0
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
会员中心
创作中心
发布
  • 发文章

  • 发资料

  • 发帖

  • 提问

  • 发视频

创作活动
TLE2024MFKB

TLE2024MFKB

  • 厂商:

    BURR-BROWN(德州仪器)

  • 封装:

    LCCC20

  • 描述:

    TLE2024M HIGH-SPEED, LOW-POWER,

  • 数据手册
  • 价格&库存
TLE2024MFKB 数据手册
TLE202x, TLE202xA, TLE202xB, TLE202xY EXCALIBUR HIGH-SPEED LOW-POWER PRECISION OPERATIONAL AMPLIFIERS  SLOS191D − FEBRUARY 1997 − REVISED NOVEMBER 2010 D D D D D D Supply Current . . . 300 μA Max High Unity-Gain Bandwidth . . . 2 MHz Typ High Slew Rate . . . 0.45 V/μs Min Supply-Current Change Over Military Temp Range . . . 10 μA Typ at VCC ± = ± 15 V Specified for Both 5-V Single-Supply and ±15-V Operation Phase-Reversal Protection D High Open-Loop Gain . . . 6.5 V/μV D D D D (136 dB) Typ Low Offset Voltage . . . 100 μV Max Offset Voltage Drift With Time 0.005 μV/mo Typ Low Input Bias Current . . . 50 nA Max Low Noise Voltage . . . 19 nV/√Hz Typ description The TLE202x, TLE202xA, and TLE202xB devices are precision, high-speed, low-power operational amplifiers using a new Texas Instruments Excalibur process. These devices combine the best features of the OP21 with highly improved slew rate and unity-gain bandwidth. The complementary bipolar Excalibur process utilizes isolated vertical pnp transistors that yield dramatic improvement in unity-gain bandwidth and slew rate over similar devices. The addition of a bias circuit in conjunction with this process results in extremely stable parameters with both time and temperature. This means that a precision device remains a precision device even with changes in temperature and over years of use. This combination of excellent dc performance with a common-mode input voltage range that includes the negative rail makes these devices the ideal choice for low-level signal conditioning applications in either single-supply or split-supply configurations. In addition, these devices offer phase-reversal protection circuitry that eliminates an unexpected change in output states when one of the inputs goes below the negative supply rail. A variety of available options includes small-outline and chip-carrier versions for high-density systems applications. The C-suffix devices are characterized for operation from 0°C to 70°C. The I-suffix devices are characterized for operation from − 40°C to 85°C. The M-suffix devices are characterized for operation over the full military temperature range of − 55°C to 125°C. Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet. All trademarks are the property of their respective owners. Copyright © 2010, Texas Instruments Incorporated PRODUCTION DATA information is current as of publication date. Products conform to specifications per the terms of Texas Instruments standard warranty. Production processing does not necessarily include testing of all parameters. POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 1 TLE202x, TLE202xA, TLE202xB, TLE202xY EXCALIBUR HIGH-SPEED LOW-POWER PRECISION OPERATIONAL AMPLIFIERS  SLOS191D − FEBRUARY 1997 − REVISED NOVEMBER 2010 TLE2021 AVAILABLE OPTIONS PACKAGED DEVICES TA VIOmax AT 25°C SMALL OUTLINE† (D) SSOP‡ (DB) CHIP CARRIER (FK) CERAMIC DIP (JG) PLASTIC DIP (P) TSSOP‡ (PW) CHIP FORM§ (Y) 0°C 0 C to 70°C 200 μV 500 μV TLE2021ACD TLE2021CD TLE2021CDBLE — — TLE2021ACP TLE2021CP — TLE2021CPWLE — TLE2021Y −40°C to 85°C 200 μV 500 μV TLE2021AID TLE2021ID — — — TLE2021AIP TLE2021IP — — −55 C −55°C to 125°C 100 μV V 500 μV — TLE2021MD — TLE2021BMFK TLE2021MFK TLE2021BMJG TLE2021MJG — TLE2021MP — — † The D packages are available taped and reeled. To order a taped and reeled part, add the suffix R (e.g., TLE2021CDR). The DB and PW packages are only available left-end taped and reeled. § Chip forms are tested at 25°C only. ‡ TLE2022 AVAILABLE OPTIONS PACKAGED DEVICES CHIP CARRIER (FK) CERAMIC DIP (JG) PLASTIC DIP (P) TSSOP‡ (PW) CHIP FORM§ (Y) — TLE2022CDBLE — — — TLE2022ACP TLE2022CP — — TLE2022CPWLE — — TLE2022Y TLE2022BID TLE2022AID TLE2022ID — — — — TLE2022AIP TLE2022IP — — — TLE2022AMD TLE2022MD — — TLE2022AMFK TLE2022MFK TLE2022BMJG TLE2022AMJG TLE2022MJG — TLE2022AMP TLE2022MP — — TA VIOmax AT 25°C SMALL OUTLINE† (D) 0°C to 70°C 150 μV 300 μV 500 μV TLE2022BCD TLE2022ACD TLE2022CD −40°C to 85°C 150 μV 300 μV 500 μV −55 C −55°C to 125°C 150 μV 300 μV 500 μV SSOP‡ (DB) — † The D packages are available taped and reeled. To order a taped and reeled part, add the suffix R (e.g., TLE2022CDR). The DB and PW packages are only available left-end taped and reeled. § Chip forms are tested at 25°C only. ‡ TLE2024 AVAILABLE OPTIONS PACKAGED DEVICES § 2 TA VIOmax AT 25°C 0°C 0 C to 70°C 500 μV 750 μV 1000 μV −40°C 40 C to 85°C 85 C −55°C 55 C to 125°C 125 C SMALL OUTLINE (DW) CHIP FORM§ (Y) CHIP CARRIER (FK) CERAMIC DIP (J) PLASTIC DIP (N) TLE2024BCDW TLE2024ACDW TLE2024CDW — — TLE2024BCN TLE2024ACN TLE2024CN — — TLE2024Y 500 μV 750 μV 1000 μV TLE2024BIDW TLE2024AIDW TLE2024IDW — — TLE2024BIN TLE2024AIN TLE2024IN — 500 μV 750 μV 1000 μV TLE2024BMDW TLE2024AMDW TLE2024MDW TLE2024BMFK TLE2024AMFK TLE2024MFK TLE2024BMJ TLE2024AMJ TLE2024MJ TLE2024BMN TLE2024AMN TLE2024MN — Chip forms are tested at 25°C only. POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 TLE202x, TLE202xA, TLE202xB, TLE202xY EXCALIBUR HIGH-SPEED LOW-POWER PRECISION OPERATIONAL AMPLIFIERS  SLOS191D − FEBRUARY 1997 − REVISED NOVEMBER 2010 TLE2021 D, DB, JG, P, OR PW PACKAGE (TOP VIEW) 1 8 2 7 3 6 4 5 NC OFFSET N1 NC NC NC OFFSET N1 IN− IN+ VCC − /GND TLE2021 FK PACKAGE (TOP VIEW) NC VCC+ OUT OFFSET N2 NC IN− NC IN+ NC 3 2 1 20 19 18 5 17 6 16 7 15 8 14 9 10 11 12 13 NC VCC+ NC OUT NC NC V CC−/ GND NC OFFSET N2 NC NC − No internal connection 4 1OUT 1IN− 1IN+ VCC − /GND 1 8 2 7 3 6 4 5 FK PACKAGE (TOP VIEW) NC 1OUT NC VCC + NC D, DB, JG, P, OR PW PACKAGE (TOP VIEW) VCC+ 2OUT 2IN− 2IN+ NC 1IN − NC 1IN + NC 3 2 1 20 19 18 5 17 6 16 7 15 8 14 9 10 11 12 13 NC 2OUT NC 2IN − NC NC V CC−/ GND NC 2IN + NC NC − No internal connection 4 1 16 2 15 3 14 4 13 5 12 6 11 7 10 8 9 4OUT 4IN− 4IN + VCC − /GND 3IN + 3IN − 3OUT NC NC − No internal connection J OR N PACKAGE (TOP VIEW) 1IN + NC VCC + NC 2IN + 4 3 2 1 20 19 18 5 17 6 16 7 15 8 14 9 10 11 12 13 4IN + NC VCC − /GND NC 3IN + 1OUT 1IN − 1IN + VCC + 2IN + 2IN − 2OUT 1 14 2 13 3 12 4 11 5 10 6 9 7 8 4OUT 4IN − 4IN + VCC − /GND 3IN + 3IN − 3OUT 2IN − 2OUT NC 3OUT 3IN − 1OUT 1IN − 1IN + VCC + 2IN + 2IN − 2OUT NC FK PACKAGE (TOP VIEW) 1IN − 1OUT NC 4OUT 4IN − DW PACKAGE (TOP VIEW) POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 3 TLE202x, TLE202xA, TLE202xB, TLE202xY EXCALIBUR HIGH-SPEED LOW-POWER PRECISION OPERATIONAL AMPLIFIERS  SLOS191D − FEBRUARY 1997 − REVISED NOVEMBER 2010 TLE2021Y chip information This chip, when properly assembled, display characteristics similar to the TLE2021. Thermal compression or ultrasonic bonding may be used on the doped-aluminum bonding pads. This chip may be mounted with conductive epoxy or a gold-silicon preform. BONDING PAD ASSIGNMENTS (7) (6) (5) OFFSET N1 IN + IN − OFFSET N2 VCC+ (7) (1) (3) (2) + (6) − OUT (5) (4) VCC − /GND 78 CHIP THICKNESS: 15 MILS TYPICAL BONDING PADS: 4 × 4 MILS MINIMUM TJmax= 150°C TOLERANCES ARE ± 10%. (4) (1) PIN (4) IS INTERNALLY CONNECTED TO BACKSIDE OF CHIP. (2) (3) 54 4 ALL DIMENSIONS ARE IN MILS. POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 TLE202x, TLE202xA, TLE202xB, TLE202xY EXCALIBUR HIGH-SPEED LOW-POWER PRECISION OPERATIONAL AMPLIFIERS  SLOS191D − FEBRUARY 1997 − REVISED NOVEMBER 2010 TLE2022Y chip information This chip, when properly assembled, displays characteristics similar to TLE2022. Thermal compression or ultrasonic bonding may be used on the doped-aluminum bonding pads. This chip may be mounted with conductive epoxy or a gold-silicon preform. BONDING PAD ASSIGNMENTS (7) (6) VCC+ IN + IN − OUT (8) (3) (2) (8) + (1) − + (7) − (5) 80 (6) IN + IN − (4) (4) (1) (5) OUT VCC − CHIP THICKNESS: 15 MILS TYPICAL BONDING PADS: 4 × 4 MILS MINIMUM TJmax = 150°C TOLERANCES ARE ± 10%. ALL DIMENSIONS ARE IN MILS. (2) (3) PIN (4) IS INTERNALLY CONNECTED TO BACKSIDE OF CHIP. 86 POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 5 TLE202x, TLE202xA, TLE202xB, TLE202xY EXCALIBUR HIGH-SPEED LOW-POWER PRECISION OPERATIONAL AMPLIFIERS  SLOS191D − FEBRUARY 1997 − REVISED NOVEMBER 2010 TLE2024Y chip information This chip, when properly assembled, displays characteristics similar to the TLE2024. Thermal compression or ultrasonic bonding may be used on the doped aluminum-bonding pads. This chip may be mounted with conductive epoxy or a gold-silicon preform. BONDING PAD ASSIGNMENTS VCC + 1IN + 1IN − 2OUT 2IN + 100 3IN − 4OUT (4) (3) + (2) (1) − + (7) (10) (9) − + (5) (6) (8) − + (14) − (12) (13) 1OUT 2IN + 2IN − 3OUT 4IN + 4IN − (11) VCC − /GND 140 CHIP THICKNESS: 15 MILS TYPICAL BONDING PADS: 4 × 4 MILS MINIMUM TJmax = 150°C TOLERANCES ARE ± 10%. ALL DIMENSIONS ARE IN MILS. PIN (11) IS INTERNALLY CONNECTED TO BACKSIDE OF CHIP. 6 POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 TLE202x, TLE202xA, TLE202xB, TLE202xY EXCALIBUR HIGH-SPEED LOW-POWER PRECISION OPERATIONAL AMPLIFIERS  SLOS191D − FEBRUARY 1997 − REVISED NOVEMBER 2010 equivalent schematic (each amplifier) VCC+ Q3 Q13 Q7 Q22 Q17 Q28 IN − IN + Q34 Q39 Q36 Q38 Q11 D3 Q2 Q32 Q24 Q20 Q8 Q35 Q29 Q19 Q1 Q5 Q31 C4 Q4 Q12 D4 Q14 D1 D2 R7 Q23 Q25 C2 Q10 OUT Q40 C3 Q21 Q27 R6 R1 C1 OFFSET N1 Q6 Q9 R2 R4 R3 R5 Q15 Q30 Q33 Q26 Q18 Q37 Q16 OFFSET N2 VCC − /GND ACTUAL DEVICE COMPONENT COUNT COMPONENT Transistors TLE2021 TLE2022 TLE2024 40 80 160 Resistors 7 14 28 Diodes 4 8 16 Capacitors 4 8 16 POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 7 TLE202x, TLE202xA, TLE202xB, TLE202xY EXCALIBUR HIGH-SPEED LOW-POWER PRECISION OPERATIONAL AMPLIFIERS  SLOS191D − FEBRUARY 1997 − REVISED NOVEMBER 2010 absolute maximum ratings over operating free-air temperature range (unless otherwise noted)† Supply voltage, VCC+ (see Note 1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20 V Supply voltage, VCC − (see Note 1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . −20 V Differential input voltage, VID (see Note 2) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ± 0.6 V Input voltage range, VI (any input, see Note 1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ±VCC Input current, II (each input) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ±1 mA Output current, IO (each output): TLE2021 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ± 20 mA TLE2022 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ± 30 mA TLE2024 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ± 40 mA Total current into VCC+ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80 mA Total current out of VCC − . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80 mA Duration of short-circuit current at (or below) 25°C (see Note 3) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . unlimited Continuous total power dissipation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Dissipation Rating Table Operating free-air temperature range, TA: C suffix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 0°C to 70°C I suffix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . −40°C to 85°C M suffix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . −55°C to 125°C Storage temperature range, Tstg . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . −65°C to 150°C Case temperature for 60 seconds, TC: FK package . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 260°C Lead temperature 1,6 mm (1/16 inch) from case for 10 seconds: D, DP, P, or PW package . . . . . . . . 260°C Lead temperature 1,6 mm (1/16 inch) from case for 60 seconds: JG package . . . . . . . . . . . . . . . . . . . . 300°C † Stresses beyond those listed under “absolute maximum ratings” may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under “recommended operating conditions” is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability. NOTES: 1. All voltage values, except differential voltages, are with respect to the midpoint between VCC +, and VCC − . 2. Differential voltages are at IN+ with respect to IN −. Excessive current flows if a differential input voltage in excess of approximately ± 600 mV is applied between the inputs unless some limiting resistance is used. 3. The output may be shorted to either supply. Temperature and/or supply voltages must be limited to ensure that the maximum dissipation rating is not exceeded. DISSIPATION RATING TABLE PACKAGE TA ≤ 25°C POWER RATING DERATING FACTOR ABOVE TA = 25°C TA = 70°C POWER RATING TA = 85°C POWER RATING TA = 125°C POWER RATING D−8 725 mW 5.8 mW/°C 464 mW 377 mW 145 mW DB−8 525 mW 4.2 mW/°C 336 mW — — DW−16 1025 mW 8.2 mW/°C 656 mW 533 mW 205 mW FK 1375 mW 11.0 mW/°C 880 mW 715 mW 275 mW J−14 1375 mW 11.0 mW/°C 880 mW 715 mW 275 mW JG−8 1050 mW 8.4 mW/°C 672 mW 546 mW 210 mW N−14 1150 mW 9.2 mW/°C 736 mW 598 mW 230 mW P−8 1000 mW 8.0 mW/°C 640 mW 520 mW 200 mW PW−8 525 mW 4.2 mW/°C 336 mW — — recommended operating conditions Supply voltage, VCC Common mode input voltage, Common-mode voltage VIC VCC = ± 5 V VCC ± = ± 15 V Operating free-air temperature, TA 8 POST OFFICE BOX 655303 C SUFFIX I SUFFIX M SUFFIX MIN MAX MIN MAX MIN MAX ±2 ± 20 ±2 ± 20 ±2 ± 20 0 3.5 0 3.2 0 3.2 −15 13.5 −15 13.2 −15 13.2 0 70 −40 85 −55 125 • DALLAS, TEXAS 75265 UNIT V V °C TLE2021 electrical characteristics at specified free-air temperature, VCC = 5 V (unless otherwise noted) PARAMETER VIO Input offset voltage αVIO Temperature coefficient of input offset voltage Input offset voltage long-term drift (see Note 4) IIO Input offset current IIB Input bias current TLE2021C MIN 25°C RS = 50 Ω 120 600 TYP MAX 100 300 MIN TYP MAX 80 200 600 300 UNIT μV V 2 2 μV/°C 25°C 0.005 0.005 0.005 μV/mo 25°C 0.2 25 Full range 0 to 3.5 Full range 0 to 3.5 25°C Full range 4 − 0.3 to 4 25°C AVD Large signal differential Large-signal voltage amplification VO = 1.4 V to 4 V, RL = 10 kΩ 25°C 0.3 Full range 0.3 CMRR Common mode rejection ratio Common-mode VIC = VICRmin, RS = 50 Ω 25°C 85 Full range 80 kSVR Supply voltage rejection ratio Supply-voltage (ΔVCC /ΔVIO) VCC = 5 V to 30 V 25°C 105 Full range 100 ICC Supply current − 0.3 to 4 4 0.8 4.3 4 0.8 1.5 105 200 300 1.5 85 120 105 110 dB 120 dB 100 200 300 200 300 5 300 300 5 V V/ V V/μV 80 300 5 0.8 0.3 110 nA V 0.85 0.3 100 Full range 0.7 nA V 4.3 0.85 80 120 − 0.3 to 4 3.9 0.7 85 70 90 0 to 3.5 0.3 110 25 0 to 3.5 0.85 0.3 6 10 70 3.9 1.5 0.2 90 0 to 3.5 4.3 Full range Full range 25 0 to 3.5 0.7 Low level output voltage Low-level 6 10 70 3.9 VOL 25°C 0.2 90 25°C RS = 50 Ω 6 10 25°C VO = 2.5 2 5 V, V No load MIN TLE2021BC 2 Full range High level output voltage High-level Supply-current change over operating temperature range MAX 850 Full range RL= 10 kΩ ΔICC TYP Full range VIC = 0, TLE2021AC μA A μA † Full range is 0°C to 70°C. NOTE 4: Typical values are based on the input offset voltage shift observed through 168 hours of operating life test at TA = 150°C extrapolated to TA = 25°C using the Arrhenius equation and assuming an activation energy of 0.96 eV. 9 TLE202x, TLE202xA, TLE202xB, TLE202xY EXCALIBUR HIGH-SPEED LOW-POWER PRECISION OPERATIONAL AMPLIFIERS VOH Common mode input voltage range Common-mode TA† SLOS191D − FEBRUARY 1997 − REVISED NOVEMBER 2010 POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 VICR TEST CONDITIONS VIO Input offset voltage αVIO Temperature coefficient of input offset voltage Input offset voltage long-term drift (see Note 4) IIO Input offset current IIB Input bias current POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 VICR VOM+ Common mode input voltage range Common-mode Maximum positive peak output voltage swing TEST CONDITIONS TA† TLE2021C MIN 25°C Full range 500 RS = 50 Ω 200 TYP MAX 40 100 500 200 UNIT μV V μV/°C 25°C 0.006 0.006 0.006 μV/mo 25°C 0.2 25 −15 to 13.5 Full range −15 to 13.5 25°C 14 Full range 13.9 25°C −13.7 Full range −13.7 AVD Large signal differential Large-signal voltage amplification VO = ± 10 V, RL = 10 kΩ CMRR Common mode rejection ratio Common-mode VIC = VICR min, RS = 50 Ω 25°C 100 Full range 96 kSVR Supply voltage rejection ratio Supply-voltage (ΔVCC /ΔVIO) VCC ± = ± 2.5 V to ± 15 V 25°C 105 Full range 100 ICC Supply current 25°C 1 Full range 1 25°C 6 25 70 −15.3 to 14 14 −13.7 14.3 1 100 −14.1 −13.7 6.5 1 105 100 120 105 350 6 −14.1 V 6.5 V/ V V/μV 115 dB 120 dB 100 240 350 350 240 350 6 350 350 6 nA V 96 100 240 14.3 1 115 nA V −13.7 96 120 −15.3 to 14 13.9 1 115 90 14 −13.7 6.5 70 −15 to 13.5 13.9 −14.1 25 −15 to 13.5 −15 to 13.5 6 10 90 −15 to 13.5 14.3 0.2 10 70 −15.3 to 14 Full range Full range 0.2 90 25°C RS = 50 Ω 6 10 Full range No load 80 MIN 2 25°C VO = 0 0, MAX 2 Full range RL = 10 kΩ TLE2021BC TYP 2 Maximum negative peak output voltage swing Supply-current change over operating temperature range 120 MIN 750 VOM − ΔICC MAX Full range VIC = 0, TLE2021AC TYP μA A μA † Full range is 0°C to 70°C. NOTE 4: Typical values are based on the input offset voltage shift observed through 168 hours of operating life test at TA = 150°C extrapolated to TA = 25°C using the Arrhenius equation and assuming an activation energy of 0.96 eV. TLE202x, TLE202xA, TLE202xB, TLE202xY EXCALIBUR HIGH-SPEED LOW-POWER PRECISION OPERATIONAL AMPLIFIERS PARAMETER SLOS191D − FEBRUARY 1997 − REVISED NOVEMBER 2010 10 TLE2021 electrical characteristics at specified free-air temperature, VCC = ±15 V (unless otherwise noted) TLE2022 electrical characteristics at specified free-air temperature, VCC = 5 V (unless otherwise noted) PARAMETER VIO Input offset voltage αVIO Temperature coefficient of input offset voltage Input offset voltage long-term long term drift (see Note 4) IIO Input offset current IIB Input bias current VIC = 0 0, RS = 50 Ω CMRR Common mode rejection ratio Common-mode VIC = VICRmin min, RS = 50 Ω kSVR Supply-voltage Supply voltage rejection ratio (ΔVCC ± /ΔVIO) VCC = 5 V to 30 V ICC Supply current μV V 2 2 μV/°C V/°C 25°C 0 005 0.005 0 005 0.005 0 005 0.005 μV/mo V/mo 25°C 0.5 35 0.4 70 Full range 0 to 3.5 4 −0.3 to 4 33 −0.3 to 4 4 0.8 0.3 0.3 25°C 85 Full range 80 25°C 100 Full range 95 1.5 4.3 4 0.8 87 1.5 103 Full range 600 118 105 450 600 105 dB 120 450 600 7 dB 600 600 7 V V/ V V/μV 100 600 7 1.5 85 98 450 0.8 0.85 90 nA V 0.5 102 nA V 4.3 0.7 0.5 82 115 −0.3 to 4 0.85 0.4 100 90 3.9 0.7 0.4 70 0 to 3.5 0.85 25°C 30 0 to 3.5 3.9 0.7 6 10 70 0 to 3.5 4.3 0.3 90 0 to 3.5 3.9 Full range 6 10 90 0 to 3.5 Full range 6 10 25°C 25 C 25°C No load UNIT 2 Full range VO = 2.5 2 5 V, V MAX 400 25°C RL = 10 kΩ TYP 250 25°C VO = 1.4 1 4 V to 4 V V, MIN 550 Full range Large signal differential Large-signal voltage amplification TLE2022BC MAX 400 RS = 50 Ω AVD TYP 800 25°C Low level output voltage Low-level MIN 600 Full range VOL TLE2022AC MAX 25°C Full range High level output voltage High-level Supply current change over operating temperature range TYP Full range Full range RL = 10 kΩ ΔICC TLE2022C MIN μA A μA † Full range is 0°C to 70°C. NOTE 4: Typical values are based on the input offset voltage shift observed through 168 hours of operating life test at TA = 150°C extrapolated to TA = 25°C using the Arrhenius equation and assuming an activation energy of 0.96 eV. 11 TLE202x, TLE202xA, TLE202xB, TLE202xY EXCALIBUR HIGH-SPEED LOW-POWER PRECISION OPERATIONAL AMPLIFIERS VOH Common mode input Common-mode voltage range TA† SLOS191D − FEBRUARY 1997 − REVISED NOVEMBER 2010 POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 VICR TEST CONDITIONS VIO Input offset voltage αVIO Temperature coefficient of input offset voltage Input offset voltage long-term long term drift (see Note 4) IIO Input offset current IIB Input bias current POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 VICR TLE2022C MIN 25°C VIC = 0 0, RS = 50 Ω MAX 150 500 VO = ± 10 V, V RL = 10 kΩ CMRR Common mode rejection ratio Common-mode VIC = VICRmin min, RS = 50 Ω kSVR Supply-voltage Supply voltage rejection ratio (ΔVCC ± /ΔVIO) 5 V to ± 15 V 2.5 VCC ± = ± 2 ICC Supply current No load MAX 70 150 450 300 UNIT μV V 0 006 0.006 0 006 0.006 0 006 0.006 μV/mo V/mo 25°C 0.5 35 0.4 70 Full range −15 to 13.5 14 Full range 13.9 25°C −13.7 Full range −13.7 25°C 0.8 Full range 0.8 25°C 95 Full range 91 25°C 100 Full range 95 −15.3 to 14 6 33 70 −15.3 to 14 14 −13.7 14.3 1 97 −14.1 −13.7 7 1.5 103 100 118 105 550 700 9 −14.1 V 10 V/ V V/μV 112 dB 120 dB 100 550 700 700 550 700 9 700 700 9 nA V 96 98 Full range 14.3 1.5 109 nA V −13.7 93 115 −15.3 to 14 13.9 1 106 90 14 −13.7 4 70 −15 to 13.5 13.9 −14.1 30 −15 to 13.5 −15 to 13.5 6 10 90 −15 to 13.5 14.3 0.3 10 90 −15 to 13.5 Full range 6 10 25°C 25 C 25°C VO = 0, 0 300 TYP 25°C 25°C Large signal differential Large-signal voltage amplification 120 MIN μV/°C V/°C RS = 50 Ω AVD MAX 2 Full range RL = 10 kΩ TLE2022BC TYP 2 25°C Maximum negative peak output voltage swing MIN 2 Full range VOM − TLE2022AC TYP 700 Full range Maximum positive peak output voltage swing Supply current change over operating temperature range TA† Full range VOM + ΔICC † Common mode input Common-mode voltage range TEST CONDITIONS μA A μA Full range is 0°C to 70°C. NOTE 4: Typical values are based on the input offset voltage shift observed through 168 hours of operating life test at TA = 150°C extrapolated to TA = 25°C using the Arrhenius equation and assuming an activation energy of 0.96 eV. TLE202x, TLE202xA, TLE202xB, TLE202xY EXCALIBUR HIGH-SPEED LOW-POWER PRECISION OPERATIONAL AMPLIFIERS PARAMETER SLOS191D − FEBRUARY 1997 − REVISED NOVEMBER 2010 12 TLE2022 electrical characteristics at specified free-air temperature, VCC = ± 15 V (unless otherwise noted) TLE2024 electrical characteristics at specified free-air temperature, VCC = 5 V (unless otherwise noted) PARAMETER VIO Input offset voltage αVIO Temperature coefficient of input offset voltage Input offset voltage long-term drift (see Note 4) IIO Input offset current IIB Input bias current VIC = 0, RS = 50 Ω TYP VO = 1.4 1 4 V to 4 V V, RL = 10 kΩ CMRR Common mode rejection ratio Common-mode VIC = VICRmin min, RS = 50 Ω kSVR Supply voltage rejection ratio Supply-voltage (ΔVCC /ΔVIO) VCC = 5 V to 30 V ICC Supply current TYP MAX 600 800 UNIT μV V 2 2 2 μV/°C 25°C 0.005 0.005 0.005 μV/mo 25°C 0.6 45 0.5 70 Full range 0 to 3.5 25°C 3.9 Full range 3.7 −0.3 to 4 40 −0.3 to 4 3.9 Full range 0.1 25°C 80 Full range 80 25°C 98 Full range 93 1.5 4.2 4 82 0.8 1.5 100 Full range 1200 115 103 800 1200 95 dB 117 800 1200 15 dB 1200 1200 15 V V/ V V/μV 98 1200 15 1.5 85 95 800 0.8 0.95 85 nA V 0.1 92 nA V 4.3 0.7 0.4 82 112 −0.3 to 4 0.95 0.1 90 90 3.8 0.7 0.3 70 0 to 3.5 0.95 0.2 35 0 to 3.5 3.7 0.8 6 10 90 0 to 3.5 4.2 0.4 70 0 to 3.5 0.7 25°C 6 10 90 0 to 3.5 Full range 6 10 25°C 25°C No load MIN 850 Full range VO = 2.5 2 5 V, V MAX 1050 25°C Large signal differential Large-signal voltage amplification TYP 1100 RS = 50 Ω AVD MIN 1300 Full range Low level output voltage Low-level MAX TLE2024BC 25°C 25°C VOL TLE2024AC Full range Full range High level output voltage High-level Supply current change over operating temperature range MIN Full range RL = 10 kΩ ΔICC TLE2024C μA A μA † Full range is 0°C to 70°C. NOTE 4: Typical values are based on the input offset voltage shift observed through 168 hours of operating life test at TA = 150°C extrapolated to TA = 25°C using the Arrhenius equation and assuming an activation energy of 0.96 eV. 13 TLE202x, TLE202xA, TLE202xB, TLE202xY EXCALIBUR HIGH-SPEED LOW-POWER PRECISION OPERATIONAL AMPLIFIERS VOH Common mode input voltage Common-mode range TA† SLOS191D − FEBRUARY 1997 − REVISED NOVEMBER 2010 POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 VICR TEST CONDITIONS VIO Input offset voltage αVIO Temperature coefficient of input offset voltage Input offset voltage long-term drift (see Note 4) IIO Input offset current IIB Input bias current POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 VICR VOM + Common mode input voltage Common-mode range Maximum positive peak output voltage swing TEST CONDITIONS VIC = 0, RS = 50 Ω TYP VO = ± 10 V V, RL = 10 kΩ CMRR Common mode rejection ratio Common-mode VIC = VICRmin min, RS = 50 Ω kSVR Supply voltage rejection ratio Supply-voltage (ΔVCC ± /ΔVIO) 2.5 5 V to ± 15 V VCC ± = ± 2 ICC Supply current No load MIN TYP MAX 750 500 950 700 UNIT μV V 2 2 2 μV/°C 25°C 0.006 0.006 0.006 μV/mo 25°C 0.6 50 0.5 70 Full range −15 to 13.5 25°C 13.8 Full range 13.7 25°C −13.7 Full range −13.6 25°C 0.4 Full range 0.4 25°C 92 Full range 88 25°C 98 Full range 93 −15.3 to 14 6 45 70 −15.3 to 14 13.9 −13.7 14.2 0.8 14 −14.1 −13.7 94 4 1 105 97 100 1050 Full range 1400 115 103 1050 1400 −14.1 V 7 V/ V V/μV 108 dB 117 1050 1400 20 dB 1400 1400 20 nA V 98 1400 20 14.3 93 95 nA V 1 90 112 −15.3 to 14 −13.6 0.8 102 90 13.9 −13.6 2 70 −15 to 13.5 13.8 −14.1 40 −15 to 13.5 −15 to 13.5 6 10 90 −15 to 13.5 14.1 0.4 10 90 −15 to 13.5 Full range 6 10 25°C 25°C VO = 0, 0 TLE2024BC MAX 1200 RS = 50 Ω Large signal differential Large-signal voltage amplification TYP 1000 Full range AVD MIN 25°C 25°C RL = 10 kΩ TLE2024AC MAX Full range Full range Maximum negative peak output voltage swing Supply current change over operating temperature range TLE2024C MIN Full range VOM − ΔICC TA† μA A μA † Full range is 0°C to 70°C. NOTE 4: Typical values are based on the input offset voltage shift observed through 168 hours of operating life test at TA = 150°C extrapolated to TA = 25°C using the Arrhenius equation and assuming an activation energy of 0.96 eV. TLE202x, TLE202xA, TLE202xB, TLE202xY EXCALIBUR HIGH-SPEED LOW-POWER PRECISION OPERATIONAL AMPLIFIERS PARAMETER SLOS191D − FEBRUARY 1997 − REVISED NOVEMBER 2010 14 TLE2024 electrical characteristics at specified free-air temperature, VCC = ± 15 V (unless otherwise noted) TLE2021 electrical characteristics at specified free-air temperature, VCC = 5 V (unless otherwise noted) PARAMETER VIO Input offset voltage αVIO Temperature coefficient of input offset voltage Input offset voltage long-term drift (see Note 4) IIO Input offset current IIB Input bias current TLE2021I MIN 25°C MAX 120 600 Full range RS = 50 Ω Large signal differential Large-signal voltage amplification VO = 1.4 V to 4 V, RL = 10 kΩ CMRR Common mode rejection ratio Common-mode VIC = VICR min, RS = 50 Ω kSVR Supply voltage rejection ratio Supply-voltage (ΔVCC /ΔVIO) VCC = 5 V to 30 V ICC Supply current ΔICC Supply-current change over operating temperature range 80 200 600 300 UNIT μV V 0.005 0.005 0.005 μV/mo 25°C 0.2 25 0 to 3.5 Full range 0 to 3.2 4 −0.3 to 4 0 to 3.5 4.3 0.3 0.25 −0.3 to 4 4 0.8 25°C 85 Full range 80 25°C 105 Full range 100 4.3 4 0.8 1.5 105 200 300 110 1.5 85 120 105 110 dB 120 dB 100 200 300 200 300 6 300 300 6 V V/ V V/μV 80 300 6 0.8 0.9 0.3 nA V 0.25 100 Full range 4.3 0.7 nA V 3.9 80 120 − 0.3 to 4 0.9 85 70 90 0 to 3.5 0.25 110 25 0 to 3.2 0.7 0.3 6 10 70 3.9 1.5 0.2 90 0.9 25°C Full range 25 0 to 3.2 0.7 Full range 6 10 70 3.9 25°C 25°C 0.2 90 25°C Full range 6 10 Full range VO = 2.5 V,, No load MAX 25°C 25°C AVD 300 TYP μV/°C RS = 50 Ω Low level output voltage Low-level 100 MIN 2 25°C VOL MAX 2 Full range RL = 10 kΩ TLE2021BI TYP 2 Full range High level output voltage High-level MIN 950 Full range VIC = 0, TLE2021AI TYP μA A μA † Full range is − 40°C to 85°C. NOTE 4: Typical values are based on the input offset voltage shift observed through 168 hours of operating life test at TA = 150°C extrapolated to TA = 25°C using the Arrhenius equation and assuming an activation energy of 0.96 eV. 15 TLE202x, TLE202xA, TLE202xB, TLE202xY EXCALIBUR HIGH-SPEED LOW-POWER PRECISION OPERATIONAL AMPLIFIERS VOH Common mode input voltage range Common-mode TA† SLOS191D − FEBRUARY 1997 − REVISED NOVEMBER 2010 POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 VICR TEST CONDITIONS VIO Input offset voltage αVIO Temperature coefficient of input offset voltage Input offset voltage long-term drift (see Note 4) IIO Input offset current IIB Input bias current POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 VICR VOM + Common-mode Common mode input voltage range Maximum positive peak output voltage swing TEST CONDITIONS TA† TLE2021I MIN 25°C Full range 500 RS = 50 Ω 80 200 MIN TYP MAX 40 100 500 200 UNIT μV V 2 μV/°C 25°C 0.006 0.006 0.006 μV/mo 25°C 0.2 25°C 25 −15 to 13.5 Full range −15 to 13.2 25°C 14 Full range 13.9 25°C −13.7 Full range −13.6 AVD Large signal differential Large-signal voltage amplification VO = 10 V, RL = 10 kΩ Full range 0.75 CMRR Common mode rejection ratio Common-mode VIC = VICR min, RS = 50 Ω 25°C 100 Full range 96 kSVR Supply voltage rejection ratio Supply-voltage (ΔVCC /ΔVIO) VCC ± = ± 2. 5 V to ± 15 V 25°C 105 Full range 100 ICC Supply current 25°C 25°C 1 6 25 70 −15.3 to 14 14 −13.7 14.3 1 14 −14.1 −13.7 100 6.5 1 115 100 105 240 350 120 105 240 350 −14.1 V 6.5 V/ V V/μV 115 dB 120 240 350 7 dB 350 350 7 nA V 100 350 7 14.3 96 100 nA V 0.75 96 120 −15.3 to 14 −13.6 0.75 115 90 13.9 −13.6 6.5 70 −15 to 13.2 13.9 −14.1 25 −15 to 13.5 −15 to 13.2 6 10 90 −15 to 13.5 14.3 0.2 10 70 −15.3 to 14 Full range Full range 0.2 90 25°C RS = 50 Ω 6 10 Full range VO = 0 V V, No load MAX 2 Full range RL = 10 kΩ TLE2021BI TYP 2 Maximum negative peak output voltage swing Supply-current change over operating temperature range 120 MIN 850 VOM − ΔICC MAX Full range VIC = 0, TLE2021AI TYP μA A μA † Full range is − 40°C to 85°C. NOTE 4: Typical values are based on the input offset voltage shift observed through 168 hours of operating life test at TA = 150°C extrapolated to TA = 25°C using the Arrhenius equation and assuming an activation energy of 0.96 eV. TLE202x, TLE202xA, TLE202xB, TLE202xY EXCALIBUR HIGH-SPEED LOW-POWER PRECISION OPERATIONAL AMPLIFIERS PARAMETER SLOS191D − FEBRUARY 1997 − REVISED NOVEMBER 2010 16 TLE2021 electrical characteristics at specified free-air temperature, VCC = ± 15 V (unless otherwise noted) TLE2022 electrical characteristics at specified free-air temperature, VCC = 5 V (unless otherwise noted) PARAMETER VIO Input offset voltage αVIO Temperature coefficient of input offset voltage Input offset voltage long-term long term drift (see Note 4) IIO Input offset current IIB Input bias current VIC = 0 0, RS = 50 Ω CMRR Common mode rejection ratio Common-mode VIC = VICRmin min, RS = 50 Ω kSVR Supply-voltage Supply voltage rejection ratio (ΔVCC ± /ΔVIO) VCC = 5 V to 30 V ICC Supply current μV V 2 2 μV/°C V/°C 25°C 0 005 0.005 0 005 0.005 0 005 0.005 μV/mo V/mo 25°C 0.5 35 0.4 70 Full range 0 to 3.2 4 −0.3 to 4 33 −0.3 to 4 4 0.8 0.3 0.2 25°C 85 Full range 80 25°C 100 Full range 95 1.5 4.3 4 0.8 87 1.5 103 Full range 600 118 105 450 600 105 dB 120 450 600 15 dB 600 600 15 V V/ V V/μV 100 600 15 1.5 85 98 450 0.8 0.9 90 nA V 0.2 102 nA V 4.3 0.7 0.5 82 115 −0.3 to 4 0.9 0.2 100 90 3.9 0.7 0.4 70 0 to 3.2 0.9 25°C 30 0 to 3.5 3.9 0.7 6 10 70 0 to 3.2 4.3 0.3 90 0 to 3.5 3.9 Full range 6 10 90 0 to 3.5 Full range 6 10 25°C 25 C 25°C No load UNIT 2 Full range VO = 2.5 2 5 V, V MAX 400 25°C RL = 10 kΩ TYP 250 25°C VO = 1.4 1 4 V to 4 V V, MIN 550 Full range Large signal differential Large-signal voltage amplification TLE2022BI MAX 400 RS = 50 Ω AVD TYP 800 25°C Low level output voltage Low-level MIN 600 Full range VOL TLE2022AI MAX 25°C Full range High level output voltage High-level Supply current change over operating temperature range TYP Full range Full range RL = 10 kΩ ΔICC TLE2022I MIN μA A μA † Full range is − 40°C to 85°C. NOTE 4: Typical values are based on the input offset voltage shift observed through 168 hours of operating life test at TA = 150°C extrapolated to TA = 25°C using the Arrhenius equation and assuming an activation energy of 0.96 eV. 17 TLE202x, TLE202xA, TLE202xB, TLE202xY EXCALIBUR HIGH-SPEED LOW-POWER PRECISION OPERATIONAL AMPLIFIERS VOH Common mode input Common-mode voltage range TA† SLOS191D − FEBRUARY 1997 − REVISED NOVEMBER 2010 POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 VICR TEST CONDITIONS VIO Input offset voltage αVIO Temperature coefficient of input offset voltage Input offset voltage long-term long term drift (see Note 4) IIO Input offset current IIB Input bias current POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 VICR TLE2022I MIN 25°C VIC = 0 0, RS = 50 Ω MAX 150 500 VO = ± 10 V, V RL = 10 kΩ CMRR Common mode rejection ratio Common-mode VIC = VICRmin min, RS = 50 Ω kSVR Supply-voltage Supply voltage rejection ratio (ΔVCC ± /ΔVIO) VCC = ± 2 5 V to ± 15 V 2.5 ICC Supply current 70 150 450 300 UNIT μV V 0 006 0.006 0 006 0.006 μV/mo V/mo 25°C 0.5 35 0.4 70 33 Full range − 15 to 13.2 14 14 13.9 25°C − 13.7 Full range − 13.6 25°C 0.8 Full range 0.8 25°C 95 Full range 91 25°C 100 Full range 95 − 13.7 14.3 1 97 − 14.1 − 13.7 7 1.5 103 100 118 105 550 700 30 − 14.1 V 10 V/ V V/μV 112 dB 120 dB 100 550 700 700 550 700 30 700 700 30 nA V 96 98 Full range 14.3 1.5 109 nA V − 13.6 93 115 −15.3 to 14 13.9 1 106 90 14 − 13.6 4 70 − 15 to 13.2 13.9 − 14.1 30 − 15 to 13.5 −15.3 to 14 6 10 70 − 15 to 13.2 14.3 0.3 90 − 15 to 13.5 −15.3 to 14 6 10 90 − 15 to 13.5 Full range 6 10 25°C 25 C Full range No load MAX 0 006 0.006 25°C VO = 0, 0 300 TYP 25°C 25°C Large signal differential Large-signal voltage amplification 120 MIN μV/°C V/°C RS = 50 Ω AVD MAX 2 Full range RL = 10 kΩ TLE2022BI TYP 2 25°C Maximum negative peak output voltage swing MIN 2 Full range VOM − TLE2022AI TYP 700 Full range Maximum positive peak output voltage swing Supply current change over operating temperature range TA† Full range VOM + ΔICC † Common mode input Common-mode voltage range TEST CONDITIONS μA A μA Full range is − 40°C to 85°C. NOTE 4: Typical values are based on the input offset voltage shift observed through 168 hours of operating life test at TA = 150°C extrapolated to TA = 25°C using the Arrhenius equation and assuming an activation energy of 0.96 eV. TLE202x, TLE202xA, TLE202xB, TLE202xY EXCALIBUR HIGH-SPEED LOW-POWER PRECISION OPERATIONAL AMPLIFIERS PARAMETER SLOS191D − FEBRUARY 1997 − REVISED NOVEMBER 2010 18 TLE2022 electrical characteristics at specified free-air temperature, VCC = ± 15 V (unless otherwise noted) TLE2024 electrical characteristics at specified free-air temperature, VCC = 5 V (unless otherwise noted) PARAMETER VIO Input offset voltage αVIO Temperature coefficient of input offset voltage Input offset voltage long-term drift (see Note 4) IIO Input offset current IIB Input bias current Maximum positive peak output voltage swing VIC = 0, RS = 50 Ω TYP RL = 10 kΩ CMRR Common mode rejection ratio Common-mode VIC = VICRmin min, RS = 50 Ω kSVR Supply voltage rejection ratio Supply-voltage (ΔVCC± /ΔVIO) VCC ± = ± 2 2.5 5 V to ± 15 V ICC Supply current TYP MAX 600 800 UNIT μV V 2 2 2 μV/°C 25°C 0.005 0.005 0.005 μV/mo 25°C 0.6 45 0.5 70 Full range 0 to 3.2 25°C 3.9 Full range 3.7 −0.3 to 4 40 −0.3 to 4 3.9 Full range 0.1 25°C 80 Full range 80 25°C 98 Full range 93 1.5 4.2 4 82 0.8 1.5 100 Full range 1200 115 103 800 1200 95 dB 117 800 1200 30 dB 1200 1200 30 V V/ V V/μV 98 1200 30 1.5 85 95 800 0.8 0.95 85 nA V 0.1 92 nA V 4.3 0.7 0.4 82 112 −0.3 to 4 0.95 0.1 90 90 3.8 0.7 0.3 70 0 to 3.2 0.95 0.2 35 0 to 3.5 3.7 0.8 6 10 90 0 to 3.5 4.2 0.4 70 0 to 3.2 0.7 25°C 6 10 90 0 to 3.5 Full range 6 10 25°C 25°C No load MIN 850 Full range VO = 0, 0 MAX 1050 25°C VO = 1.4 1 4 V to 4 V V, TYP 1100 RS = 50 Ω Large signal differential Large-signal voltage amplification MIN 1300 Full range AVD MAX TLE2024BI 25°C 25°C RL = 10 kΩ TLE2024AI Full range Full range Maximum negative peak output voltage swing Supply current change over operating temperature range MIN Full range VOM − ΔICC TLE2024I μA A μA † Full range is − 40°C to 85°C. NOTE 4: Typical values are based on the input offset voltage shift observed through 168 hours of operating life test at TA = 150°C extrapolated to TA = 25°C using the Arrhenius equation and assuming an activation energy of 0.96 eV. 19 TLE202x, TLE202xA, TLE202xB, TLE202xY EXCALIBUR HIGH-SPEED LOW-POWER PRECISION OPERATIONAL AMPLIFIERS VOM + Common mode input voltage Common-mode range TA† SLOS191D − FEBRUARY 1997 − REVISED NOVEMBER 2010 POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 VICR TEST CONDITIONS VIO Input offset voltage αVIO Temperature coefficient of input offset voltage Input offset voltage long-term drift (see Note 4) IIO Input offset current IIB Input bias current POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 VICR VOM + Common mode input voltage Common-mode range Maximum positive peak output voltage swing TEST CONDITIONS VIC = 0, RS = 50 Ω TYP VO = ± 10 V V, RL = 10 kΩ CMRR Common mode rejection ratio Common-mode VIC = VICRmin min, RS = 50 Ω kSVR Supply voltage rejection ratio Supply-voltage (ΔVCC ± /ΔVIO) 2.5 5 V to ± 15 V VCC ± = ± 2 ICC Supply current No load MIN TYP MAX 750 500 950 700 UNIT μV V 2 2 2 μV/°C 25°C 0.006 0.006 0.006 μV/mo 25°C 0.6 50 0.5 70 Full range −15 to 13.2 25°C 13.8 Full range 13.7 25°C −13.7 Full range −13.6 25°C 0.4 Full range 0.4 25°C 92 Full range 88 25°C 98 Full range 93 −15.3 to 14 6 45 70 −15.3 to 14 13.9 −13.7 14.2 0.8 14 −14.1 −13.7 94 4 1 105 97 100 1050 Full range 1400 115 103 1050 1400 −14.1 V 7 V/ V V/μV 108 dB 117 1050 1400 50 dB 1400 1400 50 nA V 98 1400 50 14.3 93 95 nA V 1 90 112 −15.3 to 14 −13.6 0.8 102 90 13.8 −13.6 2 70 −15 to 13.2 13.7 −14.1 40 −15 to 13.5 −15 to 13.2 6 10 90 −15 to 13.5 14.1 0.4 10 90 −15 to 13.5 Full range 6 10 25°C 25°C VO = 0, 0 TLE2024BI MAX 1200 RS = 50 Ω Large signal differential Large-signal voltage amplification TYP 1000 Full range AVD MIN 25°C 25°C RL = 10 kΩ TLE2024AI MAX Full range Full range Maximum negative peak output voltage swing Supply current change over operating temperature range TLE2024I MIN Full range VOM − ΔICC TA† μA A μA † Full range is − 40°C to 85°C. NOTE 4: Typical values are based on the input offset voltage shift observed through 168 hours of operating life test at TA = 150°C extrapolated to TA = 25°C using the Arrhenius equation and assuming an activation energy of 0.96 eV. TLE202x, TLE202xA, TLE202xB, TLE202xY EXCALIBUR HIGH-SPEED LOW-POWER PRECISION OPERATIONAL AMPLIFIERS PARAMETER SLOS191D − FEBRUARY 1997 − REVISED NOVEMBER 2010 20 TLE2024 electrical characteristics at specified free-air temperature, VCC = ± 15 V (unless otherwise noted) TLE2021 electrical characteristics at specified free-air temperature, VCC = 5 V (unless otherwise noted) PARAMETER VIO Input offset voltage αVIO Temperature coefficient of input offset voltage Input offset voltage long-term drift (see Note 4) IIO Input offset current IIB Input bias current Common mode input Common-mode voltage range 25°C TYP 120 VIC = 0, RS = 50 Ω RL = 10 kΩ CMRR Common mode rejection ratio Common-mode VIC = VICRmin min, RS = 50 Ω kSVR Supply voltage rejection ratio Supply-voltage (ΔVCC ± /ΔVIO) VCC = 5 V to 30 V ICC Supply current μV/mo 25°C 0.2 25 Full range 0 to 3.2 4 −0.3 to 4 25 90 0 to 3.5 −0.3 to 4 4.3 4 0.7 0.3 0.1 25°C 85 Full range 80 25°C 105 Full range 100 1.5 0.8 0.95 0.3 1.5 85 110 dB 80 120 105 120 dB 100 170 Full range 230 170 230 9 230 230 9 V V/ V V/μV 0.1 110 nA V 3.8 0.8 nA V 4.3 0.95 25°C 70 0 to 3.2 0.7 Full range 6 10 70 3.8 25°C Full range 0.2 90 0 to 3.5 25°C 6 10 25°C Full range No load μV V 0.005 Full range VO = 2.5 2 5 V, V 300 μA A μA † Full range is − 55°C to 125°C. NOTE 4: Typical values are based on the input offset voltage shift observed through 168 hours of operating life test at TA = 150°C extrapolated to TA = 25°C using the Arrhenius equation and assuming an activation energy of 0.96 eV. 21 TLE202x, TLE202xA, TLE202xB, TLE202xY EXCALIBUR HIGH-SPEED LOW-POWER PRECISION OPERATIONAL AMPLIFIERS 1 4 V to 4 V V, VO = 1.4 200 0.005 25°C Large-signal Large signal differential voltage amplification 80 UNIT 25°C RS = 50 Ω AVD MAX μV/°C Full range RL = 10 kΩ 600 TYP 2 25°C Low level output voltage Low-level MIN 2 Full range VOL TLE2021BM MAX 1100 Full range High level output voltage High-level Supply current change over operating temperature range TLE2021M MIN Full range VOH ΔICC TA† SLOS191D − FEBRUARY 1997 − REVISED NOVEMBER 2010 POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 VICR TEST CONDITIONS VIO Input offset voltage αVIO Temperature coefficient of input offset voltage Input offset voltage long-term drift (see Note 4) IIO Input offset current IIB Input bias current POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 VICR Common mode input Common-mode voltage range TEST CONDITIONS 25°C TYP 120 VIC = 0, RS = 50 Ω VO = ± 10 V, V RL = 10 kΩ CMRR Common mode rejection ratio Common-mode VIC = VICRmin min, RS = 50 Ω kSVR Supply voltage rejection ratio Supply-voltage (ΔVCC ± /ΔVIO) VCC ± = ± 2 2.5 5 V to ± 15 V ICC Supply current No load 200 μV V 0.006 μV/mo 25°C 0.2 25 Full range −15 to 13.2 14 Full range 13.8 25°C −13.7 Full range −13.6 1 Full range 0.5 25°C 100 Full range 96 25°C 105 Full range 100 6 10 70 −15.3 to 14 25 70 90 −15 to 13.5 −15.3 to 14 14.3 14 14.3 −13.7 −14.1 V −13.6 6.5 1 6.5 V/ V V/μV 0.5 115 100 115 dB 96 120 105 120 dB 100 200 300 200 300 10 300 300 10 nA V 13.8 −14.1 nA V −15 to 13.2 Full range Full range 0.2 90 −15 to 13.5 25°C 6 10 25°C 25°C VO = 0, 0 100 0.006 25°C Large-signal Large signal differential voltage amplification 40 UNIT 25°C RS = 50 Ω AVD MAX μV/°C Full range RL = 10 kΩ 500 TYP 2 25°C Maximum negative peak output voltage swing MIN 2 Full range VOM − TLE2021BM MAX 1000 Full range Maximum positive peak output voltage swing Supply current change over operating temperature range TLE2021M MIN Full range VOM + ΔICC TA† μA A μA † Full range is − 55°C to 125°C. NOTE 4: Typical values are based on the input offset voltage shift observed through 168 hours of operating life test at TA = 150°C extrapolated to TA = 25°C using the Arrhenius equation and assuming an activation energy of 0.96 eV. TLE202x, TLE202xA, TLE202xB, TLE202xY EXCALIBUR HIGH-SPEED LOW-POWER PRECISION OPERATIONAL AMPLIFIERS PARAMETER SLOS191D − FEBRUARY 1997 − REVISED NOVEMBER 2010 22 TLE2021 electrical characteristics at specified free-air temperature, VCC = ±15 V (unless otherwise noted) TLE2022 electrical characteristics at specified free-air temperature, VCC = 5 V (unless otherwise noted) PARAMETER VIO Input offset voltage αVIO Temperature coefficient of input offset voltage Input offset voltage long-term long term drift (see Note 4) IIO Input offset current IIB Input bias current VIC = 0 0, RS = 50 Ω CMRR Common mode rejection ratio Common-mode VIC = VICRmin min, RS = 50 Ω kSVR Supply-voltage Supply voltage rejection ratio (ΔVCC ± /ΔVIO) VCC = 5 V to 30 V ICC Supply current μV V 2 2 μV/°C V/°C 25°C 0 005 0.005 0 005 0.005 0 005 0.005 μV/mo V/mo 25°C 0.5 35 0.4 70 Full range 0 to 3.2 4 −0.3 to 4 33 −0.3 to 4 4 0.8 0.3 0.1 25°C 85 Full range 80 25°C 100 Full range 95 1.5 4.3 4 0.8 87 1.5 103 Full range 600 118 105 450 600 105 dB 120 450 600 37 dB 600 600 37 V V/ V V/μV 100 600 37 1.5 85 98 450 0.8 0.95 90 nA V 0.1 102 nA V 4.3 0.7 0.5 82 115 −0.3 to 4 0.95 0.1 100 90 3.8 0.7 0.4 70 0 to 3.2 0.95 25°C 30 0 to 3.5 3.8 0.7 6 10 70 0 to 3.2 4.3 0.3 90 0 to 3.5 3.8 Full range 6 10 90 0 to 3.5 Full range 6 10 25°C 25 C 25°C No load UNIT 2 Full range VO = 2 2.5 5V V, MAX 400 25°C RL = 10 kΩ TYP 250 25°C VO = 1.4 1 4 V to 4 V V, MIN 550 Full range Large signal differential Large-signal voltage amplification TLE2022BM MAX 400 RS = 50 Ω AVD TYP 800 25°C Low level output voltage Low-level MIN 600 Full range VOL TLE2022AM MAX 25°C Full range High level output voltage High-level Supply current change over operating temperature range TYP Full range Full range RL = 10 kΩ ΔICC TLE2022M MIN μA A μA † Full range is − 55°C to 125°C. NOTE 4: Typical values are based on the input offset voltage shift observed through 168 hours of operating life test at TA = 150°C extrapolated to TA = 25°C using the Arrhenius equation and assuming an activation energy of 0.96 eV. 23 TLE202x, TLE202xA, TLE202xB, TLE202xY EXCALIBUR HIGH-SPEED LOW-POWER PRECISION OPERATIONAL AMPLIFIERS VOH Common mode input Common-mode voltage range TA† SLOS191D − FEBRUARY 1997 − REVISED NOVEMBER 2010 POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 VICR TEST CONDITIONS VIO Input offset voltage αVIO Temperature coefficient of input offset voltage Input offset voltage long-term long term drift (see Note 4) IIO Input offset current IIB Input bias current POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 VICR TLE2022M MIN 25°C VIC = 0 0, RS = 50 Ω MAX 150 500 VO = ± 10 V, V RL = 10 kΩ CMRR Common mode rejection ratio Common-mode VIC = VICRmin min, RS = 50 Ω kSVR Supply-voltage Supply voltage rejection ratio (ΔVCC ± /ΔVIO) VCC ± = ± 2 5 V to ± 15 V 2.5 ICC Supply current No load MAX 70 150 450 300 UNIT μV V 0 006 0.006 0 006 0.006 0 006 0.006 μV/mo V/mo 25°C 0.5 35 0.4 70 33 Full range −15 to 13.2 14 Full range 13.9 25°C −13.7 Full range −13.6 25°C 0.8 Full range 0.8 25°C 95 Full range 91 25°C 100 Full range 95 14 −13.7 14.3 1 97 −14.1 −13.7 7 1.5 103 100 118 105 550 700 60 −14.1 V 10 V/ V V/μV 112 dB 120 dB 100 550 700 700 550 700 60 700 700 60 nA V 96 98 Full range 14.3 1.5 109 nA V −13.6 93 115 −15.3 to 14 13.9 1 106 90 14 −13.6 4 70 −15 to 13.2 13.9 −14.1 30 −15 to 13.5 −15.3 to 14 6 10 70 −15 to 13.2 14.3 0.3 90 −15 to 13.5 −15.3 to 14 6 10 90 −15 to 13.5 Full range 6 10 25°C 25 C 25°C VO = 0, 0 300 TYP 25°C 25°C Large signal differential Large-signal voltage amplification 120 MIN μV/°C V/°C RS = 50 Ω AVD MAX 2 Full range RL = 10 kΩ TLE2022BM TYP 2 25°C Maximum negative peak output voltage swing MIN 2 Full range VOM − TLE2022AM TYP 700 Full range Maximum positive peak output voltage swing Supply current change over operating temperature range TA† Full range VOM + ΔICC † Common mode input Common-mode voltage range TEST CONDITIONS μA A μA Full range is −55°C to 125°C. NOTE 4: Typical values are based on the input offset voltage shift observed through 168 hours of operating life test at TA = 150°C extrapolated to TA = 25°C using the Arrhenius equation and assuming an activation energy of 0.96 eV. TLE202x, TLE202xA, TLE202xB, TLE202xY EXCALIBUR HIGH-SPEED LOW-POWER PRECISION OPERATIONAL AMPLIFIERS PARAMETER SLOS191D − FEBRUARY 1997 − REVISED NOVEMBER 2010 24 TLE2022 electrical characteristics at specified free-air temperature, VCC = ± 15 V (unless otherwise noted) TLE2024 electrical characteristics at specified free-air temperature, VCC = 5 V (unless otherwise noted) PARAMETER VIO Input offset voltage αVIO Temperature coefficient of input offset voltage Input offset voltage long-term drift (see Note 4) IIO Input offset current IIB Input bias current Maximum positive peak output voltage swing VIC = 0, RS = 50 Ω TYP RL = 10 kΩ CMRR Common mode rejection ratio Common-mode VIC = VICRmin min, RS = 50 Ω kSVR Supply voltage rejection ratio Supply-voltage (ΔVCC± /ΔVIO) VCC ± = ± 2 2.5 5 V to ± 15 V ICC Supply current TYP MAX 600 800 UNIT μV V 2 2 2 μV/°C 25°C 0.005 0.005 0.005 μV/mo 25°C 0.6 45 0.5 70 Full range 0 to 3.2 25°C 3.9 Full range 3.7 −0.3 to 4 40 −0.3 to 4 3.9 Full range 0.1 25°C 80 Full range 80 25°C 98 Full range 93 1.5 4.2 4 82 0.8 1.5 100 Full range 1200 115 103 800 1200 95 dB 117 800 1200 50 dB 1200 1200 50 V V/ V V/μV 98 1200 50 1.5 85 95 800 0.8 0.95 85 nA V 0.1 92 nA V 4.3 0.7 0.4 82 112 −0.3 to 4 0.95 0.1 90 90 3.8 0.7 0.3 70 0 to 3.2 0.95 0.2 35 0 to 3.5 3.7 0.8 6 10 90 0 to 3.5 4.2 0.4 70 0 to 3.2 0.7 25°C 6 10 90 0 to 3.5 Full range 6 10 25°C 25°C No load MIN 850 Full range VO = 0, 0 MAX 1050 25°C VO = 1.4 1 4 V to 4 V V, TYP 1100 RS = 50 Ω Large signal differential Large-signal voltage amplification MIN 1300 Full range AVD MAX TLE2024BM 25°C 25°C RL = 10 kΩ TLE2024AM Full range Full range Maximum negative peak output voltage swing Supply current change over operating temperature range MIN Full range VOM − ΔICC TLE2024M μA A μA † Full range is − 55°C to 125°C. NOTE 4: Typical values are based on the input offset voltage shift observed through 168 hours of operating life test at TA = 150°C extrapolated to TA = 25°C using the Arrhenius equation and assuming an activation energy of 0.96 eV. 25 TLE202x, TLE202xA, TLE202xB, TLE202xY EXCALIBUR HIGH-SPEED LOW-POWER PRECISION OPERATIONAL AMPLIFIERS VOM + Common mode input voltage Common-mode range TA† SLOS191D − FEBRUARY 1997 − REVISED NOVEMBER 2010 POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 VICR TEST CONDITIONS VIO Input offset voltage αVIO Temperature coefficient of input offset voltage Input offset voltage long-term drift (see Note 4) IIO Input offset current IIB Input bias current POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 VICR VOM + Common mode input voltage Common-mode range Maximum positive peak output voltage swing TEST CONDITIONS VIC = 0, RS = 50 Ω TYP VO = ± 10 V V, RL = 10 kΩ CMRR Common mode rejection ratio Common-mode VIC = VICRmin min, RS = 50 Ω kSVR Supply voltage rejection ratio Supply-voltage (ΔVCC ± /ΔVIO) 2.5 5 V to ± 15 V VCC ± = ± 2 ICC Supply current No load MIN TYP MAX 750 500 950 700 UNIT μV V 2 2 2 μV/°C 25°C 0.006 0.006 0.006 μV/mo 25°C 0.6 50 0.5 70 Full range −15 to 13.2 25°C 13.8 Full range 13.7 25°C −13.7 Full range −13.6 25°C 0.4 Full range 0.4 25°C 92 Full range 88 25°C 98 Full range 93 −15.3 to 14 6 45 70 −15.3 to 14 13.9 −13.7 14.2 0.8 14 −14.1 −13.7 94 4 1 105 97 100 1050 Full range 1400 115 103 1050 1400 −14.1 V 7 V/ V V/μV 108 dB 117 1050 1400 85 dB 1400 1400 85 nA V 98 1400 85 14.3 93 95 nA V 1 90 112 −15.3 to 14 −13.6 0.8 102 90 13.8 −13.6 2 70 −15 to 13.2 13.7 −14.1 40 −15 to 13.5 −15 to 13.2 6 10 90 −15 to 13.5 14.1 0.4 10 90 −15 to 13.5 Full range 6 10 25°C 25°C VO = 0, 0 TLE2024BM MAX 1200 RS = 50 Ω Large signal differential Large-signal voltage amplification TYP 1000 Full range AVD MIN 25°C 25°C RL = 10 kΩ TLE2024AM MAX Full range Full range Maximum negative peak output voltage swing Supply current change over operating temperature range TLE2024M MIN Full range VOM − ΔICC TA† μA A μA † Full range is − 55°C to 125°C. NOTE 4: Typical values are based on the input offset voltage shift observed through 168 hours of operating life test at TA = 150°C extrapolated to TA = 25°C using the Arrhenius equation and assuming an activation energy of 0.96 eV. TLE202x, TLE202xA, TLE202xB, TLE202xY EXCALIBUR HIGH-SPEED LOW-POWER PRECISION OPERATIONAL AMPLIFIERS PARAMETER SLOS191D − FEBRUARY 1997 − REVISED NOVEMBER 2010 26 TLE2024 electrical characteristics at specified free-air temperature, VCC = ± 15 V (unless otherwise noted) TLE2021 operating characteristics, VCC = 5 V, TA = 25°C PARAMETER SR TEST CONDITIONS See Figure 1 TA C SUFFIX MIN TYP I SUFFIX MAX MIN TYP M SUFFIX MAX MIN TYP 0.5 MAX 0.5 UNIT Slew rate at unity gain VO = 1 V to 3 V, 25°C 0.5 Vn Equivalent input noise voltage (see Figure 2) f = 10 Hz 25°C 21 50 21 50 21 V/μs f = 1 kHz 25°C 17 30 17 30 17 VN(PP) Peak to peak equivalent input Peak-to-peak noise voltage f = 0.1 to 1 Hz 25°C 0.16 0.16 0.16 f = 0.1 to 10 Hz 25°C 0.47 0.47 0.47 In Equivalent input noise current 25°C 0.09 0.09 0.9 pA/Hz B1 Unity-gain bandwidth See Figure 3 25°C 1.2 1.2 1.2 MHz φm Phase margin at unity gain See Figure 3 25°C 42° 42° 42° nV/Hz μV V PARAMETER See Figure 1 TA† C SUFFIX MIN TYP 25°C 0.45 0.65 Full range 0.45 I SUFFIX MAX MIN TYP 0.45 0.65 M SUFFIX MAX MIN TYP 0.45 0.65 SR Slew rate at unity gain VO = 1V to 3 V, V Vn Equivalent input noise voltage (see Figure 2) f = 10 Hz 25°C 19 50 19 50 19 f = 1 kHz 25°C 15 30 15 30 15 VN(PP) Peak to peak equivalent input Peak-to-peak noise voltage f = 0.1 to 1 Hz 25°C 0.16 0.16 0.16 f = 0.1 to 10 Hz 25°C 0.47 0.47 0.47 In Equivalent input noise current 25°C 0.09 0.09 0.09 B1 Unity-gain bandwidth See Figure 3 25°C 2 2 2 φm Phase margin at unity gain See Figure 3 25°C 46° 46° 46° 0.42 0.45 Full range is 0°C to 70°C for the C-suffix devices, − 40°C to 85°C for the I-suffix devices, and − 55°C to 125°C for the M-suffix devices. MAX UNIT V/ s V/μs nV/Hz μV V pA/Hz MHz 27 TLE202x, TLE202xA, TLE202xB, TLE202xY EXCALIBUR HIGH-SPEED LOW-POWER PRECISION OPERATIONAL AMPLIFIERS † TEST CONDITIONS SLOS191D − FEBRUARY 1997 − REVISED NOVEMBER 2010 POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 TLE2021 operating characteristics at specified free-air temperature, VCC = ± 15 V SR TEST CONDITIONS C SUFFIX MIN See Figure 1 TYP I SUFFIX MAX MIN 0.5 TYP M SUFFIX MAX MIN 0.5 TYP Slew rate at unity gain VO = 1 V to 3 V, Vn Equivalent input noise voltage (see Figure 2) f = 10 Hz 21 50 21 50 21 f = 1 kHz 17 30 17 30 17 VN(PP) Peak to peak equivalent input noise voltage Peak-to-peak In Equivalent input noise current B1 Unity-gain bandwidth See Figure 3 φm Phase margin at unity gain See Figure 3 MAX 0.5 UNIT V/μs nV/√Hz f = 0.1 to 1 Hz 0.16 0.16 0.16 f = 0.1 to 10 Hz 0.47 0.47 0.47 0.1 0.1 0.1 pA/√Hz 1.7 1.7 1.7 MHz 47° 47° 47° μV V TLE2022 operating characteristics at specified free-air temperature, VCC = ± 15 V POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 PARAMETER † TEST CONDITIONS See Figure 1 C SUFFIX† TA MIN TYP 25°C 0.45 0.65 Full range 0.45 I SUFFIX† MAX MIN TYP 0.45 0.65 M SUFFIX† MAX MIN TYP 0.45 0.65 MAX UNIT SR Slew rate at unity gain VO = ± 10 V, V Vn Equivalent input noise voltage (see Figure 2) f = 10 Hz 25°C 19 50 19 50 19 f = 1 kHz 25°C 15 30 15 30 15 VN(PP) Peak to peak equivalent Peak-to-peak input noise voltage f = 0.1 to 1 Hz 25°C 0.16 0.16 0.16 f = 0.1 to 10 Hz 25°C 0.47 0.47 0.47 In Equivalent input noise current 25°C 0.1 0.1 0.1 pA/√Hz B1 Unity-gain bandwidth See Figure 3 25°C 2.8 2.8 2.8 MHz φm Phase margin at unity gain See Figure 3 25°C 52° 52° 52° 0.42 0.4 Full range is 0°C to 70°C for the C−suffix devices, −40°C to 85°C for the I suffix devices and −55°C to 125°C for the I−suffix devices. V/ s V/μs nV/√Hz μV V TLE202x, TLE202xA, TLE202xB, TLE202xY EXCALIBUR HIGH-SPEED LOW-POWER PRECISION OPERATIONAL AMPLIFIERS PARAMETER SLOS191D − FEBRUARY 1997 − REVISED NOVEMBER 2010 28 TLE2022 operating characteristics, VCC = 5 V, TA = 25°C TLE2024 operating characteristics, VCC = 5 V, TA = 25°C PARAMETER SR TEST CONDITIONS Slew rate at unity gain VO = 1 V to 3 V, C SUFFIX MIN See Figure 1 TYP I SUFFIX MAX MIN 0.5 TYP M SUFFIX MAX MIN 0.5 TYP 0.5 f = 10 Hz 21 50 21 50 21 f = 1 kHz 17 30 17 30 17 Vn Equivalent input noise voltage (see Figure 2) VN(PP) Peak to peak equivalent input noise voltage Peak-to-peak In Equivalent input noise current B1 Unity-gain bandwidth See Figure 3 φm Phase margin at unity gain See Figure 3 MAX UNIT V/μs nV/√ Hz f = 0.1 to 1 Hz 0.16 0.16 0.16 f = 0.1 to 10 Hz 0.47 0.47 0.47 0.1 0.1 0.1 pA/√Hz 1.7 1.7 1.7 MHz 47° 47° 47° μV V PARAMETER See Figure 1 C SUFFIX† TA MIN TYP 25°C 0.45 0.7 Full range 0.45 I SUFFIX† MAX MIN TYP 0.45 0.7 M SUFFIX† MAX MIN TYP 0.45 0.7 MAX UNIT SR Slew rate at unity gain VO = ± 10 V V, Vn Equivalent input noise voltage (see Figure 2) f = 10 Hz 25°C 19 50 19 50 19 f = 1 kHz 25°C 15 30 15 30 15 VN(PP) Peak to peak equivalent input noise Peak-to-peak voltage f = 0.1 to 1 Hz 25°C 0.16 0.16 0.16 f = 0.1 to 10 Hz 25°C 0.47 0.47 0.47 In Equivalent input noise current 25°C 0.1 0.1 0.1 pA/√Hz B1 Unity-gain bandwidth See Figure 3 25°C 2.8 2.8 2.8 MHz φm Phase margin at unity gain See Figure 3 25°C 52° 52° 52° 0.42 0.4 Full range is 0°C to 70°C for the C−suffix devices, −40°C to 85°C for the I suffix devices and −55°C to 125°C for the I−suffix devices. V/ s V/μs nV/√Hz μV V 29 TLE202x, TLE202xA, TLE202xB, TLE202xY EXCALIBUR HIGH-SPEED LOW-POWER PRECISION OPERATIONAL AMPLIFIERS † TEST CONDITIONS SLOS191D − FEBRUARY 1997 − REVISED NOVEMBER 2010 POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 TLE2024 operating characteristics at specified free-air temperature, VCC = ± 15 V (unless otherwise noted) TLE202x, TLE202xA, TLE202xB, TLE202xY EXCALIBUR HIGH-SPEED LOW-POWER PRECISION OPERATIONAL AMPLIFIERS  SLOS191D − FEBRUARY 1997 − REVISED NOVEMBER 2010 TLE2021Y electrical characteristics at VCC = 5 V, TA = 25°C (unless otherwise noted) PARAMETER VIO TEST CONDITIONS TLE2021Y MIN Input offset voltage Input offset current IIB Input bias current MAX 150 Input offset voltage long-term drift (see Note 4) IIO TYP VIC = 0 0, μV 0.005 RS = 50 Ω RS = 50 Ω UNIT μV/mo 0.5 nA 35 nA − 0.3 to 4 V 4.3 V 0.7 V VICR Common-mode input voltage range VOH Maximum high-level output voltage VOL Maximum low-level output voltage AVD Large-signal differential voltage amplification VO = 1.4 to 4 V, RL = 10 kΩ 1.5 V/μV CMRR Common-mode rejection ratio VIC = VICR min, RS = 50 Ω 100 dB kSVR Supply-voltage rejection ratio (ΔVCC ± /ΔVIO) VCC = 5 V to 30 V 115 dB ICC Supply current VO = 2.5 V, 400 μA RL = 10 kΩ No load NOTE 4: Typical values are based on the input offset voltage shift observed through 168 hours of operating life test at TA = 150°C extrapolated to TA = 25°C using the Arrhenius equation and assuming an activation energy of 0.96 eV. TLE2021Y operating characteristics at VCC = 5 V, TA = 25°C PARAMETER SR TEST CONDITIONS Slew rate at unity gain TLE2021Y MIN TYP VO = 1 V to 3 V 0.5 f = 10 Hz 21 f = 1 kHz 17 MAX UNIT V/μs nV/√Hz Vn Equivalent input noise voltage VN(PP) Peak to peak equivalent input noise voltage Peak-to-peak In Equivalent input noise current 0.1 pA/√Hz B1 Unity-gain bandwidth 1.7 MHz φm Phase margin at unity gain 47° 30 POST OFFICE BOX 655303 f = 0.1 to 1 Hz 0.16 f = 0.1 to 10 Hz 0.47 • DALLAS, TEXAS 75265 V μV TLE202x, TLE202xA, TLE202xB, TLE202xY EXCALIBUR HIGH-SPEED LOW-POWER PRECISION OPERATIONAL AMPLIFIERS  SLOS191D − FEBRUARY 1997 − REVISED NOVEMBER 2010 TLE2022Y electrical characteristics, VCC = 5 V, TA = 25°C (unless otherwise noted) PARAMETER VIO TEST CONDITIONS TLE2022Y MIN Input offset voltage Input offset voltage long-term drift (see Note 4) IIO Input offset current IIB Input bias current VIC = 0 0, TYP MAX 150 600 0.005 RS = 50 Ω RS = 50 Ω UNIT μV μV/mo 0.5 nA 35 nA − 0.3 to 4 V 4.3 V 0.7 V VICR Common-mode input voltage range VOH Maximum high-level output voltage VOL Maximum low-level output voltage AVD Large-signal differential voltage amplification VO = 1.4 to 4 V, RL= 10 kΩ 1.5 V/μV CMRR Common-mode rejection ratio VIC = VICR min, RS = 50 Ω 100 dB kSVR Supply-voltage rejection ratio (ΔVCC ± /ΔVIO) VCC = 5 V to 30 V 115 dB ICC Supply current VO = 2.5 V, No load 450 μA RL = 10 kΩ NOTE 4: Typical values are based on the input offset voltage shift observed through 168 hours of operating life test at TA = 150°C extrapolated to TA = 25°C using the Arrhenius equation and assuming an activation energy of 0.96 eV. TLE2022Y operating characteristics, VCC = 5 V, TA = 25°C PARAMETER SR TEST CONDITIONS Slew rate at unity gain VO = 1 V to 3 V, See Figure 1 TLE2022Y MIN TYP 0.5 f = 10 Hz 21 f = 1 kHz 17 MAX UNIT V/μs Vn Equivalent input noise voltage (see Figure 2) VN(PP) Peak to peak equivalent input noise voltage Peak-to-peak In Equivalent input noise current 0.1 pA/√Hz B1 Unity-gain bandwidth See Figure 3 1.7 MHz φm Phase margin at unity gain See Figure 3 47° f = 0.1 to 1 Hz 0.16 f = 0.1 to 10 Hz 0.47 POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 nV/√H nV/√Hz V μV 31 TLE202x, TLE202xA, TLE202xB, TLE202xY EXCALIBUR HIGH-SPEED LOW-POWER PRECISION OPERATIONAL AMPLIFIERS  SLOS191D − FEBRUARY 1997 − REVISED NOVEMBER 2010 TLE2024Y electrical characteristics, VCC = 5 V, TA = 25°C (unless otherwise noted) PARAMETER TEST CONDITIONS TLE2024Y MIN Input offset voltage long-term drift (see Note 4) IIO Input offset current IIB Input bias current TYP MAX 0.005 VIC = 0, RS = 50 Ω RS = 50 Ω UNIT μV/mo 0.6 nA 45 nA −0.3 to 4 V 4.2 V 0.7 V VICR Common-mode input voltage range VOH High-level output voltage VOL Low-level output voltage AVD Large-signal differential voltage amplification VO = 1.4 V to 4 V, RL = 10 kΩ 1.5 V/μV CMRR Common-mode rejection ratio VIC = VICRmin, RS = 50 Ω 90 dB kSVR Supply-voltage rejection ratio (ΔVCC /ΔVIO) VCC = 5 V to 30 V 112 dB ICC Supply current VO = 2.5 V, 800 μA RL = 10 kΩ No load NOTE 4. Typical values are based on the input offset voltage shift observed through 168 hours of operating life test at TA = 150°C extrapolated to TA = 25°C using the Arrhenius equation and assuming an activation energy of 0.96 eV. TLE2024Y operating characteristics, VCC = 5 V, TA = 25°C PARAMETER TEST CONDITIONS TYP 0.5 MAX UNIT Slew rate at unity gain Vn Equivalent input noise voltage (see Figure 2) VN(PP) Peak to peak equivalent input noise voltage Peak-to-peak In Equivalent input noise current 0.1 pA/√Hz B1 Unity-gain bandwidth See Figure 3 1.7 MHz φm Phase margin at unity gain See Figure 3 47° POST OFFICE BOX 655303 See Figure 1 MIN SR 32 VO = 1 V to 3 V, TLE2024Y f = 10 Hz 21 f = 1 kHz 17 f = 0.1 to 1 Hz 0.16 f = 0.1 to 10 Hz 0.47 • DALLAS, TEXAS 75265 V/μs nV/√ Hz μV V TLE202x, TLE202xA, TLE202xB, TLE202xY EXCALIBUR HIGH-SPEED LOW-POWER PRECISION OPERATIONAL AMPLIFIERS  SLOS191D − FEBRUARY 1997 − REVISED NOVEMBER 2010 PARAMETER MEASUREMENT INFORMATION 20 kΩ 20 kΩ 5V 15 V − VO VI + 30 pF (see Note A) VO + − VI −15 V 30 pF (see Note A) 20 kΩ (a) SINGLE SUPPLY 20 kΩ (b) SPLIT SUPPLY NOTE A: CL includes fixture capacitance. Figure 1. Slew-Rate Test Circuit 2 kΩ 2 kΩ 15 V 5V − 20 Ω VO − VO + 2.5 V + 20 Ω −15 V 20 Ω 20 Ω (a) SINGLE SUPPLY (b) SPLIT SUPPLY Figure 2. Noise-Voltage Test Circuit VI 100 Ω 10 kΩ 10 kΩ 5V 15 V − VI VO 2.5 V − + + 30 pF (see Note A) VO 100 Ω −15 V 30 pF (see Note A) 10 kΩ (a) SINGLE SUPPLY 10 kΩ (b) SPLIT SUPPLY NOTE A: CL includes fixture capacitance. Figure 3. Unity-Gain Bandwidth and Phase-Margin Test Circuit POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 33 TLE202x, TLE202xA, TLE202xB, TLE202xY EXCALIBUR HIGH-SPEED LOW-POWER PRECISION OPERATIONAL AMPLIFIERS  SLOS191D − FEBRUARY 1997 − REVISED NOVEMBER 2010 PARAMETER MEASUREMENT INFORMATION 5V VO VI + 10 kΩ VO + − 10 kΩ − 0.1 μF VI 15 V − 15 V 10 kΩ 30 pF (see Note A) 30 pF (see Note A) (a) SINGLE SUPPLY 10 kΩ (b) SPLIT SUPPLY NOTE A: CL includes fixture capacitance. Figure 4. Small-Signal Pulse-Response Test Circuit typical values Typical values presented in this data sheet represent the median (50% point) of device parametric performance. 34 POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 TLE202x, TLE202xA, TLE202xB, TLE202xY EXCALIBUR HIGH-SPEED LOW-POWER PRECISION OPERATIONAL AMPLIFIERS  SLOS191D − FEBRUARY 1997 − REVISED NOVEMBER 2010 TYPICAL CHARACTERISTICS Table of Graphs FIGURE VIO Input offset voltage Distribution IIB Input bias current vs Common-mode input voltage vs Free-air temperature II Input current vs Differential input voltage VOM Maximum peak output voltage vs Output current vs Free-air temperature VOH High-level output voltage vs High-level output current vs Free-air temperature 19, 20 21 VOL Low-level output voltage vs Low-level output current vs Free-air temperature 22 23 VO(PP) Maximum peak-to-peak output voltage vs Frequency AVD Large-signal differential voltage amplification vs Frequency vs Free-air temperature 26 27, 28, 29 IOS Short-circuit output current vs Supply voltage vs Free-air temperature 30 − 33 34 − 37 ICC Supply current vs Supply voltage vs Free-air temperature 38, 39, 40 41, 42, 43 CMRR Common-mode rejection ratio vs Frequency 44, 45, 46 SR Slew rate vs Free-air temperature 47, 48, 49 Voltage-follower small-signal pulse response 5, 6, 7 8, 9, 10 11, 12, 13 14 15, 16, 17 18 24, 25 50, 51 Voltage-follower large-signal pulse response 52 − 57 VN(PP) Peak-to-peak equivalent input noise voltage 0.1 to 1 Hz 0.1 to 10 Hz Vn Equivalent input noise voltage vs Frequency B1 Unity-gain bandwidth vs Supply voltage vs Free-air temperature 61, 62 63, 64 φm Phase margin vs Supply voltage vs Load capacitance vs Free-air temperature 65, 66 67, 68 69, 70 Phase shift vs Frequency POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 58 59 60 26 35 TLE202x, TLE202xA, TLE202xB, TLE202xY EXCALIBUR HIGH-SPEED LOW-POWER PRECISION OPERATIONAL AMPLIFIERS  SLOS191D − FEBRUARY 1997 − REVISED NOVEMBER 2010 TYPICAL CHARACTERISTICS DISTRIBUTION OF TLE2022 INPUT OFFSET VOLTAGE DISTRIBUTION OF TLE2021 INPUT OFFSET VOLTAGE 20 ÏÏÏÏ TA = 25°C 16 Percentage of Units − % Percentage of Units − % 398 Amplifiers Tested From 1 Wafer Lot VCC ± = ± 15 V TA = 25°C P Package 16 ÏÏÏÏÏÏÏÏÏÏÏ 20 231 Units Tested From 1 Wafer Lot VCC ± = ± 15 V 12 8 4 P Package 12 8 4 0 −600 −450 −300 −150 150 300 450 0 VIO − Input Offset Voltage − μV 0 −600 600 −400 Figure 5 12 600 Figure 6 DISTRIBUTION OF TLE2024 INPUT OFFSET VOLTAGE −40 796 Amplifiers Tested From 1 Wafer Lot VCC ± = ± 15 V TA = 25°C N Package TLE2021 INPUT BIAS CURRENT vs COMMON-MODE INPUT VOLTAGE VCC ± = ± 15 V TA = 25°C −35 IIB I IB − Input Bias Current − nA Percentage of Units − % 16 −200 0 200 400 VIO − Input Offset Voltage − μV 8 4 −30 −25 −20 −15 −10 −5 0 −1 −0.5 0 0.5 1 VIO − Input Offset Voltage − mV 0 −15 −10 −5 0 5 10 VIC − Common-Mode Input Voltage − V Figure 8 Figure 7 36 POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 15 TLE202x, TLE202xA, TLE202xB, TLE202xY EXCALIBUR HIGH-SPEED LOW-POWER PRECISION OPERATIONAL AMPLIFIERS  SLOS191D − FEBRUARY 1997 − REVISED NOVEMBER 2010 TYPICAL CHARACTERISTICS TLE2022 INPUT BIAS CURRENT vs COMMON-MODE INPUT VOLTAGE TLE2024 INPUT BIAS CURRENT vs COMMON-MODE INPUT VOLTAGE −50 −60 VCC ± = ± 15 V TA = 25°C TA = 25°C IIIB IB − Input Bias Current − nA IIB I IB − Input Bias Current − nA −45 VCC ± = ± 15 V −40 −35 −30 −40 ÁÁ ÁÁ −25 −20 −15 −50 −10 −5 0 5 10 VIC − Common-Mode Input Voltage − V −30 −20 −15 15 −10 −5 −50 −35 VCC ± = ± 15 V VO = 0 VIC = 0 IIIB IB − Input Bias Current − nA IIB I IB − Input Bias Current − nA VCC ± = ± 15 V VO = 0 VIC = 0 −45 −25 −20 −15 −10 −40 −35 −30 −25 −5 −75 −50 −25 0 25 50 75 100 TA − Free-Air Temperature − °C 125 −20 −75 −50 −25 0 25 50 75 100 125 TA − Free-Air Temperature − °C Figure 11 † 15 10 TLE2022 INPUT BIAS CURRENT† vs FREE-AIR TEMPERATURE TLE2021 INPUT BIAS CURRENT† vs FREE-AIR TEMPERATURE 0 5 Figure 10 Figure 9 −30 0 VIC − Common-Mode Input Voltage − V Figure 12 Data at high and low temperatures are applicable only within the rated operating free-air temperature ranges of the various devices. POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 37 TLE202x, TLE202xA, TLE202xB, TLE202xY EXCALIBUR HIGH-SPEED LOW-POWER PRECISION OPERATIONAL AMPLIFIERS  SLOS191D − FEBRUARY 1997 − REVISED NOVEMBER 2010 TYPICAL CHARACTERISTICS TLE2024 INPUT BIAS CURRENT† vs FREE-AIR TEMPERATURE ÏÏÏÏÏ ÏÏÏ ÏÏÏ ÏÏÏ 1 VCC± = ±15 V VO = 0 VIC = 0 −50 VCC± = ±15 V VIC = 0 TA = 25°C 0.9 0.8 I III − Input Current − mA IIB − Input Bias Current − nA IIB −60 ÁÁ ÁÁ INPUT CURRENT vs DIFFERENTIAL INPUT VOLTAGE −40 −30 0.7 0.6 0.5 0.4 0.3 0.2 0.1 −20 −75 0 −50 −25 0 25 50 75 100 125 TA − Free-Air Temperature − °C 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 |VID| − Differential Input Voltage − V Figure 14 Figure 13 TLE2022 MAXIMUM PEAK OUTPUT VOLTAGE vs OUTPUT CURRENT TLE2021 MAXIMUM PEAK OUTPUT VOLTAGE vs OUTPUT CURRENT 16 VCC ± = ± 15 V TA = 25°C 14 12 ÏÏÏÏ ÏÏÏÏ 10 VOM − 8 |VVOM| OM − Maximum Peak Output Voltage − V VOM − Maximum Peak Output Voltage − V V OM 16 ÏÏÏÏ ÏÏÏÏ VOM+ 6 ÁÁÁ ÁÁÁ ÁÁÁ ÁÁ ÁÁ 4 2 0 0 2 4 6 8 IO − Output Current − mA 10 VCC ± = ± 15 V TA = 25°C 14 12 ÏÏÏÏ ÏÏÏÏ 10 VOM− 8 38 VOM+ 6 4 2 0 0 2 4 6 8 10 |IO| − Output Current − mA 12 Figure 16 Figure 15 † ÏÏÏ ÏÏÏ Data at high and low temperatures are applicable only within the rated operating free-air temperature ranges of the various devices. POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 14 1 TLE202x, TLE202xA, TLE202xB, TLE202xY EXCALIBUR HIGH-SPEED LOW-POWER PRECISION OPERATIONAL AMPLIFIERS  SLOS191D − FEBRUARY 1997 − REVISED NOVEMBER 2010 TYPICAL CHARACTERISTICS TLE2024 MAXIMUM PEAK OUTPUT VOLTAGE vs OUTPUT CURRENT 15 ÏÏÏÏ VCC ± = ± 15 V TA = 25°C 14 12 ÏÏÏ ÏÏÏ 10 VOM − 8 |VVOM| OM − Maximum Peak Output Voltage − V VOM − Maximum Peak Output Voltage − V VOM 16 MAXIMUM PEAK OUTPUT VOLTAGE† vs FREE-AIR TEMPERATURE ÏÏÏ VOM + 6 ÁÁ ÁÁ ÁÁ 4 2 0 0 2 8 10 4 6 IO − Output Current − mA 12 14 14.5 VOM + 14 VOM − 13.5 13 ÁÁÁ ÁÁÁ ÁÁÁ 12.5 12 −75 VCC ± = ± 15 V RL = 10 kΩ TA = 25°C −50 Figure 17 TLE2022 AND TLE2024 HIGH-LEVEL OUTPUT VOLTAGE vs HIGH-LEVEL OUTPUT CURRENT 5 VCC = 5 V TA = 25°C VOH − High-Level Output Voltage − V VOH VOH VOH − High-Level Output Voltage − V 5 4 3 2 ÁÁ ÁÁ 1 0 0 −1 −2 −3 −4 −5 −6 IOH − High-Level Output Current − mA −7 VCC = 5 V TA = 25°C 4 3 2 1 0 0 −2 −4 −6 −8 −10 IOH − High-Level Output Current − mA Figure 20 Figure 19 † 125 Figure 18 TLE2021 HIGH-LEVEL OUTPUT VOLTAGE vs HIGH-LEVEL OUTPUT CURRENT ÁÁ ÁÁ −25 0 25 50 75 100 TA − Free-Air Temperature − °C Data at high and low temperatures are applicable only within the rated operating free-air temperature ranges of the various devices. POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 39 TLE202x, TLE202xA, TLE202xB, TLE202xY EXCALIBUR HIGH-SPEED LOW-POWER PRECISION OPERATIONAL AMPLIFIERS  SLOS191D − FEBRUARY 1997 − REVISED NOVEMBER 2010 TYPICAL CHARACTERISTICS 5 HIGH-LEVEL OUTPUT VOLTAGE† vs FREE-AIR TEMPERATURE LOW-LEVEL OUTPUT VOLTAGE vs LOW-LEVEL OUTPUT CURRENT 5 ÁÁ ÁÁ VOL VOL − Low-Level Output Voltage − V VOH VOH − High-Level Output Voltage − V VCC = 5 V 4.8 4.6 No Load 4.4 ÁÁ ÁÁ ÁÁ RL = 10 kΩ 4.2 4 −75 −50 −25 0 25 50 75 100 4 3 2 1 0 125 VCC = 5 V TA = 25°C 0 0.5 1 1.5 2 2.5 IOL − Low-Level Output Current − mA TA − Free-Air Temperature − °C Figure 21 Figure 22 MAXIMUM PEAK-TO-PEAK OUTPUT VOLTAGE vs FREQUENCY VOL VOL − Low-Level Output Voltage − V 1 IOL = 1 mA 0.75 IOL = 0 0.5 0.25 VCC ± = ± 5 V 0 −75 −50 −25 0 25 50 75 100 TA − Free-Air Temperature − °C 125 VVOPP O(PP) − Maximum Peak-to-Peak Output Voltage − V LOW-LEVEL OUTPUT VOLTAGE† vs FREE-AIR TEMPERATURE ÁÁÁ ÁÁÁ 5 4 3 2 ÁÁÁÁÁ ÁÁÁÁÁ ÁÁ ÁÁ ÁÁÁÁÁ ÁÁ 1 0 VCC = 5 V RL = 10 kΩ TA = 25°C 100 Figure 23 † 40 3 1k 10 k 100 k f − Frequency − Hz Figure 24 Data at high and low temperatures are applicable only within the rated operating free-air temperature ranges of the various devices. POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 1M TLE202x, TLE202xA, TLE202xB, TLE202xY EXCALIBUR HIGH-SPEED LOW-POWER PRECISION OPERATIONAL AMPLIFIERS  SLOS191D − FEBRUARY 1997 − REVISED NOVEMBER 2010 TYPICAL CHARACTERISTICS MAXIMUM PEAK-TO-PEAK OUTPUT VOLTAGE vs FREQUENCY VVOPP O(PP) − Maximum Peak-to-Peak Output Voltage − V 30 25 20 15 10 ÁÁ ÁÁÁÁ ÁÁ ÁÁÁÁ ÁÁ ÁÁÁÁ ÁÁ VCC ± = ± 15 V RL = 10 kΩ TA = 25°C 5 0 100 1k 10 k 100 k f − Frequency − Hz 1M Figure 25 LARGE-SIGNAL DIFFERENTIAL VOLTAGE AMPLIFICATION AND PHASE SHIFT vs FREQUENCY ÏÏÏÏÏ ÏÏÏÏÏ ÏÏÏÏÏ ÏÏÏÏÏ 100 AVD − Large-Signal Differential Voltage Amplification − dB 60° 80° Phase Shift 80 100° VCC ± = ± 15 V AVD 60 120° VCC = 5 V 40 140° 20 160° ÏÏÏÏÏ ÏÏÏÏÏ ÏÏÏÏÏ RL = 10 kΩ CL = 30 pF TA = 25°C 0 −20 10 100 Phase Shift 120 180° 1k 10 k 100 k f − Frequency − Hz 1M 10 M 200° Figure 26 POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 41 TLE202x, TLE202xA, TLE202xB, TLE202xY EXCALIBUR HIGH-SPEED LOW-POWER PRECISION OPERATIONAL AMPLIFIERS  SLOS191D − FEBRUARY 1997 − REVISED NOVEMBER 2010 TYPICAL CHARACTERISTICS TLE2021 LARGE-SCALE DIFFERENTIAL VOLTAGE AMPLIFICATION† vs FREE-AIR TEMPERATURE TLE2022 LARGE-SIGNAL DIFFERENTIAL VOLTAGE AMPLIFICATION† vs FREE-AIR TEMPERATURE 10 6 RL = 10 kΩ ÏÏÏÏÏÏ ÏÏÏÏÏÏ 8 5 AVD AVD − Large-Signal Differential Voltage Amplification − V/μV AVD − Large-Signal Differential Voltage Amplification − V/ μ V RL = 10 kΩ VCC ± = ± 15 V 6 4 2 ÏÏÏÏ ÏÏÏÏ −50 −25 0 25 50 75 3 ÁÁ ÁÁ ÁÁ VCC = 5 V 0 −75 VCC ± = ± 15 V 4 100 2 1 VCC = 5 V 0 −75 125 −50 −25 0 25 50 75 100 TA − Free-Air Temperature − °C TA − Free-Air Temperature − °C Figure 28 Figure 27 TLE2024 LARGE-SCALE DIFFERENTIAL VOLTAGE AMPLIFICATION† vs FREE-AIR TEMPERATURE TLE2021 SHORT-CIRCUIT OUTPUT CURRENT vs SUPPLY VOLTAGE ÏÏÏÏÏ ÏÏÏÏÏ ÏÏÏÏÏ ÏÏÏÏÏ 10 10 VCC ± = ± 15 V 6 4 2 VCC ± = ± 5 V 0 −75 −50 −25 0 25 50 75 100 125 IIOS OS − Short-Circuit Output Current − mA AVD − Large-Signal Differential Voltage Amplification − V/ μ V RL = 10 kΩ 8 VO = 0 TA = 25°C 8 6 VID = −100 mV 4 2 0 −2 ÁÁ ÁÁ −4 ÏÏÏÏÏ −6 VID = 100 mV −8 −10 0 2 TA − Free-Air Temperature − °C 42 4 6 8 10 12 |VCC ±| − Supply Voltage − V 14 Figure 30 Figure 29 † 125 Data at high and low temperatures are applicable only within the rated operating free-air temperature ranges of the various devices. POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 16 TLE202x, TLE202xA, TLE202xB, TLE202xY EXCALIBUR HIGH-SPEED LOW-POWER PRECISION OPERATIONAL AMPLIFIERS  SLOS191D − FEBRUARY 1997 − REVISED NOVEMBER 2010 TYPICAL CHARACTERISTICS TLE2022 AND TLE2024 SHORT-CIRCUIT OUTPUT CURRENT vs SUPPLY VOLTAGE TLE2021 SHORT-CIRCUIT OUTPUT CURRENT vs SUPPLY VOLTAGE 12 VO = 0 TA = 25°C 10 ÏÏÏÏÏ VID = −100 mV 5 0 −5 VID = 100 mV −10 −15 0 2 4 6 8 10 12 14 TA = 25°C IIOS OS − Short-Circuit Output Current − mA I OS − Short-Circuit Output Current − mA IOS 15 16 |VCC ±| − Supply Voltage − V 8 VID = −100 mV VO = VCC 4 0 ÁÁ ÁÁ ÁÁ −4 VID = 100 mV VO = 0 −8 − 12 5 0 10 15 20 25 VCC − Supply Voltage − V Figure 32 Figure 31 TLE2022 AND TLE2024 SHORT-CIRCUIT OUTPUT CURRENT vs SUPPLY VOLTAGE ÏÏÏÏ ÏÏÏÏ TLE2021 SHORT-CIRCUIT OUTPUT CURRENT† vs FREE-AIR TEMPERATURE 8 TA = 25°C 10 IOS I OS − Short-Circuit Output Current − mA I OS − Short-Circuit Output CUrrent − mA IOS 15 VID = − 100 mV VO = VCC 5 0 −5 VID = 100 mV VO = 0 −10 −15 0 5 10 15 20 25 30 ÁÁ ÁÁ VCC − Supply Voltage − V VCC = 5 V 6 VID = −100 mV VO = 5 V 4 2 0 −2 VID = 100 mV VO = 0 −4 −6 −8 − 75 − 50 − 25 0 25 50 75 100 TA − Free-Air Temperature − °C 125 Figure 34 Figure 33 † 30 Data at high and low temperatures are applicable only within the rated operating free-air temperature ranges of the various devices. POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 43 TLE202x, TLE202xA, TLE202xB, TLE202xY EXCALIBUR HIGH-SPEED LOW-POWER PRECISION OPERATIONAL AMPLIFIERS  SLOS191D − FEBRUARY 1997 − REVISED NOVEMBER 2010 TYPICAL CHARACTERISTICS TLE2022 AND TLE2024 SHORT-CIRCUIT OUTPUT CURRENT † vs FREE-AIR TEMPERATURE TLE2021 SHORT-CIRCUIT OUTPUT CURRENT† vs FREE-AIR TEMPERATURE 12 VCC = 5 V VID = −100 mV VO = 5 V 4 IOS I OS − Short-Circuit Output Current − mA IOS I OS− Short-Circuit Output Current − mA 6 2 0 −2 −4 ÏÏÏ ÏÏÏÏÏ ÏÏÏ −8 −10 −75 −50 −25 0 25 50 75 8 VID = −100 mV 4 0 −4 ÁÁ ÁÁ VID = 100 mV VO = 0 −6 VCC ± = ± 15 V VO = 0 100 −8 VID = 100 mV −12 −75 125 −50 TA − Free-Air Temperature −°C 0 25 50 75 −25 TA − Free-Air Temperature − °C TLE2022 AND TLE2024 SHORT-CIRCUIT OUTPUT CURRENT † vs FREE-AIR TEMPERATURE 250 A IICC CC − Supply Current − μua I OS − Short-Circuit Output Current − mA IOS 200 5 VID = − 100 mV 0 VID = 100 mV −10 −50 −25 0 25 50 75 100 125 TA = 125°C TA = 25°C 100 ÁÁ ÁÁ −5 ÏÏÏÏ ÏÏÏÏ ÏÏÏÏ ÏÏÏÏ ÏÏÏÏ ÏÏÏÏ 150 TA = − 55°C 50 0 0 2 4 6 8 10 12 |VCC ±| − Supply Voltage − V Figure 38 Figure 37 44 16 VO = 0 No Load VCC ± = ± 15 V VO = 0 TA − Free-Air Temperature − °C † 14 TLE2021 SUPPLY CURRENT vs SUPPLY VOLTAGE 15 −15 −75 125 Figure 36 Figure 35 10 100 Data at high and low temperatures are applicable only within the rated operating free-air temperature ranges of the various devices. POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 TLE202x, TLE202xA, TLE202xB, TLE202xY EXCALIBUR HIGH-SPEED LOW-POWER PRECISION OPERATIONAL AMPLIFIERS  SLOS191D − FEBRUARY 1997 − REVISED NOVEMBER 2010 TYPICAL CHARACTERISTICS TLE2022 SUPPLY CURRENT vs SUPPLY VOLTAGE 500 TLE2024 SUPPLY CURRENT vs SUPPLY VOLTAGE 1000 VO = 0 No Load 800 I CC − Supply Current − μ A IICC A CC − Supply Current − μua TA = 125°C No Load 400 TA = 25°C 300 TA = 125°C TA = − 55°C ÁÁ ÁÁ ÁÁ 200 100 0 ÏÏÏÏ VO = 0 TA = 25°C 600 TA = − 55°C 400 200 0 2 4 6 8 10 12 |VCC ±| − Supply Voltage − V 14 0 16 0 2 4 ÏÏÏÏÏÏ ÏÏÏÏÏÏ 150 VCC ± = ± 2.5 V 125 100 ÁÁ ÁÁ 75 50 VO = 0 No Load −50 −25 0 25 50 75 100 TA − Free-Air Temperature − °C VCC ± = ± 15 V 400 IICC A CC − Supply Current − μua A IICC CC − Supply Current − μua 16 500 125 VCC ± = ± 2.5 V 300 200 100 VO = 0 No Load 0 −75 −50 Figure 41 † 14 VCC ± = ± 15 V 175 0 −75 12 TLE2022 SUPPLY CURRENT† vs FREE-AIR TEMPERATURE ÏÏÏÏÏ ÏÏÏÏÏ 200 25 10 Figure 40 TLE2021 SUPPLY CURRENT† vs FREE-AIR TEMPERATURE ÁÁ ÁÁ 8 |VCC ±| − Supply Voltage − V Figure 39 225 6 −25 0 25 50 75 100 TA − Free-Air Temperature − °C 125 Figure 42 Data at high and low temperatures are applicable only within the rated operating free-air temperature ranges of the various devices. POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 45 TLE202x, TLE202xA, TLE202xB, TLE202xY EXCALIBUR HIGH-SPEED LOW-POWER PRECISION OPERATIONAL AMPLIFIERS  SLOS191D − FEBRUARY 1997 − REVISED NOVEMBER 2010 TYPICAL CHARACTERISTICS 1000 120 CMRR − Common-Mode Rejection Ratio − dB ÏÏÏÏÏ ÏÏÏÏÏ ÏÏÏÏÏ VCC ± = ± 15 V 800 I CC − Supply Current − μ A TLE2021 COMMON-MODE REJECTION RATIO vs FREQUENCY TLE2024 SUPPLY CURRENT † vs FREE-AIR TEMPERATURE VCC ± = ± 2.5 V 600 400 200 VO = 0 No Load 0 −75 −50 −25 0 25 50 75 100 VCC ± = ± 15 V 80 VCC = 5 V 60 40 20 TA = 25°C 0 125 ÏÏÏÏÏ ÏÏÏÏÏ ÏÏÏÏÏ ÏÏÏÏÏ 100 10 100 TA − Free-Air Temperature − °C Figure 43 CMRR − Common-Mode Rejection Ratio − dB CMRR − Common-Mode Rehection Ratio − dB ÏÏÏÏÏ ÏÏÏÏÏ ÏÏÏÏÏ ÏÏÏÏ ÏÏÏÏ 120 VCC ± = ± 15 V 80 VCC = 5 V 60 40 20 0 100 1k 10 k 100 k f − Frequency − Hz 1M 10 M VCC ± = ± 15 V 100 VCC = 5 V 80 60 40 20 TA = 25°C 0 10 10 100 46 1k 10 k 100 k 1M 10 M f − Frequency − Hz Figure 45 † 10 M TLE2024 COMMON-MODE REJECTION RATIO vs FREQUENCY TA = 25°C 100 1M Figure 44 TLE2022 COMMON-MODE REJECTION RATIO vs FREQUENCY 120 1k 10 k 100 k f − Frequency − Hz Figure 46 Data at high and low temperatures are applicable only within the rated operating free-air temperature ranges of the various devices. POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 TLE202x, TLE202xA, TLE202xB, TLE202xY EXCALIBUR HIGH-SPEED LOW-POWER PRECISION OPERATIONAL AMPLIFIERS  SLOS191D − FEBRUARY 1997 − REVISED NOVEMBER 2010 TYPICAL CHARACTERISTICS TLE2022 SLEW RATE† vs FREE-AIR TEMPERATURE TLE2021 SLEW RATE† vs FREE-AIR TEMPERATURE 1 1 ÏÏÏÏÏ ÏÏÏÏÏ ÏÏÏÏ ÏÏÏÏ VCC ± = ± 15 V 0.8 VCC = 5 V 0.6 0.4 0.2 0 −75 VCC ± = ± 15 V SR − Slew Rate − V/ μ uss SR − Slew Rate − V/us μs 0.8 0.6 VCC = 5 V 0.4 0.2 RL = 20 kΩ CL = 30 pF See Figure 1 −50 −25 0 25 50 75 100 TA − Free-Air Temperature − °C RL = 20 kΩ CL = 30 pF See Figure 1 0 −75 125 −50 −25 0 25 50 75 100 TA − Free-Air Temperature − °C Figure 48 Figure 47 TLE2024 SLEW RATE† vs FREE-AIR TEMPERATURE VOLTAGE-FOLLOWER SMALL-SIGNAL PULSE RESPONSE 1 ÏÏÏÏÏ SR − Slew Rate − V/ V/sμ s VCC ± = ± 15 V 0.6 VCC = 5 V 0.4 0.2 0 −75 −25 50 0 25 50 75 100 125 VCC ± = ± 15 V RL = 10 kΩ CL = 30 pF TA = 25°C See Figure 4 ÏÏÏÏÏ ÏÏÏÏÏ 0 ÁÁ ÁÁ RL = 20 kΩ CL = 30 pF See Figure 1 −50 VO − Output Voltage − mV VO 100 0.8 −50 −100 TA − Free-Air Temperature − °C Figure 49 † 125 0 20 40 t − Time − μs 60 80 Figure 50 Data at high and low temperatures are applicable only within the rated operating free-air temperature ranges of the various devices. POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 47 TLE202x, TLE202xA, TLE202xB, TLE202xY EXCALIBUR HIGH-SPEED LOW-POWER PRECISION OPERATIONAL AMPLIFIERS  SLOS191D − FEBRUARY 1997 − REVISED NOVEMBER 2010 TYPICAL CHARACTERISTICS VOLTAGE-FOLLOWER SMALL-SIGNAL PULSE RESPONSE 4 VCC = 5 V RL = 10 kΩ CL = 30 pF TA = 25°C See Figure 4 ÏÏÏÏÏ 2.55 VO − Output Voltage − V VO VO − Output Voltage − V VO 2.6 TLE2021 VOLTAGE-FOLLOWER LARGE-SIGNAL PULSE RESPONSE 2.5 ÁÁÁ ÁÁÁ VCC = 5 V RL = 10 kΩ CL = 30 pF TA = 25°C See Figure 1 ÏÏÏÏÏ ÏÏÏÏÏ 3 2 ÁÁ ÁÁ 2.45 2.4 0 20 40 t − Time − μs 60 1 0 80 0 Figure 51 ÏÏÏÏÏ ÏÏÏÏÏ ÏÏÏÏÏ ÏÏÏÏÏ 4 VCC = 5 V RL = 10 kΩ CL = 30 pF TA = 25°C See Figure 1 2 ÁÁÁ ÁÁÁ 1 0 3 VCC ± = 5 V RL = 10 kΩ CL = 30 pF TA = 25°C See Figure 1 2 1 0 0 20 40 t − Time − μs 60 80 0 20 40 t − Time − μs Figure 53 48 80 TLE2024 VOLTAGE-FOLLOWER LARGE-SCALE PULSE RESPONSE VO − Output Voltage − V VO VO VO − Output Voltage − V 3 60 Figure 52 TLE2022 VOLTAGE-FOLLOWER LARGE-SIGNAL PULSE RESPONSE 4 20 40 t − Time − μs Figure 54 POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 60 80 TLE202x, TLE202xA, TLE202xB, TLE202xY EXCALIBUR HIGH-SPEED LOW-POWER PRECISION OPERATIONAL AMPLIFIERS  SLOS191D − FEBRUARY 1997 − REVISED NOVEMBER 2010 TYPICAL CHARACTERISTICS TLE2021 VOLTAGE-FOLLOWER LARGE-SIGNAL PULSE RESPONSE VO − Output Voltage − V VO 10 15 VCC ± = ± 15 V RL = 10 kΩ CL = 30 pF TA = 25°C See Figure 1 10 VO VO − Output Voltage − V 15 TLE2022 VOLTAGE-FOLLOWER LARGE-SIGNAL PULSE RESPONSE 5 0 ÁÁ ÁÁ ÁÁ ÁÁ −5 −10 −15 0 20 40 t − Time − μs 60 ÏÏÏÏÏÏ ÏÏÏÏÏÏ VCC ± = ± 15 V RL = 10 kΩ CL = 30 pF TA = 25°C See Figure 1 5 0 −5 −10 −15 80 0 TLE2024 VOLTAGE-FOLLOWER LARGE-SIGNAL PULSE RESPONSE ÏÏÏÏÏ ÏÏÏÏÏ ÏÏÏÏÏ ÏÏÏÏÏ 15 VO − Output Voltage − V VO 10 VCC ± = ± 15 V RL = 10 kΩ CL = 30 pF TA = 25°C See Figure 1 5 0 −5 −10 −15 0 20 t − Time − μs Figure 57 60 80 Figure 56 40 60 80 VN(PP) VNPP − Peak-to-Peak Equivalent Input Noise Voltage − uV μV Figure 55 20 40 t − Time − μs ÁÁ ÁÁ ÁÁ POST OFFICE BOX 655303 PEAK-TO-PEAK EQUIVALENT INPUT NOISE VOLTAGE 0.1 TO 1 Hz ÏÏÏÏÏÏ ÏÏÏÏÏÏ 0.5 VCC ± = ± 15 V 0.4 TA = 25°C 0.3 0.2 0.1 0 − 0.1 − 0.2 − 0.3 − 0.4 − 0.5 0 1 • DALLAS, TEXAS 75265 2 3 4 5 t − Time − s 6 7 8 9 10 Figure 58 49 TLE202x, TLE202xA, TLE202xB, TLE202xY EXCALIBUR HIGH-SPEED LOW-POWER PRECISION OPERATIONAL AMPLIFIERS  SLOS191D − FEBRUARY 1997 − REVISED NOVEMBER 2010 PEAK-TO-PEAK EQUIVALENT INPUT NOISE VOLTAGE 0.1 TO 10 Hz 0.5 VCC ± = ± 15 V 0.4 TA = 25°C 0.3 0.2 0.1 0 − 0.1 − 0.2 − 0.3 ÁÁÁ ÁÁÁ ÁÁÁ − 0.4 − 0.5 0 1 2 3 4 5 6 t − Time − s 7 8 EQUIVALENT INPUT NOISE VOLTAGE vs FREQUENCY ÁÁ ÁÁ ÁÁ VVn nV/ Hz n − Equivalent Input Noise Voltage − nVHz VN(PP) VNPP − Peak-to-Peak Equivalent Input Noise Voltage − uV μV TYPICAL CHARACTERISTICS 9 VCC ± = ± 15 V RS = 20 Ω TA = 25°C See Figure 2 160 120 80 40 0 10 ÏÏÏÏÏ ÁÁÁÁÁÁ ÁÁÁÁÁÁ ÏÏÏÏÏ ÁÁÁÁÁÁ ÏÏÏÏ ÏÏÏÏÏ ÁÁÁÁÁÁ ÏÏÏÏÏ 200 1 TLE2022 AND TLE2024 UNITY-GAIN BANDWIDTH vs SUPPLY VOLTAGE 2 1 0 2 4 ÁÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁÁ 4 RL = 10 kΩ CL = 30 pF TA = 25°C See Figure 3 3 10 k Figure 60 B1 B1 − Unity-Gain Bandwidth − MHz B1 B 1 − Unity-Gain Bandwidth − MHz 4 6 8 10 12 14 |VCC±| − Supply Voltage − V 16 RL = 10 kΩ CL = 30 pF TA = 25°C See Figure 3 3 2 1 0 0 2 Figure 61 50 100 1k f − Frequency − Hz Figure 59 TLE2021 UNITY-GAIN BANDWIDTH vs SUPPLY VOLTAGE 0 10 4 6 8 10 12 |VCC±| − Supply Voltage − V Figure 62 POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 14 16 TLE202x, TLE202xA, TLE202xB, TLE202xY EXCALIBUR HIGH-SPEED LOW-POWER PRECISION OPERATIONAL AMPLIFIERS  SLOS191D − FEBRUARY 1997 − REVISED NOVEMBER 2010 TYPICAL CHARACTERISTICS TLE2021 UNITY-GAIN BANDWIDTH† vs FREE-AIR TEMPERATURE 4 TLE2022 AND TLE2024 UNITY-GAIN BANDWIDTH† vs FREE-AIR TEMPERATURE 4 RL = 10 kΩ 3 VCC ± = ± 15 V 2 ÏÏÏÏÏ 1 VCC = 5 V 0 −75 −50 −25 0 25 50 75 TA − Free-Air Temperature − °C 100 3 ÏÏÏÏÏÏ ÏÏÏÏÏÏ VCC ± = ± 15 V 2 VCC = 5 V 1 0 −75 125 −50 −25 0 25 50 75 100 TA − Free-Air Temperature − °C Figure 63 TLE2022 AND TLE2024 PHASE MARGIN vs SUPPLY VOLTAGE 53° φm m − Phase Margin φm m − Phase Margin 55° RL = 10 kΩ CL = 30 pF TA = 25°C See Figure 3 48° 46° ÁÁ ÁÁ ÁÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁÁ RL = 10 kΩ CL = 30 pF TA = 25°C See Figure 3 51° ÁÁ ÁÁ 44° 49° 47° 42° 40° 0 2 4 6 8 10 12 |VCC ±| − Supply Voltage − V 14 16 45° 0 2 4 6 8 10 12 |VCC±| − Supply Voltage − V 14 16 Figure 66 Figure 65 † 125 Figure 64 TLE2021 PHASE MARGIN vs SUPPLY VOLTAGE 50° ÁÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁÁ RL = 10 kΩ CL = 30 pF See Figure 3 B1 B1 − Unity-Gain Bandwidth − MHz B B1 1 − Unity-Gain Bandwidth − MHz CL = 30 pF See Figure 3 Data at high and low temperatures are applicable only within the rated operating free-air temperature ranges of the various devices. POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 51 TLE202x, TLE202xA, TLE202xB, TLE202xY EXCALIBUR HIGH-SPEED LOW-POWER PRECISION OPERATIONAL AMPLIFIERS  SLOS191D − FEBRUARY 1997 − REVISED NOVEMBER 2010 TYPICAL CHARACTERISTICS TLE2022 AND TLE2024 PHASE MARGIN vs LOAD CAPACITANCE TLE2021 PHASE MARGIN vs LOAD CAPACITANCE 60° 60° 50° 40° VCC = 5 V 30° VCC = 5 V 30° 10° 20° 10° 0 20 40 60 80 CL − Load Capacitance − pF 0° 100 0 20 40 60 80 CL − Load Capacitance − pF 50° 48° TLE2022 AND TLE2024 PHASE MARGIN† vs FREE-AIR TEMPERATURE 54° RL = 10 kΩ CL = 30 pF See Figure 3 52° VCC ± = ± 15 V VCC ± = ± 15 V 50° φm m − Phase Margin φm m − Phase Margin 46° 44° 42° VCC = 5 V 40° 38° 36° −75 48° ÁÁ ÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁÁ 44° 42° −50 −25 0 25 50 75 100 TA − Free-Air Temperature − °C 125 VCC = 5 V 46° 40° −75 RL = 10 kΩ CL = 30 pF See Figure 3 −50 Figure 69 52 100 Figure 68 TLE2021 PHASE MARGIN† vs FREE-AIR TEMPERATURE † RL = 10 kΩ TA = 25°C See Figure 3 40° Figure 67 Á Á ÁÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁ ÁÁ 20° 0 VCC ± = ± 15 V VCC ± = ± 15 V φm m − Phase Margin φm m − Phase Margin 50° ÁÁ ÁÁ ÁÁ 70° RL = 10 kΩ TA = 30 pF See Figure 3 −25 0 25 50 75 100 TA − Free-Air Temperature − °C Figure 70 Data at high and low temperatures are applicable only within the rated operating free-air temperature ranges of the various devices. POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 125 TLE202x, TLE202xA, TLE202xB, TLE202xY EXCALIBUR HIGH-SPEED LOW-POWER PRECISION OPERATIONAL AMPLIFIERS  SLOS191D − FEBRUARY 1997 − REVISED NOVEMBER 2010 APPLICATION INFORMATION voltage-follower applications The TLE202x circuitry includes input-protection diodes to limit the voltage across the input transistors; however, no provision is made in the circuit to limit the current if these diodes are forward biased. This condition can occur when the device is operated in the voltage-follower configuration and driven with a fast, large-signal pulse. It is recommended that a feedback resistor be used to limit the current to a maximum of 1 mA to prevent degradation of the device. This feedback resistor forms a pole with the input capacitance of the device. For feedback resistor values greater than 10 kΩ, this pole degrades the amplifier phase margin. This problem can be alleviated by adding a capacitor (20 pF to 50 pF) in parallel with the feedback resistor (see Figure 71). CF = 20 pF to 50 pF IF ≤ 1 mA RF VCC + − VO VI + VCC − Figure 71. Voltage Follower Input offset voltage nulling The TLE202x series offers external null pins that further reduce the input offset voltage. The circuit in Figure 72 can be connected as shown if this feature is desired. When external nulling is not needed, the null pins may be left disconnected. OFFSET N1 OFFSET N2 + IN + − IN − 5 kΩ VCC − (split supply) 1 kΩ GND (single supply) Figure 72. Input Offset Voltage Null Circuit POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 53 TLE202x, TLE202xA, TLE202xB, TLE202xY EXCALIBUR HIGH-SPEED LOW-POWER PRECISION OPERATIONAL AMPLIFIERS  SLOS191D − FEBRUARY 1997 − REVISED NOVEMBER 2010 APPLICATION INFORMATION macromodel information Macromodel information provided was derived using Microsim Parts™, the model generation software used with Microsim PSpice™. The Boyle macromodel (see Note 5) and subcircuit in Figure 73, Figure 74, and Figure 75 were generated using the TLE202x typical electrical and operating characteristics at 25°C. Using this information, output simulations of the following key parameters can be generated to a tolerance of 20% (in most cases): D D D D D D D D D D D D Maximum positive output voltage swing Maximum negative output voltage swing Slew rate Quiescent power dissipation Input bias current Open-loop voltage amplification Unity-gain frequency Common-mode rejection ratio Phase margin DC output resistance AC output resistance Short-circuit output current limit NOTE 5: G. R. Boyle, B. M. Cohn, D. O. Pederson, and J. E. Solomon, “Macromodeling of Integrated Circuit Operational Amplifiers”, IEEE Journal of Solid-State Circuits, SC-9, 353 (1974). 99 3 VCC + egnd ree cee Iee 9 din fb − + rp + re1 IN − IN+ 1 2 re2 14 13 Q1 Q2 C1 dp r2 − 53 dc 11 C2 6 gcm 54 − ve de 5 − ro1 + OUT Figure 73. Boyle Subcircuit PSpice and Parts are trademarks of MicroSim Corporation. 54 vlim 8 rc2 4 7 + ga 12 rc1 VCC − vc hlim − + 90 ro2 vb POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 92 + dip 91 + vip − − − + vin TLE202x, TLE202xA, TLE202xB, TLE202xY EXCALIBUR HIGH-SPEED LOW-POWER PRECISION OPERATIONAL AMPLIFIERS  SLOS191D − FEBRUARY 1997 − REVISED NOVEMBER 2010 .SUBCKT TLE2021 1 2 3 4 5 * c1 11 12 6.244E−12 c2 6 7 13.4E−12 c3 87 0 10.64E−9 cpsr 85 86 15.9E−9 dcm+ 81 82 dx dcm− 83 81 dx dc 5 53 dx de 54 5 dx dlp 90 91 dx dln 92 90 dx dp 4 3 dx ecmr 84 99 (2 99) 1 egnd 99 0 poly(2) (3,0) (4,0) 0 .5 .5 epsr 85 0 poly(1) (3,4) −60E−6 2.0E−6 ense 89 2 poly(1) (88,0) 120E−6 1 fb 7 99 poly(6) vb vc ve vlp vln vpsr 0 547.3E6 + −50E7 50E7 50E7 −50E7 547E6 ga 6 0 11 12 188.5E−6 gcm 0 6 10 99 335.2E−12 gpsr 85 86 (85,86) 100E−6 grc1 4 11 (4,11) 1.885E−4 grc2 4 12 (4,12) 1.885E−4 gre1 13 10 (13,10) 6.82E−4 gre2 14 10 (14,10) 6.82E−4 hlim 90 0 vlim 1k hcmr 80 1 poly(2) vcm+ vcm− 0 1E2 1E2 irp 3 4 185E−6 iee 3 10 dc 15.67E−6 iio 2 0 2E−9 i1 88 0 1E−21 q1 11 89 13 qx q2 12 80 14 qx R2 6 9 100.0E3 rcm 84 81 1K ree 10 99 14.76E6 rn1 87 0 2.55E8 rn2 87 88 11.67E3 ro1 8 5 62 ro2 7 99 63 vcm+ 82 99 13.3 vcm− 83 99 −14.6 vb 9 0 dc 0 vc 3 53 dc 1.300 ve 54 4 dc 1.500 vlim 7 8 dc 0 vlp 91 0 dc 3.600 vln 0 92 dc 3.600 vpsr 0 86 dc 0 .model dx d(is=800.0E−18) .model qx pnp(is=800.0E−18 bf=270) .ends Figure 74. Boyle Macromodel for the TLE2021 .SUBCKT TLE2022 1 2 3 4 5 * c1 11 12 6.814E−12 c2 6 7 20.00E−12 dc 5 53 dx de 54 5 dx dlp 90 91 dx dln 92 90 dx dp 4 3 dx egnd 99 0 poly(2) (3,0) (4,0) 0 .5 .5 fb 7 99 poly(5) vb vc ve vlp vln 0 + 45.47E6 −50E6 50E6 50E6 −50E6 ga 6 0 11 12 377.9E−6 gcm 0 6 10 99 7.84E−10 iee 3 10 DC 18.07E−6 hlim 90 0 vlim 1k q1 11 2 13 qx q2 12 1 14 qx r2 6 9 100.0E3 rc1 rc2 ge1 ge2 ree ro1 ro2 rp vb vc ve vlim vlp vln .model .model .ends 4 4 13 14 10 8 7 3 9 3 54 7 91 0 dx qx 11 2.842E3 12 2.842E3 10 (10,13) 31.299E−3 10 (10,14) 31.299E−3 99 11.07E6 5 250 99 250 4 137.2E3 0 dc 0 53 dc 1.300 4 dc 1.500 8 dc 0 0 dc 3 92 dc 3 d(is=800.0E−18) pnp(is=800.0E−18 bf=257.1) Figure 75. Boyle Macromodel for the TLE2022 POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 55 PACKAGE OPTION ADDENDUM www.ti.com 12-Oct-2021 PACKAGING INFORMATION Orderable Device Status (1) Package Type Package Pins Package Drawing Qty Eco Plan (2) Lead finish/ Ball material MSL Peak Temp Op Temp (°C) (3) Device Marking (4/5) (6) 5962-9088101MPA ACTIVE CDIP JG 8 1 Non-RoHS & Green SNPB N / A for Pkg Type -55 to 125 9088101MPA TLE2021M 5962-9088102M2A ACTIVE LCCC FK 20 1 Non-RoHS & Green SNPB N / A for Pkg Type -55 to 125 59629088102M2A TLE2022MFKB 5962-9088102MPA ACTIVE CDIP JG 8 1 Non-RoHS & Green SNPB N / A for Pkg Type -55 to 125 9088102MPA TLE2022M 5962-9088103M2A ACTIVE LCCC FK 20 1 Non-RoHS & Green SNPB N / A for Pkg Type -55 to 125 59629088103M2A TLE2024MFKB 5962-9088103MCA ACTIVE CDIP J 14 1 Non-RoHS & Green SNPB N / A for Pkg Type -55 to 125 5962-9088103MC A TLE2024MJB 5962-9088104Q2A ACTIVE LCCC FK 20 1 Non-RoHS & Green SNPB N / A for Pkg Type -55 to 125 59629088104Q2A TLE2021 AMFKB 5962-9088104QPA ACTIVE CDIP JG 8 1 Non-RoHS & Green SNPB N / A for Pkg Type -55 to 125 9088104QPA TLE2021AM 5962-9088105Q2A ACTIVE LCCC FK 20 1 Non-RoHS & Green SNPB N / A for Pkg Type -55 to 125 59629088105Q2A TLE2022A MFKB 5962-9088105QPA ACTIVE CDIP JG 8 1 Non-RoHS & Green SNPB N / A for Pkg Type -55 to 125 9088105QPA TLE2022AM 5962-9088106Q2A ACTIVE LCCC FK 20 1 Non-RoHS & Green SNPB N / A for Pkg Type -55 to 125 59629088106Q2A TLE2024A MFKB 5962-9088106QCA ACTIVE CDIP J 14 1 Non-RoHS & Green SNPB N / A for Pkg Type -55 to 125 5962-9088106QC A TLE2024AMJB 5962-9088107Q2A ACTIVE LCCC FK 20 1 Non-RoHS & Green SNPB N / A for Pkg Type -55 to 125 59629088107Q2A TLE2021 Addendum-Page 1 Samples PACKAGE OPTION ADDENDUM www.ti.com 12-Oct-2021 Orderable Device Status (1) Package Type Package Pins Package Drawing Qty Eco Plan (2) Lead finish/ Ball material MSL Peak Temp Op Temp (°C) Device Marking (3) (4/5) (6) BMFKB 5962-9088107QPA ACTIVE CDIP JG 8 1 Non-RoHS & Green SNPB N / A for Pkg Type -55 to 125 9088107QPA TLE2021BM 5962-9088108Q2A ACTIVE LCCC FK 20 1 Non-RoHS & Green SNPB N / A for Pkg Type -55 to 125 59629088108Q2A TLE2022B MFKB 5962-9088108QPA ACTIVE CDIP JG 8 1 Non-RoHS & Green SNPB N / A for Pkg Type -55 to 125 9088108QPA TLE2022BM 5962-9088109Q2A ACTIVE LCCC FK 20 1 Non-RoHS & Green SNPB N / A for Pkg Type -55 to 125 59629088109Q2A TLE2024 BMFKB 5962-9088109QCA ACTIVE CDIP J 14 1 Non-RoHS & Green SNPB N / A for Pkg Type -55 to 125 5962-9088109QC A TLE2024BMJB TLE2021ACD ACTIVE SOIC D 8 75 RoHS & Green NIPDAU Level-1-260C-UNLIM 2021AC TLE2021ACDR ACTIVE SOIC D 8 2500 RoHS & Green NIPDAU Level-1-260C-UNLIM 2021AC TLE2021ACP ACTIVE PDIP P 8 50 RoHS & Green NIPDAU N / A for Pkg Type TLE2021AID ACTIVE SOIC D 8 75 RoHS & Green NIPDAU Level-1-260C-UNLIM TLE2021AIDR ACTIVE SOIC D 8 2500 RoHS & Green NIPDAU Level-1-260C-UNLIM TLE2021AIP ACTIVE PDIP P 8 50 RoHS & Green NIPDAU N / A for Pkg Type TLE2021AMFKB ACTIVE LCCC FK 20 1 Non-RoHS & Green SNPB N / A for Pkg Type -55 to 125 59629088104Q2A TLE2021 AMFKB TLE2021AMJGB ACTIVE CDIP JG 8 1 Non-RoHS & Green SNPB N / A for Pkg Type -55 to 125 9088104QPA TLE2021AM TLE2021BMFKB ACTIVE LCCC FK 20 1 Non-RoHS & Green SNPB N / A for Pkg Type Addendum-Page 2 TLE2021AC -40 to 85 2021AI 2021AI TLE2021AI 59629088107Q2A TLE2021 BMFKB Samples PACKAGE OPTION ADDENDUM www.ti.com 12-Oct-2021 Orderable Device Status (1) Package Type Package Pins Package Drawing Qty Eco Plan (2) Lead finish/ Ball material MSL Peak Temp Op Temp (°C) Device Marking (3) (4/5) (6) TLE2021BMJG ACTIVE CDIP JG 8 1 Non-RoHS & Green SNPB N / A for Pkg Type TLE2021BMJGB ACTIVE CDIP JG 8 1 Non-RoHS & Green SNPB N / A for Pkg Type TLE2021CD ACTIVE SOIC D 8 75 RoHS & Green NIPDAU Level-1-260C-UNLIM 0 to 70 2021C TLE2021CDG4 ACTIVE SOIC D 8 75 RoHS & Green NIPDAU Level-1-260C-UNLIM 0 to 70 2021C TLE2021CDR ACTIVE SOIC D 8 2500 RoHS & Green NIPDAU Level-1-260C-UNLIM 0 to 70 2021C TLE2021CP ACTIVE PDIP P 8 50 RoHS & Green NIPDAU N / A for Pkg Type 0 to 70 TLE2021CP TLE2021CPE4 ACTIVE PDIP P 8 50 RoHS & Green NIPDAU N / A for Pkg Type 0 to 70 TLE2021CP TLE2021ID ACTIVE SOIC D 8 75 RoHS & Green NIPDAU Level-1-260C-UNLIM -40 to 85 2021I TLE2021IDG4 ACTIVE SOIC D 8 75 RoHS & Green NIPDAU Level-1-260C-UNLIM -40 to 85 2021I TLE2021IDR ACTIVE SOIC D 8 2500 RoHS & Green NIPDAU Level-1-260C-UNLIM -40 to 85 2021I TLE2021IDRG4 ACTIVE SOIC D 8 2500 RoHS & Green NIPDAU Level-1-260C-UNLIM -40 to 85 2021I TLE2021IP ACTIVE PDIP P 8 50 RoHS & Green NIPDAU N / A for Pkg Type -40 to 85 TLE2021IP TLE2021MD ACTIVE SOIC D 8 75 RoHS & Green NIPDAU Level-1-260C-UNLIM -55 to 125 2021M TLE2021MDG4 ACTIVE SOIC D 8 75 RoHS & Green NIPDAU Level-1-260C-UNLIM TLE2021MJG ACTIVE CDIP JG 8 1 Non-RoHS & Green SNPB N / A for Pkg Type -55 to 125 TLE2021MJG TLE2021MJGB ACTIVE CDIP JG 8 1 Non-RoHS & Green SNPB N / A for Pkg Type -55 to 125 9088101MPA TLE2021M TLE2022ACD ACTIVE SOIC D 8 75 RoHS & Green NIPDAU Level-1-260C-UNLIM 0 to 70 2022AC TLE2022ACDG4 ACTIVE SOIC D 8 75 RoHS & Green NIPDAU Level-1-260C-UNLIM 0 to 70 2022AC TLE2022ACDR ACTIVE SOIC D 8 2500 RoHS & Green NIPDAU Level-1-260C-UNLIM 2022AC TLE2022ACDRG4 ACTIVE SOIC D 8 2500 RoHS & Green NIPDAU Level-1-260C-UNLIM 2022AC Addendum-Page 3 -55 to 125 TLE2021 BMJG 9088107QPA TLE2021BM 2021M Samples PACKAGE OPTION ADDENDUM www.ti.com 12-Oct-2021 Orderable Device Status (1) Package Type Package Pins Package Drawing Qty Eco Plan (2) Lead finish/ Ball material MSL Peak Temp Op Temp (°C) Device Marking (3) (4/5) (6) TLE2022ACP ACTIVE PDIP P 8 50 RoHS & Green NIPDAU N / A for Pkg Type TLE2022AC TLE2022ACPE4 ACTIVE PDIP P 8 50 RoHS & Green NIPDAU N / A for Pkg Type TLE2022AC TLE2022AID ACTIVE SOIC D 8 75 RoHS & Green NIPDAU Level-1-260C-UNLIM -40 to 85 2022AI TLE2022AIDG4 ACTIVE SOIC D 8 75 RoHS & Green NIPDAU Level-1-260C-UNLIM -40 to 85 2022AI TLE2022AIDR ACTIVE SOIC D 8 2500 RoHS & Green NIPDAU Level-1-260C-UNLIM TLE2022AIP ACTIVE PDIP P 8 50 RoHS & Green NIPDAU N / A for Pkg Type TLE2022AMD ACTIVE SOIC D 8 75 RoHS & Green NIPDAU Level-1-260C-UNLIM TLE2022AMDG4 ACTIVE SOIC D 8 75 RoHS & Green NIPDAU Level-1-260C-UNLIM TLE2022AMDR ACTIVE SOIC D 8 2500 RoHS & Green NIPDAU Level-1-260C-UNLIM TLE2022AMDRG4 ACTIVE SOIC D 8 2500 RoHS & Green NIPDAU Level-1-260C-UNLIM TLE2022AMFKB ACTIVE LCCC FK 20 1 Non-RoHS & Green SNPB N / A for Pkg Type -55 to 125 59629088105Q2A TLE2022A MFKB TLE2022AMJGB ACTIVE CDIP JG 8 1 Non-RoHS & Green SNPB N / A for Pkg Type -55 to 125 9088105QPA TLE2022AM TLE2022BMFKB ACTIVE LCCC FK 20 1 Non-RoHS & Green SNPB N / A for Pkg Type -55 to 125 59629088108Q2A TLE2022B MFKB TLE2022BMJGB ACTIVE CDIP JG 8 1 Non-RoHS & Green SNPB N / A for Pkg Type -55 to 125 9088108QPA TLE2022BM TLE2022CD ACTIVE SOIC D 8 75 RoHS & Green NIPDAU Level-1-260C-UNLIM TLE2022CDR ACTIVE SOIC D 8 2500 RoHS & Green NIPDAU Level-1-260C-UNLIM TLE2022CP ACTIVE PDIP P 8 50 RoHS & Green NIPDAU N / A for Pkg Type TLE2022CP TLE2022CPE4 ACTIVE PDIP P 8 50 RoHS & Green NIPDAU N / A for Pkg Type TLE2022CP Addendum-Page 4 2022AI TLE2022AI -55 to 125 2022AM 2022AM -55 to 125 2022AM 2022AM 2022C 0 to 70 2022C Samples PACKAGE OPTION ADDENDUM www.ti.com 12-Oct-2021 Orderable Device Status (1) Package Type Package Pins Package Drawing Qty Eco Plan (2) Lead finish/ Ball material MSL Peak Temp Op Temp (°C) Device Marking (3) (4/5) (6) TLE2022ID ACTIVE SOIC D 8 75 RoHS & Green NIPDAU Level-1-260C-UNLIM -40 to 85 2022I TLE2022IDG4 ACTIVE SOIC D 8 75 RoHS & Green NIPDAU Level-1-260C-UNLIM -40 to 85 2022I TLE2022IDR ACTIVE SOIC D 8 2500 RoHS & Green NIPDAU Level-1-260C-UNLIM -40 to 85 2022I TLE2022IP ACTIVE PDIP P 8 50 RoHS & Green NIPDAU N / A for Pkg Type TLE2022IP TLE2022IPE4 ACTIVE PDIP P 8 50 RoHS & Green NIPDAU N / A for Pkg Type TLE2022IP TLE2022MD ACTIVE SOIC D 8 75 RoHS & Green NIPDAU Level-1-260C-UNLIM -55 to 125 2022M TLE2022MDR ACTIVE SOIC D 8 2500 RoHS & Green NIPDAU Level-1-260C-UNLIM -55 to 125 2022M TLE2022MDRG4 ACTIVE SOIC D 8 2500 RoHS & Green NIPDAU Level-1-260C-UNLIM TLE2022MFKB ACTIVE LCCC FK 20 1 Non-RoHS & Green SNPB N / A for Pkg Type -55 to 125 59629088102M2A TLE2022MFKB TLE2022MJG ACTIVE CDIP JG 8 1 Non-RoHS & Green SNPB N / A for Pkg Type -55 to 125 TLE2022MJG TLE2022MJGB ACTIVE CDIP JG 8 1 Non-RoHS & Green SNPB N / A for Pkg Type -55 to 125 9088102MPA TLE2022M TLE2024ACDW ACTIVE SOIC DW 16 40 RoHS & Green NIPDAU Level-1-260C-UNLIM TLE2024AC TLE2024ACDWR ACTIVE SOIC DW 16 2000 RoHS & Green NIPDAU Level-1-260C-UNLIM TLE2024AC TLE2024ACN ACTIVE PDIP N 14 25 RoHS & Green NIPDAU N / A for Pkg Type TLE2024AIDW ACTIVE SOIC DW 16 40 RoHS & Green NIPDAU Level-1-260C-UNLIM TLE2024AIN ACTIVE PDIP N 14 25 RoHS & Green NIPDAU N / A for Pkg Type TLE2024AMFKB ACTIVE LCCC FK 20 1 Non-RoHS & Green SNPB N / A for Pkg Type -55 to 125 59629088106Q2A TLE2024A MFKB TLE2024AMJB ACTIVE CDIP J 14 1 Non-RoHS & Green SNPB N / A for Pkg Type -55 to 125 5962-9088106QC A TLE2024AMJB Addendum-Page 5 2022M TLE2024ACN -40 to 85 TLE2024AI TLE2024AIN Samples PACKAGE OPTION ADDENDUM www.ti.com 12-Oct-2021 Orderable Device Status (1) Package Type Package Pins Package Drawing Qty Eco Plan (2) Lead finish/ Ball material MSL Peak Temp Op Temp (°C) Device Marking (3) (4/5) (6) TLE2024BMDW ACTIVE SOIC DW 16 40 RoHS & Green NIPDAU Level-1-260C-UNLIM TLE2024BMDWG4 ACTIVE SOIC DW 16 40 RoHS & Green NIPDAU Level-1-260C-UNLIM TLE2024BMDWR ACTIVE SOIC DW 16 2000 RoHS & Green NIPDAU Level-1-260C-UNLIM -55 to 125 TLE2024BM TLE2024BMFKB ACTIVE LCCC FK 20 1 Non-RoHS & Green SNPB N / A for Pkg Type -55 to 125 59629088109Q2A TLE2024 BMFKB TLE2024BMJ ACTIVE CDIP J 14 1 Non-RoHS & Green SNPB N / A for Pkg Type -55 to 125 TLE2024BMJ TLE2024BMJB ACTIVE CDIP J 14 1 Non-RoHS & Green SNPB N / A for Pkg Type -55 to 125 5962-9088109QC A TLE2024BMJB TLE2024CDW ACTIVE SOIC DW 16 40 RoHS & Green NIPDAU Level-1-260C-UNLIM TLE2024C TLE2024CDWG4 ACTIVE SOIC DW 16 40 RoHS & Green NIPDAU Level-1-260C-UNLIM TLE2024C TLE2024CDWR ACTIVE SOIC DW 16 2000 RoHS & Green NIPDAU Level-1-260C-UNLIM TLE2024C TLE2024CN ACTIVE PDIP N 14 25 RoHS & Green NIPDAU N / A for Pkg Type TLE2024CN TLE2024CNE4 ACTIVE PDIP N 14 25 RoHS & Green NIPDAU N / A for Pkg Type TLE2024CN TLE2024IDW ACTIVE SOIC DW 16 40 RoHS & Green NIPDAU Level-1-260C-UNLIM TLE2024IN ACTIVE PDIP N 14 25 RoHS & Green NIPDAU N / A for Pkg Type TLE2024MDW ACTIVE SOIC DW 16 40 RoHS & Green NIPDAU Level-1-260C-UNLIM -55 to 125 TLE2024M TLE2024MDWG4 ACTIVE SOIC DW 16 40 RoHS & Green NIPDAU Level-1-260C-UNLIM -55 to 125 TLE2024M TLE2024MFKB ACTIVE LCCC FK 20 1 Non-RoHS & Green SNPB N / A for Pkg Type -55 to 125 59629088103M2A TLE2024MFKB TLE2024MJB ACTIVE CDIP J 14 1 Non-RoHS & Green SNPB N / A for Pkg Type -55 to 125 5962-9088103MC A TLE2024MJB Addendum-Page 6 -55 to 125 TLE2024BM TLE2024BM TLE2024I TLE2024IN Samples PACKAGE OPTION ADDENDUM www.ti.com 12-Oct-2021 (1) The marketing status values are defined as follows: ACTIVE: Product device recommended for new designs. LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect. NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design. PREVIEW: Device has been announced but is not in production. Samples may or may not be available. OBSOLETE: TI has discontinued the production of the device. (2) RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may reference these types of products as "Pb-Free". RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption. Green: TI defines "Green" to mean the content of Chlorine (Cl) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of
TLE2024MFKB 价格&库存

很抱歉,暂时无法提供与“TLE2024MFKB”相匹配的价格&库存,您可以联系我们找货

免费人工找货