0
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
会员中心
创作中心
发布
  • 发文章

  • 发资料

  • 发帖

  • 提问

  • 发视频

创作活动
TLV320DAC3101IRHBR

TLV320DAC3101IRHBR

  • 厂商:

    BURR-BROWN(德州仪器)

  • 封装:

    VQFN-32_5X5MM-EP

  • 描述:

    IC STER/AUD DAC CLASS-D LP 32QFN

  • 数据手册
  • 价格&库存
TLV320DAC3101IRHBR 数据手册
Product Folder Order Now Support & Community Tools & Software Technical Documents TLV320DAC3101 SLAS666B – JANUARY 2010 – REVISED OCTOBER 2018 Low-Power Stereo Audio DAC With Audio Processing and Stereo Class-D Speaker Amplifier 1 Introduction 1.2 1.1 Features • Stereo Audio DAC With 95-dB SNR • Supports 8-kHz to 192-kHz Sample Rates • Stereo 1.29-W Class-D BTL 8-Ω Speaker Driver With Direct Battery Connection • 25 Built-In Processing Blocks (PRB_P1 – PRB_P25) Providing Biquad Filters, DRC, and 3D • Digital Sine-Wave Generator for Beeps and KeyClicks (PRB_P25) • User-Programmable Biquad and FIR Filters • Two Single-Ended Inputs With Mixing and Output Level Control • Stereo Headphone or Lineout and Class-D Speaker Outputs Available • Microphone Bias • Headphone Detection • Digital Mixing Capability • Pin Control or Register Control for Digital-Playback Volume-Control Settings • Programmable PLL for Flexible Clock Generation • I2S, Left-Justified, Right-Justified, DSP, and TDM Audio Interfaces • I2C Control With Register Auto-Increment • Full Power-Down Control • Power Supplies: – Analog: 2.7 V–3.6 V – Digital Core: 1.65 V–1.95 V – Digital I/O: 1.1 V–3.6 V – Class-D: 2.7 V–5.5 V (SPLVDD and SPRVDD ≥ AVDD) • 5-mm × 5-mm 32-QFN Package 1 • • • Applications Portable Audio Devices Mobile Internet Devices e-Books 1.3 Description The TLV320DAC3101 device is a low-power, highly integrated, high-performance DAC with selectable digital audio processing blocks and 24-bit stereo playback. The device integrates headphone drivers and speaker drivers. The TLV320DAC3101 device has a suite of built-in processing blocks for digital audio processing. The digital audio data format is programmable to work with popular audio standard protocols (I2S, left-justified, and right-justified) in master, slave, DSP, and TDM modes. Bass boost, treble, or EQ is supported by the programmable digital signal-processing block. An on-chip PLL provides the high-speed clock needed by the digital signal-processing block. The volume level is controlled by either pin control or by register control. The audio functions are controlled using the I2C serial bus. The TLV320DAC3101 device has a programmable digital sine-wave generator and is available in a 32-pin QFN package. Device Information (1) PART NUMBER TLV320DAC3101 (1) PACKAGE BODY SIZE QFN (RHB) 5.00 mm x 5.00 mm For more information, see , Mechanical, Packaging, and Orderable Information. 1 An IMPORTANT NOTICE at the end of this data sheet addresses availability, warranty, changes, use in safety-critical applications, intellectual property matters and other important disclaimers. PRODUCTION DATA. TLV320DAC3101 SLAS666B – JANUARY 2010 – REVISED OCTOBER 2018 1.4 www.ti.com Functional Block Diagram AVSS AVDD HPVSS HPVDD SPLVSS SPRVSS SPLVDD SPRVDD P0/R116 7-Bit Vol ADC VOL/MICDET Audio Output Stage Power Management Left and Right Volume-Control Register P0/R117 P1/R33–R34 GPIO1 SDA SCL GPIO De-Pop and Soft Start 2 I C RC CLK AIN1 AIN2 MCLK Note: Normally, MCLK is PLL input; however, BCLK or GPIO1 can also be P0/R63/D5–D4 PLL input. L Data R Data PLL (L+R)/2 Data Left DAC P1/R42 6 dB to 24 dB (6-dB steps) SPLP SPLM Analog Class A/B Attenuation Headphone/Lineout Driver 0 dB to –78 dB and Mute 0 dB to 9 dB (0.5-dB steps) (1-dB steps) P1/R36 Serial Interface and Clocks Process- Digital Vol ing 24 dB to Blocks Mute HPL MIXER P1/R35 P1/R30–R31 Analog Attenuation 0 dB to –78 dB and Mute (0.5-dB steps) Class-D Speaker Driver P1/R39 P1/R43 Right DAC L Data R Data (L+R)/2 Data DAC 6 dB to 24 dB (6-dB steps) SPRP SPRM S P0/R64–R66 P1/R46 P1/R40 AIN2 P0/R63/D3–D2 MICBIAS P1/R38 AIN1 SDIN RESET Class-D Speaker Driver S DAC WCLK BCLK Analog Attenuation 0 dB to –78 dB and Mute (0.5-dB steps) Analog Class A/B Attenuation Headphone/Lineout Driver 0 dB to –78 dB and Mute 0 dB to 9 dB (0.5-dB steps) (1-dB steps) 2 V/2.5 V/AVDD P1/R37 P1/R41 HPR P1/R30–R31 IOVSS IOVDD DVSS DVDD B0360-02 Figure 1-1. Functional Block Diagram NOTE This data manual is designed using PDF document-viewing features that allow quick access to information. For example, performing a global search on page 0 / register 27 produces all references to this page and register in a list. This makes it easy to traverse the list and find all information related to a page and register. Note that the search string must be of the indicated format. Also, this document includes document hyperlinks to allow the user to quickly find a document reference. To come back to the original page, click the green left arrow near the PDF page number at the bottom of the file. The hot-key for this function is altleft arrow on the keyboard. A different way to find information quickly is to use the PDF bookmarks. 2 Introduction Copyright © 2010–2018, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: TLV320DAC3101 TLV320DAC3101 www.ti.com SLAS666B – JANUARY 2010 – REVISED OCTOBER 2018 2 Revision History NOTE: Page numbers for previous revisions may differ from page numbers in the current version. Changes from Revision A (May 2012) to Revision B • • • • • • • • • • • • • • • • Page Added Device Information table, ESD Ratings table, Feature Description section, Application and Implementation section, Power Supply Recommendations section, Layout section, Device and Documentation Support section, and Mechanical, Packaging, and Orderable Information section. ......................................... 1 Added Power-Supply Sequence section to the Device Initialization section ................................................ 19 Changed Section 6.3.10.1.2 diagrams for PRB_P2/5/8/10/13/15/18/21/24/25 to reflect that the DRC_HPF filter cannot be bypassed when the DRC is turned off .............................................................................. 26 Added sequence for inserting a beep in the middle of an already-playing signal and note text following script in the Key-Click Functionality With Digital Sine-Wave Generator (PRB_P25) section........................................ 42 Changed PRB_Rx to PRB_Px in DAC Setup section .......................................................................... 48 Changed text from: "the rising edge of the word clock..." To: "the rising edge of the word clock..." in the DSP Mode 60 Changed DOSR note in Page 0 / Register 14 by switching multiple value for Filter Type A and Filter Type C ........ 68 Changed description in Page 0 / Register 14 to remove parameters for miniDSP ......................................... 68 Changed reset value to include all bits instead of just two (xx) ............................................................... 74 Deleted reference to Dig_Mic_In in Page 0 / Register 54 table for bits D2-D1 ............................................. 75 Changed values in Page 0 / Register 69 (0x45): DRC Control 2 ............................................................. 78 Changed Page 0, Register 70, bit D3-D0 decay rate value for 0000 from DR = 1.5625e–3 to DR = 0.015625 ........ 78 Switched D1 and D0 descriptions so that D1 is for SP and D0 is for HP in Page 1 / Register 30 table ................ 81 Changed Page 1 / Register 40, D1 to reserved ................................................................................. 84 Changed Page 1 / Register 41, D1 to reserved ................................................................................. 84 Added Figure 9-1 ................................................................................................................. 100 Changes from Original (January, 2010) to Revision A • • • • • • • • • • • Page Changed register 36 to register 35. ............................................................................................... Added D6–D0 to the Register Value column heading and changed Analog Attenuation to Analog Gain. .............. Deleted Analog Volume Control for Headphone and Speaker Outputs (for D7=0) table and added table note to D7=1 table. ........................................................................................................................... Changed page 0 to page 1 in section 5.5.12.1. ................................................................................. Added 80 MHz ≤ (PLL_CLKIN × J.D × R/P) ≤ 110 MHz and 4 ≤ R × J ≤ 259 underneath Equation 8 .................. Added Timer section and image after PLL section.............................................................................. Added table note to Page 0 / Register 64 (0x40): DAC VOLUME CONTROL. ............................................. Changed D0=1 to Reserved in Page 1 / Register 33. .......................................................................... Removed extraneous cross-references for deleted table. ..................................................................... Added table note following Page 1 / Register 40 ............................................................................... Added table note to Page 1 / Register 41 (0x29): HPR Driver. ............................................................... Revision History Copyright © 2010–2018, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: TLV320DAC3101 24 45 45 46 55 57 76 82 83 84 84 3 TLV320DAC3101 SLAS666B – JANUARY 2010 – REVISED OCTOBER 2018 www.ti.com 3 Pin Configuration and Functions DVSS AVDD 17 16 AVSS SPRP 26 15 NC HPL 27 14 AIN2 HPVDD 28 13 AIN1 HPVSS 29 12 MICBIAS HPR 30 11 VOL/MICDET RESET 31 10 SCL 32 1 9 SDA 2 3 4 5 6 7 8 MCLK SPLM 18 BCLK 19 WCLK SPLVSS 20 DIN SPLVDD 21 NC 22 DVDD 23 IOVDD SPLP SPRVDD 24 25 IOVSS SPRVSS SPRM RHB Package (Top View) GPIO1 P0048-14 3.1 Pin Attributes Table 3-1. Pin Functions PIN NAME NO. AIN1 13 AIN2 AVDD I/O DESCRIPTION I Analog input #1 routed to output mixer 14 I Analog input #2 routed to output mixer 17 – Analog power supply AVSS 16 – Analog ground BCLK 7 I/O DIN 5 I Audio serial data input DVDD 3 – Digital power – digital core DVSS 18 – Digital ground GPIO1 32 I/O General-purpose input/output and multifunction pin HPL 27 O Left-channel headphone/line driver output HPR 30 O Right-channel headphone/line driver output HPVDD 28 – Headphone/line driver and PLL power HPVSS 29 – Headphone/line driver and PLL ground IOVDD 2 – Interface power IOVSS 1 – Interface ground MCLK 8 I External master clock MICBIAS 12 – Microphone bias for external microphone 4, 15 I No connecton Device reset NC Audio serial bit clock RESET 31 I SDL 10 I/O I2C control bus clock input SDA 9 I/O I2C control bus data input SPLM 19 O Left-channel class-D speaker-driver inverting output 4 Pin Configuration and Functions Copyright © 2010–2018, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: TLV320DAC3101 TLV320DAC3101 www.ti.com SLAS666B – JANUARY 2010 – REVISED OCTOBER 2018 Table 3-1. Pin Functions (continued) PIN I/O DESCRIPTION NAME NO. SPLP 22 O Left-channel class-D speaker-driver noninverting output SPLVDD 21 – Left-channel class-D speaker-driver power supply SPLVSS 20 – Left-channel class-D speaker-driver power supply ground SPRM 23 O Right-channel class-D speaker-driver inverting output SPRP 26 O Right-channel class-D speaker-driver noninverting output SPRVDD 24 – Right-channel class-D speaker-driver power supply SPRVSS 25 – Right-channel class-D speaker-driver power-supply ground VOL/MICDET 11 I Volume control or headphone detection. Note that microphone detection is also available on devices that have an ADC. WCLK 6 I/O Audio serial word clock Pin Configuration and Functions Copyright © 2010–2018, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: TLV320DAC3101 5 TLV320DAC3101 SLAS666B – JANUARY 2010 – REVISED OCTOBER 2018 www.ti.com Table of Contents 1 Introduction ............................................... 1 1.1 Features .............................................. 1 1.2 Applications ........................................... 1 1.3 Description ............................................ 1 1.4 Functional Block Diagram ............................ 2 5 6 ......................... 4.9 DSP Timing in Slave Mode 4.10 I2C Interface Timing ................................. 13 12 4.11 Typical Characteristics .............................. 14 Parameter Measurement Information .............. 17 Detailed Description ................................... 18 2 3 Revision History ......................................... 3 Pin Configuration and Functions ..................... 4 6.1 Overview 6.2 Functional Block Diagram ........................... 19 Pin Attributes ......................................... 4 6.3 Feature Description 4 Specifications ............................................ 7 Absolute Maximum Ratings .......................... 7 ESD Ratings .......................................... 7 Recommended Operating Conditions ................ 7 Thermal Information .................................. 8 Electrical Characteristics ............................. 8 Power Dissipation Ratings ........................... 9 I2S, LJF, and RJF Timing in Slave Mode ........... 10 DSP Timing in Master Mode ........................ 11 6.4 Register Map ........................................ 65 3.1 4.1 4.2 4.3 4.4 4.5 4.6 4.7 4.8 6 7 8 9 ............................................ ................................. 18 19 Application and Implementation .................... 97 7.1 Application Information .............................. 97 7.2 Typical Application .................................. 97 Power Supply Recommendations .................. 99 Layout ................................................... 100 9.1 Layout Guidelines .................................. 100 9.2 Layout Example .................................... 100 Table of Contents Copyright © 2010–2018, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: TLV320DAC3101 TLV320DAC3101 www.ti.com SLAS666B – JANUARY 2010 – REVISED OCTOBER 2018 4 Specifications 4.1 Absolute Maximum Ratings over operating free-air temperature range (unless otherwise noted) (1) MIN MAX UNIT AVDD to AVSS -0.3 3.9 V DVDD to DVSS -0.3 2.5 V HPVDD to HPVSS -0.3 3.9 V SPLVDD to SPLVSS -0.3 6 V SPRVDD to SPRVSS -0.3 6 V IOVDD to IOVSS -0.3 3.9 V Digital input voltage IVOSS – 0.3 IVODD + 0.3 V Analog input voltage AVSS – 0.3 AVDD + 0.3 V Operating temperature –40 Junction temperature (TJ Max) Storage temperature, Tstg -55 Power dissipation °C °C 150 °C (TJ Max - TA)/RθJA W 35 °C/W RθJA thermal impedance (with thermal pad soldered to board) (1) 85 105 Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under Recommended Operating Conditions is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability. 4.2 ESD Ratings VALUE Electrostatic discharge V(ESD) (1) (2) Human-body model (HBM), per ANSI/ESDA/JEDEC JS-001 (1) ±2000 Charged-device model (CDM), per JEDEC specification JESD22-C101 (2) ±1000 UNIT V JEDEC document JEP155 states that 500-V HBM allows safe manufacturing with a standard ESD control process. JEDEC document JEP157 states that 250-V CDM allows safe manufacturing with a standard ESD control process. 4.3 Recommended Operating Conditions over operating free-air temperature range (unless otherwise noted) AVDD (1) Referenced to AVSS (2) DVDD Referenced to DVSS HPVDD SPLVDD (1) (2) Referenced to HPVSS Power-supply voltage SPRVDD (1) IOVDD (2) 3.6 1.65 1.8 1.95 2.7 3.3 3.6 5.5 Referenced to SPRVSS (2) 2.7 5.5 Referenced to IOVSS (2) Headphone impedance AC coupled to RL Analog audio full-scale input voltage AVDD = 3.3 V, single-ended Stereo line output load impedance AC coupled to RL MCLK (3) Master clock frequency IOVDD = 3.3 V fSCL SCL clock frequency TA Operating free-air temperature (3) MAX 3.3 2.7 Speaker impedance (1) (2) NOM 2.7 Referenced to SPLVSS (2) Resistance applied across class-D output pins (BTL) VI MIN 1.1 3.3 UNIT V 3.6 8 Ω 16 Ω 0.707 VRMS 10 –40 kΩ 50 MHz 400 kHz 105 °C To minimize battery-current leakage, the SPLVDD and SPRVDD voltage levels must not be below the AVDD voltage level. All grounds on board are tied together, so they must not differ in voltage by more than 0.2-V maximum for any combination of ground signals. By use of a wide trace or ground plane, ensure a low-impedance connection between HPVSS and DVSS. The maximum input frequency must be 50 MHz for any digital pin used as a general-purpose clock. Specifications Copyright © 2010–2018, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: TLV320DAC3101 7 TLV320DAC3101 SLAS666B – JANUARY 2010 – REVISED OCTOBER 2018 4.4 www.ti.com Thermal Information TLV320DAC3101 THERMAL METRIC (1) RHB (VQFN) UNIT 32 PINS RθJA Junction-to-ambient thermal resistance 32.7 °C/W RθJC(top) Junction-to-case (top) thermal resistance 23.2 °C/W RθJB Junction-to-board thermal resistance 6.6 °C/W ψJT Junction-to-top characterization parameter 0.3 °C/W ψJB Junction-to-board characterization parameter 6.5 °C/W Junction-to-case (bottom) thermal resistance 2 °C/W RθJC(bot) (1) For more information about traditional and new thermal metrics, see the Semiconductor and IC Package Thermal Metrics application report. 4.5 Electrical Characteristics At 25°C, AVDD = HPVDD = IOVDD = 3.3 V, SPLVDD, SPRVDD = 3.6 V, DVDD = 1.8 V, fS (audio) = 48 kHz, CODEC_CLKIN = 256 × fS, PLL = Off, VOL/MICDET pin disabled (unless otherwise noted) PARAMETER TEST CONDITIONS MIN TYP MAX UNIT INTERNAL OSCILLATOR—RC_CLK Oscillator frequency 8.2 MHz VOLUME CONTROL PIN (ADC); VOL/MICDET pin enabled Input voltage range VOL/MICDET pin configured as volume control (page 0 / register 116, bit D7 = 1 and page 0 / register 67, bit D7 = 0) 0.5 x AVDD 0 Input capacitance 2 Volume control steps V pF 128 Steps MICROPHONE BIAS Page 1 / register 46, bits D1–D0 = 10 2.25 2.5 2.75 Voltage output V Page 1 / register 46, bits D1–D0 = 01 2 At 4-mA load current, page 1 / register 46, bits D1–D0 = 10 (MICBIAS = 2.5 V) 5 At 4-mA load current, page 1 / register 46, bits D1–D0 = 01 (MICBIAS = 2 V) 7 Voltage regulation mV DAC HEADPHONE OUTPUT, AC-coupled load = 16 Ω (single-ended), driver gain = 0 dB, parasitic capacitance = 30 pF Full-scale output voltage (0 dB) Output common-mode setting = 1.65 V SNR Signal-to-noise ratio Measured as idle-channel noise, A-weighted (1) 0.707 THD Total harmonic distortion 0-dBFS input –85 –65 dB THD+N Total harmonic distortion + noise 0-dBFS input –82 –60 dB (2) Mute attenuation PSRR PO (1) (2) (3) 8 Power-supply rejection ratio (3) Maximum output power Ripple on HPVDD (3.3 V) = 200 mVp-p at 1 kHz 80 VRMS 95 dB 87 dB –62 dB RL = 32 Ω, THD+N = –60 dB 20 RL = 16 Ω, THD+N = –60 dB 60 mW Ratio of output level with 1-kHz full-scale sine-wave input, to the output level with the inputs short-circuited, measured A-weighted over a 20-Hz to 20-kHz bandwidth using an audio analyzer. All performance measurements done with 20-kHz low-pass filter and, where noted, A-weighted filter. Failure to use such a filter may result in higher THD+N and lower SNR and dynamic range readings than shown in the Electrical Characteristics. The low-pass filter removes out-of-band noise, which, although not audible, may affect dynamic specification values. DAC to headphone-out PSRR measurement is calculated as PSRR = 20 × log(ΔVHPL / ΔVHPVDD). Specifications Copyright © 2010–2018, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: TLV320DAC3101 TLV320DAC3101 www.ti.com SLAS666B – JANUARY 2010 – REVISED OCTOBER 2018 Electrical Characteristics (continued) At 25°C, AVDD = HPVDD = IOVDD = 3.3 V, SPLVDD, SPRVDD = 3.6 V, DVDD = 1.8 V, fS (audio) = 48 kHz, CODEC_CLKIN = 256 × fS, PLL = Off, VOL/MICDET pin disabled (unless otherwise noted) PARAMETER TEST CONDITIONS MIN TYP MAX UNIT DAC LINEOUT (HP Driver in Lineout Mode) SNR Signal-to-noise ratio Measured as idle-channel noise, A-weighted 95 dB THD Total harmonic distortion 0-dBFS input, 0-dB gain –86 dB THD+N Total harmonic distortion + noise 0-dBFS input, 0-dB gain –82 dB DAC Digital Interpolation Filter Characteristics See Section 6.3.10.1.4 for DAC interpolation filter characteristics. DAC Output to Class-D Speaker Output; Load = 8 Ω (Differential), 50 pF SPLVDD = SPRVDD = 3.6 V, BTL measurement, CM = 1.8 V, DAC input = 0 dBFS, class-D gain = 6 dB, THD = –16.5 dB 2.2 SPLVDD = SPRVDD = 3.6 V, BTL measurement, CM = 1.8 V, DAC input = –2 dBFS, class-D gain = 6 dB, THD = –20 dB 2.1 SPLVDD = SPRVDD = 3.6 V, BTL measurement, DAC input = mute, CM = 1.8 V, class-D gain = 6 dB 1.8 V 87 dB Output voltage Output, common-mode SNR VRMS SPLVDD = SPRVDD = 3.6 V, BTL measurement, class-D gain = 6 dB, measured as idle-channel noise, A-weighted (with respect to full-scale output value of 2.2 VRMS) (1) Signal-to-noise ratio (2) THD Total harmonic distortion SPLVDD = SPRVDD = 3.6 V, BTL measurement, CM = 1.8 V, class-D gain = 6 dB –67 dB THD+N Total harmonic distortion + noise SPLVDD = SPRVDD = 3.6 V, BTL measurement, CM = 1.8 V, class-D gain = 6 dB –66 dB SPLVDD = SPRVDD = 3.6 V, BTL measurement, ripple on SPLVDD/SPRVDD = 200 mVp-p at 1 kHz –44 dB PSRR Power-supply rejection ratio (4) Mute attenuation PO Maximum output power Output-stage leakage current SPLVDD = SPRVDD = 4.3 V, device is powered for direct battery connection 110 dB SPLVDD = SPRVDD = 3.6 V, BTL measurement, CM = 1.8 V, class-D gain = 18 dB, THD = 10% 540 mW SPLVDD = SPRVDD = 4.3 V, BTL measurement, CM = 1.8 V, class-D gain = 18 dB, THD = 10% 790 mW SPLVDD = SPRVDD = 5.5 V, BTL measurement, CM = 1.8 V, class-D gain = 18 dB, THD = 10% 1.29 W 80 nA SPLVDD = SPRVDD = 4.3 V, device is powered down (power-up-reset condition) DAC Power Consumption For DAC power consumption based on the selected processing block, see Section 6.3.8. DIGITAL INPUT/OUTPUT Logic family VIH VIL CMOS IIH = 5 µA, IOVDD ≥ 1.6 V 0.7 × IOVDD IIH = 5 µA, IOVDD < 1.6 V IOVDD IIL = 5 µA, IOVDD ≥ 1.6 V –0.3 0.3 × IOVDD Logic Level V IIL = 5 µA, IOVDD < 1.6 V VOH IOH = 2 TTL loads VOL IOL = 2 TTL loads 0 0.8 × IOVDD 0.1 × IOVDD Capacitive load (4) 4.6 10 pF DAC to speaker-out PSRR measurement is calculated as PSRR = 20 × log(ΔVSPL(P + M) / ΔVSPLVDD). Power Dissipation Ratings This data was taken using 2-oz. (0,071-mm thick) trace and copper pad that is soldered to a JEDEC high-K, standard 4-layer 3-inch × 3-inch (7,62-cm × 7,62-cm) PCB. Power Rating at 25°C Derating Factor Power Rating at 70°C Power Rating at 85°C 2.3 W 28.57 mW/°C 1W 0.6 W Specifications Copyright © 2010–2018, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: TLV320DAC3101 9 TLV320DAC3101 SLAS666B – JANUARY 2010 – REVISED OCTOBER 2018 4.7 www.ti.com I2S, LJF, and RJF Timing in Slave Mode All specifications at 25°C, DVDD = 1.8 V Note: All timing specifications are measured at characterization. WCLK tr th(WS) tS(WS) tH(BCLK) BCLK tL(BCLK) tS(DI) tf DIN th(DI) T0145-11 PARAMETER tH(BCLK) tL(BCLK) ts(WS) th(WS) ts(DI) th(DI) tr tf BCLK high period BCLK low period WCLK setup WCLK hold DIN setup DIN hold Rise time Fall time IOVDD = 1.1 V MIN MAX 35 35 8 8 8 8 4 4 IOVDD = 3.3 V MIN MAX 35 35 6 6 6 6 4 4 UNIT ns ns ns ns ns ns ns ns Figure 4-1. I2S, LJF, and RJF Timing in Slave Mode 10 Specifications Copyright © 2010–2018, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: TLV320DAC3101 TLV320DAC3101 www.ti.com 4.8 SLAS666B – JANUARY 2010 – REVISED OCTOBER 2018 DSP Timing in Master Mode All specifications at 25°C, DVDD = 1.8 V Note: All timing specifications are measured at characterization. WCLK td(WS) td(WS) tf BCLK tS(DI) tr DIN th(DI) T0146-09 PARAMETER td(WS) ts(DI) th(DI) tr tf WCLK delay DIN setup DIN hold Rise time Fall time IOVDD = 1.1 V MIN MAX 45 8 8 25 25 IOVDD = 3.3 V MIN MAX 20 8 8 10 10 UNIT ns ns ns ns ns Figure 4-2. DSP Timing in Master Mode Specifications Copyright © 2010–2018, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: TLV320DAC3101 11 TLV320DAC3101 SLAS666B – JANUARY 2010 – REVISED OCTOBER 2018 4.9 www.ti.com DSP Timing in Slave Mode All specifications at 25°C, DVDD = 1.8 V Note: All timing specifications are measured at characterization. WCLK tS(WS) tS(WS) th(WS) th(WS) tf tL(BCLK) BCLK tS(DI) tH(BCLK) tr DIN th(DI) T0146-10 PARAMETER tH(BCLK) tL(BCLK) ts(WS) th(WS) ts(DI) th(DI) tr tf BCLK high period BCLK low period WCLK setup WCLK hold DIN setup DIN hold Rise time Fall time IOVDD = 1.1 V MIN MAX 35 35 8 8 8 8 4 4 IOVDD = 3.3 V MIN MAX 35 35 8 8 8 8 4 4 UNIT ns ns ns ns ns ns ns ns Figure 4-3. DSP Timing in Slave Mode 12 Specifications Copyright © 2010–2018, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: TLV320DAC3101 TLV320DAC3101 www.ti.com SLAS666B – JANUARY 2010 – REVISED OCTOBER 2018 4.10 I2C Interface Timing All specifications at 25°C, DVDD = 1.8 V Note: All timing specifications are measured at characterization. SDA tBUF tLOW tr tHIGH tf tHD;STA SCL tHD;STA tSU;DAT tHD;DAT STO tSU;STO tSU;STA STA STA STO T0295-02 PARAMETER fSCL tHD;STA tLOW tHIGH tSU;STA tHD;DAT tSU;DAT tr tf tSU;STO tBUF Cb SCL clock frequency Hold time (repeated) START condition. After this period, the first clock pulse is generated. LOW period of the SCL clock HIGH period of the SCL clock Setup time for a repeated START condition Data hold time: for I2C bus devices Data set-up time SDA and SCL rise time SDA and SCL fall time Set-up time for STOP condition Bus free time between a STOP and START condition Capacitive load for each bus line Standard Mode MIN TYP 0 Fast Mode MIN TYP 0 MAX 100 MAX 400 UNIT kHz 4 0.8 μs 4.7 4 1.3 0.6 μs μs 4.7 0.8 μs 0 250 3.45 4 0 100 20 + 0.1Cb 20 + 0.1Cb 0.8 4.7 1.3 1000 300 400 0.9 300 300 μs ns ns ns μs μs 400 pF Figure 4-4. I2C Interface Timing Specifications Copyright © 2010–2018, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: TLV320DAC3101 13 TLV320DAC3101 SLAS666B – JANUARY 2010 – REVISED OCTOBER 2018 www.ti.com 4.11 Typical Characteristics 4.11.1 DAC Performance 20 20 AVDD = HPVDD = 3.3 V IOVDD = SPLVDD = 3.3 V DVDD = 1.8 V AVDD = HPVDD = 3.3 V IOVDD = SPLVDD = 3.3 V DVDD = 1.8 V 0 −20 −20 −40 −40 Amplitude − dBFS Amplitude − dBFS 0 −60 −80 −100 −60 −80 −100 −120 −120 −140 −140 −160 −160 0 5 10 15 20 0 5 f − Frequency − kHz 10 15 20 f − Frequency − kHz G023 G026 Figure 4-5. Amplitude vs Frequency FFT – DAC to Line Output Figure 4-6. Amplitude vs Frequency FFT – DAC to Headphone Output THD+N − Total Harmonic Distortion + Noise − dB 0 −10 HPVDD = 2.7 V CM = 1.35 V −20 −30 −40 HPVDD = 3 V CM = 1.5 V −50 HPVDD = 3.3 V CM = 1.65 V −60 HPVDD = 3.6 V CM = 1.8 V −70 IOVDD = 3.3 V DVDD = 1.8 V Gain = 9 dB RL = 16 Ω −80 −90 −100 0.00 0.02 0.04 0.06 0.08 0.10 0.12 PO − Output Power − W 0.14 G025 Figure 4-7. Total Harmonic Distortion + Noise vs Output Power Headphone Output Power 14 Specifications Copyright © 2010–2018, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: TLV320DAC3101 TLV320DAC3101 www.ti.com SLAS666B – JANUARY 2010 – REVISED OCTOBER 2018 4.11.2 Class-D Speaker Driver Performance −10 −20 −30 −40 0 AVDD = HPVDD = 3.3 V IOVDD = 3.3 V SPLVDD = 5.5 V DVDD = 1.8 V RL = 8 Ω Driver Gain = 24 dB THD+N − Total Harmonic Distortion + Noise − dB THD+N − Total Harmonic Distortion + Noise − dB 0 Driver Gain = 12 dB Driver Gain = 18 dB −50 −60 Driver Gain = 6 dB −70 −80 0.0 0.5 1.0 1.5 PO − Output Power − W 2.0 SPLVDD = 3.3 V −10 −20 −30 SPLVDD = 4.3 V −50 AVDD = 3.3 V HPVDD = 3.3 V IOVDD = 3.3 V DVDD = 1.8 V Gain = 18 dB RL = 8 Ω −60 −70 SPLVDD = 5.5 V −80 0.0 0.5 1.0 1.5 PO − Output Power − W G014 Figure 4-8. Total Harmonic Distortion + Noise vs Output Power Max Class-D Speaker-Driver Output Power SPLVDD = 3.6 V −40 2.0 G015 Figure 4-9. Total Harmonic Distortion + Noise vs Output Power Class-D Speaker-Driver Output Power Specifications Copyright © 2010–2018, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: TLV320DAC3101 15 TLV320DAC3101 SLAS666B – JANUARY 2010 – REVISED OCTOBER 2018 www.ti.com 4.11.3 Analog Bypass Performance H 20 20 AVDD = HPVDD = 3.3 V IOVDD = SPLVDD = 3.3 V DVDD = 1.8 V AVDD = HPVDD = 3.3 V IOVDD = SPLVDD = 3.3 V DVDD = 1.8 V 0 −20 −20 −40 −40 Amplitude − dBFS Amplitude − dBFS 0 −60 −80 −100 −60 −80 −100 −120 −120 −140 −140 −160 −160 0 5 10 15 20 0 5 f − Frequency − kHz 10 15 20 f − Frequency − kHz G024 G027 Figure 4-10. Amplitude vs Frequency FFT – Line-In Bypass to Line Output 4.11.4 MICBIAS Performance H Figure 4-11. Amplitude vs Frequency FFT – Line-In Bypass to Headphone Output 3.5 3.0 Micbias = AVDD (3.3 V) V − Voltage − V 2.5 Micbias = 2.5 V 2.0 Micbias = 2 V 1.5 1.0 0.5 0.0 0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 I − Current − mA G016 Figure 4-12. Voltage vs Current MICBIAS 16 Specifications Copyright © 2010–2018, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: TLV320DAC3101 TLV320DAC3101 www.ti.com SLAS666B – JANUARY 2010 – REVISED OCTOBER 2018 5 Parameter Measurement Information All parameters are measured according to the conditions described in Section 4. Parameter Measurement Information Copyright © 2010–2018, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: TLV320DAC3101 17 TLV320DAC3101 SLAS666B – JANUARY 2010 – REVISED OCTOBER 2018 www.ti.com 6 Detailed Description 6.1 Overview The device is a highly integrated stereo-audio DAC for portable computing, communication, and entertainment applications. A register-based architecture eases integration with microprocessor-based systems through standard serial-interface buses. This device supports the two-wire I2C bus interface which provides full register access. All peripheral functions are controlled through these registers and the onboard state machines. The device consists of the following blocks: • Stereo Audio DAC • Dynamic Range Compressor (DRC) • Digital sine-wave generator for clicks and beeps • Stereo headphone and lineout amplifier • Pin-controlled or register-controlled volume level • Power-down de-pop and power-up soft start • Analog inputs • I2C control interface • Power-down control block Following a toggle of the RESET pin or a software reset, the device operates in the default mode. The I2C interface is used to write to the control registers to configure the device. The I2C address assigned to the device is 001 1000. This device always operates in an I2C slave mode. All registers are 8-bit, and all writable registers have read-back capability. The device auto-increments to support sequential addressing and can be used with the I2C fast mode. When the device is reset, all appropriate registers are updated by the host processor to configure the device as needed by the user. 18 Detailed Description Copyright © 2010–2018, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: TLV320DAC3101 TLV320DAC3101 www.ti.com 6.2 SLAS666B – JANUARY 2010 – REVISED OCTOBER 2018 Functional Block Diagram AVSS AVDD HPVSS HPVDD SPLVSS SPRVSS SPLVDD SPRVDD P0/R116 7-Bit Vol ADC VOL/MICDET Audio Output Stage Power Management Left and Right Volume-Control Register P0/R117 P1/R33–R34 GPIO1 SDA SCL GPIO De-Pop and Soft Start 2 I C RC CLK AIN1 AIN2 MCLK Note: Normally, MCLK is PLL input; however, BCLK or GPIO1 can also be P0/R63/D5–D4 PLL input. L Data R Data PLL (L+R)/2 Data Left DAC P1/R38 P1/R42 6 dB to 24 dB (6-dB steps) SPLP SPLM S DAC Analog Class A/B Attenuation Headphone/Lineout Driver 0 dB to –78 dB and Mute 0 dB to 9 dB (0.5-dB steps) (1-dB steps) SDIN RESET Class-D Speaker Driver AIN1 WCLK BCLK Analog Attenuation 0 dB to –78 dB and Mute (0.5-dB steps) P1/R36 Serial Interface and Clocks Process- Digital Vol ing 24 dB to Blocks Mute HPL MIXER P1/R35 P1/R30–R31 P0/R63/D3–D2 DAC P1/R46 Class-D Speaker Driver P1/R39 P1/R43 6 dB to 24 dB (6-dB steps) SPRP SPRM S P0/R64–R66 MICBIAS Analog Attenuation 0 dB to –78 dB and Mute (0.5-dB steps) Right DAC L Data R Data (L+R)/2 Data P1/R40 AIN2 Analog Class A/B Attenuation Headphone/Lineout Driver 0 dB to –78 dB and Mute 0 dB to 9 dB (0.5-dB steps) (1-dB steps) 2 V/2.5 V/AVDD P1/R37 P1/R41 HPR P1/R30–R31 IOVSS 6.3 6.3.1 IOVDD DVSS DVDD B0360-02 Feature Description Power-Supply Sequence The requires multiple power supply rails for operation. All the power rails must be powered up for the device to operate at the fullest potention. The following is the recommended power-up sequencing for proper operation: 1. Power up SPLVDD and SPRVDD 2. Power up IOVDD 3. Power up DVDD shortly after IOVDD 4. Power up AVDD and HPVDD Although not necessary, if the system requires, during shutdown, remove the power supplies in the reverse order of the above sequence. Detailed Description Copyright © 2010–2018, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: TLV320DAC3101 19 TLV320DAC3101 SLAS666B – JANUARY 2010 – REVISED OCTOBER 2018 6.3.2 www.ti.com Reset The internal logic must be initialized to a known condition for proper device function. To initialize the device to its default operating condition, the hardware reset pin (RESET) must be pulled low for at least 10 ns. For this initialization to work, both the IOVDD and DVDD supplies must be powered up. TI recommends that while the DVDD supply powers up, the RESET pin is pulled low. The device can also be reset via software reset. Writing a 1 into page 0 / register 1, bit D0 resets the device. 6.3.3 Device Start-Up Lockout Times After the is initialized through hardware reset at power up or software reset, the internal memories are initialized to default values. This initialization takes place within 1 ms after pulling the RESET signal high. During this initialization phase, no register-read or register-write operation should be performed on DAC coefficient buffers. Also, no block within the codec should be powered up during the initialization phase. 6.3.4 PLL Start-Up Whenever the PLL is powered up, a start-up delay of approximately of 10 ms occurs after the power-up command of the PLL and before the clocks are available to the codec. This delay is to ensure stable operation of the PLL and clock-divider logic. 6.3.5 Power-Stage Reset The power-stage-only reset is used to reset the device after an overcurrent latching shutdown has occurred. Using this reset re-enables the output stage without resetting all of the registers in the device. Each of the four power stages has its own dedicated reset bit. The headphone power-stage reset is performed by setting page 1 / register 31, bit D7 for HPL and by setting page 1 / register 31, bit D6 for HPR. The speaker power-stage reset is performed by setting page 1 / register 32, bit D7 for SPLP and SPLM, and by setting page 1 / register 32, bit D6 for SPRP and SPRM. 6.3.6 Software Power Down By default, all circuit blocks are powered down following a reset condition. Hardware power up of each circuit block can be controlled by writing to the appropriate control register. This approach allows the lowest power-supply current for the functionality required. However, when a block is powered down, all of the register settings are maintained as long as power is still being applied to the device. 6.3.7 Audio Analog I/O The has a stereo audio DAC. The device supports a wide range of analog interfaces to support different headsets and analog outputs. The has features to interface output drivers (8-Ω, 16-Ω, 32-Ω). A special circuit has also been included in the to insert a short key-click sound into the stereo audio output. The keyclick sound is used to provide feedback to the user when a particular button is pressed or item is selected. The specific sound of the keyclick can be adjusted by varying several register bits that control its frequency, duration, and amplitude (see Section 6.3.10.7). 6.3.8 Digital Processing Low-Power Modes The device can be tuned to minimize power dissipation, to maximize performance, or to an operating point between the two extremes to best fit the application. The choice of processing blocks, PRB_P1 to PRB_P25 for stereo playback, also influences the power consumption. In fact, the numerous processing blocks have been implemented to offer a choice among configurations having a different balance of power optimization and signal-processing capabilities. 6.3.8.1 DAC Playback on Headphones, Stereo, 48 kHz, DVDD = 1.8 V, AVDD = 3.3 V, HPVDD = 3.3 V DOSR = 128, Processing Block = PRB_P7 (Interpolation Filter B) 20 Detailed Description Copyright © 2010–2018, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: TLV320DAC3101 TLV320DAC3101 www.ti.com SLAS666B – JANUARY 2010 – REVISED OCTOBER 2018 Power consumption = 24.28 mW Table 6-1. PRB_P7 Alternative Processing Blocks, 24.28 mW PROCESSING BLOCK FILTER ESTIMATED POWER CHANGE (mW) PRB_P1 A 1.34 PRB_P2 A 2.86 PRB_P3 A 2.11 PRB_P8 B 1.18 PRB_P9 B 0.53 PRB_P10 B 1.89 PRB_P11 B 0.87 PRB_P23 A 1.48 PRB_P24 A 2.89 PRB_P25 A 3.23 DOSR = 64, Processing Block = PRB_P7 (Interpolation Filter B) Power consumption = 24.5 mW Table 6-2. PRB_P7 Alternative Processing Blocks, 24.5 mW 6.3.8.2 PROCESSING BLOCK FILTER ESTIMATED POWER CHANGE (mW) PRB_P1 A 1.17 PRB_P2 A 2.62 PRB_P3 A 2 PRB_P8 B 0.99 PRB_P9 B 0.5 PRB_P10 B 1.46 PRB_P11 B 0.66 PRB_P23 A 1.43 PRB_P24 A 2.69 PRB_P25 A 2.92 DAC Playback on Headphones, Mono, 48 kHz, DVDD = 1.8 V, AVDD = 3.3 V, HPVDD = 3.3 V DOSR = 128, Processing Block = PRB_P12 (Interpolation Filter B) Power consumption = 15.4 mW Table 6-3. PRB_P12 Alternative Processing Blocks, 15.4 mW PROCESSING BLOCK FILTER ESTIMATED POWER CHANGE (mW) PRB_P4 A 0.57 PRB_P5 A 1.48 PRB_P6 A 1.08 PRB_P13 B 0.56 PRB_P14 B 0.27 PRB_P15 B 0.89 PRB_P16 B 0.31 Detailed Description Copyright © 2010–2018, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: TLV320DAC3101 21 TLV320DAC3101 SLAS666B – JANUARY 2010 – REVISED OCTOBER 2018 www.ti.com DOSR = 64, Processing Block = PRB_P12 (Interpolation Filter B) Power consumption = 15.54 mW Table 6-4. PRB_P12 Alternative Processing Blocks, 15.54 mW 6.3.8.3 PROCESSING BLOCK FILTER ESTIMATED POWER CHANGE (mW) PRB_P4 A 0.37 PRB_P5 A 1.23 PRB_P6 A 1.15 PRB_P13 B 0.43 PRB_P14 B 0.13 PRB_P15 B 0.85 PRB_P16 B 0.21 DAC Playback on Headphones, Stereo, 8 kHz, DVDD = 1.8 V, AVDD = 3.3 V, HPVDD = 3.3 V DOSR = 768, Processing Block = PRB_P7 (Interpolation Filter B) Power consumption = 22.44 mW Table 6-5. PRB_P7 Alternative Processing Blocks, 22.44 mW PROCESSING BLOCK FILTER ESTIMATED POWER CHANGE (mW) PRB_P1 A 0.02 PRB_P2 A 0.31 PRB_P3 A 0.23 PRB_P8 B 0.28 PRB_P9 B –0.03 PRB_P10 B 0.14 PRB_P11 B 0.05 PRB_P23 A 0.29 PRB_P24 A 0.26 PRB_P25 A 0.47 DOSR = 384, Processing Block = PRB_P7 (Interpolation Filter B) Power consumption = 22.83 mW Table 6-6. PRB_P7 Alternative Processing Blocks, 22.83 mW 22 PROCESSING BLOCK FILTER ESTIMATED POWER CHANGE (mW) PRB_P1 A 0.27 PRB_P2 A 0.4 PRB_P3 A 0.34 PRB_P8 B 0.2 PRB_P9 B 0.08 PRB_P10 B 0.24 PRB_P11 B 0.12 PRB_P23 A 0.23 PRB_P24 A 0.42 PRB_P25 A 0.46 Detailed Description Copyright © 2010–2018, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: TLV320DAC3101 TLV320DAC3101 www.ti.com 6.3.8.4 SLAS666B – JANUARY 2010 – REVISED OCTOBER 2018 DAC Playback on Headphones, Mono, 8 kHz, DVDD = 1.8 V, AVDD = 3.3 V, HPVDD = 3.3 V DOSR = 768, Processing Block = PRB_P12 (Interpolation Filter B) Power consumption = 14.49 mW Table 6-7. PRB_P12 Alternative Processing Blocks, 14.49 mW PROCESSING BLOCK FILTER ESTIMATED POWER CHANGE (mW) PRB_P4 A –0.04 PRB_P5 A 0.2 PRB_P6 A –0.01 PRB_P13 B 0.1 PRB_P14 B 0.05 PRB_P15 B –0.03 PRB_P16 B 0.07 DOSR = 384, Processing Block = PRB_P12 (Interpolation Filter B) Power consumption = 14.42 mW Table 6-8. PRB_P12 Alternative Processing Blocks, 14.42 mW 6.3.8.5 PROCESSING BLOCK FILTER ESTIMATED POWER CHANGE (mW) PRB_P4 A 0.16 PRB_P5 A 0.3 PRB_P6 A 0.2 PRB_P13 B 0.15 PRB_P14 B 0.07 PRB_P15 B 0.18 PRB_P16 B 0.09 DAC Playback on Headphones, Stereo, 192 kHz, DVDD = 1.8 V, AVDD = 3.3 V, HPVDD = 3.3 V DOSR = 32, Processing Block = PRB_P17 (Interpolation Filter C) Power consumption = 27.05 mW Table 6-9. PRB_P17 Alternative Processing Blocks, 27.05 mW 6.3.8.6 PROCESSING BLOCK FILTER ESTIMATED POWER CHANGE (mW) PRB_P18 C 5.28 PRB_P19 C 1.98 DAC Playback on Line Out (10 k-Ω load), Stereo, 48 kHz, DVDD = 1.8 V, AVDD = 3 V, HPVDD = 3 V DOSR = 64, Processing Block = PRB_P7 (Interpolation Filter B) Power consumption = 12.85 mW 6.3.9 Analog Signals The analog signals consist of: • Microphone bias (MICBIAS) • Analog inputs AIN1 and AIN2 Detailed Description Copyright © 2010–2018, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: TLV320DAC3101 23 TLV320DAC3101 SLAS666B – JANUARY 2010 – REVISED OCTOBER 2018 • 6.3.9.1 www.ti.com Analog outputs, class-D speaker driver and headphone and lineout driver, providing output capability for the DAC, AIN1, AIN2 or a mix of the three MICBIAS The device includes a microphone bias circuit that sources up to 4 mA of current and is programmable to a 2-V, 2.5-V, or AVDD level. The level is controlled by writing to page 1 / register 46, bits D1–D0. Table 610 lists this functionality. Table 6-10. MICBIAS Settings D1 D0 0 0 MICBIAS output is powered down FUNCTIONALITY 0 1 MICBIAS output is powered to 2 V 1 0 MICBIAS output is powered to 2.5 V 1 1 MICBIAS output is powered to AVDD During normal operation, MICBIAS can be set to 2.5 V for better performance. However, based on the model of the selected microphone, optimal performance can be obtained at another setting and therefore the performance at a given setting must be verified. The lowest current consumption occurs when MICBIAS is powered down. The next-lowest current consumption occurs when MICBIAS is set at AVDD. 6.3.9.2 Analog Inputs AIN1 and AIN2 AIN1 (pin 13) and AIN2 (pin 14) are inputs to the output mixer along with the DAC output. Page 1 / register 35 provides control signals for determining the signals routed through the output mixer. The output of the output mixer then can be attenuated or gained through the class-D and, or, headphone and lineout drivers. 6.3.10 Audio DAC and Audio Analog Outputs Each channel of the stereo audio DAC consists of a digital-audio processing block, a digital interpolation filter, a digital delta-sigma modulator, and an analog reconstruction filter. This high oversampling ratio (typically DOSR is between 32 and 128) exhibits good dynamic range by ensuring that the quantization noise generated within the delta-sigma modulator stays outside of the audio frequency band. Audio analog outputs include stereo headphone, or lineouts, and stereo class-D speaker outputs. 6.3.10.1 DAC The stereo-audio DAC supports data rates from 8 kHz to 192 kHz. Each channel of the stereo audio-DAC consists of a signal-processing engine with fixed processing blocks, a digital interpolation filter, a multibit digital delta-sigma modulator, and an analog reconstruction filter. The DAC is designed to provide enhanced performance at low sampling rates through increased oversampling and image filtering, thereby keeping quantization noise generated within the delta-sigma modulator and signal images strongly suppressed within the audio band to beyond 20 kHz. To handle multiple input rates and optimize power dissipation and performance, the device allows the system designer to program the oversampling rates over a wide range from 1 to 1024 by configuring page 0 / register 13 and page 0 / register 14. The system designer can choose higher oversampling ratios for lower input data rates and lower oversampling ratios for higher input data rates. The DAC channel includes a built-in digital interpolation filter to generate oversampled data for the deltasigma modulator. The interpolation filter can be chosen from three different types, depending on required frequency response, group delay, and sampling rate. 24 Detailed Description Copyright © 2010–2018, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: TLV320DAC3101 TLV320DAC3101 www.ti.com SLAS666B – JANUARY 2010 – REVISED OCTOBER 2018 DAC power up is controlled by writing to page 0 / register 63, bit D7 for the left channel and bit D6 for the right channel. The left-channel DAC clipping flag is provided as a read-only bit on page 0 / register 39, bit D7. The right-channel DAC clipping flag is provided as a read-only bit on page 0 / register 39, bit D6. 6.3.10.1.1 DAC Processing Blocks The device implements signal-processing capabilities and interpolation filtering through processing blocks. These fixed processing blocks give users the choice of how much and what type of signal processing they use and which interpolation filter is applied. The choices among these processing blocks allow the system designer to balance power conservation and signal-processing flexibility. Table 6-11 gives an overview of all available processing blocks of the DAC channel and their properties. The resource-class column gives an approximate indication of power consumption for the digital (DVDD) supply; however, based on the out-of-band noise spectrum, the analog power consumption of the drivers (HPVDD) may differ. The signal processing blocks available are: • First-order IIR • Scalable number of biquad filters • 3D effect • Digital sine-wave (beep) generator The processing blocks are tuned for common cases and can achieve high image rejection or low group delay in combination with various signal-processing effects such as audio effects and frequency shaping. The available first-order IIR and biquad filters have fully user-programmable coefficients. Table 6-11. Overview – DAC Predefined Processing Blocks PROCESSING BLOCK NO. INTERPOLATION FILTER CHANNEL FIRST-ORDER IIR AVAILABLE NUMBER OF BIQUADS DRC 3D BEEP GENERATOR PRB_P1 A PRB_P2 A Stereo No Stereo Yes PRB_P3 PRB_P4 A Stereo A Left PRB_P5 A PRB_P6 RESOURCE CLASS 3 No No No 8 6 Yes No No 12 Yes 6 No No No 10 No 3 No No No 4 Left Yes 6 Yes No No 6 A Left Yes 6 No No No 6 PRB_P7 B Stereo Yes 0 No No No 6 PRB_P8 B Stereo No 4 Yes No No 8 PRB_P9 B Stereo No 4 No No No 8 PRB_P10 B Stereo Yes 6 Yes No No 10 PRB_P11 B Stereo Yes 6 No No No 8 PRB_P12 B Left Yes 0 No No No 3 PRB_P13 B Left No 4 Yes No No 4 PRB_P14 B Left No 4 No No No 4 PRB_P15 B Left Yes 6 Yes No No 6 PRB_P16 B Left Yes 6 No No No 4 PRB_P17 C Stereo Yes 0 No No No 3 PRB_P18 C Stereo Yes 4 Yes No No 6 PRB_P19 C Stereo Yes 4 No No No 4 PRB_P20 C Left Yes 0 No No No 2 PRB_P21 C Left Yes 4 Yes No No 3 PRB_P22 C Left Yes 4 No No No 2 PRB_P23 A Stereo No 2 No Yes No 8 PRB_P24 A Stereo Yes 5 Yes Yes No 12 PRB_P25 A Stereo Yes 5 Yes Yes Yes 12 Detailed Description Copyright © 2010–2018, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: TLV320DAC3101 25 TLV320DAC3101 SLAS666B – JANUARY 2010 – REVISED OCTOBER 2018 www.ti.com 6.3.10.1.2 DAC Processing Blocks — Details 6.3.10.1.2.1 Three Biquads, Filter A BiQuad A from Interface BiQuad B BiQuad C Interp. Filter A ´ to Modulator Digital Volume Ctrl Figure 6-1. Signal Chain for PRB_P1 and PRB_P4 6.3.10.1.2.2 Six Biquads, First-Order IIR, DRC, Filter A or B BiQuad A IIR from interface BiQuad B BiQuad C BiQuad D BiQuad E BiQuad F HPF Interp. Filter A or B * to modulator Digital Volume Ctrl DRC Figure 6-2. Signal Chain for PRB_P2, PRB_P5, PRB_P10, and PRB_P15 6.3.10.1.2.3 Six Biquads, First-Order IIR, Filter A or B IIR from Interface BiQuad A BiQuad B BiQuad C BiQuad D BiQuad E BiQuad F Interp. Filter A,B ´ to Modulator Digital Volume Ctrl Figure 6-3. Signal Chain for PRB_P3, PRB_P6, PRB_P11, and PRB_P16 6.3.10.1.2.4 IIR, Filter B or C IIR from Interface Interp. Filter B,C ´ to Modulator Digital Volume Ctrl Figure 6-4. Signal Chain for PRB_P7, PRB_P12, PRB_P17, and PRB_P20 26 Detailed Description Copyright © 2010–2018, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: TLV320DAC3101 TLV320DAC3101 www.ti.com SLAS666B – JANUARY 2010 – REVISED OCTOBER 2018 6.3.10.1.2.5 Four Biquads, DRC, Filter B from interface BiQuad A BiQuad B BiQuad C BiQuad D Interp. Filter B HPF * to modulator Digital Volume Ctrl DRC Figure 6-5. Signal Chain for PRB_P8 and PRB_P13 6.3.10.1.2.6 Four Biquads, Filter B BiQuad A from Interface BiQuad B BiQuad C BiQuad D Interp. Filter B ´ to Modulator Digital Volume Ctrl Figure 6-6. Signal Chain for PRB_P9 and PRB_P14 6.3.10.1.2.7 Four Biquads, First-Order IIR, DRC, Filter C BiQuad A IIR BiQuad B BiQuad C BiQuad D HPF Interp. Filter C * to modulator from interface Digital Volume Ctrl DRC Figure 6-7. Signal Chain for PRB_P18 and PRB_P21 6.3.10.1.2.8 Four Biquads, First-Order IIR, Filter C IIR from Interface BiQuad A BiQuad B BiQuad C BiQuad D Interp. Filter C ´ to modulator Digital Volume Ctrl Figure 6-8. Signal Chain for PRB_P19 and PRB_P22 Detailed Description Copyright © 2010–2018, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: TLV320DAC3101 27 TLV320DAC3101 SLAS666B – JANUARY 2010 – REVISED OCTOBER 2018 www.ti.com 6.3.10.1.2.9 Two Biquads, 3D, Filter A From LeftChannel Interface + Biquad BL + Biquad CL Interp. Filter A ´ To Modulator + Digital Volume Ctrl + Biquad AL + – Biquad AR 3D PGA + From RightChannel Interface – Biquad BR + Biquad CR Interp. Filter A ´ To Modulator Digital Volume Ctrl NOTE: AL means biquad A of the left channel, and similarly, BR means biquad B of the right channel. Figure 6-9. Signal Chain for PRB_P23 6.3.10.1.2.10 Five Biquads, DRC, 3D, Filter A from left channel interface IIR left + + BiQuad BL BiQuad CL BiQuad DL BiQuad EL BiQuad FL HPF Interp. Filter A * to modulator + Digital Volume Ctrl DRC + BiQuad AL + - BiQuad AR 3D PGA - from right channel interface IIR right + + BiQuad BR BiQuad CR BiQuad DR BiQuad ER BiQuad FR HPF Interp. Filter A DRC * to modulator Digital Volume Ctrl Figure 6-10. Signal Chain for PRB_P24 28 Detailed Description Copyright © 2010–2018, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: TLV320DAC3101 TLV320DAC3101 www.ti.com SLAS666B – JANUARY 2010 – REVISED OCTOBER 2018 6.3.10.1.2.11 Five Biquads, DRC, 3D, Beep Generator, Filter A from left channel interface IIR left + + BiQuad BL BiQuad CL BiQuad DL BiQuad EL BiQuad FL HPF Interp. Filter A + * to modulator + DRC + BiQuad AL + - BiQuad AR 3D PGA Digital Volume Ctrl * Beep Gen. Beep Volume Ctrl * from right channel interface IIR right + + BiQuad BR BiQuad CR BiQuad DR BiQuad ER BiQuad FR HPF Interp. Filter A DRC * + to modulator Digital Volume Ctrl Figure 6-11. Signal Chain for PRB_P25 6.3.10.1.3 DAC User-Programmable Filters Based on the selected processing block, different types and orders of digital filtering are available. Up to six biquad sections are available for specific processing blocks. The coefficients of the available filters are arranged as sequentially-indexed coefficients in two banks. If adaptive filtering is chosen, the coefficient banks can be switched in real time. When the DAC is running, the user-programmable filter coefficients are locked and cannot be accessed for either read or write. However, the device offers an adaptive filter mode as well. Setting page 8 / register 1, bit D2 = 1 turns on double buffering of the coefficients. In this mode, filter coefficients are updated through the host and activated without stopping and restarting the DAC which enables advanced adaptive filtering applications. In the double-buffering scheme, all coefficients are stored in two buffers (buffers A and B). When the DAC is running and the adaptive filtering mode is turned on, setting page 8 / register 1, bit D0 = 1 switches the coefficient buffers at the next start of a sampling period. This bit is set back to 0 after the switch occurs. At the same time, page 8 / register 1, bit D1 toggles. The flag in page 8 / register 1, bit D1 indicates which of the two buffers is actually in use. Page 8 / register 1, bit D1 = 0: buffer A is in use by the DAC processing block; bit D1 = 1: buffer B is in use. While the device is running, coefficient updates are always made to the buffer not in use by the DAC, regardless of the buffer to which the coefficients have been written. Table 6-12. Adaptive-Mode Filter-Coefficient Buffer Switching DAC POWERED UP PAGE 8 / REGISTER 1, BIT D1 COEFFICIENT BUFFER IN USE No 0 None Buffer A (Pages 8 and 9) No 0 None Buffer B (Pages 12 and Buffer B (Pages 12 13) and 13) WRITING TO UPDATES Buffer A (Pages 8 and 9) Detailed Description Copyright © 2010–2018, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: TLV320DAC3101 29 TLV320DAC3101 SLAS666B – JANUARY 2010 – REVISED OCTOBER 2018 www.ti.com Table 6-12. Adaptive-Mode Filter-Coefficient Buffer Switching (continued) DAC POWERED UP PAGE 8 / REGISTER 1, BIT D1 COEFFICIENT BUFFER IN USE Yes 0 Buffer A Buffer A (Pages 8 and 9) Yes 0 Buffer A Buffer B (Pages 12 and Buffer B (Pages 12 13) and 13) Yes 1 Buffer B Buffer A (Pages 8 and 9) Yes 1 Buffer B Buffer B (Pages 12 and Buffer A (Pages 8 13) and 9) WRITING TO UPDATES Buffer B (Pages 12 and 13) Buffer A (Pages 8 and 9) The user-programmable coefficients for the DAC processing blocks are defined on pages 8 and 9 for buffer A and pages 12 and 13 for buffer B. The coefficients of these filters are each 16-bit, 2s-complement format, occupying two consecutive 8-bit registers in the register space. Specifically, the filter coefficients are in 1.15 (one dot 15) format with a range from –1.0 (0x8000) to 0.999969482421875 (0x7FFF) as shown in Figure 6-12. 2 –15 2 2 –4 –1 Bit Bit Largest Positive Number: = 0.111111111111111111 = 0.999969482421875 = 1.0 – 1 LSB Bit Largest Negative Number: = 1.000010000100001000 = 0x8000 = –1.0 (by definition) Fraction Point Sign Bit S...xxxxxxxxxxxxxxxxxx Figure 6-12. 1.15 2s-Complement Coefficient Format 6.3.10.1.3.1 First-Order IIR Section The IIR is of first order and its transfer function is given by Equation 1. H(z) = N0 + N1z -1 215 - D1z -1 (1) The frequency response for the first-order IIR section with default coefficients is flat. Table 6-13. DAC IIR Filter Coefficients FILTER COEFFICIENT First-order IIR LEFT DAC CHANNEL RIGHT DAC CHANNEL DEFAULT (RESET) VALUE N0 Page 9 / register 2 and page 9 / register 3 Page 9 / register 8 and page 9 / register 9 0x7FFF (decimal 1.0 – LSB value) N1 Page 9 / register 4 and page 9 / register 5 Page 9 / register 10 and page 9 / register 11 0x0000 D1 Page 9 / register 6 and page 9 / register 7 Page 9 / register 12 and page 9 / register 13 0x0000 6.3.10.1.3.2 Biquad Section The transfer function of each of the biquad filters is given by Equation 2. H(z) = 30 N0 + 2 ´ N1z -1 + N2 z -2 215 - 2 ´ D1z -1 - D2 z -2 (2) Detailed Description Copyright © 2010–2018, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: TLV320DAC3101 TLV320DAC3101 www.ti.com SLAS666B – JANUARY 2010 – REVISED OCTOBER 2018 Table 6-14. DAC Biquad Filter Coefficients FILTER Biquad A Biquad B Biquad C Biquad D Biquad E Biquad F COEFFICIENT LEFT DAC CHANNEL RIGHT DAC CHANNEL DEFAULT (RESET) VALUE N0 Page 8 / register 2 and page 8 / register 3 Page 8 / register 66 and page 8 / register 67 0x7FFF (decimal 1.0 – LSB value) N1 Page 8 / register 4 and page 8 / register 5 Page 8 / register 68 and page 8 / register 69 0x0000 N2 Page 8 / register 6 and page 8 / register 7 Page 8 / register 70 and page 8 / register 71 0x0000 D1 Page 8 / register 8 and page 8 / register 9 Page 8 / register 72 and page 8 / register 73 0x0000 D2 Page 8 / register 10 and page 8 / register 11 Page 8 / register 74 and page 8 / register 75 0x0000 N0 Page 8 / register 12 and page 8 / register 13 Page 8 / register 76 and page 8 / register 77 0x7FFF (decimal 1.0 – LSB value) N1 Page 8 / register 14 and page 8 / register 15 Page 8 / register 78 and page 8 / register 79 0x0000 N2 Page 8 / register 16 and page 8 / register 17 Page 8 / register 80 and page 8 / register 81 0x0000 D1 Page 8 / register 18 and page 8 / register 19 Page 8 / register 82 and page 8 / register 83 0x0000 D2 Page 8 / register 20 and page 8 / register 21 Page 8 / register 84 and page 8 / register 85 0x0000 N0 Page 8 / register 22 and page 8 / register 23 Page 8 / register 86 and page 8 / register 87 0x7FFF (decimal 1.0 – LSB value) N1 Page 8 / register 24 and page 8 / register 25 Page 8 / register 88 and page 8 / register 89 0x0000 N2 Page 8 / register 26 and page 8 / register 27 Page 8 / register 90 and page 8 / register 91 0x0000 D1 Page 8 / register 28 and page 8 / register 29 Page 8 / register 92 and page 8 / register 93 0x0000 D2 Page 8 / register 30 and page 8 / register 31 Page 8 / register 94 and page 8 / register 95 0x0000 N0 Page 8 / register 32 and page 8 / register 33 Page 8 / register 96 and page 8 / register 97 0x7FFF (decimal 1.0 – LSB value) N1 Page 8 / register 34 and page 8 / register 35 Page 8 / register 98 and page 8 / register 99 0x0000 N2 Page 8 / register 36 and page 8 / register 37 Page 8 / register 100 and page 8 / register 101 0x0000 D1 Page 8 / register 38 and page 8 / register 39 Page 8 / register 102 and page 8 / register 103 0x0000 D2 Page 8 / register 40 and page 8 / register 41 Page 8 / register 104 and page 8 / register 105 0x0000 N0 Page 8 / register 42 and page 8 / register 43 Page 8 / register 106 and page 8 / register 107 0x7FFF (decimal 1.0 – LSB value) N1 Page 8 / register 44 and page 8 / register 45 Page 8 / register 108 and page 8 / register 109 0x0000 N2 Page 8 / register 46 and page 8 / register 47 Page 8 / register 110 and page 8 / register 111 0x0000 D1 Page 8 / register 48 and page 8 / register 49 Page 8 / register 112 and page 8 / register 113 0x0000 D2 Page 8 / register 50 and page 8 / register 51 Page 8 / register 114 and page 8 / register 115 0x0000 N0 Page 8 / register 52 and page 8 / register 53 Page 8 / register 116 and page 8 / register 117 0x7FFF (decimal 1.0 – LSB value) N1 Page 8 / register 54 and page 8 / register 55 Page 8 / register 118 and page 8 / register 119 0x0000 N2 Page 8 / register 56 and page 8 / register 57 Page 8 / register 120 and page 8 / register 121 0x0000 D1 Page 8 / register 58 and page 8 / register 59 Page 8 / register 122 and page 8 / register 123 0x0000 D2 Page 8 / register 60 and page 8 / register 61 Page 8 / register 124 and page 8 / register 125 0x0000 Detailed Description Copyright © 2010–2018, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: TLV320DAC3101 31 TLV320DAC3101 SLAS666B – JANUARY 2010 – REVISED OCTOBER 2018 www.ti.com 6.3.10.1.4 DAC Interpolation Filter Characteristics 6.3.10.1.4.1 Interpolation Filter A Filter A is designed for an fS up to 48 ksps with a flat passband of 0 to 20 kHz. Table 6-15. Specification for DAC Interpolation Filter A PARAMETER CONDITION VALUE (TYPICAL) UNIT Filter-gain pass band 0 … 0.45 fS ±0.015 dB Filter-gain stop band 0.55… 7.455 fS –65 dB 21 / fS s Filter group delay DAC Channel Response for Interpolation Filter A (Red line corresponds to –65 dB) 0 –10 Magnitude – dB –20 –30 –40 –50 –60 –70 –80 –90 1 2 3 4 5 6 7 Frequency Normalized to fS G016 Figure 6-13. Frequency Response of DAC Interpolation Filter A 6.3.10.1.4.2 Interpolation Filter B Filter B is specifically designed for an fS of up to 96 ksps. Thus, the flat passband region easily covers the required audio band of 0 to 20 kHz. Table 6-16. Specification for DAC Interpolation Filter B PARAMETER CONDITION VALUE (TYPICAL) UNIT Filter-gain pass band 0 … 0.45 fS ±0.015 dB Filter-gain stop band 0.55… 3.45 fS –58 dB 18 / fS s Filter group delay 32 Detailed Description Copyright © 2010–2018, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: TLV320DAC3101 TLV320DAC3101 www.ti.com SLAS666B – JANUARY 2010 – REVISED OCTOBER 2018 DAC Channel Response for Interpolation Filter B (Red line corresponds to –58 dB) 0 –10 Magnitude – dB –20 –30 –40 –50 –60 –70 –80 0.5 1.0 1.5 2.0 2.5 3.0 3.5 Frequency Normalized to fS G017 Figure 6-14. Frequency Response of Channel Interpolation Filter B 6.3.10.1.4.3 Interpolation Filter C Filter C is specifically designed for the 192-ksps mode. The pass band extends up to 0.4 × fS (corresponds to 80 kHz), more than sufficient for audio applications. Table 6-17. Specification for DAC Interpolation Filter C PARAMETER CONDITION VALUE (TYPICAL) UNIT Filter-gain pass band 0 … 0.35 fS ±0.03 dB Filter-gain stop band 0.6… 1.4 fS –43 dB 13 / fS s Filter group delay DAC Channel Response for Interpolation Filter C (Red line corresponds to –43 dB) 0 –10 Magnitude – dB –20 –30 –40 –50 –60 –70 0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 Frequency Normalized to fS G018 Figure 6-15. Frequency Response of DAC Interpolation Filter C Detailed Description Copyright © 2010–2018, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: TLV320DAC3101 33 TLV320DAC3101 SLAS666B – JANUARY 2010 – REVISED OCTOBER 2018 www.ti.com 6.3.10.2 DAC Digital-Volume Control The DAC has a digital-volume control block which implements programmable gain. Each channel has an independent volume control that can be varied from 24 dB to –63.5 dB in 0.5-dB steps. The left-channel DAC volume is controlled by writing to page 0 / register 65, bits D7–D0. The right-channel DAC volume can be controlled by writing to page 0 / register 66, bits D7–D0. DAC muting and setting up a master gain control to control both channels occurs by writing to page 0 / register 64, bits D3–D0. The gain is implemented with a soft-stepping algorithm, which only changes the actual volume by 0.125 dB per input sample, either up or down, until the desired volume is reached. The rate of soft-stepping is slowed to one step per two input samples by writing to page 0 / register 63, bits D1–D0. Note that the default source for volume-control level settings is control by register writes (page 0 / register 65 and page 0 / register 66 to control volume). Use of the VOL/MICDET pin to control the DAC volume is ignored until the volume control source selected has been changed to pin control (page 0 / register 116, bit D7 = 1). This functionality is shown in Figure 1-1. During soft-stepping, the host does not receive a signal when the DAC has been completely muted. This may be important if the host must mute the DAC before making a significant change, such as changing sample rates. In order to help with this situation, the device provides a flag back to the host through a read-only register, page 0 / register 38, bit D4 for the left channel and bit D0 for the right channel. This information alerts the host when the part has completed the soft-stepping and the actual volume has reached the desired volume level. The soft-stepping feature can be disabled by writing to page 0 / register 63, bits D1–D0. If soft-stepping is enabled, the CODEC_CLKIN signal must be kept active until the DAC power-up flag is cleared. When this flag is cleared, the internal DAC soft-stepping process is complete, and CODEC_CLKIN can be stopped if desired. (The analog volume control can be ramped down using an internal oscillator.) 6.3.10.3 Volume Control Pin The volume-control pin is not enabled by default but is enabled by writing 1 to page 0 / register 116, bit D7. The default DAC volume control uses software control of the volume, which occurs if page 0 / register 116, bit D7 = 0. Soft-stepping the volume level is set up by writing to page 0 / register 63, bits D1–D0. When the volume-pin function is used, a 7-bit Vol ADC reads the voltage on the VOL/MICDET pin and updates the digital volume control by overwriting the current value of the volume control. The new volume setting which has been applied because of a change of voltage on the volume control pin is read on page 0 / register 117, bits D6–D0. The 7-bit Vol ADC clock source is selected on page 0 / register 116, bit D6. The update rate is programmed on page 0 / register 116, bits D2–D0 for this 7-bit SAR ADC. Table 6-18 lists The VOL/MICDET pin gain mapping. Table 6-18. VOL/MICDET Pin Gain Mapping VOL/MICDET PIN SAR OUTPUT 34 DIGITAL GAIN APPLIED 0 18 dB 1 17.5 dB 2 17 dB : : 35 0.5 dB 36 0.0 dB 37 –0.5 dB : : 89 –26.5 dB 90 –27 dB Detailed Description Copyright © 2010–2018, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: TLV320DAC3101 TLV320DAC3101 www.ti.com SLAS666B – JANUARY 2010 – REVISED OCTOBER 2018 Table 6-18. VOL/MICDET Pin Gain Mapping (continued) VOL/MICDET PIN SAR OUTPUT DIGITAL GAIN APPLIED 91 –28 dB : : 125 –62 dB 126 –63 dB 127 Mute Figure 6-16 shows the VOL/MICDET pin connection and functionality. 24 dB to Mute DAC_L ∆-∑ Vol Ctl DAC 24 dB to Mute AVDD VREF IN R1 Digital Programmable DSP Engine AVDD DAC_R ∆-∑ Vol Ctl DAC VOL/ MICDET Digital Programmable DSP Engine 18 dB to Mute P1 7- Bit ADC R2 CVOL Tone Generator and Mixer Are NOT Shown Volume Level Register Controlled AVSS 24 dB to Mute B0210-05 Copyright © 2016, Texas Instruments Incorporated Figure 6-16. Digital Volume Controls for Beep Generator and DAC Play Data As shown in Table 6-18, the VOL/MICDET pin has a range of volume control from 18 dB down to –63 dB, and mute. However, if less maximum gain is required, then a smaller range of voltage must be applied to the VOL/MICDET pin. Applying a smaller range of voltage occurs by increasing the value of R2 relative to the value of (P1 + R1), so that more voltage is available at the bottom of P1. The circuit must also be designed such that for the values of R1, R2, and P1 chosen, the maximum voltage (top of the potentiometer) does not exceed AVDD/2 (see Figure 6-16). The recommended values for R1, R2, and P1 for several maximum gains are shown in Table 6-19. Table 6-19. VOL/MICDET Pin Gain Scaling ADC VOLTAGE for AVDD = 3.3 V (V) DIGITAL GAIN RANGE (dB) 0 0 to 1.65 18 to –63 7.68 0.386 to 1.642 3 to –63 0.463 to 1.649 0 to –63 R1 (kΩ) P1 (kΩ) R2 (kΩ) 25 25 33 25 34.8 25 9.76 Detailed Description Copyright © 2010–2018, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: TLV320DAC3101 35 TLV320DAC3101 SLAS666B – JANUARY 2010 – REVISED OCTOBER 2018 www.ti.com 6.3.10.4 Dynamic Range Compression Typical music signals are characterized by crest factors, the ratio of peak signal power to average signal power, of 12 dB or more. To avoid audible distortions due to clipping of peak signals, the gain of the DAC channel must be adjusted so as not to cause hard clipping of peak signals. As a result, during nominal periods, the applied gain is low, causing the perception that the signal is not loud enough. To overcome this problem, dynamic range conpression (DRC) in the continuously monitors the output of the DAC digital volume control to detect its power level relative to 0 dBFS. When the power level is low, DRC increases the input signal gain to make it sound louder. At the same time, if a peaking signal is detected, it autonomously reduces the applied gain to avoid hard clipping. This results in sounds more pleasing to the ear as well as sounding louder during nominal periods. The DRC functionality in the is implemented by a combination of processing blocks in the DAC channel as described in Section 6.3.10.1.2. DRC can be disabled by writing to page 0 / register 68, bits D6–D5. DRC typically works on the filtered version of the input signal. The input signals have no audio information at dc and extremely low frequencies; however, they can significantly influence the energy estimation function in the dynamic range compressor (the DRC). Also, most of the information about signal energy is concentrated in the low-frequency region of the input signal. To estimate the energy of the input signal, the signal is first fed to the DRC high-pass filter and then to the DRC low-pass filter. These filters are implemented as first-order IIR filters given by HHPF (z) = HLPF (z) = N0 + N1z -1 215 - D1z -1 N0 + N1z (3) -1 215 - D1z -1 (4) The coefficients for these filters are 16 bits wide in 2s-complement format and are user-programmable through register write as given in Table 6-20. Table 6-20. The DRC HPF and LPF Coefficients COEFFICIENT LOCATION HPF N0 C71 page 9 / register 14 and page 9 / register 15 HPF N1 C72 page 9 / registers 16 and page 9 / register 17 HPF D1 C73 page 9 / registers 18 and page 9 / register 19 LPF N0 C74 page 9 / registers 20 and page 9 / register 21 LPF N1 C75 page 9 / registers 22 and page 9 / register 23 LPF D1 C76 page 9 / registers 24 and page 9 / register 25 The default values of these coefficients implement a high-pass filter with a cutoff at 0.00166 × DAC_fS, and a low-pass filter with a cutoff at 0.00033 × DAC_fS. The output of the DRC high-pass filter is fed to the processing block selected for the DAC channel. The absolute value of the DRC LPF filter is used for energy estimation within the DRC. The gain in the DAC digital volume control is controlled by page 0 / register 65 and page 0 / register 66. When the DRC is enabled, the applied gain is a function of the digital volume control register setting and the output of the DRC. The DRC parameters are described in sections that follow. 36 Detailed Description Copyright © 2010–2018, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: TLV320DAC3101 TLV320DAC3101 www.ti.com SLAS666B – JANUARY 2010 – REVISED OCTOBER 2018 6.3.10.4.1 DRC Threshold DRC threshold represents the level of the DAC playback signal at which the gain compression becomes active. The output of the digital volume control in the DAC is compared with the set threshold. The threshold value is programmable by writing to page 0 / register 68, bits D4–D2. The threshold value can be adjusted between –3 dBFS and –24 dBFS in steps of 3 dB. Keeping the DRC threshold value too high may not leave enough time for the DRC block to detect peaking signals, and can cause excessive distortion at the outputs. Keeping the DRC threshold value too low can limit the perceived loudness of the output signal. The recommended DRC threshold value is –24 dB. When the output signal exceeds the set DRC threshold, the interrupt flag bits at page 0 / register 44, bits D3–D2 are updated. These flag bits are sticky in nature, and are reset only after they are read back by the user. The non-sticky versions of the interrupt flags are also available at page 0 / register 46, bits D3–D2. 6.3.10.4.2 DRC Hysteresis DRC hysteresis is programmable by writing to page 0 / register 68, bits D1–D0. These bits can be programmed to represent values between 0 dB and 3 dB in steps of 1dB. DRC hysteresis provides a programmable window around the programmed DRC threshold that must be exceeded for the disabled DRC to become enabled, or the enabled DRC to become disabled. For example, if the DRC threshold is set to –12 dBFS and the DRC hysteresis is set to 3 dB, then if the gain compression in the DRC is inactive, the output of the DAC digital volume control must exceed –9 dBFS before gain compression due to the DRC is activated. Similarly, when the gain compression in the DRC is active, the output of the DAC digital volume control must fall below –15 dBFS for gain compression in the DRC to be deactivated. The DRC hysteresis feature prevents the rapid activation and de-activation of gain compression in the DRC in cases when the output of the DAC digital volume control rapidly fluctuates in a narrow region around the programmed DRC threshold. By programming the DRC hysteresis as 0 dB, the hysteresis action is disabled. The recommended value of DRC hysteresis is 3 dB. 6.3.10.4.3 DRC Hold Time DRC hold time is intended to slow the start of decay for a specified period of time in response to a decrease in energy level. To minimize audible artifacts, TI recommends to set the DRC hold time to 0 through programming page 0 / register 69, bits D6–D3 = 0000. 6.3.10.4.4 DRC Attack Rate When the output of the DAC digital volume control exceeds the programmed DRC threshold, the gain applied in the DAC digital volume control is progressively reduced to avoid the signal from saturating the channel. This process of reducing the applied gain is called attack. To avoid audible artifacts, the gain is reduced slowly with a rate equaling the attack rate, programmable via page 0 / register 70, bits D7–D4. Attack rates can be programmed from 4-dB gain change per sample period to 1.2207e–5-dB gain change per sample period. Attack rates should be programmed such that before the output of the DAC digital volume control can clip, the input signal should be sufficiently attenuated. High attack rates can cause audible artifacts, and tooslow attack rates may not be able to prevent the input signal from clipping. The recommended DRC attack rate value is 1.9531e–4 dB per sample period. Detailed Description Copyright © 2010–2018, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: TLV320DAC3101 37 TLV320DAC3101 SLAS666B – JANUARY 2010 – REVISED OCTOBER 2018 www.ti.com 6.3.10.4.5 DRC Decay Rate When the DRC detects a reduction in output signal swing beyond the programmed DRC threshold, the DRC enters a decay state, where the applied gain in the digital-volume control is gradually increased to programmed values. To avoid audible artifacts, the gain is slowly increased with a rate equal to the decay rate programmed through page 0 / register 70, bits D3–D0. The decay rates can be programmed from 1.5625e–3 dB per sample period to 4.7683e–7 dB per sample period. If the decay rates are programmed too high, then sudden gain changes can cause audible artifacts. However, if it is programmed too slow, then the output may be perceived as too low for a long time after the peak signal has passed. The recommended value of DRC decay rate is 2.4414e–5 dB per sample period. 6.3.10.4.6 Example Setup for DRC • • • • • • Digital Vol gain = 12 dB Threshold = –24 dB Hysteresis = 3 dB Hold time = 0 ms Attack rate = 1.9531e–4 dB per sample period Decay rate = 2.4414e–5 dB per sample period Script #Go to Page 0 w 30 00 00 #DAC => 12 db gain left w 30 41 18 #DAC => 12 db gain right w 30 42 18 #DAC => DRC Enabled for both channels, Threshold = -24 db, Hysteresis = 3 dB w 30 44 7F #DRC Hold = 0 ms, Rate of Changes of Gain = 0.5 dB/Fs' w 30 45 00 #Attack Rate = 1.9531e-4 dB/Frame , DRC Decay Rate =2.4414e-5 dB/Frame w 30 46 B6 #Go to Page 9 w 30 00 09 #DRC HPF w 30 0E 7F AB 80 55 7F 56 #DRC LPF W 30 14 00 11 00 11 7F DE 6.3.10.5 Headphone Detection The device includes capability to monitor a headphone jack to determine if a plug has been inserted into the jack. The device also includes the capability to detect a button press, even, for example, when starting calls on mobile phones with headsets. Figure 6-17 shows the circuit configuration to enable this feature. 38 Detailed Description Copyright © 2010–2018, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: TLV320DAC3101 TLV320DAC3101 www.ti.com SLAS666B – JANUARY 2010 – REVISED OCTOBER 2018 HPR HPL VOL/MICDET MICBIAS Micdet Micbias Figure 6-17. Jack Connections for Headphone Detection Headphone Detection is enabled by programming page 0 / register 67, bit D1. In order to avoid false detections because of mechanical vibrations in headset jacks or microphone buttons, a debounce function is provided for glitch rejection. For the case of headset insertion, a debounce function with a range of 32 ms to 512 ms is provided. This can be programmed through page 0 / register 67, bits D4–D2. For improved button-press detection, the debounce function has a range of 8 ms to 32 ms by programming page 0 / register 67, bits D1–D0. The device also provides feedback to the user through register-readable flags as well as an interrupt on the I/O pins when a button press or a headset insertion or removal event is detected. The value in page 0 / register 46, bits D5–D4 provides the instantaneous state of button press and headset insertion. Page 0 / register 44, bit D5 is a sticky (latched) flag that is set when the button-press event is detected. Page 0 / register 44, bit D4 is a sticky flag which is set when the headset insertion or removal event is detected. These sticky flags are set by the event occurrence, and are reset only when read. This requires polling page 0 / register 44. To avoid polling and the associated overhead, the device also provides an interrupt feature, whereby events can trigger the INT1, the INT2, or both interrupts. These interrupt events can be routed to one of the digital output pins. See Section 6.3.10.6 for details. The device not only detects a headset insertion event, but also is able to distinguish between the different headsets inserted, such as stereo headphones or cellular headphones. After the headset-detection event, the user can read page 0 / register 67, bits D6–D5 to determine the type of headset inserted. Table 6-21. Headphone Detection Block Registers REGISTER DESCRIPTION Page 0 / register 67, bit D1 Headset-detection enable/disable Page 0 / register 67, bits D4–D2 Debounce programmability for headset detection Page 0 / register 67, bits D1–D0 Debounce programmability for button press Page 0 / register 44, bit D5 Sticky flag for button-press event Page 0 / register 44, bit D4 Sticky flag for headset-insertion or -removal event Page 0 / register 46, bit D5 Status flag for button-press event Page 0 / register 46, bit D4 Status flag for headset insertion and removal Page 0 / register 67, bits D6–D5 Flags for type of headset detected Detailed Description Copyright © 2010–2018, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: TLV320DAC3101 39 TLV320DAC3101 SLAS666B – JANUARY 2010 – REVISED OCTOBER 2018 www.ti.com The headset detection block requires AVDD to be powered. The headset detection feature in the device is achieved with very low power overhead, requiring less than 20 μA of additional current from the AVDD supply. 6.3.10.6 Interrupts Some specific events in the device that can require host processor intervention are used to trigger interrupts to the host processor. This avoids polling the status-flag registers continuously. The device has two defined interrupts, INT1 and INT2, that are configured by programming page 0 / register 48 and page 0 / register 49. A user can configure interrupts INT1 and INT2 to be triggered by one or many events, such as: • Headset detection • Button press • DAC DRC signal exceeding threshold • Overcurrent condition in headphone drivers and speaker drivers • Data overflow in the DAC processing blocks and filters Each of these INT1 and INT2 interrupts can be routed to output pin GPIO1. These interrupt signals can either be configured as a single pulse or a series of pulses by programming page 0 / register 48, bit D0 and page 0 / register 49, bit D0. If the user configures the interrupts as a series of pulses, the events trigger the start of pulses that stop when the flag registers in page 0 / registers 44, 45, and 50 are read by the user to determine the cause of the interrupt. 6.3.10.7 Key-Click Functionality With Digital Sine-Wave Generator (PRB_P25) A special algorithm has been included in the digital signal processing block PRB_P25 for generating a digital sine-wave signal that is sent to the DAC. The digital sine-wave generator is also referred to as the beep generator in this document. This functionality is intended for generating key-click sounds for user feedback. The sine-wave generator is very flexible (see Table 6-22) and is completely register programmable. Programming page 0 / register 71 through page 0 / register 79 (8 bits each) completely controls the functionality of this generator and allows for differentiating sounds. The two registers used for programming the 16-bit sine-wave coefficient are page 0 / register 76 and page 0 / register 77. The two registers used for programming the 16-bit cosine-wave coefficient are page 0 / register 78 and page 0 / register 79. This coefficient resolution allows virtually any frequency of sine wave in the audio band to be generated, up to fS / 2. The three registers used to control the length of the sine-burst waveform are page 0 / register 73 through page 0 / register 75. The resolution (bit) in the registers of the sine-burst length is one sample time, so this allows great control on the overall time of the sine-burst waveform. This 24-bit length timer supports 16 777 215 sample times. For example, if fS is set at 48 kHz, and the register value equals 96 000 d (01 7700h), then the sine burst lasts exactly 2 seconds. The default settings for the tone generator, based on using a sample rate of 48 kHz, are 1-kHz (approximately) sine wave, with a sine-burst length of five cycles (5 ms). Table 6-22. Beep Generator Register Locations (Page 0x00) REGISTER 40 LEFT BEEP CONTROL RIGHT BEEP CONTROL 71 72 BEEP LENGTH SINE COSINE MSB MID LSB MSB LSB MSB LSB 73 74 75 76 77 78 79 Detailed Description Copyright © 2010–2018, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: TLV320DAC3101 TLV320DAC3101 www.ti.com SLAS666B – JANUARY 2010 – REVISED OCTOBER 2018 Table 6-23. Example Beep-Generator Settings for a 1000-Hz Tone BEEP FREQUENCY (1) BEEP LENGTH SINE COSINE SAMPLE RATE Hz MSB (hex) MID (hex) LSB (hex) MSB (hex) LSB (hex) MSB (hex) LSB (hex) Hz 1000 (1) 0 0 EE 10 D8 7E E3 48 000 These are the default settings. Two registers are used to control the left sine-wave volume and the right sine-wave volume independently. The 6-bit digital volume control used allows level control of 2 dB to –61 dB in 1-dB steps. The left-channel volume is controlled by writing to page 0 / register 71, bits D5–D0. The right-channel volume is controlled by writing to page 0, register 72, bits D5–D0. A master volume control that controls the left and right channels of the beep generator are set up by writing to page 0 / register 72, bits D7–D6. The default volume control setting is 2 dB, which provides the maximum tone-generator output level. For generating other tones, the three tone-generator coefficients are found by running the following script using MATLAB™ : Sine = dec2hex(round(sin(2*π*Fin/Fs)*2^15)) Cosine = dec2hex(round(cos(2*π*Fin/Fs)*2^15)) Beep Length = dec2hex(floor(Fs*Cycle/Fin)) where, Fin = Beep frequency desired Fs = Sample rate Cycle = Number of beep (sine wave) cycles that are required dec2hex = Decimal to hexadecimal conversion function NOTES: 1. Fin must be less than Fs / 4. 2. For the sine and cosine values, if the number of bits is less than the full 16-bit value, then the unused MSBs must be written as 0s. 3. For the beep-length values, if number of bits is less than the full 24-bit value, then the unused MSBs must be written as 0s. Following the beep-volume control is a digital mixer that mixes in a playback data stream whose level has already been set by the DAC volume control. Therefore, once the key-click volume level is set, the keyclick volume is not affected by the DAC volume control, which is the main control available to the end user. Figure 1-1 shows this functionality. Following the DAC, the signal can be further scaled by the analog output volume control and poweramplifier level control. To insert a beep in the middle of an already-playing signal over DAC, use the following sequence. Before the beep is desired, program the desired beep frequency, volume, and length in the configuration registers. When a beep is desired, use the example configuration script. w w f w w 30 00 00 30 40 0C 30 26 xxx1xxx1 30 0B 02 30 47 80 w 30 0B 82 w 30 40 00 # # # # # # # # # change to Page 0 mute DACs wait for DAC gain flag to be set power down NDAC divider enable beep generator with left channel volume = 0dB, volume level could be different as per requirement power up NDAC divider, in this specific example NDAC = 2, but NDAC could be different value as per overall setup un-mute DAC to resume playing audio Note that in this scheme the audio signal on the DAC is temporarily muted to enable beep generation. Because powering down of NDAC clock divider is required, do not use the DAC_CLK or DAC_MOD_CLK for generation of I2S clocks. Detailed Description Copyright © 2010–2018, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: TLV320DAC3101 41 TLV320DAC3101 SLAS666B – JANUARY 2010 – REVISED OCTOBER 2018 www.ti.com 6.3.10.8 Programming DAC Digital Filter Coefficients The digital filter coefficients must be programmed through the I2C interface. All digital filtering for the DAC signal path must be loaded into the RAM before the DAC is powered on. Note that default ALLPASS filter coefficients for programmable biquads are located in boot ROM. The boot ROM automatically loads the default values into the RAM following a hardware reset (toggling the RESET pin) or after a software reset. After resetting the device, loading boot ROM coefficients into the digital filters requires 100 μs of programming time. During this time, reading or writing to page 8 through page 15 for updating DAC filter coefficient values is not permitted. The DAC should not be powered up until after all of the DAC configurations have been done by the system microprocessor. 6.3.10.9 Updating DAC Digital Filter Coefficients During PLAY When it is required to update the DAC digital filter coefficients or beep generator during play, care must be taken to avoid click and pop noise or even a possible oscillation noise. These artifacts can occur if the DAC coefficients are updated without following the proper update sequence. The correct sequence is shown in Figure 6-18. The values for times listed in Figure 6-18 are conservative and should be used for software purposes. There is also an adaptive mode, in which DAC coefficients can be updated while the DAC is on. For details, see Section 6.3.10.1.3. 42 Detailed Description Copyright © 2010–2018, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: TLV320DAC3101 TLV320DAC3101 www.ti.com SLAS666B – JANUARY 2010 – REVISED OCTOBER 2018 Play - Paused Volume Ramp Down Soft Mute Wait (A) ms DAC Volume Ramp Down WAIT Time (A) For fS = 32 kHz ® Wait 25 ms (min) DAC Power Down Update Digital Filter Coefficients For fS = 48 kHz ® Wait 20 ms (min) DAC Volume Ramp Up Time (B) For fS = 32 kHz ® 25 ms DAC Power UP For fS = 48 kHz ® 20 ms Wait 20 ms Restore Previous Volume Level (Ramp) in (B) ms Play - Continue F0024-02 Figure 6-18. Example Flow For Updating DAC Digital Filter Coefficients During Play 6.3.10.10 Digital Mixing and Routing The has four digital mixing blocks. Each mixer can provide either mixing or multiplexing of the digital audio data. This arrangement of digital mixers allows independent volume control for both the playback data and the key-click sound. The first set of mixers can be used to make monaural signals from left and right audio data, or they can even be used to swap channels to the DAC. This function is accomplished by selecting left audio data for the right DAC input, and right data for the left DAC input. The second set of mixers provides mixing of the audio data stream and the key-click sound. The digital routing can be configured by writing to page 0 / register 63, bits D5–D4 for the left channel and bits D3–D2 for the right channel. Because the key-click function uses the digital signal processing block, the CODEC_CLKIN, DAC, analog volume control, and output driver must be powered on for the key-click sound to occur. Detailed Description Copyright © 2010–2018, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: TLV320DAC3101 43 TLV320DAC3101 SLAS666B – JANUARY 2010 – REVISED OCTOBER 2018 www.ti.com 6.3.10.11 Analog Audio Routing The has the capability to route the DAC output to either the headphone or the speaker output. If desirable, both output drivers can operate at the same time while playing at different volume levels. The provides various digital routing capabilities, allowing digital mixing or even channel swapping in the digital domain. All analog outputs other than the selected ones can be powered down for optimal power consumption. 6.3.10.11.1 Analog Output Volume Control The output volume control fine tunes the level of the mixer amplifier signal supplied to the headphone driver or the speaker driver. This architecture supports separate and concurrent volume levels for each of the four output drivers. This volume control is also used as part of the output pop-noise reduction scheme. This feature is available even if the DAC is powered down. 6.3.10.11.2 Headphone Analog-Output Volume Control For the headphone outputs, the analog volume control has a range from 0 dB to –78 dB in 0.5-dB steps for most of the useful range plus mute, which is shown in Table 6-24. This volume control includes softstepping logic. Routing the left-channel DAC output signal to the left-channel analog volume control occurs by writing to page 1 / register 35, bit D6. Routing the right-channel DAC output signal to the right-channel analog volume control occurs by writing to page 1 / register 35, bit D2. Changing the left-channel analog volume for the headphone is controlled by writing to page 1 / register 36, bits D6–D0. Changing the right-channel analog volume for the headphone is controlled by writing to page 1 / register 37, bits D6–D0. Routing the signal from the output of the left-channel analog volume control to the input of the left-channel headphone power amplifier occurs by writing to page 1 / register 36, bit D7. Routing the signal from the output of the right-channel analog volume control to the input of the right-channel headphone power amplifier occurs by writing to page 1 / register 37, bit D7. The analog volume-control soft-stepping time is based on the setting in page 0 / register 63, bits D1–D0. 44 Detailed Description Copyright © 2010–2018, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: TLV320DAC3101 TLV320DAC3101 www.ti.com SLAS666B – JANUARY 2010 – REVISED OCTOBER 2018 Table 6-24. Analog Volume Control for Headphone and Speaker Outputs (for D7 = 1) (1) REGISTER VALUE (D6–D0) (1) ANALOG GAIN (dB) REGISTER VALUE (D6–D0) ANALOG GAIN (dB) REGISTER VALUE (D6–D0) ANALOG GAIN (dB) REGISTER VALUE (D6–D0) ANALOG GAIN (dB) 0 0 30 –15 60 –30.1 90 –45.2 1 –0.5 31 –15.5 61 –30.6 91 –45.8 2 –1 32 –16 62 –31.1 92 –46.2 3 –1.5 33 –16.5 63 –31.6 93 –46.7 4 –2 34 –17 64 –32.1 94 –47.4 5 –2.5 35 –17.5 65 –32.6 95 –47.9 6 –3 36 –18.1 66 –33.1 96 –48.2 7 –3.5 37 –18.6 67 –33.6 97 –48.7 8 –4 38 –19.1 68 –34.1 98 –49.3 9 –4.5 39 –19.6 69 –34.6 99 –50 10 –5 40 –20.1 70 –35.2 100 –50.3 11 –5.5 41 –20.6 71 –35.7 101 –51 12 –6 42 –21.1 72 –36.2 102 –51.4 13 –6.5 43 –21.6 73 –36.7 103 –51.8 14 –7 44 –22.1 74 –37.2 104 –52.2 15 –7.5 45 –22.6 75 –37.7 105 –52.7 16 –8 46 –23.1 76 –38.2 106 –53.7 17 –8.5 47 –23.6 77 –38.7 107 –54.2 18 –9 48 –24.1 78 –39.2 108 –55.3 19 –9.5 49 –24.6 79 –39.7 109 –56.7 20 –10 50 –25.1 80 –40.2 110 –58.3 21 –10.5 51 –25.6 81 –40.7 111 –60.2 22 –11 52 –26.1 82 –41.2 112 –62.7 23 –11.5 53 –26.6 83 –41.7 113 –64.3 24 –12 54 –27.1 84 –42.1 114 –66.2 25 –12.5 55 –27.6 85 –42.7 115 –68.7 26 –13 56 –28.1 86 –43.2 116 –72.2 27 –13.5 57 –28.6 87 –43.8 117–127 –78.3 28 –14 58 –29.1 88 –44.3 29 –14.5 59 –29.6 89 –44.8 Mute when D7 = 0 and D6–D0 = 127 (0x7F). 6.3.10.11.3 Class-D Speaker Analog Output Volume Control For the speaker outputs, the analog volume control has a range from 0 dB to –78 dB in 0.5-dB steps for most of the useful range plus mute, as seen in Table 6-24. The implementation includes soft-stepping logic. Routing the left-channel DAC output signal to the left-channel analog volume control is done by writing to page 1 / register 35, bit D6. Routing the right-channel DAC output signal to the right-channel analog volume control is done by writing to page 1 / register 35, bit D2. Changing the left-channel analog volume for the speaker is controlled by writing to page 1 / register 38, bits D6–D0. Changing the right-channel analog volume for the speaker is controlled by writing to page 1 / register 39, bits D6–D0. Routing the signal from the output of the left-channel analog volume control to the input of the left-channel speaker amplifier is done by writing to page 1 / register 38, bit D7. Routing the signal from the output of the right-channel analog volume control to the input of the right-channel speaker amplifier is done by writing to page 1 / register 39, bit D7. Detailed Description Copyright © 2010–2018, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: TLV320DAC3101 45 TLV320DAC3101 SLAS666B – JANUARY 2010 – REVISED OCTOBER 2018 www.ti.com The analog volume-control soft-stepping time is based on the setting in page 0 / register 63, bits D1–D0. 6.3.10.12 Analog Outputs Various analog routings are supported for playback. All the options can be conveniently viewed on the functional block diagram, Figure 1-1. 6.3.10.12.1 Headphone Drivers The device features a stereo headphone driver (HPL and HPR) that delivers up to 30 mW per channel, at 3.3-V supply voltage, into a 16-Ω load. The headphones are used in a single-ended configuration where an ac-coupling capacitor (dc-blocking) is connected between the device output pins and the headphones. The headphone driver also supports 32-Ω and 10-kΩ loads without changing any control register settings. The headphone drivers can be configured to optimize the power consumption in the lineout-drive mode by writing 11 to page 1 / register 44, bits D2–D1. The output common mode of the headphone and lineout drivers is programmed to 1.35 V, 1.5 V, 1.65 V, or 1.8 V by setting page 1 / register 31, bits D4–D3. Set the common-mode voltage to ≤ AVDD / 2. The left headphone driver can be powered on by writing to page 1 / register 31, bit D7. The right headphone driver can be powered on by writing to page 1 / register 31, bit D6. The left-output driver gain can be controlled by writing to page 1 / register 40, bits D6–D3, and it can be muted by writing to page 1 / register 40, bit D2. The right-output driver gain can be controlled by writing to page 1 / register 41, bits D6–D3, and it can be muted by writing to page 1 / register 41, bit D2. The device has a short-circuit protection feature for the headphone drivers, which is always enabled to provide protection. The output condition of the headphone driver during short circuit is programmed by writing to page 1 / register 31, bit D1. If D1 = 0 when a short circuit is detected, the device limits the maximum current to the load. If D1 = 1 when a short circuit is detected, the device powers down the output driver. The default condition for headphones is the current-limiting mode. In case of a short circuit on either channel, the output is disabled and a status flag is provided as read-only bits on page 1 / register 31, bit D0. If shutdown mode is enabled, then as soon as the short circuit is detected, page 1 / register 31, bit D7 (for HPL) or page 1 / register 31, bit D6, or both (for HPR) clear automatically. Next, the device requires a reset to re-enable the output stage. Resetting occurs in two ways. First, the device master reset can be used, which requires either toggling the RESET pin or using the software reset. If master reset is used, it resets all of the registers. Second, a dedicated headphone power-stage reset can also be used to re-enable the output stage, and that keeps all of the other device settings. The headphone power stage reset occurs by setting page 1 / register 31, bit D7 for HPL and by setting page 1 / register 31, bit D6 for HPR. If the fault condition has been removed, then the device returns to normal operation. If the fault is still present, then another shutdown occurs. Repeated resetting (more than three times) is not recommended, as this could lead to overheating. 6.3.10.12.2 Speaker Drivers The device has an integrated class-D stereo speaker driver (SPLP/SPLM and SPRP/SPRM) capable of driving an 8-Ω differential load. The speaker driver can be powered directly from the battery supply (2.7 V to 5.5 V) on the SPLVDD and SPRVDD pins; however, the voltage (including spike voltage) must be limited below the absolute-maximum voltage of 6 V. The speaker driver is capable of supplying 400 mW per channel with a 3.6-V power supply. Through the use of digital mixing, the device can connect one or both digital audio playback data channels to either speaker driver; this also allows digital channel swapping if needed. The left class-D speaker driver can be powered on by writing to page 1 / register 32, bit D7. The right class-D speaker driver can be powered on by writing to page 1 / register 32, bit D6. The left-output driver gain can be controlled by writing to page 1 / register 42, bits D4–D3, and it can be muted by writing to page 1 / register 42, bit D2. The right-output driver gain can be controlled by writing to page 1 / register 43, bits D4–D3, and it can be muted by writing to page 1 / register 43, bit D2. 46 Detailed Description Copyright © 2010–2018, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: TLV320DAC3101 TLV320DAC3101 www.ti.com SLAS666B – JANUARY 2010 – REVISED OCTOBER 2018 The device has a short-circuit protection feature for the speaker drivers that is always enabled to provide protection. If the output is shorted, the output stage shuts down on the overcurrent condition. (Current limiting is not an available option for the higher-current speaker driver output stage.) In case of a short circuit on either channel, the output is disabled and a status flag is provided as a read-only bit on page 1 / register 32, bit D0. If shutdown occurs because of an overcurrent condition, then the device requires a reset to re-enable the output stage. Resetting occurs in two ways. First, the device master reset can be used, which requires either toggling the RESET pin or using the software reset. If master reset is used, it resets all of the registers. Second, a dedicated speaker power-stage reset can be used that keeps all of the other device settings. The speaker power-stage reset occurs by setting page 1 / register 32, bit D7 for SPLP and SPLM and by setting page 1 / register 32, bit D6 for SPRP and SPRM. If the fault condition has been removed, then the device returns to normal operation. If the fault is still present, then another shutdown occurs. Repeated resetting (more than three times) is not recommended as this could lead to overheating. To minimize battery current leakage, the SPLVDD and SPRVDD voltage levels must not be less than the AVDD voltage level. The device has a thermal protection (OTP) feature for the speaker drivers which is always enabled to provide protection. If the device overheats, then the output stops switching. When the device cools down, the device resumes switching. An overtemperature status flag is provided as a read-only bit on page 0 / register 3, bit D1. The OTP feature is for self-protection of the device. If die temperature can be controlled at the system or board level, then overtemperature does not occur. 6.3.10.13 Audio-Output Stage-Power Configurations After the device has been configured (following a RESET) and the circuitry has been powered up, the audio output stage can be powered up and powered down by register control. These functions soft-start automatically. By using these register controls, it is possible to control these four output-stage configuratios independently. See Table 6-25 for register control of audio output stage power configurations. Table 6-25. Audio-Output Stage-Power Configurations AUDIO OUTPUT PINS HPL SPRP / SPRM PAGE 1 / REGISTER, BIT VALUES Page 1 / register 31, bit D7 = 0 Power up HPL driver Page 1 / register 31, bit D7 = 1 Power down HPR driver Page 1 / register 31, bit D6 = 0 Power up HPR driver Page 1 / register 31, bit D6 = 1 Power down left class-D drivers Page 1 / register 32, bit D7 = 0 Power up left class-D drivers Page 1 / register 32, bit D7 = 1 Power down right class-D drivers Page 1 / register 32, bit D6 = 0 Power up right class-D drivers Page 1 / register 32, bit D6 = 1 HPR SPLP / SPLM DESIRED FUNCTION Power down HPL driver 6.3.10.14 DAC Setup The following paragraphs are intended to guide a user through the steps necessary to configure the . Step 1 The system clock source (master clock) and the targeted DAC sampling frequency must be identified. Depending on the targeted performance, the decimation filter type (A, B, or C) and DOSR value can be determined: • Filter A should be used for 48-kHz high-performance operation; DOSR must be a multiple of 8. • Filter B should be used for up to 96-kHz operations; DOSR must be a multiple of 4. • Filter C should be used for up to 192-kHz operations; DOSR must be a multiple of 2. Detailed Description Copyright © 2010–2018, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: TLV320DAC3101 47 TLV320DAC3101 SLAS666B – JANUARY 2010 – REVISED OCTOBER 2018 www.ti.com In all cases, DOSR is limited in its range by the following condition: 2.8 MHz < DOSR × DAC_fS < 6.2 MHz Based on the identified filter type and the required signal-processing capabilities, the appropriate processing block can be determined from the list of available processing blocks (PRB_P1 to PRB_P25). Based on the available master clock, the chosen DOSR and the targeted sampling rate, the clock-divider values NDAC and MDAC can be determined. If necessary, the internal PLL can add a large degree of flexibility. In summary, CODEC_CLKIN (derived directly from the system clock source or from the internal PLL) divided by MDAC, NDAC, and DOSR must be equal to the DAC sampling rate, DAC_fS. The CODEC_CLKIN clock signal is shared with the DAC clock-generation block. CODEC_CLKIN = NDAC × MDAC × DOSR × DAC_fS To a large degree, NDAC and MDAC can be chosen independently in the range of 1 to 128. In general, NDAC should be as large as possible as long as the following condition can still be met: MDAC × DOSR / 32 ≥ RC RC is a function of the chosen processing block and is listed in Table 6-11. The common-mode voltage setting of the device is determined by the available analog power supply. At this point, the following device-specific parameters are known: PRB_Px, DOSR, NDAC, MDAC, input and output common-mode values. If the PLL is used, the PLL parameters P, J, D, and R are determined as well. Step 2 Setting up the device via register programming: The following list gives an example sequence of items that must be executed in the time between powering the device up and reading data from the device. Note that there are other valid sequences, depending on which features are used. 1. Define starting point: a. Power up applicable external power supplies b. Set register page to 0 c. Initiate SW reset 2. Program clock settings a. Program PLL clock dividers P, J, D, and R (if PLL is used) b. Power up PLL (if PLL is used) c. Program and power up NDAC d. Program and power up MDAC e. Program OSR value f. Program I2S word length if required (16, 20, 24, or 32 bits) g. Program the processing block to be used h. Micellaneous page 0 controls 48 Detailed Description Copyright © 2010–2018, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: TLV320DAC3101 TLV320DAC3101 www.ti.com SLAS666B – JANUARY 2010 – REVISED OCTOBER 2018 3. Program analog blocks a. Set register page to 1 b. Program common-mode voltage c. Program headphone-specific de-pop settings (in case headphone driver is used) d. Program routing of DAC output to the output amplifier (headphone/lineout or speaker) e. Unmute and set gain of output drivers f. Power up output drivers 4. Apply waiting time determined by the de-pop settings and the soft-stepping settings of the driver gain, or poll page 1 / register 63 5. Power up DAC a. Set register page to 0 b. Power up DAC channels and set digital gain c. Unmute digital volume control A detailed example can be found in Section 6.3.10.15. 6.3.10.15 Example Register Setup to Play Digital Data Through DAC and Headphone/Speaker Outputs A typical EVM I2C register control script follows to show how to set up the in playback mode with fS = 44.1 kHz and MCLK = 11.2896 MHz. # # # # # # # # # # w # # # w # # # # # w # w # w # # # # w # # # # w # # # # w # # # Key: w 30 XX YY ==> write to I2C address 0x30, to register 0xXX, data 0xYY # ==> comment delimiter The following list gives an example sequence of items that must be executed in the time between powering the # device up and reading data from the device. Note that there are other valid sequences depending on which features are used. 1. Define starting point: (a) Power up applicable external hardware power supplies (b) Set register page to 0 30 00 00 (c) Initiate SW reset (PLL is powered off as part of reset) 30 01 01 2. Program clock settings (a) Program PLL clock dividers P, J, D, R (if PLL is used) PLL_clkin = MCLK,codec_clkin = PLL_CLK 30 04 03 J = 8 30 06 08 D = 0000, D(13:8) = 0, D(7:0) = 0 30 07 00 00 (b) Power up PLL (if PLL is used) PLL Power up, P = 1, R = 1 30 05 91 (c) Program and power up NDAC NDAC is powered up and set to 8 30 0B 88 (d) Program and power up MDAC MDAC is powered up and set to 2 30 0C 82 (e) Program OSR value Detailed Description Copyright © 2010–2018, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: TLV320DAC3101 49 TLV320DAC3101 SLAS666B – JANUARY 2010 – REVISED OCTOBER 2018 # w # # # # # w # # # w w w w # # # # w # # # # w # # # w # # # # w # # # # w # # # # w # w # w # # # # w # w # w # w # w # # # # # # # w # # # # 50 www.ti.com DOSR = 128, DOSR(9:8) = 0, DOSR(7:0) = 128 30 0D 00 80 (f) Program I2S word length if required (16, 20, 24, 32 bits) and master mode (BCLK and WCLK are outputs) mode is i2s, wordlength is 16, slave mode 30 1B 00 (g) Program the processing block to be used Select Processing Block PRB_P11 30 3C 0B 30 00 08 30 01 04 30 00 00 (h) Miscellaneous page 0 controls DAC => volume control thru pin disable 30 74 00 3. Program analog blocks (a) Set register page to 1 30 00 01 (b) Program common-mode voltage (defalut = 1.35 V) 30 1F 04 (c) Program headphone-specific depop settings (in case headphone driver is used) De-pop, Power on = 800 ms, Step time = 4 ms 30 21 4E (d) Program routing of DAC output to the output amplifier (headphone/lineout or speaker) LDAC routed to HPL out, RDAC routed to HPR out 30 23 44 (e) Unmute and set gain of output driver Unmute HPL, set gain = 0 db 30 28 06 Unmute HPR, set gain = 0 dB 30 29 06 Unmute Class-D, set gain = 18 dB 30 2A 1C (f) Power up output drivers HPL and HPR powered up 30 1F C2 Power-up Class-D driver 30 20 86 Enable HPL output analog volume, set = -9 dB 30 24 92 Enable HPR output analog volume, set = -9 dB 30 25 92 Enable Class-D output analog volume, set = -9 dB 30 26 92 4. Apply waiting time determined by the de-pop settings and the soft-stepping settings of the driver gain or poll page 1 / register 63 5. Power up DAC (a) Set register page to 0 30 00 00 (b) Power up DAC channels and set digital gain Powerup DAC left and right channels (soft step enabled) Detailed Description Copyright © 2010–2018, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: TLV320DAC3101 TLV320DAC3101 www.ti.com w # # w # w # # # # w SLAS666B – JANUARY 2010 – REVISED OCTOBER 2018 30 3F D4 DAC Left gain = -22 dB 30 41 D4 DAC Right gain = -22 dB 30 42 D4 (c) Unmute digital volume control Unmute DAC left and right channels 30 40 00 6.3.11 CLOCK Generation and PLL The device supports a wide range of options for generating clocks for the DAC section as well as interface and other control blocks as shown in Figure 6-19. The clocks for the DAC require a source reference clock. This clock is provided on a variety of device pins, such as the MCLK, BCLK, or GPIO1 pins. The source reference clock for the codec is chosen by programming the CODEC_CLKIN value on page 0 / register 4, bits D1–D0. The CODEC_CLKIN is then routed through highly-flexible clock dividers shown in Figure 6-19 to generate the various clocks required for the DAC. In the event that the desired audio clocks cannot be generated from the reference clocks on MCLK, BCLK, or GPIO1, the device also provides the option of using the on-chip PLL which supports a wide range of fractional multiplication values to generate the required clocks. Starting from CODEC_CLKIN, the device provides several programmable clock dividers to help achieve a variety of sampling rates for the DAC. Detailed Description Copyright © 2010–2018, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: TLV320DAC3101 51 TLV320DAC3101 SLAS666B – JANUARY 2010 – REVISED OCTOBER 2018 www.ti.com BCLK MCLK DIN GPIO1 PLL_CLKIN PLL ´ (R ´ J.D)/P BCLK MCLK GPIO1 PLL_CLK CODEC_CLKIN ¸ NDAC To DAC MAC NDAC = 1, 2, ..., 127, 128 DAC_CLK ¸ MDAC MDAC = 1, 2, ..., 127, 128 DAC_MOD_CLK ¸ DOSR DOSR = 1, 2, ..., 1023, 1024 DAC_fS B0357-04 Figure 6-19. Clock Distribution Tree DAC _ MOD _ CLK = DAC _ fS = CODEC _ CLKIN NDAC ´ MDAC CODEC _ CLKIN NDAC ´ MDAC ´ DOSR (5) Table 6-26. CODEC CLKIN Clock Dividers DIVIDER 52 BITS NDAC Page 0 / register 11, bits D6–D0 MDAC Page 0 / register 12, bits D6–D0 DOSR Page 0 / register 13, bits D1–D0 and page 0 / register 14, bits D7–D0 Detailed Description Copyright © 2010–2018, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: TLV320DAC3101 TLV320DAC3101 www.ti.com SLAS666B – JANUARY 2010 – REVISED OCTOBER 2018 The DAC modulator is clocked by DAC_MOD_CLK. For proper power-up operation of the DAC channel, DAC_MOD_CLK must be enabled by configuring the NDAC and MDAC clock dividers (page 0 / register 11, bit D7 = 1 and page 0 / register 12, bit D7 = 1). When the DAC channel is powered down, the device internally initiates a power-down sequence for proper shutdown. During this shutdown sequence, the NDAC and MDAC dividers must not be powered down, or else a proper low-power shutdown may not take place. The user can read back the power-status flag at page 0 / register 37, bit D7 and page 0 / register 37, bit D3. When both of the flags indicate power-down, the MDAC divider may be powered down, followed by the NDAC divider. In general, for proper operation, all the root clock dividers must power down only after the child clock dividers have powered down. The device also has options for routing some of the internal clocks to the GPIO1 pin to be used as general-purpose clocks in the system. The feature is shown in Figure 6-21. DAC_CLK DAC_MOD_CLK BDIV_CLKIN ÷N N = 1, 2, ..., 127, 128 BCLK B0362-01 Figure 6-20. BCLK Output Options In the mode when the device is configured to drive the BCLK pin (page 0 / register 27, bit D3 = 1), the device is driven as the divided value of BDIV_CLKIN. The division value is programmed in page 0 / register 30, bits D6–D0 from 1 to 128. The BDIV_CLKIN is configurable to be one of DAC_CLK (DAC processing clock) or DAC_MOD_CLK by configuring the BDIV_CLKIN multiplexer in page 0 / register 29, bits D1–D0. Additionally, a general-purpose clock can be driven out on GPIO1. This clock can be a divided-down version of CDIV_CLKIN. The value of this clock divider can be programmed from 1 to 128 by writing to page 0 / register 26, bits D6–D0. CDIV_CLKIN can also be programmed as one of the clocks among the list shown in Figure 6-21. This is controlled by programming the multiplexer in page 0 / register 25, bits D2–D0. Detailed Description Copyright © 2010–2018, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: TLV320DAC3101 53 TLV320DAC3101 SLAS666B – JANUARY 2010 – REVISED OCTOBER 2018 www.ti.com PLL_CLK MCLK BCLK DIN DAC_MOD_CLK DAC_CLK CDIV_CLKIN ÷M M = 1, 2, ..., 127, 128 GPIO1 (CLKOUT) B0363-01 Figure 6-21. General-Purpose Clock Output Options 54 Detailed Description Copyright © 2010–2018, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: TLV320DAC3101 TLV320DAC3101 www.ti.com SLAS666B – JANUARY 2010 – REVISED OCTOBER 2018 Table 6-27. Maximum Clock Frequencies DVDD ≥ 1.65 V CLOCK CODEC_CLKIN ≤ 110 MHz DAC_CLK (DAC processing clock) ≤ 49.152 MHz DAC_MOD_CLK ≤ 49.152 MHz with DRC disabled ≤ 48 MHz with DRC enabled DAC_MOD_CLK 6.758 MHz DAC_fS 0.192 MHz BDIV_CLKIN 55 MHz CDIV_CLKIN 100 MHz when M is odd 110 MHz when M is even 6.3.11.1 PLL For lower power consumption, the best process is to derive the internal audio processing clocks using the simple dividers. When the input MCLK or other source clock is not an integer multiple of the audio processing clocks then using the on-board PLL is necessary. The fractional PLL generates an internal master clock that produces the processing clocks required by the DAC. The programmability of this PLL allows operation from a wide variety of clocks that may be available in the system. The PLL input supports clocks varying from 512 kHz to 20 MHz and is register-programmable to enable generation of the required sampling rates with fine resolution. The PLL turns on by writing to page 0 / register 5, bit D7. When the PLL is enabled, the PLL output clock, PLL_CLK, is given by Equation 6. PLL_CLKIN ´ R ´ J.D PLL_CLK = P where • • • • R = 1, 2, 3, ..., 16 (page 0 / register 5, default value = 1) J = 1, 2,3, … , 63, (page 0 / register 6, default value = 4) D = 0, 1, 2, …, 9999 (page 0 / register 7 and page 0 / register 8, default value = 0) P = 1, 2, 3, …, 8 (page 0 / register 5, default value = 1) (6) The PLL turns on through page 0 / register 5, bit D7. The variable P is programmed through page 0 / register 5, bits D6–D4. The variable R is programmed through page 0 / register 5, bits D3–D0. The variable J is programmed through page 0 / register 6, bits D5–D0. The variable D is 14 bits and is programmed into two registers. The MSB portion is programmed through page 0 / register 7, bits D5–D0, and the LSB portion is programmed thrugh page 0 / register 8, bits D7–D0. For proper update of the Ddivider value, page 0 / register 7 must be programmed first, followed immediately by page 0 / register 8. The new value of D does not take effect unless the write to page 0 / register 8 is complete. When the PLL is enabled, the following conditions must be satisfied: • When the PLL is enabled and D = 0, the following conditions must be satisfied for PLL_CLKIN: PLL _ CLKIN 512 kHz £ £ 20 MHz P (7) 80 MHz ≤ (PLL_CLKIN × J.D. × R / P) ≤ 110 MHz • 4 ≤ R × J ≤ 259 When the PLL is enabled and D ≠ 0, the following conditions must be satisfied for PLL_CLKIN: PLL _ CLKIN 10 MHz £ £ 20 MHz P (8) 80 MHz ≤ PLL_CLKIN × J.D. × R / P ≤ 110 MHz R=1 Detailed Description Copyright © 2010–2018, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: TLV320DAC3101 55 TLV320DAC3101 SLAS666B – JANUARY 2010 – REVISED OCTOBER 2018 www.ti.com The PLL can power up independently from the DAC block, and can also be used as a general-purpose PLL by routing the PLL output to the GPIO output. After powering up the PLL, PLL_CLK is available typically after 10 ms. The clocks for the codec and various signal processing blocks, CODEC_CLKIN, are generated from the MCLK input, BCLK input, GPIO input, or PLL_CLK (page 0 / register 4, bits D1–D0). If CODEC_CLKIN is derived from the PLL, then the PLL must be powered up first and powered down last. Table 6-28 lists several example cases of typical PLL_CLKIN rates and how to program the PLL to achieve a sample rate fS of either 44.1 kHz or 48 kHz. Table 6-28. PLL Example Configurations PLL_CLKIN (MHz) PLLP PLLR PLLJ 2.8224 1 3 10 5.6448 1 3 5 12 1 1 13 1 16 1 19.2 48 PLLD MDAC NDAC DOSR 0 3 5 128 0 3 5 128 7 560 3 5 128 1 6 3504 6 3 104 1 5 2920 3 5 128 1 1 4 4100 3 5 128 4 1 7 560 3 5 128 2.048 1 3 14 0 7 2 128 3.072 1 4 7 0 7 2 128 4.096 1 3 7 0 7 2 128 6.144 1 2 7 0 7 2 128 8.192 1 4 3 0 4 4 128 12 1 1 7 1680 7 2 128 16 1 1 5 3760 7 2 128 19.2 1 1 4 4800 7 2 128 48 4 1 7 1680 7 2 128 fS = 44.1 kHz fS = 48 kHz 6.3.12 Timer The internal clock runs nominally at 8.2 MHz. This is used for various internal timing intervals, de-bounce logic, and interrupts. The MCLK divider must be set in such a way that the divider output is approximately 1 MHz for the timers to be closer to the programmed value. 56 Detailed Description Copyright © 2010–2018, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: TLV320DAC3101 TLV320DAC3101 www.ti.com SLAS666B – JANUARY 2010 – REVISED OCTOBER 2018 Powered on if internal oscillator is selected Internal Oscillator ÷8 0 Interval timers MCLK Programmable Divider Used for de-bounce time for headset detection logic, various power up timers and for generation of interrupts 1 P3/R16, Bits D6-D0 P3/R16, Bit D7 Figure 6-22. Interval Timer Clock Selection 6.3.13 Digital Audio and Control Interface 6.3.13.1 Digital Audio Interface Audio data is transferred between the host processor and the device through the digital audio data, serial interface, or audio bus. The audio bus on this device is very flexible, including left- or right-justified data options, support for I2S or DSP protocols, programmable data length options, a TDM mode for multichannel operation, very flexible master and slave configurability for each bus-clock line, and the ability to communicate with multiple devices within a system directly. The audio bus of the device can be configured for left-justified or right-justified, I2S, DSP, or TDM modes of operation, where communication with standard telephony interfaces is supported within the TDM mode. These modes are all MSB-first, with data width programmable as 16, 20, 24, or 32 bits by configuring page 0 / register 27, bits D5–D4. In addition, the word clock and bit clock can be independently configured in either master or slave mode, for flexible connectivity to a wide variety of processors. The word clock defines the beginning of a frame, and can be programmed as either a pulse or a square-wave signal. The frequency of this clock corresponds to the DAC sampling frequency. The bit clock is used to clock-in and clock-out the digital audio data across the serial bus. When in master mode, this signal can be programmed to generate variable clock pulses by controlling the bit-clock divider in page 0 / register 30 (see Figure 6-19). The number of bit-clock pulses in a frame can require adjustment to accommodate various word lengths as well as to support the case when multiple s share the same audio bus. The device also includes a feature to offset the position of start-of-data transfer with respect to the word clock. This offset is controlled in terms of number of bit-clocks and can be programmed in page 0 / register 28. The device also has the feature of inverting the polarity of the bit clock used for transferring the audio data as compared to the default clock polarity used. This feature can be used independently of the mode of audio interface chosen. This can be configured through page 0 / register 29, bit D3. By default, when the word clocks and bit clocks are generated by the device, these clocks are active only when the DACis powered up within the device. This is done to save power. However, it also supports a feature when both the word clocks and bit clocks can be active even when the codec in the device is powered down. This is useful when using the TDM mode with multiple codecs on the same bus, or when word clocks or bit clocks are used in the system as general-purpose clocks. Detailed Description Copyright © 2010–2018, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: TLV320DAC3101 57 TLV320DAC3101 SLAS666B – JANUARY 2010 – REVISED OCTOBER 2018 www.ti.com 6.3.13.1.1 Right-Justified Mode The audio interface of the can enter the right-justified mode by programming page 0 / register 27, bits D7–D6 = 10. In right-justified mode, the LSB of the left channel is valid on the rising edge of the bit clock preceding the falling edge of the word clock. Similarly, the LSB of the right channel is valid on the rising edge of the bit clock preceding the rising edge of the word clock. 1/fS WCLK BCLK Right Channel Left Channel DIN 0 2 n–1 n–2 n–3 1 MSB n–1 n–2 n–3 0 2 1 0 LSB T0149-05 Figure 6-23. Timing Diagram for Right-Justified Mode For the right-justified mode, the number of bit clocks per frame should be greater-than or equal-to twice the programmed word length of the data. 6.3.13.1.2 Left-Justified Mode The audio interface of the can enter the left-justified mode by programming page 0 / register 27, bits D7–D6 = 11. In left-justified mode, the MSB of the right channel is valid on the rising edge of the bit clock following the falling edge of the word clock. Similarly, the MSB of the left channel is valid on the rising edge of the bit clock following the rising edge of the word clock. WORD CLOCK LEFT CHANNEL RIGHT CHANNEL BIT CLOCK DATA N N N - - 1 2 3 3 2 1 N N N - - 1 2 3 0 LD(n) 3 2 1 0 RD(n) LD(n) = n'th sample of left channel data N N N - - 1 2 3 LD(n+1) RD(n) = n'th sample of right channel data Figure 6-24. Timing Diagram for Left-Justified Mode 58 Detailed Description Copyright © 2010–2018, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: TLV320DAC3101 TLV320DAC3101 www.ti.com SLAS666B – JANUARY 2010 – REVISED OCTOBER 2018 WORD CLOCK LEFT CHANNEL RIGHT CHANNEL BIT CLOCK N N N - - 1 2 3 DATA 3 2 1 0 N N N - - 1 2 3 LD(n) 3 2 1 N N N - - 1 2 3 0 RD(n) LD(n) = n'th sample of left channel data LD(n+1) RD(n) = n'th sample of right channel data Figure 6-25. Timing Diagram for Left-Justified Mode With Offset = 1 WORD CLOCK LEFT CHANNEL RIGHT CHANNEL BIT CLOCK DATA N N N - - 1 2 3 3 2 1 N N N - - 1 2 3 0 LD(n) 3 2 1 N N N - - 1 2 3 0 RD(n) LD(n) = n'th sample of left channel data 3 LD(n+1) RD(n) = n'th sample of right channel data Figure 6-26. Timing Diagram for Left-Justified Mode With Offset = 0 and Inverted Bit Clock For the left-justified mode, the number of bit clocks per frame should be greater-than or equal-to twice the programmed word length of the data. Also, the programmed offset value should be less than the number of bit clocks per frame by at least the programmed word length of the data. 6.3.13.1.3 I2S Mode The audio interface of the device enters I2S mode by programming page 0 / register 27, bits D7–D6 = to 00. In I2S mode, the MSB of the left channel is valid on the second rising edge of the bit clock after the falling edge of the word clock. Similarly, the MSB of the right channel is valid on the second rising edge of the bit clock after the rising edge of the word clock. WORD CLOCK LEFT CHANNEL RIGHT CHANNEL BIT CLOCK DATA N N N - - 1 2 3 3 2 1 N N N - - 1 2 3 0 LD(n) 3 2 1 N N N - - 1 2 3 0 RD(n) LD(n) = n'th sample of left channel data 3 LD(n+1) RD(n) = n'th sample of right channel data Figure 6-27. Timing Diagram for I2S Mode Detailed Description Copyright © 2010–2018, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: TLV320DAC3101 59 TLV320DAC3101 SLAS666B – JANUARY 2010 – REVISED OCTOBER 2018 WORD CLOCK www.ti.com LEFT CHANNEL RIGHT CHANNEL BIT CLOCK N 1 DATA 5 4 3 2 1 N 1 0 5 4 LD(n) 3 2 1 N 1 0 5 RD(n) LD(n) = n'th sample of left channel data LD (n+1) RD(n) = n'th sample of right channel data Figure 6-28. Timing Diagram for I2S Mode With Offset = 2 WORD CLOCK LEFT CHANNEL RIGHT CHANNEL BIT CLOCK DATA N N N - - 1 2 3 3 2 1 N N N - - 1 2 3 0 LD(n) 3 2 1 0 N N N - - 1 2 3 RD(n) LD(n) = n'th sample of left channel data 3 LD(n+1) RD(n) = n'th sample of right channel data Figure 6-29. Timing Diagram for I2S Mode With Offset = 0 and Bit Clock Inverted For I2S mode, the number of bit clocks per channel should be greater-than or equal-to the programmed word length of the data. Also, the programmed offset value should be less than the number of bit clocks per frame by at least the programmed word length of the data. 6.3.13.1.4 DSP Mode The audio interface of the can enter DSP mode by programming page 0 / register 27, bits D7–D6 = 01. In DSP mode, the rising edge of the word clock starts the data transfer with the left-channel data first and immediately followed by the right-channel data. Each data bit is valid on the falling edge of the bit clock. WORD CLOCK LEFT CHANNEL RIGHT CHANNEL BIT CLOCK DATA N N N - - 1 2 3 3 2 1 0 LD(n) N N N - - 1 2 3 3 2 1 N N N - - 1 2 3 0 RD(n) LD(n) = n'th sample of left channel data 3 LD (n+1) RD(n) = n'th sample of right channel data Figure 6-30. Timing Diagram for DSP Mode 60 Detailed Description Copyright © 2010–2018, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: TLV320DAC3101 TLV320DAC3101 www.ti.com SLAS666B – JANUARY 2010 – REVISED OCTOBER 2018 WORD CLOCK LEFT CHANNEL RIGHT CHANNEL BIT CLOCK DATA N N N - - 1 2 3 3 2 1 0 N N N - - 1 2 3 LD(n) 3 2 1 0 N N N - - 1 2 3 RD(n) LD(n) = n'th sample of left channel data LD(n+1) RD(n) = n'th sample of right channel data Figure 6-31. Timing Diagram for DSP Mode With Offset = 1 WORD CLOCK LEFT CHANNEL RIGHT CHANNEL BIT CLOCK DATA N N N - - 1 2 3 3 2 1 0 LD(n) N N N - - 1 2 3 3 2 1 0 N N N - - 1 2 3 RD(n) 3 LD(n+1) Figure 6-32. Timing Diagram for DSP Mode With Offset = 0 and Bit Clock Inverted For the DSP mode, the number of bit clocks per frame should be greater-than or equal-to twice the programmed word length of the data. Also, the programmed offset value should be less than the number of bit clocks per frame by at least the programmed word length of the data. 6.3.13.2 Primary and Secondary Digital Audio Interface Selection The audio serial interface on the has extensive I/O control to allow communication with two independent processors for audio data. The processors can communicate with the device one at a time. This feature is enabled by register programming of the various pin selections. shows the primary and secondary audio interface selection and registers. Figure 6-33 is a high-level diagram showing the general signal flow and multiplexing for the primary and secondary audio interfaces. Detailed Description Copyright © 2010–2018, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: TLV320DAC3101 61 TLV320DAC3101 SLAS666B – JANUARY 2010 – REVISED OCTOBER 2018 www.ti.com Table 6-29. Primary and Secondary Audio Interface Selection DESIRED PIN FUNCTION POSSIBLE PINS Primary WCLK (OUT) WCLK Primary WCLK (IN) WCLK PAGE 0 REGISTERS COMMENT R27/D2 = 1 Primary WCLK is output from codec R33/D5–D4 Select source of primary WCLK (DAC_fs or secondary WCLK) R27/D2 = 0 Primary WCLK is input to codec R27/D3 = 1 Primary BCLK is output from codec R33/D7 Select source of primary WCLK (internal BCLK or secondary BCLK) Primary BCLK (OUT) BCLK Primary BCLK (IN) BCLK R27/D3 = 0 Primary BCLK is input to codec Primary DIN (IN) DIN R32/D0 Select DIN to internal interface (0 = primary DIN; 1 = secondary DIN) R31/D4–D2 = 000 Secondary WCLK obtained from GPIO1 pin Secondary WCLK (OUT) GPIO1 R51/D5–D2 = 1001 GPIO1 is secondary WCLK output. Secondary WCLK (IN) GPIO1 Secondary BCLK (OUT) GPIO1 Secondary BCLK (IN) Secondary DIN (IN) 62 GPIO1 GPIO1 R33/D3–D2 Select source of Secondary WCLK (DAC_fS or primary WCLK) R31/D4–D2 = 000 Secondary WCLK obtained from GPIO1 pin R51/D5–D2 = 0001 GPIO1 enabled as secondary input R31/D7–D5 = 000 Secondary BCLK obtained from GPIO1 pin R51/D5–D2 = 1000 GPIO1 is secondary BCLK output. R33/D6 Select source of secondary BCLK (primary BCLK or internal BCLK) R31/D7–D5 = 000 Secondary BCLK obtained from GPIO1 pin R51/D5–D2 = 0001 GPIO1 enabled as secondary input R31/D1–D0 = 00 Secondary DIN obtained from GPIO1 pin R51/D5–D2 = 0001 GPIO1 enabled as secondary input Detailed Description Copyright © 2010–2018, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: TLV320DAC3101 TLV320DAC3101 www.ti.com SLAS666B – JANUARY 2010 – REVISED OCTOBER 2018 BCLK BCLK S_BCLK BCLK BCLK_OUT BCLK_INT S_BCLK WCLK S_WCLK WCLK WCLK DAC_fS Primary Audio Processor DAC_WCLK_INT S_WCLK Audio Digital Serial Interface DIN DOUT DIN DIN_INT S_DIN DIN BCLK2 GPIO1 S_BCLK BCLK BCLK BCLK_OUT WCLK2 GPIO1 S_WCLK WCLK WCLK DAC_fS Secondary Audio Processor GPIO1 BCLK_OUT DAC_fS Clock Generation S_DIN DOUT DIN B0375-01 Figure 6-33. Audio Serial Interface Multiplexing Detailed Description Copyright © 2010–2018, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: TLV320DAC3101 63 TLV320DAC3101 SLAS666B – JANUARY 2010 – REVISED OCTOBER 2018 www.ti.com 6.3.13.3 Control Interface The control interface supports the I2C communication protocol. 6.3.13.3.1 I2C Control Mode The supports the I2C control protocol, and responds to the I2C address of 0011 000. I2C is a two-wire, open-drain interface supporting multiple devices and masters on a single bus. Devices on the I2C bus only drive the bus lines LOW by connecting them to ground; they never drive the bus lines HIGH. Instead, the bus wires are pulled HIGH by pullup resistors, so the bus wires are HIGH when no device is driving them LOW. This way, two devices cannot conflict; if two devices drive the bus simultaneously, there is no driver contention. Communication on the I2C bus always takes place between two devices, one acting as the master and the other acting as the slave. Both masters and slaves can read and write, but slaves can only do so under the direction of the master. Some I2C devices can act as masters or slaves, but the can only act as a slave device. An I2C bus consists of two lines, SDA and SCL. SDA carries data, and the SCL signal provides the clock. All data is transmitted across the I2C bus in groups of eight bits. To send a bit on the I2C bus, the SDA line is driven to the appropriate level while SCL is LOW (a LOW on SDA indicates the bit is zero, while a HIGH indicates the bit is one). Once the SDA line has settled, the SCL line is brought HIGH, then LOW. This pulse on the SCL line clocks the SDA bit into the receiver shift register. The I2C bus is bidirectional: the SDA line is used both for transmitting and receiving data. When a master reads from a slave, the slave drives the data line; when a master sends to a slave, the master drives the data line. Most of the time the bus is idle, no communication is taking place, and both lines are HIGH. When communication is taking place, the bus is active. Only master devices can start communication on the bus. Generally, the data line is only allowed to change state while the clock line is LOW. If the data line changes state while the clock line is HIGH, it is either a START condition or the counterpart, a STOP condition. A START condition is when the clock line is HIGH and the data line goes from HIGH to LOW. A STOP condition is when the clock line is HIGH and the data line goes from LOW to HIGH. After the master issues a START condition, it sends a byte that selects the slave device for communication. This byte is called the address byte. Each device on an I2C bus has a unique 7-bit address to which it responds. (Slaves can also have 10-bit addresses; see the I2C specification for details.) The master sends an address in the address byte, together with a bit that indicates whether it is to read from or write to the slave device. Every byte transmitted on the I2C bus, whether it is address or data, is acknowledged with an acknowledge bit. When a master has finished sending a byte (eight data bits) to a slave, it stops driving SDA and waits for the slave to acknowledge the byte. The slave acknowledges the byte by pulling SDA LOW. The master then sends a clock pulse to clock the acknowledge bit. Similarly, when a master has finished reading a byte, it pulls SDA LOW to acknowledge this to the slave. It then sends a clock pulse to clock the bit. (Remember that the master always drives the clock line.) A not-acknowledge is performed by simply leaving SDA HIGH during an acknowledge cycle. If a device is not present on the bus, and the master attempts to address the device, the master receives a notacknowledge because no device is present at that address to pull the line LOW. When a master has finished communicating with a slave, it may issue a STOP condition. When a STOP condition is issued, the bus becomes idle again. A master may also issue another START condition. When a START condition is issued while the bus is active, it is called a repeated START condition. The can also respond to and acknowledge a general call, which consists of the master issuing a command with a slave address byte of 00h. This feature is disabled by default, but can be enabled through page 0 / register 34, bit D5. 64 Detailed Description Copyright © 2010–2018, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: TLV320DAC3101 TLV320DAC3101 www.ti.com SLAS666B – JANUARY 2010 – REVISED OCTOBER 2018 SCL DA(6) SDA Start (M) DA(0) 7-bit Device Address (M) RA(7) Write (M) Slave Ack (S) RA(0) 8-bit Register Address (M) D(7) Slave Ack (S) D(0) Slave Ack (S) 8-bit Register Data (M) Stop (M) (M) => SDA Controlled by Master (S) => SDA Controlled by Slave Figure 6-34. I2C Write SCL DA(6) SDA Start (M) DA(0) 7-bit Device Address (M) RA(7) Write (M) Slave Ack (S) DA(6) RA(0) 8-bit Register Address (M) Slave Ack (S) Repeat Start (M) DA(0) 7-bit Device Address (M) D(7) Read (M) Slave Ack (S) D(0) 8-bit Register Data (S) Master No Ack (M) Stop (M) (M) => SDA Controlled by Master (S) => SDA Controlled by Slave Figure 6-35. I2C Read In the case of an I2C register write, if the master does not issue a STOP condition, then the device enters auto-increment mode. So in the next eight clocks, the data on SDA is treated as data for the next incremental register. Similarly, in the case of an I2C register read, after the device has sent out the 8-bit data from the addressed register, if the master issues a ACKNOWLEDGE, the slave takes over control of the SDA bus and transmits for the next eight clocks the data of the next incremental register. 6.4 6.4.1 Register Map Register Map All features on this device are addressed using the I2C bus. All of the writable registers can be read back. However, some registers contain status information or data, and are only available for reading. The device contains several pages of 8-bit registers, and each page can contain up to 128 registers. The register pages are divided up based on functional blocks for this device. The pages defined for the device are 0, 1, 3, 8–9, 12–13 (DAC coefficient pages). Page 0 is the default home page after RESET. Page control occurs by writing a new page value into register 0 of the current page. The control registers for the device are described in detail as follows. All registers are 8 bits in width, with D7 referring to the most-significant bit of each register, and D0 referring to the least-significant bit. Pages 0, 1, 3, 8–9, and 12–13 are available for use. All other pages and registers are reserved. Do not read from or write to reserved pages and registers. Also, do not write other than the reset values for the reserved bits and read-only bits of non-reserved registers; otherwise, device functionality failure can occur. NOTE Note that the page and register numbers are shown in decimal format. For use in microcode, these decimal values may need to be converted to hexadecimal format. For convenience, the register numbers are shown in both formats, whereas the page numbers are shown only in decimal format. Table 6-30. Summary of Register Map PAGE NUMBER 0 DESCRIPTION Page 0 is the default page on power up. Configuration for serial interface, digital I/O, and other circuitry. Detailed Description Copyright © 2010–2018, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: TLV320DAC3101 65 TLV320DAC3101 SLAS666B – JANUARY 2010 – REVISED OCTOBER 2018 www.ti.com Table 6-30. Summary of Register Map (continued) PAGE NUMBER DESCRIPTION 1 Configuration for DAC, output drivers, volume controls, and other circuitry. 3 Register 16 controls the MCLK divider that controls the interrupt pulse duration, debounce timing, and detection-block clock. 8–9 DAC filter and DRC coefficients (buffer A) 12–13 DAC filter and DRC coefficients (buffer B) 6.4.2 Registers 6.4.2.1 Control Registers, Page 0 (Default Page): Clock Multipliers, Dividers, Serial Interfaces, Flags, Interrupts, and GPIOs Table 6-31. Page 0 / Register 0 (0x00): Page Control Register BIT READ/ WRITE RESET VALUE D7–D0 R/W 0000 0000 DESCRIPTION 0000 0000: 0000 0001: ... 1111 1110: 1111 1111: Page 0 selected Page 1 selected Page 254 selected Page 255 selected Table 6-32. Page 0 / Register 1 (0x01): Software Reset BIT READ/ WRITE RESET VALUE D7–D1 R/W 0000 000 D0 R/W 0 DESCRIPTION Reserved. Write only zeros to these bits. 0: Don't care 1: Self-clearing software reset for control register Table 6-33. Page 0 / Register 2 (0x02): Reserved BIT READ/ WRITE RESET VALUE D7–D0 R XXXX XXXX DESCRIPTION Reserved. Do not write to this register. Table 6-34. Page 0 / Register 3 (0x03): OT FLAG BIT READ/ WRITE RESET VALUE D7-D2 R XXXX XX D1 R 1 0: Overtemperature protection flag (active-low). Valid only if speaker amplifier is powered up 1: Normal operation D0 R/W X Reserved. Do not write to these bits. 66 DESCRIPTION Reserved. Do not write to these bits. Detailed Description Copyright © 2010–2018, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: TLV320DAC3101 TLV320DAC3101 www.ti.com SLAS666B – JANUARY 2010 – REVISED OCTOBER 2018 Table 6-35. Page 0 / Register 4 (0x04): Clock-Gen Muxing (1) BIT READ/ WRITE RESET VALUE D7–D4 R/W 0000 D3–D2 R/W 00 00: PLL_CLKIN 01: PLL_CLKIN 10: PLL_CLKIN 11: PLL_CLKIN D1–D0 R/W 00 00: CODEC_CLKIN = MCLK (device pin) 01: CODEC_CLKIN = BCLK (device pin) 10: CODEC_CLKIN = GPIO1 (device pin) 11: CODEC_CLKIN = PLL_CLK (generated on-chip) (1) DESCRIPTION Reserved. Write only zeros to these bits. = MCLK (device pin) = BCLK (device pin) = GPIO1 (device pin) = DIN (can be used for the system where DAC is not used) See Section 6.3.11 for more details on clock generation mutiplexing and dividers. Table 6-36. Page 0 / Register 5 (0x05): PLL P and R Values BIT READ/ WRITE RESET VALUE D7 R/W 0 D6–D4 R/W 001 D3–D0 R/W 0001 DESCRIPTION 0: PLL is powered down. 1: PLL is powered up. 000: PLL divider P 001: PLL divider P 010: PLL divider P ... 110: PLL divider P 111: PLL divider P 0000: 0001: 0010: ... 1110: 1111: =8 =1 =2 =6 =7 PLL multiplier R = 16 PLL multiplier R = 1 PLL multiplier R = 2 PLL multiplier R = 14 PLL multiplier R = 15 Table 6-37. Page 0 / Register 6 (0x06): PLL J-Value BIT READ/ WRITE RESET VALUE D7–D6 R/W 00 D5–D0 R/W 00 0100 DESCRIPTION Reserved. Write only zeros to these bits. 00 00 00 ... 11 11 0000: Do not use (reserved) 0001: PLL multiplier J = 1 0010: PLL multiplier J = 2 1110: PLL multiplier J = 62 1111: PLL multiplier J = 63 Table 6-38. Page 0 / Register 7 (0x07): PLL D-Value MSB (1) BIT READ/ WRITE D7–D6 R/W 00 D5–D0 R/W 00 0000 (1) RESET VALUE DESCRIPTION Reserved. Write only zeros to these bits. PLL fractional multiplier D-value MSB bits D[13:8] Note that this register is updated only when Page 0 / Register 8 is written immediately after Page 0 / Register 7. Table 6-39. Page 0 / Register 8 (0x08): PLL D-Value LSB (1) BIT READ/ WRITE RESET VALUE D7–D0 R/W 0000 0000 (1) DESCRIPTION PLL fractional multiplier D-value LSB bits D[7:0] Note that Page 0 / Register 8 must be written immediately after Page 0 / Register 7. Detailed Description Copyright © 2010–2018, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: TLV320DAC3101 67 TLV320DAC3101 SLAS666B – JANUARY 2010 – REVISED OCTOBER 2018 www.ti.com Table 6-40. Page 0 / Register 9 (0x09) and Page 0 / Register 10 (0x0A): Reserved BIT READ/ WRITE RESET VALUE D7–D0 R XXXX XXXX DESCRIPTION Reserved. Table 6-41. Page 0 / Register 11 (0x0B): DAC NDAC_VAL BIT READ/ WRITE RESET VALUE D7 R/W 0 D6–D0 R/W 000 0001 DESCRIPTION 0: DAC NDAC divider is powered down. 1: DAC NDAC divider is powered up. 000 0000: 000 0001: 000 0010: ... 111 1110: 111 1111: DAC NDAC divider = 128 DAC NDAC divider = 1 DAC NDAC divider = 2 DAC NDAC divider = 126 DAC NDAC divider = 127 Table 6-42. Page 0 / Register 12 (0x0C): DAC MDAC_VAL BIT READ/ WRITE RESET VALUE D7 R/W 0 D6–D0 R/W 000 0001 DESCRIPTION 0: DAC MDAC divider is powered down. 1: DAC MDAC divider is powered up. 000 0000: 000 0001: 000 0010: ... 111 1110: 111 1111: DAC MDAC divider = 128 DAC MDAC divider = 1 DAC MDAC divider = 2 DAC MDAC divider = 126 DAC MDAC divider = 127 Table 6-43. Page 0 / Register 13 (0x0D): DAC DOSR_VAL MSB BIT READ/ WRITE RESET VALUE D7–D2 R/W 0000 00 D1–D0 R/W 00 DESCRIPTION Reserved DAC OSR value DOSR(9:8) Table 6-44. Page 0 / Register 14 (0x0E): DAC DOSR_VAL LSB BIT READ/ WRITE RESET VALUE D7–D0 R/W 1000 0000 BIT READ/ WRITE RESET VALUE D7–D0 R/W XXXX XXXX DESCRIPTION DAC OSR Value DOSR (7:0) 0000 0000: DAC OSR (7:0) = 1024 (MSB page 0 / register 13, bits D1–D0 = 00) 0000 0001: Reserved 0000 0010: DAC OSR (7:0) = 2 (MSB page 0 / register 13, bits D1–D0 = 00) ... 1111 1110: DAC OSR (7:0) = 1022 (MSB page 0 / register 13, bits D1–D0 = 11) 1111 1111: DAC OSR (7:0) = Table 6-45. Page 0 / Register 15 (0x0F) through Page 0 / Register 24 (0x18): Reserved DESCRIPTION Reserved. Do not write to these registers. Table 6-46. Page 0 / Register 25 (0x19): CLKOUT MUX BIT READ/ WRITE RESET VALUE D7–D3 R/W 0000 0 68 DESCRIPTION Reserved Detailed Description Copyright © 2010–2018, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: TLV320DAC3101 TLV320DAC3101 www.ti.com SLAS666B – JANUARY 2010 – REVISED OCTOBER 2018 Table 6-46. Page 0 / Register 25 (0x19): CLKOUT MUX (continued) BIT READ/ WRITE RESET VALUE D2–D0 R/W 000 DESCRIPTION 000: CDIV_CLKIN 001: CDIV_CLKIN 010: CDIV_CLKIN 011: CDIV_CLKIN 100: CDIV_CLKIN 101: CDIV_CLKIN 110: Reserved 111: Reserved = MCLK (device pin) = BCLK (device pin) = DIN (can be used for the systems where DAC is not required) = PLL_CLK (generated on-chip) = DAC_CLK (DAC DSP clock - generated on-chip) = DAC_MOD_CLK (generated on-chip) Table 6-47. Page 0 / Register 26 (0x1A): CLKOUT M_VAL BIT READ/ WRITE RESET VALUE D7 R/W 0 D6–D0 R/W 000 0001 DESCRIPTION 0: CLKOUT M divider is powered down. 1: CLKOUT M divider is powered up. 000 0000: 000 0001: 000 0010: ... 111 1110: 111 1111: CLKOUT divider M = 128 CLKOUT divider M = 1 CLKOUT divider M = 2 CLKOUT divider M = 126 CLKOUT divider M = 127 Table 6-48. Page 0 / Register 27 (0x1B): Codec Interface Control 1 BIT READ/ WRITE RESET VALUE D7–D6 R/W 00 00: Codec interface = I2S 01: Codec Interface = DSP 10: Codec interface = RJF 11: Codec interface = LJF D5–D4 R/W 00 00: Codec interface word 01: Codec interface word 10: Codec interface word 11: Codec interface word D3 R/W 0 0: BCLK is input 1: BCLK is output D2 R/W 0 0: WCLK is input 1: WCLK is output D1–D0 R/W 0 Reserved DESCRIPTION length = 16 length = 20 length = 24 length = 32 bits bits bits bits Table 6-49. Page 0 / Register 28 (0x1C): Data-Slot Offset Programmability BIT READ/ WRITE RESET VALUE D7–D0 R/W 0000 0000 DESCRIPTION Offset (Measured With Respect to WCLK Rising Edge in DSP Mode) 0000 0000: Offset = 0 BCLKs 0000 0001: Offset = 1 BCLK 0000 0010: Offset = 2 BCLKs ... 1111 1110: Offset = 254 BCLKs 1111 1111: Offset = 255 BCLKs Table 6-50. Page 0 / Register 29 (0x1D): Codec Interface Control 2 BIT READ/ WRITE RESET VALUE D7–D4 R/W 0000 D3 R/W 0 DESCRIPTION Reserved 0: BCLK is not inverted (valid for both primary and secondary BCLK) 1: BCLK is inverted (valid for both primary and secondary BCLK) Detailed Description Copyright © 2010–2018, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: TLV320DAC3101 69 TLV320DAC3101 SLAS666B – JANUARY 2010 – REVISED OCTOBER 2018 www.ti.com Table 6-50. Page 0 / Register 29 (0x1D): Codec Interface Control 2 (continued) BIT READ/ WRITE RESET VALUE D2 R/W 0 BCLK and WCLK Active Even With Codec Powered Down (Valid for Both Primary and Secondary BCLK) 0: Disabled 1: Enabled D1–D0 R/W 00 00: BDIV_CLKIN = DAC_CLK (generated on-chip) 01: BDIV_CLKIN = DAC_MOD_CLK (generated on-chip) 10: Reserved 11: Reserved DESCRIPTION Table 6-51. Page 0 / Register 30 (0x1E): BCLK N_VAL BIT READ/ WRITE RESET VALUE D7 R/W 0 D6–D0 R/W 000 0001 DESCRIPTION 0: BCLK N-divider is powered down. 1: BCLK N-divider is powered up. 000 0000: 000 0001: 000 0010: ... 111 1110: 111 1111: BCLK divider N = 128 BCLK divider N = 1 BCLK divider N = 2 BCLK divider N = 126 BCLK divider N = 127 Table 6-52. Page 0 / Register 31 (0x1F): Codec Secondary Interface Control 1 BIT READ/ WRITE RESET VALUE D7–D5 R/W 000 000: Secondary BCLK is obtained from GPIO1 pin. 001: Secondary BCLK is not obtained from the GPIO1 pin. 010: Reserved. 011: Reserved. 100: Reserved 101: Reserved. 110: Reserved. 111: Reserved D4–D2 R/W 000 000: Secondary WCLK is obtained from GPIO1 pin. 001: Secondary WCLK is not obtained from the GPIO1 pin. 010: Reserved. 011: Reserved. 100: Reserved 101: Reserved. 110: Reserved. 111: Reserved D1–D0 R/W 00 00: Secondary DIN is obtained from the GPIO1 pin. 01: Secondary DIN is not obtained from the GPIO1 pin. 10: Reserved. 10–11: Reserved DESCRIPTION Table 6-53. Page 0 / Register 32 (0x20): Codec Secondary Interface Control 2 BIT READ/ WRITE RESET VALUE D7–D4 R/W 0000 D3 R/W 0 0: Primary BCLK is fed to codec serial-interface and ClockGen blocks. 1: Secondary BCLK is fed to codec serial-interface and ClockGen blocks. D2 R/W 0 0: Primary WCLK is fed to codec serial-interface block. 1: Secondary WCLK is fed to codec serial-interface block. D1 R/W 0 Reserved. D0 R/W 0 0: Primary DIN is fed to codec serial-interface block. 1: Secondary DIN is fed to codec serial-interface block. 70 DESCRIPTION Reserved Detailed Description Copyright © 2010–2018, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: TLV320DAC3101 TLV320DAC3101 www.ti.com SLAS666B – JANUARY 2010 – REVISED OCTOBER 2018 Table 6-54. Page 0 / Register 33 (0x21): Codec Secondary Interface Control 3 BIT READ/ WRITE RESET VALUE D7 R/W 0 0: Primary BCLK output = internally generated BCLK clock 1: Primary BCLK output = secondary BCLK D6 R/W 0 0: Secondary BCLK output = primary BCLK 1: Secondary BCLK output = internally generated BCLK clock D5–D4 R/W 00 00: Primary WCLK output = internally generated DAC_fS 01: Reserved 10: Primary WCLK output = secondary WCLK 11: Reserved D3–D2 R/W 00 00: Secondary WCLK output = primary WCLK 01: Secondary WCLK output = internally generated DAC_fS clock 10: Reserved 11: Reserved D1–D0 R/W 0 Reserved DESCRIPTION Table 6-55. Page 0 / Register 34 (0x22): I2C Bus Condition BIT READ/ WRITE RESET VALUE D7–D6 R/W 00 Reserved. Write only the reset value to these bits. D5 R/W 0 0: I2C general-call address is ignored. 1: Device accepts I2C general-call address. D4–D0 R/W 0 0000 DESCRIPTION Reserved. Write only zeros to these bits. Table 6-56. Page 0 / Register 35 (0x23) and Page 0 / Register 36 (0x24): Reserved BIT READ/ WRITE RESET VALUE D7–D0 R/W XXXX XXXX BIT READ/ WRITE RESET VALUE D7 R 0 0: Left-channel DAC powered down 1: Left-channel DAC powered up D6 R/W X Reserved. Write only zero to this bit. D5 R 0 0: HPL driver powered down 1: HPL driver powered up D4 R 0 0: Left-channel class-D driver powered down 1: Left-channel class-D driver powered up D3 R 0 0: Right-channel DAC powered down 1: Right-channel DAC powered up D2 R/W X Reserved. Write only zero to this bit. D1 R 0 0: HPR driver powered down 1: HPR driver powered up D0 R 0 0: Right-channel class-D driver powered down 1: Right-channel class-D driver powered up DESCRIPTION Reserved. Write only zeros to these bits. Table 6-57. Page 0 / Register 37 (0x25): DAC Flag Register DESCRIPTION Table 6-58. Page 0 / Register 38 (0x26): DAC Flag Register BIT READ/ WRITE RESET VALUE D7–D5 R/W XXX D4 R 0 D3–D1 R/W XXX DESCRIPTION Reserved. Do not write to these bits. 0: Left-channel DAC PGA applied gain ≠ programmed gain 1: Left-channel DAC PGA applied gain = programmed gain Reserved. Write only zeros to these bits. Detailed Description Copyright © 2010–2018, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: TLV320DAC3101 71 TLV320DAC3101 SLAS666B – JANUARY 2010 – REVISED OCTOBER 2018 www.ti.com Table 6-58. Page 0 / Register 38 (0x26): DAC Flag Register (continued) BIT READ/ WRITE RESET VALUE D0 R 0 DESCRIPTION 0: Right-channel DAC PGA applied gain ≠ programmed gain 1: Right-channel DAC PGA applied gain = programmed gain Table 6-59. Page 0 / Register 39 (0x27): Overflow Flags BIT READ/ WRITE RESET VALUE D7 (1) R 0 Left-Channel DAC Overflow Flag 0: Overflow has not occurred. 1: Overflow has occurred. D6 (1) R 0 Right-Channel DAC Overflow Flag 0: Overflow has not occurred. 1: Overflow has occurred. D5 (1) R 0 DAC Barrel Shifter Output Overflow Flag 0: Overflow has not occurred. 1: Overflow has occurred. D4–D0 R 0 Reserved. (1) DESCRIPTION Sticky flag bIt. These is a read-only bit. This bit is automatically cleared once it is read and is set only if the source trigger occurs again. Table 6-60. Page 0 / Register 40 (0x28) Through Page 0 / Register 43 (0x2B): Reserved BIT READ/ WRITE RESET VALUE D7–D0 R/W XXXX XXXX DESCRIPTION Reserved. Write only the reset value to these bits. Table 6-61. Page 0 / Register 44 (0x2C): DAC Interrupt Flags (Sticky Bits) BIT READ/ WRITE RESET VALUE D7 (1) R 0 0: No short circuit is detected at HPL / left class-D driver. 1: Short circuit is detected at HPL / left class-D driver. D6 (1) R 0 0: No short circuit is detected at HPR / right class-D driver. 1: Short circuit is detected at HPR / right class-D driver. D5 (1) R X 0: No headset button pressed. 1: Headset button pressed. D4 (1) R X 0: No headset insertion or removal is detected. 1: Headset insertion or removal is detected. D3 (1) R 0 0: Left DAC signal power is less than or equal to the signal threshold of DRC. 1: Left DAC signal power is above the signal threshold of DRC. D2 (1) R 0 0: Right DAC signal power is less than or equal to the signal threshold of DRC. 1: Right DAC signal power is above the signal threshold of DRC. D1-D0 R 0 Reserved. (1) DESCRIPTION Sticky flag bIt. These is a read-only bit. This bit is automatically cleared once it is read and is set only if the source trigger occurs again. Table 6-62. Page 0 / Register 45 (0x2D): Reserved BIT READ/ WRITE RESET VALUE D7–D0 R/W XXXX XXXX DESCRIPTION Reserved. Write only zeros to these bits. Table 6-63. Page 0 / Register 46 (0x2E): Interrupt Flags—DAC 72 BIT READ/ WRITE RESET VALUE D7 R 0 0: No short circuit detected at HPL / left class-D driver. 1: Short circuit detected at HPL / left class-D driver. D6 R 0 0: No short circuit detected at HPR / right class-D driver 1: Short circuit detected at HPR / right class-D driver DESCRIPTION Detailed Description Copyright © 2010–2018, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: TLV320DAC3101 TLV320DAC3101 www.ti.com SLAS666B – JANUARY 2010 – REVISED OCTOBER 2018 Table 6-63. Page 0 / Register 46 (0x2E): Interrupt Flags—DAC (continued) BIT READ/ WRITE RESET VALUE D5 R X 0: No headset button pressed. 1: Headset button pressed. D4 R X 0: Headset removal detected. 1: Headset insertion detected. D3 R 0 0: Left DAC signal power is less than or equal to signal threshold of DRC. 1: Left DAC signal power is greater than signal threshold of DRC. D2 R 0 0: Right DAC signal power is less than or equal to signal threshold of DRC. 1: Right DAC signal power is greater than signal threshold of DRC. D1–D0 R 00 Reserved. DESCRIPTION Table 6-64. Page 0 / Register 47 (0x2F): Reserved BIT READ/ WRITE RESET VALUE D7–D0 R 0000 0000 DESCRIPTION Reserved. Table 6-65. Page 0 / Register 48 (0x30): INT1 Control Register BIT READ/ WRITE RESET VALUE D7 R/W 0 0: Headset-insertion detect interrupt is not used in the generation of INT1 interrupt. 1: Headset-insertion detect interrupt is used in the generation of INT1 interrupt. D6 R/W 0 0: Button-press detect interrupt is not used in the generation of INT1 interrupt. 1: Button-press detect interrupt is used in the generation of INT1 interrupt. D5 R/W 0 0: DAC DRC signal-power interrupt is not used in the generation of INT1 interrupt. 1: DAC DRC signal-power interrupt is used in the generation of INT1 interrupt. D4 R/W 0 Reserved D3 R/W 0 0: Short-circuit interrupt is not used in the generation of INT1 interrupt. 1: Short-circuit interrupt is used in the generation of INT1 interrupt. D2 R/W 0 0: DAC data overflow does not result in an INT1 interrupt. 1: DAC data overflow results in an INT1 interrupt. D1 R/W 0 Reserved D0 R/W 0 0: INT1 is only one pulse (active-high) of typical 2-ms duration. 1: INT1 is multiple pulses (active-high) of typical 2-ms duration and 4-ms period, until flag register 44 is read by the user. DESCRIPTION Table 6-66. Page 0 / Register 49 (0x31): INT2 Control Register BIT READ/ WRITE RESET VALUE D7 R/W 0 0: Headset-insertion detect interrupt is not used in the generation of INT2 interrupt. 1: Headset-insertion detect interrupt is used in the generation of INT2 interrupt. D6 R/W 0 0: Button-press detect interrupt is not used in the generation of INT2 interrupt. 1: Button-press detect interrupt is used in the generation of INT2 interrupt. D5 R/W 0 0: DAC DRC signal-power interrupt is not used in the generation of INT2 interrupt. 1: DAC DRC signal-power interrupt is used in the generation of INT2 interrupt. D4 R/W 0 Reserved D3 R/W 0 0: Short-circuit interrupt is not used in the generation of INT2 interrupt. 1: Short-circuit interrupt is used in the generation of INT2 interrupt. D2 R/W 0 0: DAC data overflow does not result in an INT2 interrupt. 1: DAC data overflow results in an INT2 interrupt. D1 R/W 0 Reserved D0 R/W 0 0: INT2 is only one pulse (active-high) of typical 2-ms duration. 1: INT2 is multiple pulses (active-high) of typical 2-ms duration and 4-ms period, until flag register 44is read by the user. DESCRIPTION Detailed Description Copyright © 2010–2018, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: TLV320DAC3101 73 TLV320DAC3101 SLAS666B – JANUARY 2010 – REVISED OCTOBER 2018 www.ti.com Table 6-67. Page 0 / Register 50 (0x32): Reserved BIT READ/ WRITE RESET VALUE D7-D0 R/W 0000 0000 DESCRIPTION Reserved. Write only reset values. Table 6-68. Page 0 / Register 52 (0x34): Reserved BIT READ/ WRITE RESET VALUE D7–D0 R/W XXXX XXXX 74 DESCRIPTION Reserved. Do not write any value other than reset value. Detailed Description Copyright © 2010–2018, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: TLV320DAC3101 TLV320DAC3101 www.ti.com SLAS666B – JANUARY 2010 – REVISED OCTOBER 2018 Table 6-69. Page 0 / Register 53: Reserved BIT READ/ WRITE RESET VALUE D7–D0 R 0000 0000 DESCRIPTION Reserved Table 6-70. Page 0 / Register 54 (0x36): DIN (IN Pin) Control BIT READ/ WRITE RESET VALUE D7–D3 R/W 0000 0 D2–D1 R/W 01 00: DIN disabled (input buffer powered down) 01: DIN enabled (can be used as DIN for codec interface or into ClockGen block) 10: DIN is used as general-purpose input (GPI) 11: Reserved D0 R X DIN input-buffer value DESCRIPTION Reserved Table 6-71. Page 0 / Register 55 (0x37) through Page 0 / Register 59 (0x3B): Reserved BIT READ/ WRITE RESET VALUE D7–D0 R XXXX XXXX DESCRIPTION Reserved. Do not write to these registers. Table 6-72. Page 0 / Register 60 (0x3C): DAC Processing Block Selection BIT READ/ WRITE RESET VALUE D7–D5 R/W 000 D4–D0 R/W 00 0001 DESCRIPTION Reserved. Write only default value. 0 0000: Reserved. Do not use. 0 0001: DAC signal-processing block PRB_P1 0 0010: DAC signal-processing block PRB_P2 0 0011: DAC signal-processing block PRB_P3 0 0100: DAC signal-processing block PRB_P4 ... 1 1000: DAC signal-processing block PRB_P24 1 1001: DAC signal-processing block PRB_P25 1 1010–1 1111: Reserved. Do not use. Detailed Description Copyright © 2010–2018, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: TLV320DAC3101 75 TLV320DAC3101 SLAS666B – JANUARY 2010 – REVISED OCTOBER 2018 www.ti.com Table 6-73. Page 0 / Register 61 (0x3D)Through Page 0 / Register 62: Reserved BIT READ/ WRITE RESET VALUE D7–D0 R XXXX XXXX DESCRIPTION Reserved. Do not write. Table 6-74. Page 0 / Register 63 (0x3F): DAC Data-Path Setup BIT READ/ WRITE RESET VALUE D7 R/W 0 0: Left-channel DAC is powered down. 1: Left-channel DAC is powered up. D6 R/W 0 0: Right-channel DAC is powered down. 1: Right-channel DAC is powered up. D5–D4 R/W 01 00: Left-channel 01: Left-channel 10: Left-channel 11: Left-channel D3–D2 R/W 01 00: Right-channel DAC 01: Right-channel DAC 10: Right-channel DAC 11: Right-channel DAC D1–D0 R/W 00 00: DAC-channel volume-control soft-stepping is enabled for one step per sample period. 01: DAC-channel volume-control soft-stepping is enabled for one step per two sample periods. 10: DAC-channel volume-control soft-stepping is disabled. 11: Reserved. Do not write this sequence to these bits. DESCRIPTION DAC DAC DAC DAC data data data data path path path path data data data data = off = left data = right data = left-channel and right-channel data [(L + R) / 2] path path path path = off = right data = left data = left-channel and right-channel data [(L + R) / 2] Table 6-75. Page 0 / Register 64 (0x40): DAC Volume Control BIT READ/ WRITE RESET VALUE D7–D4 R/W 0000 D3 R/W 1 0: Left-channel DAC not muted 1: Left-channel DAC muted D2 R/W 1 0: Right-channel DAC not muted 1: Right-channel DAC muted D1–D0 R/W 00 00: Left and right channels have independent volume control. (1) 01: Left-channel volume control Is the programmed value of right-channel volume control. 10: Right-channel volume control is the programmed value of left-channel volume control. 11: Same as 00 (1) DESCRIPTION Reserved. Write only zeros to these bits. When DRC is enabled, left and right channel volume controls are always independent. Program bits D1–D0 to 00. Table 6-76. Page 0 / Register 65 (0x41): DAC Left Volume Control BIT READ/ WRITE RESET VALUE D7–D0 R/W 0000 0000 76 DESCRIPTION Left DAC Channel Digital Volume Control Setting 0111 1111–0011 0001: Reserved. Do not use 0011 0000: Digital volume control = 24 dB 0010 1111: Digital volume control = 23.5 dB 0010 1110: Digital volume control = 23 dB ... 0000 0001: Digital volume control = 0.5 dB 0000 0000: Digital volume control = 0 dB 1111 1111: Digital volume control = –0.5 dB ... 1000 0010: Digital volume control = –63 dB 1000 0001: Digital volume control = –63.5 dB 1000 0000: Reserved. Detailed Description Copyright © 2010–2018, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: TLV320DAC3101 TLV320DAC3101 www.ti.com SLAS666B – JANUARY 2010 – REVISED OCTOBER 2018 Table 6-77. Page 0 / Register 66 (0x42): DAC Right Volume Control BIT READ/ WRITE RESET VALUE D7–D0 R/W 0000 0000 DESCRIPTION Right DAC Channel Digital Volume Control Setting 0111 1111–0011 0001: Reserved. Do not use 0011 0000: Digital volume control = 24 dB 0010 1111: Digital volume control = 23.5 dB 0010 1110: Digital volume control = 23 dB ... 0000 0001: Digital volume control = 0.5 dB 0000 0000: Digital volume control = 0 dB 1111 1111: Digital volume control = –0.5 dB ... 1000 0010: = –63 dB 1000 0001: = –63.5 dB 1000 0000: Reserved. Table 6-78. Page 0 / Register 67 (0x43): Headset Detection BIT READ/ WRITE RESET VALUE D7 R/W 0 D6–D5 R XX 00: No headset detected 01: Headset without microphone is detected 10: Reserved 11: Headset with microphone is detected D4–D2 R/W 000 Debounce Programming for Glitch Rejection During Headset Detection (1) 000: 16 ms (sampled with 2-ms clock) 001: 32 ms (sampled with 4-ms clock) 010: 64 ms (sampled with 8-ms clock) 011: 128 ms (sampled with 16-ms clock) 100: 256 ms (sampled with 32-ms clock) 101: 512 ms (sampled with 64-ms clock) 110: Reserved 111: Reserved D1–D0 R/W 00 Debounce programming for glitch rejection during headset button-press detection 00: 0 ms 01: 8 ms (sampled with 1-ms clock) 10: 16 ms (sampled with 2-ms clock) 11: 32 ms (sampled with 4-ms clock) (1) DESCRIPTION 0: Headset detection disabled 1: Headset detection enabled Note that these times are generated using the 1 MHz reference clock which is defined in Page 3 / Register 16. Table 6-79. Page 0 / Register 68 (0x44): DRC Control 1 BIT READ/ WRITE RESET VALUE D7 R/W 0 Reserved. Write only the reset value to these bits. D6 R/W 0 0: DRC disabled for left channel 1: DRC enabled for left channel D5 R/W 0 0: DRC disabled for right channel 1: DRC enabled for right channel D4–D2 R/W 011 000: DRC 001: DRC 010: DRC 011: DRC 100: DRC 101: DRC 110: DRC 111: DRC D1–D0 R/W 11 00: DRC 01: DRC 10: DRC 11: DRC DESCRIPTION threshold threshold threshold threshold threshold threshold threshold threshold = –3 dB = –6 dB = –9 dB = –12 dB = –15 dB = –18 dB = –21 dB = –24 dB hysteresis = 0 hysteresis = 1 hysteresis = 2 hysteresis = 3 dB dB dB dB Detailed Description Copyright © 2010–2018, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: TLV320DAC3101 77 TLV320DAC3101 SLAS666B – JANUARY 2010 – REVISED OCTOBER 2018 www.ti.com Table 6-80. Page 0 / Register 69 (0x45): DRC Control 2 BIT READ/ WRITE RESET VALUE D R 0 D6–D3 R/W 0111 D2-D0 R 000 DESCRIPTION Reserved. Write only the reset value to these bits. DRC Hold Time 0000: DRC Hold 0001: DRC Hold 0010: DRC Hold 0011: DRC Hold 0100: DRC Hold 0101: DRC Hold 0110: DRC Hold 0111: DRC Hold 1000: DRC Hold 1001: DRC Hold 1010: DRC Hold 1011: DRC Hold 1100: DRC Hold 1101: DRC Hold 1110: DRC Hold 1111: DRC Hold Disabled Time = 32 DAC Word Clocks Time = 64 DAC Word Clocks Time = 128 DAC Word Clocks Time = 256 DAC Word Clocks Time = 512 DAC Word Clocks Time = 1024 DAC Word Clocks Time = 2048 DAC Word Clocks Time = 4096 DAC Word Clocks Time = 8192 DAC Word Clocks Time = 16 384 DAC Word Clocks Time = 32 768 DAC Word Clocks Time = 65 536 DAC Word Clocks Time = 98 304 DAC Word Clocks Time = 131 072 DAC Word Clocks Time = 163 840 DAC Word Clocks Reserved. Write only the reset value to these bits. Table 6-81. Page 0 / Register 70 (0x46): DRC Control 3 BIT READ/ WRITE RESET VALUE D7–D4 R/W 0000 D3–D0 R/W 0000 DESCRIPTION 0000: 0001: 0010: ... 1110: 1111: DRC attack rate = 4 dB per DAC Word Clock DRC attack rate = 2 dB per DAC word clock DRC attack rate = 1 dB per DAC word clock DRC attack rate = 2.4414e–5 dB per DAC word clock DRC attack rate = 1.2207e–5 dB per DAC word clock Decay Rate is defined as DR / 2[bits D3-D0 value] dB per DAC Word Clock, where DR = 0.015625 dB 0000: DRC decay rate (DR) = 0.015625 dB per DAC Word Clock 0001: 0010: 0011: 0100: 0101: 0110: 0111: 1000: 1001: 1010: 1011: 1100: 1101: 1110: 1111: DRC DRC DRC DRC DRC DRC DRC DRC DRC DRC DRC DRC DRC DRC DRC decay rate decay rate decay rate decay rate decay rate decay rate decay rate decay rate decay rate decay rate decay rate decay rate decay rate decay rate decay rate = DR / = DR / = DR / = DR / = DR / = DR / = DR / = DR / = DR / = DR / = DR / = DR / = DR / = DR / = DR / 2 dB per DAC Word Clock 22 dB per DAC Word Clock 23 dB per DAC Word Clock 24 dB per DAC Word Clock 25 dB per DAC Word Clock 26 dB per DAC Word Clock 27 dB per DAC Word Clock 28 dB per DAC Word Clock 29 dB per DAC Word Clock 210 dB per DAC Word Clock 211 dB per DAC Word Clock 212 dB per DAC Word Clock 213 dB per DAC Word Clock 214 dB per DAC Word Clock 215 dB per DAC Word Clock Table 6-82. Page 0 / Register 71 (0x47): Left Beep Generator BIT READ/ WRITE RESET VALUE D7 R/W 0 0: Beep generator is disabled. 1: Beep generator is enabled (self-clearing based on beep duration). D6 R/W 0 Reserved. Write only reset value. D5–D0 R/W 00 0000 (1) 78 (1) DESCRIPTION 00 00 00 00 ... 11 11 0000: Left-channel 0001: Left-channel 0010: Left-channel 0011: Left-channel beep volume control beep volume control beep volume control beep volume control = 2 dB = 1 dB = 0 dB = –1 dB 1110: Left-channel beep volume control = –60 dB 1111: Left-channel beep volume control = –61 dB The beep generator is only available in PRB_P25 DAC processing mode. Detailed Description Copyright © 2010–2018, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: TLV320DAC3101 TLV320DAC3101 www.ti.com SLAS666B – JANUARY 2010 – REVISED OCTOBER 2018 Table 6-83. Page 0 / Register 72 (0x48): Right Beep Generator BIT READ/ WRITE RESET VALUE D7–D6 R/W 00 D5–D0 R/W 00 0000 DESCRIPTION 00: Left and right channels have independent beep volume control. 01: Left-channel beep volume control is the programmed value of right-channel beep volume control. 10: Right-channel beep volume control is the programmed value of left-channel beep volume control. 11: Same as 00 00 00 00 00 ... 11 11 0000: 0001: 0010: 0011: Right-channel beep volume control Right-channel beep volume control Right-channel beep volume control Right-channel beep volume control = 2 dB = 1 dB = 0 dB = –1 dB 1110: Right-channel beep volume control = –60 dB 1111: Right-channel beep volume control = –61 dB Table 6-84. Page 0 / Register 73 (0x49): Beep Length MSB BIT READ/ WRITE RESET VALUE D7–D0 R/W 0000 0000 DESCRIPTION 8 MSBs out of 24 bits for the number of samples for which the beep must be generated. Table 6-85. Page 0 / Register 74 (0x4A): Beep-Length Middle Bits BIT READ/ WRITE RESET VALUE D7–D0 R/W 0000 0000 BIT READ/ WRITE RESET VALUE D7–D0 R/W 1110 1110 DESCRIPTION 8 middle bits out of 24 bits for the number of samples for which the beep must be generated. Table 6-86. Page 0 / Register 75 (0x4B): Beep Length LSB DESCRIPTION 8 LSBs out of 24 bits for the number of samples for which beep must be generated. Table 6-87. Page 0 / Register 76 (0x4C): Beep Sin(x) MSB BIT READ/ WRITE RESET VALUE DESCRIPTION D7–D0 R/W 0001 0000 8 MSBs out of 16 bits for sin(2π × fin / fS), where fin is the beep frequency and fS is the DAC sample rate. Table 6-88. Page 0 / Register 77 (0x4D): Beep Sin(x) LSB BIT READ/ WRITE RESET VALUE DESCRIPTION D7–D0 R/W 1101 1000 8 LSBs out of 16 bits for sin(2π × fin / fS), where fin is the beep frequency and fS is the DAC sample rate. Table 6-89. Page 0 / Register 78 (0x4E): Beep Cos(x) MSB BIT READ/ WRITE RESET VALUE D7–D0 R/W 0111 1110 DESCRIPTION 8 MSBs out of 16 bits for cos(2π × fin / fS), where fin is the beep frequency and fS is the DAC sample rate. Table 6-90. Page 0 / Register 79 (0x4F): Beep Cos(x) LSB BIT READ/ WRITE RESET VALUE DESCRIPTION D7–D0 R/W 1110 0011 8 LSBs out of 16 bits for cos(2π × fin / fS), where fin is the beep frequency and fS is the DAC sample rate. Detailed Description Copyright © 2010–2018, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: TLV320DAC3101 79 TLV320DAC3101 SLAS666B – JANUARY 2010 – REVISED OCTOBER 2018 www.ti.com Table 6-91. Page 0 / Register 80 (0x50) Through Page 0 / Register 115 (0x73): Reserved BIT READ/ WRITE RESET VALUE D7–D0 R/W XXXX XXXX DESCRIPTION Reserved. Do not write to these registers. Table 6-92. Page 0 / Register 116 (0x74): VOL/MICDET-Pin SAR ADC — Volume Control BIT READ/ WRITE RESET VALUE D7 R/W 0 0: DAC volume control is controlled by control register. (7-bit Vol ADC is powered down) 1: DAC volume control is controlled by pin. D6 R/W 0 0: Internal on-chip RC oscillator is used for the 7-bit Vol ADC for pin volume control. 1: MCLK is used for the 7-bit Vol ADC for pin volume control. D5–D4 R/W 00 00: No hysteresis for volume control ADC output 01: Hysteresis of ±1 bit 10: Hysteresis of ±2 bits 11: Reserved. Do not write this sequence to these bits. D3 R/W 0 Reserved. Write only reset value. D2–D0 R/W 000 DESCRIPTION Throughput of the 7-bit Vol ADC for pin volume control, frequency based on MCLK or internal oscillator. 000: Throughput 001: Throughput 010: Throughput 011: Throughput 100: Throughput 101: Throughput 110: Throughput 111: Throughput = = = = = = = = MCLK = 12 MHz Internal Oscillator Source 15.625 Hz 31.25 Hz 62.5 Hz 125 Hz 250 Hz 500 Hz 1 kHz 2 kHz 10.68 Hz 21.35 Hz 42.71 Hz 8.2 Hz 170 Hz 340 Hz 680 Hz 1.37 kHz Note: These values are based on a nominal oscillator frequency of 8.2 MHz. The values scale to the actual oscillator frequency. Table 6-93. Page 0 / Register 117 (0x75): VOL/MICDET-Pin Gain BIT READ/ WRITE RESET VALUE D7 R/W 0 D6–D0 R XXX XXXX DESCRIPTION Reserved. Write only zero to this bit. 000 0000: 000 0001: 000 0010: ... 010 0011: 010 0100: 010 0101: ... 101 1001: 101 1010: 101 1011: ... 111 1101: 111 1110: 111 1111: Gain applied by pin volume control = 18 dB Gain applied by pin volume control = 17.5 dB Gain applied by pin volume control = 17 dB Gain applied by pin volume control = 0.5 dB Gain applied by pin volume control = 0 dB Gain applied by pin volume control = –0.5 dB Gain applied by pin volume control = –26.5 dB Gain applied by pin volume control = –27 dB Gain applied by pin volume control = –28 dB Gain applied by pin volume control = –62 dB Gain applied by pin volume control = –63 dB Reserved. Table 6-94. Page 0 / Register 118 (0x76) Through Page 0 / Register 127 (0x7F): Reserved BIT READ/ WRITE RESET VALUE D7–D0 R/W XXXX XXXX 80 DESCRIPTION Reserved. Do not write to these registers. Detailed Description Copyright © 2010–2018, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: TLV320DAC3101 TLV320DAC3101 www.ti.com 6.4.2.2 SLAS666B – JANUARY 2010 – REVISED OCTOBER 2018 Control Registers, Page 1: DAC, Power-Controls, and MISC Logic-Related Programmability Table 6-95. Page 1 / Register 0 (0x00): Page Control Register BIT READ/ WRITE RESET VALUE D7–D0 R/W 0000 0000 DESCRIPTION 0000 0000: 0000 0001: ... 1111 1110: 1111 1111: Page 0 selected Page 1 selected Page 254 selected Page 255 selected Table 6-96. Page 1 / Register 1 (0x01) Through Page 1 / Register 29 (0x1D): Reserved BIT READ/ WRITE RESET VALUE D7–D0 R/W XXXX XXXX DESCRIPTION Reserved. Do not write to these registers. Table 6-97. Page 1 / Register 30 (0x1E): Headphone and Speaker Amplifier Error Control BIT READ/ WRITE RESET VALUE D7–D2 R/W 0000 00 D1 R/W 0 0: Reset SPL and SPR power-up control bits on short-circuit detection. 1: SPL and SPR power-up control bits remain unchanged on short-circuit detection. D0 R/W 0 0: Reset HPL and HPR power-up control bits on short-circuit detection if page 1 / register 31, D1 = 1. 1: HPL and HPR power-up control bits remain unchanged on short-circuit detection. DESCRIPTION Reserved Table 6-98. Page 1 / Register 31 (0x1F): Headphone Drivers BIT READ/ WRITE RESET VALUE D7 R/W 0 0: HPL output driver is powered down. 1: HPL output driver is powered up. D6 R/W 0 0: HPR output driver is powered down. 1: HPR output driver is powered up. DESCRIPTION D5 R/W 0 Reserved. Write only zero to this bit. D4–D3 R/W 0 00: Output common-mode voltage = 1.35 V 01: Output common-mode voltage = 1.5 V 10: Output common-mode voltage = 1.65 V 11: Output common-mode voltage = 1.8 V D2 R/W 1 Reserved. Write only 1 to this bit. D1 R/W 0 0: If short-circuit protection is enabled for headphone driver and short circuit detected, device limits the maximum current to the load. 1: If short-circuit protection is enabled for headphone driver and short circuit detected, device powers down the output driver. D0 R 0 0: Short circuit is not detected on the headphone driver. 1: Short circuit is detected on the headphone driver. Table 6-99. Page 1 / Register 32 (0x20): Class-D Speaker Amplifier BIT READ/ WRITE RESET VALUE D7 R/W 0 0: Left-channel class-D output driver is powered down. 1: Left-channel class-D output driver is powered up. D6 R/W 0 0: Right-channel class-D output driver is powered down. 1: Right-channel class-D output driver is powered up. D5–D1 R/W 00 011 D0 R 0 DESCRIPTION Reserved. Write only the reset value to this bit. 0: Short circuit is not detected on the class-D driver. Valid only if class-D amplifier is powered up. For short-circuit flag sticky bit, see page 0 / register 44. 1: Short circuit is detected on the class-D driver. Valid only if class-D amp is powered-up. For shortcircuit flag sticky bit, see page 0 / register 44. Detailed Description Copyright © 2010–2018, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: TLV320DAC3101 81 TLV320DAC3101 SLAS666B – JANUARY 2010 – REVISED OCTOBER 2018 www.ti.com Table 6-100. Page 1 / Register 33 (0x21): HP Output Drivers POP Removal Settings BIT READ/ WRITE RESET VALUE D7 R/W 0 D6–D3 R/W 0111 0000: Driver power-on time = 0 μs 0001: Driver power-on time = 15.3 μs 0010: Driver power-on time = 153 μs 0011: Driver power-on time = 1.53 ms 0100: Driver power-on time = 15.3 ms 0101: Driver power-on time = 76.2 ms 0110: Driver power-on time = 153 ms 0111: Driver power-on time = 304 ms 1000: Driver power-on time = 610 ms 1001: Driver power-on time = 1.22 s 1010: Driver power-on time = 3.04 s 1011: Driver power-on time = 6.1 s 1100–1111: Reserved. Do not write these sequences to these bits. Note: These values are based on typical oscillator frequency of 8.2 MHz. Scale according to the actual oscillator frequency. D2–D1 R/W 11 00: Driver ramp-up step time = 0 ms 01: Driver ramp-up step time = 0.98 ms 10: Driver ramp-up step time = 1.95 ms 11: Driver ramp-up step time = 3.9 ms Note: These values are based on typical oscillator frequency of 8.2 MHz. Scale according to the actual oscillator frequency. D0 R/W 0 0: Weakly driven output common-mode voltage is generated from resistor divider of the AVDD supply. 1: Reserved DESCRIPTION 0: If the power down sequence is activated by device software, power down using page 1 / register 46, ││ bit D7, then power down the DAC simultaneously with the HP and SP amplifiers. 1: If the power down sequence is activated by device software, power down using page 1 / register 46, ││ bit D7, then power down DAC only after HP and SP amplifiers are completely powered down. This is to ││ optimize power-down POP. Table 6-101. Page 1 / Register 34 (0x22): Output Driver PGA Ramp-Down Period Control BIT READ/ WRITE RESET VALUE DESCRIPTION D7 R/W 0 D6–D4 R/W 000 Reserved. Write only the reset value to this bit. Speaker power-up wait time (duration based on using internal oscillator) 000: Wait time = 0 ms 001: Wait time = 3.04 ms 010: Wait time = 7.62 ms 011: Wait time = 12.2 ms 100: Wait time = 15.3 ms 101: Wait time = 19.8 ms 110: Wait time = 24.4 ms 111: Wait time = 30.5 ms Note: These values are based on typical oscillator frequency of 8.2 MHz. Scale according to the actual oscillator frequency. D3–D0 R/W 0000 Reserved. Write only the reset value to these bits. Table 6-102. Page 1 / Register 35 (0x23): DAC_L and DAC_R Output Mixer Routing BIT READ/ WRITE RESET VALUE D7–D6 R/W 00 00: DAC_L is not routed anywhere. 01: DAC_L is routed to the left-channel mixer amplifier. 10: DAC_L is routed directly to the HPL driver. 11: Reserved D5 R/W 0 0: AIN1 input is not routed to the left-channel mixer amplifier. 1: AIN1 input is routed to the left-channel mixer amplifier. 0 0: AIN2 input is not routed to the left-channel mixer amplifier. 1: AIN2 input is routed to the left-channel mixer amplifier. D4 82 DESCRIPTION Detailed Description Copyright © 2010–2018, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: TLV320DAC3101 TLV320DAC3101 www.ti.com SLAS666B – JANUARY 2010 – REVISED OCTOBER 2018 Table 6-102. Page 1 / Register 35 (0x23): DAC_L and DAC_R Output Mixer Routing (continued) BIT READ/ WRITE RESET VALUE D3–D2 R/W 00 00: DAC_R is not routed anywhere. 01: DAC_R is routed to the right-channel mixer amplifier. 10: DAC_R is routed directly to the HPR driver. 11: Reserved D1 R/W 0 0: AIN2 input is not routed to the right-channel mixer amplifier. 1: AIN2 input is routed to the right-channel mixer amplifier. D0 R/W 0 0: HPL driver output is not routed to the HPR driver. 1: HPL driver output is routed to the HPR driver input (used for differential output mode). DESCRIPTION Table 6-103. Page 1 / Register 36 (0x24): Left Analog Volume to HPL BIT READ/ WRITE RESET VALUE D7 R/W 0 D6–D0 R/W 111 1111 BIT READ/ WRITE RESET VALUE D7 R/W 0 D6–D0 R/W 111 1111 DESCRIPTION 0: Left-channel analog volume control is not routed to HPL output driver. 1: Left-channel analog volume control is routed to HPL output driver. Left-channel analog volume control gain (non-linear) for the HPL output driver, 0 dB to –78 dB. See Table 6-24. Table 6-104. Page 1 / Register 37 (0x25): Right Analog Volume to HPR DESCRIPTION 0: Right-channel analog volume control output is not routed to HPR output driver. 1: Right-channel analog volume control is routed to HPR output driver. Right-channel analog volume control gain (non-linear) for the HPR output driver, 0 dB to –78 dB. See Table 6-24. Table 6-105. Page 1 / Register 38 (0x26): Left Analog Volume to SPL BIT READ/ WRITE RESET VALUE D7 R/W 0 D6–D0 R/W 111 1111 DESCRIPTION 0: Left-channel analog volume control output is not routed to left-channel class-D output driver. 1: Left-channel analog volume control output is routed to left-channel class-D output driver. Left-channel analog volume control output gain (non-linear) for the left-channel class-D output driver, 0 dB to –78 dB. See Table 6-24. Table 6-106. Page 1 / Register 39 (0x27): Right Analog Volume to SPR BIT READ/ WRITE RESET VALUE D7 R/W 0 D6–D0 R/W 111 1111 DESCRIPTION 0: Right-channel analog volume control output is not routed to right-channel class-D output driver. 1: Right-channel analog volume control output is routed to right-channel class-D output driver. Right-channel analog volume control output gain (non-linear) for the right-channel class-D output driver, 0 dB to –78 dB. See and Table 6-24. Table 6-107. Page 1 / Register 40 (0x28): HPL Driver BIT READ/ WRITE RESET VALUE D7 R/W 0 D6–D3 R/W 0000 D2 R/W 0 DESCRIPTION Reserved. Write only zero to this bit. 0000: HPL driver PGA = 0 dB 0001: HPL driver PGA = 1 dB 0010: HPL driver PGA = 2 dB ... 1000: HPL driver PGA = 8 dB 1001: HPL driver PGA = 9 dB 1010–1111: Reserved. Do not write these sequences to these bits. 0: HPL driver is muted. 1: HPL driver is not muted. Detailed Description Copyright © 2010–2018, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: TLV320DAC3101 83 TLV320DAC3101 SLAS666B – JANUARY 2010 – REVISED OCTOBER 2018 www.ti.com Table 6-107. Page 1 / Register 40 (0x28): HPL Driver (continued) BIT READ/ WRITE RESET VALUE D1 R/W 1 Reserved D0 R 0 0: Not all programmed gains to HPL have been applied yet. 1: All programmed gains to HPL have been applied. DESCRIPTION Table 6-108. Page 1 / Register 41 (0x29): HPR Driver BIT READ/ WRITE RESET VALUE DESCRIPTION D7 R/W 0 D6–D3 R/W 0000 Reserved. Write only zero to this bit. D2 R/W 0 0: HPR driver is muted. 1: HPR driver is not muted. D1 R/W 1 Reserved. Write only '1' to this bit. D0 R 0 0: Not all programmed gains to HPR have been applied yet. 1: All programmed gains to HPR have been applied. 0000: HPR driver PGA = 0 dB 0001: HPR driver PGA = 1 dB 0010: HPR driver PGA = 2 dB ... 1000: HPR driver PGA = 8 dB 1001: HPR driver PGA = 9 dB 1010–1111: Reserved. Do not write these sequences to these bits. Table 6-109. Page 1 / Register 42 (0x2A): SPL Driver BIT READ/ WRITE RESET VALUE D7–D5 R/W 000 Reserved. Write only zeros to these bits. D4–D3 R/W 00 00: Left-channel class-D driver 01: Left-channel class-D driver 10: Left-channel class-D driver 11: Left-channel class-D driver D2 R/W 0 0: Left-channel class-D driver is muted. 1: Left-channel class-D driver is not muted. D1 R/W 0 Reserved. Write only zero to this bit. D0 R 0 0: Not all programmed gains to the Left-channel class-D driver have been applied yet. 1: All programmed gains to the Left-channel class-D driver have been applied. DESCRIPTION output stage output stage output stage output stage gain gain gain gain = 6 dB = 12 dB = 18 dB = 24 dB Table 6-110. Page 1 / Register 43 (0x2B): SPR Driver BIT READ/ WRITE RESET VALUE D7–D5 R/W 000 Reserved. Write only zeros to these bits. D4–D3 R/W 00 00: Right-channel class-D driver 01: Right-channel class-D driver 10: Right-channel class-D driver 11: Right-channel class-D driver D2 R/W 0 0: Right-channel class-D driver is muted. 1: Right-channel class-D driver is not muted. D1 R/W 0 Reserved. Write only zero to this bit. D0 R 0 0: Not all programmed gains to right-channel class-D driver have been applied yet. 1: All programmed gains to right-channel class-D driver have been applied. 84 DESCRIPTION output stage output stage output stage output stage gain gain gain gain = 6 dB = 12 dB = 18 dB = 24 dB Detailed Description Copyright © 2010–2018, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: TLV320DAC3101 TLV320DAC3101 www.ti.com SLAS666B – JANUARY 2010 – REVISED OCTOBER 2018 Table 6-111. Page 1 / Register 44 (0x2C): HP Driver Control BIT READ/ WRITE RESET VALUE D7–D5 R/W 000 DESCRIPTION Debounce time for the headset short-circuit detection MCLK/DIV (Page 3 / register 16) = 1-MHz Source (1) 000: Debounce time = 001: Debounce time = 010: Debounce time = 011: Debounce time = 100: Debounce time = 101: Debounce time = 110: Debounce time = 111: Debounce time = 0 μs 8 μs 16 μs 32 μs 64 μs 128 μs 256 μs 512 μs Internal Oscillator Source 0 μs 7.8 μs 15.6 μs 31.2 μs 62.4 μs 124.9 μs 250 μs 500 μs Note: These values are based on a nominal oscillator frequency of 8.2 MHz. The values scale to the actual oscillator frequency. D4–D3 R/W 00 00: Default mode for the DAC 01: DAC performance increased by increasing the current 10: Reserved 11: DAC performance increased further by increasing the current again D2 R/W 0 0: HPL output driver is programmed as headphone driver. 1: HPL output driver is programmed as lineout driver. D1 R/W 0 0: HPR output driver is programmed as headphone driver. 1: HPR output driver is programmed as lineout driver. D0 R/W 0 Reserved. Write only zero to this bit. (1) The clock used for the debounce has a clock period = debounce duration / 8. Table 6-112. Page 1 / Register 45 (0x2D): Reserved BIT READ/ WRITE RESET VALUE D7–D0 R/W XXXX XXXX DESCRIPTION Reserved. Do not write to these registers. Table 6-113. Page 1 / Register 46 (0x2E): MICBIAS BIT READ/ WRITE RESET VALUE D7 R/W 0 D6–D4 R/W 000 D3 R/W 0 0: Programmed MICBIAS is not powered up if headset detection is enabled but headset is not inserted. 1: Programmed MICBIAS is powered up even if headset is not inserted. D2 R/W 0 Reserved. Write only zero to this bit. D1–D0 R/W 00 00: MICBIAS 01: MICBIAS 10: MICBIAS 11: MICBIAS DESCRIPTION 0: Device software power down is not enabled. 1: Device software power down is enabled. Reserved. Write only zeros to these bits. output is output is output is output is powered powered powered powered down. to 2 V. to 2.5 V. to AVDD. Table 6-114. Page 1 / Register 50 (0x32): Input CM Settings BIT READ/ WRITE RESET VALUE D7 R/W 0 0: AIN1 input is floating, if it is not used for the analog bypass. 1: AIN1 input is connected to CM internally, if it is not used for the analog bypass. D6 R/W 0 0: AIN2 input is floating, if it is not used for the analog bypass. 1: AIN2 input is connected to CM internally, if it is not used for the analog bypass. D5–D0 R/W 00 0000 DESCRIPTION Reserved. Write only zeros to these bits. Detailed Description Copyright © 2010–2018, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: TLV320DAC3101 85 TLV320DAC3101 SLAS666B – JANUARY 2010 – REVISED OCTOBER 2018 www.ti.com Table 6-115. Page 1 / Register 51 (0x33) Through Page 1 / Register 127 (0x7F): Reserved BIT READ/ WRITE RESET VALUE D7–D0 R/W XXXX XXXX 86 DESCRIPTION Reserved. Write only the reset value to these bits. Detailed Description Copyright © 2010–2018, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: TLV320DAC3101 TLV320DAC3101 www.ti.com 6.4.2.3 SLAS666B – JANUARY 2010 – REVISED OCTOBER 2018 Control Registers, Page 3: MCLK Divider for Programmable Delay Timer Default values shown for this page only become valid 100 μs following a hardware or software reset. Table 6-116. Page 3 / Register 0 (0x00): Page Control Register BIT READ/ WRITE RESET VALUE D7–D0 R/W 0000 0000 DESCRIPTION 0000 0000: 0000 0001: ... 1111 1110: 1111 1111: Page 0 selected Page 1 selected Page 254 selected Page 255 selected The only register used in page 3 is register 16. The remaining page-3 registers are reserved and must not be written to. Table 6-117. Page 3 / Register 16 (0x10): Timer Clock MCLK Divider BIT READ/ WRITE RESET VALUE D7 R/W 1 D6–D0 R/W 000 0001 (1) DESCRIPTION 0: Internal oscillator is used for programmable delay timer. 1: External MCLK (1) is used for programmable delay timer. MCLK Divider to Generate 1-MHz Clock for the Programmable Delay Timer 000 0000: MCLK divider = 128 000 0001: MCLK divider = 1 000 0010: MCLK divider = 2 ... 111 1110: MCLK divider = 126 111 1111: MCLK divider = 127 External clock is used only to control the delay programmed between the conversions and not used for doing the actual conversion. This feature is provided in case a more accurate delay is desired because the internal oscillator frequency varies from device to device. 6.4.2.4 Control Registers, Page 8: DAC Programmable Coefficients RAM Buffer A (1:63) Default values shown for this page only become valid 100 μs following a hardware or software reset. Table 6-118. Page 8 / Register 0 (0x00): Page Control Register BIT READ/ WRITE RESET VALUE D7–D0 R/W 0000 0000 DESCRIPTION 0000 0000: 0000 0001: ... 1111 1110: 1111 1111: Page 0 selected Page 1 selected Page 254 selected Page 255 selected The remaining page-8 registers are either reserved registers or are used for setting coefficients for the various filters in the . Reserved registers must not be written to. The filter coefficient registers are arranged in pairs, with two adjacent 8-bit registers containing the 16-bit coefficient for a single filter. The 16-bit integer contained in the MSB and LSB registers for a coefficient are interpreted as a 2s-complement integer, with possible values ranging from –32 768 to 32 767. When programming any coefficient value for a filter, the MSB register must always be written first, immediately followed by the LSB register. Even if only the MSB or LSB portion of the coefficient changes, both registers must be written in this sequence. is a list of the page-8 registers, excepting the previously described register 0. Table 6-119. Page 8 / Register 1 (0x01): DAC Coefficient RAM Control BIT READ/ WRITE RESET VALUE D7–D3 R/W 0000 0 DESCRIPTION Reserved. Write only the reset value. Detailed Description Copyright © 2010–2018, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: TLV320DAC3101 87 TLV320DAC3101 SLAS666B – JANUARY 2010 – REVISED OCTOBER 2018 www.ti.com Table 6-119. Page 8 / Register 1 (0x01): DAC Coefficient RAM Control (continued) BIT READ/ WRITE RESET VALUE D2 R/W 0 DAC Adaptive Filtering Control 0: Adaptive filtering disabled in DAC processing block 1: Adaptive filtering enabled in DAC processing block D1 R 0 DAC Adaptive Filter Buffer Control Flag 0: In adaptive filter mode, DAC processing block accesses DAC coefficient Buffer A and the external control interface accesses DAC coefficient Buffer B 1: In adaptive filter mode, DAC processing block accesses DAC coefficient Buffer B and the external control interface accesses DAC coefficient Buffer A D0 R/W 0 DAC Adaptive Filter Buffer Switch Control 0: DAC coefficient buffers are not switched at the next frame boundary. 1: DAC coefficient buffers are switched at the next frame boundary, if adaptive filtering mode is enabled. This bit self-clears on switching. DESCRIPTION Table 6-120. Page-8 DAC Buffer A Registers 88 REGISTER NUMBER RESET VALUE 2 (0x02) 0111 1111 Coefficient N0(15:8) for left DAC-programmable biquad A 3 (0x03) 1111 1111 Coefficient N0(7:0) for left DAC-programmable biquad A 4 (0x04) 0000 0000 Coefficient N1(15:8) for left DAC-programmable biquad A 5 (0x05) 0000 0000 Coefficient N1(7:0) for left DAC-programmable biquad A 6 (0x06) 0000 0000 Coefficient N2(15:8) for left DAC-programmable biquad A 7 (0x07) 0000 0000 Coefficient N2(7:0) for left DAC-programmable biquad A 8 (0x08) 0000 0000 Coefficient D1(15:8) for left DAC-programmable biquad A 9 (0x09) 0000 0000 Coefficient D1(7:0) for left DAC-programmable biquad A 10 (0x0A) 0000 0000 Coefficient D2(15:8) for left DAC-programmable biquad A 11 (0x0B) 0000 0000 Coefficient D2(7:0) for left DAC-programmable biquad A 12 (0x0C) 0111 1111 Coefficient N0(15:8) for left DAC-programmable biquad B 13 (0x0D) 1111 1111 Coefficient N0(7:0) for left DAC-programmable biquad B 14 (0x0E) 0000 0000 Coefficient N1(15:8) for left DAC-programmable biquad B 15 (0x0F) 0000 0000 Coefficient N1(7:0) for left DAC-programmable biquad B 16 (0x10) 0000 0000 Coefficient N2(15:8) for left DAC-programmable biquad B 17 (0x11) 0000 0000 Coefficient N2(7:0) for left DAC-programmable biquad B 18 (0x12) 0000 0000 Coefficient D1(15:8) for left DAC-programmable biquad B 19 (0x13) 0000 0000 Coefficient D1(7:0) for left DAC-programmable biquad B 20 (0x14) 0000 0000 Coefficient D2(15:8) for left DAC-programmable biquad B 21 (0x15) 0000 0000 Coefficient D2(7:0) for left DAC-programmable biquad B 22 (0x16) 0111 1111 Coefficient N0(15:8) for left DAC-programmable biquad C 23 (0x17) 1111 1111 Coefficient N0(7:0) for left DAC-programmable biquad C 24 (0x18) 0000 0000 Coefficient N1(15:8) for left DAC-programmable biquad C 25 (0x19) 0000 0000 Coefficient N1(7:0) for left DAC-programmable biquad C 26 (0x1A) 0000 0000 Coefficient N2(15:8) for left DAC-programmable biquad C 27 (0x1B) 0000 0000 Coefficient N2(7:0) for left DAC-programmable biquad C 28 (0x1C) 0000 0000 Coefficient D1(15:8) for left DAC-programmable biquad C 29 (0x1D) 0000 0000 Coefficient D1(7:0) for left DAC-programmable biquad C 30 (0x1E) 0000 0000 Coefficient D2(15:8) for left DAC-programmable biquad C 31 (0x1F) 0000 0000 Coefficient D2(7:0) for left DAC-programmable biquad C 32 (0x20) 0111 1111 Coefficient N0(15:8) for left DAC-programmable biquad D 33 (0x21) 1111 1111 Coefficient N0(7:0) for left DAC-programmable biquad D 34 (0x22) 0000 0000 Coefficient N1(15:8) for left DAC-programmable biquad D 35 (0x23) 0000 0000 Coefficient N1(7:0) for left DAC-programmable biquad D REGISTER NAME Detailed Description Copyright © 2010–2018, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: TLV320DAC3101 TLV320DAC3101 www.ti.com SLAS666B – JANUARY 2010 – REVISED OCTOBER 2018 Table 6-120. Page-8 DAC Buffer A Registers (continued) REGISTER NUMBER RESET VALUE 36 (0x24) 0000 0000 Coefficient N2(15:8) for left DAC-programmable biquad D 37 (0x25) 0000 0000 Coefficient N2(7:0) for left DAC-programmable biquad D 38 (0x26) 0000 0000 Coefficient D1(15:8) for left DAC-programmable biquad D 39 (0x27) 0000 0000 Coefficient D1(7:0) for left DAC-programmable biquad D 40 (0x28) 0000 0000 Coefficient D2(15:8) for left DAC-programmable biquad D 41 (0x29) 0000 0000 Coefficient D2(7:0) for left DAC-programmable biquad D 42 (0x2A) 0111 1111 Coefficient N0(15:8) for left DAC-programmable biquad E REGISTER NAME 43 (0x2B) 1111 1111 Coefficient N0(7:0) for left DAC-programmable biquad E 44 (0x2C) 0000 0000 Coefficient N1(15:8) for left DAC-programmable biquad E 45 (0x2D) 0000 0000 Coefficient N1(7:0) for left DAC-programmable biquad E 46 (0x2E) 0000 0000 Coefficient N2(15:8) for left DAC-programmable biquad E 47 (0x2F) 0000 0000 Coefficient N2(7:0) for left DAC-programmable biquad E 48 (0x30) 0000 0000 Coefficient D1(15:8) for left DAC-programmable biquad E 49 (0x31) 0000 0000 Coefficient D1(7:0) for left DAC-programmable biquad E 50 (0x32) 0000 0000 Coefficient D2(15:8) for left DAC-programmable biquad E 51 (0x33) 0000 0000 Coefficient D2(7:0) for left DAC-programmable biquad E 52 (0x34) 0111 1111 Coefficient N0(15:8) for left DAC-programmable biquad F 53 (0x35) 1111 1111 Coefficient N0(7:0) for left DAC-programmable biquad F 54 (0x36) 0000 0000 Coefficient N1(15:8) for left DAC-programmable biquad F 55 (0x37) 0000 0000 Coefficient N1(7:0) for left DAC-programmable biquad F 56 (0x38) 0000 0000 Coefficient N2(15:8) for left DAC-programmable biquad F 57 (0x39) 0000 0000 Coefficient N2(7:0) for left DAC-programmable biquad F 58 (0x3A) 0000 0000 Coefficient D1(15:8) for left DAC-programmable biquad F 59 (0x3B) 0000 0000 Coefficient D1(7:0) for left DAC-programmable biquad F 60 (0x3C) 0000 0000 Coefficient D2(15:8) for left DAC-programmable biquad F 61 (0x3D) 0000 0000 Coefficient D2(7:0) for left DAC-programmable biquad F 62 (0x3E) 0000 0000 Reserved 63 (0x3F) 0000 0000 Reserved 64 (0x40) 0000 0000 8 MSBs of 3D PGA gain for PRB_P23, PRB_P24 and PRB_P25 65 (0x41) 0000 0000 8 LSBs of 3D PGA gain for PRB_P23, PRB_P24 and PRB_P25 66 (0x42) 0111 1111 Coefficient N0(15:8) for right DAC-programmable biquad A 67 (0x43) 1111 1111 Coefficient N0(7:0) for right DAC-programmable biquad A 68 (0x44) 0000 0000 Coefficient N1(15:8) for right DAC-programmable biquad A 69 (0x45) 0000 0000 Coefficient N1(7:0) for right DAC-programmable biquad A 70 (0x46) 0000 0000 Coefficient N2(15:8) for right DAC-programmable biquad A 71 (0x47) 0000 0000 Coefficient N2(7:0) for right DAC-programmable biquad A 72 (0x48) 0000 0000 Coefficient D1(15:8) for right DAC-programmable biquad A 73 (0x49) 0000 0000 Coefficient D1(7:0) for right DAC-programmable biquad A 74 (0x4A) 0000 0000 Coefficient D2(15:8) for right DAC-programmable biquad A 75 (0x4B) 0000 0000 Coefficient D2(7:0) for right DAC-programmable biquad A 76 (0x4C) 0111 1111 Coefficient N0(15:8) for right DAC-programmable biquad B 77 (0x4D) 1111 1111 Coefficient N0(7:0) for right DAC-programmable biquad B 78 (0x4E) 0000 0000 Coefficient N1(15:8) for right DAC-programmable biquad B 79 (0x4F) 0000 0000 Coefficient N1(7:0) for right DAC-programmable biquad B 80 (0x50) 0000 0000 Coefficient N2(15:8) for right DAC-programmable biquad B 81 (0x51) 0000 0000 Coefficient N2(7:0) for right DAC-programmable biquad B 82 (0x52) 0000 0000 Coefficient D1(15:8) for right DAC-programmable biquad B Detailed Description Copyright © 2010–2018, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: TLV320DAC3101 89 TLV320DAC3101 SLAS666B – JANUARY 2010 – REVISED OCTOBER 2018 www.ti.com Table 6-120. Page-8 DAC Buffer A Registers (continued) 90 REGISTER NUMBER RESET VALUE 83 (0x53) 0000 0000 Coefficient D1(7:0) for right DAC-programmable biquad B 84 (0x54) 0000 0000 Coefficient D2(15:8) for right DAC-programmable biquad B 85 (0x55) 0000 0000 Coefficient D2(7:0) for right DAC-programmable biquad B 86 (0x56) 0111 1111 Coefficient N0(15:8) for right DAC-programmable biquad C 87 (0x57) 1111 1111 Coefficient N0(7:0) for right DAC-programmable biquad C 88 (0x58) 0000 0000 Coefficient N1(15:8) for right DAC-programmable biquad C 89 (0x59) 0000 0000 Coefficient N1(7:0) for right DAC-programmable biquad C 90 (0x5A) 0000 0000 Coefficient N2(15:8) for right DAC-programmable biquad C 91 (0x5B) 0000 0000 Coefficient N2(7:0) for right DAC-programmable biquad C 92 (0x5C) 0000 0000 Coefficient D1(15:8) for right DAC-programmable biquad C 93 (0x5D) 0000 0000 Coefficient D1(7:0) for right DAC-programmable biquad C 94 (0x5E) 0000 0000 Coefficient D2(15:8) for right DAC-programmable biquad C 95 (0x5F) 0000 0000 Coefficient D2(7:0) for right DAC-programmable biquad C 96 (0x60) 0111 1111 Coefficient N0(15:8) for right DAC-programmable biquad D 97 (0x61) 1111 1111 Coefficient N0(7:0) for right DAC-programmable biquad D 98 (0x62) 0000 0000 Coefficient N1(15:8) for right DAC-programmable biquad D 99 (0x63) 0000 0000 Coefficient N1(7:0) for right DAC-programmable biquad D 100 (0x64) 0000 0000 Coefficient N2(15:8) for right DAC-programmable biquad D 101 (0x65) 0000 0000 Coefficient N2(7:0) for right DAC-programmable biquad D 102 (0x66) 0000 0000 Coefficient D1(15:8) for right DAC-programmable biquad D 103 (0x67) 0000 0000 Coefficient D1(7:0) for right DAC-programmable biquad D 104 (0x68) 0000 0000 Coefficient D2(15:8) for right DAC-programmable biquad D 105 (0x69) 0000 0000 Coefficient D2(7:0) for right DAC-programmable biquad D 106 (0x6A) 0111 1111 Coefficient N0(15:8) for right DAC-programmable biquad E 107 (0x6B) 1111 1111 Coefficient N0(7:0) for right DAC-programmable biquad E 108 (0x6C) 0000 0000 Coefficient N1(15:8) for right DAC-programmable biquad E 109 (0x6D) 0000 0000 Coefficient N1(7:0) for right DAC-programmable biquad E 110 (0x6E) 0000 0000 Coefficient N2(15:8) for right DAC-programmable biquad E 111 (0x6F) 0000 0000 Coefficient N2(7:0) for right DAC-programmable biquad E 112 (0x70) 0000 0000 Coefficient D1(15:8) for right DAC-programmable biquad E 113 (0x71) 0000 0000 Coefficient D1(7:0) for right DAC-programmable biquad E 114 (0x72) 0000 0000 Coefficient D2(15:8) for right DAC-programmable biquad E 115 (0x73) 0000 0000 Coefficient D2(7:0) for right DAC-programmable biquad E 116 (0x74) 0111 1111 Coefficient N0(15:8) for right DAC-programmable biquad F 117 (0x75) 1111 1111 Coefficient N0(7:0) for right DAC-programmable biquad F 118 (0x76) 0000 0000 Coefficient N1(15:8) for right DAC-programmable biquad F 119 (0x77) 0000 0000 Coefficient N1(7:0) for right DAC-programmable biquad F 120 (0x78) 0000 0000 Coefficient N2(15:8) for right DAC-programmable biquad F 121 (0x79) 0000 0000 Coefficient N2(7:0) for right DAC-programmable biquad F 122 (0x7A) 0000 0000 Coefficient D1(15:8) for right DAC-programmable biquad F REGISTER NAME 123 (0x7B) 0000 0000 Coefficient D1(7:0) for right DAC-programmable biquad F 124 (0x7C) 0000 0000 Coefficient D2(15:8) for right DAC-programmable biquad F 125 (0x7D) 0000 0000 Coefficient D2(7:0) for right DAC-programmable biquad F 126–127 0000 0000 Reserved Detailed Description Copyright © 2010–2018, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: TLV320DAC3101 TLV320DAC3101 www.ti.com 6.4.2.5 SLAS666B – JANUARY 2010 – REVISED OCTOBER 2018 Control Registers, Page 9: DAC Programmable Coefficients RAM Buffer A (65:127) Default values shown for this page only become valid 100 μs following a hardware or software reset. Table 6-121. Page 9 / Register 0 (0x00): Page Control Register BIT READ/ WRITE RESET VALUE D7–D0 R/W 0000 0000 DESCRIPTION 0000 0000: 0000 0001: ... 1111 1110: 1111 1111: Page 0 selected Page 1 selected Page 254 selected Page 255 selected The remaining page-9 registers are either reserved registers or are used for setting coefficients for the various filters in the . Reserved registers must not be written to. The filter-coefficient registers are arranged in pairs, with two adjacent 8-bit registers containing the 16-bit coefficient for a single filter. The 16-bit integer contained in the MSB and LSB registers for a coefficient are interpreted as a 2s-complement integer, with possible values ranging from –32 768 to 32 767. When programming any coefficient value for a filter, the MSB register must always be written first, immediately followed by the LSB register. Even if only the MSB or LSB portion of the coefficient changes, both registers must be written in this sequence. is a list of the page-9 registers, excepting the previously described register 0. Table 6-122. Page-9 DAC Buffer A Registers REGISTER NUMBER RESET VALUE 1 (0x01) XXXX XXXX 2 (0x02) 0111 1111 Coefficient N0(15:8) for left DAC-programmable first-order IIR 3 (0x03) 1111 1111 Coefficient N0(7:0) for left DAC-programmable first-order IIR 4 (0x04) 0000 0000 Coefficient N1(15:8) for left DAC-programmable first-order IIR 5 (0x05) 0000 0000 Coefficient N1(7:0) for left DAC-programmable first-order IIR 6 (0x06) 0000 0000 Coefficient D1(15:8) for left DAC-programmable first-order IIR 7 (0x07) 0000 0000 Coefficient D1(7:0) for left DAC-programmable first-order IIR 8 (0x08) 0111 1111 Coefficient N0(15:8) for right DAC-programmable first-order IIR REGISTER NAME Reserved. Do not write to this register. 9 (0x09) 1111 1111 Coefficient N0(7:0) for right DAC-programmable first-order IIR 10 (0x0A) 0000 0000 Coefficient N1(15:8) for right DAC-programmable first-order IIR 11 (0x0B) 0000 0000 Coefficient N1(7:0) for right DAC-programmable first-order IIR 12 (0x0C) 0000 0000 Coefficient D1(15:8) for right DAC-programmable first-order IIR 13 (0x0D) 0000 0000 Coefficient D1(7:0) for right DAC-programmable first-order IIR 14 (0x0E) 0111 1111 Coefficient N0(15:8) for DRC first-order high-pass filter 15 (0x0F) 1111 0111 Coefficient N0(7:0) for DRC first-order high-pass filter 16 (0x10) 1000 0000 Coefficient N1(15:8) for DRC first-order high-pass filter 17 (0x11) 0000 1001 Coefficient N1(7:0) for DRC first-order high-pass filter 18 (0x12) 0111 1111 Coefficient D1(15:8) for DRC first-order high-pass filter 19 (0x13) 1110 1111 Coefficient D1(7:0) for DRC first-order high-pass filter 20 (0x14) 0000 0000 Coefficient N0(15:8) for DRC first-order low-pass filter 21 (0x15) 0001 0001 Coefficient N0(7:0) for DRC first-order low-pass filter 22 (0x16) 0000 0000 Coefficient N1(15:8) for DRC first-order low-pass filter 23 (0x17) 0001 0001 Coefficient N1(7:0) for DRC first-order low-pass filter 24 (0x18) 0111 1111 Coefficient D1(15:8) for DRC first-order low-pass filter 25 (0x19) 1101 1110 Coefficient D1(7:0) for DRC first-order low-pass filter 26–127 0000 0000 Reserved Detailed Description Copyright © 2010–2018, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: TLV320DAC3101 91 TLV320DAC3101 SLAS666B – JANUARY 2010 – REVISED OCTOBER 2018 6.4.2.6 www.ti.com Control Registers, Page 12: DAC Programmable Coefficients RAM Buffer B (1:63) Table 6-123. Page 12 / Register 0 (0x00): Page Control Register BIT D7–D0 READ/ WRITE R/W RESET VALUE 0000 0000 DESCRIPTION 0000 0000: 0000 0001: ... 1111 1110: 1111 1111: Page 0 selected Page 1 selected Page 254 selected Page 255 selected The remaining page-12 registers are either reserved registers or are used for setting coefficients for the various filters in the . Reserved registers should not be written to. The filter coefficient registers are arranged in pairs, with two adjacent 8-bit registers containing the 16-bit coefficient for a single filter. The 16-bit integer contained in the MSB and LSB registers for a coefficient are interpreted as a 2s-complement integer, with possible values ranging from –32 768 to 32 767. When programming any coefficient value for a filter, the MSB register should always be written first, immediately followed by the LSB register. Even if only the MSB or LSB portion of the coefficient changes, both registers should be written in this sequence. is a list of the page-12 registers, excepting the previously described register 0. Table 6-124. Page-12 AC Buffer B Registers 92 REGISTER NUMBER RESET VALUE 1 (0x01) 0000 0000 Reserved. Do not write to this register. 2 (0x02) 0111 1111 Coefficient N0(15:8) for left DAC-programmable biquad A 3 (0x03) 1111 1111 Coefficient N0(7:0) for left DAC-programmable biquad A 4 (0x04) 0000 0000 Coefficient N1(15:8) for left DAC-programmable biquad A 5 (0x05) 0000 0000 Coefficient N1(7:0) for left DAC-programmable biquad A 6 (0x06) 0000 0000 Coefficient N2(15:8) for left DAC-programmable biquad A 7 (0x07) 0000 0000 Coefficient N2(7:0) for left DAC-programmable biquad A 8 (0x08) 0000 0000 Coefficient D1(15:8) for left DAC-programmable biquad A 9 (0x09) 0000 0000 Coefficient D1(7:0) for left DAC-programmable biquad A 10 (0x0A) 0000 0000 Coefficient D2(15:8) for left DAC-programmable biquad A REGISTER NAME 11 (0x0B) 0000 0000 Coefficient D2(7:0) for left DAC-programmable biquad A 12 (0x0C) 0111 1111 Coefficient N0(15:8) for left DAC-programmable biquad B 13 (0x0D) 1111 1111 Coefficient N0(7:0) for left DAC-programmable biquad B 14 (0x0E) 0000 0000 Coefficient N1(15:8) for left DAC-programmable biquad B 15 (0x0F) 0000 0000 Coefficient N1(7:0) for left DAC-programmable biquad B 16 (0x10) 0000 0000 Coefficient N2(15:8) for left DAC-programmable biquad B 17 (0x11) 0000 0000 Coefficient N2(7:0) for left DAC-programmable biquad B 18 (0x12) 0000 0000 Coefficient D1(15:8) for left DAC-programmable biquad B 19 (0x13) 0000 0000 Coefficient D1(7:0) for left DAC-programmable biquad B 20 (0x14) 0000 0000 Coefficient D2(15:8) for left DAC-programmable biquad B 21 (0x15) 0000 0000 Coefficient D2(7:0) for left DAC-programmable biquad B 22 (0x16) 0111 1111 Coefficient N0(15:8) for left DAC-programmable biquad C 23 (0x17) 1111 1111 Coefficient N0(7:0) for left DAC-programmable biquad C 24 (0x18) 0000 0000 Coefficient N1(15:8) for left DAC-programmable biquad C 25 (0x19) 0000 0000 Coefficient N1(7:0) for left DAC-programmable biquad C Detailed Description Copyright © 2010–2018, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: TLV320DAC3101 TLV320DAC3101 www.ti.com SLAS666B – JANUARY 2010 – REVISED OCTOBER 2018 Table 6-124. Page-12 AC Buffer B Registers (continued) REGISTER NUMBER RESET VALUE 26 (0x1A) 0000 0000 Coefficient N2(15:8) for left DAC-programmable biquad C 27 (0x1B) 0000 0000 Coefficient N2(7:0) for left DAC-programmable biquad C 28 (0x1C) 0000 0000 Coefficient D1(15:8) for left DAC-programmable biquad C 29 (0x1D) 0000 0000 Coefficient D1(7:0) for left DAC-programmable biquad C 30 (0x1E) 0000 0000 Coefficient D2(15:8) for left DAC-programmable biquad C 31 (0x1F) 0000 0000 Coefficient D2(7:0) for left DAC-programmable biquad C 32 (0x20) 0111 1111 Coefficient N0(15:8) for left DAC-programmable biquad D 33 (0x21) 1111 1111 Coefficient N0(7:0) for left DAC-programmable biquad D 34 (0x22) 0000 0000 Coefficient N1(15:8) for left DAC-programmable biquad D 35 (0x23) 0000 0000 Coefficient N1(7:0) for left DAC-programmable biquad D 36 (0x24) 0000 0000 Coefficient N2(15:8) for left DAC-programmable biquad D 37 (0x25) 0000 0000 Coefficient N2(7:0) for left DAC-programmable biquad D 38 (0x26) 0000 0000 Coefficient D1(15:8) for left DAC-programmable biquad D 39 (0x27) 0000 0000 Coefficient D1(7:0) for left DAC-programmable biquad D 40 (0x28) 0000 0000 Coefficient D2(15:8) for left DAC-programmable biquad D 41 (0x29) 0000 0000 Coefficient D2(17:0) for left DAC-programmable biquad D 42 (0x2A) 0111 1111 Coefficient N0(15:8) for left DAC-programmable biquad E REGISTER NAME 43 (0x2B) 1111 1111 Coefficient N0(7:0) for left DAC-programmable biquad E 44 (0x2C) 0000 0000 Coefficient N1(15:8) for left DAC-programmable biquad E 45 (0x2D) 0000 0000 Coefficient N1(7:0) for left DAC-programmable biquad E 46 (0x2E) 0000 0000 Coefficient N2(15:8) for left DAC-programmable biquad E 47 (0x2F) 0000 0000 Coefficient N2(7:0) for left DAC-programmable biquad E 48 (0x30) 0000 0000 Coefficient D1(15:8) for left DAC-programmable biquad E 49 (0x31) 0000 0000 Coefficient D1(7:0) for left DAC-programmable biquad E 50 (0x32) 0000 0000 Coefficient D2(15:8) for left DAC-programmable biquad E 51 (0x33) 0000 0000 Coefficient D2(7:0) for left DAC-programmable biquad E 52 (0x34) 0111 1111 Coefficient N0(15:8) for left DAC-programmable biquad F 53 (0x35) 1111 1111 Coefficient N0(7:0) for left DAC-programmable biquad F 54 (0x36) 0000 0000 Coefficient N1(15:8) for left DAC-programmable biquad F 55 (0x37) 0000 0000 Coefficient N1(7:0) for left DAC-programmable biquad F 56 (0x38) 0000 0000 Coefficient N2(15:8) for left DAC-programmable biquad F 57 (0x39) 0000 0000 Coefficient N2(7:0) for left DAC-programmable biquad F 58 (0x3A) 0000 0000 Coefficient D1(15:8) for left DAC-programmable biquad F 59 (0x3B) 0000 0000 Coefficient D1(7:0) for left DAC-programmable biquad F 60 (0x3C) 0000 0000 Coefficient D2(15:8) for left DAC-programmable biquad F 61 (0x3D) 0000 0000 Coefficient D2(7:0) for left DAC-programmable biquad F 62 (0x3E) 0000 0000 Reserved 63 (0x3F) 0000 0000 Reserved 64 (0x40) 0000 0000 8 MSBs 3D PGA gain for PRB_P23, PRB_P24 and PRB_P25 65 (0x41) 0000 0000 8 LSBs 3D PGA gain for PRB_P23, PRB_P24 and PRB_P25 66 (0x42) 0111 1111 Coefficient N0(15:8) for right DAC-programmable biquad A 67 (0x43) 1111 1111 Coefficient N0(7:0) for right DAC-programmable biquad A 68 (0x44) 0000 0000 Coefficient N1(15:8) for right DAC-programmable biquad A 69 (0x45) 0000 0000 Coefficient N1(7:0) for right DAC-programmable biquad A 70 (0x46) 0000 0000 Coefficient N2(15:8) for right DAC-programmable biquad A 71 (0x47) 0000 0000 Coefficient N2(7:0) for right DAC-programmable biquad A 72 (0x48) 0000 0000 Coefficient D1(15:8) for right DAC-programmable biquad A Detailed Description Copyright © 2010–2018, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: TLV320DAC3101 93 TLV320DAC3101 SLAS666B – JANUARY 2010 – REVISED OCTOBER 2018 www.ti.com Table 6-124. Page-12 AC Buffer B Registers (continued) 94 REGISTER NUMBER RESET VALUE REGISTER NAME 73 (0x49) 0000 0000 Coefficient D1(7:0) for right DAC-programmable biquad A 74 (0x4A) 0000 0000 Coefficient D2(15:8) for right DAC-programmable biquad A 75 (0x4B) 0000 0000 Coefficient D2(7:0) for right DAC-programmable biquad A 76 (0x4C) 0111 1111 Coefficient N0(15:8) for right DAC-programmable biquad B 77 (0x4D) 1111 1111 Coefficient N0(7:0) for right DAC-programmable biquad B 78 (0x4E) 0000 0000 Coefficient N1(15:8) for right DAC-programmable biquad B 79 (0x4F) 0000 0000 Coefficient N1(7:0) for right DAC-programmable biquad B 80 (0x50) 0000 0000 Coefficient N2(15:8) for right DAC-programmable biquad B 81 (0x51) 0000 0000 Coefficient N2(7:0) for right DAC-programmable biquad B 82 (0x52) 0000 0000 Coefficient D1(15:8) for right DAC-programmable biquad B 83 (0x53) 0000 0000 Coefficient D1(7:0) for right DAC-programmable biquad B 84 (0x54) 0000 0000 Coefficient D2(15:8) for right DAC-programmable biquad B 85 (0x55) 0000 0000 Coefficient D2(7:0) for right DAC-programmable biquad B 86 (0x56) 0111 1111 Coefficient N0(15:8) for right DAC-programmable biquad C 87 (0x57) 1111 1111 Coefficient N0(7:0) for right DAC-programmable biquad C 88 (0x58) 0000 0000 Coefficient N1(15:8) for right DAC-programmable biquad C 89 (0x59) 0000 0000 Coefficient N1(7:0) for right DAC-programmable biquad C 90 (0x5A) 0000 0000 Coefficient N2(15:8) for right DAC-programmable biquad C 91 (0x5B) 0000 0000 Coefficient N2(7:0) for right DAC-programmable biquad C 92 (0x5C) 0000 0000 Coefficient D1(15:8) for right DAC-programmable biquad C 93 (0x5D) 0000 0000 Coefficient D1(7:0) for right DAC-programmable biquad C 94 (0x5E) 0000 0000 Coefficient D2(15:8) for right DAC-programmable biquad C 95 (0x5F) 0000 0000 Coefficient D2(7:0) for right DAC-programmable biquad C 96 (0x60) 0111 1111 Coefficient N0(15:8) for right DAC-programmable biquad D 97 (0x61) 1111 1111 Coefficient N0(7:0) for right DAC-programmable biquad D 98 (0x62) 0000 0000 Coefficient N1(15:8) for right DAC-programmable biquad D 99 (0x63) 0000 0000 Coefficient N1(7:0) for right DAC-programmable biquad D 100 (0x64) 0000 0000 Coefficient N2(15:8) for right DAC-programmable biquad D 101 (0x65) 0000 0000 Coefficient N2(7:0) for right DAC-programmable biquad D 102 (0x66) 0000 0000 Coefficient D1(15:8) for right DAC-programmable biquad D 103 (0x67) 0000 0000 Coefficient D1(7:0) for right DAC-programmable biquad D 104 (0x68) 0000 0000 Coefficient D2(15:8) for right DAC-programmable biquad D 105 (0x69) 0000 0000 Coefficient D2(7:0) for right DAC-programmable biquad D 106 (0x6A) 0111 1111 Coefficient N0(15:8) for right DAC-programmable biquad E 107 (0x6B) 1111 1111 Coefficient N0(7:0) for right DAC-programmable biquad E 108 (0x6C) 0000 0000 Coefficient N1(15:8) for right DAC-programmable biquad E 109 (0x6D) 0000 0000 Coefficient N1(7:0) for right DAC-programmable biquad E 110 (0x6E) 0000 0000 Coefficient N2(15:8) for right DAC-programmable biquad E 111 (0x6F) 0000 0000 Coefficient N2(7:0) for right DAC-programmable biquad E 112 (0x70) 0000 0000 Coefficient D1(15:8) for right DAC-programmable biquad E 113 (0x71) 0000 0000 Coefficient D1(7:0) for right DAC-programmable biquad E 114 (0x72) 0000 0000 Coefficient ND2(15:8) for right DAC-programmable biquad E 115 (0x73) 0000 0000 Coefficient ND2(7:0) for right DAC-programmable biquad E 116 (0x74) 0111 1111 Coefficient N0(15:8) for right DAC-programmable biquad F 117 (0x75) 1111 1111 Coefficient N0(7:0) for right DAC-programmable biquad F 118 (0x76) 0000 0000 Coefficient N1(15:8) for right DAC-programmable biquad F 119 (0x77) 0000 0000 Coefficient N1(7:0) for right DAC-programmable biquad F Detailed Description Copyright © 2010–2018, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: TLV320DAC3101 TLV320DAC3101 www.ti.com SLAS666B – JANUARY 2010 – REVISED OCTOBER 2018 Table 6-124. Page-12 AC Buffer B Registers (continued) REGISTER NUMBER RESET VALUE 120 (0x78) 0000 0000 Coefficient N2(15:8) for right DAC-programmable biquad F 121 (0x79) 0000 0000 Coefficient N2(7:0) for right DAC-programmable biquad F 122 (0x7A) 0000 0000 Coefficient D1(15:8) for right DAC-programmable biquad F REGISTER NAME 123 (0x7B) 0000 0000 Coefficient D1(7:0) for right DAC-programmable biquad F 124 (0x7C) 0000 0000 Coefficient D2(15:8) for right DAC-programmable biquad F 125 (0x7D) 0000 0000 Coefficient D2(7:0) for right DAC-programmable biquad F 126–127 0000 0000 Reserved 6.4.2.7 Control Registers, Page 13: DAC Programmable Coefficients RAM Buffer B (65:127) Table 6-125. Page 13 / Register 0 (0x00): Page Control Register READ/ WRITE R/W BIT D7–D0 RESET VALUE 0000 0000 DESCRIPTION 0000 0000: 0000 0001: ... 1111 1110: 1111 1111: Page 0 selected Page 1 selected Page 254 selected Page 255 selected The remaining page-13 registers are either reserved registers or are used for setting coefficients for the various filters in the . Reserved registers must not be written to. The filter coefficient registers are arranged in pairs, with two adjacent 8-bit registers containing the 16-bit coefficient for a single filter. The 16-bit integer contained in the MSB and LSB registers for a coefficient are interpreted as a 2s-complement integer, with possible values ranging from –32 768 to 32 767. When programming any coefficient value for a filter, the MSB register must always be written first, immediately followed by the LSB register. Even if only the MSB or LSB portion of the coefficient changes, both registers must be written in this sequence. is a list of the page-13 registers, excepting the previously described register 0. Table 6-126. Page-13 DAC Buffer B Registers REGISTER NUMBER RESET VALUE 1 0000 0000 Reserved. Do not write to this register. 2 (0x02) 0111 1111 Coefficient N0(15:8) for left DAC-programmable first-order IIR 3 (0x03) 1111 1111 Coefficient N0(7:0) for left DAC-programmable first-order IIR 4 (0x04) 0000 0000 Coefficient N1(15:8) for left DAC-programmable first-order IIR 5 (0x05) 0000 0000 Coefficient N1(7:0) for left DAC-programmable first-order IIR 6 (0x06) 0000 0000 Coefficient D1(15:8) for left DAC-programmable first-order IIR 7 (0x07) 0000 0000 Coefficient D1(7:0) for left DAC-programmable first-order IIR 8 (0x08) 0111 1111 Coefficient N0(15:8) for right DAC-programmable first-order IIR 9 (0x09) 1111 1111 Coefficient N0(7:0) for right DAC-programmable first-order IIR 10 (0x0A) 0000 0000 Coefficient N1(15:8) for right DAC-programmable first-order IIR 11 (0x0B) 0000 0000 Coefficient N1(7:0) for right DAC-programmable first-order IIR 12 (0x0C) 0000 0000 Coefficient D1(15:8) for right DAC-programmable first-order IIR 13 (0x0D) 0000 0000 Coefficient D1(7:0) for right DAC-programmable first-order IIR 14 (0x0E) 0111 1111 Coefficient N0(15:8) for DRC first-order high-pass filter 15 (0x0F) 1111 0111 Coefficient N0(7:0) for DRC first-order high-pass filter 16 (0x10) 1000 0000 Coefficient N1(15:8) for DRC first-order high-pass filter 17 (0x11) 0000 1001 Coefficient N1(7:0) for DRC first-order high-pass filter 18 (0x12) 0111 1111 Coefficient D1(15:8) for DRC first-order high-pass filter REGISTER NAME Detailed Description Copyright © 2010–2018, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: TLV320DAC3101 95 TLV320DAC3101 SLAS666B – JANUARY 2010 – REVISED OCTOBER 2018 www.ti.com Table 6-126. Page-13 DAC Buffer B Registers (continued) 96 REGISTER NUMBER RESET VALUE 19 (0x13) 1110 1111 Coefficient D1(7:0) for DRC first-order high-pass filter 20 (0x14) 0000 0000 Coefficient N0(15:8) for DRC first-order low-pass filter 21 (0x15) 0001 0001 Coefficient N0(7:0) for DRC first-order low-pass filter 22 (0x16) 0000 0000 Coefficient N1(15:8) for DRC first-order low-pass filter 23 (0x17) 0001 0001 Coefficient N1(7:0) for DRC first-order low-pass filter 24 (0x18) 0111 1111 Coefficient D1(15:8) for DRC first-order low-pass filter 25 (0x19) 1101 1110 Coefficient D1(7:0) for DRC first-order low-pass filter 26–127 0000 0000 Reserved REGISTER NAME Detailed Description Copyright © 2010–2018, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: TLV320DAC3101 TLV320DAC3101 www.ti.com SLAS666B – JANUARY 2010 – REVISED OCTOBER 2018 7 Application and Implementation NOTE Information in the following applications sections is not part of the TI component specification, and TI does not warrant its accuracy or completeness. TI’s customers are responsible for determining suitability of components for their purposes. Customers should validate and test their design implementation to confirm system functionality. 7.1 Application Information This typical connection highlights the required external components and system level connections for proper operation of the device in several popular use cases. Each of these configurations can be realized using the Evaluation Modules (EVMs) for the device. These flexible modules allow full evaluation of the device in the most common modes of operation. Any design variation can be supported by TI through schematic and layout reviews. Visit http://e2e.ti.com for design assistance and join the audio amplifier discussion forum for additional information. 7.2 Typical Application +3.3VA SVDD 0.1 mF 22 mF 0.1 mF SPKVDD SPKVDD 22 mF 0.1 mF SPKVSS SPKVSS 0.1 mF 10 mF HPVDD AVDD 10 mF AVSS HPVSS GPIO1 HOST PROCESSOR SDA SCL MCLK WCLK SDIN BCLK SPLP SPLM 8-W Speaker SPRP SPRM 8-W Speaker TLV320DAC3101 RESET To External MIC Circuitry Analog In MICBIAS HPL AIN1 HPR Stereo Headphone Out AIN2 AVDD 34.8 kW 25 kW VOL/MICDET 1 mF 9.76 kW DVDD DVSS +1.8VD AVSS 0.1 mF IOVDD IOVSS IOVDD 10 mF 0.1 mF 10 mF S0400-05 Figure 7-1. Typical Circuit Configuration Application and Implementation Copyright © 2010–2018, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: TLV320DAC3101 97 TLV320DAC3101 SLAS666B – JANUARY 2010 – REVISED OCTOBER 2018 7.2.1 www.ti.com Design Requirements For this design example, use the parameters listed in Table 7-1 as the input parameters. Table 7-1. Design Parameters 7.2.2 DESIGN PARAMETER EXAMPLE VALUE AVDD 3.3 V DVDD 1.8 V HPVDD 3.3 V IOVDD 3.3 V Maximum MICBIAS current 4 mA SPKVDD 5V Detailed Design Procedure Using Figure 7-1 as a guide, integrate the hardware into the system. Following the recommended component placement, schematic layout and routing given in Section 9, integrate the device and its supporting components into the system PCB file. Determining sample rate and master clock frequency is required since powering up the device as all internal timing is derived from the master clock. Refer to Section 6.3.11 to get more information of how to configure correctly the required clocks for the device. As the TLV320DAC3101 is designed for low-power applications, when powered up, the device has several features powered down. A correct routing of the TLV320DAC3101 signals is achieved by a correct setting of the device registers, powering up the required stages of the device and configuring the internal switches to follow a desired route. 7.2.3 Application Curves −10 3.5 HPVDD = 2.7 V CM = 1.35 V 3.0 Micbias = AVDD (3.3 V) −20 2.5 −30 −40 HPVDD = 3 V CM = 1.5 V −50 HPVDD = 3.3 V CM = 1.65 V −60 HPVDD = 3.6 V CM = 1.8 V −70 Micbias = 2.5 V 2.0 Micbias = 2 V 1.5 1.0 IOVDD = 3.3 V DVDD = 1.8 V Gain = 9 dB RL = 16 Ω −80 −90 −100 0.00 V − Voltage − V THD+N − Total Harmonic Distortion + Noise − dB 0 0.02 0.04 0.06 0.08 0.10 0.12 PO − Output Power − W 0.5 0.14 0.0 0.0 0.5 1.5 2.0 2.5 3.0 3.5 4.0 I − Current − mA G025 Figure 7-2. Headphone Output Power 98 1.0 Application and Implementation G016 Figure 7-3. MICBIAS Copyright © 2010–2018, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: TLV320DAC3101 TLV320DAC3101 www.ti.com SLAS666B – JANUARY 2010 – REVISED OCTOBER 2018 8 Power Supply Recommendations The TLV320DAC3101 has been designed to be extremely tolerant of power supply sequencing. However, in some rare cases, unexpected conditions and behaviors can be attributed to power supply sequencing. It is important to consider that the digital activity must be separated from the analog and speaker activity. In order to separate the power supplies, the recommended power sequence is: 1. Speaker supplies 2. Digital supplies 3. Analog supplies First, turn on the speaker supplies. Once they are stabilized, turn on the digital power supplies. Finally, once the digital power supplies are stabilized, the analog power supplies must be turned on. Also, TI recommends to add decoupling capacitors close to the power supplies pins (see Section 9 for details). These capacitors will ensure that the power pins will be stable. Additionally, undesired effects such pops will be avoided. Power Supply Recommendations Copyright © 2010–2018, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: TLV320DAC3101 99 TLV320DAC3101 SLAS666B – JANUARY 2010 – REVISED OCTOBER 2018 www.ti.com 9 Layout 9.1 Layout Guidelines PCB design is made considering the application and the review is specific for each system requirements. However, general considerations can optimize the system performance. • The TLV320DAC3101 thermal pad must be connected to analog output driver ground using multiple VIAS to minimize impedance between the device and ground. • Analog and digital grounds must be separated to prevent possible digital noise form affecting the analog performance of the board. • The TLV320DAC3101 requires the decoupling capacitors to be placed as close as possible to the device power supply terminals. 9.2 Layout Example Figure 9-1. Example PCB Layout 100 Layout Copyright © 2010–2018, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: TLV320DAC3101 PACKAGE OPTION ADDENDUM www.ti.com 10-Dec-2020 PACKAGING INFORMATION Orderable Device Status (1) Package Type Package Pins Package Drawing Qty Eco Plan (2) Lead finish/ Ball material MSL Peak Temp Op Temp (°C) Device Marking (3) (4/5) (6) TLV320DAC3101IRHBR ACTIVE VQFN RHB 32 3000 RoHS & Green NIPDAU Level-2-260C-1 YEAR -40 to 85 DAC3101 TLV320DAC3101IRHBT ACTIVE VQFN RHB 32 250 RoHS & Green NIPDAU Level-2-260C-1 YEAR -40 to 85 DAC3101 (1) The marketing status values are defined as follows: ACTIVE: Product device recommended for new designs. LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect. NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design. PREVIEW: Device has been announced but is not in production. Samples may or may not be available. OBSOLETE: TI has discontinued the production of the device. (2) RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may reference these types of products as "Pb-Free". RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption. Green: TI defines "Green" to mean the content of Chlorine (Cl) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of
TLV320DAC3101IRHBR 价格&库存

很抱歉,暂时无法提供与“TLV320DAC3101IRHBR”相匹配的价格&库存,您可以联系我们找货

免费人工找货