µ
SLOS218F − DECEMBER 1998 − REVISED JANUARY 2005
D
D
D
D
D
D
D
D
D
Supply Current . . . 23 µA/Channel
Gain-Bandwidth Product . . . 220 kHz
Output Drive Capability . . . ±10 mA
Input Offset Voltage . . . 20 µV (typ)
VDD Range . . . 2.7 V to 6 V
Power Supply Rejection Ratio . . . 106 dB
Ultralow-Power Shutdown Mode
IDD . . . 16 nA/ch
Rail-To-Rail Input/Output (RRIO)
Ultrasmall Packaging
− 5 or 6 Pin SOT-23 (TLV2450/1)
− 8 or 10 Pin MSOP (TLV2452/3)
Operational Amplifier
−
+
description
The TLV245x is a family of rail-to-rail input/output operational amplifiers that sets a new performance point for
supply current and ac performance. These devices consume a mere 23 µA/channel while offering 220 kHz of
gain-bandwidth product, much higher than competitive devices with similar supply current levels. Along with
increased ac performance, the amplifier provides high output drive capability, solving a major shortcoming of
older micropower rail-to-rail input/output operational amplifiers. The TLV245x can swing to within 250 mV of
each supply rail while driving a 2.5-mA load. Both the inputs and outputs swing rail-to-rail for increased dynamic
range in low-voltage applications. This performance makes the TLV245x family ideal for portable medical
equipment, patient monitoring systems, and data acquisition circuits.
FAMILY PACKAGE TABLE
PACKAGE TYPES
NUMBER OF
CHANNELS
PDIP
SOIC
SOT-23
TSSOP
MSOP
TLV2450
1
8
8
6
—
—
Yes
TLV2451
1
8
8
5
—
—
—
TLV2452
2
8
8
—
—
8
—
TLV2453
2
14
14
—
—
10
Yes
TLV2454
4
14
14
—
14
—
—
TLV2455
4
16
16
—
16
—
Yes
DEVICE
SHUTDOWN
UNIVERSAL
EVM BOARD
Refer to the EVM
Selection Guide
(Lit# SLOU060)
A SELECTION OF SINGLE-SUPPLY OPERATIONAL AMPLIFIER PRODUCTS†
DEVICE
VDD
(V)
BW
(MHz)
SLEW RATE
(V/µs)
IDD (per channel)
(µA)
RAIL-TO-RAIL
TLV245X
2.7 − 6.0
0.22
TLV247X
2.7 − 6.0
2.8
0.11
23
I/O
1.5
600
TLV246X
2.7 − 6.0
I/O
6.4
1.6
550
I/O
TLV277X
2.5 − 6.0
5.1
10.5
1000
O
† All specifications measured at 5 V.
Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of
Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.
All trademarks are the property of their respective owners.
Copyright 1998−2005, Texas Instruments Incorporated
!"#$%&'(!$" !) *+%%,"( ') $# -+./!*'(!$" 0'(,1
%$0+*() *$"#$%& ($ )-,*!#!*'(!$") -,% (2, (,%&) $# ,') ")(%+&,"()
)('"0'%0 3'%%'"(41 %$0+*(!$" -%$*,))!"5 0$,) "$( ",*,))'%!/4 !"*/+0,
(,)(!"5 $# '// -'%'&,(,%)1
WWW.TI.COM
POST OFFICE BOX 1443 HOUSTON, TEXAS 77251−1443
•
1
µ
SLOS218F − DECEMBER 1998 − REVISED JANUARY 2005
description (continued)
Three members of the family (TLV2450/3/5) offer a shutdown terminal for conserving battery life in portable
applications. During shutdown, the outputs are placed in a high-impedance state and the amplifier consumes
only 16 nA/channel. The family is fully specified at 3 V and 5 V across an expanded industrial temperature range
(−40°C to 125°C). The singles and duals are available in the SOT23 and MSOP packages, while the quads are
available in TSSOP. The TLV2450 offers an amplifier with shutdown functionality all in a 6-pin SOT23 package,
making it perfect for high density circuits.
TLV2450 and TLV2451 AVAILABLE OPTIONS
PACKAGED DEVICES
TA
SOT-23
SMALL OUTLINE
(D)†
0°C to 70°C
−40°C to 125°C
(DBV)
SYMBOL
PLASTIC DIP
(P)
TLV2450CD
TLV2451CD
TLV2450CDBV
TLV2451CDBV
VAQC
VARC
TLV2450CP
TLV2451CP
TLV2450ID
TLV2451ID
TLV2450IDBV
TLV2451IDBV
VAQI
VARI
TLV2450IP
TLV2451IP
TLV2450AID
TLV2451AID
—
—
—
—
TLV2450AIP
TLV2451AIP
† This package is available taped and reeled. To order this packaging option, add an R suffix to the part
number (e.g., TLV2450CDR).
TLV2452 and TLV2453 AVAILABLE OPTIONS
PACKAGED DEVICES
TA
0°C to 70°C
−40°C to 125°C
SMALL
OUTLINE
(D)†
SYMBOL‡
PLASTIC
DIP
(N)
PLASTIC
DIP
(P)
(DGK)†
SYMBOL‡
(DGS)†
TLV2452CD
TLV2453CD
TLV2452CDGK
—
xxTIABI
—
—
TLV2453CDGS
—
xxTIABK
—
TLV2453CN
TLV2452CP
—
TLV2452ID
TLV2453ID
TLV2452IDGK
—
xxTIABJ
—
—
TLV2453IDGS
—
xxTIABL
—
TLV2453IN
TLV2452IP
—
TLV2452AID
TLV2453AID
—
—
—
—
—
—
—
—
—
TLV2453AIN
TLV2452AIP
—
MSOP
† This package is available taped and reeled. To order this packaging option, add an R suffix to the part number (e.g., TLV2452CDR).
‡ xx represents the device date code.
TLV2454 and TLV2455 AVAILABLE OPTIONS
PACKAGED DEVICES
TA
0°C to 70°C
−40°C to 125°C
SMALL OUTLINE
(D)†
PLASTIC DIP
(N)
TSSOP
(PW)†
TLV2454CD
TLV2455CD
TLV2454CN
TLV2455CN
TLV2454CPW
TLV2455CPW
TLV2454ID
TLV2455ID
TLV2454IN
TLV2455IN
TLV2454IPW
TLV2455IPW
TLV2454AID
TLV2455AID
TLV2454AIN
TLV2455AIN
TLV2454AIPW
TLV2455AIPW
† This package is available taped and reeled. To order this packaging option, add an
R suffix to the part number (e.g., TLV2454CDR).
NOTE:
2
For the most current package and ordering information, see the Package Option Addendum located at the
end of this data sheet, or refer to our web site at www.ti.com.
WWW.TI.COM
POST OFFICE BOX 1443 HOUSTON, TEXAS 77251−1443
•
µ
SLOS218F − DECEMBER 1998 − REVISED JANUARY 2005
TLV245x PACKAGE PINOUTS(1)
TLV2450
D OR P PACKAGE
(TOP VIEW)
TLV2450
DBV PACKAGE
(TOP VIEW)
OUT
1
6
VDD+
GND
2
5
SHDN
IN+
3
4
IN −
1OUT
1IN −
1IN+
GND
NC
1SHDN
NC
1
8
2
7
3
6
4
5
1
8
2
7
3
6
4
5
SHDN
VDD+
OUT
NC
OUT
1
GND
2
IN+
3
TLV2452
D, DGK, OR P PACKAGE
(TOP VIEW)
TLV2451
D OR P PACKAGE
(TOP VIEW)
NC
IN −
IN +
GND
NC
IN −
IN +
GND
TLV2451
DBV PACKAGE
(TOP VIEW)
NC
VDD+
OUT
NC
1OUT
1IN −
1IN +
GND
1
8
2
7
3
6
4
5
5
VDD+
4
IN −
TLV2453
DGS PACKAGE
(TOP VIEW)
VDD+
2OUT
2IN −
2IN+
1OUT
1IN −
1IN+
GND
1SHDN
1
2
3
4
5
10
9
8
7
6
VDD+
2OUT
2IN −
2IN+
2SHDN
TLV2453
D OR N PACKAGE
TLV2454
D, N, OR PW PACKAGE
TLV2455
D, N, OR PW PACKAGE
(TOP VIEW)
(TOP VIEW)
(TOP VIEW)
1
14
2
13
3
12
4
11
5
10
6
9
7
8
VDD+
2OUT
2IN −
2IN+
NC
2SHDN
NC
1OUT
1IN −
1IN+
VDD+
2IN+
2IN −
2OUT
1
14
2
13
3
12
4
11
5
10
6
9
7
8
1OUT
1IN −
1IN+
VDD+
2IN+
2IN −
2OUT
1/2SHDN
4OUT
4IN −
4IN+
GND
3IN+
3IN −
3OUT
1
16
2
15
3
14
4
13
5
12
6
11
7
10
8
9
4OUT
4IN −
4IN+
GND
3IN +
3IN−
3OUT
3/4SHDN
NC − No internal connection
(1) SOT−23 may or may not be indicated
TYPICAL PIN 1 INDICATORS
Pin 1
Printed or
Molded Dot
Pin 1
Pin 1
Bevel Edges
Stripe
Pin 1
Molded ”U” Shape
WWW.TI.COM
POST OFFICE BOX 1443 HOUSTON, TEXAS 77251−1443
•
3
µ
SLOS218F − DECEMBER 1998 − REVISED JANUARY 2005
absolute maximum ratings over operating free-air temperature range (unless otherwise noted)†
Supply voltage, VDD (see Note 1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 V
Differential input voltage, VID . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ± VDD
Continuous total power dissipation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Dissipation Rating Table
Operating free-air temperature range, TA: C suffix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 0°C to 70°C
I suffix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . −40°C to 125°C
Maximum junction temperature, TJ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 150°C
Storage temperature range, Tstg . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . −65°C to 150°C
Lead temperature 1,6 mm (1/16 inch) from case for 10 seconds . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 260°C
† Stresses beyond those listed under “absolute maximum ratings” may cause permanent damage to the device. These are stress ratings only, and
functional operation of the device at these or any other conditions beyond those indicated under “recommended operating conditions” is not
implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.
NOTE: All voltage values, except differential voltages, are with respect to GND.
DISSIPATION RATING TABLE
PACKAGE
θJC
(°C/W)
θJA
(°C/W)
TA ≤ 25°C
POWER RATING
D (8)
38.3
176
710 mW
D (14)
26.9
122.3
1022 mW
D (16)
25.7
114.7
1090 mW
DBV (5)
55
324.1
385 mW
DBV (6)
55
294.3
425 mW
DGK (8)
54.2
259.9
481 mW
DGS (10)
54.1
257.7
485 mW
N (14, 16)
32
78
1600 mW
P (8)
41
104
1200 mW
PW (14)
29.3
173.6
720 mW
PW (16)
28.7
161.4
774 mW
recommended operating conditions
Single supply
Supply voltage, VDD
Split supply
Common-mode input voltage range, VICR
C-suffix
Operating free-air temperature, TA
I-suffix
VIH
Shutdown on/off voltage level‡
VIL
6
±1.35
±3
V
0
VDD
70
V
0
−40
125
VDD = 5V
0.8
VDD = 3V
0.5
WWW.TI.COM
POST OFFICE BOX 1443 HOUSTON, TEXAS 77251−1443
•
MAX
2.7
2
‡ Relative to voltage on the GND terminal of the device.
4
MIN
UNIT
°C
V
V
µ
SLOS218F − DECEMBER 1998 − REVISED JANUARY 2005
electrical characteristics at specified free-air temperature, VDD = 3 V (unless otherwise noted)
PARAMETER
TEST CONDITIONS
TLV245x
VIO
TA†
25°C
MIN
Input offset voltage
25°C
Full range
VDD = ±1.5 V
VIC = 0,
VO = 0,
RS = 50 Ω
Input offset current
IIB
Input bias current
2.85
High-level output voltage
VIC = 1.5 V,
A
IOH = − 500 µA
25°C
VOH
Full range
2.83
VOL
Low-level output voltage
VIC = 1.5 V,
IOL = 500 µA
A
Full range
0.3
Full range
VO = 0.5 V from rail
Large-signal differential voltage
amplification
ri(d)
Differential input resistance
CIC
Common-mode input
capacitance
f = 10 kHz
zo
Closed-loop output impedance
f = 10 kHz,
AV = 10
CMRR
Common-mode rejection ratio
VIC = 0 to 3 V,
RS = 50 Ω
TLV245xC
VO(PP) = 1 V,
RL = 10 kΩ
VDD = 2.7 V to 6 V,
No load
VDD = 3 V to 5 V,
No load
25°C
VIC = VDD /2,
VIC = VDD /2,
Full range
3
25°C
2
Full range
1
IDD(SHDN)
Supply current (per channel)
Supply current in shutdown
mode (TLV2450, TLV2453,
TLV2455) (per channel)
VO = 1.5 V, No load
96
Full range
91
V
12
mA
7
mA
110
dB
25°C
109
Ω
25°C
4.5
pF
25°C
80
Ω
80
dB
25°C
70
Full range
66
25°C
76
Full range
74
25°C
88
Full range
84
dB
89
dB
106
23
35
TLV245xC
Full range
40
TLV245xI
Full range
45
TLV245xC
Full range
70
TLV245xI
Full range
80
25°C
SHDN = −VDD
0.16
±4
25°C
25°C
IDD
V
0.2
4
nA
2.95
0.09
25°C
nA
5
7
25°C
AVD
kSVR
0.9
Full range
Sinking
4.5
5.5
25°C
Short-circuit output current
µV
V
µV/°C
V/°C
0.3
25°C
Sourcing
1000
UNIT
1300
IIO
Supply voltage rejection ratio
((∆V
VDD //∆V
VIO)
1500
300
αVIO
Output current
300
2000
Temperature coefficient of input
offset voltage
IO
MAX
Full range
TLV245xA
IOS
TYP
12
µA
65
nA
† Full range is 0°C to 70°C for C suffix and − 40°C to 125°C for I suffix.
WWW.TI.COM
POST OFFICE BOX 1443 HOUSTON, TEXAS 77251−1443
•
5
µ
SLOS218F − DECEMBER 1998 − REVISED JANUARY 2005
operating characteristics at specified free-air temperature, VDD = 3 V (unless otherwise noted)
PARAMETER
SR
Slew rate at unity gain
Vn
Equivalent input noise voltage
In
Equivalent input noise current
TEST CONDITIONS
VO(PP) = 0.8 V,
RL = 10 kΩ
Total harmonic distortion plus noise
t(on)
t(off)
Amplifier turnon time
φm
TYP
0.05
0.11
Full range
0.02
25°C
49
25°C
51
25°C
VO(PP) = 1.5 V,
RL = 10 kΩ,
f = 1 kHz
AV = 1
AV = 10
MAX
UNIT
V/ s
V/µs
f = 100 Hz
3.5
nV/√Hz
pA /√Hz
0.04%
25°C
25
C
AV = 100
0.3%
1.5%
µs
59
Amplifier turnoff time
AV = 5,
RL = OPEN,
Measured at 50% point
25°C
25°C
836
ns
Gain-bandwidth product
f = 10 kHz,
RL = 10 kΩ
25°C
200
kHz
V(STEP)PP = 2 V,
AV = −1,
CL = 10 pF,
RL = 10 kΩ
0.1%
V(STEP)PP = 2 V,
AV = −1,
CL = 56 pF,
RL = 10 kΩ
0.1%
26
0.01%
31
Phase margin
RL = 10 kΩ,
CL = 1000 pF
25°C
56°
Gain margin
RL = 10 kΩ,
CL = 1000 pF
25°C
7
Settling time
31
µss
25°C
WWW.TI.COM
POST OFFICE BOX 1443 HOUSTON, TEXAS 77251−1443
•
26
0.01%
† Full range is 0°C to 70°C for C suffix and − 40°C to 125°C for I suffix.
6
MIN
f = 1 kHz
f = 1 kHz
THD + N
ts
CL = 150 pF,
TA†
25°C
dB
µ
SLOS218F − DECEMBER 1998 − REVISED JANUARY 2005
electrical characteristics at specified free-air temperature, VDD = 5 V (unless otherwise noted)
PARAMETER
TEST CONDITIONS
TLV245x
VIO
TA†
25°C
MIN
Input offset voltage
25°C
Full range
VDD = ±2.5 V
VIC = 0,
VO = 0,
RS = 50 Ω
Input offset current
IIB
Input bias current
4.87
High-level output voltage
VIC = 2.5 V,
A
IOH = − 500 µA
25°C
VOH
Full range
4.85
VOL
Low-level output voltage
VIC = 2.5 V,
IOL = 500 µA
A
Full range
0.3
Full range
Output current
VO = 0.5 V from rail
AVD
Large-signal differential voltage
amplification
ri(d)
Differential input resistance
CIC
Common-mode input capacitance
f = 10 kHz
zo
Closed-loop output impedance
f = 10 kHz,
VO(PP) = 3 V,
AV = 10
VIC = 0 to 5 V,
RS = 50 Ω
Common-mode rejection ratio
Supply voltage rejection ratio
((∆V
VDD //∆V
VIO)
Full range
18
25°C
12
Full range
10
TLV245xC
VDD = 2.7 V to 6 V,
No load
VIC = VDD /2,
VDD = 3 V to 5 V,
No load
VIC = VDD /2,
IDD(SHDN)
Supply current (per channel)
VO = 2.5 V, No load
Supply current in shutdown mode
(TLV2450, TLV2453, TLV2455) (per
channel)
25°C
96
Full range
91
V
32
mA
18
mA
103
dB
25°C
109
Ω
25°C
4.5
pF
45
Ω
25°C
25°C
70
Full range
68
25°C
76
Full range
74
25°C
88
Full range
84
80
dB
89
dB
106
23
42
TLV245xC
Full range
44
TLV245xI
Full range
46
25°C
SHDN = −VDD
0.15
±10
25°C
RL = 10 kΩ
V
0.16
20
nA
4.97
0.07
25°C
nA
5
7
25°C
25°C
IDD
0.5
Full range
Sinking
4.5
5.5
25°C
Short-circuit output current
µV
V
µV/°C
V/°C
0.3
25°C
Sourcing
1000
UNIT
1300
IIO
kSVR
1500
300
αVIO
CMRR
300
2000
Temperature coefficient of input
offset voltage
IO
MAX
Full range
TLV245xA
IOS
TYP
16
µA
70
TLV245xC
Full range
70
TLV245xI
Full range
80
nA
† Full range is 0°C to 70°C for C suffix and − 40°C to 125°C for I suffix.
WWW.TI.COM
POST OFFICE BOX 1443 HOUSTON, TEXAS 77251−1443
•
7
µ
SLOS218F − DECEMBER 1998 − REVISED JANUARY 2005
operating characteristics at specified free-air temperature, VDD = 5 V (unless otherwise noted)
PARAMETER
SR
Slew rate at unity gain
Vn
Equivalent input noise voltage
In
Equivalent input noise current
TEST CONDITIONS
VO(PP) = 2 V,
RL = 10 kΩ
Total harmonic distortion plus noise
t(on)
t(off)
Amplifier turnon time
φm
TYP
0.05
0.11
Full range
0.02
25°C
49
25°C
52
25°C
AV = 1
AV = 10
VO(PP) = 3 V,
RL = 10 kΩ,
f = 1 kHz
MAX
UNIT
V/ s
V/µs
f = 100 Hz
3.5
nV/√Hz
pA /√Hz
0.02%
25°C
25
C
AV = 100
0.18%
0.9%
µs
59
Amplifier turnoff time
AV = 5,
RL = OPEN,
Measured at 50% point
25°C
25°C
836
ns
Gain-bandwidth product
f = 10 kHz,
RL = 10 kΩ
25°C
220
kHz
V(STEP)PP = 2 V,
AV = −1,
CL = 10 pF,
RL = 10 kΩ
0.1%
V(STEP)PP = 2 V,
AV = −1,
CL = 56 pF,
RL = 10 kΩ
0.1%
25
0.01%
30
Phase margin
RL = 10 kΩ,
CL = 1000 pF
25°C
56°
Gain margin
RL = 10 kΩ,
CL = 1000 pF
25°C
7
Settling time
30
µss
25°C
WWW.TI.COM
POST OFFICE BOX 1443 HOUSTON, TEXAS 77251−1443
•
24
0.01%
† Full range is 0°C to 70°C for C suffix and − 40°C to 125°C for I suffix.
8
MIN
f = 1 kHz
f = 1 kHz
THD + N
ts
CL = 150 pF,
TA†
25°C
dB
µ
SLOS218F − DECEMBER 1998 − REVISED JANUARY 2005
TYPICAL CHARACTERISTICS
Table of Graphs
FIGURE
VIO
Input offset voltage
vs Common-mode input voltage
1, 2
IIO
Input offset current
vs Common-mode input voltage
vs Free-air temperature
3, 4
7, 8
IIB
Input bias current
vs Common-mode input voltage
vs Free-air temperature
5, 6
7, 8
AVD
Differential voltage amplification
vs Frequency
9, 10
Phase
vs Frequency
9, 10
VOL
VOH
Low-level output voltage
vs Low-level output current
11, 13
High-level output voltage
vs High-level output current
12, 14
Zo
CMRR
Output impedance
vs Frequency
15, 16
Common-mode rejection ratio
vs Frequency
17
PSRR
Power supply rejection ratio
vs Frequency
18
IDD
IDD
Supply current
vs Supply voltage
19
Supply current
vs Free-air temperature
20
Vn
THD + N
Equivalent input noise voltage
vs Frequency
21
Total harmonic distortion plus noise
vs Frequency
22, 23
φm
Phase margin
vs Load capacitance
24
Gain-bandwidth product
vs Supply voltage
25
SR
Slew rate
vs Supply voltage
vs Free-air temperature
26
27
VO(PP)
Maximum peak-to-peak output voltage
vs Frequency
28
Crosstalk
vs Frequency
29, 30
Small-signal follower pulse response
vs Time
31, 33
Large-signal follower pulse response
vs Time
32, 34
Shutdown on supply current
vs Time
35
Shutdown off supply current
vs Time
36
Shutdown supply current
vs Free-air temperature
Shutdown supply current
vs Time
38 − 41
Shutdown pulse
vs Time
38 − 41
Shutdown off pulse response
vs Time
42, 43
Shutdown on pulse response
vs Time
44, 45
Shutdown reverse isolation
vs Frequency
46
Shutdown forward isolation
vs Frequency
47
WWW.TI.COM
POST OFFICE BOX 1443 HOUSTON, TEXAS 77251−1443
•
37
9
µ
SLOS218F − DECEMBER 1998 − REVISED JANUARY 2005
TYPICAL CHARACTERISTICS
INPUT OFFSET VOLTAGE
vs
COMMON-MODE INPUT VOLTAGE
INPUT OFFSET VOLTAGE
vs
COMMON-MODE INPUT VOLTAGE
200
VDD = 3 V
TA = 25°C
100
50
0
−50
−100
−150
−200
−0.5
VDD = 5 V
TA = 25°C
80
VIO − Input Offset Voltage − µV
VIO − Input Offset Voltage − µV
150
100
60
40
20
0
−20
−40
−60
−80
0
0.5
1
1.5
2
2.5
3
VIC − Common-Mode Input Voltage − V
−100
−0.5
3.5
0
0.5 1 1.5 2 2.5 3 3.5 4 4.5 5 5.5
VIC − Common-Mode Input Voltage − V
Figure 1
Figure 2
INPUT OFFSET CURRENT
vs
COMMON-MODE INPUT VOLTAGE
INPUT OFFSET CURRENT
vs
COMMON-MODE INPUT VOLTAGE
60
20
VDD = 3 V
TA = 25°C
10
I IO − Input Offset Current − pA
I IO − Input Offset Current − pA
40
20
0
−20
VDD = 5 V
TA = 25°C
0
−10
−20
−30
−40
−40
−50
−60
0
0.5
1
0
0.5
1
1.5
−60
0
0.5
1
Figure 3
10
1.5
2
2.5
3
3.5
4
4.5
VIC − Common-Mode Input Voltage − V
VIC − Common-Mode Input Voltage − V
Figure 4
WWW.TI.COM
POST OFFICE BOX 1443 HOUSTON, TEXAS 77251−1443
•
5
µ
SLOS218F − DECEMBER 1998 − REVISED JANUARY 2005
TYPICAL CHARACTERISTICS
INPUT BIAS CURRENT
vs
COMMON-MODE INPUT VOLTAGE
INPUT BIAS CURRENT
vs
COMMON-MODE INPUT VOLTAGE
3
3
2
I IB − Input Bias Current − nA
IIB − Input Bias Current − nA
2
VDD = 3 V
TA = 25°C
1
0
−1
−2
1
0
−1
−2
−3
−3
−4
−0.5
VDD = 5 V
TA = 25°C
0
0.5
1
2
1.5
2.5
3
−4
−0.5 0
3.5
VIC − Common-Mode Input Voltage − V
0.5 1 1.5 2 2.5 3 3.5 4 4.5 5 5.5
VIC − Common-Mode Input Voltage − V
Figure 6
Figure 5
1.5
1.4
1.3
INPUT OFFSET CURRENT
AND INPUT BIAS CURRENT
vs
FREE-AIR TEMPERATURE
VDD = 3 V
1.2
1.1
1
IIB
0.9
0.8
0.7
0.6
0.5
0.4
0.3
0.2
0.1
0
−0.1
−55
IIO
85
−35 −15
5
25
45 65
TA − Free-Air Temperature − °C
105 125
I IB / I IO − Input Bias and Input Offset Currents − nA
I IB / I IO − Input Bias and Input Offset Currents − nA
INPUT OFFSET CURRENT
AND INPUT BIAS CURRENT
vs
FREE-AIR TEMPERATURE
0.9
0.8
VDD = 5 V
0.7
0.6
IIB
0.5
0.4
0.3
0.2
IIO
0.1
0
−0.1
−55
85
−35 −15
5
25
45 65
TA − Free-Air Temperature − °C
105 125
Figure 8
Figure 7
WWW.TI.COM
POST OFFICE BOX 1443 HOUSTON, TEXAS 77251−1443
•
11
µ
SLOS218F − DECEMBER 1998 − REVISED JANUARY 2005
TYPICAL CHARACTERISTICS
120
VDD = ±3 V
TA = 25°C
90
120
60
60
Gain
30
0
0
Phase − °
A VD − Differential Voltage Amplification − dB
DIFFERENTIAL VOLTAGE AMPLIFICATION AND PHASE
vs
FREQUENCY
−60
Phase
−120
−30
−60
100
1k
10k
100k
f − Frequency − Hz
−180
1M
Figure 9
120
VDD = ±5 VDC
TA = 25°C
90
120
60
60
Gain
30
0
0
−60
Phase
−30
−60
100
1k
10k
100k
f − Frequency − Hz
Figure 10
12
Phase − °
A VD − Differential Voltage Amplification − dB
DIFFERENTIAL VOLTAGE AMPLIFICATION AND PHASE
vs
FREQUENCY
WWW.TI.COM
POST OFFICE BOX 1443 HOUSTON, TEXAS 77251−1443
•
−120
−180
1M
µ
SLOS218F − DECEMBER 1998 − REVISED JANUARY 2005
TYPICAL CHARACTERISTICS
LOW-LEVEL OUTPUT VOLTAGE
vs
LOW-LEVEL OUTPUT CURRENT
HIGH-LEVEL OUTPUT VOLTAGE
vs
HIGH-LEVEL OUTPUT CURRENT
3
3
VDD = 3 V
VOH − High-Level Output Voltage − V
VOL− Low-Level Output Voltage − V
VDD = 3 V
2.5
2
TA = 25°C
1.5
TA = 85°C
TA = 125°C
1
TA = −40°C
0.5
2.5
TA = −40°C
2
TA = 25°C
1.5
TA = 85°C
1
TA = 125°C
0.5
0
0
0
1
2
3
4
5
6
7
8
9
0
10
2.5
5
7.5
12.5
15
Figure 12
Figure 11
LOW-LEVEL OUTPUT VOLTAGE
vs
LOW-LEVEL OUTPUT CURRENT
HIGH-LEVEL OUTPUT VOLTAGE
vs
HIGH-LEVEL OUTPUT CURRENT
5
5
VDD = 5 V
VDD = 5 V
4.5
4.5
4
VOH − High-Level Output Voltage − V
VOL − Low-Level Output Voltage − V
10
IOH − High-Level Output Current − mA
IOL − Low-Level Output Current − mA
TA = 25°C
3.5
TA = 85°C
3
2.5
TA = 125°C
2
1.5
TA = −40°C
1
0.5
TA = −40°C
4
3.5
3
TA = 125°C
TA = 85°C
2.5
2
TA = 25°C
1.5
1
0.5
0
0
0
5
10
15
20
25
0
IOL − Low-Level Output Current − mA
5
10
15
20
25
30
35
IOH − High-Level Output Current − mA
Figure 13
40
Figure 14
WWW.TI.COM
POST OFFICE BOX 1443 HOUSTON, TEXAS 77251−1443
•
13
µ
SLOS218F − DECEMBER 1998 − REVISED JANUARY 2005
TYPICAL CHARACTERISTICS
OUTPUT IMPEDANCE
vs
FREQUENCY
OUTPUT IMPEDANCE
vs
FREQUENCY
10k
10k
VDD = 5 V
TA = 25°C
VDD = 3 V
TA = 25°C
Zo − Output Impedance − Ω
Zo − Output Impedance − Ω
1k
1k
AV = 100
100
AV = 10
AV = 1
10
AV = 100
100
10
AV = 10
1
1
100
AV = 1
0.1
1k
10k
100k
1M
100
1k
f − Frequency − Hz
10k
f − Frequency − Hz
Figure 15
Figure 16
COMMON-MODE REJECTION RATIO
vs
FREQUENCY
CMRR − Common-Mode Rejection Ratio − dB
120
VDD = 3 V or 5 V
TA = 25°C
100
80
60
40
20
0
10
100
1k
10k
100k
f − Frequency − Hz
Figure 17
14
WWW.TI.COM
POST OFFICE BOX 1443 HOUSTON, TEXAS 77251−1443
•
1M
100k
1M
µ
SLOS218F − DECEMBER 1998 − REVISED JANUARY 2005
TYPICAL CHARACTERISTICS
POWER SUPPLY REJECTION RATIO
vs
FREQUENCY
SUPPLY CURRENT
vs
SUPPLY VOLTAGE
40
90
VDD = 3 V or 5 V
TA = 25°C
80
35
70
PSRR +
60
50
40
PSRR −
30
20
10
0
AV = 1
SHDN = VDD
Per Channel
30
TA = 25°C
25
TA = −40°C
20
15
10
5
10
100
1k
10k
100k
0
2.5
1M
3
f − Frequency − Hz
3.5
5
5.5
EQUIVALENT INPUT NOISE VOLTAGE
vs
FREQUENCY
30
Vn − Equivalent Input Noise Voltage − nV/ Hz
100
VDD = 5 V
20
VDD = 3 V
15
10
VI = VDD /2
SHDN = VDD
per channel
5
0
−55
4.5
Figure 19
SUPPLY CURRENT
vs
FREE-AIR TEMPERATURE
25
4
VDD − Supply Voltage − V
Figure 18
I DD − Supply Current − µ A
TA = 125°C
TA = 85°C
I DD − Supply Current − µ A
PSRR − Power Supply Rejection Ratio − dB
100
25 45
65
85
−35 −15 5
TA − Free-Air Temperature − °C
10
VDD = 3 V or 5 V
TA = 25°C
1
10
105 125
Figure 20
100
1k
10k
f − Frequency − Hz
100k
Figure 21
WWW.TI.COM
POST OFFICE BOX 1443 HOUSTON, TEXAS 77251−1443
•
15
µ
SLOS218F − DECEMBER 1998 − REVISED JANUARY 2005
TYPICAL CHARACTERISTICS
TOTAL HARMONIC DISTORTION PLUS NOISE
vs
FREQUENCY
TOTAL HARMONIC DISTORTION PLUS NOISE
vs
FREQUENCY
100%
VDD = 3 V
VO(PP) = 1.5 V
RL = 10 kΩ
TA = 25°C
10%
THD+N − Total harmonic Distortion + Noise
THD+N − Total harmonic Distortion + Noise
100%
AV = 10
AV = 100
1%
0.1%
AV = 1
0.01%
0.001%
10
100
1k
10k
VDD = 5 V
VO(PP) = 3 V
RL = 10 kΩ
TA = 25°C
10%
1%
AV = 100
0.1%
AV = 10
0.010%
AV = 1
0.001%
10
100k
100
f − Frequency − MHz
Figure 22
GAIN-BANDWIDTH PRODUCT
vs
SUPPLY VOLTAGE
100 °
280
270
Gain-Bandwidth Product − kHz
RNULL = 500Ω
φ m − Phase Margin
80 °
70 °
RNULL = 200Ω
60 °
RNULL = 100Ω
50 °
RNULL = 50Ω
40 °
30 °
RNULL = 10Ω
20 °
10 °
0°
100
VDD = 5 V
RL = 10 kΩ
TA = 25°C
RNULL = 0Ω
1k
10k
260
f = 1 kHz
RL = 10 kΩ
TA = 25°C
250
240
230
220
210
200
190
100k
180
2.5
3
CL − Load Capacitance − pF
Figure 24
16
100k
Figure 23
PHASE MARGIN
vs
LOAD CAPACITANCE
90 °
1k
10k
f − Frequency − Hz
3.5
4
4.5
VDD − Supply Voltage − V
Figure 25
WWW.TI.COM
POST OFFICE BOX 1443 HOUSTON, TEXAS 77251−1443
•
5
5.5
µ
SLOS218F − DECEMBER 1998 − REVISED JANUARY 2005
TYPICAL CHARACTERISTICS
SLEW RATE
vs
SUPPLY VOLTAGE
SLEW RATE
vs
FREE-AIR TEMPERATURE
0.16
SR − Slew Rate − V/ µ s
f = 10 kHz
TA = 25°C
RL = 10 kΩ
CL = 160 pF
AV = 1
0.11
0.1
0.14
f = 10 kHz
RL = 10 kΩ
CL = 160 pF
AV = 1
0.12
VDD = 5 V
VDD = 3 V
0.1
0.08
0.09
2.5
3
3.5
4.5
4
0.06
−40 −20
5
0
20
40
60
80
100 120
140
TA − Free-Air Temperature − °C
VDD − Supply Voltage − V
Figure 26
Figure 27
MAXIMUM PEAK-TO-PEAK OUTPUT VOLTAGE
vs
FREQUENCY
VO(PP) − Maximum Peak-to-Peak Output Voltage − V
SR − Slew Rate − V/ µ s
0.12
5
4.5
VO(PP) = 5 V
4
3.5
3
2.5
VO(PP) = 3 V
2
1.5
1
0.5
0
100
THD + N < 5%
AV = 5
RL = 20 kΩ
TA = 25°C
1k
10k
100k
f − Frequency − Hz
Figure 28
WWW.TI.COM
POST OFFICE BOX 1443 HOUSTON, TEXAS 77251−1443
•
17
µ
SLOS218F − DECEMBER 1998 − REVISED JANUARY 2005
TYPICAL CHARACTERISTICS
CROSSTALK
vs
FREQUENCY
CROSSTALK
vs
FREQUENCY
−20
−20
VDD = 3 V
AV = 1
RL = 10 kΩ
All Channels
−30
−40
−50
Crosstalk − dB
Crosstalk − dB
−40
VDD = 5 V
AV = 1
RL = 10 kΩ
All Channels
−30
−60
−70
−50
−60
−70
−80
−80
−90
−90
−100
−100
−110
−110
10
100
10k
1k
100k
10
100
1k
f − Frequency − Hz
f − Frequency − Hz
Figure 29
Figure 30
SMALL-SIGNAL FOLLOWER PULSE RESPONSE
vs
TIME
0.3
0.15
0.1
VI
0.05
0.2
0
−0.05
0.15
−0.1
0.1
−0.15
VO
0.05
−0.2
VDD = 3 V
RL = 10 kΩ
CL = 160 pF
AV = 1
TA = 25°C
f = 45 kHz
0
−0.05
−0.1
−0.25
−0.3
−0.35
−0.4
−2
0
2
4
6
8
10
t − Time − µs
12
14
Figure 31
18
WWW.TI.COM
POST OFFICE BOX 1443 HOUSTON, TEXAS 77251−1443
•
16
VI − Input Voltage − V
VO − Output Voltage − V
0.25
10k
100k
µ
SLOS218F − DECEMBER 1998 − REVISED JANUARY 2005
TYPICAL CHARACTERISTICS
LARGE-SIGNAL FOLLOWER PULSE RESPONSE
vs
TIME
5
2
VO − Output Voltage − V
3
2
VI
1
0
−1
1
−2
0
−3
VI − Input Voltage − V
VDD = 3 V
AV = 1
RL = 10 kΩ
CL = 160 pF
f = 10 kHz
TA = 25°C
4
VO
−4
−1
−2
−20
0
20
40
60
80
−5
100
t − Time − µs
Figure 32
240
80
200
40
160
0
120
VI
−40
VDD = 5 V
AV = 1
RL = 10 kΩ
CL = 160 pF
TA = 25°C
80
40
−80
−120
VI − Input Voltage − mV
VO − Output Voltage − mV
SMALL-SIGNAL FOLLOWER PULSE RESPONSE
vs
TIME
−160
0
VO
−200
−40
−80
−5
0
5
10
t − Time − µs
15
−240
20
Figure 33
WWW.TI.COM
POST OFFICE BOX 1443 HOUSTON, TEXAS 77251−1443
•
19
µ
SLOS218F − DECEMBER 1998 − REVISED JANUARY 2005
TYPICAL CHARACTERISTICS
LARGE-SIGNAL FOLLOWER PULSE RESPONSE
vs
TIME
8
VO − Output Voltage − V
2
VDD = 5 V
RL = 10 kΩ
CL = 160 pF
AV = 1
TA = 25°C
f = 10 kHz
VI
6
1
0
−1
−2
−3
4
−4
VO
2
−5
−6
0
VI − Input Voltage − V
10
−7
−8
−2
−9
−4
−10 0
10
20
30 40 50 60
t − Time − µs
70 80
−10
90 100
Figure 34
SHUTDOWN ON SUPPLY CURRENT
vs
TIME
I DD − Supply Current − µ A
Shutdown Control Signal
160
5
140
0
120
−5
100
−10
−15
80
−20
60
−25
40
Supply Current − IDD
20
−30
0
−35
−20
−4
−2
0
4
2
t − Time − µS
6
8
Figure 35
20
WWW.TI.COM
POST OFFICE BOX 1443 HOUSTON, TEXAS 77251−1443
•
−40
10
Shutdown Pulse − V
10
180
µ
SLOS218F − DECEMBER 1998 − REVISED JANUARY 2005
TYPICAL CHARACTERISTICS
SHUTDOWN OFF SUPPLY CURRENT
vs
TIME
10
50
5
30
0
20
−5
Supply Current − IDD
10
−10
0
−15
−10
−20 −10
0
10
20 30 40
t − Time − µS
50
60
70
Shutdown Pulse − V
I DD − Supply Current − µ A
Shutdown Control Signal
40
−20
80
Figure 36
SHUTDOWN SUPPLY CURRENT
vs
FREE-AIR TEMPERATURE
1.6
Shutdown Mode
AV = 1
RL = Open
VI = VDD/2 V
I DD − Supply Current − µ A
1.4
1.2
VDD = 5 V
1
0.8
0.6
0.4
VDD = 3 V
0.2
0
−55 −35 −15
5
25
45
65
85
105
125
TA − Free-Air Temperature − °C
Figure 37
WWW.TI.COM
POST OFFICE BOX 1443 HOUSTON, TEXAS 77251−1443
•
21
µ
SLOS218F − DECEMBER 1998 − REVISED JANUARY 2005
TYPICAL CHARACTERISTICS
SHUTDOWN SUPPLY CURRENT AND SHUTDOWN PULSE
vs
TIME
5
VDD = 3 V
AV = 1
VI = 1.5 V
RL = 10 kΩ
CL = 160 pF and 10 pF
TA = 25°C
4
3
2
1
Shutdown Pulse − V
I DD(SD) − Shutdown Supply Current − µ A
SD Pulse
0
30
IDD(SD)
25
20
15
10
5
0
−5
−3
−1
1
3
5
7
9
11
13
15
t − Time − µs
Figure 38
SHUTDOWN SUPPLY CURRENT AND SHUTDOWN PULSE
vs
TIME
4
3
VDD = 3 V
AV = 1
VI = 1.5 V
RL = 10 kΩ
CL = 160 pF and 10 pF
TA = 25°C
SD Pulse
30
1
0
25
20
15
10
5
0
−100
IDD(SD)
−50
0
50
100
150
t − Time − µs
Figure 39
22
2
WWW.TI.COM
POST OFFICE BOX 1443 HOUSTON, TEXAS 77251−1443
•
200
Shutdown Pulse − V
I DD(SD) − Shutdown Supply Current − µ A
5
µ
SLOS218F − DECEMBER 1998 − REVISED JANUARY 2005
TYPICAL CHARACTERISTICS
SHUTDOWN SUPPLY CURRENT AND SHUTDOWN PULSE
vs
TIME
VDD = 5 V
AV = 1
VI = 2.5 V
RL = 10 kΩ
CL = 160 pF and 10 pF
TA = 25°C
SD Pulse
4
3
2
1
0
25
20
15
Shutdown Pulse − V
I DD(SD) − Shutdown Supply Current − µ A
5
10
5
IDD(SD)
0
−100
−50
0
50
100
150
200
t − Time − µs
Figure 40
SHUTDOWN SUPPLY CURRENT AND SHUTDOWN PULSE
vs
TIME
I DD(SD) − Shutdown Supply Current −µ A
5
4
3
2
1
0
30
IDD(SD)
25
20
15
Shutdown Pulse − V
VDD = 5 V
AV = 1
VI = 2.5 V
RL = 10 kΩ
CL = 160 pF and 10 pF
TA = 25°C
SD Pulse
10
5
0
−10
−5
0
5
10
15
t − Time − µs
Figure 41
WWW.TI.COM
POST OFFICE BOX 1443 HOUSTON, TEXAS 77251−1443
•
23
µ
SLOS218F − DECEMBER 1998 − REVISED JANUARY 2005
TYPICAL CHARACTERISTICS
SHUTDOWN OFF PULSE RESPONSE
vs
TIME
SHUTDOWN OFF PULSE RESPONSE
vs
TIME
4
6
SD Pulse
SD Pulse
5
VDD = 3 V
AV = 1
VI = 2.5 V
RL = 10 kΩ
CL = 160 pF and 8 pF
TA = 25°C
2
VO − Output Voltage − V
VO − Output Voltage − V
3
1
4
VO Channel 1
3
2
VDD = 5 V
AV = 1
VI = 4 V
RL = 10 kΩ
CL = 160 pF and 8 pF
TA = 25°C
1
0
VO Channel 1
−1
−10
10
30
50
0
70
90
110
130
−1
−20
150
0
20
t − Time − µs
60
80
100
120 140
t − Time − µs
Figure 42
Figure 43
SHUTDOWN ON PULSE RESPONSE
vs
TIME
SHUTDOWN ON PULSE RESPONSE
vs
TIME
6
4
VDD = 3 V
AV = 1
VI = 2.5 V
RL = 10 kΩ
TA = 25°C
3
2
CL = 160 pF
1
VDD = 5 V
AV = 1
VI = 4 V
RL = 10 kΩ
TA = 25°C
SD Pulse
5
VO − Output Voltage − V
SD Pulse
VO − Output Voltage − V
40
CL = 8 pF
4
3
CL = 160 pF
2
CL = 8 pF
1
0
0
−1
−1
−2
−1
0
1
2
3
4
5
6
−2
0
4
Figure 45
Figure 44
24
2
6
t − Time − µs
t − Time − µs
WWW.TI.COM
POST OFFICE BOX 1443 HOUSTON, TEXAS 77251−1443
•
8
10
12
µ
SLOS218F − DECEMBER 1998 − REVISED JANUARY 2005
TYPICAL CHARACTERISTICS
SHUTDOWN REVERSE ISOLATION
vs
FREQUENCY
SHUTDOWN FORWARD ISOLATION
vs
FREQUENCY
140
VDD = 3 V and 5 V
VI(PP) = 0.1, 1.5, 2.5 V
RL = 10 kΩ
CL = 28 pF
TA = 25°C
120
100
Shutdown Forward Isolation − dB
Shutdown Reverse Isolation − dB
140
80
60
40
20
VDD = 3 V and 5 V
VI(PP) = 0.1, 1.5, 2.5 V
RL = 10 kΩ
CL = 28 pF
TA = 25°C
120
100
80
60
40
20
0
10
100
1k
10k
100k
1M
10M
0
10
100
f − Frequency − Hz
1k
10k
f − Frequency − Hz
100k
1M
Figure 47
Figure 46
PARAMETER MEASUREMENT INFORMATION
_
Rnull
+
RL
CL
Figure 48
WWW.TI.COM
POST OFFICE BOX 1443 HOUSTON, TEXAS 77251−1443
•
25
µ
SLOS218F − DECEMBER 1998 − REVISED JANUARY 2005
APPLICATION INFORMATION
shutdown function
Three members of the TLV245x family (TLV2450/3/5) have a shutdown terminal for conserving battery life in
portable applications. When the shutdown terminal is pulled to the voltage level on the GND terminal of the
device, the supply current is reduced to 16 nA/channel, the amplifier is disabled, and the outputs are placed in
a high impedance mode. To enable the amplifier, the shutdown terminal must be pulled high. The shutdown
terminal should never be left floating. The shutdown terminal threshold is always referenced to the GND terminal
of the device. Therefore, when operating the device with split supply voltages (e.g. ± 2.5 V), the shutdown
terminal needs to be pulled to VDD− (not system ground) to disable the operational amplifier.
The amplifier’s output with a shutdown pulse is shown in Figures 42, 43, 44, and 45. The amplifier is powered
with a single 5-V supply and configured as a noninverting configuration with a gain of 5. The amplifier turnon
and turnoff times are measured from the 50% point of the shutdown pulse to the 50% point of the output
waveform. The times for the single, dual, and quad are listed in the data tables.
Figures 46 and 47 show the amplifier’s forward and reverse isolation in shutdown. The operational amplifier is
powered by ±1.35-V supplies and configured as a voltage follower (AV = 1). The isolation performance is plotted
across frequency using 0.1-VPP, 1.5-VPP, and 2.5-VPP input signals. During normal operation, the amplifier
would not be able to handle a 2.5-VPP input signal with a supply voltage of ±1.35 V since it exceeds the
common-mode input voltage range (VICR). However, this curve illustrates that the amplifier remains in shutdown
even under a worst case scenario.
driving a capacitive load
When the amplifier is configured in this manner, capacitive loading directly on the output will decrease the
device’s phase margin leading to high frequency ringing or oscillations. Therefore, for capacitive loads of greater
than 10 pF, it is recommended that a resistor be placed in series (RNULL) with the output of the amplifier, as
shown in Figure 49. A minimum value of 20 Ω should work well for most applications.
RF
RG
Input
RNULL
−
Output
+
CLOAD
Figure 49. Driving a Capacitive Load
26
WWW.TI.COM
POST OFFICE BOX 1443 HOUSTON, TEXAS 77251−1443
•
µ
SLOS218F − DECEMBER 1998 − REVISED JANUARY 2005
APPLICATION INFORMATION
offset voltage
The output offset voltage, (VOO) is the sum of the input offset voltage (VIO) and both input bias currents (IIB) times
the corresponding gains. The following schematic and formula can be used to calculate the output offset
voltage:
RF
RG
IIB−
V
+
−
VI
+V
IO
ǒ ǒ ǓǓ
1)
R
R
F
ǒ IB)Ǔ
" I
G
R
ǒ ǒ ǓǓ
1)
S
R
R
F
G
ǒ IB*Ǔ
" I
R
F
VO
+
RS
OO
IIB+
Figure 50. Output Offset Voltage Model
general configurations
When receiving low-level signals, limiting the bandwidth of the incoming signals into the system is often
required. The simplest way to accomplish this is to place an RC filter at the noninverting terminal of the amplifier
(see Figure 51).
RG
RF
O +
V
I
ǒ
–3dB
+
V
−
VI
VO
+
R1
f
C1
1)
R
R
F
G
Ǔǒ
Ǔ
1
1 ) sR1C1
1
2pR1C1
Figure 51. Single-Pole Low-Pass Filter
If even more attenuation is needed, a multiple pole filter is required. The Sallen-Key filter can be used for this
task. For best results, the amplifier should have a bandwidth that is 8 to 10 times the filter frequency bandwidth.
Failure to do this can result in phase shift of the amplifier.
C1
+
_
VI
R1
R1 = R2 = R
C1 = C2 = C
Q = Peaking Factor
(Butterworth Q = 0.707)
R2
f
C2
RF
RG
–3dB
RG =
+
(
1
2pRC
RF
1
2−
Q
)
Figure 52. 2-Pole Low-Pass Sallen-Key Filter
WWW.TI.COM
POST OFFICE BOX 1443 HOUSTON, TEXAS 77251−1443
•
27
µ
SLOS218F − DECEMBER 1998 − REVISED JANUARY 2005
APPLICATION INFORMATION
general power dissipation considerations
For a given θJA, the maximum power dissipation is shown in Figure 53 and is calculated by the following formula:
P
D
+
Where:
ǒ
T
Ǔ
–T
MAX A
q
JA
PD = Maximum power dissipation of TLV245x IC (watts)
TMAX = Absolute maximum junction temperature (150°C)
TA
= Free-ambient air temperature (°C)
θJA = θJC + θCA
θJC = Thermal coefficient from junction to case
θCA = Thermal coefficient from case to ambient air (°C/W)
MAXIMUM POWER DISSIPATION
vs
FREE-AIR TEMPERATURE
2
Maximum Power Dissipation − W
1.75
PDIP Package
Low-K Test PCB
θJA = 104°C/W
1.5
1.25
TJ = 150°C
MSOP Package
Low-K Test PCB
θJA = 260°C/W
SOIC Package
Low-K Test PCB
θJA = 176°C/W
1
0.75
0.5
0.25
SOT-23 Package
Low-K Test PCB
θJA = 324°C/W
0
−55 −40 −25 −10 5
20 35 50 65 80 95 110 125
TA − Free-Air Temperature − °C
NOTE A: Results are with no air flow and using JEDEC Standard Low-K test PCB.
Figure 53. Maximum Power Dissipation vs Free-Air Temperature
28
WWW.TI.COM
POST OFFICE BOX 1443 HOUSTON, TEXAS 77251−1443
•
µ
SLOS218F − DECEMBER 1998 − REVISED JANUARY 2005
APPLICATION INFORMATION
macromodel information
Macromodel information provided was derived using Microsim Parts, the model generation software used
with Microsim PSpice. The Boyle macromodel (see Note 1) and subcircuit in Figure 54 are generated using
the TLV245x typical electrical and operating characteristics at TA = 25°C. Using this information, output
simulations of the following key parameters can be generated to a tolerance of 20% (in most cases):
D
D
D
D
D
D
D
D
D
D
D
D
Maximum positive output voltage swing
Maximum negative output voltage swing
Slew rate
Quiescent power dissipation
Input bias current
Open-loop voltage amplification
Unity-gain frequency
Common-mode rejection ratio
Phase margin
DC output resistance
AC output resistance
Short-circuit output current limit
NOTE 1: G. R. Boyle, B. M. Cohn, D. O. Pederson, and J. E. Solomon, “Macromodeling of Integrated Circuit Operational Amplifiers,” IEEE Journal
of Solid-State Circuits, SC-9, 353 (1974).
PSpice and Parts are trademarks of MicroSim Corporation.
WWW.TI.COM
POST OFFICE BOX 1443 HOUSTON, TEXAS 77251−1443
•
29
µ
SLOS218F − DECEMBER 1998 − REVISED JANUARY 2005
APPLICATION INFORMATION
3
VDD+
99
+
rp
rc1
ree
rc2
egnd
cee
c1
IN+
11
1
12
+
c2
r2
9
7
+
vlim
−
8
6
vc
2
q1
IN−
dp
q2
−
13
14
re1
re2
53
4
dc
−
vb
−
ve
+ 54
ga
gcm
dlp
91
iee
GND
+
ro1
ioff
OUT
10
90
dln
+
hlim
−
+
vlp
−
5
92
−
vln
+
de
* AMP_TLV2450−X operational amplifier ”macromodel” subcircuit
* created using Parts release 8.0 on 10/12/98 at 11:06
* Parts is a MicroSim product.
*
* connections:
noninverting input
*
| inverting input
*
| | positive power supply
*
| | | negative power supply
*
| | | | output
*
| | | | |
.subckt AMP_TLV2450−X 1 2 3 4 5
*
C1
11
12
354.48E−15
C2
6
7
7.5000E−12
CEE
10
99
42.237E−15
DC
5
53
dy
DE
54
5
dy
DLP
90
91
dx
DLN
92
90
dx
DP
4
3
dx
EGND
99
0
poly(2) (3,0) (4,0) 0 .5 .5
FB
7
99
poly(5) vb vc ve vlp vln 0
+ 207.31E6 −1E3 1E3 210E6 −210E6
GA
6
0
11
12 15.254E−6
GCM
0
6
10
99 48.237E−12
IEE
HLIM
Q1
Q2
R2
RC1
RC2
RE1
RE2
REE
RO1
RO2
RP
VB
VC
VE
VLIM
VLP
VLN
.model
.model
.model
.model
.ends
10
90
11
12
6
3
3
13
14
10
8
7
3
9
3
54
7
91
0
dx
dy
qx1
qx2
4
dc
938.61E−9
0
vlim 1K
2
13 qx1
1
14 qx2
9
100.00E3
11
65.557E3
12
65.557E3
10
10.367E3
10
10.367E3
99
213.08E6
5
10
99
10
4
147.06
0
dc 0
53
dc .82
4
dc .82
8
dc 0
0
dc 38
92
dc 38
D(Is=800.00E−18)
D(Is=800.00E−18 Rs=1m Cjo=10p)
NPN(Is=800.00E−18 Bf=843.08)
NPN(Is=800.0000E−18 Bf=843.08)
Figure 54. Boyle Macromodel and Subcircuit
30
ro2
fb
−
WWW.TI.COM
POST OFFICE BOX 1443 HOUSTON, TEXAS 77251−1443
•
PACKAGE OPTION ADDENDUM
www.ti.com
14-Oct-2022
PACKAGING INFORMATION
Orderable Device
Status
(1)
Package Type Package Pins Package
Drawing
Qty
Eco Plan
(2)
Lead finish/
Ball material
MSL Peak Temp
Op Temp (°C)
Device Marking
(3)
Samples
(4/5)
(6)
TLV2450AIDR
ACTIVE
SOIC
D
8
2500
RoHS & Green
NIPDAU
Level-1-260C-UNLIM
-40 to 125
2450AI
Samples
TLV2450AIP
ACTIVE
PDIP
P
8
50
RoHS & Green
NIPDAU
N / A for Pkg Type
-40 to 125
TLV2450AI
Samples
TLV2450CD
ACTIVE
SOIC
D
8
75
RoHS & Green
NIPDAU
Level-1-260C-UNLIM
0 to 70
2450C
Samples
TLV2450CDBVR
ACTIVE
SOT-23
DBV
6
3000
RoHS & Green
NIPDAU
Level-1-260C-UNLIM
0 to 70
VAQC
Samples
TLV2450CDBVT
ACTIVE
SOT-23
DBV
6
250
RoHS & Green
NIPDAU
Level-1-260C-UNLIM
0 to 70
VAQC
Samples
TLV2450CP
ACTIVE
PDIP
P
8
50
RoHS & Green
NIPDAU
N / A for Pkg Type
0 to 70
TLV2450C
Samples
TLV2450ID
ACTIVE
SOIC
D
8
75
RoHS & Green
NIPDAU
Level-1-260C-UNLIM
-40 to 125
2450I
Samples
TLV2450IDBVR
ACTIVE
SOT-23
DBV
6
3000
RoHS & Green
NIPDAU
Level-1-260C-UNLIM
-40 to 125
VAQI
Samples
TLV2450IDBVT
ACTIVE
SOT-23
DBV
6
250
RoHS & Green
NIPDAU
Level-1-260C-UNLIM
-40 to 125
VAQI
Samples
TLV2451AID
ACTIVE
SOIC
D
8
75
RoHS & Green
NIPDAU
Level-1-260C-UNLIM
-40 to 125
2451AI
Samples
TLV2451AIDR
ACTIVE
SOIC
D
8
2500
RoHS & Green
NIPDAU
Level-1-260C-UNLIM
-40 to 125
2451AI
Samples
TLV2451AIP
ACTIVE
PDIP
P
8
50
RoHS & Green
NIPDAU
N / A for Pkg Type
-40 to 125
TLV2451AI
Samples
TLV2451CD
ACTIVE
SOIC
D
8
75
RoHS & Green
NIPDAU
Level-1-260C-UNLIM
0 to 70
2451C
Samples
TLV2451CDBVR
ACTIVE
SOT-23
DBV
5
3000
RoHS & Green
NIPDAU
Level-1-260C-UNLIM
0 to 70
VARC
Samples
TLV2451CDBVT
ACTIVE
SOT-23
DBV
5
250
RoHS & Green
NIPDAU
Level-1-260C-UNLIM
0 to 70
VARC
Samples
TLV2451CDG4
ACTIVE
SOIC
D
8
75
RoHS & Green
NIPDAU
Level-1-260C-UNLIM
0 to 70
2451C
Samples
TLV2451CDR
ACTIVE
SOIC
D
8
2500
RoHS & Green
NIPDAU
Level-1-260C-UNLIM
0 to 70
2451C
Samples
TLV2451CP
ACTIVE
PDIP
P
8
50
RoHS & Green
NIPDAU
N / A for Pkg Type
0 to 70
TLV2451C
Samples
TLV2451IDBVR
ACTIVE
SOT-23
DBV
5
3000
RoHS & Green
NIPDAU
Level-1-260C-UNLIM
-40 to 125
VARI
Samples
TLV2451IDBVT
ACTIVE
SOT-23
DBV
5
250
RoHS & Green
NIPDAU
Level-1-260C-UNLIM
-40 to 125
VARI
Samples
Addendum-Page 1
PACKAGE OPTION ADDENDUM
www.ti.com
14-Oct-2022
Orderable Device
Status
(1)
Package Type Package Pins Package
Drawing
Qty
Eco Plan
(2)
Lead finish/
Ball material
MSL Peak Temp
Op Temp (°C)
Device Marking
(3)
Samples
(4/5)
(6)
TLV2451IDR
ACTIVE
SOIC
D
8
2500
RoHS & Green
NIPDAU
Level-1-260C-UNLIM
-40 to 125
2451I
Samples
TLV2451IP
ACTIVE
PDIP
P
8
50
RoHS & Green
NIPDAU
N / A for Pkg Type
-40 to 125
TLV2451I
Samples
TLV2452AID
ACTIVE
SOIC
D
8
75
RoHS & Green
NIPDAU
Level-1-260C-UNLIM
-40 to 125
2452AI
Samples
TLV2452AIDR
ACTIVE
SOIC
D
8
2500
RoHS & Green
NIPDAU
Level-1-260C-UNLIM
-40 to 125
2452AI
Samples
TLV2452AIP
ACTIVE
PDIP
P
8
50
RoHS & Green
NIPDAU
N / A for Pkg Type
-40 to 125
TLV2452AI
Samples
TLV2452CD
ACTIVE
SOIC
D
8
75
RoHS & Green
NIPDAU
Level-1-260C-UNLIM
0 to 70
2452C
Samples
TLV2452CDGK
ACTIVE
VSSOP
DGK
8
80
RoHS & Green NIPDAU | NIPDAUAG
Level-1-260C-UNLIM
0 to 70
ABI
Samples
TLV2452CDGKR
ACTIVE
VSSOP
DGK
8
2500
RoHS & Green NIPDAU | NIPDAUAG
Level-1-260C-UNLIM
0 to 70
ABI
Samples
TLV2452CDR
ACTIVE
SOIC
D
8
2500
RoHS & Green
NIPDAU
Level-1-260C-UNLIM
0 to 70
2452C
Samples
TLV2452ID
ACTIVE
SOIC
D
8
75
RoHS & Green
NIPDAU
Level-1-260C-UNLIM
-40 to 125
2452I
Samples
TLV2452IDGK
ACTIVE
VSSOP
DGK
8
80
RoHS & Green NIPDAU | NIPDAUAG
Level-1-260C-UNLIM
-40 to 125
ABJ
Samples
TLV2452IDGKR
ACTIVE
VSSOP
DGK
8
2500
RoHS & Green NIPDAU | NIPDAUAG
Level-1-260C-UNLIM
-40 to 125
ABJ
Samples
TLV2452IDGKRG4
ACTIVE
VSSOP
DGK
8
2500
RoHS & Green
NIPDAU
Level-1-260C-UNLIM
-40 to 125
ABJ
Samples
TLV2452IDR
ACTIVE
SOIC
D
8
2500
RoHS & Green
NIPDAU
Level-1-260C-UNLIM
-40 to 125
2452I
Samples
TLV2452IP
ACTIVE
PDIP
P
8
50
RoHS & Green
NIPDAU
N / A for Pkg Type
-40 to 125
TLV2452IP
Samples
TLV2453CD
ACTIVE
SOIC
D
14
50
RoHS & Green
NIPDAU
Level-1-260C-UNLIM
0 to 70
TLV2453C
Samples
TLV2453CDGSR
ACTIVE
VSSOP
DGS
10
2500
RoHS & Green
NIPDAU
Level-1-260C-UNLIM
0 to 70
ABK
Samples
TLV2453CDR
ACTIVE
SOIC
D
14
2500
RoHS & Green
NIPDAU
Level-1-260C-UNLIM
0 to 70
TLV2453C
Samples
TLV2453IDGS
ACTIVE
VSSOP
DGS
10
80
RoHS & Green
NIPDAU
Level-1-260C-UNLIM
-40 to 125
ABL
Samples
TLV2453IDGSR
ACTIVE
VSSOP
DGS
10
2500
RoHS & Green
NIPDAU
Level-1-260C-UNLIM
-40 to 125
ABL
Samples
TLV2454AID
ACTIVE
SOIC
D
14
50
RoHS & Green
NIPDAU
Level-1-260C-UNLIM
-40 to 125
2454AI
Samples
Addendum-Page 2
PACKAGE OPTION ADDENDUM
www.ti.com
14-Oct-2022
Orderable Device
Status
(1)
Package Type Package Pins Package
Drawing
Qty
Eco Plan
(2)
Lead finish/
Ball material
MSL Peak Temp
Op Temp (°C)
Device Marking
(3)
Samples
(4/5)
(6)
(1)
TLV2454AIDR
ACTIVE
SOIC
D
14
2500
RoHS & Green
NIPDAU
Level-1-260C-UNLIM
-40 to 125
2454AI
Samples
TLV2454AIN
ACTIVE
PDIP
N
14
25
RoHS & Green
NIPDAU
N / A for Pkg Type
-40 to 125
TLV2454AI
Samples
TLV2454AIPW
ACTIVE
TSSOP
PW
14
90
RoHS & Green
NIPDAU
Level-1-260C-UNLIM
TY2454A
Samples
TLV2454AIPWR
ACTIVE
TSSOP
PW
14
2000
RoHS & Green
NIPDAU
Level-1-260C-UNLIM
-40 to 125
TY2454A
Samples
TLV2454CD
ACTIVE
SOIC
D
14
50
RoHS & Green
NIPDAU
Level-1-260C-UNLIM
0 to 70
2454C
Samples
TLV2454CN
ACTIVE
PDIP
N
14
25
RoHS & Green
NIPDAU
N / A for Pkg Type
0 to 70
TLV2454C
Samples
TLV2454CPW
ACTIVE
TSSOP
PW
14
90
RoHS & Green
NIPDAU
Level-1-260C-UNLIM
0 to 70
TV2454
Samples
TLV2454CPWR
ACTIVE
TSSOP
PW
14
2000
RoHS & Green
NIPDAU
Level-1-260C-UNLIM
0 to 70
TV2454
Samples
TLV2454ID
ACTIVE
SOIC
D
14
50
RoHS & Green
NIPDAU
Level-1-260C-UNLIM
-40 to 125
2454I
Samples
TLV2454IDR
ACTIVE
SOIC
D
14
2500
RoHS & Green
NIPDAU
Level-1-260C-UNLIM
-40 to 125
2454I
Samples
TLV2454IN
ACTIVE
PDIP
N
14
25
RoHS & Green
NIPDAU
N / A for Pkg Type
-40 to 125
TLV2454I
Samples
TLV2454IPW
ACTIVE
TSSOP
PW
14
90
RoHS & Green
NIPDAU
Level-1-260C-UNLIM
-40 to 125
TY2454
Samples
TLV2454IPWR
ACTIVE
TSSOP
PW
14
2000
RoHS & Green
NIPDAU
Level-1-260C-UNLIM
-40 to 125
TY2454
Samples
TLV2455AID
ACTIVE
SOIC
D
16
40
RoHS & Green
NIPDAU
Level-1-260C-UNLIM
-40 to 125
TLV2455AI
Samples
TLV2455AIDR
ACTIVE
SOIC
D
16
2500
RoHS & Green
NIPDAU
Level-1-260C-UNLIM
-40 to 125
TLV2455AI
Samples
TLV2455AIN
ACTIVE
PDIP
N
16
25
RoHS & Green
NIPDAU
N / A for Pkg Type
-40 to 125
TLV2455AI
Samples
TLV2455AIPW
ACTIVE
TSSOP
PW
16
90
RoHS & Green
NIPDAU
Level-1-260C-UNLIM
-40 to 125
TY2455A
Samples
TLV2455AIPWR
ACTIVE
TSSOP
PW
16
2000
RoHS & Green
NIPDAU
Level-1-260C-UNLIM
-40 to 125
TY2455A
Samples
TLV2455IDR
ACTIVE
SOIC
D
16
2500
RoHS & Green
NIPDAU
Level-1-260C-UNLIM
-40 to 125
TLV2455I
Samples
TLV2455IPW
ACTIVE
TSSOP
PW
16
90
RoHS & Green
NIPDAU
Level-1-260C-UNLIM
-40 to 125
TY2455
Samples
The marketing status values are defined as follows:
Addendum-Page 3
PACKAGE OPTION ADDENDUM
www.ti.com
14-Oct-2022
ACTIVE: Product device recommended for new designs.
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.
OBSOLETE: TI has discontinued the production of the device.
(2)
RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance
do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may
reference these types of products as "Pb-Free".
RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.
Green: TI defines "Green" to mean the content of Chlorine (Cl) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of