0
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
创作中心
发布
  • 发文章

  • 发资料

  • 发帖

  • 提问

  • 发视频

创作活动
TLV2374QPWRG4Q1

TLV2374QPWRG4Q1

  • 厂商:

    BURR-BROWN(德州仪器)

  • 封装:

    TSSOP14

  • 描述:

    TLV2374-Q1 QUAD AUTOMOTIVE 550-U

  • 数据手册
  • 价格&库存
TLV2374QPWRG4Q1 数据手册
Sample & Buy Product Folder Technical Documents Support & Community Tools & Software TLV2371-Q1, TLV2372-Q1, TLV2374-Q1 SGLS244B – MAY 2004 – REVISED DECEMBER 2016 TLV237x-Q1 550-µA/Channel, 3-MHz Rail-to-Rail Input and Output Operational Amplifiers 1 Features 3 Description • • The TLV237x-Q1 devices are single-supply operational amplifiers providing rail-to-rail input and output capability. The TLV237x-Q1 takes the minimum operating supply voltage down to 2.7 V and up to 16 V over the extended automotive temperature range. Therefore, the wide voltage range can support both start-stop functionality and a connection directly to the typical 12-V battery. The rail-to-rail capabilities allow the device to maximize the output signal and avoid clipping. 1 • • • • • • • • Qualified for Automotive Applications AEC-Q100 Qualified With the Following Results: – Device Temperature Grade 1: –40°C to 125°C Ambient Operating Temperature Range – Device HBM ESD Classification Level 2 – Device CDM ESD Classification Level C4B Rail-to-Rail Input and Output Wide Bandwidth: 3 MHz High Slew Rate: 2.4 V/µs Supply Voltage Range: 2.7 V to 16 V Supply Current: 550 µA/Channel Input Noise Voltage: 39 nV/√Hz Input Bias Current: 1 pA Ultra-Small Packaging: – 5-Pin SOT-23 (TLV2371-Q1) Additionally, the TLV237x-Q1 family supports a high common-mode rail to the supply voltage. This feature sets no gain limitations and can support the input at any level without the concern for any phase reversal. 2 Applications • • • • • • The CMOS inputs enable high-impedance suitable for engine control units (ECU), body control modules (BCM), battery management systems (BMS), and HEV/EV inverters. This also allows the user to draw a lower offset voltage and maintain low power consumption to help meet overall system needs for quiescent current such as in infotainment or cluster, HEV/EV, and powertrain. Engine Control Units (ECU) Body Control Modules (BCM) Battery Management Systems HEV/EV Inverters Lane Departure Warning White Goods Device Information(1) PART NUMBER TLV2371-Q1 TLV2372-Q1 TLV2374-Q1 PACKAGE BODY SIZE (NOM) SOT-23 (5) 2.90 mm × 1.60 mm SOIC (8) 4.90 mm × 3.91 mm SOIC (8) 4.90 mm × 3.91 mm SOIC (14) 8.65 mm × 3.91 mm TSSOP (14) 5.00 mm × 4.40 mm (1) For all available packages, see the orderable addendum at the end of the data sheet. Output Voltage vs Differential Input in High Current Sensing 12 11 Output Voltage in Volts 10 9 8 7 6 5 4 3 2 VOUT in Volts VOUT Ideal 1 0 0 100 200 300 400 500 Voltage Across The Sense Resistor in mV 600 D001 1 An IMPORTANT NOTICE at the end of this data sheet addresses availability, warranty, changes, use in safety-critical applications, intellectual property matters and other important disclaimers. PRODUCTION DATA. TLV2371-Q1, TLV2372-Q1, TLV2374-Q1 SGLS244B – MAY 2004 – REVISED DECEMBER 2016 www.ti.com Table of Contents 1 2 3 4 5 6 7 8 Features .................................................................. Applications ........................................................... Description ............................................................. Revision History..................................................... Device Comparison Table..................................... Pin Configuration and Functions ......................... Specifications......................................................... 1 1 1 2 3 3 5 7.1 7.2 7.3 7.4 7.5 7.6 7.7 7.8 5 5 5 6 6 6 6 9 Absolute Maximum Ratings ...................................... ESD Ratings.............................................................. Recommended Operating Conditions....................... Thermal Information: TLV2371-Q1 ........................... Thermal Information: TLV2372-Q1 ........................... Thermal Information: TLV2374-Q1 ........................... Electrical Characteristics........................................... Typical Characteristics .............................................. Detailed Description ............................................ 15 8.1 Overview ................................................................. 15 8.2 Functional Block Diagram ....................................... 15 8.3 Feature Description................................................. 15 8.4 Device Functional Modes........................................ 17 9 Application and Implementation ........................ 18 9.1 Application Information............................................ 18 9.2 Typical Applications ................................................ 18 10 Power Supply Recommendations ..................... 21 11 Layout................................................................... 22 11.1 Layout Guidelines ................................................. 22 11.2 Layout Examples................................................... 23 11.3 Power Dissipation Considerations ........................ 23 12 Device and Documentation Support ................. 24 12.1 12.2 12.3 12.4 12.5 12.6 Related Links ........................................................ Receiving Notification of Documentation Updates Community Resources.......................................... Trademarks ........................................................... Electrostatic Discharge Caution ............................ Glossary ................................................................ 24 24 24 24 24 24 13 Mechanical, Packaging, and Orderable Information ........................................................... 24 4 Revision History NOTE: Page numbers for previous revisions may differ from page numbers in the current version. Changes from Revision A (June 2008) to Revision B Page • Added ESD Ratings table, Feature Description section, Device Functional Modes, Application and Implementation section, Power Supply Recommendations section, Layout section, Device and Documentation Support section, and Mechanical, Packaging, and Orderable Information section .................................................................................................. 1 • Deleted 8-Pin MSOP (TLV2372) because the TLV2372-Q1 is not available in MSOP; also removed all references throughout the data sheet....................................................................................................................................................... 1 • Changed list items in Applications ......................................................................................................................................... 1 • Removed Family Package and Available Options tables, see POA at the end of the data sheet ........................................ 1 • Renamed Selection of Signal Amplifier Products table toDevice Comparison Table ............................................................ 3 • Changed SHUTDOWN for the TLV237x in the Device Comparison Table From: Yes To: —............................................... 3 • Changed IIB (pA) for the TLV246x in the Device Comparison Table From: 1300 To: 1.3...................................................... 3 • Changed SHUTDOWN for the TLV237x in the Device Comparison Table From: Yes To: —............................................... 3 • Changed GND DESCRIPTION in Pin Functions: TLV2371-Q1 From: Ground connection To: Negative (lowest) power supply........................................................................................................................................................................... 3 • Changed GND DESCRIPTION in Pin Functions: TLV2372-Q1 From: Ground connection To: Negative (lowest) power supply........................................................................................................................................................................... 4 • Removed Typical Pin 1 Indicators image .............................................................................................................................. 4 • Changed GND DESCRIPTION in Pin Functions: TLV2374-Q1 From: Ground connection To: Negative (lowest) power supply........................................................................................................................................................................... 4 • Deleted Lead temperature (260°C maximum)........................................................................................................................ 5 • Added additional thermal values to all Thermal Information tables........................................................................................ 6 • Changed RθJA values in Thermal Information: TLV2371-Q1 From: 325.1 To: 228.5 (DBV) and From: 176 To: 138.4 (D) ... 6 • Changed RθJA value in Thermal Information: TLV2372-Q1 From: 176 To: 138.4 (D) ............................................................ 6 • Deleted entire DGK (MSOP) column from Thermal Information: TLV2372-Q1 ..................................................................... 6 • Changed RθJA values in Thermal Information: TLV2374-Q1 From: 122.3 To: 67 (D) and From: 173.6 To: 121 (PW) .......... 6 • Deleted Maximum Power Dissipation vs Free-Air Temperature graph ................................................................................ 23 2 Submit Documentation Feedback Copyright © 2004–2016, Texas Instruments Incorporated Product Folder Links: TLV2371-Q1 TLV2372-Q1 TLV2374-Q1 TLV2371-Q1, TLV2372-Q1, TLV2374-Q1 www.ti.com SGLS244B – MAY 2004 – REVISED DECEMBER 2016 5 Device Comparison Table Typical values measured at 5 V and 25°C DEVICE VDD (V) VIO (µV) Iq/Ch (µA) IIB (pA) GBW (MHz) SR (V/µs) SHUTDOWN RAIL-TORAIL SINGLES, DUALS, QUADS TLV237x-Q1 2.7 to 16 500 550 1 3 2.4 — I/O S, D, Q TLC227x-Q1 4 to 16 300 1100 1 2.2 3.6 — O D, Q TLV27x-Q1 2.7 to 16 500 550 1 3 2.4 — O S, D, Q TLV246x-Q1 2.7 to 6 150 550 1.3 6.4 1.6 Yes I/O S, D, Q TLV247x-Q1 2.7 to 6 250 600 2 2.8 1.5 — I/O S, D, Q TLV244x-Q1 2.7 to 10 300 725 1 1.8 1.4 — O D, Q 6 Pin Configuration and Functions TLV2371-Q1 DBV Package 5-Pin SOT-23 Top View OUT 1 GND 2 IN+ 3 TLV2371-Q1 D Package 8-Pin SOIC Top View VDD 5 4 NC IN − IN + GND IN − 1 8 2 7 3 6 4 5 NC VDD OUT NC Pin Functions: TLV2371-Q1 PIN NAME I/O DESCRIPTION SOT-23 SOIC GND 2 4 — IN– 4 2 I Negative (inverting) input Positive (noninverting) input Negative (lowest) power supply IN+ 3 3 I NC — 1, 5, 8 — No internal connection (can be left floating) OUT 1 6 O Output VDD 5 7 — Positive power supply Copyright © 2004–2016, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: TLV2371-Q1 TLV2372-Q1 TLV2374-Q1 3 TLV2371-Q1, TLV2372-Q1, TLV2374-Q1 SGLS244B – MAY 2004 – REVISED DECEMBER 2016 www.ti.com TLV2372-Q1 D Package 8-Pin SOIC Top View 1OUT 1IN − 1IN + GND 1 8 2 7 3 6 4 5 VDD 2OUT 2IN − 2IN+ Pin Functions: TLV2372-Q1 PIN NAME I/O NO. DESCRIPTION 1IN– 2 I Inverting input, channel 1 1IN+ 3 I Noninverting input, channel 1 1OUT 1 O Output, channel 1 2IN– 6 I Inverting input, channel 2 2IN+ 5 I Noninverting input, channel 2 2OUT 7 O Output, channel 2 GND 4 — Negative (lowest) power supply VDD 8 — Positive power supply TLV2374-Q1 D and PW Packages 14-Pin SOIC or TSSOP Top View 1OUT 1IN − 1IN+ VDD 2IN+ 2IN − 2OUT 1 14 2 13 3 12 4 11 5 10 6 9 7 8 4OUT 4IN − 4IN+ GND 3IN+ 3IN − 3OUT Pin Functions: TLV2374-Q1 PIN NAME NO. I/O DESCRIPTION 1IN– 2 I Inverting input, channel 1 1IN+ 3 I Noninverting input, channel 1 1OUT 1 O Output, channel 1 2IN– 6 I Inverting input, channel 2 2IN+ 5 I Noninverting input, channel 2 2OUT 7 O Output, channel 2 3IN– 9 I Inverting input, channel 3 3IN+ 10 I Noninverting input, channel 3 3OUT 8 O Output, channel 3 4IN– 13 I Inverting input, channel 4 4IN+ 12 I Noninverting input, channel 4 4OUT 14 O Output, channel 4 GND 11 — Negative (lowest) power supply VDD 4 — Positive power supply 4 Submit Documentation Feedback Copyright © 2004–2016, Texas Instruments Incorporated Product Folder Links: TLV2371-Q1 TLV2372-Q1 TLV2374-Q1 TLV2371-Q1, TLV2372-Q1, TLV2374-Q1 www.ti.com SGLS244B – MAY 2004 – REVISED DECEMBER 2016 7 Specifications 7.1 Absolute Maximum Ratings over operating free-air temperature range (unless otherwise noted) (1) MIN Supply voltage, VDD Differential input voltage, VID MAX UNIT 16.5 V ±VDD Input voltage, VI –0.2 VDD + 0.2 V Input current, II ±10 mA Output current, IO ±100 mA Maximum junction temperature, TJ 150 °C 150 °C Storage temperature, Tstg (1) –65 Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings only, which do not imply functional operation of the device at these or any other conditions beyond those indicated under Recommended Operating Conditions. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability. 7.2 ESD Ratings VALUE UNIT TLV2371-Q1 in DBV package Human-body model (HBM), per AEC Q100-002 (1) V(ESD) Electrostatic discharge Charged-device model (CDM), per AEC Q100-011 All pins ±2000 All pins ±500 Corner pins (1, 3, 4, and 5) ±750 All pins ±2000 All pins ±500 Corner pins (1, 4, 5, and 8) ±750 All pins ±2000 All pins ±500 Corner pins (1, 4, 5, and 8) ±750 All pins ±2000 All pins ±500 Corner pins (1, 7, 8, and 14) ±750 V TLV2371-Q1 in D package Human-body model (HBM), per AEC Q100-002 (1) V(ESD) Electrostatic discharge Charged-device model (CDM), per AEC Q100-011 V TLV2372-Q1 in D package Human-body model (HBM), per AEC Q100-002 (1) V(ESD) Electrostatic discharge Charged-device model (CDM), per AEC Q100-011 V TLV2374-Q1 in D and PW packages Human-body model (HBM), per AEC Q100-002 (1) V(ESD) (1) Electrostatic discharge Charged-device model (CDM), per AEC Q100-011 V AEC Q100-002 indicates that HBM stressing shall be in accordance with the ANSI/ESDA/JEDEC JS-001 specification. 7.3 Recommended Operating Conditions over operating free-air temperature range (unless otherwise noted) Single supply MIN MAX 2.7 16 ±1.35 ±8 0 VDD V 2 V 125 °C VDD Supply voltage VICR Common-mode input voltage V(ON) Turnon voltage level (relative to GND pin voltage) V(OFF) Turnoff voltage level (relative to GND pin voltage) 0.8 TA Operating free-air temperature (Q-suffix) –40 Split supply Copyright © 2004–2016, Texas Instruments Incorporated UNIT V Submit Documentation Feedback Product Folder Links: TLV2371-Q1 TLV2372-Q1 TLV2374-Q1 V 5 TLV2371-Q1, TLV2372-Q1, TLV2374-Q1 SGLS244B – MAY 2004 – REVISED DECEMBER 2016 www.ti.com 7.4 Thermal Information: TLV2371-Q1 TLV2371-Q1 THERMAL METRIC (1) DBV (SOT-23) D (SOIC) 5 PINS 8 PINS UNIT RθJA Junction-to-ambient thermal resistance 228.5 138.4 °C/W RθJC(top) Junction-to-case (top) thermal resistance 99.1 89.5 °C/W RθJB Junction-to-board thermal resistance 54.6 78.6 °C/W ψJT Junction-to-top characterization parameter 7.7 29.9 °C/W ψJB Junction-to-board characterization parameter 53.8 78.1 °C/W RθJC(bot) Junction-to-case (bottom) thermal resistance — — °C/W (1) For more information about traditional and new thermal metrics, see the Semiconductor and IC Package Thermal Metrics application report. 7.5 Thermal Information: TLV2372-Q1 TLV2372-Q1 THERMAL METRIC (1) D (SOIC) UNIT 8 PINS RθJA Junction-to-ambient thermal resistance 138.4 °C/W RθJC(top) Junction-to-case (top) thermal resistance 89.5 °C/W RθJB Junction-to-board thermal resistance 78.6 °C/W ψJT Junction-to-top characterization parameter 29.9 °C/W ψJB Junction-to-board characterization parameter 78.1 °C/W RθJC(bot) Junction-to-case (bottom) thermal resistance — °C/W (1) For more information about traditional and new thermal metrics, see the Semiconductor and IC Package Thermal Metrics application report. 7.6 Thermal Information: TLV2374-Q1 TLV2374-Q1 THERMAL METRIC (1) D (SOIC) PW (TSSOP) 14 PINS 14 PINS UNIT RθJA Junction-to-ambient thermal resistance 67 121 °C/W RθJC(top) Junction-to-case (top) thermal resistance 24.1 49.4 °C/W RθJB Junction-to-board thermal resistance 22.5 62.8 °C/W ψJT Junction-to-top characterization parameter 2.2 5.9 °C/W ψJB Junction-to-board characterization parameter 22.1 62.2 °C/W RθJC(bot) Junction-to-case (bottom) thermal resistance — — °C/W (1) For more information about traditional and new thermal metrics, see the Semiconductor and IC Package Thermal Metrics application report. 7.7 Electrical Characteristics at specified free-air temperature, VDD = 2.7 V, 5 V, and 15 V (unless otherwise noted) PARAMETER TEST CONDITIONS MIN TYP MAX 2 4.5 UNIT DC PERFORMANCE TA = 25°C VIO Input offset voltage VIC = VDD/2, VO = VDD/2, RS = 50 Ω αVIO Offset voltage drift VIC = VDD/2, VO = VDD/2, RS = 50 Ω, TA = 25°C 6 Submit Documentation Feedback TA = –40°C to 125°C 6 2 mV µV/°C Copyright © 2004–2016, Texas Instruments Incorporated Product Folder Links: TLV2371-Q1 TLV2372-Q1 TLV2374-Q1 TLV2371-Q1, TLV2372-Q1, TLV2374-Q1 www.ti.com SGLS244B – MAY 2004 – REVISED DECEMBER 2016 Electrical Characteristics (continued) at specified free-air temperature, VDD = 2.7 V, 5 V, and 15 V (unless otherwise noted) PARAMETER TEST CONDITIONS VDD = 2.7 V CMRR Common-mode rejection ratio VDD = 5 V VDD = 15 V Large-signal differential VO(PP) = VDD/2, voltage amplification RS = 10 Ω TYP 68 VIC = 0 to VDD, RS = 50 Ω TA = 25°C 50 TA = –40°C to 125°C 49 VIC = 0 to VDD – 1.35 V, RS = 50 Ω TA = 25°C 53 TA = –40°C to 125°C 54 VIC = 0 to VDD, RS = 50 Ω TA = 25°C 55 TA = –40°C to 125°C 54 VIC = 0 to VDD – 1.35 V, RS = 50 Ω TA = 25°C 58 TA = –40°C to 125°C 57 VIC = 0 to VDD, RS = 50 Ω TA = 25°C 64 TA = –40°C to 125°C 63 VIC = 0 to VDD – 1.35 V, RS = 50 Ω TA = 25°C 67 TA = –40°C to 125°C 66 TA = 25°C 95 TA = –40°C to 125°C 76 TA = 25°C 80 TA = –40°C to 125°C 82 TA = 25°C 77 TA = –40°C to 125°C 79 VDD = 2.7 V AVD MIN VDD = 5 V VDD = 15 V MAX UNIT 70 72 dB 80 82 84 106 110 dB 83 INPUT IIO Input offset current VDD = 15 V, VIC = VDD/2, VO = VDD/2 IIB Input bias current VDD = 15 V, VIC = VDD/2, VO = VDD/2 ri(d) Differential input resistance TA = 25°C CIC Common-mode input capacitance f = 21 kHz, TA = 25°C TA = 25°C 1 TA = –40°C to 125°C 60 500 TA = 25°C 1 TA = –40°C to 125°C 60 500 pA pA 1000 GΩ 8 pF OUTPUT VDD = 2.7 V VIC = VDD/2, IOH = –1 mA, VID = 1 V VDD = 5 V VDD = 15 V VOH High-level output voltage VDD = 2.7 V VIC = VDD/2, IOH = –5 mA, VID = 1 V VDD = 5 V VDD = 15 V Copyright © 2004–2016, Texas Instruments Incorporated TA = 25°C 2.55 TA = –40°C to 125°C 2.48 TA = 25°C 4.9 TA = –40°C to 125°C 2.58 4.93 4.85 TA = 25°C 14.92 TA = –40°C to 125°C 14.9 TA = 25°C 1.88 TA = –40°C to 125°C 1.42 TA = 25°C 4.58 TA = –40°C to 125°C 4.44 TA = 25°C 14.7 TA = –40°C to 125°C 14.6 14.96 2 4.68 14.8 Submit Documentation Feedback Product Folder Links: TLV2371-Q1 TLV2372-Q1 TLV2374-Q1 V 7 TLV2371-Q1, TLV2372-Q1, TLV2374-Q1 SGLS244B – MAY 2004 – REVISED DECEMBER 2016 www.ti.com Electrical Characteristics (continued) at specified free-air temperature, VDD = 2.7 V, 5 V, and 15 V (unless otherwise noted) PARAMETER TEST CONDITIONS VDD = 2.7 V VIC = VDD/2, IOH = 1 mA, VID = 1 V VDD = 5 V VDD = 15 V VOL Low-level output voltage VDD = 2.7 V VIC = VDD/2, IOH = 5 mA, VID = 1 V VDD = 5 V VDD = 15 V MIN TA = 25°C TYP MAX 0.1 0.15 TA = –40°C to 125°C UNIT 0.22 TA = 25°C 0.05 TA = –40°C to 125°C 0.1 0.15 TA = 25°C 0.05 TA = –40°C to 125°C 0.08 0.1 TA = 25°C 0.52 TA = –40°C to 125°C 0.7 V 1.15 TA = 25°C 0.28 TA = –40°C to 125°C 0.4 0.54 TA = 25°C 0.19 TA = –40°C to 125°C 0.3 0.35 POWER SUPPLY IDD Supply current (per channel) VO = VDD/2 VDD = 2.7 V TA = 25°C 470 560 VDD = 5 V TA = 25°C 550 660 TA = 25°C 750 900 VDD = 15 V PSRR Supply voltage rejection ratio (ΔVDD/ΔVIO) VDD = 2.7 V to 15 V, VIC = VDD/2, no load TA = –40°C to 125°C µA 1200 TA = 25°C 70 TA = –40°C to 125°C 65 80 dB DYNAMIC PERFORMANCE VDD = 2.7 V, TA = 25°C UGBW Unity gain bandwidth RL = 2 kΩ, CL = 10 pF VDD = 2.7 V SR Slew rate at unity gain VO(PP) = VDD/2, RL = 10 kΩ, CL = 50 pF VDD = 5 V VDD = 15 V φm ts 2.4 VDD = 5 V to 15 V, TA = 25°C TA = 25°C 3 1.4 TA = –40°C to 125°C 2 1 TA = 25°C 1.4 TA = –40°C to 125°C 1.2 TA = 25°C 1.9 TA = –40°C to 125°C 1.4 2.4 RL = 2 kΩ, CL = 100 pF, TA = 25°C 65° Gain margin RL = 2 kΩ, CL = 10 pF, TA = 25°C 18 VDD = 2.7 V, V(STEP)PP = 1 V, AV = –1, RL = 2 kΩ, CL = 10 pF, 0.1% at 25°C 2.9 VDD = 5 V or 15 V, V(STEP)PP = 1 V, AV = –1, RL = 2 kΩ, CL = 47 pF, 0.1% at 25°C V/µs 2.1 Phase margin Settling time MHz dB µs 2 NOISE/DISTORTION PERFORMANCE VDD = 2.7 V, VO(PP) = VDD/2 V, RL = 2 kΩ, f = 10 kHz, TA = 25°C THD+N Total harmonic distortion plus noise VDD = 5 V or 15 V, VO(PP) = VDD/2 V, RL = 2 kΩ, f = 10 kHz, TA = 25°C Vn Equivalent input noise voltage In Equivalent input noise current 8 AV = 1 0.02% AV = 10 0.05% AV = 100 0.18% AV = 1 0.02% AV = 10 0.09% AV = 100 0.5% f = 1 kHz, TA = 25°C 39 f = 10 kHz, TA = 25°C 35 f = 1 kHz, TA = 25°C 0.6 Submit Documentation Feedback nV√Hz fA√Hz Copyright © 2004–2016, Texas Instruments Incorporated Product Folder Links: TLV2371-Q1 TLV2372-Q1 TLV2374-Q1 TLV2371-Q1, TLV2372-Q1, TLV2374-Q1 www.ti.com SGLS244B – MAY 2004 – REVISED DECEMBER 2016 7.8 Typical Characteristics Table 1. Table of Graphs FIGURE VIO Input offset voltage vs Common-mode input voltage CMRR Common-mode rejection ratio vs Frequency Figure 1, Figure 2, Figure 3 Figure 4 Input bias and offset current vs Free-air temperature VOL Low-level output voltage vs Low-level output current Figure 6, Figure 8, Figure 10 VOH High-level output voltage vs High-level output current Figure 7, Figure 9, Figure 11 VO(PP) Peak-to-peak output voltage vs Frequency Figure 12 IDD Supply current vs Supply voltage Figure 13 PSRR Power supply rejection ratio vs Frequency Figure 14 AVD Differential voltage gain & phase vs Frequency Figure 15 Gain-bandwidth product vs Free-air temperature Figure 16 vs Supply voltage Figure 17 vs Free-air temperature Figure 18 Figure 19 SR Slew rate φm Phase margin vs Capacitive load Vn Equivalent input noise voltage vs Frequency Figure 5 Figure 20 Voltage-follower large-signal pulse response Figure 21, Figure 22 Voltage-follower small-signal pulse response Figure 23 Inverting large-signal response Figure 24, Figure 25 Inverting small-signal response Figure 26 Crosstalk vs Frequency Figure 27 1000 VDD = 2.7 V TA = 25°C 800 V IO − Input Offset Voltage − µV V IO − Input Offset Voltage − µV 1000 600 400 200 0 −200 VDD = 5 V TA = 25 °C 800 600 400 200 0 −200 0 0.4 0.8 1.2 1.6 2 2.4 2.7 VICR − Common-Mode Input Voltage − V 1 2 3 4 5 VICR − Common-Mode Input Voltage − V Figure 1. Input Offset Voltage vs Common-Mode Input Voltage Figure 2. Input Offset Voltage vs Common-Mode Input Voltage Copyright © 2004–2016, Texas Instruments Incorporated 0 Submit Documentation Feedback Product Folder Links: TLV2371-Q1 TLV2372-Q1 TLV2374-Q1 9 TLV2371-Q1, TLV2372-Q1, TLV2374-Q1 www.ti.com V IO − Input Offset Voltage − µV 1000 VDD =15 V TA = 25 °C 800 600 400 200 0 −200 2 4 6 8 10 12 14 15 120 100 VDD = 5 V, 15 V 80 60 40 20 0 10 1k 100 k 10 k 1M Figure 3. Input Offset Voltage vs Common-Mode Input Voltage Figure 4. Common-Mode Rejection Ratio vs Frequency 300 2.80 VDD = 2.7 V, 5 V and 15 V VIC = VDD/2 250 200 150 100 50 0 VDD = 2.7 V 2.40 TA = 125 °C 2 1.60 1.20 TA = 70 °C TA = 25 °C 0.80 TA = 0 °C 0.40 TA = 40 °C 0 −40 −25 −10 5 20 35 50 65 80 95 110 125 0 TA − Free-Air Temperature − °C Figure 5. Input Bias and Offset Current vs Free-Air Temperature 2 4 6 8 10 12 14 16 18 20 22 24 IOL − Low-Level Output Current − mA Figure 6. Low-Level Output Voltage vs Low-Level Output Current 2.80 5 VDD = 2.7 V 2.40 TA =−40°C 2 TA = 125°C 1.60 TA = 70°C 1.20 TA = 25°C 0.80 TA = 0°C 0.40 VDD = 5 V VOL − Low-Level Output Voltage − V V OH − High-Level Output Voltage − V 100 f − Frequency − Hz −50 4.50 4 3.50 TA = 125 °C TA = 70 °C 3 2.50 TA = 25 °C 2 1.50 TA = 0 °C 1 TA = −40 °C 0.50 0 0 0 1 2 3 4 5 6 7 8 9 10 11 12 IOH − High-Level Output Current − mA Figure 7. High-Level Output Voltage vs High-Level Output Current 10 VDD = 2.7 V VICR − Common-Mode Input Voltage −V VOL − Low-Level Output Voltage − V I IB / I IO − Input Bias / Offset Current − pA 0 CMRR − Common-Mode Rejection Ratio − dB SGLS244B – MAY 2004 – REVISED DECEMBER 2016 Submit Documentation Feedback 0 5 10 15 20 25 30 35 40 45 50 55 60 65 70 IOL − Low-Level Output Current − mA Figure 8. Low-Level Output Voltage vs Low-Level Output Current Copyright © 2004–2016, Texas Instruments Incorporated Product Folder Links: TLV2371-Q1 TLV2372-Q1 TLV2374-Q1 TLV2371-Q1, TLV2372-Q1, TLV2374-Q1 www.ti.com SGLS244B – MAY 2004 – REVISED DECEMBER 2016 VCC = 5 V 4.50 VOL − Low-Level Output Voltage − V V OH − High-Level Output Voltage − V 5 TA = −40°C 4 TA = 0°C 3.50 3 2.50 TA = 25°C 2 1.50 TA = 70°C 1 TA = 125°C 0.50 15 14 VDD = 15 V TA =125°C 12 TA =70°C 10 TA =25°C 8 TA =0°C 6 TA =−40°C 4 2 0 0 0 5 10 15 20 25 30 35 40 45 0 IOH − High-Level Output Current − mA Figure 10. Low-Level Output Voltage vs Low-Level Output Current VDD = 15 V 12 TA = −40°C 10 TA = 0°C 8 6 TA = 25°C 4 TA = 70°C TA = 125°C 2 0 0 20 40 60 80 V O(PP) − Peak-to-Peak Output Voltage − V V OH − High-Level Output Voltage − V Figure 9. High-Level Output Voltage vs High-Level Output Current 15 14 20 40 60 80 100 120 140 160 IOL − Low-Level Output Current − mA 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 VDD = 15 V AV = −10 RL = 2 kΩ CL = 10 pF TA = 25°C THD = 5% VDD = 5 V VDD = 2.7 V 10 100 120 140 160 100 I DD − Supply Current − mA/Ch AV = 1 VIC = VDD / 2 TA = 125°C 0.8 TA = 70°C 0.7 0.6 0.5 0.4 0.3 0.2 TA = 25°C TA = 0°C TA = −40°C 0.1 0 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 VCC − Supply Voltage − V Figure 13. Supply Current vs Supply Voltage Copyright © 2004–2016, Texas Instruments Incorporated PSRR − Power Supply Rejection Ratio − dB 1 10 k 100 k 1M 10 M Figure 12. Peak-to-Peak Output Voltage vs Frequency Figure 11. High-Level Output Voltage vs High-Level Output Current 0.9 1k f − Frequency − Hz IOH − High-Level Output Current − mA 120 TA = 25°C 100 VDD = 5 V, 15 V 80 VDD = 2.7 V 60 40 20 0 10 100 1k 10 k 100 k 1M f − Frequency − Hz Figure 14. Power Supply Rejection Ratio vs Frequency Submit Documentation Feedback Product Folder Links: TLV2371-Q1 TLV2372-Q1 TLV2374-Q1 11 TLV2371-Q1, TLV2372-Q1, TLV2374-Q1 www.ti.com 180 100 135 Phase 80 4 90 45 60 40 0 Gain −45 20 −90 VDD=5 Vdc RL=2 kΩ CL=10 pF TA=25°C 0 −20 −40 10 100 −135 1k 10 k 100 k 1 M GBWP − Gain Bandwidth Product − MHz 120 Phase − ° AVD − Differential Voltage Gain − dB SGLS244B – MAY 2004 – REVISED DECEMBER 2016 3.5 VDD = 15 V 3 2.5 VDD = 5 V 2 VDD = 2.7 V 1.5 1 0.5 0 −40 −25 −10 5 −180 10 M 20 35 50 65 80 95 110 125 TA − Free-Air Temperature − °C f − Frequency − Hz Figure 16. Gain Bandwidth Product vs Free-Air Temperature Figure 15. Differential Voltage Gain and Phase vs Frequency 3.5 3 SR− 3 SR − Slew Rate − V/ µs SR − Slew Rate − V/ µs 2.5 2 1.5 SR+ 1 AV = 1 RL = 10 kΩ CL = 50 pF TA = 25°C 0.5 4.5 6.5 8.5 10.5 12.5 2 SR+ 1.5 VDD = 5 V AV = 1 RL = 10 kΩ CL = 50 pF VI = 3 V 1 0.5 0 2.5 SR− 2.5 0 −40 −25 −10 5 14.5 VCC − Supply Voltage −V Figure 17. Slew Rate vs Supply Voltage VDD = 5 V RL= 2 kΩ TA = 25°C AV = Open Loop 70 Rnull = 100 60 50 40 Rnull = 0 30 Rnull = 50 20 10 0 10 100 CL − Capacitive Load − pF 1000 Figure 19. Phase Margin vs Capacitive Load 12 Submit Documentation Feedback 100 VDD = 2.7, 5, 15 V TA = 25°C 90 V n − Equivalent Input Noise Voltage − nV/ Phase Margin − ° 80 Figure 18. Slew Rate vs Free-Air Temperature Hz 100 90 20 35 50 65 80 95 110 125 TA − Free-Air Temperature − °C 80 70 60 50 40 30 20 10 0 10 100 1k 10 k f − Frequency − Hz 100 k Figure 20. Equivalent Input Noise Voltage vs Frequency Copyright © 2004–2016, Texas Instruments Incorporated Product Folder Links: TLV2371-Q1 TLV2372-Q1 TLV2374-Q1 TLV2371-Q1, TLV2372-Q1, TLV2374-Q1 www.ti.com SGLS244B – MAY 2004 – REVISED DECEMBER 2016 0 4 3 2 1 VO 0 0 2 4 6 8 VDD = 15 V AV = 1 RL = 2 kΩ CL = 10 pF VI = 9 VPP TA = 25°C 6 3 VI 0 9 6 3 VO 0 0 10 12 14 16 18 2 t − Time − µs 0.12 0.08 0.04 VO 0 0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 V − Input Voltage − V I VI V − Output Voltage − mV O V − Input Voltage − mV I VDD = 5 V AV = 1 RL = 2 kΩ CL = 10 pF VI = 100 mVPP TA = 25°C 0 VI VDD = 5 V AV = 1 RL = 2 kΩ CL = 10 pF VI = 3 VPP TA = 25°C 2 1 0 3 2 1 0 VO 0 2 9 VO 6 3 0 4 6 8 10 12 14 16 t − Time − µs Figure 25. Inverting Large-Signal Response Copyright © 2004–2016, Texas Instruments Incorporated V I − Input Voltage − V VI V O − Output Voltage − V V I − Input Voltage − V VDD = 15 V AV = −1 RL = 2 kΩ CL = 10 pF VI = 9 Vpp TA = 25°C 2 6 8 10 12 14 16 Figure 24. Inverting Large-Signal Response 9 0 4 t − Time − µs 12 0 10 12 14 16 18 3 Figure 23. Voltage-Follower Small-Signal Pulse Response 3 8 4 t − Time − µs 6 6 Figure 22. Voltage-Follower Large-Signal Pulse Response 0.12 0.04 4 t − Time − µs Figure 21. Voltage-Follower Large-Signal Pulse Response 0.08 12 V − Output Voltage − V O VI 9 VO − Output Voltage − V 1 VDD = 5 V AV = 1 RL = 2 kΩ CL = 10 pF VI = 3 VPP TA = 25°C 12 0.10 VDD = 5 V AV = −1 RL = 2 kΩ CL = 10 pF VI = 100 mVpp TA = 25°C 0.05 0 VI 0.1 VO 0.05 0 0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 V O − Output Voltage − V 2 V − Output Voltage − V O 3 V − Input Voltage − V I V − Input Voltage − V I 4 t − Time − µs Figure 26. Inverting Small-Signal Response Submit Documentation Feedback Product Folder Links: TLV2371-Q1 TLV2372-Q1 TLV2374-Q1 13 TLV2371-Q1, TLV2372-Q1, TLV2374-Q1 SGLS244B – MAY 2004 – REVISED DECEMBER 2016 www.ti.com 0 VDD = 2.7, 5, & 15 V VI = VDD/2 AV = 1 RL = 2 kΩ TA = 25°C −20 Crosstalk − dB −40 −60 −80 Crosstalk in Shutdown −100 −120 Crosstalk −140 10 100 1k 10 k f − Frequency −Hz 100 k Figure 27. Crosstalk vs Frequency 14 Submit Documentation Feedback Copyright © 2004–2016, Texas Instruments Incorporated Product Folder Links: TLV2371-Q1 TLV2372-Q1 TLV2374-Q1 TLV2371-Q1, TLV2372-Q1, TLV2374-Q1 www.ti.com SGLS244B – MAY 2004 – REVISED DECEMBER 2016 8 Detailed Description 8.1 Overview The TLV237x-Q1 single-supply operational amplifiers provide rail-to-rail input and output capability with 3-MHz bandwidth. Consuming only 550 µA, the TLV237x-Q1 is the perfect choice for portable and battery-operated applications. The maximum recommended supply voltage is 16 V, which allows the devices to be operated from a variety of rechargeable cells (±8-V supplies down to ±1.35 V). The rail-to-rail inputs with high input impedance make the TLV237x-Q1 ideal for sensor signal-conditioning applications. 8.2 Functional Block Diagram V+ Reference Current VIN+ VINVBIAS1 Class AB Control Circuitry VO VBIAS2 V(Ground) Copyright © 2016, Texas Instruments Incorporated 8.3 Feature Description 8.3.1 Rail-to-Rail Input Operation The TLV237x-Q1 input stage consists of two differential transistor pairs, NMOS and PMOS, that operate together to achieve rail-to-rail input operation. The transition point between these two pairs can be seen in Figure 1 through Figure 3 for a 2.7-V, 5-V, and 15-V supply. As the common-mode input voltage approaches the positive supply rail, the input pair switches from the PMOS differential pair to the NMOS differential pair. This transition occurs approximately 1.35 V from the positive rail and results in a change in offset voltage due to different device characteristics between the NMOS and PMOS pairs. If the input signal to the device is large enough to swing between both rails, this transition results in a reduction in common-mode rejection ratio (CMRR). If the input signal does not swing between both rails, it is best to bias the signal in the region where only one input pair is active. This is the region in Figure 1 through Figure 3 where the offset voltage varies slightly across the input range and optimal CMRR can be achieved. This has the greatest impact when operating from a 2.7-V supply voltage. Copyright © 2004–2016, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: TLV2371-Q1 TLV2372-Q1 TLV2374-Q1 15 TLV2371-Q1, TLV2372-Q1, TLV2374-Q1 SGLS244B – MAY 2004 – REVISED DECEMBER 2016 www.ti.com Feature Description (continued) 8.3.2 Driving a Capacitive Load When the amplifier is configured in this manner, capacitive loading directly on the output decreases the device’s phase margin, leading to high-frequency ringing or oscillations. Therefore, for capacitive loads of greater than 10 pF, TI recommends placing a resistor in series (RNULL) with the output of the amplifier, as shown in Figure 28. A minimum value of 20 Ω works well for most applications. RF RG RNULL − Input Output + CLOAD VDD/2 Figure 28. Driving a Capacitive Load 8.3.3 Offset Voltage The output offset voltage, (VOO) is the sum of the input offset volt age (VIO) and both input bias currents (IIB) times the corresponding gains. The schematic and formula in Figure 29 can be used to calculate the output offset voltage. RF RG IIB− + VI − VO + RS IIB+ æ æR VOO = VIO ç 1 + ç F ç è è RG æ æ RF öö ÷ ÷÷ ± IIB+ RS çç 1 + ç øø è è RG öö ÷ ÷÷ ± IIB- RF øø Figure 29. Output Offset Voltage Model 8.3.4 General Configurations When receiving low-level signals, limiting the bandwidth of the incoming signals into the system is often required. The simplest way to accomplish this is to place an RC filter at the noninverting terminal of the amplifier (see Figure 30). 16 Submit Documentation Feedback Copyright © 2004–2016, Texas Instruments Incorporated Product Folder Links: TLV2371-Q1 TLV2372-Q1 TLV2374-Q1 TLV2371-Q1, TLV2372-Q1, TLV2374-Q1 www.ti.com SGLS244B – MAY 2004 – REVISED DECEMBER 2016 Feature Description (continued) RG RF VDD/2 − VO + VI R1 C1 f-3dB = VO æ R = ç1 + F VI è RG 1 2pR1C1 öæ 1 ö ÷ç ÷ 1 sR1C1 + è ø ø Figure 30. Single-Pole Low-Pass Filter If even more attenuation is required, a multiple pole filter is required. The Sallen-Key filter can be used for this task (see Figure 31). For best results, the amplifier must have a bandwidth that is 8 to 10 times the filter frequency bandwidth. Failure to do this can result in phase shift of the amplifier. C1 R1 = R2 = R C1 = C2 = C VI R1 1 = Peaking Factor + _ R2 (Butterworth Q = 0.707) C2 f-3dB RG VDD/2 RF RG = 1 2 RC RF 1ö æ ç2 - Q ÷ è ø Figure 31. 2-Pole Low-Pass Sallen-Key Filter 8.4 Device Functional Modes The TLV2371-Q1, TLV2372-Q1, and TLV2374-Q1 have a single functional mode. These devices are operational as long as the power supply voltage is between 2.7 V (±1.35 V) and 16 V (±8 V). Copyright © 2004–2016, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: TLV2371-Q1 TLV2372-Q1 TLV2374-Q1 17 TLV2371-Q1, TLV2372-Q1, TLV2374-Q1 SGLS244B – MAY 2004 – REVISED DECEMBER 2016 www.ti.com 9 Application and Implementation NOTE Information in the following applications sections is not part of the TI component specification, and TI does not warrant its accuracy or completeness. TI’s customers are responsible for determining suitability of components for their purposes. Customers should validate and test their design implementation to confirm system functionality. 9.1 Application Information When designing for low power, choose system components carefully. To minimize current consumption, select large-value resistors. Any resistors can react with stray capacitance in the circuit and the input capacitance of the operational amplifier. These parasitic RC combinations can affect the stability of the overall system. Use of a feedback capacitor assures stability and limits overshoot or gain peaking. 9.2 Typical Applications 9.2.1 High-Side Current Monitor The TLV237x-Q1 is rail-to-rail input and output capability and up to 16-V supply voltage. That makes the device suitable in body control model applications and more specific high-side current sensing. The input common mode is at the supply voltage so there is no limitation in differential gain. VBAT Rs V1 V2 Rg 0.005 220k R1 11K VBAT R Load 0.1uF 8 11K 2 1 VOUT 3 A R2 220K 47K 4 TLV2372 GND Figure 32. Application Circuit 9.2.1.1 Design Requirements For this design example, use these parameters listed in Table 2 as the input parameters. Table 2. Design Parameters PARAMETER VBAT Battery voltage RSENSE ILOAD Submit Documentation Feedback 12 V 0.05 Ω Load current Operational amplifier 18 VALUE 0 A to 10 A Set in differential configuration with gain = 20 Copyright © 2004–2016, Texas Instruments Incorporated Product Folder Links: TLV2371-Q1 TLV2372-Q1 TLV2374-Q1 TLV2371-Q1, TLV2372-Q1, TLV2374-Q1 www.ti.com SGLS244B – MAY 2004 – REVISED DECEMBER 2016 9.2.1.2 Detailed Design Procedure This circuit is designed for measuring the high-side current in automotive body control modules with a 12-V battery or similar applications. The operational amplifier is set as differential with an external resistor network. 9.2.1.2.1 Differential Amplifier Equations Equation 1 and Equation 2 are used to calculate VOUT. VOUT VOUT æ R R ö 1 æ R R1 ö + ÷ 1+ ç ç ÷ - 1 2 çè Rg R2 ÷ø Rg ç Rg R2 V 1 + V 2 ÷ = ´ + V 1 - V 2 )÷ ( ç R R 1 + R1 2 1+ 1 ç ÷ R2 R2 ç ÷ è ø (1) æ R R ö 1 æ R R1 ö + ÷ 1+ ç ç ÷ - 1 2 çè Rg R2 ÷ø Rg ç Rg R2 V 1 + V 2 ÷ = ´ + ´ RS ´ I load ÷ R1 R ç 1 + R1 2 + 1 ç ÷ R2 R2 ç ÷ è ø (2) In an ideal case, R1 = R, R2 = Rg, and VOUT can then be calculated using Equation 3. VOUT = Rg R ´ RS ´ I load (3) However, as the resistors have tolerances, they cannot be perfectly matched. R1 = R ± ΔR1 R2 = R ± ΔR2 R = R ± ΔR Rg = Rg ± ΔR Tol = (4) (5) (6) (7) DR R (8) By developing the equations and neglecting the second order, the worst case is when the tolerances add up. This is shown by Equation 9. V r 4 Tol Rg x Vbat R+ Rg ( 1 r 2 Tol ( 1 2R Rg )) u Rs uI load R+ Rg R where • • Tol = 0.01 for 1% Tol = 0.001 for 0.1% (9) If the resistors are perfectly matched, then Tol = 0 and Vout is calculated using Equation 10. Vout Rg u Rs u I load R (10) The highest error is from the common mode in Equation 11. (4 Tol ) Rg u Vbat R+ Rg (11) Gain of 20, Rg/R = 20, and Tol = 1% in Equation 12. Common mode error = ((4 × 0.01) / 1.05) × 12 V = 0.457 V (12) When the gain of 20 and Tol = 0.1%, the common-mode error = 45.7 mV. Copyright © 2004–2016, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: TLV2371-Q1 TLV2372-Q1 TLV2374-Q1 19 TLV2371-Q1, TLV2372-Q1, TLV2374-Q1 SGLS244B – MAY 2004 – REVISED DECEMBER 2016 www.ti.com The resistors were chosen from 1% batches. • R1 and R are 11 kΩ • R2 and Rg are 220 kΩ Ideal Gain = 220 / 11 = 20 The measured value of the resistors: • R1 = 10.97 kΩ • R = 10.96 kΩ • R2 = 220.23 kΩ • Rg = 220.15 kΩ 9.2.1.3 Application Curve 12 11 Output Voltage in Volts 10 9 8 7 6 5 4 3 2 VOUT in Volts VOUT Ideal 1 0 0 100 200 300 400 500 Voltage Across The Sense Resistor in mV 600 D001 Figure 33. Output Voltage vs Differential Input in High Current Sensing 9.2.2 Inverting Amplifier A typical application for an operational amplifier is an inverting amplifier, as shown in Figure 34. An inverting amplifier takes a positive voltage on the input and outputs a signal inverted to the input, making a negative voltage of the same magnitude. In the same manner, the amplifier also makes negative input voltages positive on the output. In addition, amplification can be added by selecting the input resistor RI and the feedback resistor RF. RF VSUP+ RI VOUT + VIN VSUP± Copyright © 2016, Texas Instruments Incorporated Figure 34. Amplifier Schematic 20 Submit Documentation Feedback Copyright © 2004–2016, Texas Instruments Incorporated Product Folder Links: TLV2371-Q1 TLV2372-Q1 TLV2374-Q1 TLV2371-Q1, TLV2372-Q1, TLV2374-Q1 www.ti.com SGLS244B – MAY 2004 – REVISED DECEMBER 2016 9.2.3 Design Requirements The supply voltage must be chosen to be larger than the input voltage range and the desired output range. The limits of the input common-mode range (VCM) and the output voltage swing to the rails (VO) must also be considered. For instance, this application scales a signal of ±0.5 V (1 V) to ±1.8 V (3.6 V). Setting the supply at ±2.5 V is sufficient to accommodate this application. 9.2.4 Detailed Design Procedure Determine the gain required by the inverting amplifier using Equation 13 and Equation 14. VOUT AV VIN AV 1.8 0.5 3.6 (13) (14) When the desired gain is determined, choose a value for RI or RF. Choosing a value in the kΩ range is desirable for general-purpose applications because the amplifier circuit uses currents in the milliamp range. This milliamp current range ensures the device does not draw too much current. The trade-off is that large resistors (hundreds of kΩ) draw the smallest current but generate the highest noise. Small resistors (hundreds of Ω) generate low noise but draw high current. This example uses 10 kΩ for RI, meaning 36 kΩ is used for RF. These values are determined by Equation 15. RF AV RI (15) 9.2.5 Application Curve 2 1.5 Input Output Voltage (V) 1 0.5 0 -0.5 -1 -1.5 -2 Time Figure 35. Inverting Amplifier Input and Output 10 Power Supply Recommendations The TLV237x-Q1 family is specified for operation from 2.7 V to 15 V (±1.35 V to ±7.5 V); many specifications apply from –40°C to 125°C. The Typical Characteristics presents parameters that can exhibit significant variance with regard to operating voltage or temperature. CAUTION Supply voltages larger than 16 V can permanently damage the device (see the Absolute Maximum Ratings). Place 0.1-µF bypass capacitors close to the power-supply pins to reduce errors coupling in from noisy or highimpedance power supplies. For more detailed information on bypass capacitor placement (see Layout). Copyright © 2004–2016, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: TLV2371-Q1 TLV2372-Q1 TLV2374-Q1 21 TLV2371-Q1, TLV2372-Q1, TLV2374-Q1 SGLS244B – MAY 2004 – REVISED DECEMBER 2016 www.ti.com 11 Layout 11.1 Layout Guidelines To achieve the levels of high performance of the TLV237x-Q1, follow proper printed-circuit board design techniques. The following is a general set of guidelines: • Ground planes: TI highly recommends a ground plane be used on the board to provide all components with a low inductive ground connection. However, in the areas of the amplifier inputs and output, the ground plane can be removed to minimize the stray capacitance. • Proper power supply decoupling: Use a 6.8-µF tantalum capacitor in parallel with a 0.1-µF ceramic capacitor on each supply terminal. It may be possible to share the tantalum capacitor among several amplifiers depending on the application, but a 0.1-µF ceramic capacitor must always be used on the supply terminal of every amplifier. In addition, the 0.1-µF capacitor must be placed as close as possible to the supply terminal. As this distance increases, the inductance in the connecting trace makes the capacitor less effective. The designer must strive for distances of less than 0.1 inches between the device power terminals and the ceramic capacitors. • Sockets: Sockets can be used but are not recommended. The additional lead inductance in the socket pins often leads to stability problems. Surface-mount packages soldered directly to the printed-circuit board is the best implementation. • Short trace runs or compact part placements: Optimum high performance is achieved when stray series inductance has been minimized. To realize this, the circuit layout must be made as compact as possible, thereby minimizing the length of all trace runs. Pay particular attention to the inverting input of the amplifier. Its length must be kept as short as possible. This helps to minimize stray capacitance at the input of the amplifier. • Surface-mount passive components: Using surface-mount passive components is recommended for high performance amplifier circuits for several reasons. First, because of the extremely low lead inductance of surface-mount components, the problem with stray series inductance is greatly reduced. Second, the small size of surface-mount components naturally leads to a more compact layout thereby minimizing both stray inductance and capacitance. If leaded components are used, TI recommends that the lead lengths be kept as short as possible. 22 Submit Documentation Feedback Copyright © 2004–2016, Texas Instruments Incorporated Product Folder Links: TLV2371-Q1 TLV2372-Q1 TLV2374-Q1 TLV2371-Q1, TLV2372-Q1, TLV2374-Q1 www.ti.com SGLS244B – MAY 2004 – REVISED DECEMBER 2016 11.2 Layout Examples + VIN VOUT ± RG RF Copyright © 2016, Texas Instruments Incorporated Figure 36. Schematic Representation Place components close to device and to eachother to reduce parasitic errors Run the input traces as far away from the supply lines as possible VS+ RF N/C N/C GND –IN V+ VIN +IN OUTPUT V– N/C RG GND GND Use low-ESR, ceramic bypass capacitor VS– Use low-ESR, ceramic bypass capacitor VOUT Copyright © 2016, Texas Instruments Incorporated Figure 37. Operational Amplifier Board Layout for Noninverting Configuration 11.3 Power Dissipation Considerations For a given RθJA, the maximum power dissipation is calculated by Equation 16. æT - TA ö PD = ç MAX ÷ q JA è ø where • • • • PD = Maximum power dissipation of TLV237x-Q1 IC (watts) TMAX = Absolute maximum junction temperature (150°C) TA = Free-ambient air temperature (°C) RθJA = RθJC + RθCA – RθJC = Thermal coefficient from junction-to-case – RθCA = Thermal coefficient from case-to-ambient air (°C/W) Copyright © 2004–2016, Texas Instruments Incorporated (16) Submit Documentation Feedback Product Folder Links: TLV2371-Q1 TLV2372-Q1 TLV2374-Q1 23 TLV2371-Q1, TLV2372-Q1, TLV2374-Q1 SGLS244B – MAY 2004 – REVISED DECEMBER 2016 www.ti.com 12 Device and Documentation Support 12.1 Related Links The table below lists quick access links. Categories include technical documents, support and community resources, tools and software, and quick access to sample or buy. Table 3. Related Links PARTS PRODUCT FOLDER SAMPLE & BUY TECHNICAL DOCUMENTS TOOLS & SOFTWARE SUPPORT & COMMUNITY TLV2371-Q1 Click here Click here Click here Click here Click here TLV2372-Q1 Click here Click here Click here Click here Click here TLV2374-Q1 Click here Click here Click here Click here Click here 12.2 Receiving Notification of Documentation Updates To receive notification of documentation updates, navigate to the device product folder on ti.com. In the upper right corner, click on Alert me to register and receive a weekly digest of any product information that has changed. For change details, review the revision history included in any revised document. 12.3 Community Resources The following links connect to TI community resources. Linked contents are provided "AS IS" by the respective contributors. They do not constitute TI specifications and do not necessarily reflect TI's views; see TI's Terms of Use. TI E2E™ Online Community TI's Engineer-to-Engineer (E2E) Community. Created to foster collaboration among engineers. At e2e.ti.com, you can ask questions, share knowledge, explore ideas and help solve problems with fellow engineers. Design Support TI's Design Support Quickly find helpful E2E forums along with design support tools and contact information for technical support. 12.4 Trademarks E2E is a trademark of Texas Instruments. All other trademarks are the property of their respective owners. 12.5 Electrostatic Discharge Caution These devices have limited built-in ESD protection. The leads should be shorted together or the device placed in conductive foam during storage or handling to prevent electrostatic damage to the MOS gates. 12.6 Glossary SLYZ022 — TI Glossary. This glossary lists and explains terms, acronyms, and definitions. 13 Mechanical, Packaging, and Orderable Information The following pages include mechanical, packaging, and orderable information. This information is the most current data available for the designated devices. This data is subject to change without notice and revision of this document. For browser-based versions of this data sheet, refer to the left-hand navigation. 24 Submit Documentation Feedback Copyright © 2004–2016, Texas Instruments Incorporated Product Folder Links: TLV2371-Q1 TLV2372-Q1 TLV2374-Q1 PACKAGE OPTION ADDENDUM www.ti.com 10-Dec-2020 PACKAGING INFORMATION Orderable Device Status (1) Package Type Package Pins Package Drawing Qty Eco Plan (2) Lead finish/ Ball material MSL Peak Temp Op Temp (°C) Device Marking (3) (4/5) (6) TLV2371QDBVRQ1 ACTIVE SOT-23 DBV 5 3000 RoHS & Green NIPDAU Level-1-260C-UNLIM -40 to 125 371Q TLV2371QDRG4Q1 ACTIVE SOIC D 8 2500 RoHS & Green NIPDAU Level-1-260C-UNLIM -40 to 125 2371Q1 TLV2372QDRG4Q1 ACTIVE SOIC D 8 2500 RoHS & Green NIPDAU Level-1-260C-UNLIM -40 to 125 2372Q1 TLV2372QDRQ1 ACTIVE SOIC D 8 2500 RoHS & Green NIPDAU Level-1-260C-UNLIM -40 to 125 2372Q1 TLV2374QDRG4Q1 ACTIVE SOIC D 14 2500 RoHS & Green NIPDAU Level-1-260C-UNLIM -40 to 125 2374Q1 TLV2374QDRQ1 ACTIVE SOIC D 14 2500 RoHS & Green NIPDAU Level-1-260C-UNLIM -40 to 125 2374Q1 TLV2374QPWRG4Q1 ACTIVE TSSOP PW 14 2000 RoHS & Green NIPDAU Level-1-260C-UNLIM -40 to 125 2374Q1 TLV2374QPWRQ1 ACTIVE TSSOP PW 14 2000 RoHS & Green NIPDAU Level-1-260C-UNLIM -40 to 125 2374Q1 (1) The marketing status values are defined as follows: ACTIVE: Product device recommended for new designs. LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect. NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design. PREVIEW: Device has been announced but is not in production. Samples may or may not be available. OBSOLETE: TI has discontinued the production of the device. (2) RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may reference these types of products as "Pb-Free". RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption. Green: TI defines "Green" to mean the content of Chlorine (Cl) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of
TLV2374QPWRG4Q1 价格&库存

很抱歉,暂时无法提供与“TLV2374QPWRG4Q1”相匹配的价格&库存,您可以联系我们找货

免费人工找货