Product
Folder
Order
Now
Support &
Community
Tools &
Software
Technical
Documents
TLV2460-Q1, TLV2460A-Q1, TLV2461-Q1, TLV2461A-Q1
TLV2462-Q1, TLV2462A-Q1, TLV2463-Q1, TLV2463A-Q1, TLV2464A-Q1
SGLS008G – MARCH 2003 – REVISED FEBRUARY 2018
TLV246xx-Q1 Low-Power Rail-to-Rail Input/Output Operational Amplifiers
With Shutdown
1
1 Features
•
•
•
•
•
•
•
•
•
•
Qualified for Automotive Applications
AEC-Q100 Qualified With the Following Results:
– Device Temperature Grade 1: –40°C to
+125°C Ambient Operating Temperature
Range
– Device HBM ESD Classification Level 2
– Device CDM ESD Classification Level C6
ESD Protection Exceeds 2000 V Per
MIL-STD-883, Method 3015; Exceeds 200 V
Using Machine Model C = 200 pF, R = 0)
Rail-to-Rail Output Swing
Gain Bandwidth Product: 6.4 MHz
Output Drive Capability: ±80-mA
Supply Current: 500 μA/Channel
Input Noise Voltage: 11 nV/√Hz
Slew Rate: 1.6 V/μs
Micropower Shutdown Mode (TLV2460-Q1 and
TLV2463-Q1): 0.3 μA/Channel
Universal Operational Amplifier EVM
Available in Single, Dual, and Quad Versions
The operational amplifier has 6.4-MHz bandwidth and
a 1.6-V/μs slew rate with only 500-μA supply current,
which provides good ac performance with low-power
consumption. Devices are available with an optional
shutdown terminal, which places the amplifier in an
ultra-low supply-current mode (IDD = 0.3 μA per
channel). While in shutdown, the operational amplifier
output is placed in a high-impedance state. DC
applications are designed with an input noise voltage
of 11 nV/√Hz and input offset voltage of 100 μV.
Device Information(1)
PART NUMBER
TLV246x-Q1,
TLV246xA-Q1
TLV2462-Q1,
TLV2462A-Q1
TLV246x-Q1,
TLV246xA-Q1
TSSOP (8)
4.40 mm × 3.00 mm
SOIC (8)
3.91 mm × 4.90 mm
TSSOP (8)
4.40 mm × 3.00 mm
VSSOP (8)
3.00 mm × 3.00 mm
TSSOP (14)
4.40 mm × 5.00 mm
Typical Application
C1
33 pF
C2
R2
47 kŸ
680 pF
C3
R3
330 pF
V IN
VCC
4.7 k
R1
62 NŸ
U1B
6
7
VCC/2
5
OUT
4
Clusters
Telematics
HEV/EV and Powertrains
DC-to-DC Inverters
Power Steering
Lighting Modules
Battery Management Systems
BODY SIZE (NOM)
(1) For all available packages, see the orderable addendum at
the end of the data sheet.
(2) For all available device options, see the Mechanical,
Packaging, and Orderable Information.
2 Applications
•
•
•
•
•
•
•
PACKAGE
8
•
•
3 Description
GND
The devices in the TLV246x-Q1 family of low-power
rail-to-rail input/output operational amplifiers are
designed for battery management systems in
HEV/EV and Powertrain, and lighting and roof module
systems in body and lighting applications. The input
common-mode voltage range extends beyond the
supply rails for maximum dynamic range in lowvoltage systems. The amplifier output has rail-to-rail
performance with high-output-drive capability, solving
one of the limitations of older rail-to-rail input/output
operational amplifiers. This rail-to-rail dynamic range
and high output drive make the TLV246x-Q1
designed for buffering analog-to-digital converters.
1
An IMPORTANT NOTICE at the end of this data sheet addresses availability, warranty, changes, use in safety-critical applications,
intellectual property matters and other important disclaimers. PRODUCTION DATA.
TLV2460-Q1, TLV2460A-Q1, TLV2461-Q1, TLV2461A-Q1
TLV2462-Q1, TLV2462A-Q1, TLV2463-Q1, TLV2463A-Q1, TLV2464A-Q1
SGLS008G – MARCH 2003 – REVISED FEBRUARY 2018
www.ti.com
Table of Contents
1
2
3
4
5
6
Features ..................................................................
Applications ...........................................................
Description .............................................................
Revision History.....................................................
Pin Configuration and Functions .........................
Specifications.........................................................
6.1
6.2
6.3
6.4
6.5
6.6
6.7
6.8
6.9
6.10
6.11
6.12
6.13
7
1
1
1
2
4
6
Absolute Maximum Ratings ..................................... 6
ESD Ratings.............................................................. 6
Recommended Operating Conditions....................... 6
Thermal Information: TLV2460x-Q1 ......................... 6
Thermal Information: TLV2461x-Q1 ......................... 7
Thermal Information: TLV2462-Q1 ........................... 7
Thermal Information: TLV2462A-Q1......................... 7
Thermal Information: TLV2463x-Q1 ......................... 7
Electrical Characteristics: VDD = 3 V......................... 8
Electrical Characteristics: VDD = 5 V....................... 9
Operating Characteristics: VDD = 3 V ................... 11
Operating Characteristics: VDD = 5 V ................... 12
Typical Characteristics .......................................... 13
Parameter Measurement Information ................ 22
8
Detailed Description ............................................ 22
8.1
8.2
8.3
8.4
9
Overview .................................................................
Functional Block Diagram .......................................
Feature Description.................................................
Device Functional Modes........................................
22
22
22
25
Application and Implementation ........................ 26
9.1 Application Information............................................ 26
9.2 Typical Application ................................................. 28
10 Power Supply Recommendations ..................... 30
11 Layout................................................................... 31
11.1 Layout Guidelines ................................................. 31
11.2 Layout Example .................................................... 31
12 Device and Documentation Support ................. 32
12.1
12.2
12.3
12.4
12.5
12.6
Documentation Support .......................................
Related Links ........................................................
Community Resources..........................................
Trademarks ...........................................................
Electrostatic Discharge Caution ............................
Glossary ................................................................
32
32
32
32
32
32
13 Mechanical, Packaging, and Orderable
Information ........................................................... 33
4 Revision History
NOTE: Page numbers for previous revisions may differ from page numbers in the current version.
Changes from Revision F (December 2015) to Revision G
Page
•
Updated data sheet text to latest data sheet and translation standards ................................................................................ 1
•
Deleted "Input Offset Voltage: 100 µV" bullet from Features section ................................................................................... 1
•
Deleted "Universal Operational Amplifier EVM" bullet from Features section ...................................................................... 1
•
Deleted TLV2464 device from document ............................................................................................................................... 1
•
Deleted Device Comparison table ......................................................................................................................................... 4
•
Reformatted Thermal Information tables and table notes ..................................................................................................... 6
•
Changed IIO and IIB unit from pA to nA in Electrical Characteristics: VDD = 3 V table ............................................................ 8
•
Changed IIO and IIB unit from pA to nA in Electrical Characteristics: VDD = 5 V table ............................................................ 9
•
Reformatted document references in Related Documentation section ............................................................................... 32
Changes from Revision E (October 2012) to Revision F
Page
•
Added AEC-Q100 bulleted items ........................................................................................................................................... 1
•
Added ESD Ratings table, Feature Description section, Device Functional Modes, Application and Implementation
section, Power Supply Recommendations section, Layout section, Device and Documentation Support section, and
Mechanical, Packaging, and Orderable Information section ................................................................................................. 1
•
Deleted D package from TLV2460-Q1, TLV2461-Q1, TLV2463-Q1, and TLV2464A-Q1 and added TLV246xA-Q1
device number to pin drawings............................................................................................................................................... 4
•
Deleted table note 3 reference to JESD 51-5 from Absolute Maximum Ratings table .......................................................... 6
2
Submit Documentation Feedback
Copyright © 2003–2018, Texas Instruments Incorporated
Product Folder Links: TLV2460-Q1 TLV2460A-Q1 TLV2461-Q1 TLV2461A-Q1 TLV2462-Q1 TLV2462A-Q1 TLV2463Q1 TLV2463A-Q1 TLV2464A-Q1
TLV2460-Q1, TLV2460A-Q1, TLV2461-Q1, TLV2461A-Q1
TLV2462-Q1, TLV2462A-Q1, TLV2463-Q1, TLV2463A-Q1, TLV2464A-Q1
www.ti.com
SGLS008G – MARCH 2003 – REVISED FEBRUARY 2018
Changes from Revision D (September 2010) to Revision E
Page
•
Changed device names from TLV246xx to TLV246xx-Q1 throughout document.................................................................. 1
•
Changed IDD unit from µA to mA. .......................................................................................................................................... 8
•
Changed IDD unit from µA to mA ............................................................................................................................................ 9
Copyright © 2003–2018, Texas Instruments Incorporated
Submit Documentation Feedback
Product Folder Links: TLV2460-Q1 TLV2460A-Q1 TLV2461-Q1 TLV2461A-Q1 TLV2462-Q1 TLV2462A-Q1 TLV2463Q1 TLV2463A-Q1 TLV2464A-Q1
3
TLV2460-Q1, TLV2460A-Q1, TLV2461-Q1, TLV2461A-Q1
TLV2462-Q1, TLV2462A-Q1, TLV2463-Q1, TLV2463A-Q1, TLV2464A-Q1
SGLS008G – MARCH 2003 – REVISED FEBRUARY 2018
www.ti.com
5 Pin Configuration and Functions
TLV2460-Q1, TLV2460A-Q1 PW Package
8-Pin TSSOP
Top View
NC
IN
IN +
GND
1
8
2
7
3
6
4
5
TLV2461-Q1, TLV2461A-Q1 PW Package
8-Pin TSSOP
Top View
SHDN
VDD+
OUT
NC
NC
IN
IN +
GND
NC- no internal connection
1
8
2
7
3
6
4
5
NC
VDD+
OUT
NC
NC- no internal connection
TLV2462-Q1, TLV2462A-Q1 D, DGK, or PW Package
8-Pin SOIC, TSSOP, or VSSOP
Top View
1OUT
1IN
1IN +
GND
1
8
2
7
3
6
4
5
VDD+
2OUT
2IN
2IN+
NC – No internal connection
Pin Functions
PIN
TLV2460-Q1,
TLV2460A-Q1
TLV2461-Q1,
TLV2461A-Q1
TLV2462-Q1,
TLV2462A-Q1
I/O
1IN
—
—
2
I
Inverting input, channel 1
1IN+
—
—
3
I
Noninverting input, channel 1
1OUT
—
—
1
O
Output, channel 1
2IN
—
—
6
I
Inverting input, channel 2
2IN+
—
—
5
I
Noninverting input, channel 2
2OUT
—
—
7
O
Output, channel 2
IN
2
2
—
I
Inverting input
IN+
3
3
—
I
Noninverting input
GND
4
4
4
—
Negative (lowest) supply
NAME
NC
DESCRIPTION
1, 5
1, 5, 8
—
—
No internal connection
OUT
6
6
—
O
Output
SHDN
8
—
—
I
Shutdown
VDD+
7
7
8
—
4
Submit Documentation Feedback
Positive (highest) supply
Copyright © 2003–2018, Texas Instruments Incorporated
Product Folder Links: TLV2460-Q1 TLV2460A-Q1 TLV2461-Q1 TLV2461A-Q1 TLV2462-Q1 TLV2462A-Q1 TLV2463Q1 TLV2463A-Q1 TLV2464A-Q1
TLV2460-Q1, TLV2460A-Q1, TLV2461-Q1, TLV2461A-Q1
TLV2462-Q1, TLV2462A-Q1, TLV2463-Q1, TLV2463A-Q1, TLV2464A-Q1
www.ti.com
SGLS008G – MARCH 2003 – REVISED FEBRUARY 2018
TLV2463-Q1, TLV2463A-Q1 PW Package
14-Pin TSSOP
Top View
1OUT
1IN
1IN+
GND
NC
1SHDN
NC
1
14
2
13
3
12
4
11
5
10
6
9
7
8
TLV2463-Q1, TLV2463A-Q1 PW Package
14-Pin TSSOP
Top View
VDD+
2OUT
2IN
2IN+
NC
2SHDN
NC
1OUT
1IN
1IN+
VDD+
2IN+
2IN
2OUT
1
14
2
13
3
12
4
11
5
10
6
9
7
8
4OUT
4IN
4IN+
GND
3IN+
3IN
3OUT
NC – No internal connection
Pin Functions
PIN
NAME
I/O
DESCRIPTION
TLV2463-Q1, TLV2463A-Q1
TLV2464A-Q1
1IN
2
2
I
Inverting input, channel 1
1IN+
3
3
I
Noninverting input, channel 1
1OUT
1
1
O
Output, channel 1
1SHDN
6
—
I
Shutdown for channel 1
2IN
12
6
I
Inverting input, channel 2
2IN+
11
5
I
Noninverting input, channel 2
2OUT
13
7
O
Output, channel 2
2SHDN
9
—
I
Shutdown for channel 2
3N
—
9
I
Inverting input, channel 3
3IN+
—
10
I
Noninverting input, channel 3
3OUT
—
8
O
Output, channel 3
4IN
—
13
I
Inverting input, channel 4
4IN+
—
12
I
Noninverting input, channel 4
4OUT
—
14
O
Output, channel 4
IN
—
—
I
Inverting input
IN+
—
—
I
Noninverting input
GND
4
11
—
Negative (lowest) supply
5, 7, 8, 10
—
—
No internal connection
OUT
—
—
O
Output
SHDN
—
—
I
Shutdown
VDD+
14
4
—
NC
Copyright © 2003–2018, Texas Instruments Incorporated
Positive (highest) supply
Submit Documentation Feedback
Product Folder Links: TLV2460-Q1 TLV2460A-Q1 TLV2461-Q1 TLV2461A-Q1 TLV2462-Q1 TLV2462A-Q1 TLV2463Q1 TLV2463A-Q1 TLV2464A-Q1
5
TLV2460-Q1, TLV2460A-Q1, TLV2461-Q1, TLV2461A-Q1
TLV2462-Q1, TLV2462A-Q1, TLV2463-Q1, TLV2463A-Q1, TLV2464A-Q1
SGLS008G – MARCH 2003 – REVISED FEBRUARY 2018
www.ti.com
6 Specifications
6.1 Absolute Maximum Ratings
over operating free-air temperature range (unless otherwise noted)
(1)
MIN
MAX
UNIT
6
V
Supply voltage (2), VDD
Differential input voltage, VID
–0.2
VDD + 0.2
V
Input current (any input), II
–200
200
mA
Output current, IO
–175
175
mA
Total input current (into VDD+), II
175
mA
Total output current (out of GND), IO
175
mA
125
°C
Maximum junction temperature, TJ
150
°C
Lead temperature 1.6 mm (1/16 inch) from case for 10 seconds
260
°C
150
°C
Operating free-air temperature, TA
–40
Storage temperature, Tstg
(1)
(2)
–65
Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings
only, which do not imply functional operation of the device at these or any other conditions beyond those indicated under Recommended
Operating Conditions. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.
All voltage values, except differential voltages, are with respect to GND.
6.2 ESD Ratings
VALUE
V(ESD)
(1)
Electrostatic discharge
Human-body model (HBM), per AEC Q100-002 (1)
±2000
Charged-device model (CDM), per AEC Q100-011
±1000
UNIT
V
AEC Q100-002 indicates that HBM stressing shall be in accordance with the ANSI/ESDA/JEDEC JS-001 specification.
6.3 Recommended Operating Conditions
Single-supply
VDD
Supply voltage
VICR
Common-mode input voltage range
TA
Operating free-air temperature
Split-supply
(1)
Shutdown on and off voltage level (1)
(1)
MIN
MAX
2.7
6
±1.35
±3
–0.2
VDD + 0.2
V
–40
125
°C
VIH
UNIT
2
VIL
0.7
V
V
Relative to voltage on the GND terminal of the device
6.4 Thermal Information: TLV2460x-Q1
TLV2460x-Q1
THERMAL METRIC (1)
PW (TSSOP)
UNIT
8 PINS
RθJA
Junction-to-ambient thermal resistance
RθJC(top)
Junction-to-case (top) thermal resistance
RθJB
Junction-to-board thermal resistance
ψJT
Junction-to-top characterization parameter
ψJB
Junction-to-board characterization parameter
RθJC(bot)
Junction-to-case (bottom) thermal resistance
N/A
°C/W
(1)
6
185.7
°C/W
69
°C/W
114.5
°C/W
9.6
°C/W
112.7
°C/W
For more information about traditional and new thermal metrics, see the Semiconductor and IC Package Thermal Metrics application
report.
Submit Documentation Feedback
Copyright © 2003–2018, Texas Instruments Incorporated
Product Folder Links: TLV2460-Q1 TLV2460A-Q1 TLV2461-Q1 TLV2461A-Q1 TLV2462-Q1 TLV2462A-Q1 TLV2463Q1 TLV2463A-Q1 TLV2464A-Q1
TLV2460-Q1, TLV2460A-Q1, TLV2461-Q1, TLV2461A-Q1
TLV2462-Q1, TLV2462A-Q1, TLV2463-Q1, TLV2463A-Q1, TLV2464A-Q1
www.ti.com
SGLS008G – MARCH 2003 – REVISED FEBRUARY 2018
6.5 Thermal Information: TLV2461x-Q1
TLV2461x-Q1
THERMAL METRIC (1)
PW (TSSOP)
UNIT
8 PINS
RθJA
Junction-to-ambient thermal resistance
RθJC(top)
Junction-to-case (top) thermal resistance
RθJB
Junction-to-board thermal resistance
ψJT
Junction-to-top characterization parameter
ψJB
RθJC(bot)
(1)
185.7
°C/W
69
°C/W
114.5
°C/W
9.6
°C/W
Junction-to-board characterization parameter
112.7
°C/W
Junction-to-case (bottom) thermal resistance
N/A
°C/W
For more information about traditional and new thermal metrics, see the Semiconductor and IC Package Thermal Metrics application
report.
6.6 Thermal Information: TLV2462-Q1
TLV2462-Q1
THERMAL METRIC
RθJA
(1)
Junction-to-ambient thermal resistance
D (SOIC)
DGK (VSSOP)
PW (TSSOP)
8 PINS
8 PINS
8 PINS
UNIT
120.1
179.3
183.6
°C/W
RθJC(top) Junction-to-case (top) thermal resistance
68.3
71.1
67
°C/W
RθJB
Junction-to-board thermal resistance
60.4
100.4
112.3
°C/W
ψJT
Junction-to-top characterization parameter
20.6
10.7
9
°C/W
ψJB
Junction-to-board characterization parameter
59.9
98.8
110.6
°C/W
RθJC(bot) Junction-to-case (bottom) thermal resistance
N/A
N/A
N/A
°C/W
(1)
For more information about traditional and new thermal metrics, see the Semiconductor and IC Package Thermal Metrics application
report.
6.7 Thermal Information: TLV2462A-Q1
TLV2462A-Q1
THERMAL METRIC
(1)
D (SOIC)
PW (TSSOP)
8 PINS
8 PINS
UNIT
RθJA
Junction-to-ambient thermal resistance
120.1
185.7
°C/W
RθJC(top)
Junction-to-case (top) thermal resistance
68.3
69
°C/W
RθJB
Junction-to-board thermal resistance
60.4
114.5
°C/W
ψJT
Junction-to-top characterization parameter
20.6
9.6
°C/W
ψJB
Junction-to-board characterization parameter
59.9
112.7
°C/W
RθJC(bot)
Junction-to-case (bottom) thermal resistance
N/A
N/A
°C/W
(1)
For more information about traditional and new thermal metrics, see the Semiconductor and IC Package Thermal Metrics application
report.
6.8 Thermal Information: TLV2463x-Q1
TLV2463x-Q1
THERMAL METRIC (1)
PW (TSSOP)
UNIT
8 PINS
RθJA
Junction-to-ambient thermal resistance
RθJC(top)
Junction-to-case (top) thermal resistance
RθJB
Junction-to-board thermal resistance
ψJT
Junction-to-top characterization parameter
ψJB
RθJC(bot)
(1)
185.7
°C/W
69
°C/W
114.5
°C/W
9.6
°C/W
Junction-to-board characterization parameter
112.7
°C/W
Junction-to-case (bottom) thermal resistance
N/A
°C/W
For more information about traditional and new thermal metrics, see the Semiconductor and IC Package Thermal Metrics application
report.
Copyright © 2003–2018, Texas Instruments Incorporated
Submit Documentation Feedback
Product Folder Links: TLV2460-Q1 TLV2460A-Q1 TLV2461-Q1 TLV2461A-Q1 TLV2462-Q1 TLV2462A-Q1 TLV2463Q1 TLV2463A-Q1 TLV2464A-Q1
7
TLV2460-Q1, TLV2460A-Q1, TLV2461-Q1, TLV2461A-Q1
TLV2462-Q1, TLV2462A-Q1, TLV2463-Q1, TLV2463A-Q1, TLV2464A-Q1
SGLS008G – MARCH 2003 – REVISED FEBRUARY 2018
www.ti.com
6.9 Electrical Characteristics: VDD = 3 V
at specified free-air temperature, VDD = 3 V, (unless otherwise noted)
PARAMETER
VIO
Input offset voltage
TEST CONDITIONS
VDD = 3 V
VIC = 1.5 V
VO = 1.5 V
RS = 50 Ω
TLV246x-Q1
TLV246xA-Q1
MIN
TA = 25°C
VDD = 3 V
VIC = 1.5 V
VO = 1.5 V
RS = 50 Ω
TA = 25°C
Input offset current
Input bias current
VIC = 1.5 V
VO = 1.5 V
RS = 50 Ω
TA = 25°C
IIB
IO = –10 mA
VOL
IO
Output current
Measured 1 V from rail
AVD
Large-signal differential
voltage amplification
RL = 10 kΩ
ri(d)
Differential input
resistance
ci(o)
Common-mode input
capacitance
zo
CMRR
7
75
4.4
(1)
nA
14
75
nA
2.9
Full range (1)
2.8
TA = 25°C
V
2.7
Full range (1)
2.5
0.1
Full range (1)
0.2
0.3
Full range (1)
V
0.5
TA = 25°C
50
Full range (1)
20
TA = 25°C
mA
40
Full range
20
TA = 25°C
±40
TA = 25°C
90
Full range (1)
89
mA
105
dB
Ω
f = 10 kHz
TA = 25°C
7
pF
Closed-loop output
impedance
f = 100 kHz
AV = 10
TA = 25°C
33
Ω
Common-mode rejection
ratio
VICR = 0 V to 3 V
RS = 50 Ω
TA = 25°C
66
Full range (1)
60
VDD = 2.7 V to 6 V
VIC = VDD / 2; no load
TA = 25°C
80
VDD = 3 V to 5 V
VIC = VDD / 2; no load
TA = 25°C
85
Full range (1)
80
Supply-voltage rejection
ratio (ΔVDD± / ΔVIO)
VO = 1.5 V; no load
IDD(SHD
Supply current in
shutdown (TLV2460-Q1,
TLV2463-Q1)
SHDN < 0.7 V, per channel in shutdown
8
μV/°C
109
Supply current
(per channel)
(1)
μV
TA = 25°C
IDD
N)
2.8
TA = 25°C
VIC = 1.5 V
IOL = 10 mA
Sinking
kSVR
Full range
TA = 25°C
Short circuit output current
1500
UNIT
1700
Full range (1)
TA = 25°C
Sourcing
IOS
150
2
VIC = 1.5 V
IOL = 2.5 mA
Low-level output voltage
2000
Full range (1)
IIO
High-level output voltage
100
2200
TA = 25°C
VDD = 3 V
Temperature coefficient of VIC = 1.5 V
input offset voltage
VO = 1.5 V
RS = 50 Ω
VOH
MAX
Full range (1)
αVIO
IO = –2.5 mA
TYP
Full range
(1)
TA = 25°C
80
85
75
Full range
dB
95
0.5
Full range (1)
TA = 25°C
dB
0.575
0.9
mA
0.3
(1)
2.5
μA
Full range is –40°C to +125°C.
Submit Documentation Feedback
Copyright © 2003–2018, Texas Instruments Incorporated
Product Folder Links: TLV2460-Q1 TLV2460A-Q1 TLV2461-Q1 TLV2461A-Q1 TLV2462-Q1 TLV2462A-Q1 TLV2463Q1 TLV2463A-Q1 TLV2464A-Q1
TLV2460-Q1, TLV2460A-Q1, TLV2461-Q1, TLV2461A-Q1
TLV2462-Q1, TLV2462A-Q1, TLV2463-Q1, TLV2463A-Q1, TLV2464A-Q1
www.ti.com
SGLS008G – MARCH 2003 – REVISED FEBRUARY 2018
6.10 Electrical Characteristics: VDD = 5 V
at specified free-air temperature, VDD = 5 V, (unless otherwise noted)
PARAMETER
VIO
Input offset voltage
TEST CONDITIONS
VDD = 5 V
VIC = 2.5 V
VO = 2.5 V
RS = 50 Ω
TLV246x-Q1
TLV246xA-Q1
TA = 25°C
VDD = 5 V
VIC = 2.5 V
VO = 2.5 V
RS = 50 Ω
TA = 25°C
Input offset current
Input bias current
VDD = 5 V
VIC = 2.5 V
VO = 2.5 V
RS = 50 Ω
TA = 25°C
IIB
150
0.3
1.3
4.7
Full range (1)
4.4
TA = 25°C
VIC = 2.5 V
IOL = 10 mA
TA = 25°C
Low-level output voltage
Sourcing
Short circuit output
current
Sinking
4.8
(1)
TA = 25°C
V
0.1
Full range (1)
0.2
0.2
Full range (1)
V
0.3
TA = 25°C
145
Full range (1)
60
TA = 25°C
mA
100
Full range (1)
60
Measured 1 V from rail
TA = 25°C
Large-signal differential
voltage amplification
TA = 25°C
92
AVD
VIC = 2.5 V
RL = 10 kΩ
VO = 1 V to 4 V
Full range (1)
90
ri(d)
Differential input
resistance
ci(o)
Common-mode input
capacitance
zo
CMRR
(1)
nA
4.8
Output current
IDD
14
4.8
TA = 25°C
VIC = 2.5 V
IOL = 2.5 mA
nA
4.9
Full range (1)
Full range
7
60
TA = 25°C
TLV246x-Q1,
TLV246xA-Q1
μV
μV/°C
60
Full range (1)
TLV2462QDGKRQ1
kSVR
1500
UNIT
1700
Full range (1)
IO = –10 mA
IO
2000
2
IO = –2.5 mA
IOS
150
Full range (1)
IIO
VOL
MAX
2200
TA = 25°C
VDD = 5 V
Temperature coefficient of VIC = 2.5 V
input offset voltage
VO = 2.5 V
RS = 50 Ω
High-level output voltage
TYP
Full range (1)
αVIO
VOH
MIN
±80
mA
109
dB
TA = 25°C
109
Ω
f = 10 kHz
TA = 25°C
7
pF
Closed-loop output
impedance
f = 100 kHz, AV = 10
TA = 25°C
29
Ω
Common-mode rejection
ratio
VICR = 0 V to 5 V
RS = 50 Ω
TA = 25°C
71
Full range (1)
60
VDD = 2.7 V to 6 V
VIC = VDD / 2; no load
TA = 25°C
80
VDD = 3 V to 5 V
VIC = VDD / 2; no load
TA = 25°C
85
Full range (1)
80
Supply-voltage rejection
ratio (ΔVDD± / ΔVIO)
Supply current
(per channel)
VO = 2.5 V; no load
Full range
(1)
TA = 25°C
Full range (1)
85
dB
85
75
dB
95
0.55
0.65
1
mA
Full range is –40°C to +125°C.
Copyright © 2003–2018, Texas Instruments Incorporated
Submit Documentation Feedback
Product Folder Links: TLV2460-Q1 TLV2460A-Q1 TLV2461-Q1 TLV2461A-Q1 TLV2462-Q1 TLV2462A-Q1 TLV2463Q1 TLV2463A-Q1 TLV2464A-Q1
9
TLV2460-Q1, TLV2460A-Q1, TLV2461-Q1, TLV2461A-Q1
TLV2462-Q1, TLV2462A-Q1, TLV2463-Q1, TLV2463A-Q1, TLV2464A-Q1
SGLS008G – MARCH 2003 – REVISED FEBRUARY 2018
www.ti.com
Electrical Characteristics: VDD = 5 V (continued)
at specified free-air temperature, VDD = 5 V, (unless otherwise noted)
PARAMETER
IDD(SHD
N)
10
Supply current in
shutdown (TLV2460-Q1,
TLV2463-Q1)
TEST CONDITIONS
SHDN < 0.7 V, Per channel in
shutdown
Submit Documentation Feedback
MIN
TA = 25°C
Full range
TYP
MAX
UNIT
1
(1)
3
μA
Copyright © 2003–2018, Texas Instruments Incorporated
Product Folder Links: TLV2460-Q1 TLV2460A-Q1 TLV2461-Q1 TLV2461A-Q1 TLV2462-Q1 TLV2462A-Q1 TLV2463Q1 TLV2463A-Q1 TLV2464A-Q1
TLV2460-Q1, TLV2460A-Q1, TLV2461-Q1, TLV2461A-Q1
TLV2462-Q1, TLV2462A-Q1, TLV2463-Q1, TLV2463A-Q1, TLV2464A-Q1
www.ti.com
SGLS008G – MARCH 2003 – REVISED FEBRUARY 2018
6.11 Operating Characteristics: VDD = 3 V
VDD = 3 V , at specified free-air temperature (unless otherwise noted)
PARAMETER
SR
Slew rate at unity gain
Vn
Equivalent input noise voltage
In
Equivalent input noise current
TEST CONDITIONS
VO(PP) = 2 V
CL = 160 pF
RL = 10 kΩ
TA = 25°C
Full range (1)
f = 100 Hz
TA = 25°C
f = 1 kHz
f = 1 kHz
TA = 25°C
AV = 1
THD +
N
t(on)
Total harmonic distortion
plus noise
Amplifier turn-on time
VO(PP) = 2 V
RL = 10 kΩ, f = 1 kHz
AV = 1
RL = 10 kΩ
AV = 10
Amplifier turn-off time
AV = 1
RL = 10 kΩ
ts
φm
(1)
Settling time
1
1.6
16
11
0.13
TA = 25°C
7.6
f = 10 kHz
CL = 160 pF
RL = 10 kΩ
nV/√Hz
pA/√Hz
0.02%
0.08%
Channel 1
only,
Channel 2
on
UNIT
V/μs
Both
channels
Channel 1
only,
Channel 2
on
MAX
0.8
AV = 100
TA = 25°C
μs
7.65
333
328
TA = 25°C
Channel 2
only,
Channel 1
on
Gain-bandwidth product
TYP
0.006%
Both
channels
t(off)
MIN
ns
329
TA = 25°C
5.2
V(STEP)PP = 2 V
AV = –1
CL = 10 pF
RL = 10 kΩ
0.1%
1.47
0.01%
1.78
V(STEP)PP = 2 V
AV = –1
CL = 56 pF
RL = 10 kΩ
0.1%
TA = 25°C
0.01%
1.77
MHz
μs
1.98
Phase margin at unity gain
RL = 10 kΩ
CL = 160 pF
TA = 25°C
44
°
Gain margin
RL = 10 kΩ
CL = 160 pF
TA = 25°C
7
dB
Full range is –40°C to +125°C.
Copyright © 2003–2018, Texas Instruments Incorporated
Submit Documentation Feedback
Product Folder Links: TLV2460-Q1 TLV2460A-Q1 TLV2461-Q1 TLV2461A-Q1 TLV2462-Q1 TLV2462A-Q1 TLV2463Q1 TLV2463A-Q1 TLV2464A-Q1
11
TLV2460-Q1, TLV2460A-Q1, TLV2461-Q1, TLV2461A-Q1
TLV2462-Q1, TLV2462A-Q1, TLV2463-Q1, TLV2463A-Q1, TLV2464A-Q1
SGLS008G – MARCH 2003 – REVISED FEBRUARY 2018
www.ti.com
6.12 Operating Characteristics: VDD = 5 V
VDD = 5 V, at specified free-air temperature, (unless otherwise noted)
PARAMETER
TEST CONDITIONS
Slew rate at unity gain
Vn
Equivalent input noise voltage
In
Equivalent input noise current f = 100 Hz
THD +
N
Total harmonic distortion
plus noise
TA = 25°C
VO(PP) = 2 V
CL = 160 pF
RL = 10 kΩ
SR
Full
range (1)
f = 100 Hz
TA = 25°C
f = 1 kHz
VO(PP) = 4 V
RL = 10 kΩ
f = 10 kHz
TA = 25°C
AV = 1
AV = 10
TA = 25°C
t(off)
Amplifier turn-on time
Amplifier turn-off time
AV = 1 RL = 10 kΩ
AV = 1 RL = 10 kΩ
ts
φm
(1)
12
Settling time
1.6
V/μs
0.8
14
11
0.13
μs
Both channels
333
328
TA = 25°C
0.1%
V(STEP)PP = 2 V
AV = –1
CL = 56 pF
RL = 10 kΩ
0.1%
ns
329
TA = 25°C
V(STEP)PP = 2 V
AV = –1
CL = 10 pF
RL = 10 kΩ
pA/√Hz
7.65
TA = 25°C
7.25
f = 10 kHz
CL = 160 pF
RL = 10 kΩ
nV/√Hz
0.01%
Channel 2
only,
Channel 1 on
Channel 1
only,
Channel 2 on
UNIT
7.6
Channel 2
only,
Channel 1 on
Gain-bandwidth product
1
MAX
0.04%
Both channels
t(on)
TYP
0.004%
AV = 100
Channel 1
only,
Channel 2 on
MIN
6.4
MHz
1.53
0.01%
1.83
TA = 25°C
0.01%
3.13
μs
3.33
Phase margin at unity gain
RL = 10 kΩ
CL = 160 pF
TA = 25°C
45
°
Gain margin
RL = 10 kΩ
CL = 160 pF
TA = 25°C
7
dB
Full range is –40°C to +125°C.
Submit Documentation Feedback
Copyright © 2003–2018, Texas Instruments Incorporated
Product Folder Links: TLV2460-Q1 TLV2460A-Q1 TLV2461-Q1 TLV2461A-Q1 TLV2462-Q1 TLV2462A-Q1 TLV2463Q1 TLV2463A-Q1 TLV2464A-Q1
TLV2460-Q1, TLV2460A-Q1, TLV2461-Q1, TLV2461A-Q1
TLV2462-Q1, TLV2462A-Q1, TLV2463-Q1, TLV2463A-Q1, TLV2464A-Q1
www.ti.com
SGLS008G – MARCH 2003 – REVISED FEBRUARY 2018
6.13 Typical Characteristics
CONDITION STATEMENT TBD
Table 1. Table of Graphs
GRAPH TITLE
VIO
FIGURE
Input offset voltage vs common-mode input voltage
1, 2
IIB
Input bias current vs free-air temperature
3, 4
IIO
Input offset current vs free-air temperature
3, 4
High-level output voltage vs high-level output current
5, 6
VOH
VOL
Low-level output voltage vs low-level output current
7, 8
VO(PP)
Maximum peak-to-peak output voltage vs frequency
9, 10
Open-loop gain vs frequency
11, 12
Phase vs frequency
11, 12
Differential voltage amplification vs load resistance
13
AVD
zo
Capacitive load vs load resistance
14
Output impedance vs frequency
15, 16
CMRR
Common-mode rejection ratio vs frequency
17
kSVR
Supply-voltage rejection ratio vs frequency
18, 19
Supply current vs supply voltage
20
Supply current vs free-air temperature
21
Amplifier turnon characteristics
22
Amplifier turnoff characteristics
23
Supply current turnon
24
Supply current turnoff
25
Shutdown supply current vs free-air temperature
26
Slew rate vs load capacitance
27
IDD
SR
Vn
THD
THD + N
φm
Equivalent input noise voltage vs frequency
28, 29
Equivalent input noise voltage vs common-mode input voltage
30, 31
Total harmonic distortion vs frequency
32, 33
Total harmonic distortion plus noise vs peak-to-peak signal amplitude
34, 35
Phase margin vs frequency
11, 12
Phase margin vs load capacitance
36
Phase margin vs free-air temperature
37
Gain-bandwidth product vs supply voltage
38
Gain-bandwidth product vs free-air temperature
39
Large signal follower
40, 41
Small signal follower
42, 43
Inverting large signal
44, 45
Inverting small signal
46, 47
Copyright © 2003–2018, Texas Instruments Incorporated
Submit Documentation Feedback
Product Folder Links: TLV2460-Q1 TLV2460A-Q1 TLV2461-Q1 TLV2461A-Q1 TLV2462-Q1 TLV2462A-Q1 TLV2463Q1 TLV2463A-Q1 TLV2464A-Q1
13
TLV2460-Q1, TLV2460A-Q1, TLV2461-Q1, TLV2461A-Q1
TLV2462-Q1, TLV2462A-Q1, TLV2463-Q1, TLV2463A-Q1, TLV2464A-Q1
SGLS008G – MARCH 2003 – REVISED FEBRUARY 2018
www.ti.com
1
1
VDD = 5 V
TA = 25°C
0.8
0.6
Input Offset Voltage, VIO (mV)
Input Offset Voltage, VIO (mV)
VDD = 3 V
TA = 25°C
0.4
0.2
0
0.2
0.4
0.6
0.6
0.4
0.2
0
0.2
0.4
0.6
0.8
0.8
1
1
0
0.5
1.5
1
3
2.5
2
0
Common-Mode Input Voltage, VICR (V)
1
2
3
4
Common-Mode Input Voltage, VICR (V)
VDD = 5 V
VDD = 3 V
5
VDD = 3 V
VI = 1.5 V
4.5
IIB
4
3.5
3
2.5
2
1.5
1
0.5
IIO
0.5
–55
5
–35 –15
25
45
65
85
105 125
Figure 2. Input Offset Voltage vs Common-Mode Input
Voltage
Input Bias and Input Offset Current, IIB and IIO (nA)
Input Bias and Input Offset Current, IIB and IIO (nA)
Figure 1. Input Offset Voltage vs Common-Mode Input
Voltage
0
5
6
VDD = 5 V
VI = 2.5 V
5
IIB
4
3
2
1
IIO
0
1
–55
5
–35 –15
25
45
65
85
105 125
Free-Air Temperature, TA (°C)
Free-Air Temperature, TA (°C)
VDD = 5 V
VDD = 3 V
Figure 3. Input Bias and Input Offset Current vs Free-Air
Temperature
Figure 4. Input Bias and Input Offset Current vs Free-Air
Temperature
3
5
VDD = 3 V DC
VDD = 5 V DC
High-Level Output Voltage, VOH (V)
High-Level Output Voltage, VOH (V)
4.5
2.5
TA = 55 °C
2
1.5
TA = 125°C
TA = 85°C
TA = 25°C
1
TA = 40 °C
0.5
TA = 55 °C
4
3.5
3
TA = 125°C
TA = 85°C
2.5
2
TA = 25°C
1.5
TA = 40 °C
1
0.5
0
0
0
10
20
30
40
50
60
70
80
High-Level Output Current, IOH (mA)
VDD = 3 VDC
Figure 5. High-Level Output Voltage vs High-Level Output
Current
14
Submit Documentation Feedback
0
20
40
60
80 100 120 140 160 180 200
High-Level Output Current, IOH (mA)
VDD = 5 VDC
Figure 6. High-Level Output Voltage vs High-Level Output
Current
Copyright © 2003–2018, Texas Instruments Incorporated
Product Folder Links: TLV2460-Q1 TLV2460A-Q1 TLV2461-Q1 TLV2461A-Q1 TLV2462-Q1 TLV2462A-Q1 TLV2463Q1 TLV2463A-Q1 TLV2464A-Q1
TLV2460-Q1, TLV2460A-Q1, TLV2461-Q1, TLV2461A-Q1
TLV2462-Q1, TLV2462A-Q1, TLV2463-Q1, TLV2463A-Q1, TLV2464A-Q1
www.ti.com
SGLS008G – MARCH 2003 – REVISED FEBRUARY 2018
4.5
3
VDD = 3 V DC
VDD = 5 V DC
Low-Level Output Voltage, VOL (V)
4
Low-Level Output Voltage, VOL (V)
2.5
TA = 40 °C
2
TA = 25°C
TA = 85°C
TA = 125°C
1.5
1
0.5
20
30
40
50
3
TA = 25°C
2.5
TA = 85°C
TA = 125°C
1.5
1
TA = 55 °C
0.5
0
10
TA = 40 °C
2
TA = 55 °C
0
3.5
60
70
0
Low-Level Output Current, IOL (mA)
0
20
Figure 7. Low-Level Output Voltage vs Low-Level Output
Current
60
80
100
120
140
160
Figure 8. Low-level Output Voltage vs Low-Level Output
Current
5.5
3
VDD = 3 V
AV = 10
THD = 1%
RL = 10 kΩ
2.5
Peak-to-Peak Output Voltage, VO(PP) (V)
Peak-to-Peak Output Voltage, VO(PP) (V)
40
VDD = 5 VDC
VDD = 3 VDC
2
1.5
1
0.5
VDD = 5 V
AV = 10
THD = 1%
RL = 10 kΩ
5
4.5
4
3.5
3
2.5
2
1.5
1
0.5
0
0
10k
10M
Frequency, f (Hz)
VDD = 3 V
VDD = 5 V
Figure 9. Peak-to-Peak Output Voltage vs Frequency
100
VDD = ±1.5 V
RL = 10 kΩ
CL = 0
TA = 25°C
90
80
60
100
20°
90
0°
80
20°
70
40°
AVD
50
60°
40
80°
30
100 °
Phase
20
Figure 10. Peak-to-Peak Output Voltage vs Frequency
40°
Phase
Open-Loop Gain (dB)
70
120 °
10M
1M
100k
Frequency, f (Hz)
40°
VDD = ±2.5 V
RL = 10 kΩ
CL = 0
TA = 25°C
60
20°
0°
20°
40°
AVD
50
60°
40
80°
100°
30
Phase
20
120°
10
140 °
10
140°
0
160 °
0
160°
–10
180 °
–10
180°
–20
200 °
10M
–20
10
100
1k
10k
100k
1M
Frequency, f (Hz)
VDD = ±1.5 V
Figure 11. Open-Loop Gain and Phase vs Frequency
Copyright © 2003–2018, Texas Instruments Incorporated
Phase
1M
100k
Open-Loop Gain (dB)
10k
200°
10
100
1k
10k
100k
1M
10M
Frequency, f (Hz)
VDD = ±2.5 V
Figure 12. Open-Loop Gain and Phase vs Frequency
Submit Documentation Feedback
Product Folder Links: TLV2460-Q1 TLV2460A-Q1 TLV2461-Q1 TLV2461A-Q1 TLV2462-Q1 TLV2462A-Q1 TLV2463Q1 TLV2463A-Q1 TLV2464A-Q1
15
TLV2460-Q1, TLV2460A-Q1, TLV2461-Q1, TLV2461A-Q1
TLV2462-Q1, TLV2462A-Q1, TLV2463-Q1, TLV2463A-Q1, TLV2464A-Q1
SGLS008G – MARCH 2003 – REVISED FEBRUARY 2018
www.ti.com
10000
TA = 25°C
160
140
Capacitance, CL (pF)
Differential Voltage Amplification, AVD (V/mV)
180
120
VDD = ±2.5 V
100
VDD = ±1.5 V
80
60
Phase Margin < 30°
1000
Phase Margin > 30°
40
VDD = 5 V
Phase Margin = 30°
TA = 25°C
20
100
0
100
1k
100k
10k
Load Resistance, RL (Ω)
Figure 13. Differential Voltage Amplification vs Load
Resistance
1000
VDD = ±1.5 V
TA = 25°C
VDD = ±2.5 V
TA = 25°C
100
100
Output Impedance, ZO (Ω)
Output Impedance, ZO (Ω)
10k
Figure 14. Capacitive Load vs Load Resistance
1000
10
AV = 100
1
AV = 10
0.1
100
1k
Load Resistance, RL (Ω)
10
1M
10
AV = 100
1
AV = 10
0.1
AV = 1
AV = 1
0.01
100
1k
10k
100k
1M
0.01
100
10M
1k
Frequency, f (Hz)
VDD = ±1.5 V
1M
10M
Figure 16. Output Impedance vs Frequency
110
Supply Voltage Rejection Ratio , kSVR (dB)
90
Common-Mode Rejection Ratio,CMRR (dB)
100k
VDD = ±2.5 V
Figure 15. Output Impedance vs Frequency
85
80
VDD = 5 V
VIC = 2.5 V
75
VDD = 3 V
VIC = 1.5 V
70
65
60
10
10k
Frequency, f (Hz)
100
10k
100k
1k
Frequency, f (Hz)
1M
10M
+kSVR
VDD = ±1.5 V
TA = 25°C
100
90
k SVR
80
70
60
+kSVR
50
k SVR
40
10
100
10k
100k
1k
Frequency, f (Hz)
1M
10M
VDD = ±1.5 V
Figure 17. Common-Mode Rejection Ratio vs Frequency
16
Submit Documentation Feedback
Figure 18. Supply-Voltage Rejection Ratio vs Frequency
Copyright © 2003–2018, Texas Instruments Incorporated
Product Folder Links: TLV2460-Q1 TLV2460A-Q1 TLV2461-Q1 TLV2461A-Q1 TLV2462-Q1 TLV2462A-Q1 TLV2463Q1 TLV2463A-Q1 TLV2464A-Q1
TLV2460-Q1, TLV2460A-Q1, TLV2461-Q1, TLV2461A-Q1
TLV2462-Q1, TLV2462A-Q1, TLV2463-Q1, TLV2463A-Q1, TLV2464A-Q1
www.ti.com
SGLS008G – MARCH 2003 – REVISED FEBRUARY 2018
0.8
+kSVR
80
IDD = 125°C
VDD = ±2.5 V
TA = 25°C
k SVR
70
60
+kSVR
50
IDD = 85°C
0.7
Supply Current, IDD (mA)
Supply Voltage Rejection Ratio , kSVR (dB)
90
0.6
0.5
0.40
IDD = 25°C
0.30
IDD = 55 °C
IDD = 40 °C
0.20
k SVR
0.10
40
10
10k
100k
1k
Frequency, f (Hz)
100
1M
2.5
10M
3
3.5
4
4.5
5
5.5
6
Supply Voltage, VDD (V)
VDD = ±2.5 V
Figure 19. Supply-Voltage Rejection Ratio vs Frequency
Figure 20. Supply Current vs Supply Voltage
0.8
0.80
IDD = 125°C
0.75
0.70
VDD = 5 V
VI = 2.5 V
0.65
Supply Current, IDD (mA)
Supply Current, IDD (mA)
IDD = 85°C
0.7
0.60
0.55
VDD = 3 V
VI = 1.5 V
0.50
0.45
0.6
0.5
0.40
IDD = 25°C
0.30
IDD = 55 °C
0.40
IDD = 40 °C
0.20
0.35
0.30
–55 –35
0.10
–15
5
45
25
65
85
105
2.5
125
3
Figure 21. Supply Current vs Free-Air Temperature
5
5.5
6
VDD = 5 V
RL = 10 kΩ
AV = 1
TA = 25°C
Shutdown Pin
3
Shutdown Voltage, VSD (V)
Shutdown Voltage, VSD (V)
4
Shutdown Pin
3
2
1
0
Amplifier Output
3
0
–5
4.5
5
4
2
4
Figure 22. Amplifier With a Shutdown Pulse Turnon
Characteristics
5
1
3.5
Supply Voltage, VDD (V)
Free-Air Temperature, TA (°C)
VDD = 5 V
RL = 10 kΩ
AV = 1
TA = 25°C
–3
–1
2
1
0
3
Amplifier Output
2
1
1
3
5
7
9
11
Time, t (μs)
Figure 23. Amplifier With a Shutdown Pulse Turnoff
Characteristics
Copyright © 2003–2018, Texas Instruments Incorporated
0
–5
–3
–1
3
1
Time, t (μs)
5
7
Figure 24. Supply Current With a Shutdown Pulse Turnon
Characteristics
Submit Documentation Feedback
Product Folder Links: TLV2460-Q1 TLV2460A-Q1 TLV2461-Q1 TLV2461A-Q1 TLV2462-Q1 TLV2462A-Q1 TLV2463Q1 TLV2463A-Q1 TLV2464A-Q1
17
TLV2460-Q1, TLV2460A-Q1, TLV2461-Q1, TLV2461A-Q1
TLV2462-Q1, TLV2462A-Q1, TLV2463-Q1, TLV2463A-Q1, TLV2464A-Q1
SGLS008G – MARCH 2003 – REVISED FEBRUARY 2018
www.ti.com
Shutdown Pin
4.5
0.6
0.4
3.5
Supply Current
2.5
0.2
1.5
0
0.5
0.2
–0.40
0.2
0
Time, t (μs)
–0.20
0.4
2.5
Shutdown Supply Current, IDD (mA)
VDD = 5 V
VI = 2.5 V
AV = 1
TA = 25°C
Shutdown Voltage, VSD (V)
Supply Current, IDD (mA)
0.8
3
5.5
1
1.5
1
0
1
0.5
0.6
–55 –35
Equivalent Input Noise Voltage, Vn (nV/ Hz)
Slew Rate, SR (V/ms)
1.7
SR+
1.6
1.55
SR
1.5
VO(PP) = 2 V
CL = 160 pF
AV = 1
RL = 10 kΩ
TA = 25°C
3
5
3.5
4
4.5
Supply Voltage, VDD (V)
5.5
Figure 27. Slew Rate vs Supply Voltage
85
105
125
VDD = 3 V
AV = 10
VI = 1.5 V
TA = 25°C
16
15
14
13
12
11
10k
1k
Frequency, f (Hz)
100k
Figure 28. Equivalent Input Noise Voltage vs Frequency
17
Equivalent Input Noise Voltage, Vn (nV/ Hz)
Equivalent Input Noise Voltage, Vn (nV/ Hz)
65
20
VDD = 5 V
AV = 10
VI = 2.5 V
TA = 25°C
16
15
14
13
12
11
VDD = 3 V
AV = 10
f = 1 kHz
TA = 25°C
15
14
13
12
11
10
10k
1k
Frequency, f (Hz)
100k
Figure 29. Equivalent Input Noise Voltage vs Frequency
18
45
17
10
100
6
18
10
100
25
18
1.65
1.3
2.5
5
Figure 26. Shutdown Supply Current vs Free-Air
Temperature
1.8
1.35
–15
Free-Air Temperature, TA (°C)
1.75
1.4
VDD = 3 V
VI = 1.5 V
0.5
0.5
Figure 25. Turnoff Supply Current With a Shutdown Pulse
1.45
VDD = 5 V
VI = 2.5 V
2
Submit Documentation Feedback
0
0.5
1.5
2.5
1
2
Common-Mode Input Voltage, VICR (V)
Figure 30. Equivalent Input Noise Voltage vs Common-Mode
Input Voltage
Copyright © 2003–2018, Texas Instruments Incorporated
Product Folder Links: TLV2460-Q1 TLV2460A-Q1 TLV2461-Q1 TLV2461A-Q1 TLV2462-Q1 TLV2462A-Q1 TLV2463Q1 TLV2463A-Q1 TLV2464A-Q1
TLV2460-Q1, TLV2460A-Q1, TLV2461-Q1, TLV2461A-Q1
TLV2462-Q1, TLV2462A-Q1, TLV2463-Q1, TLV2463A-Q1, TLV2464A-Q1
www.ti.com
SGLS008G – MARCH 2003 – REVISED FEBRUARY 2018
0.5
20
15
VDD = ±1.5 V
VO(PP) = 2 V
RL = 10 kΩ
Total Harmonic Distortion, THD (%)
VDD = 5 V
AV = 10
f = 1 kHz
TA = 25°C
14
13
12
11
AV = 10
AV = 1
0.001
10
0
1
2
3
4
Common-Mode Input Voltage, VICR (V)
AV = 100
0.1
5
10
100
1k
10k
100k
Frequency, f (Hz)
VDD = ±1.5 V
Figure 31. Equivalent Input Noise Voltage vs Common-Mode
Input Voltage
Figure 32. Total Harmonic Distortion vs Frequency
1
VDD = ±2.5 V
VO(PP) = 4 V
RL = 10 kΩ
Total Harmonic Distortion + Noise, THD+N (%)
Total Harmonic Distortion, THD (%)
1
0.1
AV = 100
AV = 10
AV = 1
0.001
10
100
1k
10k
VDD = 3 V
AV = 1
TA = 25°C
RL = 250 Ω
RL = 2 kΩ
0.1
RL = 10 kΩ
0.010
RL = 100 kΩ
0.001
100k
1
Frequency, f (Hz)
1.2 1.4 1.6 1.8 2 2.2 2.4 2.6 2.8 3
Peak-to-Peak Signal Amplitude ( V)
VDD = ±2.5 V
VDD = 3 V
Figure 33. Total Harmonic Distortion vs Frequency
Figure 34. Total Harmonic Distortion Plus Noise vs Peak-toPeak Signal Amplitude
90
RL = 250 Ω
VDD = ±2.5 V
TA = 25°C
RL = 10 kΩ
80
Phase Margin, φm (degrees)
Total Harmonic Distortion + Noise, THD+N (%)
1
RL = 2 kΩ
0.1
3.2
RL = 10 kΩ
0.010
RL = 100 kΩ
70
Rnull = 50 Ω
60
50
40
Rnull = 20 Ω
30
20
VDD = 5 V
AV = 1
TA = 25°C
Rnull = 0 Ω
10
0.001
0
4
4.1 4.2 4.3 4.4 4.5 4.6 4.7 4.8 4.9
Peak-to-Peak Signal Amplitude (V)
5
10
100
1k
10k
100k
Load Capacitance, CL (pF)
VDD = 5 V
Figure 35. Total Harmonic Distortion Plus Noise vs Peak-toPeak Signal Amplitude
Copyright © 2003–2018, Texas Instruments Incorporated
Figure 36. Phase Margin vs Load Capacitance
Submit Documentation Feedback
Product Folder Links: TLV2460-Q1 TLV2460A-Q1 TLV2461-Q1 TLV2461A-Q1 TLV2462-Q1 TLV2462A-Q1 TLV2463Q1 TLV2463A-Q1 TLV2464A-Q1
19
TLV2460-Q1, TLV2460A-Q1, TLV2461-Q1, TLV2461A-Q1
TLV2462-Q1, TLV2462A-Q1, TLV2463-Q1, TLV2463A-Q1, TLV2464A-Q1
SGLS008G – MARCH 2003 – REVISED FEBRUARY 2018
www.ti.com
60
5
RL = 10 kΩ
CL = 160 pF
4.75
Gain Bandwidth Product (MHz)
Phase Margin, φm (degrees)
55
CL = 160 pF
RL = 10 kΩ
f = 10 kHz
TA = 25°C
50
VDD = ±2.5 V
45
VDD = ±1.5 V
40
35
4.5
4.25
4
3.75
30
–55 –35
5
–15
25
45
65
85
105
3.5
2.5
125
5
3.5
4
4.5
Supply Voltage, VDD (V)
3
Free-Air Temperature, TA (°C)
Figure 37. Phase Margin vs Free-Air Temperature
2.2
RL = 10 kΩ
CL = 160 pF
2
VDD = ±2.5 V
4.25
4
3.75
3.5
Input
1.8
Voltage, VO (V)
Gain Bandwidth Product (MHz)
4.5
6
Figure 38. Gain Bandwidth Product vs Supply Voltage
5
4.75
5.5
VDD = ±1.5 V
Output
1.6
1.4
VDD = 3 V
VI(PP) = 1 V
VI = 1.5 V
RL = 10 kΩ
CL = 160 pF
AV = 1
TA = 25°C
1.2
1
3.25
3
–55 –35
5
–15
25
45
65
85
105
0.8
–2
125
0
Free-Air Temperature, TA (°C)
2
4
Input
Output
8
6
10
Time, t (μs)
12
14
16
18
VDD = 3 V
Figure 40. Large Signal Follower
Figure 39. Gain Bandwidth Product vs Free-Air Temperature
3.7
1.6
3.3
1.55
Voltage, VO (V)
Voltage, VO (V)
Input
2.9
Output
2.5
VDD = 5 V
VI(PP) = 2 V
VI = 2.5 V
RL = 10 kΩ
CL = 160 pF
AV = 1
TA = 25°C
2.1
1.7
1.3
–2
0
2
4
Input
12
14
16
VDD = 5 V
Figure 41. Large Signal Follower
20
Submit Documentation Feedback
1.5
Output
1.45
Output
8
6
10
Time, t (μs)
Input
18
1.4
–0.2
VDD = 3 V
VI(PP) = 100 mV
VI = 1.5 V
RL = 10 kΩ
0
CL = 160 pF
AV = 1
TA = 25°C
0.2 0.4 0.6 0.8 1
Time, t (μs)
1.2 1.4
1.6 1.8
VDD = 3 V
Figure 42. Small Signal Follower
Copyright © 2003–2018, Texas Instruments Incorporated
Product Folder Links: TLV2460-Q1 TLV2460A-Q1 TLV2461-Q1 TLV2461A-Q1 TLV2462-Q1 TLV2462A-Q1 TLV2463Q1 TLV2463A-Q1 TLV2464A-Q1
TLV2460-Q1, TLV2460A-Q1, TLV2461-Q1, TLV2461A-Q1
TLV2462-Q1, TLV2462A-Q1, TLV2463-Q1, TLV2463A-Q1, TLV2464A-Q1
www.ti.com
SGLS008G – MARCH 2003 – REVISED FEBRUARY 2018
2.6
2.3
Input
2.1
1.9
Voltage, VO (V)
Voltage, VO (V)
2.55
Input
2.5
Output
VDD = 3 V
VI(PP) = 1 V
VI = 1.5 V
RL = 10 kΩ
CL = 160 pF
AV = 1
TA = 25°C
1.7
1.5
1.3
1.1
2.45
2.4
–0.2
VDD = 5 V
VI(PP) = 100 mV
VI = 2.5 V
RL = 10 kΩ
0
Output
0.9
CL = 160 pF
AV = 1
TA = 25°C
0.2 0.4 0.6 0.8 1
Time, t (μs)
1.2 1.4
0.7
0.5
–0.2
1.6 1.8
0
VDD = 5 V
0.2 0.4 0.6 0.8 1
Time, t (μs)
1.2 1.4
1.6 1.8
VDD = 3 V
Figure 43. Small Signal Follower
Figure 44. Inverting Large Signal
1.6
4
Input
Input
1.55
VDD = 5 V
VI(PP) = 2 V
VI = 2.5 V
RL = 10 kΩ
CL = 160 pF
AV = 1
TA = 25°C
3
2.5
Voltage, VO (V)
Voltage, VO (V)
3.5
VDD = 3 V
VI(PP) = 100 mV
VI = 1.5 V
RL = 10 kΩ
CL = 160 pF
AV = 1
TA = 25°C
1.5
2
1.45
Output
Output
1.5
1
–0.2
0
0.2 0.4 0.6 0.8 1
Time, t (μs)
1.2 1.4
1.4
–0.2
1.6 1.8
0
0.2 0.4 0.6 0.8 1
Time, t (μs)
1.2 1.4
1.6 1.8
VDD = 3 V
VDD = 5 V
Figure 46. Inverting Small Signal
Figure 45. Inverting Large Signal
2.6
Input
Voltage, VO (V)
2.55
VDD = 5 V
VI(PP) = 100 mV
VI = 2.5 V
RL = 10 kΩ
CL = 160 pF
AV = 1
TA = 25°C
2.5
2.45
Output
2.4
–0.2
0
0.2 0.4 0.6 0.8 1
Time, t (μs)
1.2 1.4
1.6 1.8
VDD = 5 V
Figure 47. Inverting Small Signal
Copyright © 2003–2018, Texas Instruments Incorporated
Submit Documentation Feedback
Product Folder Links: TLV2460-Q1 TLV2460A-Q1 TLV2461-Q1 TLV2461A-Q1 TLV2462-Q1 TLV2462A-Q1 TLV2463Q1 TLV2463A-Q1 TLV2464A-Q1
21
TLV2460-Q1, TLV2460A-Q1, TLV2461-Q1, TLV2461A-Q1
TLV2462-Q1, TLV2462A-Q1, TLV2463-Q1, TLV2463A-Q1, TLV2464A-Q1
SGLS008G – MARCH 2003 – REVISED FEBRUARY 2018
www.ti.com
7 Parameter Measurement Information
Rnull
_
+
RL
CL
Figure 48. Capacitive Load Drive
8 Detailed Description
8.1 Overview
The TLV246x-Q1 family of devices are low-power rail-to-rail input and output operational amplifiers. The input
common-mode voltage range extends beyond the supply rails for maximum dynamic range in a low-voltage
system. The amplifier output has rail-to-rail performance with high drive capability, solving one of the limitations
of older rail-to-rail input and output operational amplifiers
8.2 Functional Block Diagram
8.3 Feature Description
The TLV246x-Q1 family features 6.4-MHz bandwidth and voltage noise of 11 nV/√Hz with performance rated
from 2.7 V to 6 V across an automotive temperature range (–40⁰C to +125⁰C). This family is designed for a wide
range of automotive applications.
8.3.1 Driving a Capacitive Load
When the amplifier configuration is in this manner, capacitive loading directly on the output decreases the phase
margin of the device leading to high-frequency ringing or oscillations. Therefore, for capacitive loads of greater
than 10 pF, TI recommends placing a resistor in series (RNULL) with the output of the amplifier; see Figure 49. A
minimum value of 20 Ω works well for most applications.
RF
RG
Input
_
RNULL
Output
+
CLOAD
Figure 49. Driving a Capacitive Load
22
Submit Documentation Feedback
Copyright © 2003–2018, Texas Instruments Incorporated
Product Folder Links: TLV2460-Q1 TLV2460A-Q1 TLV2461-Q1 TLV2461A-Q1 TLV2462-Q1 TLV2462A-Q1 TLV2463Q1 TLV2463A-Q1 TLV2464A-Q1
TLV2460-Q1, TLV2460A-Q1, TLV2461-Q1, TLV2461A-Q1
TLV2462-Q1, TLV2462A-Q1, TLV2463-Q1, TLV2463A-Q1, TLV2464A-Q1
www.ti.com
SGLS008G – MARCH 2003 – REVISED FEBRUARY 2018
Feature Description (continued)
8.3.2 Offset Voltage
The output offset voltage (VOO) is the sum of the input offset voltage (VIO) and both input-bias currents (IIB) times
the corresponding gains. Use the schematic and formula in Figure 50 to calculate the output offset voltage.
RF
IIB
RG
+
VI
VO
+
RS
IIB+
VOO = VIO (1 + (
RF
RF
)) ± IIB + RS (1 + ( )) ± IIB - RF
RG
RG
Figure 50. Output Offset Voltage Model
8.3.3 General Configurations
When receiving low-level signals, limiting the bandwidth of the incoming signals into the system is often required.
To limit bandwidth, place an RC filter at the noninverting terminal of the amplifier (see Figure 51).
RG
RF
VI
VO
+
R1
C1
f –3dB =
1
2pR1C1
VO
RF
1
= (1 +
)(
)
VI
RG 1 + sR1C1
Figure 51. Single-Pole Low-Pass Filter
If even more attenuation is required, a multiple pole filter is required. Use a Sallen-Key filter for this task; see
Figure 52. For best results, the amplifier must have a bandwidth that is eight to ten times the filter frequency
bandwidth. Failure to do this can result in phase shift of the amplifier.
C1
+
_
VI
R1
R1 = R2 = R
C1 = C2 = C
Q = Peaking Factor
(Butterworth Q = 0.707)
R2
f –3dB =
C2
RG
RF
RG
=
1
2pRC
RF
1
2 –Q
Figure 52. 2-Pole Low-Pass Sallen-Key Filter
Copyright © 2003–2018, Texas Instruments Incorporated
Submit Documentation Feedback
Product Folder Links: TLV2460-Q1 TLV2460A-Q1 TLV2461-Q1 TLV2461A-Q1 TLV2462-Q1 TLV2462A-Q1 TLV2463Q1 TLV2463A-Q1 TLV2464A-Q1
23
TLV2460-Q1, TLV2460A-Q1, TLV2461-Q1, TLV2461A-Q1
TLV2462-Q1, TLV2462A-Q1, TLV2463-Q1, TLV2463A-Q1, TLV2464A-Q1
SGLS008G – MARCH 2003 – REVISED FEBRUARY 2018
www.ti.com
Feature Description (continued)
8.3.4 General Power Dissipation Considerations
For a given θJA value, the maximum power dissipation is shown in Figure 53 and is calculated by Equation 1:
TMAX - TA
)
PD = (
q JA
Where:
•
•
•
•
•
•
PD = Maximum power dissipation of TLV246x-Q1 (watts)
TMAX = Absolute maximum junction temperature (150°C)
TA = Ambient free-air temperature (°C)
θJA = θJC + θCA
θJC = Thermal coefficient from junction to case
θCA = Thermal coefficient from case to ambient air (°C/W)
(1)
2
Maximum Power Dissipation (W)
1.75
1.5
1.25
TJ = 150°C
PDIP Package
Low-K Test PCB
θJA = 104°C/W
SOIC Package
Low-K Test PCB
θJA = 176°C/W
MSOP Package
Low-K Test PCB
θJA = 260°C/W
1
0.75
0.5
0.25
SOT-23 Package
Low-K Test PCB
θJA = 324°C/W
0
–55 –40 –25 –10 5
20 35 50 65
80 95 110 125
Free-Air Temperature, TA (°C)
Figure 53. Maximum Power Dissipation vs Free-Air Temperature
24
Submit Documentation Feedback
Copyright © 2003–2018, Texas Instruments Incorporated
Product Folder Links: TLV2460-Q1 TLV2460A-Q1 TLV2461-Q1 TLV2461A-Q1 TLV2462-Q1 TLV2462A-Q1 TLV2463Q1 TLV2463A-Q1 TLV2464A-Q1
TLV2460-Q1, TLV2460A-Q1, TLV2461-Q1, TLV2461A-Q1
TLV2462-Q1, TLV2462A-Q1, TLV2463-Q1, TLV2463A-Q1, TLV2464A-Q1
www.ti.com
SGLS008G – MARCH 2003 – REVISED FEBRUARY 2018
8.4 Device Functional Modes
The TLV2461-Q1, TLV2462-Q1, and TLV2464A-Q1 devices power on when the supply is connected. These
devices can operate with a single supply or dual supplies, depending on the application. The devices are in their
full performance once the supply is above the recommended value. The TLV2460-Q1 and TLV2463-Q1 devices
feature a shutdown mode, which reduces the quiescent current to 0.3 µA in shutdown mode.
8.4.1
Shutdown Function
Two members of the TLV246x-Q1 family (TLV2460-Q1 and TLV2463-Q1) feature a shutdown terminal that
conserves battery life in portable applications. When the shutdown terminal is tied low, the supply current is
reduced to 0.3 μA per channel, the amplifier is disabled and the outputs are placed in a high-impedance mode.
To enable the amplifier, leave the shutdown terminal floating or pull the shutdown terminal high. When the
shutdown terminal is left floating, take care to ensure that parasitic leakage current at the shutdown terminal
does not inadvertently place the operational amplifier into shutdown. The shutdown terminal threshold is always
referenced to VDD / 2. As a result, when operating the device with split-supply voltages (for example, ±2.5 V), the
shutdown terminal must be pulled to VDD− (not GND) to disable the operational amplifier.
The output of the amplifier with a shutdown pulse is shown in Figure 22, Figure 23, Figure 24, and Figure 25.
The amplifier is powered with a single 5-V supply and configured as a noninverting configuration with a gain of 5.
The amplifier turnon and turnoff times are measured from the 50% point of the shutdown pulse to the 50% point
of the output waveform. The times for the single, dual, and quad are listed in the data tables.
Copyright © 2003–2018, Texas Instruments Incorporated
Submit Documentation Feedback
Product Folder Links: TLV2460-Q1 TLV2460A-Q1 TLV2461-Q1 TLV2461A-Q1 TLV2462-Q1 TLV2462A-Q1 TLV2463Q1 TLV2463A-Q1 TLV2464A-Q1
25
TLV2460-Q1, TLV2460A-Q1, TLV2461-Q1, TLV2461A-Q1
TLV2462-Q1, TLV2462A-Q1, TLV2463-Q1, TLV2463A-Q1, TLV2464A-Q1
SGLS008G – MARCH 2003 – REVISED FEBRUARY 2018
www.ti.com
9 Application and Implementation
NOTE
Information in the following applications sections is not part of the TI component
specification, and TI does not warrant its accuracy or completeness. TI’s customers are
responsible for determining suitability of components for their purposes. Customers should
validate and test their design implementation to confirm system functionality.
9.1 Application Information
Most DC-to-DC converters use output-filter ceramic capacitors with very low equivalent series resistance (ESR).
1
This causes a double pole at the resonance frequency 2Œ LC .
To achieve an adequate bandwidth and phase margin for the DC-to-DC converter, the device requires
1
compensation around the 2Œ LC resonance frequency. To achieve this, configure the error amplifier as type-3
compensation. The TLV2426x-Q1 series features a wide bandwidth UGBD of 6 MHz with rail-to-rail output for
increased dynamic range. These features are designed for DC-to-DC loop compensation with any LC filter.
9.1.1 Macromodel Information
Macromodel information provided was derived using Microsim Parts™ Release 8, the model generation software
used with Microsim PSpice™. The Boyle macromodel (1) and subcircuit in Figure 54 are generated using the
TLV246x-Q1 typical electrical and operating characteristics at TA = 25°C. Using this information, output
simulations of the following key parameters are generated to a tolerance of 20% (in most cases):
(1)
•
•
•
•
•
•
26
G. R. Boyle, B. M. Cohn, D. O. Pederson, and J. E. Solomon, “Macromodeling of Integrated Circuit Operational Amplifiers,” IEEE
Journal of Solid-State Circuits, SC-9, 353 (1974).
Maximum positive output voltage swing
Maximum negative output voltage swing
Slew rate
Quiescent power dissipation
Input bias current
Open-loop voltage amplification
Submit Documentation Feedback
•
•
•
•
•
•
Unity gain frequency
Common-mode rejection ratio
Phase margin
DC output resistance
AC output resistance
Short-circuit output current limit
Copyright © 2003–2018, Texas Instruments Incorporated
Product Folder Links: TLV2460-Q1 TLV2460A-Q1 TLV2461-Q1 TLV2461A-Q1 TLV2462-Q1 TLV2462A-Q1 TLV2463Q1 TLV2463A-Q1 TLV2464A-Q1
TLV2460-Q1, TLV2460A-Q1, TLV2461-Q1, TLV2461A-Q1
TLV2462-Q1, TLV2462A-Q1, TLV2463-Q1, TLV2463A-Q1, TLV2464A-Q1
www.ti.com
SGLS008G – MARCH 2003 – REVISED FEBRUARY 2018
99
EGND +
FB
RO2
R2
3
VDD +
C2
6
7
+
+
ISS
RSS
CSS
9
VD
VLIM
+
VB
RP
IN
J1
GCM
53
10
2
8
GA
DC
J2
RO1
OUT
IN +
1
11
12
92
54
C1
DP
RD1
5
DLN
DE
+
RD2
VE
90
HLIM
+ DLP
91
+
VLP
VLN
+
4
GND
.SUBCKT TLV246X 1 2 3 4 5
11 12 2.46034E-12
C1
7
10.0000E-12
6
C2
10 99 443.21E-15
CSS
53 DY
5
DC
54 5
DE
DY
90 91 DX
DLP
92 90 DX
DLN
3
4
DP
DX
POLY (2) (3,0) (4,0) 0 .5 .5
EGND 99 0
99 POLY (5) VB VC VE VLP
7
FB
+ VLN 0 21.600E6 – 1E3 1E3 22E6 – 22E6
0
6
12 345.26E- 6
11
GA
10
99 15.4226E- 9
6
GCM 0
DC 18.850E- 6
10 4
ISS
VLIM 1K
HLIM 90 0
10 JX1
J1
11 2
10 JX2
12 1
J2
9
6
100.00E3
R2
11
2.8964E3
3
RD1
12
2.8964E3
3
RD2
5.6000
5
8
R01
99
6.2000
7
R02
4
8.9127
3
RP
99
10.610E6
10
RSS
9
0
DC 0
VB
53
3
VC
DC .7836
4
VE
54
DC .7436
8
DC 0
7
VLIM
0
DC 117
VLP
91
0
92
DC 117
VLN
.MODEL DX D (IS=800.00E–18)
.MODEL DY D (IS=800.00E–18 Rs = 1m Cjo=10p)
.MODEL JX1 NJF (IS=1.0000E–12 BETA=6.3239E–3
+ VTO=–1 )
.MODEL JX2 NJF (IS=1.0000E–12 BETA=6.3239E–3
+ VTO=–1 )
.ENDS
.subckt TLV_246Y 1 2 3 4 5 6
11 12 2.4603E-12
c1
72 7
10.000E-12
c2
10 99 443.21E-15
css
70 53 dy
dc
54 70 dy
de
90 91 dx
dlp
92 90 dx
dln
4
dp
3
dx
poly(2) (3,0) (4,0) 0 .5 .5
egnd 99 0
99 poly(5) vb vc ve vlp vln 0
7
fb
21.600E6 – 1E3 1E3 22E6 – 22E6
72 0
ga
11 12 345.26E- 6
gcm
0
72 10 99 15.422E- 9
dc 18.850E- 6
74
iss
4
vlim 1K
hlim
90 0
j1
11 2
10 jx1
10 jx2
j2
12 1
100.00E3
r2
72 9
3
rd1
11 2.8964E3
3
12 2.8964E3
rd2
ro1
8
70 5.6000
ro2
7
99 6.2000
rp
8.9127
3
71
rss
10.610E6
99
10
rs1
6
4
1G
rs2
4
6
1G
rs3
4
6
1G
rs4
4
6
1G
s1
4
71
6 4 s1x
5
s2
70
6 4 s1x
74
s3
10
6 4 s1x
4
s4
6 4 s2x
74
0
9
dc 0
vb
vc
53
3
dc .7836
ve
4
dc .7436
54
vlim
8
7
dc 0
vlp
0
91
dc 117
0
92
dc 117
vln
.model dx D(Is=800.00E–18)
.model dy D(Is=800.00E–18 Rs=1m Cjo=10p)
.model jx1 NJF(Is=1.0000E–12 Beta=6.3239E–3 Vto=–1)
.model jx2 NJF(Is=1.0000E–12 Beta=6.3239E–3 Vto=–1)
.model s1x VSWITCH(Roff=1E8 Ron=1.0 Voff=2.5 Von=0.0)
.model s2x VSWITCH(Roff=1E8 Ron=1.0 Voff=0 Von=2.5)
.ends
Figure 54. Boyle Macromodel and Sub-Circuit
Copyright © 2003–2018, Texas Instruments Incorporated
Submit Documentation Feedback
Product Folder Links: TLV2460-Q1 TLV2460A-Q1 TLV2461-Q1 TLV2461A-Q1 TLV2462-Q1 TLV2462A-Q1 TLV2463Q1 TLV2463A-Q1 TLV2464A-Q1
27
TLV2460-Q1, TLV2460A-Q1, TLV2461-Q1, TLV2461A-Q1
TLV2462-Q1, TLV2462A-Q1, TLV2463-Q1, TLV2463A-Q1, TLV2464A-Q1
SGLS008G – MARCH 2003 – REVISED FEBRUARY 2018
www.ti.com
9.2 Typical Application
C1
33 pF
C2
R2
47 kŸ
680 pF
C3
R3
8
330 pF
VCC
4.7 k
R1
V IN
U1B
6
7
VCC/2
5
OUT
4
62 NŸ
GND
Figure 55. Typical Operational Amplifier Application
9.2.1 Design Requirements
See Table 2 for design requirements.
Table 2. Recommended Design Parameters
PARAMETER
VALUE
Supply voltage
5V
Reference voltage
2.5 V
Input voltage
2.5 V DC and maximum ripple 40 mV peak-topeak
Capacitors
Better than X5R
Resistors
Better than 2% tolerance
9.2.2 Detailed Design Procedure
The following section shows the detailed design procedure. See Equation 2 for the type-3 compensation gain.
(1 R2C2s) (1 (R1 R3)C3s)
Type 3 Compensation Gain =
C1C2
R1(C1 C2)s(1 R2
s)(1 R3Cs)
C1 C2
(2)
Type-3 compensation poles and zeros are shown in the preferred asymptotic graph; see Figure 56. Relocate the
compensation poles and zeroes by changing the values of the resistors and capacitors according to the
compensation requirement. The operational amplifier cannot achieve the preferred case because of the openloop gain and phase limitation of the amplifier.
28
Submit Documentation Feedback
Copyright © 2003–2018, Texas Instruments Incorporated
Product Folder Links: TLV2460-Q1 TLV2460A-Q1 TLV2461-Q1 TLV2461A-Q1 TLV2462-Q1 TLV2462A-Q1 TLV2463Q1 TLV2463A-Q1 TLV2464A-Q1
TLV2460-Q1, TLV2460A-Q1, TLV2461-Q1, TLV2461A-Q1
TLV2462-Q1, TLV2462A-Q1, TLV2463-Q1, TLV2463A-Q1, TLV2464A-Q1
www.ti.com
SGLS008G – MARCH 2003 – REVISED FEBRUARY 2018
1
2SR1C3
1
2SR2C2
GAIN (dB)
20 log
1
2SR2C1
R2
R1
20 log
1
2SR3C3
R2
R3
FREQUENCY (Hz)
+90°
PHASE (°)
0°
0°
í90°
í90°
FREQUENCY (Hz)
Figure 56. Preferred Asymptotic Graph
The poles and zeros are calculated assuming C2 >> C1 and R1 >> R3. This assumption is correct because the
C1 and R3 components set the high frequencies.
This TLV226x-Q1 device type-3 compensation circuit design boosts the gain and phase for the DC-to-DC
converter around 30-KHz resonance frequencies. This corresponds to 1 µH and 22 µF for the output filter.
The operational amplifier is configured as type-2 compensation by omitting the C3 capacitor. Type-2
compensates the DC-to-DC converter with an output capacitor with a series resistor ESR; see Equation 3.
(1 R2C2s)
Type 2 Compensation Gain =
C1C2
s)
R1(C1 C2) s (1 R2
C1 C2
(3)
9.2.3 Application Curve
50
30
240
Gain (db)
200
Phase (q)
160
20
120
Gain (dB)
40
10
80
0
40
-10
0
-20
-40
-30
-80
-40
-120
-50
-160
-60
10
Frequency: 10 Hz to 1 MHz
100
1k
10k
Frequency (Hz)
100k
Gain boost = 12 dB around 30 KHz
-200
1M
D001
Phase boost = 30⁰ around 30 KHz
Figure 57. Gain and Phase Plot
Copyright © 2003–2018, Texas Instruments Incorporated
Submit Documentation Feedback
Product Folder Links: TLV2460-Q1 TLV2460A-Q1 TLV2461-Q1 TLV2461A-Q1 TLV2462-Q1 TLV2462A-Q1 TLV2463Q1 TLV2463A-Q1 TLV2464A-Q1
29
TLV2460-Q1, TLV2460A-Q1, TLV2461-Q1, TLV2461A-Q1
TLV2462-Q1, TLV2462A-Q1, TLV2463-Q1, TLV2463A-Q1, TLV2464A-Q1
SGLS008G – MARCH 2003 – REVISED FEBRUARY 2018
www.ti.com
10 Power Supply Recommendations
The TLV246X-Q1 family of devices operation specification is from 2.7 V to 6 V for a single power supply and
±1.35 V to ±3 V for dual power supplies.
TI recommends placing a 0.1-µF bypass capacitor close to the power supply pins to reduce errors coupling in
from noisy or high-impedance power supplies.
30
Submit Documentation Feedback
Copyright © 2003–2018, Texas Instruments Incorporated
Product Folder Links: TLV2460-Q1 TLV2460A-Q1 TLV2461-Q1 TLV2461A-Q1 TLV2462-Q1 TLV2462A-Q1 TLV2463Q1 TLV2463A-Q1 TLV2464A-Q1
TLV2460-Q1, TLV2460A-Q1, TLV2461-Q1, TLV2461A-Q1
TLV2462-Q1, TLV2462A-Q1, TLV2463-Q1, TLV2463A-Q1, TLV2464A-Q1
www.ti.com
SGLS008G – MARCH 2003 – REVISED FEBRUARY 2018
11 Layout
11.1 Layout Guidelines
To achieve the levels of high performance of the TLV246x-Q1, follow proper printed-circuit board design
techniques. A general set of guidelines is shown in the following list.
• TI recommends using a ground plane on the board to provide all components with a low inductive ground
connection. However, in the areas of the amplifier inputs and output, the ground plane is removed to minimize
the stray capacitance.
• Use a 6.8-μF tantalum capacitor in parallel with a 0.1-μF ceramic capacitor on each supply terminal. It may be
possible to share the tantalum among several amplifiers depending on the application, but a 0.1-μF ceramic
capacitor must always be used on the supply terminal of every amplifier. In addition, the 0.1-μF capacitor
must be placed as close as possible to the supply terminal. As this distance increases, the inductance in the
connecting trace makes the capacitor less effective. The designer must strive for distances of less than 0.1
inches between the device power terminals and the ceramic capacitors.
• TI does not recommend using sockets. The additional lead inductance in the socket pins often leads to
stability problems. For best implementation, solder surface-mount packages directly to the printed circuit
board.
• Optimum high performance is achieved when stray series inductance is minimized. The circuit layout must be
made as compact as possible, which minimizes the length of all trace runs. Take care to pay attention to the
inverting input of the amplifier; keep the length as short as possible. This minimizes stray capacitance at the
input of the amplifier.
• TI recommends using surface mount passive components for high performance amplifier circuits. Stray series
inductance is reduced because of the low lead inductance of surface mount components.. The small size of
surface-mount components leads to a compact layout, which minimizes stray inductance and capacitance. TI
recommends that lead lengths be kept as short as possible if leaded components are used.
11.2 Layout Example
Run the input traces
as far away from
the supply lines
as possible
Place components close
to device and to each
other to reduce parasitic
errors
VS+
RF
N/C
N/C
GND
±IN
V+
VIN
+IN
OUTPUT
V±
N/C
Use a low-ESR,
ceramic bypass
capacitor
RG
GND
VS±
GND
VOUT
Ground (GND) plane on another layer
Use low-ESR,
ceramic bypass
capacitor
Copyright © 2017, Texas Instruments Incorporated
Figure 58. Operational Amplifier Board Layout for Noninverting Configuration
Copyright © 2003–2018, Texas Instruments Incorporated
Submit Documentation Feedback
Product Folder Links: TLV2460-Q1 TLV2460A-Q1 TLV2461-Q1 TLV2461A-Q1 TLV2462-Q1 TLV2462A-Q1 TLV2463Q1 TLV2463A-Q1 TLV2464A-Q1
31
TLV2460-Q1, TLV2460A-Q1, TLV2461-Q1, TLV2461A-Q1
TLV2462-Q1, TLV2462A-Q1, TLV2463-Q1, TLV2463A-Q1, TLV2464A-Q1
SGLS008G – MARCH 2003 – REVISED FEBRUARY 2018
www.ti.com
12 Device and Documentation Support
12.1 Documentation Support
12.1.1 Related Documentation
For related documentation see the following:
• Texas Instruments, An audio circuit collection, Part 1
• G. R. Boyle, B. M. Cohn, D. O. Pederson, and J. E. Solomon, “Macromodeling of Integrated Circuit
Operational Amplifiers,” IEEE Journal of Solid-State Circuits, SC-9, 353 (1974).
12.2 Related Links
The table below lists quick access links. Categories include technical documents, support and community
resources, tools and software, and quick access to sample or buy.
Table 3. Related Links
PARTS
PRODUCT FOLDER
SAMPLE & BUY
TECHNICAL
DOCUMENTS
TOOLS &
SOFTWARE
SUPPORT &
COMMUNITY
TLV2460-Q1
Click here
Click here
Click here
Click here
Click here
TLV2461-Q1
Click here
Click here
Click here
Click here
Click here
TLV2462-Q1
Click here
Click here
Click here
Click here
Click here
TLV2463-Q1
Click here
Click here
Click here
Click here
Click here
TLV2460A-Q1
Click here
Click here
Click here
Click here
Click here
TLV2461A-Q1
Click here
Click here
Click here
Click here
Click here
TLV2462A-Q1
Click here
Click here
Click here
Click here
Click here
TLV2463A-Q1
Click here
Click here
Click here
Click here
Click here
TLV2464A-Q1
Click here
Click here
Click here
Click here
Click here
12.3 Community Resources
The following links connect to TI community resources. Linked contents are provided "AS IS" by the respective
contributors. They do not constitute TI specifications and do not necessarily reflect TI's views; see TI's Terms of
Use.
TI E2E™ Online Community TI's Engineer-to-Engineer (E2E) Community. Created to foster collaboration
among engineers. At e2e.ti.com, you can ask questions, share knowledge, explore ideas and help
solve problems with fellow engineers.
Design Support TI's Design Support Quickly find helpful E2E forums along with design support tools and
contact information for technical support.
12.4 Trademarks
E2E is a trademark of Texas Instruments.
All other trademarks are the property of their respective owners.
12.5 Electrostatic Discharge Caution
These devices have limited built-in ESD protection. The leads should be shorted together or the device placed in conductive foam
during storage or handling to prevent electrostatic damage to the MOS gates.
12.6 Glossary
SLYZ022 — TI Glossary.
This glossary lists and explains terms, acronyms, and definitions.
32
Submit Documentation Feedback
Copyright © 2003–2018, Texas Instruments Incorporated
Product Folder Links: TLV2460-Q1 TLV2460A-Q1 TLV2461-Q1 TLV2461A-Q1 TLV2462-Q1 TLV2462A-Q1 TLV2463Q1 TLV2463A-Q1 TLV2464A-Q1
TLV2460-Q1, TLV2460A-Q1, TLV2461-Q1, TLV2461A-Q1
TLV2462-Q1, TLV2462A-Q1, TLV2463-Q1, TLV2463A-Q1, TLV2464A-Q1
www.ti.com
SGLS008G – MARCH 2003 – REVISED FEBRUARY 2018
13 Mechanical, Packaging, and Orderable Information
The following pages include mechanical, packaging, and orderable information. This information is the most
current data available for the designated devices. This data is subject to change without notice and revision of
this document. For browser-based versions of this data sheet, refer to the left-hand navigation.
Copyright © 2003–2018, Texas Instruments Incorporated
Submit Documentation Feedback
Product Folder Links: TLV2460-Q1 TLV2460A-Q1 TLV2461-Q1 TLV2461A-Q1 TLV2462-Q1 TLV2462A-Q1 TLV2463Q1 TLV2463A-Q1 TLV2464A-Q1
33
PACKAGE OPTION ADDENDUM
www.ti.com
6-Aug-2021
PACKAGING INFORMATION
Orderable Device
Status
(1)
Package Type Package Pins Package
Drawing
Qty
Eco Plan
(2)
Lead finish/
Ball material
MSL Peak Temp
Op Temp (°C)
Device Marking
(3)
(4/5)
(6)
TLV2460AQPWRG4Q1
ACTIVE
TSSOP
PW
8
2000
RoHS & Green
NIPDAU
Level-1-260C-UNLIM
-40 to 125
2460AQ
TLV2461AQPWRG4Q1
ACTIVE
TSSOP
PW
8
2000
RoHS & Green
NIPDAU
Level-1-260C-UNLIM
-40 to 125
2461AQ
TLV2462AQDRQ1
ACTIVE
SOIC
D
8
2500
RoHS & Green
NIPDAU
Level-1-260C-UNLIM
-40 to 125
2462AQ
TLV2462AQPWRG4Q1
ACTIVE
TSSOP
PW
8
2000
RoHS & Green
NIPDAU
Level-1-260C-UNLIM
-40 to 125
2462AQ
TLV2462AQPWRQ1
ACTIVE
TSSOP
PW
8
2000
RoHS & Green
NIPDAU
Level-1-260C-UNLIM
-40 to 125
2462AQ
TLV2462QDGKRQ1
ACTIVE
VSSOP
DGK
8
2500
RoHS & Green NIPDAU | NIPDAUAG
Level-2-260C-1 YEAR
-40 to 125
QVM
TLV2462QDRG4Q1
ACTIVE
SOIC
D
8
2500
RoHS & Green
NIPDAU
Level-1-260C-UNLIM
-40 to 125
2462Q1
TLV2462QDRQ1
ACTIVE
SOIC
D
8
2500
RoHS & Green
NIPDAU
Level-1-260C-UNLIM
-40 to 125
2462Q1
TLV2462QPWRG4Q1
ACTIVE
TSSOP
PW
8
2000
RoHS & Green
NIPDAU
Level-1-260C-UNLIM
-40 to 125
2462Q1
TLV2463AQPWRG4Q1
ACTIVE
TSSOP
PW
14
2000
RoHS & Green
NIPDAU
Level-1-260C-UNLIM
-40 to 125
2463AQ1
TLV2464AQPWRG4Q1
ACTIVE
TSSOP
PW
14
2000
RoHS & Green
NIPDAU
Level-1-260C-UNLIM
-40 to 125
V2464AQ
TLV2464AQPWRQ1
ACTIVE
TSSOP
PW
14
2000
RoHS & Green
NIPDAU
Level-1-260C-UNLIM
-40 to 125
V2464AQ
(1)
The marketing status values are defined as follows:
ACTIVE: Product device recommended for new designs.
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.
OBSOLETE: TI has discontinued the production of the device.
(2)
RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance
do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may
reference these types of products as "Pb-Free".
RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.
Green: TI defines "Green" to mean the content of Chlorine (Cl) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of