0.6 ts (1) (2) nV/√Hz 1.4 VO = 0.5 V to 2.5 V, f = 20 kHz, RL = 10 kΩ(3) mA V/µs 1 f = 0.1 Hz to 10 Hz UNIT µs dB TA = –40°C to 125°C. Typical values are based on the input offset voltage shift observed through 168 hours of operating life test at TA = 150°C extrapolated to TA = 25°C using the Arrhenius equation and assuming an activation energy of 0.96 eV. Referenced to 0 V. 6.6 Electrical Characteristics: VDD± = ±5 V (TLC2272-Q1 and TLC2272A-Q1) at specified free-air temperature, VDD± = ±5 V; TA = 25°C, unless otherwise noted. PARAMETER TEST CONDITIONS TLC2272-Q1 VIO VIC = 0 V, VO = 0 V, RS = 50 Ω Input offset voltage TLC2272A-Q1 TLC2272-Q1 TLC2272A-Q1 MIN TA = 25°C MAX 300 2500 300 950 3000 Full Range(1) UNIT µV 1500 Temperature coefficient of input offset voltage VIC = 0 V, VO = 0 V, RS = 50 Ω 2 μV/°C Input offset voltage long-term drift(2) VIC = 0 V, VO = 0 V, RS = 50 Ω 0.002 μV/mo IIO Input offset current VIC = 0 V, VO = 0 V, RS = 50 Ω IIB Input bias current VIC = 0 V, VO = 0 V, RS = 50 Ω VICR Common-mode input voltage RS = 50 Ω; |VIO | ≤ 5 mV αVIO TA = 25°C 0.5 Full Range(1) TA = 25°C 1 Full Range(1) TA = 25°C VOM+ –5.3 0 4 –5 0 3.5 TA = 25°C 4.85 Full Range(1) 4.85 TA = 25°C 4.25 Full Range(1) 4.25 IO = 50 μA Maximum negative peak output voltage VIC = 0 V IO = 500 μA IO = 5 mA Submit Document Feedback pA pA V 4.99 IO = −1 mA VOM- 60 800 Full Range(1) IO = −200 μA Maximum positive peak output voltage 60 800 IO = −20 μA 6 TYP 4.93 V 4.65 –4.99 TA = 25°C –4.85 Full Range(1) –4.85 TA = 25°C –3.5 Full Range(1) –3.5 –4.91 V –4.1 Copyright © 2022 Texas Instruments Incorporated Product Folder Links: TLC2272-Q1 TLC2272A-Q1 TLC2274-Q1 TLC2274A-Q1 TLC2272-Q1, TLC2272A-Q1, TLC2274-Q1, TLC2274A-Q1 www.ti.com SGLS007G – FEBRUARY 2003 – REVISED AUGUST 2022 6.6 Electrical Characteristics: VDD± = ±5 V (TLC2272-Q1 and TLC2272A-Q1) (continued) at specified free-air temperature, VDD± = ±5 V; TA = 25°C, unless otherwise noted. PARAMETER TEST CONDITIONS Large-signal differential voltage amplification AVD VO = ±4 V RL = 10 kΩ MIN TYP TA = 25°C 20 50 Full Range(1) 20 RL = 1 MΩ MAX UNIT V/mV 300 Differential input resistance 1012 ri Common-mode input resistance 1012 Ω ci Common-mode input capacitance f = 10 kHz, P package 8 pF zo Closed-loop output impedance f = 1 MHz, AV = 10 130 Ω rid CMRR Common-mode rejection ratio VIC = –5 V to 2.7 V, VO = 0 V, RS = 50 Ω kSVR Supply-voltage rejection ratio (ΔVDD / ΔVIO) VDD+ = 2.2 V to ±8 V, VIC = 0 V, no load IDD Supply current VO = 0 V, no load SR Slew rate at unity gain VO = ±2.3 V, RL = 10 kΩ, CL = 100 pF Vn Equivalent input noise voltage VNPP Peak-to-peak equivalent input noise voltage In Equivalent input noise current THD+N Total harmonic distortion + noise TA = 25°C 75 Full Range(1) 75 TA = 25°C 80 Full Range(1) 80 TA = 25°C 80 dB 95 2.4 Full Range(1) dB 3 3 TA = 25°C 2.3 Full Range(1) 1.7 3.6 f = 10 Hz 50 f = 1 kHz 9 f = 0.1 Hz to 1 Hz 1 f = 0.1 Hz to 10 Hz 1.4 0.6 VO = ±2.3, f = 20 kHz, RL = 10 kΩ Ω AV = 1 0.0011% AV = 10 0.004% AV = 100 0.03% mA V/µs nV/√Hz µV fA/√Hz Gain-bandwidth product f = 10 kHz, RL = 10 kΩ, CL = 100 pF 2.25 MHz BOM Maximum output-swing bandwidth VO(PP) = 4.6 V, AV = 1, RL = 10 kΩ, CL = 100 pF 0.54 MHz ts Settling time AV = –1, RL = 10 kΩ, Step = –2.3 V to 2.3 V, CL = 100 pF φm Phase margin at unity gain RL = 10 kΩ, CL = 100 pF 52° Gain margin RL = 10 kΩ, CL = 100 pF 10 (1) (2) To 0.1% 1.5 To 0.01% 3.2 µs dB TA = –40°C to 125°C. Typical values are based on the input offset voltage shift observed through 168 hours of operating life test at TA = 150°C extrapolated to TA = 25°C using the Arrhenius equation and assuming an activation energy of 0.96 eV. Copyright © 2022 Texas Instruments Incorporated Submit Document Feedback Product Folder Links: TLC2272-Q1 TLC2272A-Q1 TLC2274-Q1 TLC2274A-Q1 7 TLC2272-Q1, TLC2272A-Q1, TLC2274-Q1, TLC2274A-Q1 www.ti.com SGLS007G – FEBRUARY 2003 – REVISED AUGUST 2022 6.7 Electrical Characteristics: VDD = 5 V (TLC2274-Q1 and TLC2274A-Q1) at specified free-air temperature, VDD = 5 V; TA = 25°C, unless otherwise noted. PARAMETER TEST CONDITIONS TLC2274-Q1 VIO TLC2274A-Q1 VIC = 0 V, VDD± = ±2.5 V, VO = 0 V, RS = 50 Ω Input offset voltage TLC2274-Q1 TLC2274A-Q1 αVIO Temperature coefficient of input offset voltage VIC = 0 V, VDD± = ±2.5 V, VO = 0 V, RS = 50 Ω Input offset voltage long-term drift(2) VIC = 0 V, VDD± = ±2.5 V, VO = 0 V, RS = 50 Ω IIO Input offset current VIC = 0 V, VDD± = ±2.5 V, VO = 0 V, RS = 50 Ω IIB Input bias current VIC = 0 V, VDD± = ±2.5 V, VO = 0 V, RS = 50 Ω VICR Common-mode input voltage RS = 50 Ω; |VIO | ≤ 5 mV MIN TA = 25°C High-level output voltage IOH = −200 μA IOL = 500 μA VIC = 2.5 V, VO = 1 V to 4 V RL = 10 kΩ(3) RL = 1 2 μV/°C 0.002 TA = 25°C 0.5 Full Range(1) μV/mo 60 800 TA = 25°C 1 Full Range(1) 60 800 –0.3 2.5 4 0 2.5 3.5 pA pA V TA = 25°C 4.85 Full Range(1) 4.85 TA = 25°C 4.25 Full Range(1) 4.25 4.93 V 4.65 0.01 TA = 25°C 0.09 Full Range(1) 0.15 0.15 TA = 25°C 0.9 Full Range(1) V 1.5 1.5 TA = 25°C 10 Full Range(1) 10 MΩ(3) 35 V/mV 175 rid Differential input resistance 1012 ri Common-mode input resistance 1012 Ω ci Common-mode input capacitance f = 10 kHz, P package 8 pF zo Closed-loop output impedance f = 1 MHz, AV = 10 140 Ω CMRR Common-mode rejection ratio VIC = 0 V to 2.7 V, VO = 2.5 V, RS = 50 Ω kSVR Supply-voltage rejection ratio (ΔVDD / ΔVIO) VDD = 4.4 V to 16 V, VIC = VDD / 2, no load IDD Supply current VO = 2.5 V, no load SR Slew rate at unity gain VO = 0.5 V to 2.5 V, RL = 10 kΩ(3), CL = 100 pF(3) Vn Equivalent input noise voltage VNPP Peak-to-peak equivalent input noise voltage In Equivalent input noise current THD+N BOM 8 µV 4.99 VIC = 2.5 V Large-signal differential voltage amplification UNIT 1500 Full Range(1) IOL = 5 mA AVD 950 3000 IOL = 50 μA Low-level output voltage 2500 Full Range(1) TA = 25°C IOH = −1 mA VOL MAX 300 300 IOH = −20 μA VOH TYP TA = 25°C 70 Full Range(1) 70 TA = 25°C 80 Full Range(1) 80 TA = 25°C Full 2.3 Full Range(1) 1.7 3.6 50 f = 1 kHz 9 f = 0.1 Hz to 1 Hz 1 1.4 0.6 kΩ(3), CL = 100 AV = 1 0.0013% AV = 10 0.004% AV = 100 0.03% pF(3) f = 10 kHz, RL = 10 Maximum output-swing bandwidth VO(PP) = 2 V, AV = 1, RL = 10 kΩ(3), CL = 100 pF(3) dB 6 6 f = 10 Hz VO = 0.5 V to 2.5 V, f = 20 kHz, RL = 10 kΩ(3) dB 95 4.4 TA = 25°C Gain-bandwidth product Submit Document Feedback 75 Range(1) f = 0.1 Hz to 10 Hz Total harmonic distortion + noise Ω mA V/µs nV/√Hz µV fA/√Hz 2.18 MHz 1 MHz Copyright © 2022 Texas Instruments Incorporated Product Folder Links: TLC2272-Q1 TLC2272A-Q1 TLC2274-Q1 TLC2274A-Q1 TLC2272-Q1, TLC2272A-Q1, TLC2274-Q1, TLC2274A-Q1 www.ti.com SGLS007G – FEBRUARY 2003 – REVISED AUGUST 2022 6.7 Electrical Characteristics: VDD = 5 V (TLC2274-Q1 and TLC2274A-Q1) (continued) at specified free-air temperature, VDD = 5 V; TA = 25°C, unless otherwise noted. PARAMETER TEST CONDITIONS MIN TYP To 0.1% 1.5 To 0.01% 2.6 ts Settling time AV = –1, RL = 10 kΩ(3), Step = 0.5 V to 2.5 V, CL = 100 pF(3) φm Phase margin at unity gain RL = 10 kΩ(3), CL = 100 pF(3) 50° Gain margin RL = 10 kΩ(3), CL = 100 pF(3) 10 (1) (2) (3) MAX UNIT µs dB TA = –40°C to 125°C. Typical values are based on the input offset voltage shift observed through 168 hours of operating life test at TA = 150°C extrapolated to TA = 25°C using the Arrhenius equation and assuming an activation energy of 0.96 eV. Referenced to 0 V. 6.8 Electrical Characteristics: VDD± = ±5 V (TLC2274-Q1 and TLC2274A-Q1) at specified free-air temperature, VDD± = ±5 V; TA = 25°C, unless otherwise noted. PARAMETER TEST CONDITIONS TLC2274-Q1 VIO VIC = 0 V, VO = 0 V, RS = 50 Ω Input offset voltage TLC2274A-Q1 TLC2274-Q1 TLC2274A-Q1 αVIO Temperature coefficient of input offset voltage VIC = 0 V, VO = 0 V, RS = 50 Ω Input offset voltage long-term drift(2) VIC = 0 V, VO = 0 V, RS = 50 Ω IIO Input offset current VIC = 0 V, VO = 0 V, RS = 50 Ω IIB Input bias current VIC = 0 V, VO = 0 V, RS = 50 Ω VICR Common-mode input voltage RS = 50 Ω; |VIO | ≤ 5 mV MIN TA = 25°C Full Range(1) VIC = 0 V 0.5 Full Range(1) Large-signal differential voltage amplification VO = ±4 V μV/mo 60 800 TA = 25°C 1 Full Range(1) TA = 25°C µV μV/°C 0.002 60 800 –5.3 0 4 –5 0 3.5 Full Range(1) pA pA V 4.99 IO = 500 μA IO = 5 mA AVD 950 UNIT 1500 TA = 25°C 4.85 Full Range(1) 4.85 TA = 25°C 4.25 Full Range(1) 4.25 IO = 50 μA Maximum negative peak output voltage 2500 3000 TA = 25°C IO = −1 mA VOM- 300 2 IO = −200 μA Maximum positive peak output voltage MAX 300 IO = −20 μA VOM+ TYP RL = 10 kΩ 4.93 V 4.65 –4.99 TA = 25°C –4.85 Full Range(1) –4.85 TA = 25°C –3.5 Full Range(1) –3.5 TA = 25°C 20 Full Range(1) 20 RL = 1 MΩ –4.91 V –4.1 50 V/mV 300 Differential input resistance 1012 ri Common-mode input resistance 1012 Ω ci Common-mode input capacitance f = 10 kHz, P package 8 pF zo Closed-loop output impedance f = 1 MHz, AV = 10 130 Ω rid CMRR Common-mode rejection ratio VIC = –5 V to 2.7 V, VO = 0 V, RS = 50 Ω kSVR Supply-voltage rejection ratio (ΔVDD / ΔVIO) VDD+ = 2.2 V to ±8 V, VIC = 0 V, no load IDD Supply current VO = 0 V, no load Copyright © 2022 Texas Instruments Incorporated TA = 25°C 75 Full Range(1) 75 TA = 25°C 80 Full Range(1) 80 TA = 25°C 80 dB 95 4.8 Full Range(1) Ω dB 6 6 mA Submit Document Feedback Product Folder Links: TLC2272-Q1 TLC2272A-Q1 TLC2274-Q1 TLC2274A-Q1 9 TLC2272-Q1, TLC2272A-Q1, TLC2274-Q1, TLC2274A-Q1 www.ti.com SGLS007G – FEBRUARY 2003 – REVISED AUGUST 2022 6.8 Electrical Characteristics: VDD± = ±5 V (TLC2274-Q1 and TLC2274A-Q1) (continued) at specified free-air temperature, VDD± = ±5 V; TA = 25°C, unless otherwise noted. PARAMETER TEST CONDITIONS SR Slew rate at unity gain Vn Equivalent input noise voltage VNPP Peak-to-peak equivalent input noise voltage In Equivalent input noise current THD+N BOM VO = ±2.3 V, RL = 10 kΩ, CL = 100 pF MIN TYP TA = 25°C 2.3 3.6 Full Range(1) 1.7 f = 10 Hz 50 f = 1 kHz 9 f = 0.1 Hz to 1 Hz 1 f = 0.1 Hz to 10 Hz 1.4 0.6 AV = 1 0.0011% AV = 10 0.004% AV = 100 0.03% V/µs nV/√Hz µV fA/√Hz VO = ±2.3, f = 20 kHz, RL = 10 kΩ Gain-bandwidth product f = 10 kHz, RL = 10 kΩ, CL = 100 pF 2.25 MHz Maximum output-swing bandwidth VO(PP) = 4.6 V, AV = 1, RL = 10 kΩ, CL = 100 pF 0.54 MHz To 0.1% 1.5 To 0.01% 3.2 Settling time AV = –1, RL = 10 kΩ, Step = –2.3 V to 2.3 V, CL = 100 pF φm Phase margin at unity gain RL = 10 kΩ, CL = 100 pF 52° Gain margin RL = 10 kΩ, CL = 100 pF 10 10 UNIT Total harmonic distortion + noise ts (1) (2) MAX µs dB TA = –40°C to 125°C. Typical values are based on the input offset voltage shift observed through 168 hours of operating life test at TA = 150°C extrapolated to TA = 25°C using the Arrhenius equation and assuming an activation energy of 0.96 eV. Submit Document Feedback Copyright © 2022 Texas Instruments Incorporated Product Folder Links: TLC2272-Q1 TLC2272A-Q1 TLC2274-Q1 TLC2274A-Q1 TLC2272-Q1, TLC2272A-Q1, TLC2274-Q1, TLC2274A-Q1 www.ti.com SGLS007G – FEBRUARY 2003 – REVISED AUGUST 2022 6.9 Typical Characteristics Table 6-1. Table of Graphs FIGURE(1) Distribution 1, 2, 3, 4 VIO Input offset voltage αVIO Input offset voltage temperature coefficient Distribution IIB /IIO Input bias and input offset current vs Free-air temperature VI Input voltage VOH vs Common-mode voltage 5, 6 7, 8, 9, 10 (2) 11 (2) vs Supply voltage 12 vs Free-air temperature 13 (2) High-level output voltage vs High-level output current 14 (2) VOL Low-level output voltage vs Low-level output current 15, 16 (2) VOM+ Maximum positive peak output voltage vs Output current 17 (2) VOM- Maximum negative peak output voltage vs Output current 18 (2) VO(PP) Maximum peak-to-peak output voltage vs Frequency IOS Short-circuit output current VO 19 vs Supply voltage 20 vs Free-air temperature 21 (2) Output voltage vs Differential input voltage 22, 23 Large-signal differential voltage amplification vs Load resistance Large-signal differential voltage amplification and phase margin vs Frequency Large-signal differential voltage amplification vs Free-air temperature z0 Output impedance vs Frequency 29, 30 CMRR Common-mode rejection ratio vs Frequency 31 vs Free-air temperature 32 kSVR Supply-voltage rejection ratio AVD IDD Supply current SR Slew rate VO Vn 24 25, 26 vs Frequency 33, 34 vs Free-air temperature 35 (2) vs Supply voltage 36 (2), vs Free-air temperature 38 (2), 39 (2) vs Load Capacitance 42, 43 Voltage-follower large-signal pulse response 44, 45 Inverting small-signal pulse response 46, 47 Voltage-follower small-signal pulse response 48, 49 vs Frequency 50, 51 52 Integrated noise voltage vs Frequency 53 Total harmonic distortion + noise vs Frequency 54 Gain-bandwidth product (1) (2) 41 (2) Inverting large-signal pulse response Noise voltage over a 10-second period φm 37 (2) 40 vs Free-air temperature Equivalent input noise voltage THD+N 27 (2), 28 (2) vs Supply voltage 55 vs Free-air temperature 56 (2) Phase margin vs Load capacitance 57 Gain margin vs Load capacitance 58 For all graphs where VDD = 5 V, all loads are referenced to 2.5 V. Data at high and low temperatures are applicable only within the rated operating free-air temperature ranges of the various devices. Copyright © 2022 Texas Instruments Incorporated Submit Document Feedback Product Folder Links: TLC2272-Q1 TLC2272A-Q1 TLC2274-Q1 TLC2274A-Q1 11 TLC2272-Q1, TLC2272A-Q1, TLC2274-Q1, TLC2274A-Q1 www.ti.com SGLS007G – FEBRUARY 2003 – REVISED AUGUST 2022 6.9 Typical Characteristics (continued) 15 20 891 Amplifiers From 2 Wafer Lots VDD = ± 2.5 V TA = 25°C Percentage of Amplifiers − % Percentage of Amplifiers − % 20 10 5 0 −1.6 −1.2 − 0.8 − 0.4 0 0.4 0.8 1.2 891 Amplifiers From 2 Wafer Lots VDD = ± 5 V TA = 25°C 15 10 5 0 −1.6 −1.2 − 0.8 − 0.4 1.6 VIO − Input Offset Voltage − mV Figure 6-1. Distribution of TLC2272-Q1 Input Offset Voltage 1.2 1.6 992 Amplifiers From 2 Wafer Lots VDD = ± 5 V Percentage of Amplifiers − % Percentage of Amplifiers − % 0.8 20 992 Amplifiers From 2 Wafer Lots VDD = ± 2.5 V 15 10 5 0 − 1.6 −1.2 − 0.8 −0.4 0 0.4 0.8 1.2 15 10 5 0 − 1.6 −1.2 −0.8 1.6 VIO − Input Offset Voltage − mV 0 0.4 0.8 1.2 1.6 Figure 6-4. Distribution of TLC2274-Q1 Input Offset Voltage 1 1 VIO − Input Offset Voltage − mV VIO VDD = 5 V TA = 25°C RS = 50 Ω 0.5 0 − 0.5 −1 −1 −0.4 VIO − Input Offset Voltage − mV Figure 6-3. Distribution of TLC2274-Q1 Input Offset Voltage VIO VIO − Input Offset Voltage − mV 0.4 Figure 6-2. Distribution of TLC2272-Q1 Input Offset Voltage 20 0 1 2 3 4 5 VIC − Common-Mode Voltage − V Figure 6-5. Input Offset Voltage vs Common-Mode Voltage 12 0 VIO − Input Offset Voltage − mV Submit Document Feedback VDD = ± 5 V TA = 25°C RS = 50 Ω 0.5 0 − 0.5 −1 −6 −5 −4 −3 −2 −1 0 1 2 3 4 5 VIC − Common-Mode Voltage − V Figure 6-6. Input Offset Voltage vs Common-Mode Voltage Copyright © 2022 Texas Instruments Incorporated Product Folder Links: TLC2272-Q1 TLC2272A-Q1 TLC2274-Q1 TLC2274A-Q1 TLC2272-Q1, TLC2272A-Q1, TLC2274-Q1, TLC2274A-Q1 www.ti.com SGLS007G – FEBRUARY 2003 – REVISED AUGUST 2022 6.9 Typical Characteristics (continued) 20 25 128 Amplifiers From 2 Wafer Lots VDD = ± 2.5 V P Package 25°C to 125°C 15 10 5 0 −5 −4 −3 −2 −1 0 1 2 3 4 128 Amplifiers From 2 Wafer Lots VDD = ± 5 V P Package 25°C to 125°C 20 Percentage of Amplifiers − % Percentage of Amplifiers − % 25 15 10 5 0 −5 −4 5 Figure 6-7. Distribution of TLC2272-Q1 vs Input Offset Voltage Temperature Coefficient 20 Percentage of Amplifiers − % Percentage of Amplifiers − % −1 0 2 1 3 4 5 25 128 Amplifiers From 2 Wafer Lots VDD = ± 2.5 V N Package TA = 25°C to 125°C 15 10 5 128 Amplifiers From 2 Wafer Lots VDD = ± 2.5 V N Package TA = 25°C to 125°C 20 15 10 5 0 −4 −3 −2 −1 0 1 2 3 4 5 −5 −4 −3 −2 −1 0 1 2 3 4 5 α VIO − Temperature Coefficient − µV/°C α VIO − Temperature Coefficient − µV/°C Figure 6-9. Distribution of TLC2274-Q1 vs Input Offset Voltage Temperature Coefficient Figure 6-10. Distribution of TLC2274-Q1 vs Input Offset Voltage Temperature Coefficient 12 35 30 TA = 25°C RS = 50 Ω 10 VDD = ± 2.5 V VIC = 0 V VO = 0 V RS = 50 Ω 8 6 25 20 IIB 15 IIO 10 V I − Input Voltage − V IIB I IO − Input Bias and Input Offset Currents − pA IIB and IIO −2 Figure 6-8. Distribution of TLC2272-Q1 vs Input Offset Voltage Temperature Coefficient 25 0 −5 −3 αV IO − Temperature Coefficient − µV/°C αV IO − Temperature Coefficient − µV/°C 4 2 |VIO| ≤ 5 mV 0 −2 −4 −6 5 −8 − 10 0 25 45 65 85 105 125 TA − Free-Air Temperature − °C Figure 6-11. Input Bias and Input Offset Current vs Free-Air Temperature Copyright © 2022 Texas Instruments Incorporated 2 3 4 5 6 7 8 |VDD ±| − Supply Voltage − V Figure 6-12. Input Voltage vs Supply Voltage Submit Document Feedback Product Folder Links: TLC2272-Q1 TLC2272A-Q1 TLC2274-Q1 TLC2274A-Q1 13 TLC2272-Q1, TLC2272A-Q1, TLC2274-Q1, TLC2274A-Q1 www.ti.com SGLS007G – FEBRUARY 2003 – REVISED AUGUST 2022 6.9 Typical Characteristics (continued) 5 6 VDD = 5 V V0H V OH − High-Level Output Voltage − V VDD = 5 V V I − Input Voltage − V 4 3 |VIO| ≤ 5 mV 2 1 0 −1 −75 − 50 5 4 TA = 125°C 3 TA = 25°C 2 TA = − 55°C 1 0 − 25 0 25 50 75 100 125 0 TA − Free-Air Temperature − °C Figure 6-13. Input Voltage vs Free-Air Temperature 1.4 VOL VOL − Low-Level Output Voltage − V VOL VOL − Low-Level Output Voltage − V VDD = 5 V TA = 25°C 1 VIC = 0 V 0.8 VIC = 1.25 V 0.6 VIC = 2.5 V 0.2 0 4 VDD = 5 V VIC = 2.5 V 1.2 1 TA = 125°C 0.8 TA = 25°C 0.6 TA = − 55°C 0.4 0.2 5 5 VDD ± = ± 5 V 4 TA = − 55°C TA = 25°C 3 TA = 125°C 2 1 0 1 2 3 4 5 |IO| − Output Current − mA Figure 6-17. Maximum Positive Peak Output Voltage vs Output Current Submit Document Feedback 0 5 1 2 3 4 IOL − Low-Level Output Current − mA 6 Figure 6-16. Low-Level Output Voltage vs Low-Level Output Current V OM − − Maximum Negative Peak Output Voltage − V 1 2 3 4 IOL − Low-Level Output Current − mA Figure 6-15. Low-Level Output Voltage vs Low-Level Output Current V OM + − Maximum Positive Peak Output Voltage − V 3 0 0 14 2 Figure 6-14. High-Level Output Voltage vs High-Level Output Current 1.2 0.4 1 IOH − High-Level Output Current − mA − 3.8 VDD = ± 5 V VIC = 0 V −4 TA = 125°C − 4.2 TA = 25°C − 4.4 TA = − 55°C − 4.6 − 4.8 −5 0 1 2 3 4 5 6 IO − Output Current − mA Figure 6-18. Maximum Positive Peak Output Voltage vs Output Current Copyright © 2022 Texas Instruments Incorporated Product Folder Links: TLC2272-Q1 TLC2272A-Q1 TLC2274-Q1 TLC2274A-Q1 TLC2272-Q1, TLC2272A-Q1, TLC2274-Q1, TLC2274A-Q1 www.ti.com SGLS007G – FEBRUARY 2003 – REVISED AUGUST 2022 10 16 RL = 10 kΩ TA = 25°C 9 IIOS OS − Short-Circuit Output Current − mA V(OPP) V O(PP) − Maximum Peak-to-Peak Output Voltage − V 6.9 Typical Characteristics (continued) 8 7 6 VDD = 5 V 5 4 VDD = ± 5 V 3 2 1 VID = − 100 mV 12 8 4 0 VID = 100 mV −4 VO = 0 V TA = 25°C −8 0 10 k 100 k 2 10 M 1M f − Frequency − Hz 7 −3 −1 −5 −25 0 25 50 75 100 TA − Free-Air Temperature − °C 3 2 0 − 800 125 Figure 6-21. Short-Circuit Output Current vs Free-Air Temperature 800 −400 0 400 VID − Differential Input Voltage − µV 1200 Figure 6-22. Output Voltage vs Differential Input Voltage 1000 VDD = ± 5 V TA = 25°C RL = 10 kΩ VIC = 0 V VO = ± 1 V TA = 25°C AVD AVD− Large-Signal Differential Voltage Amplification − dB VO − Output Voltage − V 8 1 VID = 100 mV 3 7 VDD = 5 V TA = 25°C RL = 10 kΩ VIC = 2.5 V 4 VO − Output Voltage − V IIOS OS − Short-Circuit Output Current − mA 11 5 6 5 VID = − 100 mV −50 5 Figure 6-20. Short-Circuit Output Current vs Supply Voltage VO = 0 V VDD = ± 5 V − 75 4 |VDD ±| − Supply Voltage − V Figure 6-19. Maximum Peak-to-Peak Output Voltage vs Frequency 15 3 1 −1 100 VDD = ± 5 V 10 VDD = 5 V 1 −3 −5 0 250 500 750 1000 −1000 − 750 − 500 − 250 VID − Differential Input Voltage − µV Figure 6-23. Output Voltage vs Differential Input Voltage Copyright © 2022 Texas Instruments Incorporated 0.1 0.1 1 10 RL − Load Resistance − kΩ 100 Figure 6-24. Large-Signal Differential Voltage Amplification vs Load Resistance Submit Document Feedback Product Folder Links: TLC2272-Q1 TLC2272A-Q1 TLC2274-Q1 TLC2274A-Q1 15 TLC2272-Q1, TLC2272A-Q1, TLC2274-Q1, TLC2274A-Q1 www.ti.com SGLS007G – FEBRUARY 2003 – REVISED AUGUST 2022 6.9 Typical Characteristics (continued) 80 135° 60 40 90° 20 45° 0 0° −20 −45° −40 1k 10 k 100 k 1M −90° 10 M 90° 20 45° 0° 0 −20 −45° −40 1k 10 k AVD AVD− Large-Signal Differential Voltage Amplification − V/mV AVD AVD− Large-Signal Differential Voltage Amplification − V/mV 1k VDD = 5 V VIC = 2.5 V VO = 1 V to 4 V RL = 1 MΩ 100 RL = 10 kΩ 10 − 75 −50 − 25 0 25 50 75 100 TA − Free-Air Temperature − °C VDD = ± 5 V VIC = 0 V VO = ± 4 V RL = 1 MΩ 100 RL = 10 kΩ 10 − 75 125 Figure 6-27. Large-Signal Differential Voltage Amplification vs Free-Air Temperature 125 VDD = ± 5 V TA = 25°C zo O zo − Output Impedance − Ω zo O zo − Output Impedance − Ω − 25 0 25 50 75 100 TA − Free-Air Temperature − °C 1000 VDD = 5 V TA = 25°C 100 AV = 100 10 AV = 10 AV = 1 100 AV = 100 10 AV = 10 1 AV = 1 1k 10 k 100 k 1M f − Frequency − Hz Figure 6-29. Output Impedance vs Frequency 16 −50 Figure 6-28. Large-Signal Differential Voltage Amplification vs Free-Air Temperature 1000 0.1 100 −90° 10 M 100 k 1M f − Frequency − Hz Figure 6-26. Large-Signal Differential Voltage Amplification and Phase Margin vs Frequency 1k 1 135° 40 f − Frequency − Hz Figure 6-25. Large-Signal Differential Voltage Amplification and Phase Margin vs Frequency 180° VDD = ± 5 V RL = 10 kΩ CL = 100 pF TA = 25°C φ om m − Phase Margin AVD AVD− Large-Signal Differential Voltage Amplification − dB 60 180° AVD AVD− Large-Signal Differential Voltage Amplification − dB VDD = 5 V RL = 10 kΩ CL = 100 pF TA = 25°C φ om m − Phase Margin 80 Submit Document Feedback 0.1 100 1k 10 k 100 k 1M f − Frequency − Hz Figure 6-30. Output Impedance vs Frequency Copyright © 2022 Texas Instruments Incorporated Product Folder Links: TLC2272-Q1 TLC2272A-Q1 TLC2274-Q1 TLC2274A-Q1 TLC2272-Q1, TLC2272A-Q1, TLC2274-Q1, TLC2274A-Q1 www.ti.com SGLS007G – FEBRUARY 2003 – REVISED AUGUST 2022 6.9 Typical Characteristics (continued) 90 TA = 25°C CMRR − Common-Mode Rejection Ratio − dB CMRR − Common-Mode Rejection Ratio − dB 100 VDD = ± 5 V 80 VDD = 5 V 60 40 20 100 1k 10 k 100 k 1M 82 VDD = ± 5 V VIC = − 5 V to 2.7 V 78 VDD = 5 V 74 VIC = 0 V to 2.7 V 70 − 75 0 10 86 10 M −50 Figure 6-31. Common-Mode Rejection Ratio vs Frequency kSVR k SVR − Supply-Voltage Rejection Ratio − dB kSVR k SVR − Supply-Voltage Rejection Ratio − dB 80 50 75 100 125 60 kSVR+ 40 kSVR − 20 0 100 1k 10 k 100 k 1M VDD = ± 5 V TA = 25°C 80 60 kSVR+ 40 kSVR − 20 0 −20 10 10 M 100 f − Frequency − Hz 1k 10 k 100 k 1M 10 M f − Frequency − Hz Figure 6-33. Supply-Voltage Rejection Ratio vs Frequency Figure 6-34. Supply-Voltage Rejection Ratio vs Frequency 110 3 VDD ± = ± 2.2 V to ± 8 V VO = 0 V VO = 0 V No Load 105 2.4 IIDD DD − Supply Current − mA kSVR k SVR − Supply Voltage Rejection Ratio − dB 25 100 VDD = 5 V TA = 25°C 100 95 1.8 TA = 25°C TA = − 55°C 1.2 TA = 125°C 0.6 90 85 − 75 0 Figure 6-32. Common-Mode Rejection Ratio vs Free-Air Temperature 100 −20 10 −25 TA − Free-Air Temperature − °C f − Frequency − Hz 0 − 50 −25 0 25 50 75 100 125 TA − Free-Air Temperature − °C Figure 6-35. Supply-Voltage Rejection Ratio vs Free-Air Temperature Copyright © 2022 Texas Instruments Incorporated 0 1 2 3 4 5 6 |VDD ± | − Supply Voltage − V 7 8 Figure 6-36. TLC2272-Q1 Supply Current vs Supply Voltage Submit Document Feedback Product Folder Links: TLC2272-Q1 TLC2272A-Q1 TLC2274-Q1 TLC2274A-Q1 17 TLC2272-Q1, TLC2272A-Q1, TLC2274-Q1, TLC2274A-Q1 www.ti.com SGLS007G – FEBRUARY 2003 – REVISED AUGUST 2022 6.9 Typical Characteristics (continued) 3 6 VO = 0 V No Load VDD = ± 5 V VO = 0 V 2.4 3.6 IIDD DD − Supply Current − mA IIDD DD − Supply Current − mA 4.8 TA = 25°C TA = − 55°C 2.4 TA = 125°C 1.2 0 VDD = 5 V VO = 2.5 V 1.8 1.2 0.6 0 1 2 3 4 5 6 7 0 −75 8 − 50 |VDD ± | − Supply Voltage − V −25 0 25 50 Figure 6-37. TLC2274-Q1 Supply Current vs Supply Voltage VDD = 5 V AV = − 1 TA = 25°C 4 SR − Slew Rate − V/ µs IIDD DD − Supply Current − mA 4.8 VDD = 5 V VO = 2.5 V 3.6 2.4 SR − 3 2 SR + 1 1.2 − 50 − 25 0 25 50 75 100 0 10 125 100 1k CL − Load Capacitance − pF TA − Free-Air Temperature − °C Figure 6-39. TLC2274-Q1 Supply Current vs Free-Air Temperature 5 VDD = 5 V RL = 10 kΩ CL = 100 pF TA = 25°C AV = − 1 SR − 4 VO − Output Voltage − mV VO SR − Slew Rate − V/ µs 4 SR + 3 2 VDD = 5 V RL = 10 kΩ CL = 100 pF AV = 1 1 10 k Figure 6-40. Slew Rate vs Load Capacitance 5 3 2 1 0 −50 − 25 0 25 50 75 100 125 TA − Free-Air Temperature − °C Figure 6-41. Slew Rate vs Free-Air Temperature 18 125 5 VDD = ± 5 V VO = 0 V 0 − 75 100 Figure 6-38. TLC2272-Q1 Supply Current vs Free-Air Temperature 6 0 − 75 75 TA − Free-Air Temperature − °C Submit Document Feedback 0 1 2 3 4 5 6 7 8 9 t − Time − µs Figure 6-42. Inverting Large-Signal Pulse Response Copyright © 2022 Texas Instruments Incorporated Product Folder Links: TLC2272-Q1 TLC2272A-Q1 TLC2274-Q1 TLC2274A-Q1 TLC2272-Q1, TLC2272A-Q1, TLC2274-Q1, TLC2274A-Q1 www.ti.com SGLS007G – FEBRUARY 2003 – REVISED AUGUST 2022 6.9 Typical Characteristics (continued) 5 3 2 4 VO − Output Voltage − V VO 4 V VO O − Output Voltage − V 5 VDD = ± 5 V RL = 10 kΩ CL = 100 pF TA = 25°C AV = − 1 1 0 −1 −2 VDD = 5 V RL = 10 kΩ CL = 100 pF AV = 1 TA = 25°C 3 2 1 −3 −4 −5 0 0 1 2 3 4 5 6 7 8 9 0 1 2 3 t − Time − µs Figure 6-43. Inverting Large-Signal Pulse Response 5 5 6 7 8 9 2 VDD = 5 V RL = 10 kΩ CL = 100 pF TA = 25°C AV = −1 2.6 VO − Output Voltage − V VO 3 Figure 6-44. Voltage-Follower Large-Signal Pulse Response 2.65 VDD = ± 5 V RL = 10 kΩ CL = 100 pF TA = 25°C AV = 1 4 VO − Output Voltage − V VO 4 t − Time − µs 1 0 −1 −2 −3 2.55 2.5 2.45 −4 −5 2.4 0 1 2 3 4 5 6 7 8 9 0 0.5 1 1.5 t − Time − µs Figure 6-45. Voltage-Follower Large-Signal Pulse Response 100 3.5 4 4.5 5 5.5 2.65 VDD = ± 5 V RL = 10 kΩ CL = 100 pF TA = 25°C AV = 1 50 Figure 6-46. Inverting Small-Signal Pulse Response 2.6 VO − Output Voltage − V VO VO − Output Voltage − mV VO 2 2.5 3 t − Time − µs 0 −50 VDD = 5 V RL = 10 kΩ CL = 100 pF TA = 25°C AV = 1 2.55 2.5 2.45 2.4 −100 0 0.5 1 1.5 2 2.5 3 3.5 4 t − Time − µs Figure 6-47. Inverting Small-Signal Pulse Response Copyright © 2022 Texas Instruments Incorporated 0 0.5 1 1.5 t − Time − µs Figure 6-48. Voltage-Follower Small-Signal Pulse Response Submit Document Feedback Product Folder Links: TLC2272-Q1 TLC2272A-Q1 TLC2274-Q1 TLC2274A-Q1 19 TLC2272-Q1, TLC2272A-Q1, TLC2274-Q1, TLC2274A-Q1 www.ti.com SGLS007G – FEBRUARY 2003 – REVISED AUGUST 2022 6.9 Typical Characteristics (continued) VDD = ± 5 V RL = 10 kΩ CL = 100 pF TA = 25°C AV = 1 50 Vn nV HzHz Vn − Equivalent Input Noise Voltage − nV/ VO − Output Voltage − mV VO 100 0 −50 60 VDD = 5 V TA = 25°C RS = 20 Ω 40 30 20 10 0 −100 0 0.5 1 10 1.5 Figure 6-50. Equivalent Input Noise Voltage vs Frequency 60 1000 VDD = ± 5 V TA = 25°C RS = 20 Ω 500 40 30 20 0 −250 −500 −750 10 10 1 0.1 100 1k 10 k 100 k f − Frequency − Hz Figure 6-53. Integrated Noise Voltage vs Frequency Submit Document Feedback 4 6 8 10 Figure 6-52. Noise Voltage Over a 10 Second Period THD + N − Total Harmonic Distortion Plus Noise − % Calculated Using Ideal Pass-Band Filter Lower Frequency = 1 Hz TA= 25°C 10 2 0 t − Time − s 100 1 −1000 10 k 100 1k f − Frequency − Hz Figure 6-51. Equivalent Input Noise Voltage vs Frequency µ V RMS Integrated Noise Voltage − uVRMS 250 10 0 20 VDD = 5 V f = 0.1 Hz to 10 Hz TA = 25°C 750 Noise Voltage − nV Vn nV HzHz Vn − Equivalent Input Noise Voltage − nV/ Figure 6-49. Voltage-Follower Small-Signal Pulse Response 10 k 100 1k f − Frequency − Hz t − Time − µs 1 VDD = 5 V TA = 25°C RL = 10 kΩ 0.1 AV = 100 0.01 AV = 10 0.001 0.0001 100 AV = 1 1k 10 k 100 k f − Frequency − Hz Figure 6-54. Total Harmonic Distortion + Noise vs Frequency Copyright © 2022 Texas Instruments Incorporated Product Folder Links: TLC2272-Q1 TLC2272A-Q1 TLC2274-Q1 TLC2274A-Q1 TLC2272-Q1, TLC2272A-Q1, TLC2274-Q1, TLC2274A-Q1 www.ti.com SGLS007G – FEBRUARY 2003 – REVISED AUGUST 2022 6.9 Typical Characteristics (continued) 3 f = 10 kHz RL = 10 kΩ CL = 100 pF TA = 25°C 2.4 VDD = 5 V f = 10 kHz RL = 10 kΩ CL = 100 pF 2.8 Gain-Bandwidth Product − MHz Gain-Bandwidth Product − MHz 2.5 2.3 2.2 2.1 2.6 2.4 2.2 2 1.8 1.6 2 1.4 0 1 6 2 3 4 5 |VDD ±| − Supply Voltage − V 7 8 Figure 6-55. Gain-Bandwidth Product vs Supply Voltage 75° −50 −25 0 25 50 75 100 TA − Free-Air Temperature − °C 125 Figure 6-56. Gain-Bandwidth Product vs Free-Air Temperature 15 VDD = ± 5 V TA = 25°C VDD = 5 V AV = 1 RL = 10 kΩ TA = 25°C Rnull = 100 Ω 60° 12 Rnull = 50 Ω Gain Margin − dB φ m − Phase Margin om − 75 45° Rnull = 20 Ω 30° 9 6 10 kΩ 15° 10 kΩ 0° 10 3 VDD + Rnull VI Rnull = 0 CL VDD − Rnull = 10 Ω 100 1000 CL − Load Capacitance − pF 10000 Figure 6-57. Phase Margin vs Load Capacitance Copyright © 2022 Texas Instruments Incorporated 0 10 100 1000 CL − Load Capacitance − pF 10000 Figure 6-58. Gain Margin vs Load Capacitance Submit Document Feedback Product Folder Links: TLC2272-Q1 TLC2272A-Q1 TLC2274-Q1 TLC2274A-Q1 21 TLC2272-Q1, TLC2272A-Q1, TLC2274-Q1, TLC2274A-Q1 www.ti.com SGLS007G – FEBRUARY 2003 – REVISED AUGUST 2022 7 Detailed Description 7.1 Overview The TLC227x-Q1 devices are a rail-to-rail output operational amplifiers. These devices operate from a 4.4-V to 16-V single supply and a ±2.2-V ±8-V dual supply, are unity-gain stable, and are an excellent choice for a wide range of general-purpose applications. 7.2 Functional Block Diagram VDD + Q3 Q6 Q9 Q12 Q14 Q16 IN + OUT C1 IN − R5 Q1 Q4 Q13 Q15 Q17 D1 Q2 Q5 R3 R4 Q7 Q8 Q10 Q11 R1 R2 VDD− Table 7-1. Actual Device Component Count(1) (1) COMPONENT TLC2272-Q1 TLC2274-Q1 Transistors 38 76 Resistors 26 52 Diodes 9 18 Capacitors 3 6 Includes both amplifiers and all ESD, bias, and trim circuitry. 7.3 Feature Description The TLC227x-Q1 family features 2-MHz bandwidth and voltage noise of 9 nV/√Hz with performance rated from 4.4 V to 16 V across an automotive temperature range (–40°C to +125°C). LinMOS is a great choice for a wide range of audio, automotive, industrial, and instrumentation applications. 7.4 Device Functional Modes The TLC227x-Q1 family of devices is powered on when the supply is connected. The device can operate with single or dual supply, depending on the application. The device is in full performance after the supply is greater than the recommended value. 22 Submit Document Feedback Copyright © 2022 Texas Instruments Incorporated Product Folder Links: TLC2272-Q1 TLC2272A-Q1 TLC2274-Q1 TLC2274A-Q1 TLC2272-Q1, TLC2272A-Q1, TLC2274-Q1, TLC2274A-Q1 www.ti.com SGLS007G – FEBRUARY 2003 – REVISED AUGUST 2022 8 Application and Implementation Note Information in the following applications sections is not part of the TI component specification, and TI does not warrant its accuracy or completeness. TI’s customers are responsible for determining suitability of components for their purposes, as well as validating and testing their design implementation to confirm system functionality. 8.1 Application Information 8.1.1 Macromodel Information Macromodel information provided was derived using MicroSim Parts, the model generation software used with PSpice®. The Boyle macromodel (see also Section 9.2.1) and subcircuit in Figure 8-1 were generated using the TLC227x typical electrical and operating characteristics at TA = 25°C. Using this information, output simulations of the following key parameters can be generated to a tolerance of 20% (in most cases): • • • • • • Maximum positive output voltage swing Maximum negative output voltage swing Slew rate Quiescent power dissipation Input bias current Open-loop voltage amplification • • • • • • Unity gain frequency Common-mode rejection ratio Phase margin DC output resistance AC output resistance Short-circuit output current limit 99 3 VCC + 9 RSS 92 FB 10 VC J1 DP J2 IN + 11 RD1 VAD DC 12 C1 R2 − 53 − C2 6 − − + VIN + GCM GA VLIM 8 − RD2 54 − 4 DIP 91 + VIP 7 60 + − + HLIM − + 90 RO2 VB IN − VCC − − + ISS RP 2 1 DIN EGND + DE RO1 5 + VE .SUBCKT TLC227x 1 2 3 4 5 C1 11 1214E−12 C2 6 760.00E−12 DC 5 53DX DE 54 5DX DLP 90 91DX DLN 92 90DX DP 4 3DX EGND 99 0POLY (2) (3,0) (4,) 0 .5 .5 FB 99 0POLY (5) VB VC VE VLP VLN 0 + 984.9E3 −1E6 1E6 1E6 −1E6 GA 6 011 12 377.0E−6 GCM 0 6 10 99 134E−9 ISS 3 10DC 216.OE−6 HLIM 90 0VLIM 1K J1 11 210 JX J2 12 110 JX R2 6 9100.OE3 OUT RD1 60 112.653E3 RD2 60 122.653E3 R01 8 550 R02 7 9950 RP 3 44.310E3 RSS 10 99925.9E3 VAD 60 4−.5 VB 9 0DC 0 VC 3 53 DC .78 VE 54 4DC .78 VLIM 7 8DC 0 VLP 91 0DC 1.9 VLN 0 92DC 9.4 .MODEL DX D (IS=800.0E−18) .MODEL JX PJF (IS=1.500E−12BETA=1.316E-3 + VTO=−.270) .ENDS Figure 8-1. Boyle Macromodels and Subcircuit Copyright © 2022 Texas Instruments Incorporated Submit Document Feedback Product Folder Links: TLC2272-Q1 TLC2272A-Q1 TLC2274-Q1 TLC2274A-Q1 23 TLC2272-Q1, TLC2272A-Q1, TLC2274-Q1, TLC2274A-Q1 www.ti.com SGLS007G – FEBRUARY 2003 – REVISED AUGUST 2022 8.2 Typical Application VBAT V1 ILOUD V2 RS 0.1 µF R1 R ILOAD VOUT + _ R2 47 kΩ Rg Figure 8-2. High-Side Current Monitor Equivalent Schematic (Each Amplifier) 8.2.1 Design Requirements For this design example, use these parameters listed in Table 8-1 as the input parameters. Table 8-1. Design Parameters PARAMETER VALUE VBAT Battery voltage 12 V RSENSE Sense resistor 0.1 Ω ILOAD Load current 0 A to 10 A Operational amplifier Set in differential configuration with gain = 10 8.2.2 Detailed Design Procedure This circuit is designed for measuring the high-side current in automotive body control modules with a 12-V battery or similar applications. The operational amplifier is set as differential with an external resistor network. 8.2.2.1 Differential Amplifier Equations Equation 1 and Equation 2 are used to calculate VOUT. VOUT VOUT æ R R 1æ R R ç 1+ ç 1 + - 1 2 çè R2 Rg Rg ç Rg R2 V1 + V2 = ´ + ç R1 R R ç 2 1+ 1+ 1 çç R2 R2 è æ R R 1æ R R ç 1+ ç 1 + - 1 ç 2 R R Rg ç Rg R2 g è 2 = ´ VBAT + ç R R R ç 1+ 1 1+ 1 çç R2 R2 è ö ö ÷ ÷ ÷ ø (V - V ) ÷ 1 2 ÷ ÷ ÷÷ ø (1) ö ö ÷ ÷ ÷ ÷ ø ´R ´I S Load ÷ ÷ ÷÷ ø (2) In an ideal case, Equation 3 then calculates R1 = R and R2 = Rg, and VOUT: VOUT = 24 Rg R ´ RS ´ ILoad Submit Document Feedback (3) Copyright © 2022 Texas Instruments Incorporated Product Folder Links: TLC2272-Q1 TLC2272A-Q1 TLC2274-Q1 TLC2274A-Q1 TLC2272-Q1, TLC2272A-Q1, TLC2274-Q1, TLC2274A-Q1 www.ti.com SGLS007G – FEBRUARY 2003 – REVISED AUGUST 2022 However, the resistors have tolerances; therefore, the resistors cannot be perfectly matched. R1 = R ± ΔR1 R2 = R2 ± ΔR2 R = R ± ΔR Rg = Rg ± ΔRg Tol = DR R (4) Equation 5 shows that by developing the equations and neglecting the second order, the worst case is when the tolerances add up: VOUT = ± (4 Tol) æ æ 2R ´ VBAT + ç 1 ± 2 Tol ç 1 + ç ç R + Rg è R + Rg è Rg ö ö Rg ÷÷ ´ RS ´ ILOAD ÷÷ øø R (5) where • • Tol = 0.01 for 1% Tol = 0.001 for 0.1% If the resistors are perfectly matched, then Tol = 0 and Equation 6 calculates VOUT: VOUT = Rg R ´ RS ´ ILOAD (6) The highest error is from the common mode: 4 (Tol) Rg R + Rg ´ VBAT (7) Gain of 10, Rg / R = 10, and Tol = 1%: Common mode error = ((4 × 0.01) / 1.1) × 12 V = 0.436 V Gain of 10 and Tol = 0.1%: Common mode error = 43.6 mV The resistors were chosen from 2% batches. R1 and R 12 kΩ R2 and Rg 120 kΩ Ideal Gain = 120 / 12 = 10 The measured value of the resistors: R1 = 11.835 kΩ R = 11.85 kΩ R2 = 117.92 kΩ Rg = 118.07 kΩ Copyright © 2022 Texas Instruments Incorporated Submit Document Feedback Product Folder Links: TLC2272-Q1 TLC2272A-Q1 TLC2274-Q1 TLC2274A-Q1 25 TLC2272-Q1, TLC2272A-Q1, TLC2274-Q1, TLC2274A-Q1 www.ti.com SGLS007G – FEBRUARY 2003 – REVISED AUGUST 2022 1.2 12 1 10 Output Voltage (V) Output Voltage (V) 8.2.3 Application Curves 0.8 0.6 0.4 0.2 8 6 4 2 Measured Ideal 0 Measured Ideal 0 0 0.2 0.4 0.6 0.8 Load Current (A) 1 1.2 0 2 4 D001 Figure 8-3. Output Voltage Measured vs Ideal (0 A to 1 A) 6 8 Load Current (A) 10 12 D001 Figure 8-4. Output Voltage Measured vs Ideal (0 A to 10 A) 8.3 Power Supply Recommendations Supply voltage is 4.4 V to 16 V for single supply and ±2.2 V to ±8 V for dual. In the high-side sensing application, the supply is connected to a 12-V battery. 8.4 Layout 8.4.1 Layout Guidelines The TLC227x-Q1 is a wideband amplifier. To realize the full operational performance of the device, good high frequency printed-circuit-board (PCB) layout practices are required. Low-loss 0.1-μF bypass capacitors must be connected between each supply pin and ground as close to the device as possible. The bypass capacitor traces must be designed for minimum inductance. 8.4.2 Layout Example RIN + VIN VOUT RG – RF Figure 8-5. Schematic Representation Run the input traces as far away from the supply lines as possible Place components close to device and to each other to reduce parasitic errors VS+ RF NC NC –IN V+ +IN OUT V– NC RG GND VIN GND RIN Only needed for dual-supply operation GND VS– (or GND for single supply) Use low-ESR ceramic bypass capacitor VOUT Ground (GND) plane on another layer Figure 8-6. Operational Amplifier Board Layout for Noninverting Configuration 26 Submit Document Feedback Copyright © 2022 Texas Instruments Incorporated Product Folder Links: TLC2272-Q1 TLC2272A-Q1 TLC2274-Q1 TLC2274A-Q1 TLC2272-Q1, TLC2272A-Q1, TLC2274-Q1, TLC2274A-Q1 www.ti.com SGLS007G – FEBRUARY 2003 – REVISED AUGUST 2022 9 Device and Documentation Support 9.1 Device Support 9.1.1 Development Support 9.1.1.1 PSpice® for TI PSpice® for TI is a design and simulation environment that helps evaluate performance of analog circuits. Create subsystem designs and prototype solutions before committing to layout and fabrication, reducing development cost and time to market. 9.1.1.2 TINA-TI™ Simulation Software (Free Download) TINA-TI™ simulation software is a simple, powerful, and easy-to-use circuit simulation program based on a SPICE engine. TINA-TI simulation software is a free, fully-functional version of the TINA™ software, preloaded with a library of macromodels, in addition to a range of both passive and active models. TINA-TI simulation software provides all the conventional dc, transient, and frequency domain analysis of SPICE, as well as additional design capabilities. Available as a free download from the Design tools and simulation web page, TINA-TI simulation software offers extensive post-processing capability that allows users to format results in a variety of ways. Virtual instruments offer the ability to select input waveforms and probe circuit nodes, voltages, and waveforms, creating a dynamic quick-start tool. Note These files require that either the TINA software or TINA-TI software be installed. Download the free TINA-TI simulation software from the TINA-TI™ software folder. 9.2 Documentation Support 9.2.1 Related Documentation For related documentation see the following: • G.R. Boyle, D.O. Pederson, B.M. Cohn, J.E. Solomon (Dec. 1974). Macromodeling of Integrated Circuit Operational Amplifiers. IEEE Journal of Solid-State Circuits, Volume 9, Issue 6, pages 353–364. Retrieved from https://ieeexplore.ieee.org/document/1050528 9.3 Receiving Notification of Documentation Updates To receive notification of documentation updates, navigate to the device product folder on ti.com. Click on Subscribe to updates to register and receive a weekly digest of any product information that has changed. For change details, review the revision history included in any revised document. 9.4 Support Resources TI E2E™ support forums are an engineer's go-to source for fast, verified answers and design help — straight from the experts. Search existing answers or ask your own question to get the quick design help you need. Linked content is provided "AS IS" by the respective contributors. They do not constitute TI specifications and do not necessarily reflect TI's views; see TI's Terms of Use. 9.5 Trademarks LinCMOS™, TINA-TI™, and TI E2E™ are trademarks of Texas Instruments. TINA™ is a trademark of DesignSoft, Inc. PSpice® is a registered trademark of Cadence Design Systems, Inc. All trademarks are the property of their respective owners. Copyright © 2022 Texas Instruments Incorporated Submit Document Feedback Product Folder Links: TLC2272-Q1 TLC2272A-Q1 TLC2274-Q1 TLC2274A-Q1 27 TLC2272-Q1, TLC2272A-Q1, TLC2274-Q1, TLC2274A-Q1 www.ti.com SGLS007G – FEBRUARY 2003 – REVISED AUGUST 2022 9.6 Electrostatic Discharge Caution This integrated circuit can be damaged by ESD. Texas Instruments recommends that all integrated circuits be handled with appropriate precautions. Failure to observe proper handling and installation procedures can cause damage. ESD damage can range from subtle performance degradation to complete device failure. Precision integrated circuits may be more susceptible to damage because very small parametric changes could cause the device not to meet its published specifications. 9.7 Glossary TI Glossary This glossary lists and explains terms, acronyms, and definitions. 10 Mechanical, Packaging, and Orderable Information The following pages include mechanical, packaging, and orderable information. This information is the most current data available for the designated devices. This data is subject to change without notice and revision of this document. For browser-based versions of this data sheet, refer to the left-hand navigation. 28 Submit Document Feedback Copyright © 2022 Texas Instruments Incorporated Product Folder Links: TLC2272-Q1 TLC2272A-Q1 TLC2274-Q1 TLC2274A-Q1 PACKAGE OPTION ADDENDUM www.ti.com 12-Oct-2021 PACKAGING INFORMATION Orderable Device Status (1) Package Type Package Pins Package Drawing Qty Eco Plan (2) Lead finish/ Ball material MSL Peak Temp Op Temp (°C) Device Marking (3) (4/5) (6) TLC2272AQDRG4Q1 ACTIVE SOIC D 8 2500 RoHS & Green NIPDAU Level-1-260C-UNLIM -40 to 125 2272AQ TLC2272AQDRQ1 ACTIVE SOIC D 8 2500 RoHS & Green NIPDAU Level-1-260C-UNLIM -40 to 125 2272AQ TLC2272AQPWRG4Q1 ACTIVE TSSOP PW 8 2000 RoHS & Green NIPDAU Level-1-260C-UNLIM -40 to 125 2272AQ TLC2272AQPWRQ1 ACTIVE TSSOP PW 8 2000 RoHS & Green NIPDAU Level-1-260C-UNLIM -40 to 125 2272AQ TLC2272QDRG4Q1 ACTIVE SOIC D 8 2500 RoHS & Green NIPDAU Level-1-260C-UNLIM -40 to 125 2272Q1 TLC2272QDRQ1 ACTIVE SOIC D 8 2500 RoHS & Green NIPDAU Level-1-260C-UNLIM -40 to 125 2272Q1 TLC2272QPWRG4Q1 ACTIVE TSSOP PW 8 2000 RoHS & Green NIPDAU Level-1-260C-UNLIM -40 to 125 2272Q1 TLC2272QPWRQ1 ACTIVE TSSOP PW 8 2000 RoHS & Green NIPDAU Level-1-260C-UNLIM -40 to 125 2272Q1 TLC2274AQDRG4Q1 ACTIVE SOIC D 14 2500 RoHS & Green NIPDAU Level-1-260C-UNLIM -40 to 125 2274AQ1 TLC2274AQDRQ1 ACTIVE SOIC D 14 2500 RoHS & Green NIPDAU Level-1-260C-UNLIM -40 to 125 2274AQ1 TLC2274AQPWRG4Q1 ACTIVE TSSOP PW 14 2000 RoHS & Green NIPDAU Level-1-260C-UNLIM -40 to 125 2274AQ1 TLC2274AQPWRQ1 ACTIVE TSSOP PW 14 2000 RoHS & Green NIPDAU Level-1-260C-UNLIM -40 to 125 2274AQ1 TLC2274QDRG4Q1 ACTIVE SOIC D 14 2500 RoHS & Green NIPDAU Level-1-260C-UNLIM -40 to 125 2274Q1 TLC2274QDRQ1 ACTIVE SOIC D 14 2500 RoHS & Green NIPDAU Level-1-260C-UNLIM -40 to 125 2274Q1 TLC2274QPWRG4Q1 ACTIVE TSSOP PW 14 2000 RoHS & Green NIPDAU Level-1-260C-UNLIM -40 to 125 2274Q1 TLC2274QPWRQ1 ACTIVE TSSOP PW 14 2000 RoHS & Green NIPDAU Level-1-260C-UNLIM -40 to 125 2274Q1 (1) The marketing status values are defined as follows: ACTIVE: Product device recommended for new designs. LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect. NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design. PREVIEW: Device has been announced but is not in production. Samples may or may not be available. OBSOLETE: TI has discontinued the production of the device. Addendum-Page 1 Samples PACKAGE OPTION ADDENDUM www.ti.com 12-Oct-2021 (2) RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may reference these types of products as "Pb-Free". RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption. Green: TI defines "Green" to mean the content of Chlorine (Cl) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of
TLC2274QPWRG4Q1 价格&库存

很抱歉,暂时无法提供与“TLC2274QPWRG4Q1”相匹配的价格&库存,您可以联系我们找货

免费人工找货