0
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
会员中心
创作中心
发布
  • 发文章

  • 发资料

  • 发帖

  • 提问

  • 发视频

创作活动
TLV3602QDGKRQ1

TLV3602QDGKRQ1

  • 厂商:

    BURR-BROWN(德州仪器)

  • 封装:

    TSSOP8,MSOP8

  • 描述:

    比较器 通用 推挽式,CMOS,轨至轨 8-VSSOP

  • 数据手册
  • 价格&库存
TLV3602QDGKRQ1 数据手册
TLV3601-Q1, TLV3602-Q1, TLV3603-Q1 SNOSDC3D – JUNE 2021 – REVISED JULY 2022 TLV360x-Q1 325 MHz High-Speed Comparators with 2.5 ns Propagation Delay 1 Features 3 Description • • The TLV360x are a family of 325 MHz, high-speed comparators with rail-to-rail inputs and a propagation delay of 2.5 ns. The combination of fast response and wide operating voltage range make the comparators suitable for narrow signal pulse detection and data and clock recovery applications in LIDAR, range finders, and line receivers. • • • • • • • • • • • • Qualified for automotive applications AEC-Q100 qualified with the following results: – Device temperature grade 1: –40°C to 125°C ambient operating temperature range – Device HBM ESD classification level 2 – Device CDM ESD classification level C3 Fast propagation delay: 2.5 ns Low overdrive dispersion: 600 ps High toggle frequency: 325 MHz Narrow pulse width detection capability: 1.25 ns Push-pull output Wide supply range: 2.4 V to 5.5 V Input common-mode range extends 200 mV beyond both rails Low input offset voltage: ±5 mV Known startup condition at output TLV3603 specific features: – Adjustable hysteresis control pin – Latch function Packages: TLV3601 (SC70-5), (SOT23-5), TLV3603 (SC70-6), TLV3602 (VSSOP-8), (WSON-8) Functional Safety Capable – Documentation available to aid functional safety system design [TLV3601/2-Q1] – Documentation available to aid functional safety system design [TLV3603-Q1] 2 Applications • • • • • • The push-pull (single-ended ) outputs of the TLV360x family simplify and save cost on board-to-board wiring for I/O interfaces while reducing power consumption when compared to alternative high-speed differential output comparators. They can directly interface most prevailing digital controllers and IO expanders in the downstream circuit. The TLV3601-Q1 is available in tiny 5-pin SC70 and SOT23 packages which makes it well suited for space constrained equipment that benefit from the comparators fast response time. TLV3603-Q1 is packaged in a 6-pin SC70 package and maintains the same speed and size as TLV3601-Q1 while offering the additional features of adjustable hysteresis control and output latch capability. The TLV3602-Q1 is a dual channel version of the TLV3601-Q1 and is packaged in 8-pin VSSOP and WSON packages. Device Information TLV3601-Q1 DC/DC converter Inverter and motor control Fuel Cell Control Unit (FCCU) Battery Management System (BMS) Mechanically scanning LIDAR Audio amplifier PACKAGE (1) PART NUMBER TLV3603-Q1 TLV3602-Q1 (1) BODY SIZE (NOM) SC70 (5) 1.25 mm × 2.00 mm SOT-23 (5) 2.90 mm × 1.60 mm SC70 (6) 1.25 mm × 2.00 mm VSSOP (8) 3.00 mm × 3.00 mm WSON (8) (Preview) 2.00 mm × 2.00 mm For all available packages, see the orderable addendum at the end of the data sheet. TLV3601 (TLV3602 per Channel) VCC TLV3603 V+ + + OPA858 + OUT OUT TLV3603 + TDC – LE/HYST – VEE LE/HYST VEE Functional Block Diagrams VBIAS VREF TLV3603 Application Circuit An IMPORTANT NOTICE at the end of this data sheet addresses availability, warranty, changes, use in safety-critical applications, intellectual property matters and other important disclaimers. UNLESS OTHERWISE NOTED, this document contains PRODUCTION DATA. TLV3601-Q1, TLV3602-Q1, TLV3603-Q1 www.ti.com SNOSDC3D – JUNE 2021 – REVISED JULY 2022 Table of Contents 1 Features............................................................................1 2 Applications..................................................................... 1 3 Description.......................................................................1 4 Revision History.............................................................. 2 5 Pin Configuration and Functions...................................3 6 Specifications.................................................................. 5 6.1 Absolute Maximum Ratings........................................ 5 6.2 ESD Ratings............................................................... 5 6.3 Recommended Operating Conditions.........................5 6.4 Thermal Information....................................................6 6.5 Electrical Characteristics.............................................7 6.6 Timing Diagrams ........................................................ 8 6.7 Typical Characteristics.............................................. 10 7 Detailed Description......................................................18 7.1 Overview................................................................... 18 7.2 Functional Block Diagram......................................... 18 7.3 Feature Description...................................................18 7.4 Device Functional Modes..........................................18 8 Application and Implementation.................................. 20 8.1 Application Information............................................. 20 8.2 Typical Application.................................................... 21 9 Power Supply Recommendations................................25 10 Layout...........................................................................26 10.1 Layout Guidelines................................................... 26 10.2 Layout Example...................................................... 26 11 Device and Documentation Support..........................27 11.1 Device Support........................................................27 11.2 Receiving Notification of Documentation Updates.. 27 11.3 Support Resources................................................. 27 11.4 Trademarks............................................................. 27 11.5 Electrostatic Discharge Caution.............................. 27 11.6 Glossary.................................................................. 27 12 Mechanical, Packaging, and Orderable Information.................................................................... 27 4 Revision History NOTE: Page numbers for previous revisions may differ from page numbers in the current version. Changes from Revision C (July 2022) to Revision D (August 2022) Page • Removed Preview from VSSOP package for the TLV3602-Q1 ......................................................................... 1 Changes from Revision B (November 2021) to Revision C (July 2022) Page • Added VSSOP and WSON package options for TLV3602-Q1 in Preview ........................................................ 1 • Removed Preview from SOT-23 package from TLV3601-Q1 ............................................................................ 1 Changes from Revision A (August 2021) to Revision B (November 2021) Page • Remove Preview from TLV3603-Q1 .................................................................................................................. 1 • Add DBV package option for TLV3601-Q1 in Preview ...................................................................................... 1 • Added typical performance curves................................................................................................................... 10 Changes from Revision * (June 2021) to Revision A (August 2021) Page • Production Data Release ...................................................................................................................................1 2 Submit Document Feedback Copyright © 2022 Texas Instruments Incorporated Product Folder Links: TLV3601-Q1 TLV3602-Q1 TLV3603-Q1 TLV3601-Q1, TLV3602-Q1, TLV3603-Q1 www.ti.com SNOSDC3D – JUNE 2021 – REVISED JULY 2022 5 Pin Configuration and Functions 1 VEE 2 IN+ 3 5 VCC 4 IN- + OUT Figure 5-1. DCK, DBV Package 5-Pin SC70, SOT-23 Top View 1 6 VCC VEE 2 5 LE/HYS IN+ 3 4 IN- + OUT Figure 5-2. DCK Package 6-Pin SC70 Top View Table 5-1. Pin Functions PIN NAME I/O DESCRIPTION TLV3601 TLV3603 IN+ 3 3 I Non-inverting input IN– 4 4 I Inverting input OUT 1 1 O Output (Push-pull) VEE 2 2 I Negative power supply VCC 5 6 I Positive power supply LE/HYS - 5 I Adjustable hysteresis control and latch Copyright © 2022 Texas Instruments Incorporated Product Folder Links: TLV3601-Q1 TLV3602-Q1 TLV3603-Q1 Submit Document Feedback 3 TLV3601-Q1, TLV3602-Q1, TLV3603-Q1 www.ti.com SNOSDC3D – JUNE 2021 – REVISED JULY 2022 IN1+ 1 8 V+ IN1– 2 7 OUT1 IN2– 3 6 OUT2 IN2+ 4 5 V- Figure 5-3. TLV3602 DGK, DSG Packages 8-Pin VSSOP, WSON Table 5-2. Pin Functions: TLV3602 (Dual) PIN NAME NO. DESCRIPTION IN1+ 1 I Noninverting input, channel 1 IN1– 2 I Inverting input, channel 1 IN2– 3 I Inverting input, channel 2 IN2+ 4 I Noninverting input, channel 2 OUT1 7 O Output, channel 1 OUT2 6 O Output, channel 2 V- 5 P Negative (lowest) supply or ground V+ 8 P Positive (highest) supply - Connect directly to V- pin Thermal PAD 4 I/O Submit Document Feedback Copyright © 2022 Texas Instruments Incorporated Product Folder Links: TLV3601-Q1 TLV3602-Q1 TLV3603-Q1 TLV3601-Q1, TLV3602-Q1, TLV3603-Q1 www.ti.com SNOSDC3D – JUNE 2021 – REVISED JULY 2022 6 Specifications 6.1 Absolute Maximum Ratings over operating free-air temperature range (unless otherwise noted)(1) Input Supply Voltage: VCC – VEE Input Voltage (IN+, IN–)(2) MIN MAX –0.3 6 UNIT V VEE – 0.3 VCC + 0.3 V –(VCC – VEE + 0.3) + (VCC –VEE + 0.3) V Output Voltage (OUT)(3) VEE – 0.3 VCC + 0.3 V Latch and Hysteresis Control (LE/HYS) VEE – 0.3 VCC + 0.3 Differential Input Voltage (VDI = IN+ – IN–) V Current into Input pins (IN+, IN–, LE/HYS)(2) ±10 mA Current into Output pins (OUT)(3) ±50 mA 150 °C 150 °C Junction temperature, TJ Storage temperature, Tstg (1) (2) (3) –65 Operation outside the Absolute Maximum Ratings may cause permanent device damage. Absolute Maximum Ratings do not imply functional operation of the device at these or any other conditions beyond those listed under Recommended Operating Conditions. If used outside the Recommended Operating Conditions but within the Absolute Maximum Ratings, the device may not be fully functional, and this may affect device reliability, functionality, performance, and shorten the device lifetime. Input terminals are diode-clamped to the power-supply rails. Input signals that can swing more than 0.3 V beyond the supply rails must be current-limited to 10 mA or less. Output terminals are diode-clamped to the power-supply rails. Output signals that can swing more than 0.3 V beyond the supply rails must be current-limited to 50 mA or less. 6.2 ESD Ratings VALUE UNIT TLV3601(DCK), TLV3603 Electrostatic discharge V(ESD) Human-body model (HBM), per AEC Q100-002(1) ±2000 Charged-device model (CDM), per AEC Q100-011 ±1000 V TLV3601(DBV) V(ESD) Electrostatic discharge Human-body model (HBM), per AEC Q100-002(1) ±2000 Charged-device model (CDM), per AEC Q100-011 ±750 Electrostatic discharge Human-body model (HBM), per AEC Q100-002(1) ±2000 Charged-device model (CDM), per AEC Q100-011 ±500 V TLV3602 V(ESD) (1) V AEC Q100-002 indicates that HBM stressing shall be in accordance with the ANSI/ESDA/JEDEC JS-001 specification. 6.3 Recommended Operating Conditions over operating free-air temperature range (unless otherwise noted) MIN Input Supply Voltage: VCC – VEE MAX UNIT 2.4 5.5 V Input Voltage Range (IN+, IN–) VEE – 0.3 VCC + 0.3 V Latch and Hysteresis Control (LE/HYS) VEE – 0.3 VCC + 0.3 V –40 125 °C Ambient temperature, TA Copyright © 2022 Texas Instruments Incorporated Product Folder Links: TLV3601-Q1 TLV3602-Q1 TLV3603-Q1 Submit Document Feedback 5 TLV3601-Q1, TLV3602-Q1, TLV3603-Q1 www.ti.com SNOSDC3D – JUNE 2021 – REVISED JULY 2022 6.4 Thermal Information TLV3601 TLV3601 TLV3602 TLV3602 TLV3603 DBV (SOT-23) DCK (SC70) DGK (VSSOP) DSG (WSON) DCK (SC70) 5 PINS 5 PINS 8 PINS 8 PINS 6 PINS Junction-to-ambient thermal resistance 176.5 187.5 170.5 64.9 165.1 °C/W Junction-to-case (top) thermal resistance 74.7 139.2 61.7 83.9 129.1 °C/W Junction-to-case (bottom) thermal resistance N/A N/A N/A 5.5 N/A °C/W RθJB Junction-to-board thermal resistance 43.4 65.8 92.4 32.0 58.9 °C/W ψJT Junction-to-top characterization parameter 16.7 43.0 8.9 2.1 39.4 °C/W ψJB Junction-to-board characterization parameter 43.1 65.5 90.8 32.0 58.7 °C/W THERMAL METRIC RθJA Rθ JC(top UNIT ) Rθ JC(bot tom) 6 Submit Document Feedback Copyright © 2022 Texas Instruments Incorporated Product Folder Links: TLV3601-Q1 TLV3602-Q1 TLV3603-Q1 TLV3601-Q1, TLV3602-Q1, TLV3603-Q1 www.ti.com SNOSDC3D – JUNE 2021 – REVISED JULY 2022 6.5 Electrical Characteristics VCC = 2.5, 3.3 and 5 V, VEE = 0 V, VCM = VEE + 300 mV, CL = 5 pF probe capacitance, typical at TA = 25°C (unless otherwise noted). PARAMETER TEST CONDITIONS MIN TYP MAX –5 ±0.5 5 UNIT DC Input Characteristics VIO Input offset voltage dVIO/dT Input offset voltage drift TA = –40°C to +125℃ VCM Input common mode voltage range TA = –40℃ to +125℃ VEE – 0.2 VHYST (TLV3601) Input hysteresis voltage TA = –40℃ to +125℃ 1.5 CIN Input capacitance RDM Input differential mode resistance RCM Input common mode resistance IB Input bias current IOS Input offset current CMRR Common-mode rejection ratio PSRR Power-supply rejection ratio ±3.0 VCC + 0.2 3 5(1) V mV 1 pF 67 kΩ 5 TA = –40℃ to +125℃ mV μV/°C 1 MΩ 5 uA ±0.03 uA VCM = VEE – 0.2V to VCC + 0.2V 80 dB VCC = 2.4 to 5.5V 80 dB DC Output Characteristics VOH Output high voltage from VCC ISOURCE = 1 mA TA = –40℃ to +125℃ 60 80 mV VOL Output low voltage from VEE ISINK = 1 mA TA = –40℃ to +125℃ 60 80 mV ISC_SOURCE Output Short-Circuit Current Source TA = –40℃ to +125℃ 10 30 mA ISC_SINK Output Short-Circuit Current Sink TA = –40℃ to +125℃ 10 30 mA ICC (TLV3601) quiescent current Output being high TA = –40℃ to +125℃ 4.9 7 mA ICC (TLV3602) quiescent current per channel Output being high TA = –40℃ to +125℃ 4.9 7 mA ICC (TLV3603) quiescent current Output being high TA = –40℃ to +125℃ 5.7 7.8 mA VPOR (postive) Power-On Reset Voltage Power Supply 2.1 V AC Characteristics tPD ns 4.5(1) ns VOVERDRIVE = VUNDERDRIVE = 50mV tPD Propagation delay VOVERDRIVE = VUNDERDRIVE = 50mV TA = –40℃ to +125℃ ΔtPD (TLV3602 only) Channel-to-channel propagation delay skew(2) VCM = VCC/2, VOVERDRIVE = VUNDERDRIVE = 50mV, 50 MHz Squarewave 24 ps tCM_DISPERSION Common dispersion VCM varied from VEE to VCC 80 ps tOD_DISPERSION Overdrive dispersion Overdrive varied from 10 mV to 125 mV 600 ps tUD_DISPERSION Underdrive dispersion Underdrive varied from 10mV to 125 mV 330 ps tR Rise time 10% to 90% 0.75 ns tF Fall time 90% to 10% 0.75 ns tJITTER RMS Jitter VIN = 100mVP-P, fIN = 100MHz, Jitter BW = 10Hz – 50MHz 4 ps fTOGGLE Input toggle frequency VIN = 200 mVPP Sine Wave, When output high reaches 90% of VCC - VEE or output low reaches 10% of VCC - VEE 325 MHz PulseWidth Minimum allowed input pulse width VOVERDRIVE = VUNDERDRIVE = 50mV PWOUT = 90% of PWIN 1.25 ns Copyright © 2022 Texas Instruments Incorporated Product Folder Links: TLV3601-Q1 TLV3602-Q1 TLV3603-Q1 2.5 3.5(1) Propagation delay Submit Document Feedback 7 TLV3601-Q1, TLV3602-Q1, TLV3603-Q1 www.ti.com SNOSDC3D – JUNE 2021 – REVISED JULY 2022 6.5 Electrical Characteristics (continued) VCC = 2.5, 3.3 and 5 V, VEE = 0 V, VCM = VEE + 300 mV, CL = 5 pF probe capacitance, typical at TA = 25°C (unless otherwise noted). PARAMETER TEST CONDITIONS MIN TYP MAX UNIT Latching/Adjustable Hysteresis VHYST Input hysteresis voltage VHYST = Logic High 0 mV VHYST Input hysteresis voltage RHYST = Floating 3 mV VHYST Input hysteresis voltage RHYST = 150 kΩ 30 mV VHYST Input hysteresis voltage RHYST = 56 kΩ 60 mV VIH_LE LE pin input high level TA = –40℃ to +125℃ VIL_LE LE pin input low level TA = –40℃ to +125℃ VEE + 0.35 V IIH_LE LE pin input leakage current VLE = VCC TA = –40℃ to +125℃ 15 uA IIL_LE LE pin input leakage current VLE = VEE, TA = –40℃ to +125℃ 40 uA tSETUP Latch setup time –1.4 ns tHOLD Latch hold time 7.2 ns tPL Latch to OUT delay 7 ns (1) (2) VEE + 1.5 V Ensured by characterization Differential propagation delay is defined as the larger of the two: ΔtPDLH = tPDLH(MAX) – tPDLH(MIN) ΔtPDHL = tPDHL(MAX) – tPDHL(MIN) where (MAX) and (MIN) denote the maximum and minimum values of a given measurement across the different comparator channels. 6.6 Timing Diagrams VOVERDRIVE VUNDERDRIVE INVUNDERDRIVE VOVERDRIVE IN+ tPLH tPHL tR tF 90% 50% 10% VOUT Figure 6-1. General Timing Diagram 8 Submit Document Feedback Copyright © 2022 Texas Instruments Incorporated Product Folder Links: TLV3601-Q1 TLV3602-Q1 TLV3603-Q1 TLV3601-Q1, TLV3602-Q1, TLV3603-Q1 www.ti.com SNOSDC3D – JUNE 2021 – REVISED JULY 2022 VOD = 125mV VOD = 10mV ININ+ DISPERSION VOUT Figure 6-2. Overdrive Dispersion Copyright © 2022 Texas Instruments Incorporated Product Folder Links: TLV3601-Q1 TLV3602-Q1 TLV3603-Q1 Submit Document Feedback 9 TLV3601-Q1, TLV3602-Q1, TLV3603-Q1 www.ti.com SNOSDC3D – JUNE 2021 – REVISED JULY 2022 6.7 Typical Characteristics At TA = 25°C, VCC - VEE = 2.5 V to 5 V, VCM = 300 mV, RHYST = 150 kΩ (TLV3603-Q1 only), and input overdrive = 50 mV, unless otherwise noted. 2 3.2 3.1 1 Hysteresis (mV) Input Offset Voltage (mV) 1.5 0.5 0 -0.5 3 2.9 VCC = 2.5V VCC = 3.3V VCC = 5V -1 -1.5 -40 For 33 units -25 -10 5 20 35 50 65 Temperature (C) 80 95 2.8 -40 110 125 -25 -10 5 20 35 50 65 Temperature (C) 80 95 110 125 Figure 6-4. TLV3601 Hysteresis vs. Temperature Figure 6-3. TLV3601 Offset vs. Temperature 1.8 Input Offset Voltage (mV) 1.4 1 0.6 0.2 -0.2 -0.6 -1 -0.2 For 33 units 0.1 0.4 0.7 1 1.3 1.6 1.9 2.2 Input Common-Mode Voltage (V) 2.5 2.7 Figure 6-5. TLV3601 Offset vs. Common-Mode, 2.5 V Figure 6-6. TLV3601 Hysteresis vs. Common-Mode, 2.5 V 5 1.8 4.5 4 1 Hysteresis (mV) Input Offset Voltage (mV) 1.4 0.6 0.2 -0.2 3 2.5 2 1.5 -40C 25C 85C 125C 1 -0.6 -1 -0.2 0.5 For 33 units 0.3 0.8 1.3 1.8 2.3 2.8 Input Common-Mode Voltage (V) 3.3 Figure 6-7. TLV3601 Offset vs. Common-Mode, 3.3 V 10 3.5 Submit Document Feedback 0 -0.2 0.3 0.8 1.3 1.8 2.3 2.8 Input Common Mode Voltage (V) 3.3 Figure 6-8. TLV3601 Hysteresis vs. Common-Mode, 3.3 V Copyright © 2022 Texas Instruments Incorporated Product Folder Links: TLV3601-Q1 TLV3602-Q1 TLV3603-Q1 TLV3601-Q1, TLV3602-Q1, TLV3603-Q1 www.ti.com SNOSDC3D – JUNE 2021 – REVISED JULY 2022 6.7 Typical Characteristics (continued) At TA = 25°C, VCC - VEE = 2.5 V to 5 V, VCM = 300 mV, RHYST = 150 kΩ (TLV3603-Q1 only), and input overdrive = 50 mV, unless otherwise noted. 5 1.8 4.5 4 1 Hysteresis (mV) Input Offset Voltage (mV) 1.4 0.6 0.2 -0.2 3 2.5 2 1.5 -40C 25C 85C 125C 1 -0.6 0.5 -1 -0.2 0.3 For 33 units 0.8 1.3 1.8 2.3 2.8 3.3 3.8 Input Common-Mode Voltage (V) 4.3 0 -0.2 4.8 5.2 0.3 0.8 1.3 1.8 2.3 2.8 3.3 3.8 Input Common Mode Voltage (V) 4.3 4.8 5.2 Figure 6-10. TLV3601 Hysteresis vs. Common-Mode, 5 V Figure 6-9. TLV3601 Offset vs. Common-Mode, 5 V 2 40 38 1.5 36 1 Hysteresis (mV) Input Offset Voltage (mV) 3.5 0.5 0 34 32 30 28 -0.5 VCC = 2.5V VCC = 3.3V VCC = 5V 26 -1 -1.5 -40 24 -40 For 33 units -25 -10 5 20 35 50 65 Temperature (C) 80 95 110 125 -25 -10 5 20 35 50 65 Temperature (C) 80 95 110 125 Figure 6-12. TLV3603 Hysteresis vs. Temperature 1.8 40 1.4 38 0.6 0.2 -0.2 34 32 30 28 -0.6 -1 -0.2 -40C 25C 85C 125C 36 1 Hysteresis (mV) Input Offset Voltage (mV) Figure 6-11. TLV3603 Offset vs. Temperature For 33 units 0.1 0.4 0.7 1 1.3 1.6 1.9 2.2 Input Common-Mode Voltage (V) 2.5 2.7 Figure 6-13. TLV3603 Offset vs. Common-Mode, 2.5 V 26 24 -0.2 0.1 0.4 0.7 1 1.3 1.6 1.9 2.2 Input Common-Mode Voltage (V) 2.5 2.7 Figure 6-14. TLV3603 Hysteresis vs. Common-Mode, 2.5 V Copyright © 2022 Texas Instruments Incorporated Product Folder Links: TLV3601-Q1 TLV3602-Q1 TLV3603-Q1 Submit Document Feedback 11 TLV3601-Q1, TLV3602-Q1, TLV3603-Q1 www.ti.com SNOSDC3D – JUNE 2021 – REVISED JULY 2022 6.7 Typical Characteristics (continued) 1.8 40 1.4 38 0.6 0.2 -0.2 34 32 30 28 -0.6 -1 -0.2 0.3 0.8 1.3 1.8 2.3 2.8 Input Common-Mode Voltage (V) 24 -0.2 3.3 1.8 40 1.4 38 0.6 0.2 -0.2 3.3 -40C 25C 85C 125C 34 32 30 28 -0.6 26 For 33 units 0.8 1.3 1.8 2.3 2.8 3.3 3.8 Input Common-Mode Voltage (V) 4.3 24 -0.2 0.3 4.8 5.2 Figure 6-17. TLV3603 Offset vs. Common-Mode, 5 V 0.8 1.3 1.8 2.3 2.8 3.3 3.8 Input Common-Mode Voltage (V) 4.3 4.8 5.2 Figure 6-18. TLV3603 Hysteresis vs. Common-Mode, 5 V 80 80 -40C 25C 85C 125C 70 60 50 40 30 60 50 40 30 20 20 10 10 0 -40C 25C 85C 125C 70 VHYST (mV) VHYST (mV) 0.8 1.3 1.8 2.3 2.8 Input Common-Mode Voltage (V) 36 1 -1 -0.2 0.3 0.3 Figure 6-16. TLV3603 Hysteresis vs. Common-Mode, 3.3 V Hysteresis (mV) Input Offset Voltage (mV) 26 For 33 units Figure 6-15. TLV3603 Offset vs. Common-Mode, 3.3 V 0 0 200 400 600 RHYST (k) 800 1,000 Figure 6-19. TLV3603 Hysteresis vs. Resistance, 2.5 V 12 -40C 25C 85C 125C 36 1 Hysteresis (mV) Input Offset Voltage (mV) At TA = 25°C, VCC - VEE = 2.5 V to 5 V, VCM = 300 mV, RHYST = 150 kΩ (TLV3603-Q1 only), and input overdrive = 50 mV, unless otherwise noted. Submit Document Feedback 0 200 400 600 RHYST (k) 800 1,000 Figure 6-20. TLV3603 Hysteresis vs. Resistance, 3.3 V Copyright © 2022 Texas Instruments Incorporated Product Folder Links: TLV3601-Q1 TLV3602-Q1 TLV3603-Q1 TLV3601-Q1, TLV3602-Q1, TLV3603-Q1 www.ti.com SNOSDC3D – JUNE 2021 – REVISED JULY 2022 6.7 Typical Characteristics (continued) At TA = 25°C, VCC - VEE = 2.5 V to 5 V, VCM = 300 mV, RHYST = 150 kΩ (TLV3603-Q1 only), and input overdrive = 50 mV, unless otherwise noted. 80 -40C 25C 85C 125C 70 VHYST (mV) 60 50 40 30 20 10 0 0 200 400 600 RHYST (k) 800 1,000 Figure 6-21. TLV3603 Hysteresis vs. Resistance, 5 V Figure 6-22. Bias Current vs. Input Voltage, 2.5 V 8 Input Bias Current (A) 6 4 2 0 -2 -4 -40C 25C 85C 125C -6 -8 -0.2 0.3 0.8 1.3 1.8 2.3 Input Voltage (V) 2.8 3.3 Figure 6-24. Bias Current vs. Input Voltage, 5 V Figure 6-23. Bias Current vs. Input Voltage, 3.3 V Output Voltage to VCC (V) 10 1 100m 10m 1m 100 -40C 25C 85C 125C 1m 10m Output Sourcing Current (A) 100m Figure 6-25. Output Voltage vs. Output Sourcing Current, 2.5 V Figure 6-26. Output Voltage vs. Output Sinking Current, 2.5 V Copyright © 2022 Texas Instruments Incorporated Product Folder Links: TLV3601-Q1 TLV3602-Q1 TLV3603-Q1 Submit Document Feedback 13 TLV3601-Q1, TLV3602-Q1, TLV3603-Q1 www.ti.com SNOSDC3D – JUNE 2021 – REVISED JULY 2022 6.7 Typical Characteristics (continued) At TA = 25°C, VCC - VEE = 2.5 V to 5 V, VCM = 300 mV, RHYST = 150 kΩ (TLV3603-Q1 only), and input overdrive = 50 mV, unless otherwise noted. Figure 6-28. Output Voltage vs. Output Sinking Current, 3.3 V Figure 6-29. Output Voltage vs. Output Sourcing Current, 5 V Figure 6-30. Output Voltage vs. Output Sinking Current, 5 V 5.5 5.5 5.3 5.3 5.1 4.9 -40C 25C 85C 125C 4.7 4.5 5.1 4.9 -40C 25C 85C 125C 4.7 4.5 2 2.5 3 3.5 4 4.5 Supply Voltage (V) 5 5.5 Figure 6-31. TLV3601 Supply Current vs. Voltage (Output Low) 14 Supply Current (mA) Supply Current (mA) Figure 6-27. Output Voltage vs. Output Sourcing Current, 3.3 V Submit Document Feedback 2 2.5 3 3.5 4 4.5 Supply Voltage (V) 5 5.5 Figure 6-32. TLV3601 Supply Current vs. Voltage (Output High) Copyright © 2022 Texas Instruments Incorporated Product Folder Links: TLV3601-Q1 TLV3602-Q1 TLV3603-Q1 TLV3601-Q1, TLV3602-Q1, TLV3603-Q1 www.ti.com SNOSDC3D – JUNE 2021 – REVISED JULY 2022 6.7 Typical Characteristics (continued) At TA = 25°C, VCC - VEE = 2.5 V to 5 V, VCM = 300 mV, RHYST = 150 kΩ (TLV3603-Q1 only), and input overdrive = 50 mV, unless otherwise noted. Figure 6-34. TLV3601 Supply Current vs. Temp (Output High) 6.2 6.2 6 6 5.8 5.6 -40C 25C 85C 125C 5.4 Supply Current (mA) Supply Current (mA) Figure 6-33. TLV3601 Supply Current vs. Temp (Output Low) 5.6 -40C 25C 85C 125C 5.4 5.2 5.2 2 2.5 3 3.5 4 Supply Voltage (V) 4.5 5 5.5 Figure 6-35. TLV3603 Supply Current vs. Voltage (Output Low) 2 6.2 6 6 5.8 5.6 5.4 5.2 -40 VCC = 2.5V VCC = 3.3V VCC = 5V -25 -10 5 20 35 50 65 Temperature (C) 80 95 110 125 Figure 6-37. TLV3603 Supply Current vs. Temp (Output Low) 2.5 3 3.5 4 Supply Voltage (V) 4.5 5 5.5 Figure 6-36. TLV3603 Supply Current vs. Voltage (Output High) 6.2 Supply Current (mA) Supply Current (mA) 5.8 5.8 5.6 5.4 5.2 -40 VCC = 2.5V VCC = 3.3V VCC = 5V -25 -10 5 20 35 50 65 Temperature (C) 80 95 110 125 Figure 6-38. TLV3603 Supply Current vs. Temp (Output High) Copyright © 2022 Texas Instruments Incorporated Product Folder Links: TLV3601-Q1 TLV3602-Q1 TLV3603-Q1 Submit Document Feedback 15 TLV3601-Q1, TLV3602-Q1, TLV3603-Q1 www.ti.com SNOSDC3D – JUNE 2021 – REVISED JULY 2022 6.7 Typical Characteristics (continued) At TA = 25°C, VCC - VEE = 2.5 V to 5 V, VCM = 300 mV, RHYST = 150 kΩ (TLV3603-Q1 only), and input overdrive = 50 mV, unless otherwise noted. 4.5 -40C 25C 85C 125C 4 3.5 3 2.5 2 1.5 10 20 30 40 50 70 100 200 300 Input Overdrive (mV) Propagation Delay, High to Low (ns) Propagation Delay, Low to High (ns) 4.5 -40C 25C 85C 125C 4 3.5 3 2.5 2 1.5 10 500 700 1000 Figure 6-39. Propagation Delay, Low to High, 2.5 V 20 30 40 50 70 100 200 300 Input Overdrive (mV) 500 700 1000 Figure 6-40. Propagation Delay, High to Low, 2.5 V Propagation Delay, High to Low (ns) 4.5 -40C 25C 85C 125C 4 3.5 3 2.5 2 1.5 10 16 20 30 40 50 70 100 200 300 Input Overdrive (mV) 500 700 1000 Figure 6-41. Propagation Delay, Low to High, 3.3 V Figure 6-42. Propagation Delay, High to Low, 3.3 V Figure 6-43. Propagation Delay, Low to High, 5 V Figure 6-44. Propagation Delay, High to Low, 5 V Submit Document Feedback Copyright © 2022 Texas Instruments Incorporated Product Folder Links: TLV3601-Q1 TLV3602-Q1 TLV3603-Q1 TLV3601-Q1, TLV3602-Q1, TLV3603-Q1 www.ti.com SNOSDC3D – JUNE 2021 – REVISED JULY 2022 6.7 Typical Characteristics (continued) 10 10 8 8 Propagation Delay (ns) Propagation Delay (ns) At TA = 25°C, VCC - VEE = 2.5 V to 5 V, VCM = 300 mV, RHYST = 150 kΩ (TLV3603-Q1 only), and input overdrive = 50 mV, unless otherwise noted. 6 4 2 6 4 2 tPHL tPLH 0 0 10 20 30 40 50 60 70 Output Capacitive Load (pF) 80 90 100 Figure 6-45. Propagation Delay vs. Load Capacitance, 3.3 V tPHL tPLH 0 0 10 20 30 40 50 60 70 Output Capacitive Load (pF) 80 90 100 Figure 6-46. Propagation Delay vs. Load Capacitance, 5 V Figure 6-47. Minimum Pulse Width vs. Temperature Copyright © 2022 Texas Instruments Incorporated Product Folder Links: TLV3601-Q1 TLV3602-Q1 TLV3603-Q1 Submit Document Feedback 17 TLV3601-Q1, TLV3602-Q1, TLV3603-Q1 www.ti.com SNOSDC3D – JUNE 2021 – REVISED JULY 2022 7 Detailed Description 7.1 Overview TheTLV360x family are high-speed comparators with single-ended (push-pull) output stages. The fast response time of these comparators make them well suited for applications that require narrow pulse width detection or high toggle frequencies. The TLV3601-Q1 is available in a 5-pin SC70 and SOT23 package, while the TLV3603-Q1 is packaged in a 6-pin SC70. The TLV3602-Q1 is a dual channel version of the TLV3601-Q1 and is packaged in an 8-pin VSSOP and WSON package. 7.2 Functional Block Diagram TLV3601 TLV3603 VCC VCC + + LE/HYST VEE VEE 7.3 Feature Description The TLV3601-Q1,TLV3603-Q1, and TLV3602-Q1 are single and dual channel, high speed comparators with a typical propagation delay of 2.5 ns and push-pull outputs. The minimum pulse width detection capability is 1.25 ns and the typical toggle rate is 325 MHz. These comparators are well-suited for distance measurement applications that utilize a time-of-flight arechitecture as well as systems that suffer from capacitive loading and require data and clock recovery. In addition to their high speed, the TLV360x family offers rail-to-rail input stages capable of operating up to 200 mV beyond each power supply rail combined with a maximum 5 mV input offset. The TLV3603-Q1 also provides adjustable hysteresis via an external resistor for noise suppression or a latching mode to hold the output of the comparators. 7.4 Device Functional Modes The TLV3601-Q1 has a single functional mode and is active when the power supply voltage is greater than 2.4V. The TLV3603-Q1 has two modes of operation. The first is an active mode where the output reflects the condition at the inputs when an external resistor is connected to ground on the LE/HYS pin. The second is a latch mode where the output is held at its last active state when the LE/HYS pin is pulled low. The TLV3603-Q1 returns to active mode after a short delay when the pin is pulled high. 7.4.1 Inputs The TLV360x family features input stages capable of operating 200 mV below negative power supply (ground) and 200 mV beyond the positive supply voltage, allowing for zero cross detection and maximizing input dynamic range given a certain power supply. The input stages are protected from conditions where the voltage on either pin exceeds this level by internal ESD protection diodes to VCC and VEE. To avoid damaging the inputs when exceeding the recommended input voltage range, an external resistor should be used to limit the current. 7.4.2 Push-Pull (Single-Ended) Output The TLV360x outputs have excellent drive capability and are designed to connect directly to CMOS logic input devices. Likewise, the comparator output stages can drive capacitive loads. Transient performance parameters in the Electrical Characteristics Tables and Typical Characteristics section are for a load of 5pF, corresponding to a standard CMOS load. Device performance for larger capacitive loads can be found in the typical performance curves titled Propagation Delay vs Capacitive Load. For optimal speed and performance, output load capacitance should be reduced as much as possible. 18 Submit Document Feedback Copyright © 2022 Texas Instruments Incorporated Product Folder Links: TLV3601-Q1 TLV3602-Q1 TLV3603-Q1 TLV3601-Q1, TLV3602-Q1, TLV3603-Q1 www.ti.com SNOSDC3D – JUNE 2021 – REVISED JULY 2022 7.4.3 Known Startup Condition The TLV360x have a Power-on-Reset (POR) circuit which provides system designers a known start-up condition for the output of the comparators. When the power supply (VCC) is ramping up or ramping down, the POR circuit will be active when VCC is below VPOR. When active, the POR circuit holds the output low at VEE. When VCC is greater than or equal to VPOR as stated in Section 6.5 , the comparator output reflects the state of the input pins. Figure 7-1 shows how the TLV360x outputs respond for VCC rising. The input is configured with a logic high input to highlight the transition from the POR circuit control (logic low output) to a standard comparator operation where the output reflects the input condition. Note how the output goes high when VCC reaches 2.1V. Figure 7-1. TLV3601/TLV3603 Output for VCC Rising Copyright © 2022 Texas Instruments Incorporated Product Folder Links: TLV3601-Q1 TLV3602-Q1 TLV3603-Q1 Submit Document Feedback 19 TLV3601-Q1, TLV3602-Q1, TLV3603-Q1 www.ti.com SNOSDC3D – JUNE 2021 – REVISED JULY 2022 8 Application and Implementation Note Information in the following applications sections is not part of the TI component specification, and TI does not warrant its accuracy or completeness. TI’s customers are responsible for determining suitability of components for their purposes, as well as validating and testing their design implementation to confirm system functionality. 8.1 Application Information 8.1.1 Adjustable Hysteresis As a result of a comparator’s high open loop gain, there is a small band of input differential voltage where the output can toggle back and forth between “logic high” and “logic low” states. This can cause design challenges for inputs with slow rise and fall times or systems with excessive noise. These challenges can be overcome by adding hysteresis to the comparator. Since the TLV3601-Q1 and TLV3602-Q1 only has a minimal amount of internal hysteresis, external hysteresis can be applied in the form of a positive feedback loop that adjusts the trip point of the comparator depending on its current output state. See the Implementing Hysteresis section for more details. The TLV3603-Q1 on the other hand has a LE/HYS pin that can be used to increase or eliminate the internal hysteresis of the comparator. In order to increase the internal hysteresis of the TLV3603-Q1, connect a single resistor as shown in the adjusting hysteresis figure between the LE/HYS pin and VEE. A curve of hysteresis versus resistance is provided below to provide guidance in setting the desired amount of hysteresis. Likewise, for applications where no hysteresis is desired, the LE/HYS pin can be connected to VCC. VCC TLV3603 IN+ + OUT IN- LE/HYS VEE Figure 8-1. Adjustable Hysteresis with an External Resistor 80 -40C 25C 85C 125C 70 VHYST (mV) 60 50 40 30 20 10 0 0 200 400 600 RHYST (k) 800 1,000 Figure 8-2. VHYST (mV) vs RHYST (kΩ), VCC = 5 V 20 Submit Document Feedback Copyright © 2022 Texas Instruments Incorporated Product Folder Links: TLV3601-Q1 TLV3602-Q1 TLV3603-Q1 TLV3601-Q1, TLV3602-Q1, TLV3603-Q1 www.ti.com SNOSDC3D – JUNE 2021 – REVISED JULY 2022 8.1.2 Capacitive Loads For capacitive loads under 100 pF, the propagation delay has minimum change (see Propagation Delay vs. Capacitive Load). However, excessive capacitive loading under high switching frequencies may increase supply current, propagation delay, or induce decreased slew rate. 8.1.3 Latch Functionality The latch pin for the TLV3603-Q1 holds the output state of the device when the voltage at the LE/HYS pin is a logic low. This is particularly useful when the output state is intended to remain unchanged. An important consideration of the latch functionality is the latch hold and setup times. Latch hold time is the minimum time required (after the latch pin is asserted) for properly latching the comparator output. Likewise, latch setup time is defined as the time that the input must be stable before the latch pin is asserted low. The figure below illustrates when the input can transition for a valid latch. Note that the typical setup time in the EC table is negative; this is due to the internal trace delays of the LE/HYS pin relative to the input pin trace delays. A small delay (tPL) in the output response is shown below when the TLV3603-Q1 exits a latched output stage. tSETUP tHOLD LE/HYS IN Valid Input Transition Region Invalid Input Transition Region Valid Input Transition Region Figure 8-3. Input Change Properly Latched LE/HYS IN tPL OUT Figure 8-4. Latch Disable with Input Change 8.2 Typical Application 8.2.1 Implementing Hysteresis A comparator may produce “chatter” (multiple transitions) at the output when there are noise or signal variations around the reference threshold; this causes the output to change states in rapid random successions as the comparator input goes above and below the threshold of the reference. This usually occurs when the input signal Copyright © 2022 Texas Instruments Incorporated Product Folder Links: TLV3601-Q1 TLV3602-Q1 TLV3603-Q1 Submit Document Feedback 21 TLV3601-Q1, TLV3602-Q1, TLV3603-Q1 www.ti.com SNOSDC3D – JUNE 2021 – REVISED JULY 2022 is moving very slowly across the switching threshold of the comparator. This problem can be prevented by using the internal hysteresis feature of the comparator or by the addition of external hysteresis. The TLV3603-Q1 has a LE/HYS pin that allows for variable internal hysteresis depending on the resistor value connected between the pin and VEE, where increasing the resistance decreases the hysteresis to a minimum level. VCC 5V TLV3603 VIN + VO VO VL VREF 2.5 V VH 0V 2.485 V LE/HYS R1 2.515 V VIN 150 kΩ VEE Figure 8-5. Adjustable Hysteresis with a 150kΩ Resistor using TLV3603 Since the TLV3601-Q1 and TLV3602-Q1 only have a minimal amount of internal hysteresis, external hysteresis can be added in the form of a positive feedback loop. A non-inverting comparator with hysteresis requires a two-resistor network and a voltage reference (VREF) at the inverting input, as shown in Figure 8-6. VREF 2.5 V VO VA VIN 5V – + VO VL R1 60 VH 0V 2.485 V 2.515 V VIN R2 10 k Figure 8-6. Non-Inverting Configuration for Hysteresis using TLV3601 8.2.1.1 Design Requirements For this design, follow these design requirements. Table 8-1. Design Parameters PARAMETER VALUE Supply Voltage (VCC) 5V VREF 2.5 V VHYS 30 mV Lower Threshold (VL) 2.485 V Upper Threshold (VH) 2.515 V 8.2.1.2 Detailed Design Procedure For the TLV3603-Q1, the hysteresis vs. resistance curve (Figure 8-2) can be used as a guidance to set the desired amount of hysteresis. Figure 8-2 shows that for a 30-mV hysteresis, a 150 kΩ resistor must be placed from the LE/HYS pin to VEE. For the TLV3601-Q1 and TLV3602-Q1, the following procedure can be used to add external hysteresis for a non-inverting configuration. Note that VHYST
TLV3602QDGKRQ1 价格&库存

很抱歉,暂时无法提供与“TLV3602QDGKRQ1”相匹配的价格&库存,您可以联系我们找货

免费人工找货
TLV3602QDGKRQ1
  •  国内价格
  • 1+77.34960
  • 10+69.51960
  • 30+64.50840

库存:7

TLV3602QDGKRQ1
    •  国内价格
    • 1000+37.51000

    库存:10978