0
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
创作中心
发布
  • 发文章

  • 发资料

  • 发帖

  • 提问

  • 发视频

创作活动
TLV2782AID

TLV2782AID

  • 厂商:

    BURR-BROWN(德州仪器)

  • 封装:

    SOIC-8

  • 描述:

    IC OPAMP GP 2 CIRCUIT 8SOIC

  • 数据手册
  • 价格&库存
TLV2782AID 数据手册
                     ! ! SLOS245E − MARCH 2000 − REVISED JANUARY 2005 + − DIFFERENTIAL VOLTAGE AMPLIFICATION AND PHASE vs FREQUENCY description 80 240 VDD = 1.8 V & 2.7 V RL= 2 kΩ CL = 10 pF TA = 25° C 70 60 50 40 210 180 150 120 Phase 30 90 20 60 30 10 0 Gain 0 −10 Phase Margin − ° D D Operational Amplifier Supply Voltage Range . . . 1.8 V to 3.6 V Rail-to-Rail Input/Output High Bandwidth . . . 8 MHz High Slew Rate . . . 4.8 V/µs VICR Exceeds Rails . . . −0.2 V to VDD+ 0.2 Supply Current . . . 650 µA/Channel Input Noise Voltage . . . 9 nV/√Hz at 10 kHz Specified Temperature Range: 0°C to 70°C . . . Commercial Grade −40°C to 125°C . . . Industrial Grade Ultrasmall Packaging Universal Operational Amplifier EVM A VD − Differential Voltage Amplification − dB D D D D D D D D −30 The TLV278x single supply operational amplifiers −60 −20 provide rail-to-rail input and output capability. The −30 −90 TLV278x takes the minimum operating supply −120 −40 1k 10 k 100 k 1M 10 M voltage down to 1.8 V over the extended industrial f − Frequency − Hz temperature range (−40°C to 125°C) while adding the rail-to-rail output swing feature. The TLV278x also provides 8 MHz bandwidth from only 650 µA of supply current. The maximum recommended supply voltage is 3.6 V, which allows the devices to be operated from (±1.8 V supplies down to ±0.9 V) two rechargeable cells. The combination of wide bandwidth, low noise, and low distortion makes it ideal for high speed and high resolution data converter applications. All members are available in PDIP, SOIC, and the newer, smaller SOT-23 (singles), MSOP (duals), and TSSOP (quads). FAMILY PACKAGE TABLE DEVICE VDD [V] VIO [µV] IDD/ch [µA] IIB [pA] GBW [MHz] SLEW RATE [V/µs] Vn, 1 kHz [nV/√Hz] IO [mA] SHUTDOWN RAIL-TORAIL TLV278x(A) 1.8−3.6 250 650 2.5 8 5 18 10 Y I/O TLV276x(A) 1.8−3.6 550 20 3 0.5 0.23 95 5 Y I/O TLV246x(A) 2.7−6 150 550 1300 6.4 1.6 11 25 Y I/O TLV247x(A) 2.7−6 250 600 2.5 2.8 1.5 15 20 Y I/O TLV244x(A) 2.7−10 300 750 1 1.81 1.4 16 2 — O TLV277x(A) 2.5−5.5 360 1000 2 5.1 10.5 17 6 Y O Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet. Copyright  2000−2005, Texas Instruments Incorporated "  #$%&'()*#&$ #+ ,-''.$* )+ &% /-01#,)*#&$ 2)*. '&2-,*+ ,&$%&'( *& +/.,#%#,)*#&$+ /.' *3. *.'(+ &% . )+ $+*'-(.$*+ +*)$2)'2 4)'')$*5 '&2-,*#&$ /'&,.++#$6 2&.+ $&* $.,.++)'#15 #$,1-2. *.+*#$6 &% )11 /)')(.*.'+ WWW.TI.COM 1                      ! ! SLOS245E − MARCH 2000 − REVISED JANUARY 2005 TLV2780 and TLV2781 AVAILABLE OPTIONS(1) PACKAGED DEVICES VIOmax AT 25°C TA 0°C to 70°C SOT-23 SMALL OUTLINE (D)† (DBV)‡ SYMBOL PLASTIC DIP (P) 3000 µV TLV2780CD TLV2781CD TLV2780CDBV TLV2781CDBV VASC VATC — — 3000 µV TLV2780ID TLV2781ID TLV2780IDBV TLV2781IDBV VASI VATI TLV2780IP TLV2781IP 2000 µV TLV2780AID TLV2781AID — — — — — — - 40°C to 125°C † This package is available taped and reeled. To order this packaging option, add an R suffix to the part number (e.g., TLV2780CDR). ‡ This package is only available taped and reeled. For standard quantities (3,000 pieces per reel), add an R suffix (i.e., TLV2780CDBVR). For smaller quantities (250 pieces per mini-reel), add a T suffix to the part number (e.g. TLV2780CDBVT). TLV2782 and TLV2783 AVAILABLE OPTIONS(1) PACKAGED DEVICES VIOmax AT 25°C TA 0°C to 70°C SMALL OUTLINE† (D) (DGK)† SYMBOL (DGS)† 3000 µV TLV2782CD TLV2783CD TLV2782CDGK — xxTIADL — 3000 µV TLV2782ID TLV2783ID TLV2782IDGK — 2000 µV TLV2782AID TLV2783AID — — −40°C to 125°C SYMBOL PLASTIC DIP (N) PLASTIC DIP (P) — TLV2783CDGS — xxTIADN — — — — xxTIADM — — TLV2783IDGS — xxTIADO — TLV2783IN TLV2782IP — — — — — — — — — — — MSOP † This package is available taped and reeled. To order this packaging option, add an R suffix to the part number (e.g., TLV2782CDR). TLV2784 and TLV2785 AVAILABLE OPTIONS(1) PACKAGED DEVICES TA VIOmax AT 25°C 0°C to 70°C SMALL OUTLINE (D) PLASTIC DIP (N) TSSOP† (PW) 3000 µV TLV2784CD TLV2785CD — — TLV2784CPW TLV2785CPW 3000 µV TLV2784ID TLV2785ID TLV2784IN TLV2785IN TLV2784IPW TLV2785IPW 2000 µV TLV2784AID TLV2785AID −40°C to 125°C — — TLV2784AIPW TLV2785AIPW † This package is available taped and reeled. To order this packaging option, add an R suffix to the part number (e.g., TLV2784CDR). 1. For the most current package and ordering information, see the Package Option Addendum at the end of this document, or see the TI website at www.ti.com. 2 WWW.TI.COM                      ! ! SLOS245E − MARCH 2000 − REVISED JANUARY 2005 TLV278x PACKAGE PINOUTS TLV2780 D OR P PACKAGE (TOP VIEW) TLV2780 DBV PACKAGE (TOP VIEW) OUT 1 6 VDD GND 2 5 SHDN IN+ 3 4 IN − TLV2781 D OR P PACKAGE (TOP VIEW) NC IN − IN + GND 1OUT 1IN − 1IN+ GND NC 1SHDN NC 1 8 2 7 3 6 4 5 NC IN − IN + GND 1 8 2 7 3 6 4 5 TLV2781 DBV PACKAGE (TOP VIEW) SHDN VDD OUT NC OUT 1 GND 2 IN+ 3 1OUT 1IN − 1IN + GND 1 8 2 7 3 6 4 5 VDD 2OUT 2IN − 2IN+ VDD 4 IN − TLV2783 DGS PACKAGE (TOP VIEW) TLV2782 D, DGK, OR P PACKAGE (TOP VIEW) NC VDD OUT NC 5 1OUT 1IN − 1IN+ GND 1SHDN 1 2 3 4 5 10 9 8 7 6 VDD 2OUT 2IN − 2IN+ 2SHDN TLV2783 D OR N PACKAGE TLV2784 D, N, OR PW PACKAGE TLV2785 D, N, OR PW PACKAGE (TOP VIEW) (TOP VIEW) (TOP VIEW) 1 14 2 13 3 12 4 11 5 10 6 9 7 8 VDD 2OUT 2IN − 2IN+ NC 2SHDN NC 1OUT 1IN − 1IN+ VDD 2IN+ 2IN − 2OUT 1 14 2 13 3 12 4 11 5 10 6 9 7 8 4OUT 4IN − 4IN+ GND 3IN+ 3IN − 3OUT 1OUT 1IN − 1IN+ VDD 2IN+ 2IN − 2OUT 1/2SHDN 1 16 2 15 3 14 4 13 5 12 6 11 7 10 8 9 4OUT 4IN − 4IN+ GND 3IN + 3IN− 3OUT 3/4SHDN NC − No internal connection WWW.TI.COM 3                      ! ! SLOS245E − MARCH 2000 − REVISED JANUARY 2005 absolute maximum ratings over operating free-air temperature range (unless otherwise noted)† Supply voltage, VDD (see Note 1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 V Differential input voltage, VID . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ±VDD Input current, II (any input) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ± 10 mA Output current, IO . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ± 10 mA Continuous total power dissipation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Dissipation Rating Table Operating free-air temperature range, TA: C-suffix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 0°C to 70°C I-suffix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . −40°C to 125°C Maximum junction temperature, TJ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 150°C Storage temperature range, Tstg . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . −65°C to 150°C Lead temperature 1,6 mm (1/16 inch) from case for 10 seconds . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 260°C † Stresses beyond those listed under “absolute maximum ratings” may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under “recommended operating conditions” is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability. NOTE 1: All voltage values, except differential voltages, are with respect to GND. DISSIPATION RATING TABLE PACKAGE ΘJC (°C/W) ΘJA (°C/W) TA ≤ 25°C 25 C POWER RATING TA = 125 125°C C POWER RATING D (8) 38.3 176 710 mW 142 mW D (14) 26.9 122.3 1022 mW 204.4 mW D (16) 25.7 114.7 1090 mW 218 mW DBV (5) 55 324.1 385 mW 77.1 mW DBV (6) 55 294.3 425 mW 85 mW DGK (8) 54.2 259.9 481 mW 96.2 mW DGS (10) 54.1 257.7 485 mW 97 mW N (14, 16) 32 78 1600 mW 320.5 mW P (8) 41 104 1200 mW 240.4 mW PW (14) 29.3 173.6 720 mW 144 mW PW (16) 28.7 161.4 774 mW 154.9 mW recommended operating conditions Single supply Supply voltage, VDD Split supply Common-mode input voltage range, VICR Operating free-air temperature, TA Shutdown on/off voltage level‡ C-suffix I-suffix VIH VDD < 2.7 V VDD = 2.7 to 3.6 V VIL MAX 1.8 3.6 ±0.9 ±1.8 V −0.2 V 0 VDD+0.2 70 −40 125 0.75VDD 2 WWW.TI.COM UNIT °C V 0.6 ‡ Relative to GND. 4 MIN                      ! ! SLOS245E − MARCH 2000 − REVISED JANUARY 2005 electrical characteristics at specified free-air temperature, VDD = 1.8 V, 2.7 V (unless otherwise noted) dc performance PARAMETER TEST CONDITIONS TA† MIN 25°C TLV278x VIO αVIO Input offset voltage VO = VDD/2, RL = 2 kΩ, RS = 50 Ω AVD 3000 250 Full range 2000 VIC = 0 to VDD, RS = 50 Ω RL = 2 kΩ, VO(PP) = 1 V VDD = 1.8 V VDD = 2.7 V/ 3.6 V VDD = 2.7 V/ 3.6 V VDD = 1.8 V UNIT µV V 3000 V/°C µV/°C 8 VIC = 1.2 V to VDD, RS = 50 Ω Large-signal differential voltage amplification 250 4500 Temperature coefficient of input offset voltage CMRR Common-mode rejection ratio MAX Full range 25°C TLV278xA TYP 25°C 50 Full range 50 25°C 55 Full range 50 25°C 70 Full range 70 25°C 200 Full range 50 25°C 200 76 80 dB 100 600 V/mV 1000 VDD = 2.7 V/ 3.6 V Full range 70 † Full range is 0°C to 70°C for the C-suffix and −40°C to 125°C for the I-suffix. If not specified, full range is − 40°C to 125°C. input characteristics PARAMETER IIO IIB ri(d) TEST CONDITIONS Input offset current VO = VDD/2, RL = 2 kΩ, RS = 50 Ω Input bias current TA† 25°C MIN TYP MAX 2.5 15 TLV278xC Full range 100 TLV278xI Full range 300 25°C 2.5 Full range 100 TLV278xI Full range 300 25°C pA 15 TLV278xC Differential input resistance UNIT pA 1000 GΩ Ci(c) Common-mode input capacitance f = 1 kHz 25°C 19 † Full range is 0°C to 70°C for the C-suffix and −40°C to 125°C for the I-suffix. If not specified, full range is − 40°C to 125°C. pF WWW.TI.COM 5                      ! ! SLOS245E − MARCH 2000 − REVISED JANUARY 2005 electrical characteristics at specified free-air temperature, VDD = 1.8 V, 2.7 V (unless otherwise noted) (continued) output characteristics PARAMETER IOH = − 1 mA VOH TA† MIN TYP 25°C 1.7 1.77 VDD = 1.8 V Full range 1.63 25°C 2.6 VDD = 2.7 V Full range 2.6 VDD = 3.6 V 25°C TEST CONDITIONS High-level output voltage IOH = − 5 mA 2.68 1.5 VDD = 1.8 V Full range 1.46 25°C 2.5 VDD = 2.7 V Full range 2.45 VDD = 3.6 V 25°C 2.55 3.55 70 Full range 80 25°C Low-level output voltage VDD = 1.8 V Full range VDD = 2.7 V Full range IOL = 5 mA IO IOS 180 Output current VDD = 2.7 V, VO = 0.5 V from 120 170 10 Negative rail 15 25°C mA 17 Negative rail 23 13 Sourcing VDD = 1.8 V VDD = 2.7 V Sinking VDD = 1.8 V VDD = 2.7 V Short-circuit output current mV 200 Positive rail Positive rail 240 290 25°C VDD = 1.8 V, VO = 0.5 V from V 1.55 25°C VOL UNIT 3.58 25°C IOL = 1 mA MAX 35 25°C mA 21 45 † Full range is 0°C to 70°C for the C-suffix and −40°C to 125°C for the I-suffix. If not specified, full range is − 40°C to 125°C. power supply PARAMETER IDD kSVR Supply current (per channel) Supply voltage rejection ratio ((∆V VDD //∆V VIO) TEST CONDITIONS VO = VDD/2, SHDN = VDD VDD = 1.8 V to 2.7 V, VIC = VDD /2 No load, VDD = 2.7 V to 3.6 V, VIC = VDD /2 No load, VDD = 1.8 V to 3.6 V, VIC = VDD /2 No load, TA† 25°C MIN TYP MAX 650 770 Full range 820 25°C 60 Full range 58 25°C 75 Full range 70 25°C 65 WWW.TI.COM µA A 75 90 dB 80 Full range 60 † Full range is 0°C to 70°C for the C-suffix and −40°C to 125°C for the I-suffix. If not specified, full range is − 40°C to 125°C. 6 UNIT                      ! ! SLOS245E − MARCH 2000 − REVISED JANUARY 2005 electrical characteristics at specified free-air temperature, VDD = 1.8 V, 2.7 V (unless otherwise noted) (continued) dynamic performance PARAMETER UGBW SR+ Unity gain bandwidth Positive slew rate at unity gain TA† TEST CONDITIONS RL = 2 kΩ, CL = 25 pF VO(PP) = 1 V, RL = 2 kΩ, kΩ CL = 50 pF MIN 25°C 25°C 3.3 Full range 3.1 25°C 3.8 VDD = 2.7 V Full range 3.5 25°C SR− φm Negative slew rate at unity gain Settling time 4 Full range 3.6 25°C 2.1 VDD = 1.8 V Full range 1.89 25°C 2.2 VDD = 2.7 V Full range 1.97 25°C 3.5 VDD = 3.6 V Full range 3.4 Phase margin Gain margin ts VO(PP) = 1 V, RL = 2 kΩ, kΩ CL = 50 pF MAX 8 VDD = 1.8 V VDD = 3.6 V TYP UNIT MHz 4.3 4.8 5 V/ s V/µs 2.8 2.8 4.2 58° 25°C RL = 2 kΩ, CL = 25 pF VDD = 1.8 V, V(STEP)PP = 1 V, AV = −1, CL = 10 pF, RL = 2 kΩ 0.1% VDD = 2.7 V, V(STEP)PP = 1 V, AV = −1, CL = 10 pF, RL = 2 kΩ 0.1% 1.7 0.01% 2.4 8 dB 1.7 0.01% 2.8 µss 25°C † Full range is 0°C to 70°C for the C-suffix and −40°C to 125°C for the I-suffix. If not specified, full range is − 40°C to 125°C. noise/distortion performance PARAMETER THD + N Total harmonic distortion plus noise TEST CONDITIONS VO(PP) = VDD/2, RL = 2 kΩ, f = 10 kHz Equivalent input noise voltage In Equivalent input noise current MIN AV = 1 AV = 10 AV = 100 f = 1 kHz Vn TA TYP MAX UNIT 0.055% 0.08% 0.45% 25°C 18 f = 10 kHz nV/√Hz 9 f = 1 kHz 0.9 fA /√Hz shutdown characteristics PARAMETER IDD(SHDN) Supply current, per channel in shutdown mode (TLV2780, TLV2783, TLV2785) TEST CONDITIONS SHDN = 0 V TA† 25°C Full range MIN TYP MAX 900 1400 1700 UNIT nA t(on) Amplifier turnon time‡ RL = 2 kΩ 800 25°C ns t(off) Amplifier turnoff time‡ RL = 2 kΩ 200 † Full range is 0°C to 70°C for the C-suffix and −40°C to 125°C for the I-suffix. If not specified, full range is − 40°C to 125°C. ‡ Disable time and enable time are defined as the interval between application of the logic signal to SHDN and the point at which the supply current has reached half its final value. WWW.TI.COM 7                      ! ! SLOS245E − MARCH 2000 − REVISED JANUARY 2005 TYPICAL CHARACTERISTICS Table of Graphs FIGURE VIO CMRR Input offset voltage vs Common-mode input voltage Common-mode rejection ratio vs Frequency VOH VOL High-level output voltage vs High-level output current 4, 6 Low-level output voltage vs Low-level output current 5, 7 VO(PP) Zo Maximum peak-to-peak output voltage vs Frequency Output impedance vs Frequency 9 IDD IDD Supply current vs Supply voltage 10 Supply current vs Free-air temperature 11 PSRR Power supply rejection ratio vs Frequency 12 AVD Differential voltage amplification & phase vs Frequency 13 Gain-bandwidth product vs Free-air temperature 14 vs Supply voltage 1, 2 3 8 15 SR Slew rate φm Vn Phase margin vs Load capacitance 18 Equivalent input noise voltage vs Frequency 19 Voltage-follower large-signal pulse response vs Time 20 Voltage-follower small-signal pulse response vs Time 21 Inverting large-signal pulse response vs Time 22 Inverting small-signal pulse response vs Time 23 Crosstalk vs Frequency 24 Shutdown forward & reverse isolation vs Frequency 25 IDD(SHDN) IDD(SHDN) Shutdown supply current vs Free-air temperature 26 Shutdown supply current vs Supply voltage 27 IDD(SHDN) Shutdown supply current/output voltage vs Time 28 8 vs Free-air temperature WWW.TI.COM 16, 17                      ! ! SLOS245E − MARCH 2000 − REVISED JANUARY 2005 TYPICAL CHARACTERISTICS INPUT OFFSET VOLTAGE vs COMMON-MODE INPUT VOLTAGE 400 100 VDD=1.8 V 50 TA=25° C VIO − Input Offset Voltage − µ V VIO − Input Offset Voltage − µ V 200 VDD=2.7 V 0 −200 −400 −600 −800 TA=25 °C 0 −50 −100 −150 −200 −250 −300 −350 −1000 −0.2 0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2 VICR − Common-Mode Input Voltage − V −400 −0.2 0.2 0.6 1 1.4 1.8 2.2 2.6 3 VICR − Common-Mode Input Voltage − V Figure 1 Figure 2 HIGH-LEVEL OUTPUT VOLTAGE vs HIGH-LEVEL OUTPUT CURRENT 1.2 1.0 TA = 125°C 0.8 TA = 70°C TA = 25°C TA = 0°C TA = −40°C 0.6 0.4 0.2 1.6 1.4 TA=125°C 1.2 TA=70°C 1.0 TA=25°C TA=0°C TA=−40°C 0.8 0.6 0.4 0.2 4 6 8 10 12 14 0 16 VDD= 2.7 V 2.4 2.1 TA=125°C 1.8 TA= 70°C TA=25°C TA=0°C TA=−40°C 1.5 1.2 0.9 0.6 0.3 0.0 0 5 10 15 20 25 30 35 40 45 50 55 IOL − Low-Level Output Current − mA Figure 7 V O(PP) − Maximum Peak-To-Peak Output Voltage − V 2.7 1.8 1.5 TA=125°C 1.2 TA=70°C 0.9 TA=25°C TA=0°C TA=−40°C 0.6 0.3 0 0 5 10 2.2 2.0 1.8 VO(PP)= 1.8 V 1.4 1.2 0.4 100 35 40 VDD = 2.7 V TA = 25° C VO(PP)= 2.7 V 2.4 0.6 30 100 2.6 0.8 25 OUTPUT IMPEDANCE vs FREQUENCY 2.8 1.0 20 Figure 6 MAXIMUM PEAK-TO-PEAK OUTPUT VOLTAGE vs FREQUENCY 1.6 15 IOH − High-Level Output Current − mA Figure 5 Figure 4 LOW-LEVEL OUTPUT VOLTAGE vs LOW-LEVEL OUTPUT CURRENT 10M 2.1 IOL − Low-Level Output Current − mA IOH − High-Level Output Current − mA 1M VDD = 2.7 V 2.4 2 4 6 8 10 12 14 16 18 20 22 24 26 28 Z o − Output Impedance − Ω 2 1k 10k 100k 100 f − Frequency − Hz 10 2.7 0.0 0.0 0 VDD = 1.8 V HIGH-LEVEL OUTPUT VOLTAGE vs HIGH-LEVEL OUTPUT CURRENT V OH − High-Level Output Voltage − V VOL − Low-Level Output Voltage − V V OH − High-Level Output Voltage − V 1.4 VDD = 2.7 V Figure 3 VDD=1.8 V VDD=1.8 V VDD = 3.6 V 0 1.8 1.6 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 LOW-LEVEL OUTPUT VOLTAGE vs LOW-LEVEL OUTPUT CURRENT 1.8 VOL − Low-Level Output Voltage − V COMMON-MODE REJECTION RATIO vs FREQUENCY CMRR − Common-Mode Rejection Ratio − dB INPUT OFFSET VOLTAGE vs COMMON-MODE INPUT VOLTAGE AV = −10 RL=2 kΩ CL = 10 pF TA = 25° C 1k 10 k 100 k f − Frequency − Hz Figure 8 WWW.TI.COM 1M 10 M 10 1 AV = 10 AV = 1 0.1 100 1k 10k 100k f − Frequency − Hz 1M 10M Figure 9 9                      ! ! SLOS245E − MARCH 2000 − REVISED JANUARY 2005 TYPICAL CHARACTERISTICS 1.4 600 1.35 I DD − Supply Current − mA I DD − Supply Current − µ A 700 TA = 125°C 500 TA = −40°C 400 TA = 25°C 300 200 1.3 VDD = 2.7 V 1.2 VDD = 1.8 V 1.15 0.6 1.2 1.8 2.4 3 AV = 1 VIC = VDD/2 1.1 1.05 1 −40 −25 −10 5 20 35 50 65 80 95 110 125 TA − Free-Air Temperature − °C 0 0 VDD = 3.6 V 1.25 AV= 1 VIC = VDD/2 V 100 3.6 VDD − Supply Voltage − V Figure 10 VDD=2.7 V TA=25°C 100 80 60 40 20 0 10 60 50 240 9 210 8 180 150 120 Phase 30 90 20 60 10 30 Gain 0 Gain-Bandwidth Product − MHz VDD = 1.8 V & 2.7 V RL= 2 kΩ CL = 10 pF TA = 25° C 70 0 −10 −30 −20 −60 −30 1M 10 M VDD = 1.8 V 6 5 VDD = 2.7 V 4 3 2 1 RL = 2 kΩ CL = 10 pF f = 10 kHz TA − Free-Air Temperature − °C Figure 14 SLEW RATE vs SUPPLY VOLTAGE SR+ 5 AV = 1 RL = 2 kΩ CL =10 pF VO = 1 VPP VIC = VDD/2 TA = 25° C 3 2 2 2.2 2.4 2.6 2.8 3 3.2 3.4 3.6 VDD − Supply Voltage − V Figure 15 4 SR− 3 VDD = 1.8 V AV = 1 RL=2 kΩ CL=10 pF VIC = VDD/2 2 1 0 −40 −25 −10 5 20 35 50 65 80 95 110 125 TA − Free-Air Temperature − °C Figure 16 WWW.TI.COM SR − Slew Rate − V/µs SR+ SR − Slew Rate − V/µs SR − Slew Rate − V/µs 5 SR− 1 10 6 6 7 0 1.8 SLEW RATE vs FREE-AIR TEMPERATURE SLEW RATE vs FREE-AIR TEMPERATURE 8 4 10 M GAIN-BANDWIDTH PRODUCT vs FREE-AIR TEMPERATURE Figure 13 5 100 k 1 M 0 −40 −25 −10 5 20 35 50 65 80 95 110 125 −120 100 k 10 k 7 −90 10 k 1k f − Frequency − Hz f − Frequency − Hz 6 100 Figure 12 Phase Margin − ° A VD − Differential Voltage Amplification − dB 80 −40 1k 120 Figure 11 DIFFERENTIAL VOLTAGE AMPLIFICATION AND PHASE vs FREQUENCY 40 POWER SUPPLY REJECTION RATIO vs FREQUENCY PSRR − Power Supply Rejection Ratio − dB SUPPLY CURRENT vs FREE-AIR TEMPERATURE SUPPLY CURRENT vs SUPPLY VOLTAGE 4 SR+ SR− 3 VDD = 2.7 V AV = 1 RL= 2 kΩ CL = 10 pF VO = 1 VPP VIC = VDD/2 2 1 0 −40 −25 −10 5 20 35 50 65 80 95 110 125 TA − Free-Air Temperature − °C Figure 17                      ! ! SLOS245E − MARCH 2000 − REVISED JANUARY 2005 TYPICAL CHARACTERISTICS EQUIVALENT INPUT NOISE VOLTAGE vs FREQUENCY 100 Hz 140 90 V n − Equivalent Input Noise Voltage − nV/ PHASE MARGIN vs LOAD CAPACITANCE 120 TA = 25°C Rnull=50 Ω 60 50 40 Rnull=20 Ω 30 VDD = 2.7 V RL = 2 kΩ AV = 1 TA = 25°C 20 10 Rnull=0 Ω 0 10 100 1k 10 k VDD = 2.7 V 100 80 60 40 20 VDD = 1.8 V 0 10 100 Figure 18 1.5 1 V O − Output Voltage − V VI 0.5 2.5 VOLTAGE-FOLLOWER SMALL-SIGNAL PULSE RESPONSE vs TIME VI 1.40 1.35 1.30 V O − Output Voltage − V 2 VO 1.25 1.40 2 VO 1 0.5 0 0 VDD = 2.7 V RL = 2 kΩ CL = 10 pF AV = 1 TA = 25°C 0.2 0.4 0.6 0.8 VDD = 2.7 V RL = 2 kΩ CL = 10 pF AV = 1 TA = 25°C 1.35 1.30 1.25 0 1 1.2 1.4 1.6 1.8 0.2 Figure 20 −0.5 −1 1.5 1 VO 1 1.2 1.4 VDD = 2.7 V RL = 2 kΩ CL = 10 pF AV = −1 TA = 25°C 0.10 0.05 0 VI −0.05 V O − Output Voltage − V 0.5 0 2 0.8 INVERTING SMALL-SIGNAL PULSE RESPONSE vs TIME V I − Input Voltage − V 1 2.5 0.6 Figure 21 INVERTING LARGE-SIGNAL PULSE RESPONSE vs TIME VI 0.4 t − Time − µs t − Time − µs V O − Output Voltage − V 100 k 1.45 V I − Input Voltage − V 2.5 0.5 10 k Figure 19 VOLTAGE-FOLLOWER LARGE-SIGNAL PULSE RESPONSE vs TIME 1.5 1k f − Frequency − Hz CL − Load Capacitance − pF V I − Input Voltage − V 70 0 0 0.3 0.6 0.9 1.2 1.5 1.8 2.1 2.4 2.7 3 3.3 t − Time − µs VDD = 2.7 V RL = 2 kΩ CL = 10 pF AV = −1 TA = 25°C 1.40 1.35 1.30 V I − Input Voltage − V φ m − Phase Margin − ° 80 VO 1.25 0 0.3 0.6 0.9 1.2 1.5 1.8 2.1 2.4 2.7 3 t − Time − µs Figure 22 Figure 23 WWW.TI.COM 11                      ! ! SLOS245E − MARCH 2000 − REVISED JANUARY 2005 TYPICAL CHARACTERISTICS SHUTDOWN FORWARD AND REVERSE ISOLATION vs FREQUENCY CROSSTALK vs FREQUENCY Crosstalk − dB −40 VDD = 1.8 V & 2.7 V VIC = 60% of VDD AV = 1 RL= 2 kΩ TA = 25°C All Channels −80 −100 −120 120 I DD − Shutdown Supply Current − µ A Shutdown Forward Isolation - dB Crosstalk in Shutdown −60 3 140 0 −20 SHUTDOWN SUPPLY CURRENT vs FREE-AIR TEMPERATURE Forward and Reverse Isolation 100 80 60 VDD = 1.8 & 2.7 V VIC = VDD /2 RL = 2 kΩ CL= 10 pF AV = 1 TA = 25°C 40 20 Crosstalk/No Shutdown 0 −140 10 100 1k 10 k f − Frequency − Hz 100 k 10 100 1k 10 k 100 k 1M 10 M 2.5 Shutdown = 0V VIC = VDD/2 AV = 1 2.0 1.5 VDD= 3.6 V 1 VDD = 2.7 V 0.5 VDD = 1.8 V 0 −40 −25 −10 5 20 35 50 65 80 95 110 125 TA − Free-Air Temperature − °C f − Frequency − Hz Figure 24 Figure 25 Figure 26 SHUTDOWN SUPPLY CURRENT / OUTPUT VOLTAGE vs TIME Shutdown = 0 V VIC = VDD/2 AV = 1 2.4 I DD − Supply Current − µ A 2.2 2 1.8 TA = 125°C 1.6 1.4 TA = −40°C 1.2 1 0.8 0.6 0.4 TA = 25°C 0.2 SD − Shutdown Pulse − V 2.6 V O − Output Voltage − mV SHUTDOWN SUPPLY CURRENT vs SUPPLY VOLTAGE 3.0 2.5 2.0 1.5 1.0 0.5 0.0 SD 1.5 1.3 1.0 0.8 0.5 0.3 0.0 VO 0 0.4 0.8 1.2 1.6 2 2.4 2.8 VDD − Supply Voltage − V Figure 27 3.2 3.6 I DD(SD) − Shutdown Current − µ A 0 1.8 1.5 1.3 1.0 0.8 0.5 0.3 0.0 −1 VDD = 2.7 V AV = 1 RL = 10 kΩ CL = 10 pF VIC = VDD/2 TA = 25° C IDD(SD) 0 1 2 3 4 5 Figure 28 12 WWW.TI.COM 6 t − Time − µsec 7 8 9 10                      ! ! SLOS245E − MARCH 2000 − REVISED JANUARY 2005 PARAMETER MEASUREMENT INFORMATION RNULL _ + RL CL Figure 29 APPLICATION INFORMATION driving a capacitive load When the amplifier is configured in this manner, capacitive loading directly on the output will decrease the device’s phase margin leading to high frequency ringing or oscillations. Therefore, for capacitive loads of greater than 10 pF, it is recommended that a resistor be placed in series (RNULL) with the output of the amplifier, as shown in Figure 30. RF RG − Input RF RG RNULL Output + RL RNULL − Input Output + Snubber CL RL CL C (a) (b) Figure 30. Driving a Capacitive Load offset voltage The output offset voltage, (VOO) is the sum of the input offset voltage (VIO) and both input bias currents (IIB) times the corresponding gains. The following schematic and formula can be used to calculate the output offset voltage: RF IIB− RG + − VI RS IIB+ V OO +V IO ǒ ǒ ǓǓ 1) R R F G VO + "I IB) R S ǒ ǒ ǓǓ 1) R R F G "I IB– R F Figure 31. Output Offset Voltage Model WWW.TI.COM 13                      ! ! SLOS245E − MARCH 2000 − REVISED JANUARY 2005 APPLICATION INFORMATION general configurations When receiving low-level signals, limiting the bandwidth of the incoming signals into the system is often required. The simplest way to accomplish this is to place an RC filter at the noninverting terminal of the amplifier (see Figure 32). RG RF − VO + VI R1 C1 f V O + V I ǒ 1) R R F G + –3dB Ǔǒ 1 2pR1C1 Ǔ 1 1 ) 2pfR1C1 Figure 32. Single-Pole Low-Pass Filter If even more attenuation is needed, a multiple pole filter is required. The Sallen-Key filter can be used for this task. For best results, the amplifier should have a bandwidth that is 8 to 10 times the filter frequency bandwidth. Failure to do this can result in phase shift of the amplifier. C1 + _ VI R1 R1 = R2 = R C1 = C2 = C Q = Peaking Factor (Butterworth Q = 0.707) R2 f C2 RG RF RG = Figure 33. 2-Pole Low-Pass Sallen-Key Filter 14 WWW.TI.COM –3dB + ( 1 2pRC RF 1 2− Q )                      ! ! SLOS245E − MARCH 2000 − REVISED JANUARY 2005 APPLICATION INFORMATION circuit layout considerations To achieve the levels of high performance of the TLV278x, follow proper printed-circuit board design techniques. A general set of guidelines is given in the following. D Ground planes − It is highly recommended that a ground plane be used on the board to provide all components with a low inductive ground connection. However, in the areas of the amplifier inputs and output, the ground plane can be removed to minimize the stray capacitance. D Proper power supply decoupling − Use a 6.8-µF tantalum capacitor in parallel with a 0.1-µF ceramic capacitor on each supply terminal. It may be possible to share the tantalum among several amplifiers depending on the application, but a 0.1-µF ceramic capacitor should always be used on the supply terminal of every amplifier. In addition, the 0.1-µF capacitor should be placed as close as possible to the supply terminal. As this distance increases, the inductance in the connecting trace makes the capacitor less effective. The designer should strive for distances of less than 0.1 inches between the device power terminals and the ceramic capacitors. D Sockets − Sockets can be used but are not recommended. The additional lead inductance in the socket pins will often lead to stability problems. Surface-mount packages soldered directly to the printed-circuit board is the best implementation. D Short trace runs/compact part placements − Optimum high performance is achieved when stray series inductance has been minimized. To realize this, the circuit layout should be made as compact as possible, thereby minimizing the length of all trace runs. Particular attention should be paid to the inverting input of the amplifier. Its length should be kept as short as possible. This will help to minimize stray capacitance at the input of the amplifier. D Surface-mount passive components − Using surface-mount passive components is recommended for high performance amplifier circuits for several reasons. First, because of the extremely low lead inductance of surface-mount components, the problem with stray series inductance is greatly reduced. Second, the small size of surface-mount components naturally leads to a more compact layout, thereby minimizing both stray inductance and capacitance. If leaded components are used, it is recommended that the lead lengths be kept as short as possible. shutdown function Three members of the TLV278x family (TLV2780/3/5) have a shutdown terminal for conserving battery life in portable applications. When the shutdown terminal is tied low, the supply current is reduced to 900 nA/channel, the amplifier is disabled, and the outputs are placed in a high impedance mode. To enable the amplifier, the shutdown terminal can either be left floating or pulled high. When the shutdown terminal is left floating, care should be taken to ensure that parasitic leakage current at the shutdown terminal does not inadvertently place the operational amplifier into shutdown. WWW.TI.COM 15                      ! ! SLOS245E − MARCH 2000 − REVISED JANUARY 2005 APPLICATION INFORMATION general power dissipation considerations For a given θJA, the maximum power dissipation is shown in Figure 34 and is calculated by the following formula: P D + Where: ǒ T Ǔ –T MAX A q JA PD = Maximum power dissipation of TLV278x IC (watts) TMAX = Absolute maximum junction temperature (150°C) TA = Free-ambient air temperature (°C) θJA = θJC + θCA θJC = Thermal coefficient from junction to case θCA = Thermal coefficient from case to ambient air (°C/W) MAXIMUM POWER DISSIPATION vs FREE-AIR TEMPERATURE 2 Maximum Power Dissipation − W 1.75 PDIP Package Low-K Test PCB θJA = 104°C/W 1.5 1.25 TJ = 150°C MSOP Package Low-K Test PCB θJA = 260°C/W SOIC Package Low-K Test PCB θJA = 176°C/W 1 0.75 0.5 0.25 SOT-23 Package Low-K Test PCB θJA = 324°C/W 0 −55 −40 −25 −10 5 20 35 50 65 80 95 110 125 TA − Free-Air Temperature − °C NOTE A: Results are with no air flow and using JEDEC Standard Low-K test PCB. Figure 34. Maximum Power Dissipation vs Free-Air Temperature 16 WWW.TI.COM                      ! ! SLOS245E − MARCH 2000 − REVISED JANUARY 2005 APPLICATION INFORMATION macromodel information Macromodel information provided was derived using Microsim Parts Release 9.1, the model generation software used with Microsim PSpice . The Boyle macromodel (see Note 2) and subcircuit in Figure 35 are generated using TLV278x typical electrical and operating characteristics at TA = 25°C. Using this information, output simulations of the following key parameters can be generated to a tolerance of 20% (in most cases): D Maximum positive output voltage swing D Unity-gain frequency D Maximum negative output voltage swing D Common-mode rejection ratio D Slew rate D Phase margin D Quiescent power dissipation D DC output resistance D Input bias current D AC output resistance D Open-loop voltage amplification D Short-circuit output current limit NOTE 2: G. R. Boyle, B. M. Cohn, D. O. Pederson, and J. E. Solomon, “Macromodeling of Integrated Circuit Operational Amplifiers,” IEEE Journal of Solid-State Circuits, SC-9, 353 (1974). 3 99 VDD + egnd rd1 rd2 rss ro2 css fb rp − c1 7 11 12 + c2 vlim 1 + r2 9 6 IN+ − vc D D 8 + − vb ga 2 G G − IN− ro1 gcm ioff 53 S S OUT dp 91 10 iss GND 4 + dc − dlp ve + 54 vlp − 90 dln + hlim − 5 92 − vln + de * TLV2782_HVDD operational amplifier ”macromodel” subcircuit * created using Model Editor release 9.1 on 03/3/00 at 9:47 * Model Editor is an OrCAD product. * * connections: non−inverting input * | inverting input * | | positive power supply * | | | negative power supply * | | | | output * | | | | | .subckt TLV2782_HVDD 12345 * c1 11 12 49.58E−15 c2 6 7 10.200E−12 css 10 99 1.0000E−30 dc 5 53 dy de 54 5 dy dlp 90 91 dx dln 92 90 dx dp 4 3 dx egnd 99 0 poly(2) (3,0) (4,0) 0 .5 .5 fb 7 99 poly(5) vb vc ve vlp vln 0 41.096E6 −1E3 1E3 41E6 −41E6 ga gcm iss hlim j1 J2 r2 rd1 rd2 ro1 ro2 rp rss vb vc ve vlim vlp vln .model .model .model .model .ends 6 0 10 90 11 12 6 3 3 8 7 3 10 9 3 54 7 91 0 dx dy jx1 jx2 0 11 12 544.75E−6 6 10 99 1.1538E−9 4 dc 56.957E−6 0 vlim 1K 2 10 jx1 1 10 jx2 9 100.00E3 11 1.8357E3 12 1.8357E3 5 10 99 10 4 2.1845E3 99 3.5114E6 0 dc 0 53 dc .81911 4 dc .81911 8 dc 0 0 dc 45.400 92 dc 45.400 D(Is=800.00E−18) D(Is=800.00E−18 Rs=1m Cjo=10p) NJF(Is=500.00E−15 Beta=5.2102E−3 Vto=−1) NJF(Is=500.00E−15 Beta=5.2102E−3 Vto=−1) Figure 35. Boyle Macromodel and Subcircuit PSpice and Parts are trademarks of MicroSim Corporation. WWW.TI.COM 17 PACKAGE OPTION ADDENDUM www.ti.com 14-Oct-2022 PACKAGING INFORMATION Orderable Device Status (1) Package Type Package Pins Package Drawing Qty Eco Plan (2) Lead finish/ Ball material MSL Peak Temp Op Temp (°C) Device Marking (3) Samples (4/5) (6) TLV2780CDBVR ACTIVE SOT-23 DBV 6 3000 RoHS & Green NIPDAU Level-1-260C-UNLIM 0 to 70 VASC Samples TLV2780CDBVT ACTIVE SOT-23 DBV 6 250 RoHS & Green NIPDAU Level-1-260C-UNLIM 0 to 70 VASC Samples TLV2780IDBVR ACTIVE SOT-23 DBV 6 3000 RoHS & Green NIPDAU Level-1-260C-UNLIM -40 to 125 VASI Samples TLV2780IDBVT ACTIVE SOT-23 DBV 6 250 RoHS & Green NIPDAU Level-1-260C-UNLIM -40 to 125 VASI Samples TLV2780IDR ACTIVE SOIC D 8 2500 RoHS & Green NIPDAU Level-1-260C-UNLIM -40 to 125 T2780I Samples TLV2781CDBVR ACTIVE SOT-23 DBV 5 3000 RoHS & Green NIPDAU Level-1-260C-UNLIM 0 to 70 VATC Samples TLV2781CDBVT ACTIVE SOT-23 DBV 5 250 RoHS & Green NIPDAU Level-1-260C-UNLIM 0 to 70 VATC Samples TLV2781ID ACTIVE SOIC D 8 75 RoHS & Green NIPDAU Level-1-260C-UNLIM -40 to 125 T2781I Samples TLV2781IDBVR ACTIVE SOT-23 DBV 5 3000 RoHS & Green NIPDAU Level-1-260C-UNLIM -40 to 125 VATI Samples TLV2781IDBVT ACTIVE SOT-23 DBV 5 250 RoHS & Green NIPDAU Level-1-260C-UNLIM -40 to 125 VATI Samples TLV2781IDR ACTIVE SOIC D 8 2500 RoHS & Green NIPDAU Level-1-260C-UNLIM -40 to 125 T2781I Samples TLV2782AID ACTIVE SOIC D 8 75 RoHS & Green NIPDAU Level-1-260C-UNLIM -40 to 125 2782AI Samples TLV2782CD ACTIVE SOIC D 8 75 RoHS & Green NIPDAU Level-1-260C-UNLIM 0 to 70 2782C Samples TLV2782CDG4 ACTIVE SOIC D 8 75 RoHS & Green NIPDAU Level-1-260C-UNLIM 0 to 70 2782C Samples TLV2782CDGK ACTIVE VSSOP DGK 8 80 RoHS & Green NIPDAU | NIPDAUAG Level-1-260C-UNLIM 0 to 70 ADL Samples TLV2782CDGKR ACTIVE VSSOP DGK 8 2500 RoHS & Green NIPDAU | NIPDAUAG Level-1-260C-UNLIM 0 to 70 ADL Samples TLV2782CDR ACTIVE SOIC D 8 2500 RoHS & Green NIPDAU Level-1-260C-UNLIM 0 to 70 2782C Samples TLV2782ID ACTIVE SOIC D 8 75 RoHS & Green NIPDAU Level-1-260C-UNLIM -40 to 125 2782I Samples TLV2782IDGK ACTIVE VSSOP DGK 8 80 RoHS & Green NIPDAU | NIPDAUAG Level-1-260C-UNLIM -40 to 125 ADM Samples TLV2782IDGKR ACTIVE VSSOP DGK 8 2500 RoHS & Green NIPDAU | NIPDAUAG Level-1-260C-UNLIM -40 to 125 ADM Samples Addendum-Page 1 PACKAGE OPTION ADDENDUM www.ti.com 14-Oct-2022 Orderable Device Status (1) Package Type Package Pins Package Drawing Qty Eco Plan (2) Lead finish/ Ball material MSL Peak Temp Op Temp (°C) Device Marking (3) Samples (4/5) (6) TLV2782IDR ACTIVE SOIC D 8 2500 RoHS & Green NIPDAU Level-1-260C-UNLIM -40 to 125 2782I Samples TLV2782IP ACTIVE PDIP P 8 50 RoHS & Green NIPDAU N / A for Pkg Type -40 to 125 TLV2782IP Samples TLV2783IDGS ACTIVE VSSOP DGS 10 80 RoHS & Green NIPDAU Level-1-260C-UNLIM -40 to 125 ADO Samples TLV2783IDGSR ACTIVE VSSOP DGS 10 2500 RoHS & Green NIPDAU Level-1-260C-UNLIM -40 to 125 ADO Samples TLV2783IN ACTIVE PDIP N 14 25 RoHS & Green NIPDAU N / A for Pkg Type -40 to 125 TLV2783I Samples TLV2784AID ACTIVE SOIC D 14 50 RoHS & Green NIPDAU Level-1-260C-UNLIM -40 to 125 2784AI Samples TLV2784AIDR ACTIVE SOIC D 14 2500 RoHS & Green NIPDAU Level-1-260C-UNLIM -40 to 125 2784AI Samples TLV2784CPWR ACTIVE TSSOP PW 14 2000 RoHS & Green NIPDAU Level-1-260C-UNLIM 0 to 70 2784C Samples TLV2784ID ACTIVE SOIC D 14 50 RoHS & Green NIPDAU Level-1-260C-UNLIM -40 to 125 TLV2784I Samples TLV2784IDR ACTIVE SOIC D 14 2500 RoHS & Green NIPDAU Level-1-260C-UNLIM -40 to 125 TLV2784I Samples TLV2784IPW ACTIVE TSSOP PW 14 90 RoHS & Green NIPDAU Level-1-260C-UNLIM -40 to 125 2784I Samples TLV2784IPWR ACTIVE TSSOP PW 14 2000 RoHS & Green NIPDAU Level-1-260C-UNLIM -40 to 125 2784I Samples TLV2785AID ACTIVE SOIC D 16 40 RoHS & Green NIPDAU Level-1-260C-UNLIM -40 to 125 2785AI Samples TLV2785CPWR ACTIVE TSSOP PW 16 2000 RoHS & Green NIPDAU Level-1-260C-UNLIM 0 to 70 2785C Samples TLV2785IN ACTIVE PDIP N 16 25 RoHS & Green NIPDAU N / A for Pkg Type -40 to 125 TLV2785I Samples TLV2785IPWR ACTIVE TSSOP PW 16 2000 RoHS & Green NIPDAU Level-1-260C-UNLIM -40 to 125 2785I Samples (1) The marketing status values are defined as follows: ACTIVE: Product device recommended for new designs. LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect. NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design. PREVIEW: Device has been announced but is not in production. Samples may or may not be available. OBSOLETE: TI has discontinued the production of the device. Addendum-Page 2 PACKAGE OPTION ADDENDUM www.ti.com 14-Oct-2022 (2) RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may reference these types of products as "Pb-Free". RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption. Green: TI defines "Green" to mean the content of Chlorine (Cl) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of
TLV2782AID 价格&库存

很抱歉,暂时无法提供与“TLV2782AID”相匹配的价格&库存,您可以联系我们找货

免费人工找货