0
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
创作中心
发布
  • 发文章

  • 发资料

  • 发帖

  • 提问

  • 发视频

创作活动
TLK105LEVM

TLK105LEVM

  • 厂商:

    BURR-BROWN(德州仪器)

  • 封装:

    -

  • 描述:

    EVAL MODULE FOR TLK105L

  • 数据手册
  • 价格&库存
TLK105LEVM 数据手册
User's Guide SLLU200 – July 2014 TLK10xL EVM This user guide details the characteristics, operation, and use of the Industrial Ethernet TLK10xLEVM (EVM). The EVM enables Texas Instruments customers to quickly design and market systems using the TLK105L, TLK106L, TLK105, and TLK106 devices. This document also includes schematic diagrams, a printed-circuit board (PCB) layout, board assembly and board marking drawings, and a bill of materials (BOM). 1 2 3 4 5 6 7 8 Contents Features ....................................................................................................................... Applications ................................................................................................................... Description .................................................................................................................... System Description .......................................................................................................... Design Features ............................................................................................................. General Block Diagram ..................................................................................................... 6.1 Power Supply Options ............................................................................................. 6.2 Serial Management and MAC Interfaces ........................................................................ 6.3 MDI modes .......................................................................................................... 6.4 LED Options ......................................................................................................... 6.5 Bootstrap Options/Jumpers........................................................................................ 6.6 Clock Options ....................................................................................................... Power Supply Modes ........................................................................................................ 7.1 Default Configuration ............................................................................................... Serial Management and MII/RMII Interfaces ............................................................................. 8.1 Serial Management for Standalone TLK10xLEVM ............................................................. 8.2 MII Interface ......................................................................................................... 8.3 RMII Interface ....................................................................................................... SLLU200 – July 2014 Submit Documentation Feedback TLK10xL EVM Copyright © 2014, Texas Instruments Incorporated 3 3 3 3 4 5 5 5 6 6 6 6 6 6 7 7 7 8 1 www.ti.com 9 10 11 12 13 14 15 MDI Modes ................................................................................................................... 9 9.1 Default Configuration – Separate Magnetic and RJ45 Connector ........................................... 9 9.2 Fiber Transceiver Operation ..................................................................................... 10 9.3 Integrated Magnetic with RJ45 Connector ..................................................................... 11 Clock Options ............................................................................................................... 13 10.1 Default Configuration ............................................................................................. 13 10.2 25M OSC Configuration .......................................................................................... 14 10.3 External Clock Supplied to TLK10xL ........................................................................... 14 Schematic ................................................................................................................... 15 Layout ........................................................................................................................ 20 Board Assembly ............................................................................................................ 22 Board Marking (Silk) ....................................................................................................... 23 Bill of Materials ............................................................................................................. 24 List of Figures 1 General Block Diagram ..................................................................................................... 5 2 MDIO/MDC Interface Block Diagram ...................................................................................... 7 3 MII Interface Block Diagram ................................................................................................ 8 4 RMII Interface Block Diagram .............................................................................................. 9 5 Separate Magnetic with RJ45 Block Diagram .......................................................................... 10 6 Optic Transceiver Block Diagram ........................................................................................ 11 7 Integrated Magnetic with RJ45 Block Diagram ......................................................................... 12 8 Transformer-Less Operation Block Diagram 13 9 25M OSC Modifications 14 10 11 12 13 14 15 16 17 18 19 20 21 22 ........................................................................... ................................................................................................... TLK10xL EVM Schematics (1 of 5) ..................................................................................... TLK10xL EVM Schematics (2 of 5) ...................................................................................... TLK10xL EVM Schematics (3 of 5) ...................................................................................... TLK10xL EVM Schematics (4 of 5) ...................................................................................... TLK10xL EVM Schematics (5 of 5) ...................................................................................... Layer 1 - Signal ............................................................................................................. Layer 2 - GND .............................................................................................................. Layer 3 - Power............................................................................................................. Layer 4 - Signal ............................................................................................................. Layer 1 – Components Side Assembly.................................................................................. Layer 4 – Print Side Assembly ........................................................................................... Layer 1 – Components Side Silk ......................................................................................... Layer 4 – Print Side Silk ................................................................................................... 15 16 17 18 19 20 20 21 21 22 22 23 23 List of Tables 2 ............................................................................................................. 4 ............................................................................................................. 24 1 Design Features 2 Bill of Materials TLK10xL EVM SLLU200 – July 2014 Submit Documentation Feedback Copyright © 2014, Texas Instruments Incorporated Features www.ti.com 1 Features • • • • • • 2 Applications • • 3 TLK10xL reference design supporting TLK105L, TLK106L, TLK105, and TLK106 Low power consumption: – Single supply < 275 mV – Dual supply < 200 mW Programmable power back off, reducing PHY power up to 20% in systems with shorter cables Error-Free 100Base-T operation up to 150 meters under typical conditions Error-free 10Base-T operation up to 300 meters under typical conditions Variable I/O voltage range: 1.8 V to 3.3 V Industrial networks and factory automation Motor and motion control Description The Industrial Ethernet TLK10xLEVM enables TI customers to quickly design and market systems using the TLK105L, TLK106L, TLK105, and TLK106 devices. Use a design similar to the EVM circuit to expedite product development. TLK10xLEVM can be operated using only a single voltage (5-V DC jack, J82). On default configurations, all other voltages are regulated on-board and internally produced. The EVM kit contains: • TLK10xLEVM unit • Printed copy of this user's guide 4 System Description Effective and simple Ethernet design has made it the most popular networking solution at the physical and data link levels. With high-speed options and a variety of media types to choose from, Ethernet is efficient and flexible. These factors and the low cost of Ethernet hardware have made Ethernet an attractive option for industrial networking applications. Also, the opportunity to use open protocols such as TCP/IP-overEthernet networks offers the possibility of a level of standardization and interoperability. The result has been an ongoing shift toward the use of Ethernet for industrial control and automation applications. Ethernet is increasingly replacing proprietary communications. The TLK10xLEVM reference design enables TI customers to quickly design and release to market systems using TI industrial Ethernet PHY transceiver devices. The TLK10xLEVM has been designed in a small (2.6 in x 3.7 in) form factor which makes it easy to fit into any of the present products. The reference design platform demonstrates the advanced performance of the TLK10xL Ethernet PHY transceiver devices. The design supports 10/100 Base-T and is compliant with the IEEE 802.3 standard. The reference design operates from a single power supply (5 V with on-board regulator) or from a dual power supply (1.55 V supplied from external source). On the single supply option, only the 5-V jack (J82) is connected (default mode of operation), while all other voltages required for the Ethernet PHY transceiver are on-board regulated and internally generated within the device. SLLU200 – July 2014 Submit Documentation Feedback TLK10xL EVM Copyright © 2014, Texas Instruments Incorporated 3 Design Features 5 www.ti.com Design Features Table 1 lists the design features of the EVM. Table 1. Design Features 4 Feature Description Ethernet PHY The TLK10xL Ethernet PHY features: • Industrial temperature rating: –40°C to +85°C (TLK106L and TLK106 support up to 105°C) • Configurable PHY Addresses: jumper and resistor strapping options, supporting address space 00-31h (5 bits, default address 0x1) • MII or RMII – jumper strapping option Power consumption Single Supply < 275 mW Dual Supply < 200 mW Power supply The device is designed for power-supply flexibility and can operate with a single 3.3-V power supply. The following are the possible power input options: • 5 V from external DC jack connector and on-board regulator to generate 3.3 V • 3.3-V DC input through the serial connectors (J11/J13) and internally regulate the 1.55-V supply • Both 3.3-V DC and 1.55-V DC supplied, through the serial connectors (J11/J13) MAC - Controller interface • 40-pin header allowing customers to plug their own MAC to the TLK10xLEVM using DC wires, and using these as a MAC interface • 2x 50 pin serial connectors to accommodate all MII/RMII interface signals Clock • 25-MHz crystal with internal oscillator (default) • Operation with 25-MHz OSC • External clock supported through pin 37 of J12 header Status LEDs Two LEDs (configured as PU or PD ) AFE supported • Default operation, separate magnetic, Pulse HX1198FNL • Integrated magnetic, Pulse J3011G21DNLT • Transformer-less operation • Fiber operation, Avago HFBR-58036AQZ TLK10xL EVM SLLU200 – July 2014 Submit Documentation Feedback Copyright © 2014, Texas Instruments Incorporated General Block Diagram www.ti.com 6 General Block Diagram Figure 1 shows the general block diagram of the EVM. Sled 5-V Jack 3.3-V Regulator MII/ R (som MII BU S e op tions ) 3.3 V INT VOLTAGE LEDs 1.55 V MLED 1.55 V LED LINK 25/50-MHz crystal or oscillator TLK10xL DUT Boot Resistors/ Jumpers RESET Magnetics Pulse HX1198 RJ45 Figure 1. General Block Diagram 6.1 Power Supply Options The TLK10xLEVM has several power supply options. The default option is feeding 5 V to the DC jack. This option uses an on-board 3.3-V regulator and the TLK in single-supply mode. Another option is feeding the TLK10xLEVM’s voltages through the serial connectors (J11/J13). In this mode, all voltages can be supplied separately. 6.2 Serial Management and MAC Interfaces The TLK10xLEVM supports a few options for serial management (MDIO/MDC) and for MII/RMII as MAC Interfaces. The easiest option is to connect the MDIO/MDC pins (35/33 pins) on the 40-pin header (J12) and one GND pin to an Ethernet MAC. This option allows read/write registers, activating force transmission, and configuring loops to the TLK. Another option is to connect the entire MII interface to an Ethernet MAC, allowing full testing of the TLK with a working system. SLLU200 – July 2014 Submit Documentation Feedback TLK10xL EVM Copyright © 2014, Texas Instruments Incorporated 5 General Block Diagram www.ti.com RMII interface to the MAC is also possible in the same way, but needs to share the 50M clock with the MAC. Sharing a 50M clock is done by connecting the Ext 25/50M pin (pin 37) of the 40-pin header (J12) to the same clock source of the MAC. Some modifications to the TLK10xLEVM are required in order to share the 50M clock. 6.3 MDI modes The TLK10xLEVM supports the following MDI options: 1. Default RJ45 with standalone magnetic (Pulse HX1198FNL) 2. RJ45 with integrated magnetic (Pulse J3011G21DNLT, not mounted) 3. Fiber transceiver operation (Avago HFBR-5803, not mounted) 4. Transformer-less operation All modes are configured by connecting the required resistors and components to the TLK10xLEVM. 6.4 LED Options The TLK10xL supports two LEDs, one of the LEDs as a configurable multi-LED. Operation of MLED (COL pin) is configured using register writings. The TLK LEDs can operate as current source (when connected to pull-down) or current sink (when connected to pull-up). 6.5 Bootstrap Options/Jumpers Some TLK10xL configurations are made through bootstrap options; using selection with jumpers or using resistors population. The TLK10xLEVM can support the following jumper configurations: • PHY_ID0 • PHY_ID1 • PHY_ID2 • AMDIX Disable • MII/RMII Mode • AN_0 The TLK10xLEVM can support the following resistor configurations: • PHY_ID3 • PHY_ID4 • LED Mode 6.6 Clock Options The TLK10xLEVM supports the following clock options: • 25 MHz from crystal is the default configuration • 25 MHz from OSC can be configured by board modifications • External clock can be supplied by the 40-pin header (J12) 7 Power Supply Modes 7.1 Default Configuration When using default configuration, only 5 V should be connected to the TLK10xLEVM, allowing the onboard regulator to supply the required 3.3-V supplies to the TLK which is using its internal LDO to supply 1.55 V. 6 TLK10xL EVM SLLU200 – July 2014 Submit Documentation Feedback Copyright © 2014, Texas Instruments Incorporated Serial Management and MII/RMII Interfaces www.ti.com 8 Serial Management and MII/RMII Interfaces 8.1 Serial Management for Standalone TLK10xLEVM Minimal operation with the TLK10xLEVM would be to just connect MDIO/MDC and GND pins to a MAC with MDIO/MDC capabilities. This allows the user to read/write registers and configure the TLK10xL to the different loopback modes and activate the TLK10xL for basic testing. This mode doesn’t allow full MII interface – transferring packets between the MAC and TLK10xL. For such operation, connect all MII signals (see Section 8.2.1). 8.1.1 Serial Management – Block Diagram For using the MDIO/MDC interface on the TLK10xLEVM, no changes are required. Simply connect pins 31 and 33 of J12 (40-pin header) to the MAC and one GND pin. NOTE: For stable registers reading more than one GND connection should be shared between the boards. Sled 5-V Jack 3.3-V Regulator MDIO /MD (3 w C and G ires only ND ) 3.3 V INT VOLTAGE LEDs 1.55 V MLED 1.55 V LED LINK 25/50-MHz crystal or oscillator TLK10xL DUT Boot Resistors/ Jumpers RESET Magnetics Pulse HX1198 RJ45 Figure 2. MDIO/MDC Interface Block Diagram 8.2 8.2.1 MII Interface MII Interface Connection for Standalone TLK10xLEVM The TLK10xLEVM can be connected to any MAC system, by routing the MII signals to the 40-pin header (J12). In this mode full system testing can be done with transferring packets between the MAC and the TLK10xL. SLLU200 – July 2014 Submit Documentation Feedback TLK10xL EVM Copyright © 2014, Texas Instruments Incorporated 7 Serial Management and MII/RMII Interfaces 8.2.2 www.ti.com MII Interface – Block Diagram No changes are required to use the MII interface on the TLK10xLEVM with any MAC system. Simply connect the relevant pins of J12 (40-pin header) to the MAC and GND pins. NOTE: For operation, more than one GND connection should be shared between the boards. &XVWRPHU¶V0$& MII/RMII BUS M II/RM Sled II 5-V Jack 40-Pin Header 3.3-V Regulator BUS MII/R MII 3.3 V INT VOLTAGE LEDs 1.55 V MLED 1.55 V LED LINK 25-MHz crystal or oscillator TLK10xL DUT Boot Resistors/ Jumpers RESET Magnetics Pulse HX1198 RJ45 Figure 3. MII Interface Block Diagram 8.3 8.3.1 RMII Interface RMII Interface Connection for Standalone TLK10xLEVM The TLK10xLEVM can be connected to any MAC system, by routing the RMII signals to the 40-pin header (J12). In this mode full system testing can be done, with transferring packets between the MAC and the TLK10xL. 8.3.2 RMII Interface – Block Diagram To use the RMII interface on the TLK10xLEVM with any MAC system, a few changes are required to route shared clock to the TLK10xL: • Connect 0R to R78 8 TLK10xL EVM SLLU200 – July 2014 Submit Documentation Feedback Copyright © 2014, Texas Instruments Incorporated MDI Modes www.ti.com • • Disconnect R71 and R72 Connect the shared 50M clock to the Ext 25/50M pin (pin 37) of the 40-pin header (J12) and to the MAC. Beside the previous changes, simply connect the relevant pins of J12 (40-pin header) to the MAC and GND pins. NOTE: For operation, more than one GND connection should be shared between the boards. Please also refer to the TLK105L, TLK106L datasheet (SLLSEE3) for RMII working mode and requirements on the shared clock (50 MHz) and strap pin (RX_DV). 50-MHz oscillator &XVWRPHU¶V0$& MII/RMII BUS MII/R Sled MII 5-V Jack 40-Pin Header 3.3-V Regulator BUS MII/R MII 3.3 V INT VOLTAGE LEDs 1.55 V MLED 1.55 V Boot Resistors/ Jumpers TLK10xL DUT LED LINK RESET Magnetics Pulse HX1198 RJ45 Figure 4. RMII Interface Block Diagram 9 MDI Modes 9.1 Default Configuration – Separate Magnetic and RJ45 Connector The TLK10xLEVM supports few MDI options. The default configuration is for the TLK10xL to use RJ45 with standalone magnetic (Pulse HX1198FNL). For this working mode no changes are required to the TLK10xLEVM (default configuration). SLLU200 – July 2014 Submit Documentation Feedback TLK10xL EVM Copyright © 2014, Texas Instruments Incorporated 9 MDI Modes www.ti.com Sled 5-V Jack 3.3-V Regulator MII/ R (som MII BU S e op tions ) 3.3 V INT VOLTAGE LEDs 1.55 V 1.55 V MLED LED LINK 25/50-MHz crystal or oscillator TLK10xL DUT Boot Resistors/ Jumpers RESET Magnetics Pulse HX1198 RJ45 Figure 5. Separate Magnetic with RJ45 Block Diagram 9.2 Fiber Transceiver Operation The TLK10xL family of devices support Fiber mode. Please follow datasheet recommendations on how to configure the TLK10xL for fiber mode. Please note that TTLK10x version (non-L) do not support fiber mode. Working with Fiber transceiver (Avago HFBR-5803, not mounted) is possible on the TLK10xLEVM. The footprint for the Fiber transceiver option is found on the bottom of the TLK10xLEVM. In order to work with integrated magnetic, the following modifications are required to the TLK10xLEVM: • Connect 0R to the following resistors: – R323, R324, R321, R322 • Connect 130R to the following resistors: – R337, R339, R394, R396 • Connect 82R to the following resistors: – R338, R340, R395, R397 10 TLK10xL EVM SLLU200 – July 2014 Submit Documentation Feedback Copyright © 2014, Texas Instruments Incorporated MDI Modes www.ti.com • • • • • • • Connect 100 nF to the following capacitors: – C17, C18, C251, C253, C254 Connect 10 nF to C231 Mount L14 and L15 with Ferrite-Bead 120R, 800 mA, 0805 Disconnect the following resistors: – R112, R113, R114, R115 (0R) – R11, R12 (49.9R) Disconnect the following capacitors: – C23, C24 U24 should be connected – Avago HFBR-5803 Fiber transceiver Remove T1 (separate magnetic) Sled 5-V Jack MII/R (som MII BU S e op tions ) 3.3-V Regulator 3.3 V INT VOLTAGE LEDs 1.55 V MLED 1.55 V TLK10xL DUT LED LINK 25/50 MHz crystal or oscillator Boot Resistors/ Jumpers RESET Optic Transceiver Figure 6. Optic Transceiver Block Diagram 9.3 Integrated Magnetic with RJ45 Connector The TLK10xLEVM can operate using RJ45 with integrated magnetic (Pulse J3011G21DNLT, not mounted). The footprint for the integrated magnetic option is found on the bottom of the TLK10xLEVM. In order to work with integrated magnetic, the following modifications are required to the TLK10xLEVM: SLLU200 – July 2014 Submit Documentation Feedback TLK10xL EVM Copyright © 2014, Texas Instruments Incorporated 11 MDI Modes • • • • • www.ti.com Connect 0R to the following resistors: – R104, R81, R94, R95 – R107, R108, R109, R110 Connect 100 nF to the following capacitors: – C11, C12 Disconnect the following resistors: – R112, R113, R114, R115 – R101, R103, R34, R69 Connect J1 - Pulse J3011G21DNLT integrated magnetic U2 (RJ45 connector) must be removed before trying to solder J1 Sled 5-V Jack 3.3-V Regulator MII/R (som MII BU S e op tions ) 3.3 V INT VOLTAGE LEDs 1.55 V MLED 1.55 V LED LINK 25/50-MHz crystal or oscillator TLK10xL DUT Boot Resistors/ Jumpers RESET RJ45 With Integrated Magnetic Figure 7. Integrated Magnetic with RJ45 Block Diagram 9.3.1 Transformer-Less Operation The TLK10xLEVM can support Transformer-Less operation, with no magnetic on the MDI path, but capacitors instead. For more details on the Transformer-Less operation, please refer to the relevant application note on the TLK10xL web-site (SLLA327). In order to work in Transformer-Less mode, the following modifications are required to the TLK10xLEVM: 12 TLK10xL EVM SLLU200 – July 2014 Submit Documentation Feedback Copyright © 2014, Texas Instruments Incorporated Clock Options www.ti.com • • • Connect 0R to the following resistors: – R107, R108, R109, R110 Disconnect the following resistors: – R112, R113, R114, R115 – R101, R103, R34, R69 Connect 33 nF to the following capacitors: – C20, C21, C22, C27 Sled 5-V Jack 3.3-V Regulator MII/ R (som MII BU S e op tions ) 3.3 V INT VOLTAGE LEDs 1.55 V 1.55 V MLED LED LINK 25/50-MHz crystal or oscillator TLK10xL DUT Boot Resistors/ Jumpers RESET RJ45 Figure 8. Transformer-Less Operation Block Diagram 10 Clock Options 10.1 Default Configuration The TLK10xLEVM supports several clock options, with default configuration of 25 MHz from crystal. In this mode an external crystal resonator connected across pins XI and XO. The crystal must be 25-MHz ±50 ppm-tolerance crystal reference. SLLU200 – July 2014 Submit Documentation Feedback TLK10xL EVM Copyright © 2014, Texas Instruments Incorporated 13 Clock Options www.ti.com 10.2 25M OSC Configuration The TLK10xL can also operate with 25M external CMOS-level oscillator source connected to pin XI only. Please refer to the datasheet for OSC requirement specifications. In • • • order to operate with 25M OSC, the following modifications are required: U5 OSC should be mounted – Epson, SG-211SCE (d) 25MHZ (footprint SMT 2 X 2.5) 0R should be mounted to R1 resistor location Disconnect the following resistors: R71, R72 Figure 9. 25M OSC Modifications 10.3 External Clock Supplied to TLK10xL External clock can be supplied to the TLK10xL by using the 40-pin header (J12). The external clock must meet the TLK10xL datasheet requirements and to be within 25 MHz ±50ppm-tolerance. The following changes are required to route the external clock to the TLK10xL: • Connect 0R to R78 • Disconnect the following resistors: R71, R72 • External clock (25M/50M) should be connected to Ext 25/50M pin (pin 37) of the 40-pin header (J12) 14 TLK10xL EVM SLLU200 – July 2014 Submit Documentation Feedback Copyright © 2014, Texas Instruments Incorporated Schematic www.ti.com 11 Schematic Figure 10 through Figure 14 illustrate the TLK10xL schematics. 7 8 6 5 4 3 2 1 TOP TLK CONFIGURATION F TLK10XL DUT POWER SUPPLY 3V3 AVDD_3V3 IOVDD RESET_N 3V3 POWER_SUPPLY AVDD_3V3 IOVDD 3_3V_PS COL AVDD33 CRS VDDIO LED_LINK RESET_N 25_50M_EXT EMB_1V5_1 EMB_1V5_2 EXT_PWRDWN_CONTROL MDC MDIO 25M_50M_EXT RDM_B EMB_1V5_1 RDP_B EMB_1V5_2 RXD0 EXT_PWRDWN RXD1 RXD2 RXD3 TLK10XL_DUT RX_CLK E RX_DV RX_ER ROOM=TLK111_DUT TDM_A TDP_A TXD0 TXD1 TXD2 TXD3 TX_CLK TX_EN COL CRS LED_LINK MDC MDIO RDM_B RDP_B RXD0 RXD1 RXD2 RXD3 RX_CLK RX_DV RX_ER TDM_A TDP_A TXD0 TXD1 TXD2 TXD3 TX_CLK TX_EN COL CRS COL LED_LINK LED_LINK RXD0 RXD1 RXD2 RXD3 RX_DV RX_ER 3V3 RXD0 F CRS TLK_CONFIGURATION_PINS RXD1 RXD2 RXD3 RX_DV RX_ER ROOM=CONFIGURATIONS 3V3_PS E MAGNETICS COL LED_LINK RDM_B RDP_B TDM_A TDP_A 3V3 COL LED_LINK RDM_B MAGNETICS_AFE RDP_B TDM_A ROOM=MAG_DUT TDP_A 3V3_CT_INPUT D D ERM8-025-05.0-S-DV-TR ERM8-025-05.0-S-DV-TR IGNORE IGNORE 1 2 RX_ER RX_DV CRS COL RXD0 RXD1 RXD2 RXD3 2 1 1 R24 33 1 R20 233 1 R27 2 33 R181 2 33 1 R25 332 1 R29 1 R31 1 R21 R281 2 0 233 C RX_CLK R22 EMB_MDIO EMB_MDC EMB_RESET_N 2 R73 A14 A16 A18 A20 A22 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 42 44 46 48 50 IOVDD_EMB 0 EMB_RX_CLK 233 EMB_RX_ERR EMB_RX_DV EMB_CRS EMB_COL EMB_RXD0 EMB_RXD1 EMB_RXD2 EMB_RXD3 233 2 33 233 AVDD_3V3 R23 1 0 IGNORE 2 3V3_AVDD_EMB 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 42 44 46 48 50 J11 1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45 47 49 1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45 47 49 A23 1 A27 A07 A09 A11 A13 A15 A17 A19 A21 LED_LINK R120 1 0 2 R102 IGNORE R31 R171 R301 1 3V3_EMB B08 B10 B12 B14 B16 B18 B20 B22 B24 25_50M_EXT 2 0 EMB_TXD3 EMB_TXD2 EMB_TXD1 EMB_TXD0 EMB_TX_EN EMB_TX_CLK R33 0 R21 233 1 R15 233 1 R26 2 33 EXT_PWRDWN_CONTROL TXD3 TXD2 2 TXD1 33 TXD0 2 TX_EN 33 TX_CLK 2 33 1 3V3 ERM8-025-DV 3V3 P1 P3 P5 B 1 R78 0 F1 VIA VIA VIA 1 1 M203 VIA M202 1 M201 1 M200 A IGNORE 1 IGNORE 1 FID FID F3 IGNORE 1 FID FID FID 7 3V3_EMB 2 IGNORE 25_50M_H 33 35 37 39 P8 P11 P12 P13 P14 P15 P16 P17 P18 P19 P20 P21 J12P22 P23 P24 P25 P26 P27 P28 P29 P30 P31 P32 P33 P34 P35 P36 P37 P38 P39 P40 FID 6 5 IOVDD B07 B09 B11 B13 B15 B17 B19 B21 B23 1 B41 1 C B27 B29 B31 B33 B35 B37 2 B39 R105 0 IGNORE 25_50M_EXT R58 2 3V3_AVDD_EMB 0 AVDD_3V3 IGNORE GND TP30MIL19 TP30MIL 1 1 TP30MIL21 TP30MIL 1 1 34 36 38 40 THIS DOCUMENT CONTAINS INFORMATION PROPRIETARY TO TEXAS INSTRUMENTS - DSP SYSTEMS ISRAEL USE OR DISCLOSURE WITHOUT THE WRITTEN PERMISSION IS EXPRESSLY FORBIDDEN. COPYRIGHT (C) TI 2006 IGNORE 2 0 B F6 1 R57 CONNECTOR_B TEXAS INSTRUMENTS IGNORE 1 IOVDD_EMB P6 P10 IGNORE 1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45 47 49 ERM8-025-DV DATE: 8 2 0 J13 1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45 47 49 P4 P9 F5 1 R56 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 42 44 46 48 50 P2 P7 F4 1 F2 IGNORE Header_2x20 CONNECTOR_A 25_50M_EXT B28 B30 B32 B34 B36 B38 B40 B42 2 IGNORE 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 42 44 46 48 50 EMB_1V5_1 EMB_1V5_2 EMB_1V5_1 EMB_1V5_2 \1\ 33 2 R191 1 \1\ R16 R90 0 MDIO 1 MDC RESET_N IOVDD 4 Wed May 21 19:13:34 2014 3 ASSY NAME: TLK105LEVM EDGE NUMBER: SV601037-001 ENGINEER: PART NO: REV: 1 PCB-53001 DRW PAGE: DESIGN PAGE: 2 A SADAN NOAM 1 OF 1 1 OF 5 1 Figure 10. TLK10xL EVM Schematics (1 of 5) SLLU200 – July 2014 Submit Documentation Feedback TLK10xL EVM Copyright © 2014, Texas Instruments Incorporated 15 Schematic www.ti.com 5 C2 3 PF 1 1 2 IGNORE 1 IN R94 12 11 3 5 4 7 6 8 12 9 10 2 IN R95 2 11 0 C3 1 2 IN 2 R89 2 TDP_A IN 1 2 1 C24 1 UF 2 1 R10 2 49.9 OPTIONAL 6 TDM_A IN RDP_B IN RDM_B IN 8 2 1 IGNORE 9 10 C34 3 PF 2 IGNORE 1 L3 2 E OPTIONAL 1 1 2 C25 100 NF 33 NH OPTIONAL IGNORE IGNORE 1 RDP_BOT C35 3 PF OPTIONAL 1 TDM_BOT R13 2 IGNORE 7 2 49.9 0 1 IGNORE CT_INPUT RDM_BOT C23 100 NF 33 NH 5 4 R9 1 2 L2 OPTIONAL 3 PF 3 R81 330 IGNORE E 2 IGNORE 1 J1 12 1 2 IGNORE 1 LED_LINK 1 2 IGNORE 1 C12 100 NF C11 100 NF 0 OPTIONAL 1 IGNORE 1313 1414 COL L1 1 2 33 NH OPTIONAL RJ45_INTEGRATED CONNECTOR J3011G21DNLT IGNORE 1 3V3_CT_INPUT F CT_INPUT R104 330 2 1 FOR INTEGRATED MAGNETIC OPERATION, POPULATE ALL NON-OPTIONAL ITEMS ON THIS SECTION AND REMOVE U2 (RJ45) CT_INPUT 3 MAGNETICS INTEGRATED MAGNETIC F 4 0 6 CT_INPUT 7 8 1 2 33 NH TDP_BOT 1 IGNORE IGNORE 2 2 R14 2 1 0 L4 2 R11 49.9 C26 1 UF 2 1 R12 2 49.9 OPTIONAL TRANSFORMER-LESS D 1 R107 IGNORE 0 1 R108 D FOR TRANSFORMER-LESS OPERATION, POPULATE R107-R110 AND C20-C22 AND C27, AND REMOVE R112-R115 AND R34, R69, R101, R103 2 IGNORE 2 0 1 0 R110 IGNORE 2 FIBER 2 FOR FIBER OPERATION, PLEASE REFER TO THE USER GUIDE FOR COPPER OPERATION, DO NOT POPULATE ALL ITEMS ON THIS SECTION 0 T1 TDP_A_MAG TX_P2 CHA TX_P3 TDM_A_MAG RDP_B_MAG CHB RDM_B_MAG 2 2 R396 130 130 R394 IGNORE 1 IGNORE 2 130 R339 1 1 \1\ 1 VCC_PIN_6 IGNORE 2 FERRITE VCC_PIN_5 BEAD 2 SD_PIN_4 RX_VEE_PIN_9 B 2 1 IGNORE 1 IGNORE IGNORE C254 100 NF C253 100 NF 2 10 UF IGNORE 1 2 C231 + 2 RD_PIN_2 TX_VEE_PIN_1 NRD_PIN_3 IGNORE IGNORE R111 1 M 1 C19 4700PF C16 4700PF 2 2 1 TEXAS INSTRUMENTS 1 IGNORE THIS DOCUMENT CONTAINS INFORMATION PROPRIETARY TO TEXAS INSTRUMENTS - DSP SYSTEMS ISRAEL USE OR DISCLOSURE WITHOUT THE WRITTEN PERMISSION IS EXPRESSLY FORBIDDEN. COPYRIGHT (C) TI 2006 DATE: 7 L15 IGNORE 2 C8 10 NF IGNORE 2 1 2 0 1 1 C15 1 UF 2 1 C14 100 NF 2 C10 1 UF 1 2 R322 IGNORE 8 BEAD PLACE CAPACITORS, INDUCTORS AND RESISTORS CLOSE TO TRNACEIVER 2 2 A NTD_PIN_7 2 FERRITE L14 FXRD_M FXRD_P 2 IGNORE 0 1 2 R8 75 2 R7 75 1 1 R321 2 1 2 R6 75 R5 75 1 C9 100 NF RDM_B 1 1 \1\ 1 R32 0 MAGNETICS C7 10 NF FXTD_M IGNORE1 RDP_B B 100 NF C18 1 RX_P8 HX1198FNL IGNORE IGNORE 1 RX_P9 0 C251 100 NF RX_P7 RX_P10 R324 hfbr-5803 AFBR-5803AQZ 7 2 RX_P6 U24 TD_PIN_8 1 2 NC_P5 2 2 NC_P4 NC_P12 IGNORE 2 IGNORE NC_P13 0 1 FIBER TRANSCEIVER FXTD_P 1 IGNORE TX_P14 RX_P11 R323 2 1 TX_P1 TX_P15 TDM_A C17 100 NF 2 IGNORE 1 1 TX_P16 R69 0 TDP_A C R397 82 HX1198FNLT 1 2 2 1 1 0 R395 82 0 2 2 R101 2 R34 1 IGNORE 2 1 GND_PIN10 R103 1 2 3 4 5 6 7 8 R340 82 I/0_PIN1 I/0_PIN2 I/0_PIN3 I/0_PIN4 I/0_PIN5 I/0_PIN6 I/0_PIN7 I/0_PIN8 IGNORE 10 1-406541-1 GND_PIN9 R338 82 U2 9 2 2 RJ45_CONNECTOR 1 R335 49.9 R337 IGNORE R328 49.9 IGNORE 1 IGNORE 130 CT_INPUT CT_INPUT 1 2 2 0 0 1 R115 1 R114 2 0 R113 2 0 1 1 C R112 IGNORE 1 IGNORE 0 2 2 C22 33 NF IGNORE 2 C21 33 NF 1 1 IGNORE C20 33 NF C27 33 NF 1 IGNORE 2 1 R109 6 5 Tue May 27 14:19:04 2014 4 3 ASSY NAME: TLK105LEVM EDGE NUMBER: SV601037-001 ENGINEER: PART NO: DRW PAGE: DESIGN PAGE: 2 A SADAN NOAM REV: 1 PCB-53001 1 OF 1 2 OF 5 1 Figure 11. TLK10xL EVM Schematics (2 of 5) 16 TLK10xL EVM SLLU200 – July 2014 Submit Documentation Feedback Copyright © 2014, Texas Instruments Incorporated Schematic www.ti.com 7 8 6 5 4 3 2 1 CONFIGURATION PINS F F 1 3V3_PS IN R40 2.2 K IGNORE 1 2 CFG_PHY_ID [4] RXD3 IN R41 2.2 K IGNORE \1\ 2 CFG_PHY_ID [3] RXD2 IN J5 JUMPER CFG_PHY_ID [2] R37 RXD1 1 2 IN \1\ 2.2 K J6 CFG_PHY_ID [1] R38 1 2 RXD0 IN JUMPER E E 2.2 K 1 R35 2 \1\ CFG_CROSSOVR RX_ER IN 2.2 K \1\ J8 JUMPER R36 J10 1 JUMPER MII/RMII RX_DV IN 2 2.2 K D D LED_MODE_CONFIGURATION CRS 1 IN R51 2.2 K 2 IGNORE C C 3V3_PS 3V3_PS R44 1 2 COL 2 K IN3 A R45 1 LD2 2 3xjumper CFG_ANEG_SPD_0 LED_LINK IN 470 IN1 IN1 2.2 K J3 J4 K IN3 A R49 1 LD4 2 470 IN2 IN 3xjumper R48 1 2.2 K CFG_PHY_ID [0] MLED 1 R42 B 2 470 R43 1 IN2 B A K 1 LD3 R46 2 470 R47 2 1 2.2 K A K LD5 2 2.2 K TEXAS INSTRUMENTS A THIS DOCUMENT CONTAINS INFORMATION PROPRIETARY TO TEXAS INSTRUMENTS - DSP SYSTEMS ISRAEL USE OR DISCLOSURE WITHOUT THE WRITTEN PERMISSION IS EXPRESSLY FORBIDDEN. COPYRIGHT (C) TI 2006 DATE: 8 7 6 5 Wed May 21 19:13:33 2014 4 3 TLK105LEVM ASSY NAME: EDGE NUMBER: SV601037-001 ENGINEER: PART NO: DRW PAGE: DESIGN PAGE: 2 A SADAN NOAM REV: 1 PCB-53001 1 OF 1 3 OF 5 1 Figure 12. TLK10xL EVM Schematics (3 of 5) SLLU200 – July 2014 Submit Documentation Feedback TLK10xL EVM Copyright © 2014, Texas Instruments Incorporated 17 Schematic www.ti.com 8 7 6 5 4 3 2 1 POWER SUPPLY F F 5V INPUT 5V_SUPPLY DC_JACK 5V E E J82 POWER_JACK_RAPC712X 5V_SUPPLY + 1 R91 750 K K A LD18 A 2 2 2 2 C183 220 UF 1 1 C182 100 PF 2 C90 1 NF 1 C89 10 NF 1 C82 10 UF 2 GND2 GND 1 VIN D D 3.3V_PS 3V3 LP3964_LDO 2 VIN U4 VOUT 3 1 C 3V3 2 OUT 4 R4 2 402 1 R62 2 IOVDD A 2 SENSE OUT 0 K C4 33 UF SD 5 1 1 0 1 1 2 1 C1 68 UF 0 R88 LD1 2 GND R59 2 1 10 K 5V_SUPPLY R60 C 1 R63 2 AVDD_3V3 OUT 0 B B TEXAS INSTRUMENTS A THIS DOCUMENT CONTAINS INFORMATION PROPRIETARY TO TEXAS INSTRUMENTS - DSP SYSTEMS ISRAEL USE OR DISCLOSURE WITHOUT THE WRITTEN PERMISSION IS EXPRESSLY FORBIDDEN. COPYRIGHT (C) TI 2006 DATE: 8 7 6 5 Wed May 21 19:13:33 2014 4 3 ASSY NAME: TLK105LEVM EDGE NUMBER: SV601037-001 ENGINEER: PART NO: DRW PAGE: DESIGN PAGE: 2 A SADAN NOAM REV: 1 PCB-53001 1 OF 1 4 OF 5 1 Figure 13. TLK10xL EVM Schematics (4 of 5) 18 TLK10xL EVM SLLU200 – July 2014 Submit Documentation Feedback Copyright © 2014, Texas Instruments Incorporated Schematic www.ti.com 4 3 2 TLK105L DUT 1 EMB_1V5_2 EMB_1V5_1 2 R80 2 0 R77 IN IN F 1 2 0 R106 1 PFBOUT C13 3 PF 1 2 F 2 C55 100 NF 2 0 1 1 1 CLOSE TO PIN 18 PFBIN1 2 1 IN R79 C54 100 NF CLOSE TO PIN 37 PFBIN2 IGNORE 5 0 6 IGNORE 7 8 PFBOUT EMB_1V5_1 EMB_1V5_2 IGNORE 2 1 C60 100 PF 2 1 2 C59 1 NF 1 2 1 C33 100 PF 2 2 C32 1 NF 1 C31 10 NF 1 OUT OUT OUT OUT OUT OUT LED_LINK TDM_A RDP_B RD_N_BIDIR_P9 RDM_B 1 2 RXD_2/PHYAD3_OUTPUT_P32 TD_N_BIDIR_P11 RD_P_BIDIR_P10 RESET_N RXD2 TDP_A 1 RXD_1/PHYAD2_OUTPUT_P31 TD_P_BIDIR_P12 C56 CLOSE TO PIN 24 IGNORE R82 2.2 K 1 2 RXD_0/PHYAD1_OUTPUT_P30 RXD1 PFBIN1 JUMPER J14 1 2 RXD0 TLK105L AVDD33 VDD_PFBIN1_POWER_P13 TP30MIL RBIAS CLOSE TO PIN 15 1 COL/PHYAD0_OUTPUT_P29 AVDD33/AFE_TEST_POWER_P14 \1\ TP30MIL2 2 C53 100 NF COL PFBOUT 4.87 K 1 RX_ER/MDIX_EN_OUTPUT_P28 VDD_PFBOUT_POWER_P15 1 C52 CRS/CRS_DV/LED_CFC_OUTPUT_P27 RX_ER R96 RBIAS 10 UF CRS RESETN_INPUT_P18 MIRX_DV/MII_MODE_OUTPUT_P26 XI_INPUT_P23 RX_DV TLK105LRHB RBIAS_POWER_P16 2 OUT D RX_CLK_OUTPUT_P25 VDDS_3P3V_POWER_P21 OUT RX_CLK XO_OUTPUT_P22 OUT VDD_PFBIN2_POWER_P24 33 PF MLED/AN_EN_OUTPUT_P17 17 RESET_N MDC MDIO MDC_INPUT_P20 MDIO_BIDIR_P19 XTAL1 I261 XTAL ATS250BSM-1E 1 C51 2 1 TLK105L 2 E P2 PFBIN2 U1 C48 I273 P1 2 0 2 1 M 33 PF 10 UF 2 R72 1 R70 2 0 1 10 UF 1 VDDIO 2 1 R71 1 C58 10 NF C57 C30 E 100 NF D OUT OUT POWER_PAD_POWER_P33 OUT OUT 3_3V_PS 1 0 INTN_INPUT_P8 IGNORE TXD_3_INPUT_P7 R68 4.7 K OUT 2 TXD_2_INPUT_P6 ST_1 1 TXD_0_INPUT_P4 GND_2 R1 25M_REF 1 OUTPUT_3 TXD_1_INPUT_P5 U5 VDD_4 TXEN_INPUT_P3 25MHZ OSCILATOR RXD_3/PHYAD4_OUTPUT_P1 OUT TXCLK_OUTPUT_P2 3_3V_PS SG-211SCE (D) 25MHZ-X1G0036210159XX 2 0 OUT OUT 2 OUT OUT 1 2 C41 100 PF 2 C40 1 NF 1 1 C39 10 NF IGNORE OUT 2 TX_CLK 3_3V_PS TX_EN C TXD0 R75 2.2 K TXD1 TXD2 TXD3 1 OUT MDIO RXD3 1 1 IN 2 OUT 2 0 C R67 25M_50M_EXT 1 R66 R74 2.2 K 2 IGNORE 1 R117 0 R76 2.2 K EXT_PWRDWN 2 IN IGNORE 2 IGNORE 3_3V_PS 3_3V_PS I241 2 I242 2 1 1 C29 100 PF C28 1 NF I240 2 C6 10 NF 1 1 I239 2 C5 10 UF IN TLK105L EVM - VERSION 001 TLK106L EVM - VERSION 002 B VDDIO VDDIO I236 2 I237 2 1 1 C50 100 PF C47 1 NF I234 2 C45 10 NF 1 1 I233 2 C43 10 UF IN AVDD33 AVDD33 I231 2 I230 2 TEXAS INSTRUMENTS 1 1 C49 100 PF C46 1 NF 1 C44 10 NF I229 2 1 I228 2 C42 10 UF IN A THIS DOCUMENT CONTAINS INFORMATION PROPRIETARY TO TEXAS INSTRUMENTS - DSP SYSTEMS ISRAEL USE OR DISCLOSURE WITHOUT THE WRITTEN PERMISSION IS EXPRESSLY FORBIDDEN. COPYRIGHT (C) TI 2006 DATE: 8 B 7 6 5 Wed May 21 19:13:34 2014 4 3 ASSY NAME: TLK105LEVM EDGE NUMBER: SV601037-001 ENGINEER: PART NO: DRW PAGE: DESIGN PAGE: 2 A SADAN NOAM REV: 1 PCB-53001 1 OF 1 5 OF 5 1 Figure 14. TLK10xL EVM Schematics (5 of 5) SLLU200 – July 2014 Submit Documentation Feedback TLK10xL EVM Copyright © 2014, Texas Instruments Incorporated 19 Layout 12 www.ti.com Layout Figure 15 through Figure 18 show the PCB layout drawings. Figure 15. Layer 1 - Signal Figure 16. Layer 2 - GND 20 TLK10xL EVM SLLU200 – July 2014 Submit Documentation Feedback Copyright © 2014, Texas Instruments Incorporated Layout www.ti.com Figure 17. Layer 3 - Power Figure 18. Layer 4 - Signal SLLU200 – July 2014 Submit Documentation Feedback TLK10xL EVM Copyright © 2014, Texas Instruments Incorporated 21 Board Assembly 13 www.ti.com Board Assembly Figure 19 and Figure 20 show the board assembly drawings for this EVM. F3 9 1 2 40 J12 P1 M203 2 10 1 M200 39 R31 R65 R64 R61 R55 C90 A J82 C182 R18 C89 R21 U1 K R29 R59 R79 C30 C183 R1 XTAL1 R60 C1 R78 R70 R105R102 R19 + C31 C51 TP30MIL2 R16 R73 R5 R74 C57 C52 C13 C7 A K C32 R90 R89 C47 C56 R77 R71 C45 R72 R96 C58 R6 LD1 R24 C33 C53 C59 LD18 R4 R51 C54 C60 C10 R13 R27 37 36 2425 R91 U4 C55 R107 C9 R99 R80 R106 R112R323 C23 1 C24 R103 C82 C2 R20 C20 C16 R28 R25 48 R9 R101 12 13 C27 16 2 L1 R40 R41 R108 R113R324 C43 C3 R10 R34 T1 C50 C34 L2 R11 R12 R69 L3 R109 C21 U2 1 R114R321 C22 8 7 C35 R32 R30 R17 R26 R2 R22 C49 L4 F1 R23 R110 R115R322 R120 R33 R3 R85 R87 R86 R83 C46 R84 C14 C25 C26 C44 R15 C42 R121 R117 R76 R75 TP30MIL21 C15 PCB EDGE R14 R8 R98 R97 R7 C8 R119 C19 C4 C48 R63 C6 R50 R88 U5 1 R68 C40 R62 C41 C28 R54 C5 ALD7 K R58 C29 ALD6 K R52 R53 C39 R57 R67 R56 R37 R38 J14 R39 1 1 R35 R42 1 A LD3 K R36 R45 1 ALD2 K R43 F2 R44 R66 J5 1 J7 1 J6 J8 1 1 J10 1 J4 M201 2 2 2 TP30MIL19 J15 R46 J3 A LD5 K 1 R49 J9 A LD4 K R47 R48 R82 M202 Figure 19. Layer 1 – Components Side Assembly F6 R111 R81 1 2 J11 49 50 J1 C12 F5 R95 F4 C231 R340 R339 1 R337 J13 R399 L15 49 50 C251 1 2 R398 R116 R338 C254 U24 L14 AREA PLUG PROCESS R104 C11 C253 R397 R94 R396 R335 C18 R328 C17 9 R394 R395 Figure 20. Layer 4 – Print Side Assembly 22 TLK10xL EVM SLLU200 – July 2014 Submit Documentation Feedback Copyright © 2014, Texas Instruments Incorporated Board Marking (Silk) www.ti.com 14 Board Marking (Silk) Figure 21 and Figure 22 show the board markings (silk) for this EVM. Figure 21. Layer 1 – Components Side Silk Figure 22. Layer 4 – Print Side Silk SLLU200 – July 2014 Submit Documentation Feedback TLK10xL EVM Copyright © 2014, Texas Instruments Incorporated 23 Bill of Materials 15 www.ti.com Bill of Materials Table 2 lists the BOM for this EVM. Table 2. Bill of Materials S. # Ref Des Qty 1 !PCB 1 2 U5 1 SMT2X2_5 EPSON SG-211SCE (d) 25MHZX1G0036210159xx ? 3 J3,J4 2 JUMPERX3 Samtec TSW-103-07-G-S ? CONN HEADER 3POS .100" T/H GOLD SAM1029-03-ND 4 C52 1 C1210 Samsung CL32A106KPINNNE 10 UF CAP CER 10UF 10V 10% X5R 1210 1276-3311-2-ND 5 C2,C3,C13,C34,C35 5 C0603 Samsung CL10C030BB8NNNC 3 PF IGNORE CAP CER 3PF 50V NPO 0603 1276-2125-2-ND 6 C20-C22,C27 4 C0603 KEMET C0603C333J3RACTU 33 NF IGNORE CAP CER 33NF 25V 5% X7R 0603 399-9068-2-ND 7 C4 1 C1206 Nichicon F930G336KAA 33 UF CAP TANT 33UF 4V 10% 1206 489-8141-2-ND 8 C251,C253,C254 3 C0603 SAMSUNG CL10B104KO8NNNC 100 NF CAP CER 100NF 16V 10% X7R 0603 1276-1005-2-ND 9 C53-C55 3 C0603 SAMSUNG CL10B104KO8NNNC 100 NF CAP CER 100NF 16V 10% X7R 0603 1276-1005-2-ND 10 C5,C30,C42,C43,C57,C8 2 6 C1206 TDK C3216X7R1V106M160AC 10 UF CAP CER 10UF 35V 20% X7R 1206 4458034-2-ND 11 C90 1 C0603 SAMSUNG CL10C102JB8NNNC 1 NF CAP CER 1NF 50V 5% NPO 0603 1276-1091-2-ND 12 C89 1 C0603 SAMSUNG CL10B103KB8NCNC 10 NF CAP CER 10NF 50V 10% X7R 0603 1276-1921-2-ND 13 C1 1 C1206 Nichicon F930J686KAA 68 UF CAP TANT 68UF 6.3V 10% 1206 493-6546-2-ND 14 C16 1 C1812 AVX 1812GC472KAT1A 4700PF CAP CER 4700PF 2KV 10% X7R 1812 478-3003-2-ND 15 C19 1 C1812 AVX 1812GC472KAT1A 4700PF CAP CER 4700PF 2KV 10% X7R 1812 478-3003-2-ND 16 C48,C51 2 C0603 SAMSUNG CL10C330FB8NNNC 33 PF CAP CER 33PF 50V 1% NPO 0603 1276-2262-2-ND 17 C29,C33,C41,C49,C50,C 60,C182 7 C0402 Yageo CC0402JRNPO9BN101 100 PF CAP CER 100PF 50V 5% NPO 0402 311-1024-2-ND 18 C10,C15,C24,C26 4 C0603 Samsung CL10B105KQ8NNNC 1 UF CAP CER 1UF 6V3 10% X7R 0603 1276-1024-2-ND 19 C11,C12,C17,C18 4 C0402 SAMSUNG CL05B104KP5NNNC 100 NF CAP CER 0.1UF 10V 0.1% X7R 0402 1276-1002-2-ND 20 C9,C14,C23,C25 4 C0402 SAMSUNG CL05B104KP5NNNC 100 NF CAP CER 0.1UF 10V 0.1% X7R 0402 1276-1002-2-ND 21 C28,C32,C40,C46,C47,C 59 6 C0402 Kemet C0402C102J3RACTU 1 NF CAP CER 1NF 25V 5% X7R 0402 399-7752-2-ND 22 C6C8,C31,C39,C44,C45,C5 8 8 C0402 Kemet C0402C103J5RACTU 10 NF CAP CER 10NF 50V 5% X7R 0402 399-7758-2-ND 23 J1 1 CON_RJ45_J3011 Pulse J3011G21DNL ? IGNORE RJ45 CAT5 8 POS RA Female with integrated magnetic 553-1763-2-ND 24 L14,L15 2 L0805 Samsung CIM21J121NE 120 OHM IGNORE FERRITE CHIP 120OHM 800MA 0805 1276-6333-2-ND 25 XTAL1 1 HC49SM_I CTS ATS250BSM-1E ? CRYSTAL 25.0MHZ 18PF SMD CTX1213CT-ND 26 J12 1 CON_SAMTEC_XXC020DFDNRC ? TSW-120-07-G-D ? 20PINS DOUBLE ROW .100 SAM1028-20-ND 27 U24 1 CON_AGILENT_HFBR-5803-SC Avago HFBR-5803AQZ ? Fast Ethernet Optical Transceiver 516-2346-ND 28 T1 1 SM16 PULSE HX1198FNLT ? 10/100 BASE-T MAGNETICS 553-2209-2-ND 29 L1-L4 4 L0603 Bourns Inc. CI160808-33NJ 33 NH INDUCTOR MULTI LAYER CHIP 33NH CI160808-33NJTR-ND 30 J5,J6,J8,J10,J14 5 JMP02 SAMTEC TSW-102-07-G-S ? CONN HEADER 2POS 0.100" SGL GOLD SAM1029-02-ND 31 LD1-LD5,LD18 6 LED0805 Everlight QTLP630C4TR ? LED GREEN WATER CLR 08050 SMD T/R 1080-1411-2-ND 32 U4 1 SOT-223-5 TI LP3964EMP-3.3/NOPBTR-ND ? IC REG LDO 3.3 0.8A SOT223-5 LP3964EMP-3.3/NOPBTR-ND 24 JEDEC Type Vendor Vendor Part Number Value BOM Ignore SV601037-001 DESCRIPTION Digi-key Number TLK10xLEVM IGNORE IGNORE IGNORE IGNORE IGNORE IGNORE TLK10xL EVM 3.3V CMOS SMD OSCILLATOR WITH STANDBY, 25MHz, 20ppm -40-+85 SLLU200 – July 2014 Submit Documentation Feedback Copyright © 2014, Texas Instruments Incorporated Bill of Materials www.ti.com Table 2. Bill of Materials (continued) S. # Ref Des Qty JEDEC Type Vendor Vendor Part Number Value BOM Ignore DESCRIPTION Digi-key Number 33 C231 1 C6032 VISHAY SPRAGUE 293D106X9025C2TE3 10 UF IGNORE CAP TANT 10UF 25V 10% 2312 718-1050-2-ND 34 C183 1 7343 Kemet T491D227K006AT 220 UF CAP TANT 220UF 6V3 10% 2917 399-8378-2-ND 35 J82 1 CON3 SWITCHCRAFT RAPC712X ? CONN POWERJACK MINI R/A PCMT SC237-ND 36 R60 1 R0603 Samsung ElectroMechanics America, Inc RC1608J103CS 10 K RES 10K OHM 1/10W 5% 0603 1276-5086-2-ND 37 R117 1 R0402 YAGEO RC0402JR-070R 0 RES 0.0 OHM 1/16W JUMP 0402 SMD 311-0.0JRTR-ND 38 R73,R90,R120 3 R0402 YAGEO RC0402JR-070R 0 RES 0.0 OHM 1/16W JUMP 0402 SMD 311-0.0JRTR-ND 39 R1,R22,R23,R32,R33,R5 6R58,R67,R77,R78,R80,R 94,R95,R102,R105,R107R110,R321-R324 24 R0603 Yageo RC0603JR-070RL 0 RES 0.0 OHM 1/10W JUMP 0603 SMD 311-0.0GRTR-ND 40 R13,R14,R34,R59,R62,R 63,R66,R69,R71,R72,R7 9,R88,R89,R101,R103,R 106,R112-R115 20 R0603 Yageo RC0603JR-070RL 0 RES 0.0 OHM 1/10W JUMP 0603 SMD 311-0.0GRTR-ND 41 R2,R3,R15-R21,R24-R31 17 R0402 YAGEO RC0402FR-0733RL 33 RES 33.0 OHM 1/16W 1% 0402 SMD 311-33.0LRTR-ND 42 R5-R8 4 R0603 YAGEO RC0603FR-0775RL 75 RES 75.0 OHM 1/10W 1% 0603 SMD 311-75.0HRTR-ND 43 R338,R340,R395,R397 4 R0603 YAGEO RC0603FR-0782RL 82 IGNORE RES 82.0 OHM 1/10W 1% 0603 SMD 311-82.0HRTR-ND 44 R337,R339,R394,R396 4 R0603 YAGEO RC0603FR-07130RL 130 IGNORE RES 130 OHM 1/10W 1% 0603 SMD 311-7130HRTR-ND 45 R4 1 R0603 YAGEO RC0603FR-07402RL 402 RES 402 OHM 1/10W 1% 0603 SMD 311-402HRTR-ND 46 R42,R45,R46,R49 4 R0603 YAGEO RC0603FR-07470RL 470 RES 470 OHM 1/10W 1% 0603 SMD 311-470HRTR-ND 47 R91 1 R0603 YAGEO RC0603FR-07750RL 750 RES 750 OHM 1/10W 1% 0603 SMD 311-750HRTR-ND 48 R9-R12 4 R0402 YAGEO RC0402FR-0749R9L 49.9 RES 49.9 OHM 1/16W 1% 0402 SMD 311-49.9LRTR-ND 49 R328,R335 2 R0402 YAGEO RC0402FR-0749R9L 49.9 IGNORE RES 49.9 OHM 1/16W 1% 0402 SMD 311-49.9LRTR-ND 50 R81,R104 2 R0603 Samsung ElectroMechanics America, Inc. RC1608J331CS 330 IGNORE RES 330 OHM 1/10W 5% 0603 1276-5050-2-ND 51 R35R38,R43,R44,R47,R48,R 74,R75,R82 11 R0402 YAGEO RC0402FR-072K2L 2.2 K RES 2.20K OHM 1/16W 1% 0402 SMD 311-2.20KLRTR-ND 52 R40,R41,R51,R76 4 R0402 YAGEO RC0402FR-072K2L 2.2 K RES 2.20K OHM 1/16W 1% 0402 SMD 311-2.20KLRTR-ND 53 R96 1 R0603 Yageo RC0603FR-074K87L 4.87 K RES 4.87K OHM 1/10W 1% 0603 SMD 311-4.87KHRTR-ND 54 R68 1 R0603 BOURNS CR0603-JW-472GLF 4.7 K RES 4.7K OHM 1/10W 5% 0603 SMD CR0603-JW-472GLFTR-ND 55 R111 1 R0402 YAGEO RC0402FR-071ML 1M RES 1.00M OHM 1/16W 1% 0402 SMD 311-1.0MLRTR-ND 56 R70 1 R0402 YAGEO RC0402FR-071ML 1M RES 1.00M OHM 1/16W 1% 0402 SMD 311-1.0MLRTR-ND 57 U2 1 CON_RJ45_TE_1-406541-1 TE Connectivity 1-406541-1 ? CONN MOD JACK R/A 8P8C SHIELDED A97716-ND 58 J11,J13 2 CON_SAMTEC_ERM8-05-S-DVTR Samtec ERM8-025-05.0-S-DV-TR ? Connector, 2x50 way Plug 0.8mm board to board socket strip, Male 59 U1 1 QFN50P500X500X100-33 TI TLK105LRHB ? IC TXRX IND ETHERNET PHY 32QFN 60 TP30MIL19,TP30MIL21 2 TH SAMTEC HMTSW-101-07-TM-S-240 ? 61 TP30MIL2 1 TH SAMTEC HMTSW-101-07-TM-S-240 ? IGNORE IGNORE IGNORE IGNORE IGNORE SLLU200 – July 2014 Submit Documentation Feedback TESTPOINT_TH_0.9mm_pad_1.7MM HMTSW-101-07-TM-S-240-ND TESTPOINT_TH_0.9mm_pad_1.7MM HMTSW-101-07-TM-S-240-ND TLK10xL EVM Copyright © 2014, Texas Instruments Incorporated 25 ADDITIONAL TERMS AND CONDITIONS, WARNINGS, RESTRICTIONS, AND DISCLAIMERS FOR EVALUATION MODULES Texas Instruments Incorporated (TI) markets, sells, and loans all evaluation boards, kits, and/or modules (EVMs) pursuant to, and user expressly acknowledges, represents, and agrees, and takes sole responsibility and risk with respect to, the following: 1. User agrees and acknowledges that EVMs are intended to be handled and used for feasibility evaluation only in laboratory and/or development environments. Notwithstanding the foregoing, in certain instances, TI makes certain EVMs available to users that do not handle and use EVMs solely for feasibility evaluation only in laboratory and/or development environments, but may use EVMs in a hobbyist environment. All EVMs made available to hobbyist users are FCC certified, as applicable. Hobbyist users acknowledge, agree, and shall comply with all applicable terms, conditions, warnings, and restrictions in this document and are subject to the disclaimer and indemnity provisions included in this document. 2. Unless otherwise indicated, EVMs are not finished products and not intended for consumer use. EVMs are intended solely for use by technically qualified electronics experts who are familiar with the dangers and application risks associated with handling electrical mechanical components, systems, and subsystems. 3. User agrees that EVMs shall not be used as, or incorporated into, all or any part of a finished product. 4. User agrees and acknowledges that certain EVMs may not be designed or manufactured by TI. 5. User must read the user's guide and all other documentation accompanying EVMs, including without limitation any warning or restriction notices, prior to handling and/or using EVMs. Such notices contain important safety information related to, for example, temperatures and voltages. For additional information on TI's environmental and/or safety programs, please visit www.ti.com/esh or contact TI. 6. User assumes all responsibility, obligation, and any corresponding liability for proper and safe handling and use of EVMs. 7. Should any EVM not meet the specifications indicated in the user’s guide or other documentation accompanying such EVM, the EVM may be returned to TI within 30 days from the date of delivery for a full refund. THE FOREGOING LIMITED WARRANTY IS THE EXCLUSIVE WARRANTY MADE BY TI TO USER AND IS IN LIEU OF ALL OTHER WARRANTIES, EXPRESSED, IMPLIED, OR STATUTORY, INCLUDING ANY WARRANTY OF MERCHANTABILITY OR FITNESS FOR ANY PARTICULAR PURPOSE. TI SHALL NOT BE LIABLE TO USER FOR ANY INDIRECT, SPECIAL, INCIDENTAL, OR CONSEQUENTIAL DAMAGES RELATED TO THE HANDLING OR USE OF ANY EVM. 8. No license is granted under any patent right or other intellectual property right of TI covering or relating to any machine, process, or combination in which EVMs might be or are used. TI currently deals with a variety of customers, and therefore TI’s arrangement with the user is not exclusive. TI assumes no liability for applications assistance, customer product design, software performance, or infringement of patents or services with respect to the handling or use of EVMs. 9. User assumes sole responsibility to determine whether EVMs may be subject to any applicable federal, state, or local laws and regulatory requirements (including but not limited to U.S. Food and Drug Administration regulations, if applicable) related to its handling and use of EVMs and, if applicable, compliance in all respects with such laws and regulations. 10. User has sole responsibility to ensure the safety of any activities to be conducted by it and its employees, affiliates, contractors or designees, with respect to handling and using EVMs. Further, user is responsible to ensure that any interfaces (electronic and/or mechanical) between EVMs and any human body are designed with suitable isolation and means to safely limit accessible leakage currents to minimize the risk of electrical shock hazard. 11. User shall employ reasonable safeguards to ensure that user’s use of EVMs will not result in any property damage, injury or death, even if EVMs should fail to perform as described or expected. 12. User shall be solely responsible for proper disposal and recycling of EVMs consistent with all applicable federal, state, and local requirements. Certain Instructions. User shall operate EVMs within TI’s recommended specifications and environmental considerations per the user’s guide, accompanying documentation, and any other applicable requirements. Exceeding the specified ratings (including but not limited to input and output voltage, current, power, and environmental ranges) for EVMs may cause property damage, personal injury or death. If there are questions concerning these ratings, user should contact a TI field representative prior to connecting interface electronics including input power and intended loads. Any loads applied outside of the specified output range may result in unintended and/or inaccurate operation and/or possible permanent damage to the EVM and/or interface electronics. Please consult the applicable EVM user's guide prior to connecting any load to the EVM output. If there is uncertainty as to the load specification, please contact a TI field representative. During normal operation, some circuit components may have case temperatures greater than 60°C as long as the input and output are maintained at a normal ambient operating temperature. These components include but are not limited to linear regulators, switching transistors, pass transistors, and current sense resistors which can be identified using EVMs’ schematics located in the applicable EVM user's guide. When placing measurement probes near EVMs during normal operation, please be aware that EVMs may become very warm. As with all electronic evaluation tools, only qualified personnel knowledgeable in electronic measurement and diagnostics normally found in development environments should use EVMs. Agreement to Defend, Indemnify and Hold Harmless. User agrees to defend, indemnify, and hold TI, its directors, officers, employees, agents, representatives, affiliates, licensors and their representatives harmless from and against any and all claims, damages, losses, expenses, costs and liabilities (collectively, "Claims") arising out of, or in connection with, any handling and/or use of EVMs. User’s indemnity shall apply whether Claims arise under law of tort or contract or any other legal theory, and even if EVMs fail to perform as described or expected. Safety-Critical or Life-Critical Applications. If user intends to use EVMs in evaluations of safety critical applications (such as life support), and a failure of a TI product considered for purchase by user for use in user’s product would reasonably be expected to cause severe personal injury or death such as devices which are classified as FDA Class III or similar classification, then user must specifically notify TI of such intent and enter into a separate Assurance and Indemnity Agreement. RADIO FREQUENCY REGULATORY COMPLIANCE INFORMATION FOR EVALUATION MODULES Texas Instruments Incorporated (TI) evaluation boards, kits, and/or modules (EVMs) and/or accompanying hardware that is marketed, sold, or loaned to users may or may not be subject to radio frequency regulations in specific countries. General Statement for EVMs Not Including a Radio For EVMs not including a radio and not subject to the U.S. Federal Communications Commission (FCC) or Industry Canada (IC) regulations, TI intends EVMs to be used only for engineering development, demonstration, or evaluation purposes. EVMs are not finished products typically fit for general consumer use. EVMs may nonetheless generate, use, or radiate radio frequency energy, but have not been tested for compliance with the limits of computing devices pursuant to part 15 of FCC or the ICES-003 rules. Operation of such EVMs may cause interference with radio communications, in which case the user at his own expense will be required to take whatever measures may be required to correct this interference. General Statement for EVMs including a radio User Power/Frequency Use Obligations: For EVMs including a radio, the radio included in such EVMs is intended for development and/or professional use only in legally allocated frequency and power limits. Any use of radio frequencies and/or power availability in such EVMs and their development application(s) must comply with local laws governing radio spectrum allocation and power limits for such EVMs. It is the user’s sole responsibility to only operate this radio in legally acceptable frequency space and within legally mandated power limitations. Any exceptions to this are strictly prohibited and unauthorized by TI unless user has obtained appropriate experimental and/or development licenses from local regulatory authorities, which is the sole responsibility of the user, including its acceptable authorization. U.S. Federal Communications Commission Compliance For EVMs Annotated as FCC – FEDERAL COMMUNICATIONS COMMISSION Part 15 Compliant Caution This device complies with part 15 of the FCC Rules. Operation is subject to the following two conditions: (1) This device may not cause harmful interference, and (2) this device must accept any interference received, including interference that may cause undesired operation. Changes or modifications could void the user's authority to operate the equipment. FCC Interference Statement for Class A EVM devices This equipment has been tested and found to comply with the limits for a Class A digital device, pursuant to part 15 of the FCC Rules. These limits are designed to provide reasonable protection against harmful interference when the equipment is operated in a commercial environment. This equipment generates, uses, and can radiate radio frequency energy and, if not installed and used in accordance with the instruction manual, may cause harmful interference to radio communications. Operation of this equipment in a residential area is likely to cause harmful interference in which case the user will be required to correct the interference at its own expense. FCC Interference Statement for Class B EVM devices This equipment has been tested and found to comply with the limits for a Class B digital device, pursuant to part 15 of the FCC Rules. These limits are designed to provide reasonable protection against harmful interference in a residential installation. This equipment generates, uses and can radiate radio frequency energy and, if not installed and used in accordance with the instructions, may cause harmful interference to radio communications. However, there is no guarantee that interference will not occur in a particular installation. If this equipment does cause harmful interference to radio or television reception, which can be determined by turning the equipment off and on, the user is encouraged to try to correct the interference by one or more of the following measures: • Reorient or relocate the receiving antenna. • Increase the separation between the equipment and receiver. • Connect the equipment into an outlet on a circuit different from that to which the receiver is connected. • Consult the dealer or an experienced radio/TV technician for help. Industry Canada Compliance (English) For EVMs Annotated as IC – INDUSTRY CANADA Compliant: This Class A or B digital apparatus complies with Canadian ICES-003. Changes or modifications not expressly approved by the party responsible for compliance could void the user’s authority to operate the equipment. Concerning EVMs Including Radio Transmitters This device complies with Industry Canada licence-exempt RSS standard(s). Operation is subject to the following two conditions: (1) this device may not cause interference, and (2) this device must accept any interference, including interference that may cause undesired operation of the device. Concerning EVMs Including Detachable Antennas Under Industry Canada regulations, this radio transmitter may only operate using an antenna of a type and maximum (or lesser) gain approved for the transmitter by Industry Canada. To reduce potential radio interference to other users, the antenna type and its gain should be so chosen that the equivalent isotropically radiated power (e.i.r.p.) is not more than that necessary for successful communication. This radio transmitter has been approved by Industry Canada to operate with the antenna types listed in the user guide with the maximum permissible gain and required antenna impedance for each antenna type indicated. Antenna types not included in this list, having a gain greater than the maximum gain indicated for that type, are strictly prohibited for use with this device. Canada Industry Canada Compliance (French) Cet appareil numérique de la classe A ou B est conforme à la norme NMB-003 du Canada Les changements ou les modifications pas expressément approuvés par la partie responsable de la conformité ont pu vider l’autorité de l'utilisateur pour actionner l'équipement. Concernant les EVMs avec appareils radio Le présent appareil est conforme aux CNR d'Industrie Canada applicables aux appareils radio exempts de licence. L'exploitation est autorisée aux deux conditions suivantes : (1) l'appareil ne doit pas produire de brouillage, et (2) l'utilisateur de l'appareil doit accepter tout brouillage radioélectrique subi, même si le brouillage est susceptible d'en compromettre le fonctionnement. Concernant les EVMs avec antennes détachables Conformément à la réglementation d'Industrie Canada, le présent émetteur radio peut fonctionner avec une antenne d'un type et d'un gain maximal (ou inférieur) approuvé pour l'émetteur par Industrie Canada. Dans le but de réduire les risques de brouillage radioélectrique à l'intention des autres utilisateurs, il faut choisir le type d'antenne et son gain de sorte que la puissance isotrope rayonnée équivalente (p.i.r.e.) ne dépasse pas l'intensité nécessaire à l'établissement d'une communication satisfaisante. Le présent émetteur radio a été approuvé par Industrie Canada pour fonctionner avec les types d'antenne énumérés dans le manuel d’usage et ayant un gain admissible maximal et l'impédance requise pour chaque type d'antenne. Les types d'antenne non inclus dans cette liste, ou dont le gain est supérieur au gain maximal indiqué, sont strictement interdits pour l'exploitation de l'émetteur. Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265 Copyright © 2014, Texas Instruments Incorporated spacer Important Notice for Users of EVMs Considered “Radio Frequency Products” in Japan EVMs entering Japan are NOT certified by TI as conforming to Technical Regulations of Radio Law of Japan. If user uses EVMs in Japan, user is required by Radio Law of Japan to follow the instructions below with respect to EVMs: 1. 2. 3. Use EVMs in a shielded room or any other test facility as defined in the notification #173 issued by Ministry of Internal Affairs and Communications on March 28, 2006, based on Sub-section 1.1 of Article 6 of the Ministry’s Rule for Enforcement of Radio Law of Japan, Use EVMs only after user obtains the license of Test Radio Station as provided in Radio Law of Japan with respect to EVMs, or Use of EVMs only after user obtains the Technical Regulations Conformity Certification as provided in Radio Law of Japan with respect to EVMs. Also, do not transfer EVMs, unless user gives the same notice above to the transferee. Please note that if user does not follow the instructions above, user will be subject to penalties of Radio Law of Japan. http://www.tij.co.jp 【無線電波を送信する製品の開発キットをお使いになる際の注意事項】 本開発キットは技術基準適合証明を受けておりません。 本製品の ご使用に際しては、電波法遵守のため、以下のいずれかの措置を取っていただく必要がありますのでご注意ください。 1. 2. 3. 電波法施行規則第6条第1項第1号に基づく平成18年3月28日総務省告示第173号で定められた電波暗室等の試験設備でご使用いただく。 実験局の免許を取得後ご使用いただく。 技術基準適合証明を取得後ご使用いただく。。 なお、本製品は、上記の「ご使用にあたっての注意」を譲渡先、移転先に通知しない限り、譲渡、移転できないものとします 上記を遵守頂けない場合は、電波法の罰則が適用される可能性があることをご留意ください。 日本テキサス・インスツルメンツ株式会社 東京都新宿区西新宿6丁目24番1号 西新宿三井ビル http://www.tij.co.jp Texas Instruments Japan Limited (address) 24-1, Nishi-Shinjuku 6 chome, Shinjuku-ku, Tokyo, Japan IMPORTANT NOTICE Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, enhancements, improvements and other changes to its semiconductor products and services per JESD46, latest issue, and to discontinue any product or service per JESD48, latest issue. Buyers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. All semiconductor products (also referred to herein as “components”) are sold subject to TI’s terms and conditions of sale supplied at the time of order acknowledgment. TI warrants performance of its components to the specifications applicable at the time of sale, in accordance with the warranty in TI’s terms and conditions of sale of semiconductor products. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where mandated by applicable law, testing of all parameters of each component is not necessarily performed. TI assumes no liability for applications assistance or the design of Buyers’ products. Buyers are responsible for their products and applications using TI components. To minimize the risks associated with Buyers’ products and applications, Buyers should provide adequate design and operating safeguards. TI does not warrant or represent that any license, either express or implied, is granted under any patent right, copyright, mask work right, or other intellectual property right relating to any combination, machine, or process in which TI components or services are used. Information published by TI regarding third-party products or services does not constitute a license to use such products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI. Reproduction of significant portions of TI information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. TI is not responsible or liable for such altered documentation. Information of third parties may be subject to additional restrictions. Resale of TI components or services with statements different from or beyond the parameters stated by TI for that component or service voids all express and any implied warranties for the associated TI component or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements. Buyer acknowledges and agrees that it is solely responsible for compliance with all legal, regulatory and safety-related requirements concerning its products, and any use of TI components in its applications, notwithstanding any applications-related information or support that may be provided by TI. Buyer represents and agrees that it has all the necessary expertise to create and implement safeguards which anticipate dangerous consequences of failures, monitor failures and their consequences, lessen the likelihood of failures that might cause harm and take appropriate remedial actions. Buyer will fully indemnify TI and its representatives against any damages arising out of the use of any TI components in safety-critical applications. In some cases, TI components may be promoted specifically to facilitate safety-related applications. With such components, TI’s goal is to help enable customers to design and create their own end-product solutions that meet applicable functional safety standards and requirements. Nonetheless, such components are subject to these terms. No TI components are authorized for use in FDA Class III (or similar life-critical medical equipment) unless authorized officers of the parties have executed a special agreement specifically governing such use. Only those TI components which TI has specifically designated as military grade or “enhanced plastic” are designed and intended for use in military/aerospace applications or environments. Buyer acknowledges and agrees that any military or aerospace use of TI components which have not been so designated is solely at the Buyer's risk, and that Buyer is solely responsible for compliance with all legal and regulatory requirements in connection with such use. TI has specifically designated certain components as meeting ISO/TS16949 requirements, mainly for automotive use. In any case of use of non-designated products, TI will not be responsible for any failure to meet ISO/TS16949. Products Applications Audio www.ti.com/audio Automotive and Transportation www.ti.com/automotive Amplifiers amplifier.ti.com Communications and Telecom www.ti.com/communications Data Converters dataconverter.ti.com Computers and Peripherals www.ti.com/computers DLP® Products www.dlp.com Consumer Electronics www.ti.com/consumer-apps DSP dsp.ti.com Energy and Lighting www.ti.com/energy Clocks and Timers www.ti.com/clocks Industrial www.ti.com/industrial Interface interface.ti.com Medical www.ti.com/medical Logic logic.ti.com Security www.ti.com/security Power Mgmt power.ti.com Space, Avionics and Defense www.ti.com/space-avionics-defense Microcontrollers microcontroller.ti.com Video and Imaging www.ti.com/video RFID www.ti-rfid.com OMAP Applications Processors www.ti.com/omap TI E2E Community e2e.ti.com Wireless Connectivity www.ti.com/wirelessconnectivity Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265 Copyright © 2014, Texas Instruments Incorporated
TLK105LEVM 价格&库存

很抱歉,暂时无法提供与“TLK105LEVM”相匹配的价格&库存,您可以联系我们找货

免费人工找货