0
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
会员中心
创作中心
发布
  • 发文章

  • 发资料

  • 发帖

  • 提问

  • 发视频

创作活动
TLV5604CPWG4

TLV5604CPWG4

  • 厂商:

    BURR-BROWN(德州仪器)

  • 封装:

    TSSOP16

  • 描述:

    IC 10-BIT QUAD SER DAC 16-TSSOP

  • 数据手册
  • 价格&库存
TLV5604CPWG4 数据手册
TLV5604 2.7-V TO 5.5-V 10-BIT 3-µS QUADRUPLE DIGITAL-TO-ANALOG CONVERTERS WITH POWER DOWN SLAS176B – DECEMBER 1997 – REVISED JULY 2002 D D D D D D D D D Four 10-Bit D/A Converters Programmable Settling Time of 3 µs or 9 µs Typ TMS320, (Q)SPI, and Microwire Compatible Serial Interface Internal Power-On Reset Low Power Consumption: 5.5 mW, Slow Mode – 5-V Supply 3.3 mW, Slow Mode – 3-V Supply Reference Input Buffers Voltage Output Range . . . 2 × the Reference Input Voltage Monotonic Over Temperature Dual 2.7-V to 5.5-V Supply (Separate Digital and Analog Supplies) D D D Hardware Power Down (10 nA) Software Power Down (10 nA) Simultaneous Update applications D D D D D D Battery Powered Test Instruments Digital Offset and Gain Adjustment Industrial Process Controls Machine and Motion Control Devices Communications Arbitrary Waveform Generation D OR PW PACKAGE (TOP VIEW) DVDD PD LDAC DIN SCLK CS FS DGND description The TLV5604 is a quadruple 10-bit voltage output digital-to-analog converter (DAC) with a flexible 4-wire serial interface. The 4-wire serial interface allows glueless interface to TMS320, SPI, QSPI, and Microwire serial ports. The TLV5604 is programmed with a 16-bit serial word comprised of a DAC address, individual DAC control bits, and a 10-bit DAC value. 1 16 2 15 3 14 4 13 5 12 6 11 7 10 8 9 AVDD REFINAB OUTA OUTB OUTC OUTD REFINCD AGND The device has provision for two supplies: one digital supply for the serial interface (via pins DVDD and DGND), and one for the DACs, reference buffers and output buffers (via pins AVDD and AGND). Each supply is independent of the other, and can be any value between 2.7 V and 5.5 V. The dual supplies allow a typical application where the DAC will be controlled via a microprocessor operating on a 3-V supply (also used on pins DVDD and DGND), with the DACs operating on a 5-V supply. Of course, the digital and analog supplies can be tied together. The resistor string output voltage is buffered by a x2 gain rail-to-rail output buffer. The buffer features a Class AB output stage to improve stability and reduce settling time. A rail-to-rail output stage and a power-down mode makes it ideal for single voltage, battery based applications. The settling time of the DAC is programmable to allow the designer to optimize speed versus power dissipation. The settling time is chosen by the control bits within the 16-bit serial input string. A high-impedance buffer is integrated on the REFINAB and REFINCD terminals to reduce the need for a low source impedance drive to the terminal. REFINAB and REFINCD allow DACs A and B to have a different reference voltage then DACs C and D. The device, implemented with a CMOS process, is available in 16-terminal SOIC and TSSOP packages. The TLV5604C is characterized for operation from 0°C to 70°C. The TLV5604I is characterized for operation from – 40°C to 85°C. Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet. SPI and QSPI are trademarks of Motorola, Inc. Microwire is a trademark of National Semiconductor Corporation. Copyright  2002, Texas Instruments Incorporated PRODUCTION DATA information is current as of publication date. Products conform to specifications per the terms of Texas Instruments standard warranty. Production processing does not necessarily include testing of all parameters. POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 1 TLV5604 2.7-V TO 5.5-V 10-BIT 3-µS QUADRUPLE DIGITAL-TO-ANALOG CONVERTERS WITH POWER DOWN SLAS176B – DECEMBER 1997 – REVISED JULY 2002 AVAILABLE OPTIONS PACKAGE TA SOIC (D) TSSOP (PW) 0°C to 70°C TLV5604CD TLV5604CPW – 40°C to 85°C TLV5604ID TLV5604IPW functional block diagram AVDD 15 REFINAB DVDD 16 1 DAC A + _ Power-On Reset DIN 4 Serial Input Register 14 2 14-Bit Data and Control Register 7 FS 5 SCLK CS 6 14 x2 10 10-Bit DAC Latch 2 2-Bit Control Data Latch DAC Select/ Control Logic OUTA 10 2 Power Down/ Speed Control 13 DAC B OUTB DAC C 12 OUTC DAC D 11 OUTD REFINCD 3 9 AGND 2 2 8 DGND LDAC POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 PD TLV5604 2.7-V TO 5.5-V 10-BIT 3-µS QUADRUPLE DIGITAL-TO-ANALOG CONVERTERS WITH POWER DOWN SLAS176B – DECEMBER 1997 – REVISED JULY 2002 Terminal Functions TERMINAL NAME NO. I/O DESCRIPTION AGND 9 AVDD CS 16 DGND 8 DIN 4 DVDD 1 FS 7 I Frame sync input. The falling edge of the frame sync pulse indicates the start of a serial data frame shifted out to the TLV5604. PD 2 I Power-down pin. Powers down all DACs (overriding their individual power down settings), and all output stages. This terminal is active low. LDAC 3 I Load DAC. When the LDAC signal is high, no DAC output updates occur when the input digital data is read into the serial interface. The DAC outputs are only updated when LDAC is low. REFINAB 15 I Voltage reference input for DACs A and B. REFINCD 10 I Voltage reference input for DACs C and D. SCLK 5 I Serial Clock input OUTA 14 O DAC A output OUTB 13 O DAC B output OUTC 12 O DAC C output OUTD 11 O DAC D output 6 Analog ground Analog supply I Chip select. This terminal is active low. Digital ground I Serial data input Digital supply absolute maximum ratings over operating free-air temperature range (unless otherwise noted)† Supply voltage, (DVDD, AVDD to GND) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 V Supply voltage difference, (AVDD to DVDD) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . –2.8 V to 2.8 V Digital input voltage range . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . –0.3 V to DVDD + 0.3 V Reference input voltage range . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . –0.3 V to AVDD + 0.3 V Operating free-air temperature range, TA: TLV5604C . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 0°C to 70°C TLV5604I . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . –40°C to 85°C Storage temperature range, Tstg . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . – 65°C to 150°C Lead temperature 1,6 mm (1/16 inch) from case for 10 seconds . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 260°C † Stresses beyond those listed under “absolute maximum ratings” may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under “recommended operating conditions” is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability. POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 3 TLV5604 2.7-V TO 5.5-V 10-BIT 3-µS QUADRUPLE DIGITAL-TO-ANALOG CONVERTERS WITH POWER DOWN SLAS176B – DECEMBER 1997 – REVISED JULY 2002 recommended operating conditions Supply voltage voltage, AVDD, DVDD High level digital input voltage High-level voltage, VIH Low level digital input voltage, Low-level voltage VIL Reference voltage, voltage Vreff to REFINAB REFINAB, REFINCD terminal MIN NOM 5-V supply 4.5 5 5.5 3-V supply 2.7 3 3.3 DVDD = 2.7 V 2 DVDD = 5.5 V 2.4 MAX UNIT V V DVDD = 2.7 V 0.6 DVDD = 5.5 V 1 5-V supply (see Note 1) 0 2.048 3-V supply (see Note 1) 0 1.024 2 10 Load resistance, RL AVDD–1.5 AVDD–1.5 V V kΩ Load capacitance, CL 100 pF Serial clock rate, SCLK 20 MHz air temperature Operating free free-air TLV5604C 0 70 TLV5604I –40 85 °C NOTE 1: Voltages greater than AVDD/2 will cause output saturation for large DAC codes. electrical characteristics over recommended operating free-air temperature range (unless otherwise noted) static DAC specifications PARAMETER TEST CONDITIONS Resolution EZS EG Integral nonlinearity (INL), end point adjusted See Note 2 Differential nonlinearity (DNL) See Note 3 Zero scale error (offset error at zero scale) See Note 4 Zero scale error temperature coefficient See Note 5 Gain error See Note 6 Power supply rejection ratio TYP MAX 10 Gain error temperature coefficient PSRR MIN See Note 7 Zero scale gain Gain See Notes 8 and 9 UNIT bits ±0.1 ±1 LSB ±1 LSB ±12 10 ±0.6 10 – 80 – 80 mV ppm/°C %of FS voltage ppm/°C dB NOTES: 2. The relative accuracy or integral nonlinearity (INL) sometimes referred to as linearity error, is the maximum deviation of the output from the line between zero and full scale excluding the effects of zero code and full-scale errors. 3. The differential nonlinearity (DNL) sometimes referred to as differential error, is the difference between the measured and ideal 1 LSB amplitude change of any two adjacent codes. Monotonic means the output voltage changes in the same direction (or remains constant) as a change in the digital input code. 4. Zero-scale error is the deviation from zero voltage output when the digital input code is zero. 5. Zero-scale-error temperature coefficient is given by: EZS TC = [EZS (Tmax) – EZS (Tmin)]/Vref × 106/(Tmax – Tmin). 6. Gain error is the deviation from the ideal output (2Vref – 1 LSB) with an output load of 10 kΩ excluding the effects of the zero-error. 7. Gain temperature coefficient is given by: EG TC = [EG(Tmax) – EG (Tmin)]/Vref × 106/(Tmax – Tmin). 8. Zero-scale-error rejection ratio (EZS–RR) is measured by varying the AVDD from 5 ±0.5 V and 3 ±0.3 V dc, and measuring the proportion of this signal imposed on the zero-code output voltage. 9. Gain-error rejection ratio (EG-RR) is measured by varying the AVDD from 5 ±0.5 V and 3 ±0.3 V dc and measuring the proportion of this signal imposed on the full-scale output voltage after subtracting the zero scale change. 4 POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 TLV5604 2.7-V TO 5.5-V 10-BIT 3-µS QUADRUPLE DIGITAL-TO-ANALOG CONVERTERS WITH POWER DOWN SLAS176B – DECEMBER 1997 – REVISED JULY 2002 electrical characteristics over recommended operating free-air temperature range (unless otherwise noted) (continued) individual DAC output specifications PARAMETER VO TEST CONDITIONS Voltage output MIN RL = 10 kΩ Output load regulation accuracy TYP 0 MAX AVDD–0.4 UNIT V 0.1 0.25 % of FS voltage TYP MAX UNIT RL = 2 kΩ vs 10 kΩ reference input (REFINAB, REFINCD) PARAMETER VI RI Input voltage range CI Input capacitance TEST CONDITIONS MIN See Note 10 0 AVDD–1.5 Input resistance Reference feed through REFIN = 1 Vpp at 1 kHz + 1.024 V dc (see Note 11) Reference input bandwidth REFIN = 0.2 0 2 Vpp + 1.024 1 024 V dc V 10 MΩ 5 pF –75 dB Slow 0.5 Fast 1 MHz NOTES: 10. Reference input voltages greater than VDD/2 will cause output saturation for large DAC codes. 11. Reference feedthrough is measured at the DAC output with an input code = 000 hex and a Vref(REFINAB or REFINCD) input = 1.024 Vdc + 1 Vpp at 1 kHz. digital inputs (D0–D11, CS, WEB, LDAC, PD) PARAMETER IIH IIL High-level digital input current CI Input capacitance TEST CONDITIONS MIN TYP VI = DVDD VI = 0 V Low-level digital input current MAX UNIT ±1 µA ±1 µA 3 pF power supply PARAMETER TEST CONDITIONS 5 V supply, 5-V supply No load, load Clock running IDD Power supply current 3 V supply, supply No load, load Clock running 3-V Power down supply current, See Figure 12 MIN TYP MAX Slow 1.4 2.2 Fast 3.5 5.5 Slow 1 1.5 Fast 3 4.5 10 POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 UNIT mA mA nA 5 TLV5604 2.7-V TO 5.5-V 10-BIT 3-µS QUADRUPLE DIGITAL-TO-ANALOG CONVERTERS WITH POWER DOWN SLAS176B – DECEMBER 1997 – REVISED JULY 2002 electrical characteristics over recommended operating free-air temperature range (unless otherwise noted) (continued) analog output dynamic performance PARAMETER SR Output slew rate TEST CONDITIONS CL = 100 pF, RL = 10 kΩ, VO = 10% to 90% 90%, Vref = 2.048 V, 1024 V MIN TYP MAX UNIT Fast 5 V/µs Slow 1 V/µs ts Output settling time To ± 0.5 LSB,, CL = 100 pF,, RL = 10 kΩ, See Notes 12 and 14 Fast 2.5 4 Slow 8.5 18 ts(c) ( ) Output settling time, time code to code To ± 0.5 LSB,, CL = 100 pF,, RL = 10 kΩ, See Note 13 Fast 1 Slow 2 Glitch energy Code transition from 7FF to 800 10 SNR Signal-to-noise ratio 68 S/(N+D) Signal to noise + distortion THD Total harmonic Distortion SFDR Spurious free dynamic range Sinewave generated by DAC, R f Reference voltage l =1 1.024 024 at 3 V and d2 2.048 048 at 5 V V, fs = 400 KSPS, fOUT = 1.1 kHz sinewave, CL = 100 pF, pF RL = 10 kΩ, kΩ BW = 20 kHz µs µs nV-sec 65 –68 dB 70 NOTES: 12. Settling time is the time for the output signal to remain within ± 0.5LSB of the final measured value for a digital input code change of 020 hex to 3FF hex or 3FF hex to 020 hex. 13. Settling time is the time for the output signal to remain within ± 0.5LSB of the final measured value for a digital input code change of one count, 1FF hex to 200 hex. 14. Limits are ensured by design and characterization, but are not production tested. 6 POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 TLV5604 2.7-V TO 5.5-V 10-BIT 3-µS QUADRUPLE DIGITAL-TO-ANALOG CONVERTERS WITH POWER DOWN SLAS176B – DECEMBER 1997 – REVISED JULY 2002 electrical characteristics over recommended operating free-air temperature range (unless otherwise noted) (continued) digital input timing requirements MIN tsu(CS–FS) tsu(FS–CK) Setup time, CS low before FS↓ Setup time, FS low before first negative SCLK edge NOM MAX UNIT 10 ns 8 ns tsu(C16–FS) Setup time, sixteenth negative SCLK edge after FS low on which bit D0 is sampled before rising edge of FS 10 ns tsu(C16–CS) Setup time. The first positive SCLK edge after D0 is sampled before CS rising edge. If FS is used instead of the SCLK positive edge to update the DAC, then the setup time is between the FS rising edge and CS rising edge. 10 ns twH twL Pulse duration, SCLK high 25 ns Pulse duration, SCLK low 25 ns tsu(D) Setup time, data ready before SCLK falling edge 8 ns th(D) twH(FS) Hold time, data held valid after SCLK falling edge 5 ns 20 ns Pulse duration, FS high PARAMETER MEASUREMENT INFORMATION SCLK ÎÎÎÎ ÎÎÎÎ ÎÎÎÎ ÎÎÎÎ ÎÎÎÎ 1 2 tsu(D) DIN twH twL 3 4 5 15 16 th(D) D15 D14 D13 D12 tsu(FS-CK) D1 D0 ÎÎ ÎÎ ÎÎ ÎÎÎ ÎÎÎ tsu(C16-CS) tsu(CS-FS) CS twH(FS) tsu(C16-FS) FS Figure 1. Timing Diagram POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 7 TLV5604 2.7-V TO 5.5-V 10-BIT 3-µS QUADRUPLE DIGITAL-TO-ANALOG CONVERTERS WITH POWER DOWN SLAS176B – DECEMBER 1997 – REVISED JULY 2002 TYPICAL CHARACTERISTICS LOAD REGULATION LOAD REGULATION 0.35 0.20 VDD = 5 V, VREF = 2 V, VO = Full Scale 0.16 VO – Output Voltage – V VO – Output Voltage – V 0.30 VDD = 3 V, VREF = 1 V, VO = Full Scale 0.18 0.25 5 V Slow Mode, Sink 0.20 5 V Fast Mode, Sink 0.15 0.10 0.14 3 V Slow Mode, Sink 0.12 0.10 3 V Fast Mode, Sink 0.08 0.06 0.04 0.05 0.02 0 0 0 0.02 0.04 0.1 0.2 0.8 0.4 1 2 4 0 Load Current – mA 0.01 0.02 0.05 0.1 0.2 0.5 Load Current – mA Figure 2 0.8 1 2 Figure 3 LOAD REGULATION LOAD REGULATION 4.002 2.003 4.00 2.0025 5 V Slow Mode, Source 3 V Fast Mode, Source VO – Output Voltage – V VO – Output Voltage – V 3.998 3.996 3.994 5 V Fast Mode, Source 3.992 3.99 3.988 VDD = 5 V, VREF = 2 V, VO = Full Scale 3.986 2.002 2.0015 3 V Slow Mode, Source 2.001 2.0005 2 VDD = 3 V, VREF = 1 V, VO = Full Scale 1.9995 3.984 1.999 0 0.02 0.04 0.1 0.2 0.4 0.8 Load Current – mA 1 2 4 0 0.01 0.02 0.05 0.1 0.2 0.5 Load Current – mA Figure 4 8 Figure 5 POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 0.8 1 2 TLV5604 2.7-V TO 5.5-V 10-BIT 3-µS QUADRUPLE DIGITAL-TO-ANALOG CONVERTERS WITH POWER DOWN SLAS176B – DECEMBER 1997 – REVISED JULY 2002 TYPICAL CHARACTERISTICS SUPPLY CURRENT vs TEMPERATURE SUPPLY CURRENT vs TEMPERATURE 4 4 VDD = 3 V, VREF = 1.024 V, VO = Full Scale 3.5 Fast Mode Fast Mode I DD – Supply Current – mA I DD – Supply Current – mA 3.5 3 2.5 2 1.5 3 2.5 2 Slow Mode 1.5 Slow Mode 1 VDD = 5 V, VREF = 1.024 V, VO = Full Scale 1 0.5 –40 –20 0 20 40 60 T – Temperature – °C 80 0.5 –40 100 –20 Figure 6 80 100 Figure 7 TOTAL HARMONIC DISTORTION vs FREQUENCY TOTAL HARMONIC DISTORTION vs FREQUENCY 0 0 Vref = 1 V dc + 1 V p/p Sinewave, Output Full Scale –10 THD – Total Harmonic Distortion – dB THD – Total Harmonic Distortion – dB 0 20 40 60 T – Temperature – °C –20 –30 ––40 –50 –60 Fast Mode –70 –80 0 5 10 20 30 50 100 Vref = 1 V dc + 1 V p/p Sinewave, Output Full Scale –10 –20 –30 ––40 –50 –60 Slow Mode –70 –80 0 5 f – Frequency – kHz 10 20 30 50 100 f – Frequency – kHz Figure 8 Figure 9 POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 9 TLV5604 2.7-V TO 5.5-V 10-BIT 3-µS QUADRUPLE DIGITAL-TO-ANALOG CONVERTERS WITH POWER DOWN SLAS176B – DECEMBER 1997 – REVISED JULY 2002 TYPICAL CHARACTERISTICS 0 Vref = 1 V dc + 1 V p/p Sinewave, Output Full Scale –10 TOTAL HARMONIC DISTORTION AND NOISE vs FREQUENCY THD – Total Harmonic Distortion And Noise – dB THD – Total Harmonic Distortion And Noise – dB TOTAL HARMONIC DISTORTION AND NOISE vs FREQUENCY –20 –30 ––40 –50 Fast Mode –60 –70 –80 0 Vref = 1 V dc + 1 V p/p Sinewave, Output Full Scale –10 –20 –30 ––40 –50 Slow Mode –60 –70 –80 0 5 10 30 20 50 100 0 5 10 f – Frequency – kHz Figure 10 Figure 11 SUPPLY CURRENT vs TIME (WHEN ENTERING POWER-DOWN MODE) 4000 I DD – Supply Current – µ A 3500 3000 2500 2000 1500 1000 500 0 0 200 400 600 800 t – Time – ns Figure 12 10 20 30 f – Frequency – kHz POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 1000 50 100 TLV5604 2.7-V TO 5.5-V 10-BIT 3-µS QUADRUPLE DIGITAL-TO-ANALOG CONVERTERS WITH POWER DOWN SLAS176B – DECEMBER 1997 – REVISED JULY 2002 TYPICAL CHARACTERISTICS INL – Integral Nonlinearity – LSB INTEGRAL NONLINEARITY 0.2 VDD = 5 V, Vref = 2 V, CLK = 1 MHz 0 –0.2 –0.4 –0.6 0 64 128 192 256 320 384 448 512 576 640 704 768 832 896 960 1024 Digital Code DNL – Differential Nonlinearity – LSB Figure 13 DIFFERENTIAL NONLINEARITY 0.15 VDD = 5 V, Vref = 2 V, CLK = 1 MHz 0.1 0.05 0 –0.05 –0.1 0 64 128 192 256 320 384 448 512 576 640 704 768 832 896 960 1024 Digital Code Figure 14 POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 11 TLV5604 2.7-V TO 5.5-V 10-BIT 3-µS QUADRUPLE DIGITAL-TO-ANALOG CONVERTERS WITH POWER DOWN SLAS176B – DECEMBER 1997 – REVISED JULY 2002 APPLICATION INFORMATION general function The TLV5604 is a 10-bit single supply DAC based on a resistor string architecture. The device consists of a serial interface, speed and power-down control logic, a reference input buffer, a resistor string, and a rail-to-rail output buffer. The output voltage (full scale determined by external reference) is given by: [V] 2 REF CODE 2n Where REF is the reference voltage and CODE is the digital input value within the range of 010 to 2n–1, where n=10 (bits). The 16-bit data word, consisting of control bits and the new DAC value, is illustrated in the data format section. A power-on reset initially resets the internal latches to a defined state (all bits zero). serial interface Explanation of data transfer: First, the device has to be enabled with CS set to low. Then, a falling edge of FS starts shifting the data bit-per-bit (starting with the MSB) to the internal register on the falling edges of SCLK. After 16 bits have been transferred or FS rises, the content of the shift register is moved to the DAC latch, which updates the voltage output to the new level. The serial interface of the TLV5604 can be used in two basic modes: D D Four wire (with chip select) Three wire (without chip select) Using chip select (four wire mode), it is possible to have more than one device connected to the serial port of the data source (DSP or microcontroller). The interface is compatible with the TMS320 family. Figure 15 shows an example with two TLV5604s connected directly to a TMS320 DSP. TLV5604 TLV5604 CS FS DIN SCLK CS FS DIN SCLK TMS320 DSP XF0 XF1 FSX DX CLKX Figure 15. TMS320 Interface 12 POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 TLV5604 2.7-V TO 5.5-V 10-BIT 3-µS QUADRUPLE DIGITAL-TO-ANALOG CONVERTERS WITH POWER DOWN SLAS176B – DECEMBER 1997 – REVISED JULY 2002 APPLICATION INFORMATION serial interface (continued) If there is no need to have more than one device on the serial bus, then CS can be tied low. Figure 16 shows an example of how to connect the TLV5604 to a TMS320, SPI, or Microwire port using only three pins. TMS320 DSP TLV5604 FSX SPI FS DIN DX CLKX TLV5604 FS DIN SS MOSI SCLK SCLK Microwire FS DIN I/O SO SK SCLK CS TLV5604 SCLK CS CS Figure 16. Three-Wire Interface Notes on SPI and Microwire: Before the controller starts the data transfer, the software has to generate a falling edge on the I/O pin connected to FS. If the word width is 8 bits (SPI and Microwire), two write operations must be performed to program the TLV5604. After the write operation(s), the DAC output is updated automatically on the next positive clock edge following the sixteenth falling clock edge. serial clock frequency and update rate The maximum serial clock frequency is given by: f SCLKmax +t ) twL(min) + 20 MHz wH(min) 1 The maximum update rate is: f UPDATEmax + 16 ǒ t 1 wH(min) ) twL(min) Ǔ + 1.25 MHz Note that the maximum update rate is a theoretical value for the serial interface since the settling time of the TLV5604 has to be considered also. data format The 16-bit data word for the TLV5604 consists of two parts: D D Control bits (D15 . . . D12) New DAC value (D11 . . . D0) D15 D14 D13 D12 A1 A0 PWR SPD X: don’t care SPD: Speed control bit. PWR: Power control bit. D11 1 → fast mode 1 → power down D10 D9 D8 D7 D6 D5 New DAC value (10 bits) D4 D3 D2 D1 D0 X X 0 → slow mode 0 → normal operation POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 13 TLV5604 2.7-V TO 5.5-V 10-BIT 3-µS QUADRUPLE DIGITAL-TO-ANALOG CONVERTERS WITH POWER DOWN SLAS176B – DECEMBER 1997 – REVISED JULY 2002 APPLICATION INFORMATION In power down mode, all amplifiers within the TLV5604 are disabled. A particular DAC (A, B, C, D) of the TLV5604 is selected by A1 and A0 within the input word. A1 A0 DAC 0 0 A 0 1 B 1 0 C 1 1 D TLV5604 interfaced to TMS320C203 DSP Hardware interfacing Figure 17 shows an example of how to connect the TLV5604 to a TMS320C203 DSP. The serial port is configured in burst mode, with FSX generated by the TMS320C203 to provide the Frame Sync (FS) input to the TLV5604. Data is transmitted on the DX line, with the serial clock input on the CLKX line. The general-purpose input/output port bits IO0 and IO1 are used to generate the Chip Select ( CS) and DAC Latch Update ( LDAC) inputs to the TLV5604. The active low Power Down ( PD) is pulled high all the time to ensure the DACs are enabled. TMS320C203 TLV5604 SDIN DX VDD SCLK CLKX FSX FS I/O 0 CS I/O 1 LDAC PD VOUTA VOUTB REF REFINAB VOUTC REFINCD VOUTD VSS Figure 17. TLV5604 Interfaced with TMS320C203 Software The application example generates a differential in-phase (sine) signal between the VOUTA and VOUTB pins, and it is quadrature (cosine) signal as the differential signal between VOUTC and VOUTD. The on-chip timer is used to generate interrupts at a fixed frequency. The related interrupt service routine pulses LDAC low to update all 4 DACs simultaneously, then fetches and writes the next sample to all 4 DACs. The samples are stored in a look-up table, which describes two full periods of a sine wave. The synchronous serial port of the DSP is used in burst mode. In this mode, the processor generates an FS pulse preceding the MSB of every data word. If multiple, contiguous words are transmitted, a violation of the tsu(C16-FS) timing requirement will occur. To avoid this, the program waits until the transmission of the previous word has been completed. 14 POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 TLV5604 2.7-V TO 5.5-V 10-BIT 3-µS QUADRUPLE DIGITAL-TO-ANALOG CONVERTERS WITH POWER DOWN SLAS176B – DECEMBER 1997 – REVISED JULY 2002 APPLICATION INFORMATION ;–––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––; ; Processor: TMS320C203 runnning at 40 MHz; ; Description: ; ; This program generates a differential in-phase (sine) on (OUTA–OUTB) and it’s ; quadrature (cosine) as a differential signal on (OUTC–OUTD). ; ; The DAC codes for the signal samples are stored as a table of 64 12–bit values, ; describing 2 periods of a sine function. A rolling pointer is used to address the ; table location in the first period of this waveform, from which the DAC A samples are ; read. The samples for the other 3 DACs are read at an offset to this rolling pointer: ; DAC Function Offset from rolling pointer; ; A sine 0 ; B inverse sine 16 ; C cosine 8 ; D inverse cosine 24 ; ; The on-chip timer is used to generate interrupts at a fixed rate. The interrupt ; service routine first pulses LDAC low to update all DACs simultaneously with the ; values which were written to them in the previous interrupt. Then all 4 DAC values are ; fetched and written out through the synchronous serial interface. Finally, the ; rolling pointer is incremented to address the next sample, ready for the next ; interrupt. ; ;  1998, Texas Instruments Incorporated ;–––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––; ; ––––––––––I/O and memory mapped regs ––––––––––––––––––––––––––––––––––––––––––– .include ”regs.asm” ; ––––––––––––––jump vectors–––––––––––––––––––––––––––––––––––––––––––––––––––––– .ps 0h b start b int1 b int23 b timer_isr ;–––––––––––––––––––––– variables –––––––––––––––––––––––––––––––––––––––––––––––– temp .equ 0060h r_ptr .equ 0061 iosr_stat .equ 0062h DACa_ptr .equ 0063h DACb_ptr .equ 0064h DACc_ptr .equ 0065h DACd_ptr .equ 0066h ;––––––––– constants ––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––– ; DAC control bits to be OR’ed onto data ; all fast mode DACa_control .equ 01000h DACb_control .equ 05000h DACc_control .equ 09000h DACd_control .equ 0d000h ;––––––––––– tables ––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––– .ds 02000h sinevals .word 00800h .word 0097Ch .word 00AE9h .word 00C3Ah .word 00D61h .word 00E53h .word 00F07h .word 00F76h .word 00F9Ch .word 00F76h .word 00F07h .word 00E53h .word 00D61h .word 00C3Ah POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 15 TLV5604 2.7-V TO 5.5-V 10-BIT 3-µS QUADRUPLE DIGITAL-TO-ANALOG CONVERTERS WITH POWER DOWN SLAS176B – DECEMBER 1997 – REVISED JULY 2002 APPLICATION INFORMATION .word 00AE9h .word 0097Ch .word 00800h .word 00684h .word 00517h .word 003C6h .word 0029Fh .word 001ADh .word 000F9h .word 0008Ah .word 00064h .word 0008Ah .word 000F9h .word 001ADh .word 0029Fh .word 003C6h .word 00517h .word 00684h .word 00800h .word 0097Ch .word 00AE9h .word 00C3Ah .word 00D61h .word 00E53h .word 00F07h .word 00F76h .word 00F9Ch .word 00F76h .word 00F07h .word 00E53h .word 00D61h .word 00C3Ah .word 00AE9h .word 0097Ch .word 00800h .word 00684h .word 00517h .word 003C6h .word 0029Fh .word 001ADh .word 000F9h .word 0008Ah .word 00064h .word 0008Ah .word 000F9h .word 001ADh .word 0029Fh .word 003C6h .word 00517h .word 00684h ;––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––– ; Main Program ;––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––– .ps 1000h .entry start ;––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––– ; disable interrupts ;––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––– setc INTM ; disable maskable interrupts splk #0ffffh, IFR ; clear all interrupts splk #0004h, IMR ; timer interrupts unmasked 16 POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 TLV5604 2.7-V TO 5.5-V 10-BIT 3-µS QUADRUPLE DIGITAL-TO-ANALOG CONVERTERS WITH POWER DOWN SLAS176B – DECEMBER 1997 – REVISED JULY 2002 APPLICATION INFORMATION ;––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––– ; set up the timer ; timer period set by values in PRD and TDDR ; period = (CLKOUT1 period) × (1+PRD) × (1+TDDR) ; examples for TMS320C203 with 40 MHz main clock ; Timer rate TDDR PRD ; 80 kHz 9 24 (18h) ; 50 kHz 9 39 (27h) ;––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––– prd_val.equ tcr_val.equ 0018h 0029h splk #0000h, temp ; clear timer out temp, TIM splk #prd_val, temp ; set PRD out temp, PRD splk #tcr_val, temp ; set TDDR, and TRB=1 for auto-reload out temp, TCR ;––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––– ; Configure IO0/1 as outputs to be : ; IO0 CS – and set high ; IO1 LDAC – and set high ;––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––– in temp, ASPCR ; configure as output lacl temp or #0003h sacl temp out temp, ASPCR in temp, IOSR ; set them high lacl temp or #0003h sacl temp out temp, IOSR ;––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––– ; set up serial port for ; SSPCR.TXM=1 Transmit mode – generate FSX ; SSPCR.MCM=1 Clock mode – internal clock source ; SSPCR.FSM=1 Burst mode ;––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––– splk #0000Eh, temp out temp, SSPCR ; reset transmitter splk #0002Eh, temp out temp, SSPCR ;––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––– ; reset the rolling pointer ;––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––– lacl #000h sacl r_ptr ;––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––– ; enable interrupts ;––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––– clrc INTM ; enable maskable interrupts ;––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––– ; loop forever! ;––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––– next idle ;wait for interrupt b next ;––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––– ; all else fails stop here ;––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––– done b done ;hang there POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 17 TLV5604 2.7-V TO 5.5-V 10-BIT 3-µS QUADRUPLE DIGITAL-TO-ANALOG CONVERTERS WITH POWER DOWN SLAS176B – DECEMBER 1997 – REVISED JULY 2002 APPLICATION INFORMATION ;––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––– ; Interrupt Service Routines ;––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––– int1 ret ; do nothing and return int23 ret ; do nothing and return timer_isr: in iosr_stat, IOSR ; store IOSR value into variable space lacl iosr_stat ; load acc with iosr status and #0FFFDh ; reset IO1 – LDAC low sacl temp ; out temp, IOSR ; or sacl out and sacl out lacl add sacl add sacl add sacl add sacl mar #0002h temp temp, IOSR #0FFFEh temp temp, IOSR r_ptr #sinevals DACa_ptr #08h DACc_ptr #08h DACb_ptr #08h DACd_ptr *,ar0 ; set IO1 – LDAC high ; ; ; reset IO0 – CS low ; ; ; load rolling pointer to accumulator ; add pointer to table start ; to get a pointer for next DAC a sample ; add 8 to get to DAC C pointer ; add 8 to get to DAC B pointer ; add 8 to get to DAC D pointer ; set ar0 as current AR ; DAC A lar ar0, DACa_ptr ; ar0 points to DAC a sample lacl * ; get DAC a sample into accumulator or #DACa_control ; OR in DAC A control bits sacl temp ; out temp, SDTR ; send data ;––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––– ; We must wait for transmission to complete before writing next word to the SDTR. ; TLV5604 interface does not allow the use of burst mode with the full packet rate, as ; we need a CLKX –ve edge to clock in last bit before FS goes high again, to allow SPI ; compatibility. ;––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––– rpt #016h ; wait long enough for this configuration nop ; of MCLK/CLKOUT1 rate ; DAC B lar lacl or sacl out rpt nop 18 ar0, DACb_ptr ; * ; #DACb_control ; temp ; temp, SDTR ; #016h ; ; ar0 points to DAC a sample get DAC a sample into accumulator OR in DAC B control bits send data wait long enough for this configuration of MCLK/CLKOUT1 rate POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 TLV5604 2.7-V TO 5.5-V 10-BIT 3-µS QUADRUPLE DIGITAL-TO-ANALOG CONVERTERS WITH POWER DOWN SLAS176B – DECEMBER 1997 – REVISED JULY 2002 APPLICATION INFORMATION ; DAC C lar lacl or sacl out rpt nop ar0, DACc_ptr ; * ; #DACc_control ; temp ; temp, SDTR ; #016h ; ; ar0 points to DAC a sample get DAC a sample into accumulator OR in DAC C control bits send data wait long enough for this configuration of MCLK/CLKOUT1 rate ; DAC D lar ar0, DACd_ptr ; ar0 points to DAC a sample lacl * ; get DAC a sample into accumulator or #DACd_control ; OR in DAC D control bits sacl temp ; out temp, SDTR ; send data lacl r_ptr ; load rolling pointer to accumulator add #1h ; increment rolling pointer and #001Fh ; count 0–31 then wrap back round sacl r_ptr ; store rolling pointer rpt #016h ; wait long enough for this configuration nop ; of MCLK/CLKOUT1 rate ; now take CS high again lacl iosr_stat ; load acc with iosr status or #0001h ; set IO0 – CS high sacl temp ; out temp, IOSR ; clrc intm ; re-enable interrupts ret ; return from interrupt .end POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 19 TLV5604 2.7-V TO 5.5-V 10-BIT 3-µS QUADRUPLE DIGITAL-TO-ANALOG CONVERTERS WITH POWER DOWN SLAS176B – DECEMBER 1997 – REVISED JULY 2002 APPLICATION INFORMATION TLV5604 interfaced to MCS51 microcontroller hardware interfacing Figure 18 shows an example of how to connect the TLV5604 to an MCS51 Microcontroller. The serial DAC input data and external control signals are sent via I/O Port 3 of the controller. The serial data is sent on the RxD line, with the serial clock output on the TxD line. Port 3 bits 3, 4, and 5 are configured as outputs to provide the DAC latch update (LDAC), chip select (CS) and frame sync (FS) signals for the TLV5604. The active low power down pin (PD) of the TLV5604 is pulled high to ensure that the DACs are enabled. MCS®51 TLV5604 RxD SDIN TxD SCLK P3.3 LDAC P3.4 CS P3.4 FS VDD PD VOUTA VOUTB REF REFINAB VOUTC REFINCD VOUTD VSS Figure 18. TLV5604 Interfaced with MCS51 software The example is the same as for the TMS320C203 in this datasheet, but adapted for a MCS51 controller. It generates a differential in-phase (sine) signal between the VOUTA and VOUTB pins, and it’s quadrature (cosine) signal as the differential signal between VOUTC and VOUTD. The on-chip timer is used to generate interrupts at a fixed frequency. The related interrupt service routine pulses LDAC low to update all 4 DACs simultaneously, then fetches and writes the next sample to all 4 DACs. The samples are stored as a look-up table, which describes one full period of a sine wave. The serial port of the controller is used in Mode 0, which transmits 8 bits of data on RxD, accompanied by a synchronous clock on TxD. Two writes concatenated together are required to write a complete word to the TLV5604. The CS and FS signals are provided in the required fashion through control of IO port 3, which has bit addressable outputs. MCS is a registered trademark of Intel Corporation. 20 POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 TLV5604 2.7-V TO 5.5-V 10-BIT 3-µS QUADRUPLE DIGITAL-TO-ANALOG CONVERTERS WITH POWER DOWN SLAS176B – DECEMBER 1997 – REVISED JULY 2002 APPLICATION INFORMATION ;–––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––– ; Processor: 80C51 ; ; Description: ; ; This program generates a differential in–phase (sine) on (OUTA–OUTB) and it’s ; quadrature (cosine) as a differential signal on (OUTC–OUTD). ;  1998, Texas Instruments Incorporated ;–––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––– NAME GENIQ MAIN SEGMENT CODE ISR SEGMENT CODE SINTBL SEGMENT CODE VAR1 SEGMENT DATA STACK SEGMENT IDATA ;––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––– ; Code start at address 0, jump to start ;––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––– CSEG AT 0 LJMP start ; Execution starts at address 0 on power–up. ;––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––– ; Code in the timer0 interrupt vector ;––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––– CSEG AT 0BH LJMP timer0isr ; Jump vector for timer 0 interrupt is 000Bh ;––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––– ; Global variables need space allocated ;––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––– RSEG VAR1 Temp_ptr: DS 1 rolling_ptr: DS 1 ;––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––– ; Interrupt service routine for timer 0 interrupts ;––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––– RSEG ISR timer0isr: PUSH PSW PUSH ACC CLR SETB ; ; ; ; ; INT1 INT1 ; pulse LDAC low ; to latch all 4 previous values at the same time ; 1st thing done in timer isr => fixed period CLR T0 ; set CS low The signal to be output on each DAC is a sine function. One cycle of a sine wave is held in a table @ sinevals as 32 samples of msb, lsb pairs (64 bytes). We have one pointer which rolls round this table, rolling_ptr, incrementing by 2 bytes (1 sample) on each interrupt (at the end of this routine). ; The ; DAC ; A ; B ; C ; D MOV MOV MOV MOVC CLR MOV INC MOV MOVC DAC samples are read at an offset to this rolling pointer: Function Offset from rolling_ptr sine 0 inverse sine 32 cosine 16 inverse cosine 48 DPTR,#sinevals ; set DPTR to the start of the table of sine signal values R7,rolling_ptr ; R7 holds the pointer into the sine table A,R7 ; get DAC A msb A,@A+DPTR ; msb of DAC A is in the ACC T1 ; transmit it – set FS low SBUF,A ; send it out the serial port R7 ; increment the pointer in R7 A,R7 ; to get the next byte from the table A,@A+DPTR ; which is the lsb of this sample, now in ACC POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 21 TLV5604 2.7-V TO 5.5-V 10-BIT 3-µS QUADRUPLE DIGITAL-TO-ANALOG CONVERTERS WITH POWER DOWN SLAS176B – DECEMBER 1997 – REVISED JULY 2002 APPLICATION INFORMATION A_MSB_TX: JNB TI,A_MSB_TX CLR TI MOV SBUF,A ; wait for transmit to complete ; clear for new transmit ; and send out the lsb of DAC A ; DAC C next ; DAC C codes should be taken from 16 bytes (8 samples) further on in the sine table ; – this gives a cosine function MOV A,R7 ; pointer in R7 ADD A,#0FH ; add 15 – already done one INC ANL A,#03FH ; wrap back round to 0 if > 64 MOV R7,A ; pointer back in R7 MOVC ORL A_LSB_TX: JNB SETB CLR CLR MOV INC MOV MOVC A,@A+DPTR A,#01H ; get DAC C msb from the table ; set control bits to DAC C address TI,A_LSB_TX T1 T1 TI SBUF,A ; wait for DAC A lsb transmit to complete ; toggle FS ; clear for new transmit ; and send out the msb of DAC C R7 A,R7 A,@A+DPTR ; increment the pointer in R7 ; to get the next byte from the table ; which is the lsb of this sample, now in ACC C_MSB_TX: JNB TI,C_MSB_TX CLR TI MOV SBUF,A ; wait for transmit to complete ; clear for new transmit ; and send out the lsb of DAC C ; DAC B next ; DAC B codes should be taken from 16 bytes (8 samples) further on ; in the sine table – this gives an inverted sine function MOV A,R7 ; pointer in R7 ADD A,#0FH ; add 15 – already done one INC ANL A,#03FH ; wrap back round to 0 if > 64 MOV R7,A ; pointer back in R7 MOVC ORL C_LSB_TX: JNB SETB CLR CLR MOV INC MOV MOVC A,@A+DPTR A,#02H TI,C_LSB_TX T1 T1 TI SBUF,A R7 A,R7 A,@A+DPTR B_MSB_TX: JNB TI,B_MSB_TX CLR TI MOV SBUF,A 22 ; get DAC B msb from the table ; set control bits to DAC B address ; wait for DAC C lsb transmit to complete ; toggle FS ; ; ; ; ; ; clear for new transmit and send out the msb of DAC B get DAC B LSB increment the pointer in R7 to get the next byte from the table which is the lsb of this sample, now in ACC ; wait for transmit to complete ; clear for new transmit ; and send out the lsb of DAC B POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 TLV5604 2.7-V TO 5.5-V 10-BIT 3-µS QUADRUPLE DIGITAL-TO-ANALOG CONVERTERS WITH POWER DOWN SLAS176B – DECEMBER 1997 – REVISED JULY 2002 APPLICATION INFORMATION ; DAC D next ; DAC D codes should be taken from 16 bytes (8 samples) further on in the sine table ; – this gives an inverted cosine function MOV A,R7 ; pointer in R7 ADD A,#0FH ; add 15 – already done one INC ANL A,#03FH ; wrap back round to 0 if > 64 MOV R7,A ; pointer back in R7 MOVC ORL B_LSB_TX: JNB SETB CLR CLR MOV INC MOV MOVC A,@A+DPTR A,#03H ; get DAC D msb from the table ; set control bits to DAC D address TI,B_LSB_TX T1 T1 TI SBUF,A ; wait for DAC B lsb transmit to complete ; toggle FS R7 A,R7 A,@A+DPTR ; increment the pointer in R7 ; to get the next byte from the table ; which is the lsb of this sample, now in ACC D_MSB_TX: JNB TI,D_MSB_TX CLR TI MOV SBUF,A ; clear for new transmit ; and send out the msb of DAC D ; wait for transmit to complete ; clear for new transmit ; and send out the lsb of DAC D ; increment the rolling pointer to point to the next sample ; ready for the next interrupt MOV A,rolling_ptr ADD A,#02H ; add 2 to the rolling pointer ANL A,#03FH ; wrap back round to 0 if > 64 MOV rolling_ptr,A ; store in memory again D_LSB_TX: JNB TI,D_LSB_TX CLR TI SETB SETB POP POP T1 T0 ACC PSW ; wait for DAC D lsb transmit to complete ; clear for next transmit ; FS high ; CS high RETI ;––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––– ; Stack needs definition ;––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––– RSEG STACK DS 10h ; 16 Byte Stack! POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 23 TLV5604 2.7-V TO 5.5-V 10-BIT 3-µS QUADRUPLE DIGITAL-TO-ANALOG CONVERTERS WITH POWER DOWN SLAS176B – DECEMBER 1997 – REVISED JULY 2002 APPLICATION INFORMATION ;––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––– ; Main program code ;––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––– RSEG MAIN start: MOV SP,#STACK–1 ; first set Stack Pointer CLR MOV MOV MOV A SCON,A TMOD,#02H TH0,#038H ; set serial port 0 to mode 0 ; set timer 0 to mode 2 – auto-reload ; set TH0 for 5 kHs interrupts SETB SETB SETB INT1 T1 T0 ; set LDAC = 1 ; set FS = 1 ; set CS = 1 SETB SETB ET0 EA ; enable timer 0 interrupts ; enable all interrupts MOV SETB rolling_ptr,A TR0 ; set rolling pointer to 0 ; start timer 0 always: JMP always ; while(1) ! RET ;––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––– ; Table of 32 sine wave samples used as DAC data ;––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––– RSEG SINTBL sinevals: DW 01000H DW 0903EH DW 05097H DW 0305CH DW 0B086H DW 070CAH DW 0F0E0H DW 0F06EH DW 0F039H DW 0F06EH DW 0F0E0H DW 070CAH DW 0B086H DW 0305CH DW 05097H DW 0903EH DW 01000H DW 06021H DW 0A0E8H DW 0C063H DW 040F9H DW 080B5H DW 0009FH DW 00051H DW 00026H DW 00051H DW 0009FH DW 080B5H DW 040F9H DW 0C063H DW 0A0E8H DW 06021H END 24 POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 TLV5604 2.7-V TO 5.5-V 10-BIT 3-µS QUADRUPLE DIGITAL-TO-ANALOG CONVERTERS WITH POWER DOWN SLAS176B – DECEMBER 1997 – REVISED JULY 2002 MECHANICAL DATA D (R-PDSO-G**) PLASTIC SMALL-OUTLINE PACKAGE 14 PIN SHOWN 0.050 (1,27) 0.020 (0,51) 0.014 (0,35) 14 0.010 (0,25) M 8 0.008 (0,20) NOM 0.244 (6,20) 0.228 (5,80) 0.157 (4,00) 0.150 (3,81) Gage Plane 0.010 (0,25) 1 7 0°– 8° A 0.044 (1,12) 0.016 (0,40) Seating Plane 0.069 (1,75) MAX 0.010 (0,25) 0.004 (0,10) PINS ** 0.004 (0,10) 8 14 16 A MAX 0.197 (5,00) 0.344 (8,75) 0.394 (10,00) A MIN 0.189 (4,80) 0.337 (8,55) 0.386 (9,80) DIM 4040047 / D 10/96 NOTES: A. B. C. D. All linear dimensions are in inches (millimeters). This drawing is subject to change without notice. Body dimensions do not include mold flash or protrusion, not to exceed 0.006 (0,15). Falls within JEDEC MS-012 POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 25 TLV5604 2.7-V TO 5.5-V 10-BIT 3-µS QUADRUPLE DIGITAL-TO-ANALOG CONVERTERS WITH POWER DOWN SLAS176B – DECEMBER 1997 – REVISED JULY 2002 MECHANICAL DATA PW (R-PDSO-G**) PLASTIC SMALL-OUTLINE PACKAGE 14 PIN SHOWN 0,30 0,19 0,65 14 0,10 M 8 0,15 NOM 4,50 4,30 6,60 6,20 Gage Plane 0,25 1 7 0°– 8° 0,75 0,50 A Seating Plane 0,15 0,05 1,20 MAX 0,10 PINS ** 8 14 16 20 24 28 A MAX 3,10 5,10 5,10 6,60 7,90 9,80 A MIN 2,90 4,90 4,90 6,40 7,70 9,60 DIM 4040064 / E 08/96 NOTES: A. B. C. D. 26 All linear dimensions are in millimeters. This drawing is subject to change without notice. Body dimensions do not include mold flash or protrusion not to exceed 0,15. Falls within JEDEC MO-153 POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 PACKAGE OPTION ADDENDUM www.ti.com 13-Aug-2021 PACKAGING INFORMATION Orderable Device Status (1) Package Type Package Pins Package Drawing Qty Eco Plan (2) Lead finish/ Ball material MSL Peak Temp Op Temp (°C) Device Marking (3) (4/5) (6) TLV5604CD ACTIVE SOIC D 16 40 RoHS & Green NIPDAU Level-1-260C-UNLIM 0 to 70 TLV5604C TLV5604CDG4 ACTIVE SOIC D 16 40 RoHS & Green NIPDAU Level-1-260C-UNLIM 0 to 70 TLV5604C TLV5604CDR ACTIVE SOIC D 16 2500 RoHS & Green NIPDAU Level-1-260C-UNLIM 0 to 70 TLV5604C TLV5604CPW ACTIVE TSSOP PW 16 90 RoHS & Green NIPDAU Level-1-260C-UNLIM 0 to 70 TV5604 TLV5604CPWR ACTIVE TSSOP PW 16 2000 RoHS & Green NIPDAU Level-1-260C-UNLIM 0 to 70 TV5604 TLV5604CPWRG4 ACTIVE TSSOP PW 16 2000 RoHS & Green NIPDAU Level-1-260C-UNLIM 0 to 70 TV5604 TLV5604ID ACTIVE SOIC D 16 40 RoHS & Green NIPDAU Level-1-260C-UNLIM -40 to 85 TLV5604I TLV5604IPW ACTIVE TSSOP PW 16 90 RoHS & Green NIPDAU Level-1-260C-UNLIM -40 to 85 TY5604 TLV5604IPWR ACTIVE TSSOP PW 16 2000 RoHS & Green NIPDAU Level-1-260C-UNLIM -40 to 85 TY5604 (1) The marketing status values are defined as follows: ACTIVE: Product device recommended for new designs. LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect. NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design. PREVIEW: Device has been announced but is not in production. Samples may or may not be available. OBSOLETE: TI has discontinued the production of the device. (2) RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may reference these types of products as "Pb-Free". RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption. Green: TI defines "Green" to mean the content of Chlorine (Cl) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of
TLV5604CPWG4 价格&库存

很抱歉,暂时无法提供与“TLV5604CPWG4”相匹配的价格&库存,您可以联系我们找货

免费人工找货