Product
Folder
Sample &
Buy
Technical
Documents
Support &
Community
Tools &
Software
TLV2460-Q1, TLV2460A-Q1, TLV2461-Q1, TLV2461A-Q1
TLV2462-Q1, TLV2462A-Q1, TLV2463-Q1, TLV2463A-Q1, TLV2464A-Q1
SGLS008F – MARCH 2003 – REVISED DECEMBER 2015
TLV246xx-Q1 Low-Power Rail-to-Rail Input/Output Operational Amplifiers
With Shutdown
1
1 Features
•
•
•
•
•
•
•
•
•
•
Qualified for Automotive Applications
AEC-Q100 Qualified With the Following Results:
– Device Temperature Grade 1: –40°C to
+125°C Ambient Operating Temperature
Range
– Device HBM ESD Classification Level 2
– Device CDM ESD Classification Level C6
ESD Protection Exceeds 2000 V Per
MIL-STD-883, Method 3015; Exceeds 200 V
Using Machine Model C = 200 pF, R = 0)
Rail-to-Rail Output Swing
Gain Bandwidth Product: 6.4 MHz
Output Drive Capability: ±80-mA
Supply Current: 500 μA/Channel
Input Offset Voltage: 100 μV
Input Noise Voltage: 11 nV/√Hz
Slew Rate: 1.6 V/μs
Micropower Shutdown Mode (TLV2460Q1/TLV2463-Q1): 0.3 μA/Channel
Universal Operational Amplifier EVM
The operational amplifier has 6.4-MHz bandwidth and
a 1.6-V/μs slew rate with only 500-μA supply current,
which provides good ac performance with low-power
consumption. Devices are available with an optional
shutdown terminal, which places the amplifier in an
ultralow supply-current mode (IDD = 0.3 μA/channel).
While in shutdown, the operational amplifier output is
placed in a high-impedance state. DC applications
are also well served with an input noise voltage of 11
nV/√Hz and input offset voltage of 100 μV.
Device Information(1)
PART NUMBER
TLV246x-Q1,
TLV246xA-Q1
TLV2462-Q1,
TLV2462A-Q1
TLV246x-Q1,
TLV246xA-Q1
TSSOP (8)
4.40 mm × 3.00 mm
SOIC (8)
3.91 mm × 4.90 mm
TSSOP (8)
4.40 mm × 3.00 mm
VSSOP (8)
3.00 mm × 3.00 mm
TSSOP (14)
4.40 mm × 5.00 mm
Typical Application
C1
33 pF
C2
R2
47 kŸ
680 pF
C3
R3
330 pF
V IN
VCC
4.7 k
R1
62 NŸ
U1B
6
7
VCC/2
5
OUT
4
Clusters
Telematics
HEV/EV and Powertrains
DC-to-DC Inverters
Power Steering
Lighting Modules
Battery Management Systems
BODY SIZE (NOM)
(1) For all available packages, see the orderable addendum at
the end of the datasheet.
(2) For all available device options, see the Device Comparison
Table.
2 Applications
•
•
•
•
•
•
•
PACKAGE
8
•
•
3 Description
GND
The devices in the TLV246x-Q1 family of low-power
rail-to-rail input/output operational amplifiers are well
suited for battery management systems in HEV/EV
and Powertrain, and lighting and roof module systems
in Body and Lighting applications. The input commonmode voltage range extends beyond the supply rails
for maximum dynamic range in low-voltage systems.
The amplifier output has rail-to-rail performance with
high-output-drive capability, solving one of the
limitations of older rail-to-rail input/output operational
amplifiers. This rail-to-rail dynamic range and high
output drive make the TLV246x-Q1 ideal for buffering
analog-to-digital converters.
1
An IMPORTANT NOTICE at the end of this data sheet addresses availability, warranty, changes, use in safety-critical applications,
intellectual property matters and other important disclaimers. PRODUCTION DATA.
TLV2460-Q1, TLV2460A-Q1, TLV2461-Q1, TLV2461A-Q1
TLV2462-Q1, TLV2462A-Q1, TLV2463-Q1, TLV2463A-Q1, TLV2464A-Q1
SGLS008F – MARCH 2003 – REVISED DECEMBER 2015
www.ti.com
Table of Contents
1
2
3
4
5
6
7
Features ..................................................................
Applications ...........................................................
Description .............................................................
Revision History.....................................................
Device Comparison Table.....................................
Pin Configuration and Functions .........................
Specifications.........................................................
7.1
7.2
7.3
7.4
7.5
7.6
7.7
7.8
7.9
7.10
8
9
1
1
1
2
3
4
6
Absolute Maximum Ratings ..................................... 6
ESD Ratings.............................................................. 6
Recommended Operating Conditions....................... 6
Thermal Information — 8 Pins ................................. 7
Thermal Information — 14 pins................................. 7
Electrical Characteristics - VDD = 3 V ....................... 8
Electrical Characteristics - VDD = 5 V ....................... 9
Operating Characteristics - VDD = 3 V .................... 10
Operating Characteristics - VDD = 5 V .................... 10
Typical Characteristics .......................................... 12
Parameter Measurement Information ................ 21
Detailed Description ............................................ 21
9.1
9.2
9.3
9.4
Overview .................................................................
Functional Block Diagram .......................................
Feature Description.................................................
Device Functional Modes........................................
21
21
21
23
10 Application and Implementation........................ 24
10.1 Application Information.......................................... 24
10.2 Typical Application ............................................... 26
11 Power Supply Recommendations ..................... 27
12 Layout................................................................... 28
12.1 Layout Guidelines ................................................. 28
12.2 Layout Example .................................................... 28
13 Device and Documentation Support ................. 29
13.1
13.2
13.3
13.4
13.5
13.6
Documentation Support .......................................
Related Links ........................................................
Community Resources..........................................
Trademarks ...........................................................
Electrostatic Discharge Caution ............................
Glossary ................................................................
29
29
29
29
29
29
14 Mechanical, Packaging, and Orderable
Information ........................................................... 30
4 Revision History
NOTE: Page numbers for previous revisions may differ from page numbers in the current version.
Changes from Revision E (October 2012) to Revision F
Page
•
Added AEC-Q100 bulleted items ........................................................................................................................................... 1
•
Added ESD Ratings table, Feature Description section, Device Functional Modes, Application and Implementation
section, Power Supply Recommendations section, Layout section, Device and Documentation Support section, and
Mechanical, Packaging, and Orderable Information section ................................................................................................. 1
•
Changed TLV2464AQDRQ1 Product Preview to Active ....................................................................................................... 3
•
Deleted TLV2464-Q1 part numbers in Device Comparison Table and Product Preview note .............................................. 3
•
Deleted D package from TLV2460-Q1, TLV2461-Q1, TLV2463-Q1, and TLV2464A-Q1 and added TLV246xA-Q1
device number to pin drawings............................................................................................................................................... 4
•
Deleted table note 3 reference to JESD 51-5 from Absolute Maximum Ratings table .......................................................... 6
Changes from Revision D (September 2010) to Revision E
Page
•
Changed device names from TLV246xx to TLV246xx-Q1 throughout document.................................................................. 1
•
Removed package column from ordering information table................................................................................................... 3
•
Changed IDD unit from µA to mA. .......................................................................................................................................... 8
•
Changed IDD unit from µA to mA ............................................................................................................................................ 9
2
Submit Documentation Feedback
Copyright © 2003–2015, Texas Instruments Incorporated
Product Folder Links: TLV2460-Q1 TLV2460A-Q1 TLV2461-Q1 TLV2461A-Q1 TLV2462-Q1 TLV2462A-Q1 TLV2463Q1 TLV2463A-Q1 TLV2464A-Q1
TLV2460-Q1, TLV2460A-Q1, TLV2461-Q1, TLV2461A-Q1
TLV2462-Q1, TLV2462A-Q1, TLV2463-Q1, TLV2463A-Q1, TLV2464A-Q1
www.ti.com
SGLS008F – MARCH 2003 – REVISED DECEMBER 2015
5 Device Comparison Table
VIOmax at 25°C
PART NUMBER (1)
TLV2462QDRQ1
TLV2460QPWRQ1
2000 μV
TLV2461QPWRQ1
TLV2462QPWRQ1
TLV2463QPWRQ1
TLV2462QDGKRQ1
TLV2462AQDRQ1
TLV2460AQPWRQ1
1500 μV
TLV2461AQPWRQ1
TLV2462AQPWRQ1
TLV2463AQPWRQ1
TLV2464AQPWRQ1
(1)
Package drawings, thermal data, and symbolization are available at www.ti.com/packaging.
Copyright © 2003–2015, Texas Instruments Incorporated
Submit Documentation Feedback
Product Folder Links: TLV2460-Q1 TLV2460A-Q1 TLV2461-Q1 TLV2461A-Q1 TLV2462-Q1 TLV2462A-Q1 TLV2463Q1 TLV2463A-Q1 TLV2464A-Q1
3
TLV2460-Q1, TLV2460A-Q1, TLV2461-Q1, TLV2461A-Q1
TLV2462-Q1, TLV2462A-Q1, TLV2463-Q1, TLV2463A-Q1, TLV2464A-Q1
SGLS008F – MARCH 2003 – REVISED DECEMBER 2015
www.ti.com
6 Pin Configuration and Functions
TLV2460-Q1, TLV2460A-Q1 PW Package
8-Pin TSSOP
Top View
NC
IN
IN +
GND
1
8
2
7
3
6
4
5
TLV2461-Q1, TLV2461A-Q1 PW Package
8-Pin TSSOP
Top View
SHDN
VDD+
OUT
NC
NC
IN
IN +
GND
1
8
2
7
3
6
4
5
NC
VDD+
OUT
NC
TLV2462-Q1, TLV2462A-Q1 D, DGK, or PW Package
8-Pin SOIC, TSSOP, or VSSOP
Top View
1OUT
1IN
1IN +
GND
1
8
2
7
3
6
4
5
VDD+
2OUT
2IN
2IN+
NC – No internal connection
8-Pin Functions
PIN
TLV2460-Q1,
TLV2460A-Q1
TLV2461-Q1,
TLV2461A-Q1
TLV2462-Q1,
TLV2462A-Q1
I/O
1IN
—
—
2
I
Inverting input, channel 1
1IN+
—
—
3
I
Noninverting input, channel 1
1OUT
—
—
1
O
Output, channel 1
2IN
—
—
6
I
Inverting input, channel 2
2IN+
—
—
5
I
Noninverting input, channel 2
2OUT
—
—
7
O
Output, channel 2
IN
2
2
—
I
Inverting input
IN+
3
3
—
I
Noninverting input
GND
4
4
4
—
Negative (lowest) supply
1, 5
1, 5, 8
—
—
No internal connection
NAME
NC
DESCRIPTION
OUT
6
6
—
O
Output
SHDN
8
—
—
I
Shutdown
VDD+
7
7
8
—
4
Submit Documentation Feedback
Positive (highest) supply
Copyright © 2003–2015, Texas Instruments Incorporated
Product Folder Links: TLV2460-Q1 TLV2460A-Q1 TLV2461-Q1 TLV2461A-Q1 TLV2462-Q1 TLV2462A-Q1 TLV2463Q1 TLV2463A-Q1 TLV2464A-Q1
TLV2460-Q1, TLV2460A-Q1, TLV2461-Q1, TLV2461A-Q1
TLV2462-Q1, TLV2462A-Q1, TLV2463-Q1, TLV2463A-Q1, TLV2464A-Q1
www.ti.com
SGLS008F – MARCH 2003 – REVISED DECEMBER 2015
TLV2463-Q1, TLV2463A-Q1 PW Package
14-Pin TSSOP
Top View
1OUT
1IN
1IN+
GND
NC
1SHDN
NC
1
14
2
13
3
12
4
11
5
10
6
9
7
8
TLV2463-Q1, TLV2463A-Q1 PW Package
14-Pin TSSOP
Top View
VDD+
2OUT
2IN
2IN+
NC
2SHDN
NC
1OUT
1IN
1IN+
VDD+
2IN+
2IN
2OUT
1
14
2
13
3
12
4
11
5
10
6
9
7
8
4OUT
4IN
4IN+
GND
3IN+
3IN
3OUT
NC – No internal connection
14-Pin Functions
PIN
NAME
I/O
DESCRIPTION
TLV2463-Q1, TLV2463A-Q1
TLV2464A-Q1
1IN
2
2
I
Inverting input, channel 1
1IN+
3
3
I
Noninverting input, channel 1
1OUT
1
1
O
Output, channel 1
1SHDN
6
—
I
Shutdown for channel 1
2IN
12
6
I
Inverting input, channel 2
2IN+
11
5
I
Noninverting input, channel 2
2OUT
13
7
O
Output, channel 2
2SHDN
9
—
I
Shutdown for channel 2
3N
—
9
I
Inverting input, channel 3
3IN+
—
10
I
Noninverting input, channel 3
3OUT
—
8
O
Output, channel 3
4IN
—
13
I
Inverting input, channel 4
4IN+
—
12
I
Noninverting input, channel 4
4OUT
—
14
O
Output, channel 4
IN
—
—
I
Inverting input
IN+
—
—
I
Noninverting input
GND
4
11
—
Negative (lowest) supply
5, 7, 8, 10
—
—
No internal connection
OUT
—
—
O
Output
SHDN
—
—
I
Shutdown
VDD+
14
4
—
NC
Copyright © 2003–2015, Texas Instruments Incorporated
Positive (highest) supply
Submit Documentation Feedback
Product Folder Links: TLV2460-Q1 TLV2460A-Q1 TLV2461-Q1 TLV2461A-Q1 TLV2462-Q1 TLV2462A-Q1 TLV2463Q1 TLV2463A-Q1 TLV2464A-Q1
5
TLV2460-Q1, TLV2460A-Q1, TLV2461-Q1, TLV2461A-Q1
TLV2462-Q1, TLV2462A-Q1, TLV2463-Q1, TLV2463A-Q1, TLV2464A-Q1
SGLS008F – MARCH 2003 – REVISED DECEMBER 2015
www.ti.com
7 Specifications
7.1 Absolute Maximum Ratings
over operating free-air temperature range (unless otherwise noted)
(1)
MIN
MAX
UNIT
6
V
VDD
Supply voltage (2)
VID
Differential input voltage range
–0.2 V
VDD + 0.2 V
V
II
Input current (any input)
–200
200
mA
IO
Output current
–175
175
mA
II
Total input current (into VDD+)
175
mA
IO
Total output current (out of GND)
175
mA
TA
Operating free-air temperature range
125
°C
TJ
Maximum junction temperature
150
°C
Lead temperature 1,6 mm (1/16 inch) from case for 10 seconds
260
°C
150
°C
–40
Storage temperature, Tstg
(1)
(2)
–65
Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings
only, which do not imply functional operation of the device at these or any other conditions beyond those indicated under Recommended
Operating Conditions. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.
All voltage values, except differential voltages, are with respect to GND.
7.2 ESD Ratings
VALUE
V(ESD)
(1)
Electrostatic discharge
Human-body model (HBM), per AEC Q100-002 (1)
±2000
Charged-device model (CDM), per AEC Q100-011
±1000
UNIT
V
AEC Q100-002 indicates that HBM stressing shall be in accordance with the ANSI/ESDA/JEDEC JS-001 specification.
7.3 Recommended Operating Conditions
MIN
Single supply
NOM
MAX
2.7
6
±1.35
±3
UNIT
VDD
Supply voltage
VICR
Common-mode input voltage range
–0.2
VDD + 0.2
V
TA
Operating free-air temperature
–40
125
°C
Shutdown on/off voltage level (1)
(1)
6
Split supply
VIH
VIL
2
0.7
V
V
Relative to voltage on the GND terminal of the device
Submit Documentation Feedback
Copyright © 2003–2015, Texas Instruments Incorporated
Product Folder Links: TLV2460-Q1 TLV2460A-Q1 TLV2461-Q1 TLV2461A-Q1 TLV2462-Q1 TLV2462A-Q1 TLV2463Q1 TLV2463A-Q1 TLV2464A-Q1
TLV2460-Q1, TLV2460A-Q1, TLV2461-Q1, TLV2461A-Q1
TLV2462-Q1, TLV2462A-Q1, TLV2463-Q1, TLV2463A-Q1, TLV2464A-Q1
www.ti.com
SGLS008F – MARCH 2003 – REVISED DECEMBER 2015
7.4 Thermal Information — 8 Pins
THERMAL METRIC (1)
TLV2462-Q1,
TLV2462A-Q1
TLV2461-Q1
D (SOIC)
8 PINS
TLV2460-Q1,
TLV2462-Q1,
TLV246[0-2]A-Q1
TLV2462-Q1
UNIT
PW (TSSOP)
DGK (VSSOP)
8 PINS
8 PINS
RθJA
Junction-to-ambient thermal resistance
120.1
183.6
185.7
179.3
°C/W
RθJC(top)
Junction-to-case (top) thermal
resistance
68.3
67
69
71.1
°C/W
RθJB
Junction-to-board thermal resistance
60.4
112.3
114.5
100.4
°C/W
ψJT
Junction-to-top characterization
parameter
20.6
9
9.6
10.7
°C/W
ψJB
Junction-to-board characterization
parameter
59.9
110.6
112.7
98.8
°C/W
RθJC(bot)
Junction-to-case (bottom) thermal
resistance
N/A
N/A
N/A
N/A
°C/W
(1)
For more information about traditional and new thermal metrics, see the Semiconductor and IC Package Thermal Metrics application
report, SPRA953.
7.5 Thermal Information — 14 pins
THERMAL METRIC (1)
TLV2463-Q1,
TLV246[3-4]A-Q1
PW (TSSOP)
UNIT
14 PINS
RθJA
Junction-to-ambient thermal resistance
119.1
°C/W
RθJC(top)
Junction-to-case (top) thermal resistance
47.9
°C/W
RθJB
Junction-to-board thermal resistance
60.8
°C/W
ψJT
Junction-to-top characterization parameter
5.4
°C/W
ψJB
Junction-to-board characterization parameter
60.2
°C/W
RθJC(bot)
Junction-to-case (bottom) thermal resistance
N/A
°C/W
(1)
For more information about traditional and new thermal metrics, see the Semiconductor and IC Package Thermal Metrics application
report, SPRA953.
Copyright © 2003–2015, Texas Instruments Incorporated
Submit Documentation Feedback
Product Folder Links: TLV2460-Q1 TLV2460A-Q1 TLV2461-Q1 TLV2461A-Q1 TLV2462-Q1 TLV2462A-Q1 TLV2463Q1 TLV2463A-Q1 TLV2464A-Q1
7
TLV2460-Q1, TLV2460A-Q1, TLV2461-Q1, TLV2461A-Q1
TLV2462-Q1, TLV2462A-Q1, TLV2463-Q1, TLV2463A-Q1, TLV2464A-Q1
SGLS008F – MARCH 2003 – REVISED DECEMBER 2015
www.ti.com
7.6 Electrical Characteristics - VDD = 3 V
at specified free-air temperature, VDD = 3 V (unless otherwise noted)
PARAMETER
VIO
Input offset voltage
TEST CONDITIONS
VDD = 3 V,
VIC = 1.5 V,
VO = 1.5 V,
RS = 50 Ω
TLV246x-Q1
TLV246xA-Q1
αVIO
Temperature coefficient of
input offset voltage
VDD = 3 V, VIC = 1.5 V,
VO = 1.5 V, RS = 50 Ω
IIO
Input offset current
VDD = 3 V, VIC = 1.5 V,
VO = 1.5 V, RS = 50 Ω
IIB
Input bias current
VIC = 1.5 V, VO = 1.5 V, RS = 50 Ω
IO = –2.5 mA
VOH
High-level output voltage
IO = –10 mA
VIC = 1.5 V, IOL = 2.5 mA
VOL
Low-level output voltage
VIC = 1.5 V, IOL = 10 mA
Sourcing
IOS
Short circuit output current
Sinking
IO
Output current
AVD
Large-signal differential
voltage amplification
ri(d)
Differential input resistance
ci(o)
Common-mode input
capacitance
zo
CMRR
Measured 1 V from rail
RL = 10 kΩ
25°C
TYP
MAX
100
2000
Full range
2200
25°C
150
Full range
1500
25°C
2.8
Full range
μV/°C
25°C
4.4
pA
pA
2.9
2.8
25°C
V
2.7
2.5
25°C
0.1
Full range
0.2
25°C
0.3
Full range
V
0.5
25°C
50
20
25°C
Full range
14
75
25°C
Full range
7
75
Full range
Full range
μV
1700
2
Full range
UNIT
mA
40
20
25°C
±40
25°C
90
Full range
89
mA
105
dB
Ω
f = 10 kHz
25°C
7
pF
Closed-loop output
impedance
f = 100 kHz, AV = 10
25°C
33
Ω
Common-mode rejection
ratio
VICR = 0 V to 3 V, RS = 50 Ω
Supply-voltage rejection
ratio (ΔVDD±/ΔVIO)
IDD
Supply current
(per channel)
VO = 1.5 V, No load
IDD(SHDN)
Supply current in shutdown
(TLV2460-Q1,
TLV2463-Q1)
SHDN < 0.7 V, Per channel in shutdown
8
MIN
109
VDD = 3 V to 5 V, VIC = VDD/2, No load
(1)
(1)
25°C
VDD = 2.7 V to 6 V, VIC = VDD/2, No load
kSVR
TA
25°C
66
Full range
60
25°C
80
Full range
75
25°C
85
Full range
80
25°C
80
85
Full range
dB
95
0.5
Full range
25°C
dB
0.575
0.9
mA
0.3
2.5
μA
Full range is –40°C to 125°C.
Submit Documentation Feedback
Copyright © 2003–2015, Texas Instruments Incorporated
Product Folder Links: TLV2460-Q1 TLV2460A-Q1 TLV2461-Q1 TLV2461A-Q1 TLV2462-Q1 TLV2462A-Q1 TLV2463Q1 TLV2463A-Q1 TLV2464A-Q1
TLV2460-Q1, TLV2460A-Q1, TLV2461-Q1, TLV2461A-Q1
TLV2462-Q1, TLV2462A-Q1, TLV2463-Q1, TLV2463A-Q1, TLV2464A-Q1
www.ti.com
SGLS008F – MARCH 2003 – REVISED DECEMBER 2015
7.7 Electrical Characteristics - VDD = 5 V
at specified free-air temperature, VDD = 5 V (unless otherwise noted)
PARAMETER
VIO
Input offset voltage
TEST CONDITIONS
VDD = 5 V,
VIC = 2.5 V,
VO = 2.5 V,
RS = 50 Ω
TLV246x-Q1
TLV246xA-Q1
TA
(1)
25°C
IIO
Input offset current
VDD = 5 V, VIC = 2.5 V,
VO = 2.5 V, RS = 50 Ω
Full range
IIB
Input bias current
VDD = 5 V, VIC = 2.5 V,
VO = 2.5 V, RS = 50 Ω
Full range
TLV2462QDGKRQ1
VIC = 2.5 V, IOL = 2.5 mA
VOL
Low-level output voltage
VIC = 2.5 V, IOL = 10 mA
Sourcing
IOS
Short circuit output current
Sinking
1500
25°C
0.3
1.3
pA
4.8
4.8
V
4.7
4.8
4.4
25°C
0.1
Full range
0.2
25°C
0.2
Full range
V
0.3
25°C
145
60
25°C
Full range
14
pA
4.9
25°C
Full range
7
60
25°C
Full range
μV
μV/°C
60
25°C
Full range
UNIT
1700
2
Full range
IO = –10 mA
2000
150
25°C
TLV246x-Q1,
TLV246xA-Q1
150
Full range
VDD = 5 V, VIC = 2.5 V,
VO = 2.5 V, RS = 50 Ω
High-level output voltage
MAX
2200
25°C
Temperature coefficient of
input offset voltage
IO = –2.5 mA
TYP
Full range
αVIO
VOH
MIN
mA
100
60
IO
Output current
Measured 1 V from rail
25°C
AVD
Large-signal differential
voltage amplification
VIC = 2.5 V, RL = 10 kΩ,
VO = 1 V to 4 V
25°C
92
±80
Full range
90
ri(d)
Differential input resistance
ci(o)
Common-mode input
capacitance
zo
mA
109
dB
25°C
109
Ω
f = 10 kHz
25°C
7
pF
Closed-loop output
impedance
f = 100 kHz, AV = 10
25°C
29
Ω
CMRR
Common-mode rejection
ratio
VICR = 0 V to 5 V, RS = 50 Ω
kSVR
Supply-voltage rejection
ratio (ΔVDD±/ΔVIO)
VDD = 2.7 V to 6 V, VIC = VDD/2, No load
VDD = 3 V to 5 V, VIC = VDD/2, No load
IDD
Supply current
(per channel)
VO = 2.5 V, No load
IDD(SHD
Supply current in shutdown
(TLV2460-Q1,
TLV2463-Q1)
SHDN < 0.7 V, Per channel in shutdown
N)
(1)
25°C
71
Full range
60
25°C
80
Full range
75
25°C
85
Full range
80
25°C
85
85
Full range
dB
95
0.55
Full range
25°C
dB
0.65
1
mA
1
3
μA
Full range is –40°C to 125°C.
Copyright © 2003–2015, Texas Instruments Incorporated
Submit Documentation Feedback
Product Folder Links: TLV2460-Q1 TLV2460A-Q1 TLV2461-Q1 TLV2461A-Q1 TLV2462-Q1 TLV2462A-Q1 TLV2463Q1 TLV2463A-Q1 TLV2464A-Q1
9
TLV2460-Q1, TLV2460A-Q1, TLV2461-Q1, TLV2461A-Q1
TLV2462-Q1, TLV2462A-Q1, TLV2463-Q1, TLV2463A-Q1, TLV2464A-Q1
SGLS008F – MARCH 2003 – REVISED DECEMBER 2015
www.ti.com
7.8 Operating Characteristics - VDD = 3 V
VDD = 3 V , at specified free-air temperature (unless otherwise noted)
PARAMETER
TEST CONDITIONS
SR
Slew rate at unity gain
VO(PP) = 2 V, CL = 160 pF, RL = 10 kΩ
Vn
Equivalent input noise voltage
In
Equivalent input noise current f = 1 kHz
f = 100 Hz
TA
(1)
25°C
Full range
MIN
TYP
1
1.6
16
THD+N
Total harmonic distortion
plus noise
25°C
VO(PP) = 2 V,
RL = 10 kΩ, f = 1 kHz
AV = 10
0.13
25°C
0.02%
0.08%
Both channels
t(on)
Amplifier turn-on time
AV = 1, RL = 10 kΩ
7.6
25°C
t(off)
Amplifier turn-off time
AV = 1, RL = 10 kΩ
333
328
25°C
ns
Channel 2
only,
Channel 1 on
Gain-bandwidth product
ts
Settling time
φm
(1)
f = 10 kHz, CL = 160 pF, RL = 10 kΩ
V(STEP)PP = 2 V,
AV = –1, CL = 10 pF,
RL = 10 kΩ
0.1%
V(STEP)PP = 2 V,
AV = –1, CL = 56 pF,
RL = 10 kΩ
0.1%
μs
7.65
Both channels
Channel 1
only,
Channel 2 on
pA/√Hz
0.006%
AV = 100
Channel 1
only,
Channel 2 on
nV/√Hz
11
AV = 1
UNIT
V/μs
0.8
25°C
f = 1 kHz
MAX
329
25°C
5.2
MHz
1.47
0.01%
1.78
25°C
μs
1.77
0.01%
1.98
Phase margin at unity gain
RL = 10 kΩ, CL = 160 pF
25°C
44
°
Gain margin
RL = 10 kΩ, CL = 160 pF
25°C
7
dB
Full range is –40°C to 125°C.
7.9 Operating Characteristics - VDD = 5 V
VDD = 5 V, at specified free-air temperature (unless otherwise noted)
PARAMETER
TEST CONDITIONS
SR
Slew rate at unity gain
VO(PP) = 2 V, CL = 160 pF, RL = 10 kΩ
Vn
Equivalent input noise voltage
In
Equivalent input noise current f = 100 Hz
THD+N
Total harmonic distortion
plus noise
f = 100 Hz
(1)
MIN
TYP
25°C
1
1.6
TA
Full range
25°C
f = 1 kHz
25°C
AV = 1
VO(PP) = 4 V,
AV = 10
RL = 10 kΩ, f = 10 kHz
AV = 100
t(on)
Amplifier turn-on time
AV = 1, RL = 10 kΩ
Channel 2
only,
Channel 1 on
(1)
10
0.8
14
11
0.13
UNIT
V/μs
nV/√Hz
pA/√Hz
0.004%
25°C
0.01%
0.04%
Both channels
Channel 1
only,
Channel 2 on
MAX
7.6
7.65
μs
25°C
7.25
Full range is –40°C to 125°C.
Submit Documentation Feedback
Copyright © 2003–2015, Texas Instruments Incorporated
Product Folder Links: TLV2460-Q1 TLV2460A-Q1 TLV2461-Q1 TLV2461A-Q1 TLV2462-Q1 TLV2462A-Q1 TLV2463Q1 TLV2463A-Q1 TLV2464A-Q1
TLV2460-Q1, TLV2460A-Q1, TLV2461-Q1, TLV2461A-Q1
TLV2462-Q1, TLV2462A-Q1, TLV2463-Q1, TLV2463A-Q1, TLV2464A-Q1
www.ti.com
SGLS008F – MARCH 2003 – REVISED DECEMBER 2015
Operating Characteristics - VDD = 5 V (continued)
VDD = 5 V, at specified free-air temperature (unless otherwise noted)
PARAMETER
TEST CONDITIONS
TA
(1)
Both channels
t(off)
Amplifier turn-off time
AV = 1, RL = 10 kΩ
Channel 1
only,
Channel 2 on
f = 10 kHz, CL = 160 pF, RL = 10 kΩ
V(STEP)PP = 2 V,
AV = –1, CL = 10 pF,
RL = 10 kΩ
0.1%
V(STEP)PP = 2 V,
AV = –1, CL = 56 pF,
RL = 10 kΩ
0.1%
TYP
MAX
UNIT
333
328
25°C
Channel 2
only,
Channel 1 on
Gain-bandwidth product
MIN
ns
329
25°C
6.4
MHz
1.53
0.01%
1.83
Settling time
φm
Phase margin at unity gain
RL = 10 kΩ, CL = 160 pF
25°C
45
°
Gain margin
RL = 10 kΩ, CL = 160 pF
25°C
7
dB
Copyright © 2003–2015, Texas Instruments Incorporated
25°C
μs
ts
0.01%
3.13
3.33
Submit Documentation Feedback
Product Folder Links: TLV2460-Q1 TLV2460A-Q1 TLV2461-Q1 TLV2461A-Q1 TLV2462-Q1 TLV2462A-Q1 TLV2463Q1 TLV2463A-Q1 TLV2464A-Q1
11
TLV2460-Q1, TLV2460A-Q1, TLV2461-Q1, TLV2461A-Q1
TLV2462-Q1, TLV2462A-Q1, TLV2463-Q1, TLV2463A-Q1, TLV2464A-Q1
SGLS008F – MARCH 2003 – REVISED DECEMBER 2015
www.ti.com
7.10 Typical Characteristics
Table 1. Table of Graphs
FIGURE
VIO
Input offset voltage
vs Common-mode input voltage
1, 2
IIB
Input bias current
vs Free-air temperature
3, 4
IIO
Input offset current
vs Free-air temperature
3, 4
VOH
High-level output voltage
vs High-level output current
5, 6
VOL
Low-level output voltage
vs Low-level output current
7, 8
VO(PP)
Maximum peak-to-peak output voltage
vs Frequency
9, 10
Open-loop gain
vs Frequency
11, 12
Phase
vs Frequency
11, 12
Differential voltage amplification
vs Load resistance
13
Capacitive load
vs Load resistance
14
zo
Output impedance
vs Frequency
CMRR
Common-mode rejection ratio
vs Frequency
17
kSVR
Supply-voltage rejection ratio
vs Frequency
18, 19
IDD
Supply current
AVD
15, 16
vs Supply voltage
20
vs Free-air temperature
21
Amplifier turnon characteristics
22
Amplifier turnoff characteristics
23
Supply current turnon
24
Supply current turnoff
SR
25
Shutdown supply current
vs Free-air temperature
Slew rate
vs Load capacitance
26
27
vs Frequency
28, 29
vs Common-mode input voltage
30, 31
Vn
Equivalent input noise voltage
THD
Total harmonic distortion
vs Frequency
32, 33
THD + N
Total harmonic distortion plus noise
vs Peak-to-peak signal amplitude
34, 35
vs Frequency
11, 12
φm
Phase margin
Gain-bandwidth product
12
vs Load capacitance
36
vs Free-air temperature
37
vs Supply voltage
38
vs Free-air temperature
39
Large signal follower
40, 41
Small signal follower
42, 43
Inverting large signal
44, 45
Inverting small signal
46, 47
Submit Documentation Feedback
Copyright © 2003–2015, Texas Instruments Incorporated
Product Folder Links: TLV2460-Q1 TLV2460A-Q1 TLV2461-Q1 TLV2461A-Q1 TLV2462-Q1 TLV2462A-Q1 TLV2463Q1 TLV2463A-Q1 TLV2464A-Q1
TLV2460-Q1, TLV2460A-Q1, TLV2461-Q1, TLV2461A-Q1
TLV2462-Q1, TLV2462A-Q1, TLV2463-Q1, TLV2463A-Q1, TLV2464A-Q1
www.ti.com
SGLS008F – MARCH 2003 – REVISED DECEMBER 2015
1
1
VDD = 5 V
TA = 25°C
0.8
0.6
Input Offset Voltage, VIO (mV)
Input Offset Voltage, VIO (mV)
VDD = 3 V
TA = 25°C
0.4
0.2
0
0.2
0.4
0.6
0.6
0.4
0.2
0
0.2
0.4
0.6
0.8
0.8
1
1
0
0.5
1.5
1
3
2.5
2
0
Common-Mode Input Voltage, VICR (V)
VDD = 3 V
VI = 1.5 V
IIB
4
3.5
3
2.5
2
1.5
1
0.5
IIO
0
0.5
–55
–35 –15
5
25
45
65
85
105 125
Input Bias and Input Offset Current, IIB and IIO (nA)
Input Bias and Input Offset Current, IIB and IIO (nA)
5
5
Figure 2. Input Offset Voltage vs
Common-Mode Input Voltage, VDD = 5 V
Figure 1. Input Offset Voltage vs
Common-Mode Input Voltage, VDD = 3 V
4.5
1
2
3
4
Common-Mode Input Voltage, VICR (V)
6
VDD = 5 V
VI = 2.5 V
5
IIB
4
3
2
1
IIO
0
1
–55
5
–35 –15
25
45
65
85
105 125
Free-Air Temperature, TA (°C)
Free-Air Temperature, TA (°C)
Figure 3. Input Bias and Input Offset Current vs
Free-Air Temperature, VDD = 3 V
Figure 4. Input Bias and Input Offset Current vs
Free-Air Temperature, VDD = 5 V
3
5
VDD = 3 V DC
VDD = 5 V DC
2.5
High-Level Output Voltage, VOH (V)
High-Level Output Voltage, VOH (V)
4.5
TA = 55 °C
2
1.5
TA = 125°C
TA = 85°C
TA = 25°C
1
TA = 40 °C
0.5
TA = 55 °C
4
3.5
3
TA = 125°C
TA = 85°C
2.5
2
TA = 25°C
1.5
TA = 40 °C
1
0.5
0
0
0
10
20
30
40
50
60
70
80
0
20
40
60
80 100 120 140 160 180 200
High-Level Output Current, IOH (mA)
High-Level Output Current, IOH (mA)
Figure 5. High-level Output Voltage vs
High-Level Output Current, VDD = 3 VDC
Figure 6. High-level Output Voltage vs
High-Level Output Current, VDD = 5 VDC
Copyright © 2003–2015, Texas Instruments Incorporated
Submit Documentation Feedback
Product Folder Links: TLV2460-Q1 TLV2460A-Q1 TLV2461-Q1 TLV2461A-Q1 TLV2462-Q1 TLV2462A-Q1 TLV2463Q1 TLV2463A-Q1 TLV2464A-Q1
13
TLV2460-Q1, TLV2460A-Q1, TLV2461-Q1, TLV2461A-Q1
TLV2462-Q1, TLV2462A-Q1, TLV2463-Q1, TLV2463A-Q1, TLV2464A-Q1
SGLS008F – MARCH 2003 – REVISED DECEMBER 2015
www.ti.com
4.5
3
VDD = 3 V DC
VDD = 5 V DC
Low-Level Output Voltage, VOL (V)
4
Low-Level Output Voltage, VOL (V)
2.5
TA = 40 °C
2
TA = 25°C
TA = 85°C
TA = 125°C
1.5
1
0.5
20
30
40
50
3
TA = 25°C
2.5
TA = 85°C
TA = 125°C
1.5
1
60
70
0
Low-Level Output Current, IOL (mA)
0
20
40
60
80
100
120
140
160
Figure 8. Low-level Output Voltage vs
Low-level Output Current, VDD = 5 VDC
Figure 7. Low-Level Output Voltage vs
Low-Level Output Current, VDD = 3 VDC
5.5
3
VDD = 3 V
AV = 10
THD = 1%
RL = 10 kΩ
2.5
Peak-to-Peak Output Voltage, VO(PP) (V)
Peak-to-Peak Output Voltage, VO(PP) (V)
TA = 55 °C
0.5
0
10
TA = 40 °C
2
TA = 55 °C
0
3.5
2
1.5
1
0.5
VDD = 5 V
AV = 10
THD = 1%
RL = 10 kΩ
5
4.5
4
3.5
3
2.5
2
1.5
1
0.5
0
1M
100k
0
10k
10M
Frequency, f (Hz)
Figure 9. Peak-to-Peak Output Voltage vs
Frequency, VDD = 3 V
VDD = ±1.5 V
RL = 10 kΩ
CL = 0
TA = 25°C
80
60
40°
100
20°
90
0°
80
20°
70
40°
AVD
50
60°
40
80°
30
100 °
Phase
20
Phase
Open-Loop Gain (dB)
70
120 °
40°
VDD = ±2.5 V
RL = 10 kΩ
CL = 0
TA = 25°C
60
20°
0°
20°
40°
AVD
50
60°
40
80°
100°
30
Phase
20
120°
10
140 °
10
140°
0
160 °
0
160°
–10
180 °
–10
180°
–20
200 °
10M
–20
10
100
1k
10k
100k
1M
Frequency, f (Hz)
Figure 11. Open-Loop Gain and Phase vs
Frequency, VDD = ±1.5 V
14
Figure 10. Peak-to-Peak Output Voltage vs
Frequency, VDD = 5 V
Open-Loop Gain (dB)
100
90
10M
1M
100k
Frequency, f (Hz)
Submit Documentation Feedback
Phase
10k
200°
10
100
1k
10k
100k
1M
10M
Frequency, f (Hz)
Figure 12. Open-Loop Gain and Phase vs
Frequency, VDD = ±2.5 V
Copyright © 2003–2015, Texas Instruments Incorporated
Product Folder Links: TLV2460-Q1 TLV2460A-Q1 TLV2461-Q1 TLV2461A-Q1 TLV2462-Q1 TLV2462A-Q1 TLV2463Q1 TLV2463A-Q1 TLV2464A-Q1
TLV2460-Q1, TLV2460A-Q1, TLV2461-Q1, TLV2461A-Q1
TLV2462-Q1, TLV2462A-Q1, TLV2463-Q1, TLV2463A-Q1, TLV2464A-Q1
www.ti.com
SGLS008F – MARCH 2003 – REVISED DECEMBER 2015
10000
TA = 25°C
160
140
Capacitance, CL (pF)
Differential Voltage Amplification, AVD (V/mV)
180
120
VDD = ±2.5 V
100
VDD = ±1.5 V
80
60
Phase Margin < 30°
1000
Phase Margin > 30°
40
VDD = 5 V
Phase Margin = 30°
TA = 25°C
20
100
0
100
1k
100k
10k
Load Resistance, RL (Ω)
1000
1000
VDD = ±1.5 V
TA = 25°C
VDD = ±2.5 V
TA = 25°C
100
100
Output Impedance, ZO (Ω)
Output Impedance, ZO (Ω)
10k
Figure 14. Capacitive Load vs
Load Resistance
Figure 13. Differential Voltage Amplification vs
Load Resistance
10
AV = 100
1
AV = 10
0.1
100
1k
Load Resistance, RL (Ω)
10
1M
10
AV = 100
1
AV = 10
0.1
AV = 1
AV = 1
0.01
100
1k
10k
100k
0.01
100
10M
1M
1k
Frequency, f (Hz)
Figure 15. Output Impedance vs
Frequency, VDD = ±1.5 V
10M
1M
110
Supply Voltage Rejection Ratio , kSVR (dB)
Common-Mode Rejection Ratio,CMRR (dB)
100k
Figure 16. Output Impedance vs
Frequency, VDD = ±2.5 V
90
85
80
VDD = 5 V
VIC = 2.5 V
75
VDD = 3 V
VIC = 1.5 V
70
65
60
10
10k
Frequency, f (Hz)
100
10k
100k
1k
Frequency, f (Hz)
1M
10M
Figure 17. Common-Mode Rejection Ratio vs Frequency
Copyright © 2003–2015, Texas Instruments Incorporated
+kSVR
VDD = ±1.5 V
TA = 25°C
100
90
k SVR
80
70
60
+kSVR
50
k SVR
40
10
100
10k
100k
1k
Frequency, f (Hz)
1M
10M
Figure 18. Supply-Voltage Rejection Ratio vs Frequency,
VDD = ±1.5 V
Submit Documentation Feedback
Product Folder Links: TLV2460-Q1 TLV2460A-Q1 TLV2461-Q1 TLV2461A-Q1 TLV2462-Q1 TLV2462A-Q1 TLV2463Q1 TLV2463A-Q1 TLV2464A-Q1
15
TLV2460-Q1, TLV2460A-Q1, TLV2461-Q1, TLV2461A-Q1
TLV2462-Q1, TLV2462A-Q1, TLV2463-Q1, TLV2463A-Q1, TLV2464A-Q1
SGLS008F – MARCH 2003 – REVISED DECEMBER 2015
www.ti.com
0.8
90
80
IDD = 125°C
VDD = ±2.5 V
TA = 25°C
k SVR
70
60
+kSVR
50
IDD = 85°C
0.7
Supply Current, IDD (mA)
Supply Voltage Rejection Ratio , kSVR (dB)
+kSVR
0.6
0.5
0.40
IDD = 25°C
0.30
IDD = 55 °C
IDD = 40 °C
0.20
k SVR
0.10
40
10
10k
100k
1k
Frequency, f (Hz)
100
1M
2.5
10M
3.5
4
4.5
5
5.5
6
Supply Voltage, VDD (V)
Figure 19. Supply-Voltage Rejection Ratio vs
Frequency, VDD = ±2.5 V
Figure 20. Supply Current vs
Supply Voltage
0.8
0.80
IDD = 125°C
0.75
IDD = 85°C
0.7
0.70
VDD = 5 V
VI = 2.5 V
0.65
Supply Current, IDD (mA)
Supply Current, IDD (mA)
3
0.60
0.55
VDD = 3 V
VI = 1.5 V
0.50
0.45
0.6
0.5
0.40
IDD = 25°C
0.30
IDD = 55 °C
0.40
IDD = 40 °C
0.20
0.35
0.30
–55 –35
0.10
–15
5
45
25
65
85
105
2.5
125
3
4
Shutdown Pin
3
2
1
0
Amplifier Output
3
VDD = 5 V
RL = 10 kΩ
AV = 1
TA = 25°C
5.5
6
–3
–1
2
1
0
3
Amplifier Output
2
1
1
3
5
7
9
11
Time, t (μs)
Figure 23. Amplifier With a Shutdown Pulse
Turnoff Characteristics
16
5
VDD = 5 V
RL = 10 kΩ
AV = 1
TA = 25°C
Shutdown Pin
3
Shutdown Voltage, VSD (V)
Shutdown Voltage, VSD (V)
4
0
–5
4.5
5
5
2
4
Figure 22. Amplifier With a Shutdown Pulse
Turnon Characteristics
Figure 21. Supply Current vs
Free-Air Temperature
1
3.5
Supply Voltage, VDD (V)
Free-Air Temperature, TA (°C)
Submit Documentation Feedback
0
–5
–3
–1
3
1
Time, t (μs)
5
7
Figure 24. Supply Current With a Shutdown Pulse
Turnon Characteristics
Copyright © 2003–2015, Texas Instruments Incorporated
Product Folder Links: TLV2460-Q1 TLV2460A-Q1 TLV2461-Q1 TLV2461A-Q1 TLV2462-Q1 TLV2462A-Q1 TLV2463Q1 TLV2463A-Q1 TLV2464A-Q1
TLV2460-Q1, TLV2460A-Q1, TLV2461-Q1, TLV2461A-Q1
TLV2462-Q1, TLV2462A-Q1, TLV2463-Q1, TLV2463A-Q1, TLV2464A-Q1
www.ti.com
SGLS008F – MARCH 2003 – REVISED DECEMBER 2015
Shutdown Pin
4.5
0.6
0.4
3.5
Supply Current
2.5
0.2
1.5
0
0.5
0.2
–0.40
0.2
0
Time, t (μs)
–0.20
2.5
Shutdown Supply Current, IDD (mA)
VDD = 5 V
VI = 2.5 V
AV = 1
TA = 25°C
Shutdown Voltage, VSD (V)
Supply Current, IDD (mA)
0.8
3
5.5
1
1.5
1
0
0.5
1
–55 –35
Equivalent Input Noise Voltage, Vn (nV/ Hz)
Slew Rate, SR (V/ms)
1.7
SR+
1.65
1.6
1.55
SR
1.5
1.3
2.5
VO(PP) = 2 V
CL = 160 pF
AV = 1
RL = 10 kΩ
TA = 25°C
3
5
3.5
4
4.5
Supply Voltage, VDD (V)
5.5
65
85
105
125
VDD = 3 V
AV = 10
VI = 1.5 V
TA = 25°C
16
15
14
13
12
11
10k
1k
Frequency, f (Hz)
100k
Figure 28. Equivalent Input Noise Voltage vs
Frequency
18
20
VDD = 5 V
AV = 10
VI = 2.5 V
TA = 25°C
17
Equivalent Input Noise Voltage, Vn (nV/ Hz)
Equivalent Input Noise Voltage, Vn (nV/ Hz)
45
17
10
100
6
Figure 27. Slew Rate vs
Supply Voltage
16
15
14
13
12
11
10
100
25
18
1.8
1.35
5
Figure 26. Shutdown Supply Current vs
Free-Air Temperature
1.75
1.4
–15
Free-Air Temperature, TA (°C)
Figure 25. Turnoff Supply Current
With a Shutdown Pulse
1.45
VDD = 3 V
VI = 1.5 V
0.5
0.5
0.6
0.4
VDD = 5 V
VI = 2.5 V
2
VDD = 3 V
AV = 10
f = 1 kHz
TA = 25°C
15
14
13
12
11
10
10k
1k
Frequency, f (Hz)
100k
Figure 29. Equivalent Input Noise Voltage vs
Frequency
Copyright © 2003–2015, Texas Instruments Incorporated
0
0.5
1.5
2.5
1
2
Common-Mode Input Voltage, VICR (V)
Figure 30. Equivalent Input Noise Voltage vs
Common-Mode Input Voltage
Submit Documentation Feedback
Product Folder Links: TLV2460-Q1 TLV2460A-Q1 TLV2461-Q1 TLV2461A-Q1 TLV2462-Q1 TLV2462A-Q1 TLV2463Q1 TLV2463A-Q1 TLV2464A-Q1
17
TLV2460-Q1, TLV2460A-Q1, TLV2461-Q1, TLV2461A-Q1
TLV2462-Q1, TLV2462A-Q1, TLV2463-Q1, TLV2463A-Q1, TLV2464A-Q1
SGLS008F – MARCH 2003 – REVISED DECEMBER 2015
www.ti.com
0.5
20
15
Total Harmonic Distortion, THD (%)
VDD = 5 V
AV = 10
f = 1 kHz
TA = 25°C
14
13
12
11
0
1
2
3
4
Common-Mode Input Voltage, VICR (V)
10
100
1k
10k
100k
Figure 32. Total Harmonic Distortion vs
Frequency, VDD = ±1.5 V
1
Total Harmonic Distortion + Noise, THD+N (%)
VDD = ±2.5 V
VO(PP) = 4 V
RL = 10 kΩ
0.1
AV = 100
AV = 10
AV = 1
10
100
1k
10k
VDD = 3 V
AV = 1
TA = 25°C
RL = 250 Ω
RL = 2 kΩ
0.1
RL = 10 kΩ
0.010
RL = 100 kΩ
0.001
100k
Frequency, f (Hz)
1.2 1.4 1.6 1.8 2 2.2 2.4 2.6 2.8 3
Peak-to-Peak Signal Amplitude ( V)
Figure 33. Total Harmonic Distortion vs
Frequency, VDD = ±2.5 V
Figure 34. Total Harmonic Distortion Plus Noise vs
Peak-to-Peak Signal Amplitude, VDD = 3 V
1
1
VDD = ±2.5 V
TA = 25°C
RL = 10 kΩ
80
RL = 2 kΩ
0.1
3.2
90
RL = 250 Ω
Phase Margin, φm (degrees)
Total Harmonic Distortion, THD (%)
AV = 1
Frequency, f (Hz)
1
Total Harmonic Distortion + Noise, THD+N (%)
AV = 10
5
Figure 31. Equivalent Input Noise Voltage vs
Common-Mode Input Voltage
0.001
AV = 100
0.1
0.001
10
RL = 10 kΩ
0.010
RL = 100 kΩ
70
Rnull = 50 Ω
60
50
40
Rnull = 20 Ω
30
20
VDD = 5 V
AV = 1
TA = 25°C
Rnull = 0 Ω
10
0.001
0
4
4.1 4.2 4.3 4.4 4.5 4.6 4.7 4.8 4.9
Peak-to-Peak Signal Amplitude (V)
5
Figure 35. Total Harmonic Distortion Plus Noise vs
Peak-to-Peak Signal Amplitude, VDD = 5 V
18
VDD = ±1.5 V
VO(PP) = 2 V
RL = 10 kΩ
Submit Documentation Feedback
10
100
1k
10k
100k
Load Capacitance, CL (pF)
Figure 36. Phase Margin vs
Load Capacitance
Copyright © 2003–2015, Texas Instruments Incorporated
Product Folder Links: TLV2460-Q1 TLV2460A-Q1 TLV2461-Q1 TLV2461A-Q1 TLV2462-Q1 TLV2462A-Q1 TLV2463Q1 TLV2463A-Q1 TLV2464A-Q1
TLV2460-Q1, TLV2460A-Q1, TLV2461-Q1, TLV2461A-Q1
TLV2462-Q1, TLV2462A-Q1, TLV2463-Q1, TLV2463A-Q1, TLV2464A-Q1
www.ti.com
SGLS008F – MARCH 2003 – REVISED DECEMBER 2015
60
5
RL = 10 kΩ
CL = 160 pF
4.75
Gain Bandwidth Product (MHz)
Phase Margin, φm (degrees)
55
50
VDD = ±2.5 V
45
VDD = ±1.5 V
40
35
CL = 160 pF
RL = 10 kΩ
f = 10 kHz
TA = 25°C
4.5
4.25
4
3.75
30
–55 –35
5
–15
25
45
65
85
105
3.5
2.5
125
5
3.5
4
4.5
Supply Voltage, VDD (V)
3
Free-Air Temperature, TA (°C)
Figure 37. Phase Margin vs
Free-Air Temperature
2.2
RL = 10 kΩ
CL = 160 pF
2
VDD = ±2.5 V
4.25
4
3.75
3.5
Input
1.8
Voltage, VO (V)
Gain Bandwidth Product (MHz)
4.5
6
Figure 38. Gain Bandwidth Product vs
Supply Voltage
5
4.75
5.5
VDD = ±1.5 V
Output
1.6
1.4
VDD = 3 V
VI(PP) = 1 V
VI = 1.5 V
RL = 10 kΩ
CL = 160 pF
AV = 1
TA = 25°C
1.2
1
3.25
3
–55 –35
5
–15
25
45
65
85
105
0.8
–2
125
0
Free-Air Temperature, TA (°C)
2
4
Input
Output
8
6
10
Time, t (μs)
12
14
16
18
Figure 40. Large Signal Follower, VDD = 3 V
Figure 39. Gain Bandwidth Product vs
Free-Air Temperature
3.7
1.6
3.3
1.55
Voltage, VO (V)
Voltage, VO (V)
Input
2.9
Output
2.5
VDD = 5 V
VI(PP) = 2 V
VI = 2.5 V
RL = 10 kΩ
CL = 160 pF
AV = 1
TA = 25°C
2.1
1.7
1.3
–2
0
2
4
Input
12
Output
1.45
Output
8
6
10
Time, t (μs)
Input
1.5
14
16
18
Figure 41. Large Signal Follower, VDD = 5 V
Copyright © 2003–2015, Texas Instruments Incorporated
1.4
–0.2
VDD = 3 V
VI(PP) = 100 mV
VI = 1.5 V
RL = 10 kΩ
0
CL = 160 pF
AV = 1
TA = 25°C
0.2 0.4 0.6 0.8 1
Time, t (μs)
1.2 1.4
1.6 1.8
Figure 42. Small Signal Follower, VDD = 3 V
Submit Documentation Feedback
Product Folder Links: TLV2460-Q1 TLV2460A-Q1 TLV2461-Q1 TLV2461A-Q1 TLV2462-Q1 TLV2462A-Q1 TLV2463Q1 TLV2463A-Q1 TLV2464A-Q1
19
TLV2460-Q1, TLV2460A-Q1, TLV2461-Q1, TLV2461A-Q1
TLV2462-Q1, TLV2462A-Q1, TLV2463-Q1, TLV2463A-Q1, TLV2464A-Q1
SGLS008F – MARCH 2003 – REVISED DECEMBER 2015
www.ti.com
2.6
2.3
Input
2.1
1.9
Voltage, VO (V)
Voltage, VO (V)
2.55
Input
2.5
Output
VDD = 3 V
VI(PP) = 1 V
VI = 1.5 V
RL = 10 kΩ
CL = 160 pF
AV = 1
TA = 25°C
1.7
1.5
1.3
1.1
2.45
2.4
–0.2
VDD = 5 V
VI(PP) = 100 mV
VI = 2.5 V
RL = 10 kΩ
0
Output
0.9
CL = 160 pF
AV = 1
TA = 25°C
0.2 0.4 0.6 0.8 1
Time, t (μs)
1.2 1.4
0.7
0.5
–0.2
1.6 1.8
Figure 43. Small Signal Follower, VDD = 5 V
0.2 0.4 0.6 0.8 1
Time, t (μs)
0
1.2 1.4
1.6 1.8
Figure 44. Inverting Large Signal, VDD = 3 V
1.6
4
Input
Input
1.55
VDD = 5 V
VI(PP) = 2 V
VI = 2.5 V
RL = 10 kΩ
CL = 160 pF
AV = 1
TA = 25°C
3
2.5
Voltage, VO (V)
Voltage, VO (V)
3.5
VDD = 3 V
VI(PP) = 100 mV
VI = 1.5 V
RL = 10 kΩ
CL = 160 pF
AV = 1
TA = 25°C
1.5
2
1.45
Output
Output
1.5
1
–0.2
0
0.2 0.4 0.6 0.8 1
Time, t (μs)
1.2 1.4
1.4
–0.2
1.6 1.8
0
0.2 0.4 0.6 0.8 1
Time, t (μs)
1.2 1.4
1.6 1.8
Figure 46. Inverting Small Signal, VDD = 3 V
Figure 45. Inverting Large Signal, VDD = 5 V
2.6
Input
Voltage, VO (V)
2.55
VDD = 5 V
VI(PP) = 100 mV
VI = 2.5 V
RL = 10 kΩ
CL = 160 pF
AV = 1
TA = 25°C
2.5
2.45
Output
2.4
–0.2
0
0.2 0.4 0.6 0.8 1
Time, t (μs)
1.2 1.4
1.6 1.8
Figure 47. Inverting Small Signal, VDD = 5 V
20
Submit Documentation Feedback
Copyright © 2003–2015, Texas Instruments Incorporated
Product Folder Links: TLV2460-Q1 TLV2460A-Q1 TLV2461-Q1 TLV2461A-Q1 TLV2462-Q1 TLV2462A-Q1 TLV2463Q1 TLV2463A-Q1 TLV2464A-Q1
TLV2460-Q1, TLV2460A-Q1, TLV2461-Q1, TLV2461A-Q1
TLV2462-Q1, TLV2462A-Q1, TLV2463-Q1, TLV2463A-Q1, TLV2464A-Q1
www.ti.com
SGLS008F – MARCH 2003 – REVISED DECEMBER 2015
8 Parameter Measurement Information
Rnull
_
+
RL
CL
Figure 48. Capacitive Load Drive
9 Detailed Description
9.1 Overview
The TLV246x-Q1 family of devices are low-power rail-to-rail input and output operational amplifiers. The input
common-mode voltage range extends beyond the supply rails for maximum dynamic range in a low-voltage
system. The amplifier output has rail-to-rail performance with high drive capability, solving one of the limitations
of older rail-to-rail input and output operational amplifiers
9.2 Functional Block Diagram
9.3 Feature Description
The TLV246x-Q1 family features 6.4-MHz bandwidth and voltage noise of 11 nV/√Hz with performance rated
from 2.7 V to 6 V across an automotive temperature range (–40⁰C to 125⁰C). This family suits a wide range of
automotive applications.
9.3.1 Driving a Capacitive Load
When the amplifier configuration is in this manner, capacitive loading directly on the output decreases the phase
margin of the device leading to high-frequency ringing or oscillations. Therefore, for capacitive loads of greater
than 10 pF, the recommendation is that a resistor be placed in series (RNULL) with the output of the amplifier, see
Figure 49. A minimum value of 20 Ω works well for most applications.
RF
RG
Input
_
RNULL
Output
+
CLOAD
Figure 49. Driving a Capacitive Load
Copyright © 2003–2015, Texas Instruments Incorporated
Submit Documentation Feedback
Product Folder Links: TLV2460-Q1 TLV2460A-Q1 TLV2461-Q1 TLV2461A-Q1 TLV2462-Q1 TLV2462A-Q1 TLV2463Q1 TLV2463A-Q1 TLV2464A-Q1
21
TLV2460-Q1, TLV2460A-Q1, TLV2461-Q1, TLV2461A-Q1
TLV2462-Q1, TLV2462A-Q1, TLV2463-Q1, TLV2463A-Q1, TLV2464A-Q1
SGLS008F – MARCH 2003 – REVISED DECEMBER 2015
www.ti.com
Feature Description (continued)
9.3.2 Offset Voltage
The output offset voltage (VOO) is the sum of the input offset voltage (VIO) and both input-bias currents (IIB) times
the corresponding gains. Use the schematic and formula in Figure 50 to calculate the output offset voltage.
RF
IIB
RG
+
VI
VO
+
RS
IIB+
VOO = VIO (1 + (
RF
RF
)) ± IIB + RS (1 + ( )) ± IIB - RF
RG
RG
Figure 50. Output Offset Voltage Model
9.3.3 General Configurations
When receiving low-level signals, limiting the bandwidth of the incoming signals into the system is often required.
The simplest way to accomplish this is to place an RC filter at the noninverting terminal of the amplifier (see
Figure 51).
RG
VI
RF
VO
+
R1
C1
f –3dB =
1
2pR1C1
VO
RF
1
)(
)
= (1 +
VI
RG 1 + sR1C1
Figure 51. Single-Pole Low-Pass Filter
If even more attenuation is needed, a multiple pole filter is required. The Sallen-Key filter can be used for this
task, see Figure 52. For best results, the amplifier should have a bandwidth that is eight to ten times the filter
frequency bandwidth. Failure to do this can result in phase shift of the amplifier.
C1
+
_
VI
R1
R1 = R2 = R
C1 = C2 = C
Q = Peaking Factor
(Butterworth Q = 0.707)
R2
f –3dB =
C2
RG
RF
RG
=
1
2pRC
RF
1
2 –Q
Figure 52. 2-Pole Low-Pass Sallen-Key Filter
22
Submit Documentation Feedback
Copyright © 2003–2015, Texas Instruments Incorporated
Product Folder Links: TLV2460-Q1 TLV2460A-Q1 TLV2461-Q1 TLV2461A-Q1 TLV2462-Q1 TLV2462A-Q1 TLV2463Q1 TLV2463A-Q1 TLV2464A-Q1
TLV2460-Q1, TLV2460A-Q1, TLV2461-Q1, TLV2461A-Q1
TLV2462-Q1, TLV2462A-Q1, TLV2463-Q1, TLV2463A-Q1, TLV2464A-Q1
www.ti.com
SGLS008F – MARCH 2003 – REVISED DECEMBER 2015
Feature Description (continued)
9.3.4 General Power Dissipation Considerations
For a given θJA, the maximum power dissipation is shown in Figure 53 and is calculated by Equation 1:
TMAX - TA
)
PD = (
q JA
Where:
•
•
•
•
•
•
PD = Maximum power dissipation of TLV246x-Q1 (watts)
TMAX = Absolute maximum junction temperature (150°C)
TA = Ambient free-air temperature (°C)
θJA = θJC + θCA
θJC = Thermal coefficient from junction to case
θCA = Thermal coefficient from case to ambient air (°C/W)
(1)
2
Maximum Power Dissipation (W)
1.75
1.5
1.25
TJ = 150°C
PDIP Package
Low-K Test PCB
θJA = 104°C/W
SOIC Package
Low-K Test PCB
θJA = 176°C/W
MSOP Package
Low-K Test PCB
θJA = 260°C/W
1
0.75
0.5
0.25
SOT-23 Package
Low-K Test PCB
θJA = 324°C/W
0
–55 –40 –25 –10 5
20 35 50 65
80 95 110 125
Free-Air Temperature, TA (°C)
Figure 53. Maximum Power Dissipation vs Free-Air Temperature
9.4 Device Functional Modes
The TLV2461-Q1, TLV2462-Q1, and TLV2464A-Q1 power on when the supply is connected. These devices can
operate with single supply or dual supplies, depending on the application. The devices are in their full
performance once the supply is above the recommended value. The TLV2460-Q1 and TLV2463-Q1 devices
additionally have a SHUTDOWN mode, which reduces the quiescent current to 0.3 µA in SHUTDOWN mode.
9.4.1 SHUTDOWN Function
Two members of the TLV246x-Q1 family (TLV2460-Q1 and TLV2463-Q1) have a shutdown terminal for
conserving battery life in portable applications. When the shutdown terminal is tied low, the supply current is
reduced to 0.3 μA/channel, the amplifier is disabled, and the outputs are placed in a high-impedance mode. To
enable the amplifier, the shutdown terminal can either be left floating or pulled high. When the shutdown terminal
is left floating, care should be taken to ensure that parasitic leakage current at the shutdown terminal does not
inadvertently place the operational amplifier into shutdown. The shutdown terminal threshold is always
referenced to VDD / 2. Therefore, when operating the device with split supply voltages (for example, ±2.5 V), the
shutdown terminal must be pulled to VDD− (not GND) to disable the operational amplifier.
The amplifier’s output with a shutdown pulse is shown in Figure 22, Figure 23, Figure 24, and Figure 25. The
amplifier is powered with a single 5-V supply and configured as a noninverting configuration with a gain of 5. The
amplifier turnon and turnoff times are measured from the 50% point of the shutdown pulse to the 50% point of
the output waveform. The times for the single, dual, and quad are listed in the data tables.
Copyright © 2003–2015, Texas Instruments Incorporated
Submit Documentation Feedback
Product Folder Links: TLV2460-Q1 TLV2460A-Q1 TLV2461-Q1 TLV2461A-Q1 TLV2462-Q1 TLV2462A-Q1 TLV2463Q1 TLV2463A-Q1 TLV2464A-Q1
23
TLV2460-Q1, TLV2460A-Q1, TLV2461-Q1, TLV2461A-Q1
TLV2462-Q1, TLV2462A-Q1, TLV2463-Q1, TLV2463A-Q1, TLV2464A-Q1
SGLS008F – MARCH 2003 – REVISED DECEMBER 2015
www.ti.com
10 Application and Implementation
NOTE
Information in the following applications sections is not part of the TI component
specification, and TI does not warrant its accuracy or completeness. TI’s customers are
responsible for determining suitability of components for their purposes. Customers should
validate and test their design implementation to confirm system functionality.
10.1 Application Information
Most DC-to-DC converters use output-filter ceramic capacitors with very low equivalent series resistance (ESR).
1
This causes a double pole at the resonance frequency 2Œ LC .
To achieve an adequate bandwidth and phase margin for the DC-to-DC converter, the device requires
1
compensation around the 2Œ LC resonance frequency. To achieve this, configure the error amplifier as type-3
compensation. The TLV2426x-Q1 device features a wide bandwidth UGBD of 6 MHz with rail-to-rail output for
increased dynamic range. These features make the device suitable for DC-to-DC loop compensation with any LC
filter.
10.1.1 Macromodel Information
Macromodel information provided was derived using Microsim Parts™ Release 8, the model generation software
used with Microsim PSpice™. The Boyle macromodel (1) and subcircuit in Figure 54 were generated using the
TLV246x-Q1 typical electrical and operating characteristics at TA = 25°C. Using this information, output
simulations of the following key parameters can be generated to a tolerance of 20% (in most cases):
(1)
•
•
•
•
•
•
24
G. R. Boyle, B. M. Cohn, D. O. Pederson, and J. E. Solomon, “Macromodeling of Integrated Circuit Operational Amplifiers,” IEEE
Journal of Solid-State Circuits, SC-9, 353 (1974).
Maximum positive-output voltage swing
Maximum negative-output voltage swing
Slew rate
Quiescent power dissipation
Input bias current
Open-loop voltage amplification
Submit Documentation Feedback
•
•
•
•
•
•
Unity gain frequency
Common-mode rejection ratio
Phase margin
DC output resistance
AC output resistance
Short-circuit output current limit
Copyright © 2003–2015, Texas Instruments Incorporated
Product Folder Links: TLV2460-Q1 TLV2460A-Q1 TLV2461-Q1 TLV2461A-Q1 TLV2462-Q1 TLV2462A-Q1 TLV2463Q1 TLV2463A-Q1 TLV2464A-Q1
TLV2460-Q1, TLV2460A-Q1, TLV2461-Q1, TLV2461A-Q1
TLV2462-Q1, TLV2462A-Q1, TLV2463-Q1, TLV2463A-Q1, TLV2464A-Q1
www.ti.com
SGLS008F – MARCH 2003 – REVISED DECEMBER 2015
99
EGND +
FB
RO2
R2
3
VDD +
C2
6
7
+
+
ISS
RSS
CSS
9
VD
VLIM
+
VB
RP
IN
J1
GCM
53
10
2
8
GA
DC
J2
RO1
OUT
IN +
1
11
12
92
54
C1
DP
RD1
5
DLN
DE
+
RD2
VE
90
HLIM
+ DLP
91
+
VLP
VLN
+
4
GND
.SUBCKT TLV246X 1 2 3 4 5
11 12 2.46034E-12
C1
7
10.0000E-12
6
C2
10 99 443.21E-15
CSS
53 DY
5
DC
54 5
DE
DY
90 91 DX
DLP
92 90 DX
DLN
3
4
DP
DX
POLY (2) (3,0) (4,0) 0 .5 .5
EGND 99 0
99 POLY (5) VB VC VE VLP
7
FB
+ VLN 0 21.600E6 – 1E3 1E3 22E6 – 22E6
0
6
12 345.26E- 6
11
GA
10
99 15.4226E- 9
6
GCM 0
DC 18.850E- 6
10 4
ISS
VLIM 1K
HLIM 90 0
10 JX1
J1
11 2
10 JX2
12 1
J2
9
6
100.00E3
R2
11
2.8964E3
3
RD1
12
2.8964E3
3
RD2
5.6000
5
8
R01
99
6.2000
7
R02
4
8.9127
3
RP
99
10.610E6
10
RSS
9
0
DC 0
VB
53
3
VC
DC .7836
4
VE
54
DC .7436
8
DC 0
7
VLIM
0
DC 117
VLP
91
0
92
DC 117
VLN
.MODEL DX D (IS=800.00E–18)
.MODEL DY D (IS=800.00E–18 Rs = 1m Cjo=10p)
.MODEL JX1 NJF (IS=1.0000E–12 BETA=6.3239E–3
+ VTO=–1 )
.MODEL JX2 NJF (IS=1.0000E–12 BETA=6.3239E–3
+ VTO=–1 )
.ENDS
.subckt TLV_246Y 1 2 3 4 5 6
11 12 2.4603E-12
c1
72 7
10.000E-12
c2
10 99 443.21E-15
css
70 53 dy
dc
54 70 dy
de
90 91 dx
dlp
92 90 dx
dln
4
dp
3
dx
poly(2) (3,0) (4,0) 0 .5 .5
egnd 99 0
99 poly(5) vb vc ve vlp vln 0
7
fb
21.600E6 – 1E3 1E3 22E6 – 22E6
72 0
ga
11 12 345.26E- 6
gcm
0
72 10 99 15.422E- 9
dc 18.850E- 6
74
iss
4
vlim 1K
hlim
90 0
j1
11 2
10 jx1
10 jx2
j2
12 1
100.00E3
r2
72 9
3
rd1
11 2.8964E3
3
12 2.8964E3
rd2
ro1
8
70 5.6000
ro2
7
99 6.2000
rp
8.9127
3
71
rss
10.610E6
99
10
rs1
6
4
1G
rs2
4
6
1G
rs3
4
6
1G
rs4
4
6
1G
s1
4
71
6 4 s1x
5
s2
70
6 4 s1x
74
s3
10
6 4 s1x
4
s4
6 4 s2x
74
0
9
dc 0
vb
vc
53
3
dc .7836
ve
4
dc .7436
54
vlim
8
7
dc 0
vlp
0
91
dc 117
0
92
dc 117
vln
.model dx D(Is=800.00E–18)
.model dy D(Is=800.00E–18 Rs=1m Cjo=10p)
.model jx1 NJF(Is=1.0000E–12 Beta=6.3239E–3 Vto=–1)
.model jx2 NJF(Is=1.0000E–12 Beta=6.3239E–3 Vto=–1)
.model s1x VSWITCH(Roff=1E8 Ron=1.0 Voff=2.5 Von=0.0)
.model s2x VSWITCH(Roff=1E8 Ron=1.0 Voff=0 Von=2.5)
.ends
Figure 54. Boyle Macromodel and Sub-Circuit
Copyright © 2003–2015, Texas Instruments Incorporated
Submit Documentation Feedback
Product Folder Links: TLV2460-Q1 TLV2460A-Q1 TLV2461-Q1 TLV2461A-Q1 TLV2462-Q1 TLV2462A-Q1 TLV2463Q1 TLV2463A-Q1 TLV2464A-Q1
25
TLV2460-Q1, TLV2460A-Q1, TLV2461-Q1, TLV2461A-Q1
TLV2462-Q1, TLV2462A-Q1, TLV2463-Q1, TLV2463A-Q1, TLV2464A-Q1
SGLS008F – MARCH 2003 – REVISED DECEMBER 2015
www.ti.com
10.2 Typical Application
C1
33 pF
C2
R2
47 kŸ
680 pF
C3
R3
8
330 pF
VCC
4.7 k
R1
V IN
U1B
6
7
62 NŸ
5
OUT
4
VCC/2
GND
Figure 55. Typical Operational Amplifier Application
10.2.1 Design Requirements
See Table 2 for Design Requirements.
Table 2. Recommended Design Parameters
PARAMETER
VALUE
Supply voltage
5V
Reference voltage
2.5 V
Input voltage
2.5 VDC and maximum ripple 40 mV peak-topeak
Capacitors
Better than X5R
Resistors
Better than 2% tolerance
10.2.2 Detailed Design Procedure
The following is the detailed design procedure. See Equation 2 for the Type 3 compensation gain.
(1 R2C2s) (1 (R1 R3)C3s)
Type 3 Compensation Gain =
C1C2
R1(C1 C2)s(1 R2
s)(1 R3Cs)
C1 C2
(2)
Type 3 compensation poles and zeros are shown in the ideal asymptotic graph, see Figure 56. They can be
moved around by changing the values of the resistors and capacitors according to the compensation
requirement. The operational amplifier cannot achieve the ideal case, because of its open-loop gain and phase
limitation.
26
Submit Documentation Feedback
Copyright © 2003–2015, Texas Instruments Incorporated
Product Folder Links: TLV2460-Q1 TLV2460A-Q1 TLV2461-Q1 TLV2461A-Q1 TLV2462-Q1 TLV2462A-Q1 TLV2463Q1 TLV2463A-Q1 TLV2464A-Q1
TLV2460-Q1, TLV2460A-Q1, TLV2461-Q1, TLV2461A-Q1
TLV2462-Q1, TLV2462A-Q1, TLV2463-Q1, TLV2463A-Q1, TLV2464A-Q1
www.ti.com
SGLS008F – MARCH 2003 – REVISED DECEMBER 2015
1
2SR1C3
1
2SR2C2
GAIN (dB)
20 log
1
2SR2C1
R2
R1
20 log
1
2SR3C3
R2
R3
FREQUENCY (Hz)
+90°
PHASE (°)
0°
0°
í90°
í90°
FREQUENCY (Hz)
Figure 56. Ideal Asymptotic Graph
The poles and zeros are calculated assuming C2 >> C1 and R1 >> R3. This assumption is correct, because C1
and R3 components set the high frequencies.
This TLV226x-Q1 device type-3 compensation circuit design boosts the gain and phase for the DC-to-DC
converter around 30-KHz resonance frequencies. This corresponds to 1 µH and 22 µF for the output filter.
The operational amplifier can also be configured as type 2 compensation by omitting the C3 capacitor. Type 2
can compensate the DC-to-DC converter with an output capacitor that has a series resistor ESR. See
Equation 3.
(1 R2C2s)
Type 2 Compensation Gain =
C1C2
s)
R1(C1 C2) s (1 R2
C1 C2
(3)
10.2.3 Application Curve
50
30
240
Gain (db)
200
Phase (q)
160
20
120
Gain (dB)
40
10
80
0
40
-10
0
-20
-40
-30
-80
-40
-120
-50
-160
-60
10
100
1k
10k
Frequency (Hz)
100k
Frequency: 10 Hz to 1 MHz Gain Boost = 12 dB around 30 KHz
-200
1M
D001
Phase Boost = 30⁰ around 30 KHz
Figure 57. Gain and Phase Plot
11 Power Supply Recommendations
The TLV246X-Q1 family of devices operation specification is from 2.7 V to 6 V for a single power supply and
±1.35 V to ±3 V for dual power supplies.
A 0.1-µF bypass capacitor close to the power supply pins is recommended to reduce errors coupling in from
noisy or high-impedance power supplies.
Copyright © 2003–2015, Texas Instruments Incorporated
Submit Documentation Feedback
Product Folder Links: TLV2460-Q1 TLV2460A-Q1 TLV2461-Q1 TLV2461A-Q1 TLV2462-Q1 TLV2462A-Q1 TLV2463Q1 TLV2463A-Q1 TLV2464A-Q1
27
TLV2460-Q1, TLV2460A-Q1, TLV2461-Q1, TLV2461A-Q1
TLV2462-Q1, TLV2462A-Q1, TLV2463-Q1, TLV2463A-Q1, TLV2464A-Q1
SGLS008F – MARCH 2003 – REVISED DECEMBER 2015
www.ti.com
12 Layout
12.1 Layout Guidelines
To achieve the levels of high performance of the TLV246x-Q1, follow proper printed-circuit board design
techniques. A general set of guidelines is given in the following.
• Ground planes − TI recommends that a ground plane be used on the board to provide all components with a
low inductive ground connection. However, in the areas of the amplifier inputs and output, the ground plane
can be removed to minimize the stray capacitance.
• Proper power supply decoupling − Use a 6.8-μF tantalum capacitor in parallel with a 0.1-μF ceramic capacitor
on each supply terminal. It may be possible to share the tantalum among several amplifiers depending on the
application, but a 0.1-μF ceramic capacitor should always be used on the supply terminal of every amplifier.
In addition, the 0.1-μF capacitor should be placed as close as possible to the supply terminal. As this distance
increases, the inductance in the connecting trace makes the capacitor less effective. The designer should
strive for distances of less than 0.1 inches between the device power terminals and the ceramic capacitors.
• Sockets − Sockets can be used but are not recommended. The additional lead inductance in the socket pins
often leads to stability problems. Surface-mount packages soldered directly to the printed circuit board is the
best implementation.
• Short trace runs/compact part placements − Optimum high performance is achieved when stray series
inductance has been minimized. To realize this, the circuit layout should be made as compact as possible,
thereby minimizing the length of all trace runs. Particular attention should be paid to the inverting input of the
amplifier. Its length should be kept as short as possible. This minimizes stray capacitance at the input of the
amplifier.
• Surface-mount passive components − Using surface-mount passive components is recommended for highperformance amplifier circuits for several reasons. First, because of the extremely low lead inductance of
surface-mount components, the problem with stray series inductance is greatly reduced. Second, the small
size of surface-mount components naturally leads to a more compact layout, thereby minimizing both stray
inductance and capacitance. If leaded components are used, it is recommended that the lead lengths be kept
as short as possible.
12.2 Layout Example
+
VIN
VOUT
RG
RF
(Schematic Representation)
Run the input traces
as far away from
the supply lines
as possible
Place components
close to device and to
each other to reduce
parasitic errors
VS+
RF
N/C
N/C
GND
±IN
V+
VIN
+IN
OUTPUT
V±
N/C
RG
Use low-ESR,
ceramic bypass
capacitor
GND
VS±
GND
Use low-ESR, ceramic
bypass capacitor
VOUT
Ground (GND) plane on another layer
Figure 58. Operational Amplifier Board Layout for Noninverting Configuration
28
Submit Documentation Feedback
Copyright © 2003–2015, Texas Instruments Incorporated
Product Folder Links: TLV2460-Q1 TLV2460A-Q1 TLV2461-Q1 TLV2461A-Q1 TLV2462-Q1 TLV2462A-Q1 TLV2463Q1 TLV2463A-Q1 TLV2464A-Q1
TLV2460-Q1, TLV2460A-Q1, TLV2461-Q1, TLV2461A-Q1
TLV2462-Q1, TLV2462A-Q1, TLV2463-Q1, TLV2463A-Q1, TLV2464A-Q1
www.ti.com
SGLS008F – MARCH 2003 – REVISED DECEMBER 2015
13 Device and Documentation Support
13.1 Documentation Support
13.1.1 Related Documentation
For related documentation see the following:
• An audio circuit collection, Part 1, Technical brief, SLYT155
• G. R. Boyle, B. M. Cohn, D. O. Pederson, and J. E. Solomon, “Macromodeling of Integrated Circuit
Operational Amplifiers,” IEEE Journal of Solid-State Circuits, SC-9, 353 (1974).
13.2 Related Links
The table below lists quick access links. Categories include technical documents, support and community
resources, tools and software, and quick access to sample or buy.
Table 3. Related Links
PARTS
PRODUCT FOLDER
SAMPLE & BUY
TECHNICAL
DOCUMENTS
TOOLS &
SOFTWARE
SUPPORT &
COMMUNITY
TLV2460-Q1
Click here
Click here
Click here
Click here
Click here
TLV2461-Q1
Click here
Click here
Click here
Click here
Click here
TLV2462-Q1
Click here
Click here
Click here
Click here
Click here
TLV2463-Q1
Click here
Click here
Click here
Click here
Click here
TLV2460A-Q1
Click here
Click here
Click here
Click here
Click here
TLV2461A-Q1
Click here
Click here
Click here
Click here
Click here
TLV2462A-Q1
Click here
Click here
Click here
Click here
Click here
TLV2463A-Q1
Click here
Click here
Click here
Click here
Click here
TLV2464A-Q1
Click here
Click here
Click here
Click here
Click here
13.3 Community Resources
The following links connect to TI community resources. Linked contents are provided "AS IS" by the respective
contributors. They do not constitute TI specifications and do not necessarily reflect TI's views; see TI's Terms of
Use.
TI E2E™ Online Community TI's Engineer-to-Engineer (E2E) Community. Created to foster collaboration
among engineers. At e2e.ti.com, you can ask questions, share knowledge, explore ideas and help
solve problems with fellow engineers.
Design Support TI's Design Support Quickly find helpful E2E forums along with design support tools and
contact information for technical support.
13.4 Trademarks
E2E is a trademark of Texas Instruments.
All other trademarks are the property of their respective owners.
13.5 Electrostatic Discharge Caution
These devices have limited built-in ESD protection. The leads should be shorted together or the device placed in conductive foam
during storage or handling to prevent electrostatic damage to the MOS gates.
13.6 Glossary
SLYZ022 — TI Glossary.
This glossary lists and explains terms, acronyms, and definitions.
Copyright © 2003–2015, Texas Instruments Incorporated
Submit Documentation Feedback
Product Folder Links: TLV2460-Q1 TLV2460A-Q1 TLV2461-Q1 TLV2461A-Q1 TLV2462-Q1 TLV2462A-Q1 TLV2463Q1 TLV2463A-Q1 TLV2464A-Q1
29
TLV2460-Q1, TLV2460A-Q1, TLV2461-Q1, TLV2461A-Q1
TLV2462-Q1, TLV2462A-Q1, TLV2463-Q1, TLV2463A-Q1, TLV2464A-Q1
SGLS008F – MARCH 2003 – REVISED DECEMBER 2015
www.ti.com
14 Mechanical, Packaging, and Orderable Information
The following pages include mechanical, packaging, and orderable information. This information is the most
current data available for the designated devices. This data is subject to change without notice and revision of
this document. For browser-based versions of this data sheet, refer to the left-hand navigation.
30
Submit Documentation Feedback
Copyright © 2003–2015, Texas Instruments Incorporated
Product Folder Links: TLV2460-Q1 TLV2460A-Q1 TLV2461-Q1 TLV2461A-Q1 TLV2462-Q1 TLV2462A-Q1 TLV2463Q1 TLV2463A-Q1 TLV2464A-Q1
PACKAGE OPTION ADDENDUM
www.ti.com
18-Dec-2015
PACKAGING INFORMATION
Orderable Device
Status
(1)
Package Type Package Pins Package
Drawing
Qty
TLV2460AQDRQ1
OBSOLETE
SOIC
D
8
TLV2460AQPWRG4Q1
ACTIVE
TSSOP
PW
8
TLV2460AQPWRQ1
OBSOLETE
TSSOP
PW
8
TLV2460QDRQ1
OBSOLETE
SOIC
D
8
TLV2460QPWRG4Q1
ACTIVE
TSSOP
PW
8
TLV2460QPWRQ1
OBSOLETE
TSSOP
PW
TLV2461AQDRQ1
OBSOLETE
SOIC
D
TLV2461AQPWRG4Q1
ACTIVE
TSSOP
PW
8
TLV2461AQPWRQ1
OBSOLETE
TSSOP
PW
TLV2461QDRQ1
OBSOLETE
SOIC
D
TLV2461QPWRG4Q1
ACTIVE
TSSOP
PW
8
TLV2461QPWRQ1
OBSOLETE
TSSOP
PW
8
TLV2462AQDRG4Q1
ACTIVE
SOIC
D
8
TLV2462AQDRQ1
ACTIVE
SOIC
D
TLV2462AQPWRG4Q1
ACTIVE
TSSOP
TLV2462AQPWRQ1
ACTIVE
TLV2462QDGKRQ1
2000
Eco Plan
Lead/Ball Finish
MSL Peak Temp
(2)
(6)
(3)
Op Temp (°C)
Device Marking
(4/5)
TBD
Call TI
Call TI
-40 to 125
2460AQ
Green (RoHS
& no Sb/Br)
CU NIPDAU
Level-1-260C-UNLIM
-40 to 125
2460AQ
TBD
Call TI
Call TI
-40 to 125
TBD
Call TI
Call TI
-40 to 125
Green (RoHS
& no Sb/Br)
CU NIPDAU
Level-1-260C-UNLIM
-40 to 125
8
TBD
Call TI
Call TI
-40 to 125
8
TBD
Call TI
Call TI
-40 to 125
Green (RoHS
& no Sb/Br)
CU NIPDAU
Level-1-260C-UNLIM
-40 to 125
8
TBD
Call TI
Call TI
-40 to 125
8
TBD
Call TI
Call TI
-40 to 125
2461Q1
Green (RoHS
& no Sb/Br)
CU NIPDAU
Level-1-260C-UNLIM
-40 to 125
2461Q1
TBD
Call TI
Call TI
-40 to 125
2500
Green (RoHS
& no Sb/Br)
CU NIPDAU
Level-1-260C-UNLIM
-40 to 125
2462AQ
8
2500
Green (RoHS
& no Sb/Br)
CU NIPDAU
Level-1-260C-UNLIM
-40 to 125
2462AQ
PW
8
2000
Green (RoHS
& no Sb/Br)
CU NIPDAU
Level-1-260C-UNLIM
-40 to 125
2462AQ
TSSOP
PW
8
2000
Green (RoHS
& no Sb/Br)
CU NIPDAU
Level-1-260C-UNLIM
-40 to 125
2462AQ
ACTIVE
VSSOP
DGK
8
2500
Green (RoHS
& no Sb/Br)
CU NIPDAU |
CU NIPDAUAG
Level-2-260C-1 YEAR
-40 to 125
QVM
TLV2462QDRG4Q1
ACTIVE
SOIC
D
8
2500
Green (RoHS
& no Sb/Br)
CU NIPDAU
Level-1-260C-UNLIM
-40 to 125
2462Q1
TLV2462QDRQ1
ACTIVE
SOIC
D
8
2500
Green (RoHS
& no Sb/Br)
CU NIPDAU
Level-1-260C-UNLIM
-40 to 125
2462Q1
TLV2462QPWRG4Q1
ACTIVE
TSSOP
PW
8
2000
Green (RoHS
& no Sb/Br)
CU NIPDAU
Level-1-260C-UNLIM
-40 to 125
2462Q1
TLV2462QPWRQ1
OBSOLETE
TSSOP
PW
8
TBD
Call TI
Call TI
-40 to 125
2000
2000
2000
Addendum-Page 1
2460Q1
2461AQ
Samples
PACKAGE OPTION ADDENDUM
www.ti.com
Orderable Device
18-Dec-2015
Status
(1)
Package Type Package Pins Package
Drawing
Qty
TLV2463AQDRQ1
OBSOLETE
SOIC
D
14
TLV2463AQPWRG4Q1
ACTIVE
TSSOP
PW
14
TLV2463AQPWRQ1
OBSOLETE
TSSOP
PW
TLV2463QDRQ1
OBSOLETE
SOIC
D
TLV2463QPWRG4Q1
ACTIVE
TSSOP
PW
14
Eco Plan
Lead/Ball Finish
MSL Peak Temp
(2)
(6)
(3)
Op Temp (°C)
(4/5)
TBD
Call TI
Call TI
-40 to 125
Green (RoHS
& no Sb/Br)
CU NIPDAU
Level-1-260C-UNLIM
-40 to 125
14
TBD
Call TI
Call TI
-40 to 125
14
TBD
Call TI
Call TI
-40 to 125
2000
Green (RoHS
& no Sb/Br)
CU NIPDAU
Level-1-260C-UNLIM
-40 to 125
2000
Device Marking
2463AQ1
2463Q1
TLV2463QPWRQ1
OBSOLETE
TSSOP
PW
14
TBD
Call TI
Call TI
-40 to 125
TLV2464AQPWRG4Q1
ACTIVE
TSSOP
PW
14
2000
Green (RoHS
& no Sb/Br)
CU NIPDAU
Level-1-260C-UNLIM
-40 to 125
V2464AQ
TLV2464AQPWRQ1
ACTIVE
TSSOP
PW
14
2000
Green (RoHS
& no Sb/Br)
CU NIPDAU
Level-1-260C-UNLIM
-40 to 125
V2464AQ
(1)
The marketing status values are defined as follows:
ACTIVE: Product device recommended for new designs.
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.
OBSOLETE: TI has discontinued the production of the device.
(2)
Eco Plan - The planned eco-friendly classification: Pb-Free (RoHS), Pb-Free (RoHS Exempt), or Green (RoHS & no Sb/Br) - please check http://www.ti.com/productcontent for the latest availability
information and additional product content details.
TBD: The Pb-Free/Green conversion plan has not been defined.
Pb-Free (RoHS): TI's terms "Lead-Free" or "Pb-Free" mean semiconductor products that are compatible with the current RoHS requirements for all 6 substances, including the requirement that
lead not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, TI Pb-Free products are suitable for use in specified lead-free processes.
Pb-Free (RoHS Exempt): This component has a RoHS exemption for either 1) lead-based flip-chip solder bumps used between the die and package, or 2) lead-based die adhesive used between
the die and leadframe. The component is otherwise considered Pb-Free (RoHS compatible) as defined above.
Green (RoHS & no Sb/Br): TI defines "Green" to mean Pb-Free (RoHS compatible), and free of Bromine (Br) and Antimony (Sb) based flame retardants (Br or Sb do not exceed 0.1% by weight
in homogeneous material)
(3)
MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.
(4)
There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.
(5)
Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation
of the previous line and the two combined represent the entire Device Marking for that device.
Addendum-Page 2
Samples
PACKAGE OPTION ADDENDUM
www.ti.com
18-Dec-2015
(6)
Lead/Ball Finish - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead/Ball Finish values may wrap to two lines if the finish
value exceeds the maximum column width.
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information
provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and
continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals.
TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.
OTHER QUALIFIED VERSIONS OF TLV2460-Q1, TLV2460A-Q1, TLV2461-Q1, TLV2461A-Q1, TLV2462-Q1, TLV2462A-Q1, TLV2463-Q1, TLV2463A-Q1, TLV2464A-Q1 :
• Catalog: TLV2460, TLV2460A, TLV2461, TLV2461A, TLV2462, TLV2462A, TLV2463, TLV2463A, TLV2464A
• Enhanced Product: TLV2462A-EP, TLV2464A-EP
• Military: TLV2460M, TLV2461M, TLV2462M, TLV2462AM, TLV2463AM
NOTE: Qualified Version Definitions:
• Catalog - TI's standard catalog product
• Enhanced Product - Supports Defense, Aerospace and Medical Applications
• Military - QML certified for Military and Defense Applications
Addendum-Page 3
PACKAGE MATERIALS INFORMATION
www.ti.com
29-Apr-2016
TAPE AND REEL INFORMATION
*All dimensions are nominal
Device
Package Package Pins
Type Drawing
SPQ
Reel
Reel
A0
Diameter Width (mm)
(mm) W1 (mm)
B0
(mm)
K0
(mm)
P1
(mm)
W
Pin1
(mm) Quadrant
TLV2460AQPWRG4Q1
TSSOP
PW
8
2000
330.0
12.4
7.0
3.6
1.6
8.0
12.0
Q1
TLV2460QPWRG4Q1
TSSOP
PW
8
2000
330.0
12.4
7.0
3.6
1.6
8.0
12.0
Q1
TLV2461AQPWRG4Q1
TSSOP
PW
8
2000
330.0
12.4
7.0
3.6
1.6
8.0
12.0
Q1
TLV2461QPWRG4Q1
TSSOP
PW
8
2000
330.0
12.4
7.0
3.6
1.6
8.0
12.0
Q1
TLV2462AQPWRG4Q1
TSSOP
PW
8
2000
330.0
12.4
7.0
3.6
1.6
8.0
12.0
Q1
TLV2462AQPWRQ1
TSSOP
PW
8
2000
330.0
12.4
7.0
3.6
1.6
8.0
12.0
Q1
TLV2462QDGKRQ1
VSSOP
DGK
8
2500
330.0
12.4
5.3
3.4
1.4
8.0
12.0
Q1
TLV2462QDGKRQ1
VSSOP
DGK
8
2500
330.0
12.4
5.3
3.4
1.4
8.0
12.0
Q1
TLV2462QPWRG4Q1
TSSOP
PW
8
2000
330.0
12.4
7.0
3.6
1.6
8.0
12.0
Q1
TLV2463AQPWRG4Q1
TSSOP
PW
14
2000
330.0
12.4
6.9
5.6
1.6
8.0
12.0
Q1
TLV2463QPWRG4Q1
TSSOP
PW
14
2000
330.0
12.4
6.9
5.6
1.6
8.0
12.0
Q1
TLV2464AQPWRG4Q1
TSSOP
PW
14
2000
330.0
12.4
6.9
5.6
1.6
8.0
12.0
Q1
TLV2464AQPWRQ1
TSSOP
PW
14
2000
330.0
12.4
6.9
5.6
1.6
8.0
12.0
Q1
Pack Materials-Page 1
PACKAGE MATERIALS INFORMATION
www.ti.com
29-Apr-2016
*All dimensions are nominal
Device
Package Type
Package Drawing
Pins
SPQ
Length (mm)
Width (mm)
Height (mm)
TLV2460AQPWRG4Q1
TSSOP
PW
8
2000
367.0
367.0
35.0
TLV2460QPWRG4Q1
TSSOP
PW
8
2000
367.0
367.0
35.0
TLV2461AQPWRG4Q1
TSSOP
PW
8
2000
367.0
367.0
35.0
TLV2461QPWRG4Q1
TSSOP
PW
8
2000
367.0
367.0
35.0
TLV2462AQPWRG4Q1
TSSOP
PW
8
2000
367.0
367.0
35.0
TLV2462AQPWRQ1
TSSOP
PW
8
2000
367.0
367.0
35.0
TLV2462QDGKRQ1
VSSOP
DGK
8
2500
358.0
335.0
35.0
TLV2462QDGKRQ1
VSSOP
DGK
8
2500
364.0
364.0
27.0
TLV2462QPWRG4Q1
TSSOP
PW
8
2000
367.0
367.0
35.0
TLV2463AQPWRG4Q1
TSSOP
PW
14
2000
367.0
367.0
35.0
TLV2463QPWRG4Q1
TSSOP
PW
14
2000
367.0
367.0
35.0
TLV2464AQPWRG4Q1
TSSOP
PW
14
2000
367.0
367.0
35.0
TLV2464AQPWRQ1
TSSOP
PW
14
2000
367.0
367.0
35.0
Pack Materials-Page 2
PACKAGE OUTLINE
PW0008A
TSSOP - 1.2 mm max height
SCALE 2.800
SMALL OUTLINE PACKAGE
C
6.6
TYP
6.2
SEATING PLANE
PIN 1 ID
AREA
A
0.1 C
6X 0.65
8
1
3.1
2.9
NOTE 3
2X
1.95
4
5
B
4.5
4.3
NOTE 4
SEE DETAIL A
8X
0.30
0.19
0.1
C A
1.2 MAX
B
(0.15) TYP
0.25
GAGE PLANE
0 -8
0.15
0.05
0.75
0.50
DETAIL A
TYPICAL
4221848/A 02/2015
NOTES:
1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing
per ASME Y14.5M.
2. This drawing is subject to change without notice.
3. This dimension does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not
exceed 0.15 mm per side.
4. This dimension does not include interlead flash. Interlead flash shall not exceed 0.25 mm per side.
5. Reference JEDEC registration MO-153, variation AA.
www.ti.com
EXAMPLE BOARD LAYOUT
PW0008A
TSSOP - 1.2 mm max height
SMALL OUTLINE PACKAGE
8X (1.5)
8X (0.45)
SYMM
1
8
(R0.05)
TYP
SYMM
6X (0.65)
5
4
(5.8)
LAND PATTERN EXAMPLE
SCALE:10X
SOLDER MASK
OPENING
METAL
SOLDER MASK
OPENING
METAL UNDER
SOLDER MASK
0.05 MAX
ALL AROUND
0.05 MIN
ALL AROUND
SOLDER MASK
DEFINED
NON SOLDER MASK
DEFINED
SOLDER MASK DETAILS
NOT TO SCALE
4221848/A 02/2015
NOTES: (continued)
6. Publication IPC-7351 may have alternate designs.
7. Solder mask tolerances between and around signal pads can vary based on board fabrication site.
www.ti.com
EXAMPLE STENCIL DESIGN
PW0008A
TSSOP - 1.2 mm max height
SMALL OUTLINE PACKAGE
8X (1.5)
8X (0.45)
SYMM
(R0.05) TYP
1
8
SYMM
6X (0.65)
5
4
(5.8)
SOLDER PASTE EXAMPLE
BASED ON 0.125 mm THICK STENCIL
SCALE:10X
4221848/A 02/2015
NOTES: (continued)
8. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate
design recommendations.
9. Board assembly site may have different recommendations for stencil design.
www.ti.com
IMPORTANT NOTICE
Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, enhancements, improvements and other
changes to its semiconductor products and services per JESD46, latest issue, and to discontinue any product or service per JESD48, latest
issue. Buyers should obtain the latest relevant information before placing orders and should verify that such information is current and
complete. All semiconductor products (also referred to herein as “components”) are sold subject to TI’s terms and conditions of sale
supplied at the time of order acknowledgment.
TI warrants performance of its components to the specifications applicable at the time of sale, in accordance with the warranty in TI’s terms
and conditions of sale of semiconductor products. Testing and other quality control techniques are used to the extent TI deems necessary
to support this warranty. Except where mandated by applicable law, testing of all parameters of each component is not necessarily
performed.
TI assumes no liability for applications assistance or the design of Buyers’ products. Buyers are responsible for their products and
applications using TI components. To minimize the risks associated with Buyers’ products and applications, Buyers should provide
adequate design and operating safeguards.
TI does not warrant or represent that any license, either express or implied, is granted under any patent right, copyright, mask work right, or
other intellectual property right relating to any combination, machine, or process in which TI components or services are used. Information
published by TI regarding third-party products or services does not constitute a license to use such products or services or a warranty or
endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the
third party, or a license from TI under the patents or other intellectual property of TI.
Reproduction of significant portions of TI information in TI data books or data sheets is permissible only if reproduction is without alteration
and is accompanied by all associated warranties, conditions, limitations, and notices. TI is not responsible or liable for such altered
documentation. Information of third parties may be subject to additional restrictions.
Resale of TI components or services with statements different from or beyond the parameters stated by TI for that component or service
voids all express and any implied warranties for the associated TI component or service and is an unfair and deceptive business practice.
TI is not responsible or liable for any such statements.
Buyer acknowledges and agrees that it is solely responsible for compliance with all legal, regulatory and safety-related requirements
concerning its products, and any use of TI components in its applications, notwithstanding any applications-related information or support
that may be provided by TI. Buyer represents and agrees that it has all the necessary expertise to create and implement safeguards which
anticipate dangerous consequences of failures, monitor failures and their consequences, lessen the likelihood of failures that might cause
harm and take appropriate remedial actions. Buyer will fully indemnify TI and its representatives against any damages arising out of the use
of any TI components in safety-critical applications.
In some cases, TI components may be promoted specifically to facilitate safety-related applications. With such components, TI’s goal is to
help enable customers to design and create their own end-product solutions that meet applicable functional safety standards and
requirements. Nonetheless, such components are subject to these terms.
No TI components are authorized for use in FDA Class III (or similar life-critical medical equipment) unless authorized officers of the parties
have executed a special agreement specifically governing such use.
Only those TI components which TI has specifically designated as military grade or “enhanced plastic” are designed and intended for use in
military/aerospace applications or environments. Buyer acknowledges and agrees that any military or aerospace use of TI components
which have not been so designated is solely at the Buyer's risk, and that Buyer is solely responsible for compliance with all legal and
regulatory requirements in connection with such use.
TI has specifically designated certain components as meeting ISO/TS16949 requirements, mainly for automotive use. In any case of use of
non-designated products, TI will not be responsible for any failure to meet ISO/TS16949.
Products
Applications
Audio
www.ti.com/audio
Automotive and Transportation
www.ti.com/automotive
Amplifiers
amplifier.ti.com
Communications and Telecom
www.ti.com/communications
Data Converters
dataconverter.ti.com
Computers and Peripherals
www.ti.com/computers
DLP® Products
www.dlp.com
Consumer Electronics
www.ti.com/consumer-apps
DSP
dsp.ti.com
Energy and Lighting
www.ti.com/energy
Clocks and Timers
www.ti.com/clocks
Industrial
www.ti.com/industrial
Interface
interface.ti.com
Medical
www.ti.com/medical
Logic
logic.ti.com
Security
www.ti.com/security
Power Mgmt
power.ti.com
Space, Avionics and Defense
www.ti.com/space-avionics-defense
Microcontrollers
microcontroller.ti.com
Video and Imaging
www.ti.com/video
RFID
www.ti-rfid.com
OMAP Applications Processors
www.ti.com/omap
TI E2E Community
e2e.ti.com
Wireless Connectivity
www.ti.com/wirelessconnectivity
Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265
Copyright © 2016, Texas Instruments Incorporated