0
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
会员中心
创作中心
发布
  • 发文章

  • 发资料

  • 发帖

  • 提问

  • 发视频

创作活动
TLV2463CN

TLV2463CN

  • 厂商:

    BURR-BROWN(德州仪器)

  • 封装:

    PDIP14

  • 描述:

    TLV2463 DUAL LOW-POWER, RAIL-TO-

  • 详情介绍
  • 数据手册
  • 价格&库存
TLV2463CN 数据手册
Device TLV2465A is Obsolete                         SLOS220J − JULY 1998 − REVISED FEBRUARY 2004 D D D D D D D D D D TLV2460 DBV PACKAGE (TOP VIEW) Rail-to-Rail Output Swing Gain Bandwidth Product . . . 6.4 MHz ± 80 mA Output Drive Capability Supply Current . . . 500 µA/channel Input Offset Voltage . . . 100 µV Input Noise Voltage . . . 11 nV/√Hz Slew Rate . . . 1.6 V/µs Micropower Shutdown Mode (TLV2460/3/5) . . . 0.3 µA/Channel Universal Operational Amplifier EVM Available in Q-Temp Automotive HighRel Automotive Applications Configuration Control/Print Support Qualification to Automotive Standards OUT 1 6 VDD+ GND 2 5 SHDN IN+ 3 4 IN − description The TLV246x is a family of low-power rail-to-rail input/output operational amplifiers specifically designed for portable applications. The input common-mode voltage range extends beyond the supply rails for maximum dynamic range in low-voltage systems. The amplifier output has rail-to-rail performance with high-output-drive capability, solving one of the limitations of older rail-to-rail input/output operational amplifiers. This rail-to-rail dynamic range and high output drive make the TLV246x ideal for buffering analog-to-digital converters. The operational amplifier has 6.4 MHz of bandwidth and 1.6 V/µs of slew rate with only 500 µA of supply current, providing good ac performance with low power consumption. Three members of the family offer a shutdown terminal, which places the amplifier in an ultralow supply current mode (IDD = 0.3 µA/ch). While in shutdown, the operational-amplifier output is placed in a high-impedance state. DC applications are also well served with an input noise voltage of 11 nV/√Hz and input offset voltage of 100 µV. This family is available in the low-profile SOT23, MSOP, and TSSOP packages. The TLV2460 is the first rail-to-rail input/output operational amplifier with shutdown available in the 6-pin SOT23, making it perfect for high-density circuits. The family is specified over an expanded temperature range (TA = − 40°C to 125°C) for use in industrial control and automotive systems, and over the military temperature range (TA = −55°C to 125°C) for use in military systems. SELECTION GUIDE DEVICE VDD [V] VIO [µV] IDD/ch [µA] IIB [pA] GBW [MHz] SLEW RATE [V/µs] Vn, 1 kHz [nV/√Hz] IO [mA] SHUTDOWN RAIL-RAIL TLV246x(A) 2.7−6 150 550 1300 6.4 1.6 11 25 Y I/O TLV277x(A) 2.5−5.5 360 1000 2 5.1 10.5 17 6 Y O TLV247x(A) 2.7−6 250 600 2.5 2.8 1.5 15 20 Y I/O TLV245x(A) 2.7−6 20 23 500 0.22 0.11 52 10 Y I/O TLV225x(A) 2.7−8 200 35 1 0.2 0.12 19 3 — — TLV226x(A) 2.7−8 300 200 1 0.71 0.55 12 3 — — Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet. Copyright  1998−2004, Texas Instruments Incorporated    !"#$%&'#! ( )*$$+!' &( #" ,*-.)&'#! /&'+0 $#/*)'( )#!"#$% '# (,+)")&'#!( ,+$ '1+ '+$%( #" + &( !('$*%+!'( ('&!/&$/ 2&$$&!'30 $#/*)'#! ,$#)+((!4 /#+( !#' !+)+((&$.3 !).*/+ '+('!4 #" &.. ,&$&%+'+$(0 ! ,$#/*)'( )#%,.&!' '#  5  &.. ,&$&%+'+$( &$+ '+('+/ *!.+(( #'1+$2(+ !#'+/0 ! &.. #'1+$ ,$#/*)'( ,$#/*)'#! ,$#)+((!4 /#+( !#' !+)+((&$.3 !).*/+ '+('!4 #" &.. ,&$&%+'+$(0 WWW.TI.COM 1 Device TLV2465A is Obsolete                         SLOS220J − JULY 1998 − REVISED FEBRUARY 2004 TLV2460C/I/AI and TLV2461C/I/AI AVAILABLE OPTIONS PACKAGED DEVICES SOT-23† SYMBOL (DBV) TA VIOmax AT 25°C 0°C to 70°C 2000 µV TLV2460CD TLV2461CD TLV2460CDBV TLV2461CDBV VAOC VAPC TLV2460CP TLV2461CP 2000 µV TLV2460ID TLV2461ID TLV2460IDBV TLV2461IDBV VAOI VAPI TLV2460IP TLV2461IP 1500 µV TLV2460AID TLV2461AID SMALL OUTLINE (D) −40°C to 125°C — — PLASTIC DIP (P) — — TLV2460AIP TLV2461AIP † This package is available taped and reeled. To order this packaging option, add an R suffix to the part number (e.g., TLV2460CDR). ‡ Chip forms are tested at TA = 25°C only. TLV2460M/AM/Q/AQ and TLV2461M/AM/Q/AQ AVAILABLE OPTIONS PACKAGED DEVICES TA VIOmax AT 25°C SMALL OUTLINE† (D) 2000 µV 1500 µV −40°C to 125°C SMALL OUTLINE† (PW) CERAMIC DIP (JG) CERAMIC FLATPACK (U) CHIP CARRIER (FK) TLV2460QD TLV2461QD TLV2460QPW TLV2461QPW — — — — — — TLV2460AQD TLV2461AQD TLV2460AQPW TLV2461AQPW — — — — — — 2000 µV — — — — TLV2460MJG TLV2461MJG TLV2460MU TLV2461MU TLV2460MFK TLV2461MFK 1500 µV — — — — TLV2460AMJG TLV2461AMJG TLV2460AMU TLV2461AMU TLV2460AMFK TLV2461AMFK −55°C to 125°C † This package is available taped and reeled. To order this packaging option, add an R suffix to the part number (e.g., TLV2460QDR). TLV2462C/I/AI and TLV2463C/I/AI AVAILABLE OPTIONS PACKAGED DEVICES TA VIOmax AT 25°C SMALL OUTLINE† (D) MSOP (DGK) 0°C to 70°C 2000 µV TLV2462CD TLV2463CD TLV2462CDGK — 2000 µV TLV2462ID TLV2463ID 1500 µV TLV2462AID TLV2463AID −40 C to −40°C 125°C MSOP† (DGS) SYMBOL PLASTIC DIP (N) PLASTIC DIP (P) xxTIAAI — TLV2463CDGS — xxTIAAK — TLV2463CN TLV2462CP — TLV2462IDGK — xxTIAAJ — TLV2463IDGS — xxTIAAL — TLV2463IN TLV2462IP — — — — — — — — — — TLV2463AIN TLV2462AIP — SYMBOL † This package is available taped and reeled. To order this packaging option, add an R suffix to the part number (e.g., TLV2462CDR). ‡ Chip forms are tested at TA = 25°C only. 2 WWW.TI.COM Device TLV2465A is Obsolete                         SLOS220J − JULY 1998 − REVISED FEBRUARY 2004 TLV2462M/AM/Q/AQ and TLV2463M/AM/Q/AQ AVAILABLE OPTIONS PACKAGED DEVICES TA VIOmax AT 25°C SMALL OUTLINE† (D) SMALL OUTLINE† (PW) CERAMIC DIP (JG) CERAMIC DIP (J) CERAMIC FLATPACK (U) CHIP CARRIER (FK) 2000 µV TLV2462QD TLV2463QD TLV2462QPW TLV2463QPW — — — — — — — — 1500 µV TLV2462AQD TLV2463AQD TLV2462AQPW TLV2463AQPW — — — — — — — — −40°C to 125°C 2000 µV — — — — TLV2462MJG — — TLV2463MJ TLV2462MU TLV2462MFK TLV2463MFK 1500 µV — — — — TLV2462AMJG — — TLV2463AMJ TLV2462AMU TLV2462AMFK TLV2463AMFK −55°C to 125°C † This package is available taped and reeled. To order this packaging option, add an R suffix to the part number (e.g., TLV2462QDR). TLV2464C/I/AI and TLV2465C/I/AI AVAILABLE OPTIONS PACKAGED DEVICES TA VIOmax AT 25°C 0°C to 70°C 2000 µV TLV2464CD TLV2465CD TLV2464CN TLV2465CN TLV2464CPW TLV2465CPW 2000 µV TLV2464ID TLV2465ID TLV2464IN TLV2465IN TLV2464IPW TLV2465IPW 1500 µV TLV2464AID TLV2465AID TLV2464AIN TLV2465AIN TLV2464AIPW TLV2465AIPW −40°C to 125°C SMALL OUTLINE (D) PLASTIC DIP (N) TSSOP (PW) † This package is available taped and reeled. To order this packaging option, add an R suffix to the part number(e.g., TLV2464CDR). ‡ Chip forms are tested at TA = 25°C only. TLV2464M/AM/Q/AQ and TLV2465M/AM/Q/AQ AVAILABLE OPTIONS PACKAGED DEVICES TA VIOmax AT 25°C SMALL OUTLINE† (D) 2000 µV 1500 µV - 40°C to 125°C SMALL OUTLINE† (PW) CERAMIC DIP (J) CHIP CARRIER (FK) TLV2464QD TLV2465QD TLV2464QPW TLV2465QPW — — — — TLV2464AQD TLV2465AQD TLV2464AQPW TLV2465AQPW — — — — 2000 µV — — — — TLV2464MJ TLV2465MJ TLV2464MFK TLV2465MFK 1500 µV — — — — TLV2464AMJ TLV2465AMJ TLV2464AMFK TLV2465AMFK −55°C to 125°C † This package is available taped and reeled. To order this packaging option, add an R suffix to the part number (e.g., TLV2464QDR). WWW.TI.COM 3 Device TLV2465A is Obsolete                         SLOS220J − JULY 1998 − REVISED FEBRUARY 2004 TLV246x PACKAGE PINOUTS(1) TLV2460 DBV PACKAGE (TOP VIEW) OUT GND IN+ 1 2 3 6 5 4 VDD+ SHDN IN − TLV2461 D, P, JG, OR PW PACKAGE (TOP VIEW) NC IN − IN + GND 1 8 2 7 3 6 4 5 TLV2460 D, P, JG, OR PW PACKAGE (TOP VIEW) TLV2461 DBV PACKAGE (TOP VIEW) NC VDD+ OUT NC OUT GND IN+ 1 5 VDD+ 2 3 4 IN − NC IN − IN + GND 1 8 2 7 3 6 4 5 VDD+ 2OUT 2IN − 2IN+ 7 3 6 4 5 SHDN VDD+ OUT NC 1OUT 1IN − 1IN+ GND 1SHDN 1 2 3 4 5 10 9 8 7 6 VDD+ 2OUT 2IN − 2IN+ 2SHDN TLV2463 D, N, J, OR PW PACKAGE TLV2464 D, N, PWP, J, OR PW PACKAGE TLV2465 D, N, PWP, J, OR PW PACKAGE (TOP VIEW) (TOP VIEW) (TOP VIEW) 1OUT 1IN − 1IN+ GND NC 1SHDN NC 1 14 2 13 3 12 4 11 5 10 6 9 7 8 VDD+ 2OUT 2IN − 2IN+ NC 2SHDN NC 1OUT 1IN − 1IN+ VDD+ 2IN+ 2IN − 2OUT 1 14 2 13 3 4 5 12 11 10 6 9 7 8 4OUT 4IN − 4IN+ GND 3IN+ 3IN − 3OUT 1OUT 1IN − 1IN+ VDD+ 2IN+ 2IN − 2OUT 1/2SHDN NC − No internal connection (1) SOT−23 may or may not be indicated TYPICAL PIN 1 INDICATORS Pin 1 Printed or Molded Dot 4 8 2 TLV2463 DGS PACKAGE (TOP VIEW) TLV2462 D, DGK, P, JG, OR PW PACKAGE (TOP VIEW) 1OUT 1IN − 1IN + GND 1 Pin 1 Stripe Pin 1 Bevel Edges WWW.TI.COM Pin 1 Molded ”U” Shape 1 16 2 15 3 14 4 13 5 12 6 11 7 10 8 9 4OUT 4IN − 4IN+ GND 3IN + 3IN− 3OUT 3/4SHDN Device TLV2465A is Obsolete                         SLOS220J − JULY 1998 − REVISED FEBRUARY 2004 TLV246x PACKAGE PINOUTS (continued)(1) TLV2461 U PACKAGE (TOP VIEW) 4 18 NC IN− 5 17 VDD IN− 5 17 VDD NC 6 16 NC NC 6 16 NC IN+ 7 15 OUT IN+ 7 NC 8 14 NC NC 8 1IN+ 4 18 2IN− NC 5 17 NC GND 6 16 2IN+ 2OUT 18 2IN− NC 5 17 NC GND 6 16 2IN+ 15 OUT NC 7 15 NC 14 NC NC 8 14 NC 10 11 12 13 NC NC NC NC NC 1 20 19 4 18 4IN+ NC 5 17 NC VDD+ 6 16 GND 4OUT 2 1IN+ NC 3 4IN− 4OUT 20 19 4 TLV2465 FK PACKAGE (TOP VIEW) NC V DD 1 20 19 9 1OUT NC 2 1 10 11 12 13 1IN− 1OUT 3 2 TLV2464 FK PACKAGE (TOP VIEW) 2OUT 1IN− TLV2463 FK PACKAGE (TOP VIEW) 3 1IN+ GND NC 9 NC 10 11 12 13 NC NC 9 NC NC GND 18 NC V DD 20 19 4 NC 1 TLV2462 FK PACKAGE (TOP VIEW) NC 2 NC VDD+ 2OUT 2IN− 2IN+ 1OUT NC 3 10 9 8 7 6 1IN− NC 20 19 NC SHDN 1 NC NC 2 TLV2461 FK PACKAGE (TOP VIEW) NC NC 3 1 2 3 4 5 NC NC NC 1OUT VDD 1IN− OUTPUT 1IN+ NC GND 1OUT 3 2 1 20 19 1IN+ 4 18 4IN+ VDD+ 5 17 GND NC 6 16 NC 7 15 3IN+ 8 14 3IN− 8 14 NC 2IN+ 8 14 3IN+ 2IN− 3OUT 3/4SHDN 10 11 12 13 3OUT 9 NC 10 11 12 13 2SHDN 9 NC 10 11 12 13 NC 9 1/2SHDN NC 2OUT 15 NC 3IN− 7 2OUT NC 2IN− 15 NC NC 7 1SHDN NC 2IN+ NC NC NC TLV2460 FK PACKAGE (TOP VIEW) 10 9 8 7 6 4IN− 1 2 3 4 5 NC NC IN− IN+ GND NC NC SHDN VDD OUTPUT NC 1IN− 10 9 8 7 6 NC 1 2 3 4 5 NC NC IN− IN+ GND TLV2462 U PACKAGE (TOP VIEW) NC TLV2460 U PACKAGE (TOP VIEW) NC − No internal connection (1) SOT−23 may or may not be indicated WWW.TI.COM 5 Device TLV2465A is Obsolete                         SLOS220J − JULY 1998 − REVISED FEBRUARY 2004 absolute maximum ratings over operating free-air temperature range (unless otherwise noted)† Supply voltage, VDD (see Note 1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 V Differential input voltage, VID . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . − 0.2 V to VDD + 0.2 V Input current, II (any input) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ± 200 mA Output current, IO . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ± 175 mA Total input current, II (into VDD +) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 175 mA Total output current, IO (out of GND) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 175 mA Continuous total power dissipation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Dissipation Rating Table Operating free-air temperature range, TA: C suffix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 0°C to 70°C I and Q suffix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . −40°C to 125°C M suffix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . −55°C to 125°C Maximum junction temperature, TJ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 150°C Storage temperature range, Tstg . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . −65°C to 150°C Lead temperature 1,6 mm (1/16 inch) from case for 10 seconds . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 260°C † Stresses beyond those listed under “absolute maximum ratings” may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under “recommended operating conditions” is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability. NOTE 1: All voltage values, except differential voltages, are with respect to GND. DISSIPATION RATING TABLE FOR C and I SUFFIX PACKAGE θJC (°C/W) θJA (°C/W) TA ≤ 25°C 25 C POWER RATING TA < 125 125°C C POWER RATING D (8) 38.3 176 710 mW 142 mW D (14) 26.9 122.6 1022 mW 204.4 mW D (16) 25.7 114.7 1090 mW 218 mW DBV (5) 55 324.1 385 mW 77.1 mW DBV (6) 55 294.3 425 mW 84.9 mW DGK 54.2 259.9 481 mW 96.2 mW DGS 54.1 257.7 485 mW 97 mW N (14, 16) 32 78 1600 mW 320.5 mW P (8) 41 104 1200 mW 240.4 mW PW (14) 29.3 173.6 720 mW 144 mW PW (16) 28.7 161.4 774 mW 154.9 mW NOTE: Thermal resistances are not production tested and are for informational purposes only. DISSIPATION RATING TABLE FOR Q and M SUFFIX PACKAGE TA ≤ 25°C 25 C POWER RATING DERATING FACTOR ABOVE TA = 25°C‡ TA = 70 70°C C POWER RATING TA = 85 85°C C POWER RATING FK 1375 mW 11.0 mW/°C 880 mW 715 mW 275 mW JG 1050 mW 8.4 mW/°C 672 mW 546 mW 210 mW TA = 125 125°C C POWER RATING U 675 mW 5.4 mW/°C 432 mW 350 mW 135 mW ‡ This is the inverse of the traditional junction-to-ambient thermal resistance (RΘJA). Thermal resistances are not production tested and are for informational purposes only. 6 WWW.TI.COM Device TLV2465A is Obsolete                         SLOS220J − JULY 1998 − REVISED FEBRUARY 2004 recommended operating conditions MIN Single supply Supply voltage, VDD Split supply 2.7 6 ±3 0 V °C C 0 VDD 70 I-suffix and Q-suffix −40 125 M-suffix −55 125 C-suffix VIH VIL Shutdown on/off voltage level‡ UNIT ±1.35 Common-mode input voltage range, VICR Operating free-air temperature, TA MAX 2 0.7 V V ‡ Relative to voltage on the GND terminal of the device. electrical characteristics at specified free-air temperature, VDD = 3 V (unless otherwise noted) PARAMETER TEST CONDITIONS TA† MIN 25°C VIO αVIO Input offset voltage VDD = 3 V, VIC = 1.5 V, VO = 1.5 V, RS = 50 Ω IIB Input bias current TLV246xA 500 Full range VDD = 3 V, VIC = 1.5 V, VO = 1.5 V, RS = 50 Ω 2.8 Full range 20 Full range 75 25°C 4.4 Full range 25 TLV246xI/Q/M Full range 75 High-level output voltage VIC = 1.5 V, IOL = 2.5 mA Low-level output voltage 2.9 IOL = 10 mA 2.5 0.1 0.2 Full range 0.5 Full range Full range Short-circuit output current AVD Output current Large-signal differential voltage amplification 50 20 25°C Sinking Full range Measured 1 V from rail RL = 10 kΩ kΩ, VO(PP) = 1 V 40 mA 20 ± 40 25°C 25°C 90 Full range 89 mA 105 ri(d) Differential input resistance 25°C 109 † Full range is 0°C to 70°C for the C suffix, −40°C to 125°C for the I and Q suffixes, and −55°C to 125°C for the M suffix. WWW.TI.COM V 0.3 25°C Sourcing V 2.7 25°C VIC = 1.5 V, nA 2.8 25°C Full range nA 14 TLV246xC 25°C IO µV/°C TLV246xI/Q/M Full range µV V 7 TLV246xC IOH = − 10 mA IOS 1500 UNIT 1700 25°C VOL 2000 2 IOH = − 2.5 mA VOH 500 2200 25°C Temperature coefficient of input offset voltage Input offset current MAX Full range 25°C IIO TYP dB Ω 7 Device TLV2465A is Obsolete                         SLOS220J − JULY 1998 − REVISED FEBRUARY 2004 electrical characteristics at specified free-air temperature, VDD = 3 V (unless otherwise noted) (continued) PARAMETER TEST CONDITIONS ci(c) Common-mode input capacitance f = 10 kHz zo Closed-loop output impedance f = 100 kHz, CMRR kSVR Common-mode rejection ratio Supply voltage rejection ratio ((∆V VDD /∆V / VIO) TA† MIN TYP 25°C AV = 10 25°C 25°C 66 VICR = 0 to 3 V, RS = 50 Ω TLV246xC Full range 64 TLV246xI/Q/M Full range 60 VDD = 2.7 V to 6 V, No load VIC = VDD /2, VDD = 3 V to 5 V, No load VIC = VDD /2, 25°C 80 Full range 75 25°C 85 Full range 80 25°C IDD Supply current (per channels) VO = 1.5 V, No load IDD(SHDN) Supply current in shutdown (TLV2460, TLV2463, TLV2465) SHDN < 0.7 V, Per channel in shutdown MAX 7 pF 33 Ω 80 dB 85 dB 95 0.5 0.575 0.9 Full range 25°C UNIT 0.3 Full range 2.5 mA µA A † Full range is 0°C to 70°C for the C suffix, −40°C to 125°C for the I and Q suffixes, and −55°C to 125°C for the M suffix. operating characteristics at specified free-air temperature, VDD = 3 V (unless otherwise noted) PARAMETER SR Slew rate at unity gain Vn Equivalent input noise voltage In Equivalent input noise current THD + N t(on) Total harmonic distortion plus noise Amplifier turnon time TEST CONDITIONS VO(PP) = 0.8 V, RL = 10 kΩ CL = 160 pF, TA† 25°C Full range Amplifier turnoff time ts φm Settling time 1.6 16 25°C 11 f = 1 kHz 25°C VO(PP) = 2 V, RL = 10 kΩ, f = 1 kHz AV = 1, RL = 10 kΩ AV = 1 AV = 10 AV = 1, RL = 10 kΩ Channel 1 only, Channel 2 on f = 10 kHz, CL = 160 pF RL = 10 kΩ, 0.13 25°C 25 C pA /√Hz 0.08% 7.6 25°C 7.65 µs 333 25°C 25 C 328 ns 329 25°C 5.2 V(STEP)PP = 2 V, AV = −1, CL = 10 pF, RL = 10 kΩ 0.1% V(STEP)PP = 2 V, AV = −1, CL = 56 pF, RL = 10 kΩ 0.1% 1.77 0.01% 1.98 RL = 10 kΩ, CL = 160 pF WWW.TI.COM nV/√Hz 0.02% MHz 1.47 0.01% 1.78 25°C 25°C 44° 25°C 7 † Full range is 0°C to 70°C for the C suffix, −40°C to 125°C for the I and Q suffixes, and −55°C to 125°C for the M suffix. 8 UNIT 0.006% AV = 100 Both channels Channel 1 only, Channel 2 on MAX V/µs 0.8 25°C Phase margin at unity gain Gain margin 0.9 f = 1 kHz Channel 2 only, Channel 1 on Gain-bandwidth product TYP f = 100 Hz Both channels t(off) MIN µss dB Device TLV2465A is Obsolete                         SLOS220J − JULY 1998 − REVISED FEBRUARY 2004 electrical characteristics at specified free-air temperature, VDD = 5 V (unless otherwise noted) PARAMETER VIO αVIO IIO IIB Input offset voltage Temperature coefficient of input offset voltage Input offset current Input bias current TEST CONDITIONS TA† 25°C MIN VDD = 5 V, VIC = 2.5, VO = 2.5 V, RS = 50 Ω 25°C TLV246xA VDD = 5 V, VIC = 2.5 V, VO = 2.5 V, RS = 50 Ω 500 Full range 25°C 2 25°C 0.3 15 Full range 60 TLV246xC Full range 30 TLV246xI/Q/M Full range 60 High-level output voltage 1.3 Full range IOL = 2.5 mA Low-level output voltage 4.7 0.1 0.2 Full range Short-circuit output current 0.3 Output current VIC = 2.5 V, VO = 1 V to 4 V 92 Full range 90 Differential input resistance ci(c) Common-mode input capacitance f = 10 kHz zo Closed-loop output impedance f = 100 kHz, kSVR ± 80 25°C ri(d) Supply voltage rejection ratio ((∆V VDD /∆V / VIO) 60 25°C Large-signal differential voltage amplification Common-mode rejection ratio Full range RL = 10 kΩ, 25°C 7 pF 25°C 29 Ω 25°C 71 TLV246xC Full range 69 TLV246xI/Q/M Full range 60 VDD = 2.7 V to 6 V, No load VIC = VDD /2, 25°C 80 Full range 75 VDD = 3 V to 5 V, No load VIC = VDD /2, 25°C 85 Full range 80 No load, 25°C Supply current (per channel) VO = 2.5 V, IDD(SHDN) Supply current in shutdown (TLV2460, TLV2463, TLV2465) SHDN < 0.7 V, Per channels in shutdown dB Ω VICR = 0 V to 5 V, RS = 50 Ω IDD mA 109 109 25°C AV = 10 mA 100 Measured at 1 V from rail AVD CMRR 145 60 25°C Sinking V 0.2 Full range Full range nA V 4.8 25°C Sourcing 14 4.9 25°C IOL = 10 mA nA 4.8 25°C VIC = 2.5 V, 7 Full range Full range µV V µV/°C V/°C TLV246xI/Q/M 25°C VIC = 2.5 V, 1500 UNIT 1700 25°C IO 2000 TLV246xC IOH = − 10 mA IOS 500 2200 25°C VOL MAX Full range IOH = − 2.5 mA VOH TYP 85 dB 85 dB 95 dB 0.55 25°C Full range 0.65 1 Full range 1 3 mA µA A † Full range is 0°C to 70°C for the C suffix, −40°C to 125°C for the I and Q suffixes, and −55°C to 125°C for the M suffix. WWW.TI.COM 9 Device TLV2465A is Obsolete                         SLOS220J − JULY 1998 − REVISED FEBRUARY 2004 operating characteristics at specified free-air temperature, VDD = 5 V (unless otherwise noted) PARAMETER SR Slew rate at unity gain Vn Equivalent input noise voltage In THD + N t(on) t(off) TEST CONDITIONS VO(PP) = 2 V, RL = 10 kΩ CL = 160 pF, TA† 25°C Full range 0.9 1.6 14 f = 1 kHz 25°C 11 Equivalent input noise current f = 100 Hz 25°C 0.13 Total harmonic distortion plus noise VO(PP) = 4 V, RL = 10 kΩ, f = 10 kHz Amplifier turnon time Amplifier turnoff time AV = 1, RL = 10 kΩ AV = 1, RL = 10 kΩ AV = 1 AV = 10 Settling time Gain margin 7.6 25°C 25 C 7.65 Both channels 333 25 C 25°C 328 f = 10 kHz, CL = 160 pF RL = 10 kΩ, V(STEP)PP = 2 V, AV = −1, CL = 10 pF, RL = 10 kΩ 0.1% V(STEP)PP = 2 V, AV = −1, CL = 56 pF, RL = 10 kΩ 0.1% 3.13 0.01% 3.33 RL = 10 kΩ, CL = 160 pF WWW.TI.COM µs ns 329 25°C 6.4 MHz 1.53 0.01% 1.83 µss 25°C 25°C 45° 25°C 7 † Full range is 0°C to 70°C for the C suffix, −40°C to 125°C for the I and Q suffixes, and −55°C to 125°C for the M suffix. 10 pA /√Hz 0.04% 7.25 Phase margin at unity gain nV/√Hz 0.01% Channel 2 only, Channel 1 on Channel 1 only, Channel 2 on UNIT 0.004% 25°C 25 C AV = 100 Both channels Channel 1 only, Channel 2 on MAX V/µs 0.8 25°C Gain-bandwidth product φm TYP f = 100 Hz Channel 2 only, Channel 1 on ts MIN dB Device TLV2465A is Obsolete                         SLOS220J − JULY 1998 − REVISED FEBRUARY 2004 TYPICAL CHARACTERISTICS Table of Graphs FIGURE VIO IIB Input offset voltage vs Common-mode input voltage 1, 2 Input bias current vs Free-air temperature 3, 4 IIO VOH Input offset current vs Free-air temperature 3, 4 High-level output voltage vs High-level output current 5, 6 VOL VO(PP) Low-level output voltage vs Low-level output current 7, 8 Peak-to-peak output voltage vs Frequency 9, 10 Open-loop gain vs Frequency 11, 12 Phase vs Frequency 11, 12 Differential voltage amplification vs Load resistance 13 Capacitive load vs Load resistance 14 Zo CMRR Output impedance vs Frequency 15, 16 Common-mode rejection ratio vs Frequency 17 kSVR Supply-voltage rejection ratio vs Frequency 18, 19 AVD IDD Supply current vs Supply voltage 20 vs Free-air temperature 21 Amplifier turnon characteristics 22 Amplifier turnoff characteristics 23 Supply current turnon 24 Supply current turnoff SR 25 Shutdown supply current vs Free-air temperature Slew rate vs Supply voltage 26 27 vs Frequency 28, 29 vs Common-mode input voltage 30, 31 Vn Equivalent input noise voltage THD Total harmonic distortion vs Frequency 32, 33 THD+N Total harmonic distortion plus noise vs Peak-to-peak signal amplitude 34, 35 vs Frequency 11, 12 φm Phase margin vs Load capacitance 36 vs Free-air temperature 37 vs Supply voltage 38 vs Free-air temperature 39 Gain bandwidth product Large signal follower 40, 41 Small signal follower 42, 43 Inverting large signal 44, 45 Inverting small signal 46, 47 WWW.TI.COM 11 Device TLV2465A is Obsolete                         SLOS220J − JULY 1998 − REVISED FEBRUARY 2004 TYPICAL CHARACTERISTICS INPUT OFFSET VOLTAGE vs COMMON-MODE INPUT VOLTAGE INPUT OFFSET VOLTAGE vs COMMON-MODE INPUT VOLTAGE 1 0.6 0.4 0.2 0 −0.2 −0.4 −0.6 −0.8 −1 0 VDD = 5 V TA = 25°C 0.8 VIO − Input Offset Voltage − mV VIO − Input Offset Voltage − mV 0.8 1 VDD = 3 V TA = 25°C 0.6 0.4 0.2 0 −0.2 −0.4 −0.6 −0.8 0.5 1 1.5 2 2.5 −1 3 0 VICR − Common-Mode Input Voltage − V 1 Figure 1 VDD = 3 V VI = 1.5 V 4.5 IIB 4 3.5 3 2.5 2 1.5 1 0.5 IIO −15 5 25 45 65 85 105 125 TA − Free-Air Temperature − °C 5 6 VDD = 5 V VI = 2.5 V 5 IIB 4 3 2 1 IIO 0 −1 −55 −35 −15 5 25 45 65 85 TA − Free-Air Temperature − °C Figure 3 12 4 INPUT BIAS AND INPUT OFFSET CURRENT vs FREE-AIR TEMPERATURE I IB and I IO − Input Bias and Input Offset Current − nA I IB and I IO − Input Bias and Input Offset Current − nA 5 −0.5 −55 −35 3 Figure 2 INPUT BIAS AND INPUT OFFSET CURRENT vs FREE-AIR TEMPERATURE 0 2 VICR − Common-Mode Input Voltage − V Figure 4 WWW.TI.COM 105 125 Device TLV2465A is Obsolete                         SLOS220J − JULY 1998 − REVISED FEBRUARY 2004 TYPICAL CHARACTERISTICS HIGH-LEVEL OUTPUT VOLTAGE vs HIGH-LEVEL OUTPUT CURRENT HIGH-LEVEL OUTPUT VOLTAGE vs HIGH-LEVEL OUTPUT CURRENT 3 5 VDD = 5 VDC 4.5 2.5 VOH − High-Level Output Voltage − V VOH − High-Level Output Voltage − V VDD = 3 VDC TA = −55°C 2 1.5 TA = 125°C TA = 85°C TA = 25°C 1 TA = −40°C 0.5 TA = −55°C 4 3.5 3 TA = 125°C TA = 85°C 2.5 2 TA = 25°C 1.5 TA = −40°C 1 0.5 0 0 10 20 30 40 50 60 70 0 80 0 IOH − High-Level Output Current − mA 20 40 60 Figure 5 100 120 140 160 180 200 Figure 6 LOW-LEVEL OUTPUT VOLTAGE vs LOW-LEVEL OUTPUT CURRENT LOW-LEVEL OUTPUT VOLTAGE vs LOW-LEVEL OUTPUT CURRENT 3 4.5 VDD = 3 VDC VDD = 5 VDC 4 2.5 VOL − Low-Level Output Voltage − V VOL − Low-Level Output Voltage − V 80 IOH − High-Level Output Current − mA TA = −40°C 2 TA = 25°C 1.5 TA = 85°C TA = 125°C 1 0.5 0 10 20 30 40 50 60 TA = −40°C 3 TA = 25°C 2.5 TA = 85°C TA = 125°C 2 1.5 1 TA = −55°C 0.5 TA = −55°C 0 3.5 70 IOL − Low-Level Output Current − mA 0 0 20 40 60 80 100 120 140 160 IOL − Low-Level Output Current − mA Figure 7 Figure 8 WWW.TI.COM 13 Device TLV2465A is Obsolete                         SLOS220J − JULY 1998 − REVISED FEBRUARY 2004 TYPICAL CHARACTERISTICS PEAK-TO-PEAK OUTPUT VOLTAGE vs FREQUENCY PEAK-TO-PEAK OUTPUT VOLTAGE vs FREQUENCY 5.5 VDD = 3 V AV = −10 THD = 1% RL = 10 kΩ 2.5 VO(PP) − Peak-to-Peak Output Voltage − V VO(PP) − Peak-to-Peak Output Voltage − V 3 2 1.5 1 0.5 0 10k 100k 1M VDD = 5 V AV = −10 THD = 1% RL = 10 kΩ 5 4.5 4 3.5 3 2.5 2 1.5 1 0.5 0 10k 10M 100k f − Frequency − Hz 1M f − Frequency − Hz Figure 9 Figure 10 OPEN-LOOP GAIN AND PHASE vs FREQUENCY 100 VDD = ±1.5 V RL = 10 kΩ CL = 0 TA = 25°C 90 80 60 0° −20° −40° AVD 50 −60° 40 −80° −100° 30 Phase 20 −120° 10 −140° 0 −160° −10 −180° −20 10 100 1k 10k 100k f − Frequency − Hz Figure 11 14 20° WWW.TI.COM 1M −200° 10M Phase Open-Loop Gain − dB 70 40° 10M Device TLV2465A is Obsolete                         SLOS220J − JULY 1998 − REVISED FEBRUARY 2004 TYPICAL CHARACTERISTICS OPEN-LOOP GAIN AND PHASE vs FREQUENCY 100 VDD = ±2.5 V RL = 10 kΩ CL = 0 TA = 25°C 90 80 60 20° 0° −20° −40° AVD 50 −60° 40 −80° −100° 30 Phase 20 −120° 10 −140° 0 −160° −10 −180° −20 10 Phase Open-Loop Gain − dB 70 40° 100 1k 100k 10k 1M −200° 10M f − Frequency − Hz Figure 12 DIFFERENTIAL VOLTAGE AMPLIFICATION vs LOAD RESISTANCE CAPACITIVE LOAD vs LOAD RESISTANCE 10000 TA = 25°C 160 140 CL − Capacitive Load − pF A VD − Differential Voltage Amplification − V/mV 180 120 VDD = ±2.5 V 100 VDD = ±1.5 V 80 60 40 Phase Margin < 30° 1000 Phase Margin > 30° VDD = 5 V Phase Margin = 30° TA = 25°C 20 0 100 1k 10k 100k 1M RL − Load Resistance − Ω 100 10 100 1k 10k RL − Load Resistance − Ω Figure 14 Figure 13 WWW.TI.COM 15 Device TLV2465A is Obsolete                         SLOS220J − JULY 1998 − REVISED FEBRUARY 2004 TYPICAL CHARACTERISTICS OUTPUT IMPEDANCE vs FREQUENCY 1000 OUTPUT IMPEDANCE vs FREQUENCY 1000 VDD = ±1.5 V TA = 25°C 100 Zo − Output Impedance − Ω Zo − Output Impedance − Ω 100 10 AV = 100 1 AV = 10 0.1 VDD = ±2.5 V TA = 25°C AV = 1 10 AV = 100 1 AV = 10 0.1 AV = 1 0.01 100 1k 10k 100k 1M 0.01 100 10M 1k f − Frequency − Hz 10k Figure 15 Figure 16 COMMON-MODE REJECTION RATIO vs FREQUENCY CMRR − Common-Mode Rejection Ratio − dB 90 85 80 VDD = 5 V VIC = 2.5 V 75 VDD = 3 V VIC = 1.5 V 70 65 60 10 100 1k 10k 100k f − Frequency − Hz Figure 17 16 100k f − Frequency − Hz WWW.TI.COM 1M 10M 1M 10M Device TLV2465A is Obsolete                         SLOS220J − JULY 1998 − REVISED FEBRUARY 2004 TYPICAL CHARACTERISTICS SUPPLY-VOLTAGE REJECTION RATIO vs FREQUENCY SUPPLY-VOLTAGE REJECTION RATIO vs FREQUENCY 90 +kSVR VDD = ±1.5 V TA = 25°C 100 k SVR − Supply Voltage Rejection Ratio − dB k SVR − Supply Voltage Rejection Ratio − dB 110 90 −kSVR 80 70 60 +kSVR 50 −kSVR 40 10 100 1k 10k 100k 1M +kSVR 80 −kSVR 70 60 +kSVR 50 −kSVR 40 10 10M VDD = ±2.5 V TA = 25°C 1k 100 f − Frequency − Hz 10k 100k 1M 10M f − Frequency − Hz Figure 18 Figure 19 SUPPLY CURRENT vs SUPPLY VOLTAGE SUPPLY CURRENT vs FREE-AIR TEMPERATURE 0.8 0.80 IDD = 125°C I DD − Supply Current − mA I DD − Supply Current − mA 0.75 IDD = 85°C 0.7 0.6 0.5 0.40 IDD = 25°C 0.30 IDD = −55°C VDD = 5 V VI = 2.5 V 0.65 0.60 0.55 VDD = 3 V VI = 1.5 V 0.50 0.45 0.40 IDD = −40°C 0.20 0.70 0.35 0.10 2.5 3 3.5 4 4.5 5 5.5 6 VDD − Supply Voltage − V 0.30 −55 −35 −15 5 25 45 65 85 105 125 TA − Free-Air Temperature − °C Figure 20 Figure 21 WWW.TI.COM 17 Device TLV2465A is Obsolete                         SLOS220J − JULY 1998 − REVISED FEBRUARY 2004 TYPICAL CHARACTERISTICS AMPLIFIER WITH A SHUTDOWN PULSE TURNON CHARACTERISTICS AMPLIFIER WITH A SHUTDOWN PULSE TURNOFF CHARACTERISTICS 5 5 4 Shutdown Pin 3 2 1 0 Amplifier Output 3 2 1 0 −5 VDD = 5 V RL = 10 kΩ AV = 1 TA = 25°C Shutdown Pin 3 VSD − Shutdown Voltage − V VSD − Shutdown Voltage − V 4 VDD = 5 V RL = 10 kΩ AV = 1 TA = 25°C −3 −1 2 1 0 Amplifier Output 3 2 1 1 3 5 9 7 0 −5 11 −3 −1 t − Time − µs 1 t − Time − µs Figure 23 Figure 22 SUPPLY CURRENT WITH A SHUTDOWN PULSE TURNON CHARACTERISTICS 1 5.5 0.8 4.5 0.6 3.5 Supply Current 0.4 2.5 0.2 1.5 VDD = 5 V VI = 2.5 V AV = 1 TA = 25°C 0 −0.2 −0.4 −0.2 0 0.2 t − Time − µs Figure 24 18 WWW.TI.COM 0.4 0.5 −0.5 0.6 VSD − Shutdown Voltage − V I DD − Supply Current − mA Shutdown Pin 3 5 7 Device TLV2465A is Obsolete                         SLOS220J − JULY 1998 − REVISED FEBRUARY 2004 TYPICAL CHARACTERISTICS TURNOFF SUPPLY CURRENT WITH A SHUTDOWN PULSE 1 5.5 4.5 0.6 0.4 3.5 Supply Current 2.5 0.2 1.5 0 0.5 −0.2 −0.4 −0.2 0 0.2 VSD − Shutdown Voltage − V Shutdown Pin 0.8 I DD − Supply Current − mA VDD = 5 V VI = 2.5 V AV = 1 TA = 25°C −0.5 0.6 0.4 t − Time − µs Figure 25 SLEW RATE vs SUPPLY VOLTAGE 3 1.8 2.5 1.75 1.7 VDD = 5 V VI = 2.5 V 2 SR − Slew Rate − V/ µs I DD − Shutdown Supply Current − µ A SHUTDOWN SUPPLY CURRENT vs FREE-AIR TEMPERATURE 1.5 1 VDD = 3 V VI = 1.5 V 0.5 0 SR+ 1.65 1.6 1.55 1.5 1.45 1.4 −0.5 −1 −55 −35 1.35 −15 5 25 45 65 85 105 125 TA − Free-Air Temperature − °C SR− 1.3 2.5 VO(PP) = 2 V CL = 160 pF AV = 1 RL = 10 kΩ TA = 25°C 3 3.5 4 4.5 5 5.5 6 VDD − Supply Voltage − V Figure 26 Figure 27 WWW.TI.COM 19 Device TLV2465A is Obsolete                         SLOS220J − JULY 1998 − REVISED FEBRUARY 2004 TYPICAL CHARACTERISTICS EQUIVALENT INPUT NOISE VOLTAGE vs FREQUENCY EQUIVALENT INPUT NOISE VOLTAGE vs FREQUENCY 18 VDD = 3 V AV = 10 VI = 1.5 V TA = 25°C 17 Vn − Equivalent Input Noise Voltage − nV/ Hz Vn − Equivalent Input Noise Voltage − nV/ Hz 18 16 15 14 13 12 11 10 100 1k 10k VDD = 5 V AV = 10 VI = 2.5 V TA = 25°C 17 16 15 14 13 12 11 10 100 100k 1k f − Frequency − Hz Figure 28 EQUIVALENT INPUT NOISE VOLTAGE vs COMMON-MODE INPUT VOLTAGE 20 20 VDD = 3 V AV = 10 f = 1 kHz TA = 25°C 15 Vn − Equivalent Input Noise Voltage − nV/ Hz Vn − Equivalent Input Noise Voltage − nV/ Hz 100k Figure 29 EQUIVALENT INPUT NOISE VOLTAGE vs COMMON-MODE INPUT VOLTAGE 14 13 12 11 10 0 0.5 1 1.5 2 2.5 3 VICR − Common-Mode Input Voltage − V VDD = 5 V AV = 10 f = 1 kHz TA = 25°C 15 14 13 12 11 10 0 1 2 3 4 VICR − Common-Mode Input Voltage − V Figure 30 20 10k f − Frequency − Hz Figure 31 WWW.TI.COM 5 Device TLV2465A is Obsolete                         SLOS220J − JULY 1998 − REVISED FEBRUARY 2004 TYPICAL CHARACTERISTICS TOTAL HARMONIC DISTORTION vs FREQUENCY 1 VDD = ±1.5 V VO(PP) = 2 V RL = 10 kΩ THD − Total Harmonic Distortion − % THD − Total Harmonic Distortion − % 0.5 TOTAL HARMONIC DISTORTION vs FREQUENCY AV = 100 0.1 AV = 10 0.010 0.001 AV = 1 10 100 1k 10k 0.1 AV = 100 AV = 10 0.010 AV = 1 0.001 100k VDD = ±2.5 V VO(PP) = 4 V RL = 10 kΩ 10 100 1k f − Frequency − Hz Figure 32 THD+N − Total Harmonic Distortion + Noise − % THD+N − Total Harmonic Distortion + Noise − % TOTAL HARMONIC DISTORTION PLUS NOISE vs PEAK-TO-PEAK SIGNAL AMPLITUDE 1 RL = 250 Ω RL = 2 kΩ 0.1 RL = 10 kΩ 0.010 RL = 100 kΩ 0.001 1 1.2 1.4 1.6 1.8 2 100k Figure 33 TOTAL HARMONIC DISTORTION PLUS NOISE vs PEAK-TO-PEAK SIGNAL AMPLITUDE VDD = 3 V AV = 1 TA = 25°C 10k f − Frequency − Hz 2.2 2.4 2.6 2.8 3 3.2 Peak-to-Peak Signal Amplitude − V 1 RL = 250 Ω RL = 2 kΩ 0.1 RL = 10 kΩ 0.010 RL = 100 kΩ VDD = 5 V AV = 1 TA = 25°C 0.001 4 4.1 4.2 4.3 4.4 4.5 4.6 4.7 4.8 4.9 5 Peak-to-Peak Signal Amplitude − V Figure 34 Figure 35 WWW.TI.COM 21 Device TLV2465A is Obsolete                         SLOS220J − JULY 1998 − REVISED FEBRUARY 2004 TYPICAL CHARACTERISTICS PHASE MARGIN vs LOAD CAPACITANCE PHASE MARGIN vs FREE-AIR TEMPERATURE 90 80 RL = 10 kΩ CL = 160 pF 55 70 φ m − Phase Margin − degrees φ m − Phase Margin − degrees 60 VDD = ±2.5 V TA = 25°C RL = 10 kΩ Rnull = 50 Ω 60 50 40 Rnull = 20 Ω 30 20 Rnull = 0 Ω 50 VDD = ±2.5 V 45 VDD = ±1.5 V 40 35 10 0 100 10 1k 30 −55 −35 100k 10k CL − Load Capacitance − pF −15 Figure 36 45 65 85 105 125 GAIN BANDWIDTH PRODUCT vs FREE-AIR TEMPERATURE 5 5 CL = 160 pF RL = 10 kΩ f = 10 kHz TA = 25°C 4.75 Gain Bandwidth Product − MHz Gain Bandwidth Product − MHz 25 Figure 37 GAIN BANDWIDTH PRODUCT vs SUPPLY VOLTAGE 4.75 5 TA − Free-Air Temperature − °C 4.5 4.25 4 3.75 4.5 RL = 10 kΩ CL = 160 pF VDD = ±2.5 V 4.25 4 3.75 3.5 VDD = ±1.5 V 3.25 3.5 2.5 3 3.5 4 4.5 5 5.5 6 VDD − Supply Voltage − V −15 5 25 45 65 85 TA − Free-Air Temperature − °C Figure 38 22 3 −55 −35 Figure 39 WWW.TI.COM 105 125 Device TLV2465A is Obsolete                         SLOS220J − JULY 1998 − REVISED FEBRUARY 2004 TYPICAL CHARACTERISTICS LARGE SIGNAL FOLLOWER LARGE SIGNAL FOLLOWER 2.2 3.7 2 3.3 VO − Voltage − V Input VO − Voltage − V Input 1.8 Output 1.6 1.4 VDD = 3 V VI(PP) = 1 V VI = 1.5 V RL = 10 kΩ CL = 160 pF AV = 1 TA = 25°C 1.2 1 0.8 −2 0 2 4 6 Input 2.9 Output 2.5 VDD = 5 V VI(PP) = 2 V VI = 2.5 V RL = 10 kΩ CL = 160 pF AV = 1 TA = 25°C 2.1 Output 1.7 8 10 12 14 16 1.3 −2 18 0 2 4 6 t − Time − µs 8 10 12 14 16 18 Figure 41 SMALL SIGNAL FOLLOWER SMALL SIGNAL FOLLOWER 1.6 2.6 1.55 2.55 VO − Voltage − V VO − Voltage − V Output t − Time − µs Figure 40 Input 1.5 Output 1.45 1.4 −0.2 Input Input 2.5 Output 2.45 VDD = 3 V VI(PP) = 100 mV CL = 160 pF AV = 1 VI = 1.5 V TA = 25°C RL = 10 kΩ 0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 t − Time − µs 2.4 −0.2 VDD = 5 V VI(PP) = 100 mV VI = 2.5 V RL = 10 kΩ 0 0.2 0.4 0.6 CL = 160 pF AV = 1 TA = 25°C 0.8 1 1.2 1.4 1.6 1.8 t − Time − µs Figure 42 Figure 43 WWW.TI.COM 23 Device TLV2465A is Obsolete                         SLOS220J − JULY 1998 − REVISED FEBRUARY 2004 TYPICAL CHARACTERISTICS INVERTING LARGE SIGNAL INVERTING LARGE SIGNAL 4 2.3 Input 2.1 Input 3.5 VDD = 3 V VI(PP) = 1 V VI = 1.5 V RL = 10 kΩ CL = 160 pF AV = −1 TA = 25°C 1.7 1.5 1.3 VO − Voltage − V VO − Voltage − V 1.9 1.1 VDD = 5 V VI(PP) = 2 V VI = 2.5 V RL = 10 kΩ CL = 160 pF AV = −1 TA = 25°C 3 2.5 2 Output 0.9 Output 1.5 0.7 0.5 −0.2 0 0.2 0.4 0.6 0.8 1 1.2 1.4 1 −0.2 1.6 1.8 0 0.2 0.4 t − Time − µs 0.6 Figure 44 1.6 1.8 2.6 Input Input 1.55 2.55 VDD = 3 V VI(PP) = 100 mV VI = 1.5 V RL = 10 kΩ CL = 160 pF AV = −1 TA = 25°C 1.5 VO − Voltage − V VO − Voltage − V 1.2 1.4 INVERTING SMALL SIGNAL 1.6 1.45 VDD = 5 V VI(PP) = 100 mV VI = 2.5 V RL = 10 kΩ CL = 160 pF AV = −1 TA = 25°C 2.5 2.45 Output 0 0.2 0.4 0.6 0.8 Output 1 1.2 1.4 1.6 1.8 t − Time − µs 2.4 −0.2 0 0.2 0.4 0.6 0.8 1 t − Time − µs Figure 46 24 1 Figure 45 INVERTING SMALL SIGNAL 1.4 −0.2 0.8 t − Time − µs Figure 47 WWW.TI.COM 1.2 1.4 1.6 1.8 Device TLV2465A is Obsolete                         SLOS220J − JULY 1998 − REVISED FEBRUARY 2004 PARAMETER MEASUREMENT INFORMATION Rnull _ + RL CL Figure 48 APPLICATION INFORMATION driving a capacitive load When the amplifier is configured in this manner, capacitive loading directly on the output will decrease the device’s phase margin leading to high frequency ringing or oscillations. Therefore, for capacitive loads of greater than 10 pF, it is recommended that a resistor be placed in series (RNULL) with the output of the amplifier, as shown in Figure 49. A minimum value of 20 Ω should work well for most applications. RF RG RNULL _ Input Output + CLOAD Figure 49. Driving a Capacitive Load offset voltage The output offset voltage, (VOO) is the sum of the input offset voltage (VIO) and both input bias currents (IIB) times the corresponding gains. The following schematic and formula can be used to calculate the output offset voltage: RF IIB− RG + − VI IIB+ V OO +V IO ǒ ǒ ǓǓ 1) R R F G VO + RS "I IB) R S ǒ ǒ ǓǓ 1) R R F G "I IB– R F Figure 50. Output Offset Voltage Model WWW.TI.COM 25 Device TLV2465A is Obsolete                         SLOS220J − JULY 1998 − REVISED FEBRUARY 2004 APPLICATION INFORMATION general configurations When receiving low-level signals, limiting the bandwidth of the incoming signals into the system is often required. The simplest way to accomplish this is to place an RC filter at the noninverting terminal of the amplifier (see Figure 51). RG RF − VO + VI R1 C1 f V O + V I ǒ 1) R R F G –3dB Ǔǒ + 1 2pR1C1 Ǔ 1 1 ) sR1C1 Figure 51. Single-Pole Low-Pass Filter If even more attenuation is needed, a multiple pole filter is required. The Sallen-Key filter can be used for this task. For best results, the amplifier should have a bandwidth that is 8 to 10 times the filter frequency bandwidth. Failure to do this can result in phase shift of the amplifier. C1 + _ VI R1 R1 = R2 = R C1 = C2 = C Q = Peaking Factor (Butterworth Q = 0.707) R2 f C2 RG RF RG = Figure 52. 2-Pole Low-Pass Sallen-Key Filter 26 WWW.TI.COM –3dB + ( 1 2pRC RF 1 2− Q ) Device TLV2465A is Obsolete                         SLOS220J − JULY 1998 − REVISED FEBRUARY 2004 APPLICATION INFORMATION shutdown function Three members of the TLV246x family (TLV2460/3/5) have a shutdown terminal for conserving battery life in portable applications. When the shutdown terminal is tied low, the supply current is reduced to 0.3 µA/channel, the amplifier is disabled, and the outputs are placed in a high impedance mode. To enable the amplifier, the shutdown terminal can either be left floating or pulled high. When the shutdown terminal is left floating, care should be taken to ensure that parasitic leakage current at the shutdown terminal does not inadvertently place the operational amplifier into shutdown. The shutdown terminal threshold is always referenced to VDD/2. Therefore, when operating the device with split supply voltages (e.g. ± 2.5 V), the shutdown terminal needs to be pulled to VDD− (not GND) to disable the operational amplifier. The amplifier’s output with a shutdown pulse is shown in Figures 22, 23, 24, and 25. The amplifier is powered with a single 5-V supply and configured as a noninverting configuration with a gain of 5. The amplifier turnon and turnoff times are measured from the 50% point of the shutdown pulse to the 50% point of the output waveform. The times for the single, dual, and quad are listed in the data tables. circuit layout considerations To achieve the levels of high performance of the TLV246x, follow proper printed-circuit board design techniques. A general set of guidelines is given in the following. D Ground planes − It is highly recommended that a ground plane be used on the board to provide all components with a low inductive ground connection. However, in the areas of the amplifier inputs and output, the ground plane can be removed to minimize the stray capacitance. D Proper power supply decoupling − Use a 6.8-µF tantalum capacitor in parallel with a 0.1-µF ceramic capacitor on each supply terminal. It may be possible to share the tantalum among several amplifiers depending on the application, but a 0.1-µF ceramic capacitor should always be used on the supply terminal of every amplifier. In addition, the 0.1-µF capacitor should be placed as close as possible to the supply terminal. As this distance increases, the inductance in the connecting trace makes the capacitor less effective. The designer should strive for distances of less than 0.1 inches between the device power terminals and the ceramic capacitors. D Sockets − Sockets can be used but are not recommended. The additional lead inductance in the socket pins will often lead to stability problems. Surface-mount packages soldered directly to the printed-circuit board is the best implementation. D Short trace runs/compact part placements − Optimum high performance is achieved when stray series inductance has been minimized. To realize this, the circuit layout should be made as compact as possible, thereby minimizing the length of all trace runs. Particular attention should be paid to the inverting input of the amplifier. Its length should be kept as short as possible. This will help to minimize stray capacitance at the input of the amplifier. D Surface-mount passive components − Using surface-mount passive components is recommended for high performance amplifier circuits for several reasons. First, because of the extremely low lead inductance of surface-mount components, the problem with stray series inductance is greatly reduced. Second, the small size of surface-mount components naturally leads to a more compact layout thereby minimizing both stray inductance and capacitance. If leaded components are used, it is recommended that the lead lengths be kept as short as possible. WWW.TI.COM 27 Device TLV2465A is Obsolete                         SLOS220J − JULY 1998 − REVISED FEBRUARY 2004 APPLICATION INFORMATION general power dissipation considerations For a given θJA, the maximum power dissipation is shown in Figure 53 and is calculated by the following formula: P D + Where: ǒ T Ǔ –T MAX A q JA PD = Maximum power dissipation of THS246x IC (watts) TMAX = Absolute maximum junction temperature (150°C) TA = Free-ambient air temperature (°C) θJA = θJC + θCA θJC = Thermal coefficient from junction to case θCA = Thermal coefficient from case to ambient air (°C/W) MAXIMUM POWER DISSIPATION vs FREE-AIR TEMPERATURE 2 Maximum Power Dissipation − W 1.75 PDIP Package Low-K Test PCB θJA = 104°C/W 1.5 1.25 TJ = 150°C MSOP Package Low-K Test PCB θJA = 260°C/W SOIC Package Low-K Test PCB θJA = 176°C/W 1 0.75 0.5 0.25 SOT-23 Package Low-K Test PCB θJA = 324°C/W 0 −55 −40 −25 −10 5 20 35 50 65 80 95 110 125 TA − Free-Air Temperature − °C NOTE A: Results are with no air flow and using JEDEC Standard Low-K test PCB. Figure 53. Maximum Power Dissipation vs Free-Air Temperature 28 WWW.TI.COM Device TLV2465A is Obsolete                         SLOS220J − JULY 1998 − REVISED FEBRUARY 2004 APPLICATION INFORMATION macromodel information Macromodel information provided was derived using Microsim Parts Release 8, the model generation software used with Microsim PSpice . The Boyle macromodel (see Note 2) and subcircuit in Figure 54 are generated using the TLV246x typical electrical and operating characteristics at TA = 25°C. Using this information, output simulations of the following key parameters can be generated to a tolerance of 20% (in most cases): D D D D D D D D D D D D Maximum positive output voltage swing Maximum negative output voltage swing Slew rate Quiescent power dissipation Input bias current Open-loop voltage amplification Unity-gain frequency Common-mode rejection ratio Phase margin DC output resistance AC output resistance Short-circuit output current limit NOTE 2: G. R. Boyle, B. M. Cohn, D. O. Pederson, and J. E. Solomon, “Macromodeling of Intergrated Circuit Operational Amplifiers”, IEEE Journal of Solid-State Circuits, SC-9, 353 (1974). 99 EGND + R2 3 VDD + − + ISS RSS CSS VD − 53 RP 10 2 IN − J1 FB 6 7 + 9 VLIM + VB 8 GA GCM J2 − − DC RO1 OUT IN + 1 11 12 RD1 92 54 + RD2 VE + DLP 91 + VLP − − − + 90 HLIM − 4 5 DLN DE C1 DP GND RO2 C2 VLN RD1 3 11 2.8964E3 RD2 3 12 2.8964E3 R01 8 5 5.6000 R02 7 99 6.2000 RP 3 4 8.9127 RSS 10 99 10.610E6 VB 9 0 DC 0 VC 3 53 DC .7836 VE 54 4 DC .7436 VLIM 7 8 DC 0 VLP 91 0 DC 117 VLN 0 92 DC 117 .MODEL DX D (IS=800.00E−18) .MODEL DY D (IS=800.00E−18 Rs = 1m Cjo=10p) .MODEL JX1 NJF (IS=1.0000E−12 BETA=6.3239E−3 + VTO= −1) .MODEL JX2 NJF (IS=1.0000E−12 BETA=6.3239E−3 + VTO= −1) .ENDS .SUBCKT TLV246X 1 2 3 4 5 C1 11 12 2.46034E−12 C2 6 7 10.0000E−12 CSS 10 99 443.21E−15 DC 5 53 DY DE 54 5 DY DLP 90 91 DX DLN 92 90 DX DP 4 3 DX EGND 99 0 POLY (2) (3,0) (4,0) 0 .5 .5 FB 7 99 POLY (5) VB VC VE VLP + VLN 0 21.600E6 −1E3 1E3 22E6 −22E6 GA 6 0 11 12 345.26E−6 GCM 0 6 10 99 15.4226E−9 ISS 10 4 DC 18.850E−6 HLIM 90 0 VLIM 1K J1 11 2 10 JX1 J2 12 1 10 JX2 R2 6 9 100.00E3 Figure 54. Boyle Macromodels and Subcircuit PSpice and Parts are trademarks of MicroSim Corporation. WWW.TI.COM 29 Device TLV2465A is Obsolete                         SLOS220J − JULY 1998 − REVISED FEBRUARY 2004 macromodel information (continued) rp 3 71 8.9127 rss 10 99 10.610E6 rs1 6 4 1G rs2 6 4 1G rs3 6 4 1G rs4 6 4 1G s1 71 4 6 4 s1x s2 70 5 6 4 s1x s3 10 74 6 4 s1x s4 74 4 6 4 s2x vb 9 0 dc 0 vc 3 53 dc .7836 ve 54 4 dc .7436 vlim 7 8 dc 0 vlp 91 0 dc 117 vln 0 92 dc 117 .model dx D(Is=800.00E−18) .model dy D(Is=800.00E−18 Rs=1m Cjo=10p) .model jx1 NJF(Is=1.0000E−12 Beta=6.3239E−3 Vto=−1) .model jx2 NJF(Is=1.0000E−12 Beta=6.3239E−3 Vto=−1) .model s1x VSWITCH(Roff=1E8 Ron=1.0 Voff=2.5 Von=0.0) .model s2x VSWITCH(Roff=1E8 Ron=1.0 Voff=0 Von=2.5) .ends .subckt TLV_246Y 1 2 3 4 5 6 c1 11 12 2.4603E−12 c2 72 7 10.000E−12 css 10 99 443.21E−15 dc 70 53 dy de 54 70 dy dlp 90 91 dx dln 92 90 dx dp 4 3 dx egnd 99 0 poly(2) (3,0) (4,0) 0 .5 .5 fb 7 99 poly(5) vb vc ve vlp vln 0 21.600E6 −1E3 1E3 22E6 −22E6 ga 72 0 11 12 345.26E−6 gcm 0 72 10 99 15.422E−9 iss 74 4 dc 18.850E−6 hlim 90 0 vlim 1K j1 11 2 10 jx1 j2 12 1 10 jx2 r2 72 9 100.00E3 rd1 3 11 2.8964E3 rd2 3 12 2.8964E3 ro1 8 70 5.6000 ro2 7 99 6.2000 Figure 54. Boyle Macromodels and Subcircuit (Continued) 30 WWW.TI.COM PACKAGE OPTION ADDENDUM www.ti.com 14-Oct-2022 PACKAGING INFORMATION Orderable Device Status (1) Package Type Package Pins Package Drawing Qty Eco Plan (2) Lead finish/ Ball material MSL Peak Temp Op Temp (°C) Device Marking (3) Samples (4/5) (6) 5962-0051201QHA ACTIVE CFP U 10 1 Non-RoHS & Green SNPB N / A for Pkg Type -55 to 125 0051201QHA TLV2460M Samples 5962-0051203QHA ACTIVE CFP U 10 1 Non-RoHS & Green SNPB N / A for Pkg Type -55 to 125 0051203QHA TLV2461M Samples 5962-0051205QHA ACTIVE CFP U 10 1 Non-RoHS & Green SNPB N / A for Pkg Type -55 to 125 0051205QHA TLV2462M Samples 5962-0051206Q2A ACTIVE LCCC FK 20 1 Non-RoHS & Green SNPB N / A for Pkg Type -55 to 125 59620051206Q2A TLV2462A MFKB 5962-0051206QHA ACTIVE CFP U 10 1 Non-RoHS & Green SNPB N / A for Pkg Type -55 to 125 0051206QHA TLV2462AM Samples 5962-0051206QPA ACTIVE CDIP JG 8 1 Non-RoHS & Green SNPB N / A for Pkg Type -55 to 125 0051206QPA TLV2462AM Samples TLV2460AIDR ACTIVE SOIC D 8 2500 RoHS & Green NIPDAU Level-1-260C-UNLIM -40 to 125 2460AI Samples TLV2460AIP ACTIVE PDIP P 8 50 RoHS & Green NIPDAU N / A for Pkg Type -40 to 125 TLV2460AI Samples TLV2460CD ACTIVE SOIC D 8 75 RoHS & Green NIPDAU Level-1-260C-UNLIM 0 to 70 2460C Samples TLV2460CDBVR ACTIVE SOT-23 DBV 6 3000 RoHS & Green NIPDAU Level-1-260C-UNLIM 0 to 70 VAOC Samples TLV2460CDBVT ACTIVE SOT-23 DBV 6 250 RoHS & Green NIPDAU Level-1-260C-UNLIM 0 to 70 VAOC Samples TLV2460CDBVTG4 ACTIVE SOT-23 DBV 6 250 RoHS & Green NIPDAU Level-1-260C-UNLIM 0 to 70 VAOC Samples TLV2460CDR ACTIVE SOIC D 8 2500 RoHS & Green NIPDAU Level-1-260C-UNLIM 0 to 70 2460C Samples TLV2460CP ACTIVE PDIP P 8 50 RoHS & Green NIPDAU N / A for Pkg Type 0 to 70 TLV2460C Samples TLV2460ID ACTIVE SOIC D 8 75 RoHS & Green NIPDAU Level-1-260C-UNLIM -40 to 125 2460I Samples TLV2460IDBVR ACTIVE SOT-23 DBV 6 3000 RoHS & Green NIPDAU Level-1-260C-UNLIM -40 to 125 VAOI Samples TLV2460IDBVT ACTIVE SOT-23 DBV 6 250 RoHS & Green NIPDAU Level-1-260C-UNLIM -40 to 125 VAOI Samples TLV2460IDR ACTIVE SOIC D 8 2500 RoHS & Green NIPDAU Level-1-260C-UNLIM -40 to 125 2460I Samples Addendum-Page 1 Samples PACKAGE OPTION ADDENDUM www.ti.com 14-Oct-2022 Orderable Device Status (1) Package Type Package Pins Package Drawing Qty Eco Plan (2) Lead finish/ Ball material MSL Peak Temp Op Temp (°C) Device Marking (3) Samples (4/5) (6) TLV2460IP ACTIVE PDIP P 8 50 RoHS & Green NIPDAU N / A for Pkg Type -40 to 125 TLV2460I Samples TLV2460MUB ACTIVE CFP U 10 1 Non-RoHS & Green SNPB N / A for Pkg Type -55 to 125 0051201QHA TLV2460M Samples TLV2461AID ACTIVE SOIC D 8 75 RoHS & Green NIPDAU Level-1-260C-UNLIM -40 to 125 2461AI Samples TLV2461AIDR ACTIVE SOIC D 8 2500 RoHS & Green NIPDAU Level-1-260C-UNLIM -40 to 125 2461AI Samples TLV2461AIP ACTIVE PDIP P 8 50 RoHS & Green NIPDAU N / A for Pkg Type -40 to 125 TLV2461AI Samples TLV2461CD ACTIVE SOIC D 8 75 RoHS & Green NIPDAU Level-1-260C-UNLIM 0 to 70 2461C Samples TLV2461CDBVR ACTIVE SOT-23 DBV 5 3000 RoHS & Green NIPDAU Level-1-260C-UNLIM 0 to 70 VAPC Samples TLV2461CDBVT ACTIVE SOT-23 DBV 5 250 RoHS & Green NIPDAU Level-1-260C-UNLIM 0 to 70 VAPC Samples TLV2461CDR ACTIVE SOIC D 8 2500 RoHS & Green NIPDAU Level-1-260C-UNLIM 0 to 70 2461C Samples TLV2461CP ACTIVE PDIP P 8 50 RoHS & Green NIPDAU N / A for Pkg Type 0 to 70 TLV2461C Samples TLV2461ID ACTIVE SOIC D 8 75 RoHS & Green NIPDAU Level-1-260C-UNLIM -40 to 125 2461I Samples TLV2461IDBVR ACTIVE SOT-23 DBV 5 3000 RoHS & Green NIPDAU Level-1-260C-UNLIM -40 to 125 VAPI Samples TLV2461IDBVT ACTIVE SOT-23 DBV 5 250 RoHS & Green NIPDAU Level-1-260C-UNLIM -40 to 125 VAPI Samples TLV2461IDR ACTIVE SOIC D 8 2500 RoHS & Green NIPDAU Level-1-260C-UNLIM -40 to 125 2461I Samples TLV2461IP ACTIVE PDIP P 8 50 RoHS & Green NIPDAU N / A for Pkg Type -40 to 125 TLV2461I Samples TLV2461MUB ACTIVE CFP U 10 1 Non-RoHS & Green SNPB N / A for Pkg Type -55 to 125 0051203QHA TLV2461M Samples TLV2462AID ACTIVE SOIC D 8 75 RoHS & Green NIPDAU Level-1-260C-UNLIM -40 to 125 2462AI Samples TLV2462AIDR ACTIVE SOIC D 8 2500 RoHS & Green NIPDAU Level-1-260C-UNLIM -40 to 125 2462AI Samples TLV2462AIP ACTIVE PDIP P 8 50 RoHS & Green NIPDAU N / A for Pkg Type -40 to 125 TLV2462AI Samples TLV2462AMFKB ACTIVE LCCC FK 20 1 Non-RoHS & Green SNPB N / A for Pkg Type -55 to 125 59620051206Q2A TLV2462A Addendum-Page 2 Samples PACKAGE OPTION ADDENDUM www.ti.com 14-Oct-2022 Orderable Device Status (1) Package Type Package Pins Package Drawing Qty Eco Plan (2) Lead finish/ Ball material MSL Peak Temp Op Temp (°C) Device Marking (3) Samples (4/5) (6) MFKB TLV2462AMJG ACTIVE CDIP JG 8 1 Non-RoHS & Green SNPB N / A for Pkg Type -55 to 125 TLV2462AMJG Samples TLV2462AMJGB ACTIVE CDIP JG 8 1 Non-RoHS & Green SNPB N / A for Pkg Type -55 to 125 0051206QPA TLV2462AM Samples TLV2462AMUB ACTIVE CFP U 10 1 Non-RoHS & Green SNPB N / A for Pkg Type -55 to 125 0051206QHA TLV2462AM Samples TLV2462AQD ACTIVE SOIC D 8 75 RoHS & Green NIPDAU Level-1-260C-UNLIM -40 to 125 V2462A Samples TLV2462AQDG4 ACTIVE SOIC D 8 75 RoHS & Green NIPDAU Level-1-260C-UNLIM V2462A Samples TLV2462AQDRG4 ACTIVE SOIC D 8 2500 RoHS & Green NIPDAU Level-1-260C-UNLIM V2462A Samples TLV2462AQPWR ACTIVE TSSOP PW 8 2000 RoHS & Green NIPDAU Level-1-260C-UNLIM -40 to 125 V2462A Samples TLV2462CD ACTIVE SOIC D 8 75 RoHS & Green NIPDAU Level-1-260C-UNLIM 0 to 70 2462C Samples TLV2462CDG4 ACTIVE SOIC D 8 75 RoHS & Green NIPDAU Level-1-260C-UNLIM 0 to 70 2462C Samples TLV2462CDGK ACTIVE VSSOP DGK 8 80 RoHS & Green NIPDAU | NIPDAUAG Level-1-260C-UNLIM 0 to 70 AAI Samples TLV2462CDGKR ACTIVE VSSOP DGK 8 2500 RoHS & Green NIPDAU | NIPDAUAG Level-1-260C-UNLIM 0 to 70 AAI Samples TLV2462CDGKRG4 ACTIVE VSSOP DGK 8 2500 RoHS & Green NIPDAU Level-1-260C-UNLIM 0 to 70 AAI Samples TLV2462CDR ACTIVE SOIC D 8 2500 RoHS & Green NIPDAU Level-1-260C-UNLIM 0 to 70 2462C Samples TLV2462CDRG4 ACTIVE SOIC D 8 2500 RoHS & Green NIPDAU Level-1-260C-UNLIM 0 to 70 2462C Samples TLV2462CP ACTIVE PDIP P 8 50 RoHS & Green NIPDAU N / A for Pkg Type 0 to 70 TLV2462CP Samples TLV2462CPE4 ACTIVE PDIP P 8 50 RoHS & Green NIPDAU N / A for Pkg Type 0 to 70 TLV2462CP Samples TLV2462ID ACTIVE SOIC D 8 75 RoHS & Green NIPDAU Level-1-260C-UNLIM -40 to 125 2462I Samples TLV2462IDG4 ACTIVE SOIC D 8 75 RoHS & Green NIPDAU Level-1-260C-UNLIM -40 to 125 2462I Samples TLV2462IDGK ACTIVE VSSOP DGK 8 80 RoHS & Green NIPDAU | NIPDAUAG Level-1-260C-UNLIM -40 to 125 AAJ Samples TLV2462IDGKG4 ACTIVE VSSOP DGK 8 80 RoHS & Green Level-1-260C-UNLIM -40 to 125 AAJ Samples Addendum-Page 3 NIPDAU PACKAGE OPTION ADDENDUM www.ti.com 14-Oct-2022 Orderable Device Status (1) Package Type Package Pins Package Drawing Qty Eco Plan (2) Lead finish/ Ball material MSL Peak Temp Op Temp (°C) Device Marking (3) Samples (4/5) (6) TLV2462IDGKR ACTIVE VSSOP DGK 8 2500 RoHS & Green NIPDAU | NIPDAUAG Level-1-260C-UNLIM -40 to 125 AAJ Samples TLV2462IDR ACTIVE SOIC D 8 2500 RoHS & Green NIPDAU Level-1-260C-UNLIM -40 to 125 2462I Samples TLV2462IP ACTIVE PDIP P 8 50 RoHS & Green NIPDAU N / A for Pkg Type -40 to 125 TLV2462IP Samples TLV2462MUB ACTIVE CFP U 10 1 Non-RoHS & Green SNPB N / A for Pkg Type -55 to 125 0051205QHA TLV2462M Samples TLV2462QPWR ACTIVE TSSOP PW 8 2000 RoHS & Green NIPDAU Level-1-260C-UNLIM -40 to 125 V2462Q Samples TLV2462QPWRG4 ACTIVE TSSOP PW 8 2000 RoHS & Green NIPDAU Level-1-260C-UNLIM V2462Q Samples TLV2463AIDR ACTIVE SOIC D 14 2500 RoHS & Green NIPDAU Level-1-260C-UNLIM -40 to 125 TLV2463AI Samples TLV2463AMJ ACTIVE CDIP J 14 1 Non-RoHS & Green SNPB N / A for Pkg Type -55 to 125 TLV2463AMJ Samples TLV2463CD ACTIVE SOIC D 14 50 RoHS & Green NIPDAU Level-1-260C-UNLIM 0 to 70 TLV2463C Samples TLV2463CDGS ACTIVE VSSOP DGS 10 80 RoHS & Green NIPDAU Level-1-260C-UNLIM 0 to 70 AAK Samples TLV2463CDGSR ACTIVE VSSOP DGS 10 2500 RoHS & Green NIPDAU Level-1-260C-UNLIM 0 to 70 AAK Samples TLV2463CDGSRG4 ACTIVE VSSOP DGS 10 2500 RoHS & Green NIPDAU Level-1-260C-UNLIM 0 to 70 AAK Samples TLV2463CDR ACTIVE SOIC D 14 2500 RoHS & Green NIPDAU Level-1-260C-UNLIM 0 to 70 TLV2463C Samples TLV2463CN ACTIVE PDIP N 14 25 RoHS & Green NIPDAU N / A for Pkg Type 0 to 70 TLV2463CN Samples TLV2463ID ACTIVE SOIC D 14 50 RoHS & Green NIPDAU Level-1-260C-UNLIM -40 to 125 TLV2463I Samples TLV2463IDGS ACTIVE VSSOP DGS 10 80 RoHS & Green NIPDAU Level-1-260C-UNLIM -40 to 125 AAL Samples TLV2463IDGSR ACTIVE VSSOP DGS 10 2500 RoHS & Green NIPDAU Level-1-260C-UNLIM -40 to 125 AAL Samples TLV2463IN ACTIVE PDIP N 14 25 RoHS & Green NIPDAU N / A for Pkg Type -40 to 125 TLV2463IN Samples TLV2464AID ACTIVE SOIC D 14 50 RoHS & Green NIPDAU Level-1-260C-UNLIM -40 to 125 2464AI Samples TLV2464AIDG4 ACTIVE SOIC D 14 50 RoHS & Green NIPDAU Level-1-260C-UNLIM -40 to 125 2464AI Samples TLV2464AIDR ACTIVE SOIC D 14 2500 RoHS & Green NIPDAU Level-1-260C-UNLIM -40 to 125 2464AI Samples Addendum-Page 4 PACKAGE OPTION ADDENDUM www.ti.com 14-Oct-2022 Orderable Device Status (1) Package Type Package Pins Package Drawing Qty Eco Plan (2) Lead finish/ Ball material MSL Peak Temp Op Temp (°C) Device Marking (3) Samples (4/5) (6) TLV2464AIDRG4 ACTIVE SOIC D 14 2500 RoHS & Green NIPDAU Level-1-260C-UNLIM -40 to 125 2464AI Samples TLV2464AIN ACTIVE PDIP N 14 25 RoHS & Green NIPDAU N / A for Pkg Type -40 to 125 TLV2464AIN Samples TLV2464AIPW ACTIVE TSSOP PW 14 90 RoHS & Green NIPDAU Level-1-260C-UNLIM -40 to 125 TY2464A Samples TLV2464AIPWR ACTIVE TSSOP PW 14 2000 RoHS & Green NIPDAU Level-1-260C-UNLIM -40 to 125 TY2464A Samples TLV2464CD ACTIVE SOIC D 14 50 RoHS & Green NIPDAU Level-1-260C-UNLIM 0 to 70 TLV2464C Samples TLV2464CDR ACTIVE SOIC D 14 2500 RoHS & Green NIPDAU Level-1-260C-UNLIM 0 to 70 TLV2464C Samples TLV2464CN ACTIVE PDIP N 14 25 RoHS & Green NIPDAU N / A for Pkg Type 0 to 70 TLV2464CN Samples TLV2464CNE4 ACTIVE PDIP N 14 25 RoHS & Green NIPDAU N / A for Pkg Type 0 to 70 TLV2464CN Samples TLV2464CPW ACTIVE TSSOP PW 14 90 RoHS & Green NIPDAU Level-1-260C-UNLIM 0 to 70 TV2464 Samples TLV2464CPWR ACTIVE TSSOP PW 14 2000 RoHS & Green NIPDAU Level-1-260C-UNLIM 0 to 70 TV2464 Samples TLV2464ID ACTIVE SOIC D 14 50 RoHS & Green NIPDAU Level-1-260C-UNLIM -40 to 125 TLV2464I Samples TLV2464IDG4 ACTIVE SOIC D 14 50 RoHS & Green NIPDAU Level-1-260C-UNLIM -40 to 125 TLV2464I Samples TLV2464IDR ACTIVE SOIC D 14 2500 RoHS & Green NIPDAU Level-1-260C-UNLIM -40 to 125 TLV2464I Samples TLV2464IN ACTIVE PDIP N 14 25 RoHS & Green NIPDAU N / A for Pkg Type -40 to 125 TLV2464IN Samples TLV2464IPW ACTIVE TSSOP PW 14 90 RoHS & Green NIPDAU Level-1-260C-UNLIM -40 to 125 TY2464 Samples TLV2464IPWR ACTIVE TSSOP PW 14 2000 RoHS & Green NIPDAU Level-1-260C-UNLIM -40 to 125 TY2464 Samples TLV2464IPWRG4 ACTIVE TSSOP PW 14 2000 RoHS & Green NIPDAU Level-1-260C-UNLIM -40 to 125 TY2464 Samples TLV2465CD ACTIVE SOIC D 16 40 RoHS & Green NIPDAU Level-1-260C-UNLIM 0 to 70 TLV2465C Samples TLV2465CDR ACTIVE SOIC D 16 2500 RoHS & Green NIPDAU Level-1-260C-UNLIM 0 to 70 TLV2465C Samples TLV2465CPWR ACTIVE TSSOP PW 16 2000 RoHS & Green NIPDAU Level-1-260C-UNLIM 0 to 70 2465C Samples TLV2465ID ACTIVE SOIC D 16 40 RoHS & Green NIPDAU Level-1-260C-UNLIM -40 to 125 TLV2465I Samples Addendum-Page 5 PACKAGE OPTION ADDENDUM www.ti.com 14-Oct-2022 Orderable Device Status (1) Package Type Package Pins Package Drawing Qty Eco Plan (2) Lead finish/ Ball material MSL Peak Temp Op Temp (°C) Device Marking (3) Samples (4/5) (6) TLV2465IDR ACTIVE SOIC D 16 2500 RoHS & Green NIPDAU Level-1-260C-UNLIM -40 to 125 TLV2465I Samples TLV2465IN ACTIVE PDIP N 16 25 RoHS & Green NIPDAU N / A for Pkg Type -40 to 125 TLV2465IN Samples TLV2465IPW ACTIVE TSSOP PW 16 90 RoHS & Green NIPDAU Level-1-260C-UNLIM -40 to 125 2465I Samples TLV2465IPWR ACTIVE TSSOP PW 16 2000 RoHS & Green NIPDAU Level-1-260C-UNLIM -40 to 125 2465I Samples (1) The marketing status values are defined as follows: ACTIVE: Product device recommended for new designs. LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect. NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design. PREVIEW: Device has been announced but is not in production. Samples may or may not be available. OBSOLETE: TI has discontinued the production of the device. (2) RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may reference these types of products as "Pb-Free". RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption. Green: TI defines "Green" to mean the content of Chlorine (Cl) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of
TLV2463CN
物料型号: - 文档中提到的物料型号是TLV246x系列,这是一款低功耗的轨至轨输入/输出运算放大器。

器件简介: - TLV246x系列运算放大器专为便携式应用设计,具有超低功耗和宽输入共模电压范围,能够提供良好的交流性能和低功耗。

引脚分配: - 文档提供了不同封装类型的引脚分配图,例如SOT-23、MSOP、TSSOP等,并且有详细的引脚功能说明。

参数特性: - 该系列运算放大器的关键参数包括6.4 MHz的增益带宽积、1.6 V/µs的 slew rate(斜率)、±80 mA的输出驱动能力、500 µA/通道的供电电流、100 µV的输入偏置电压、11 nV/√Hz的输入噪声电压等。

功能详解: - 文档详细描述了运算放大器的功能,包括其低功耗关机模式、适用于汽车和军事系统的温度范围、以及在工业控制和汽车系统中的广泛应用。

应用信息: - TLV246x系列适用于模拟数字转换器的缓冲、电池供电的便携式设备、以及其他需要低功耗和高精度的场合。

封装信息: - 该系列运算放大器提供多种封装选项,包括SOT23、MSOP、TSSOP等,以适应不同的应用需求和空间限制。
TLV2463CN 价格&库存

很抱歉,暂时无法提供与“TLV2463CN”相匹配的价格&库存,您可以联系我们找货

免费人工找货