0
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
会员中心
创作中心
发布
  • 发文章

  • 发资料

  • 发帖

  • 提问

  • 发视频

创作活动
TLV61046ADBVT

TLV61046ADBVT

  • 厂商:

    BURR-BROWN(德州仪器)

  • 封装:

    SOT23-6

  • 描述:

    TLV61046ADBVT

  • 数据手册
  • 价格&库存
TLV61046ADBVT 数据手册
Product Folder Order Now Support & Community Tools & Software Technical Documents TLV61046A ZHCSGJ6A – APRIL 2017 – REVISED APRIL 2017 具有功率二极管和隔离开关的 TLV61046A 28V 输出电压升压转换器 1 特性 • • • • • 1 • • • • • • • • 3 说明 输入电压范围:1.8V 至 5.5V,启动后为降为 1.6V 输出电压高达 28V 集成有功率二极管和隔离开关 开关电流为 980mA(典型值) 输入电压为 3.6V、输出电压为 12V 时,效率高达 85% 输出电压精度为 ±2.5% 轻负载状态下进入节能工作模式 内部 7ms 软启动时间 关断时输入与输出真正断开 输出短路保护 输出过压保护 热关断保护 3mm × 3mm SOT23-6 封装 TLV61046A 是一款高度集成型升压转换器,专为 PMOLED 面板、LCD 偏置电源和传感器模块等 应用 而设计。TLV61046A 集成了 30V 电源开关、输入至输 出的隔离开关以及整流器二极管。该器件可将来自一节 锂离子电池或两节碱性电池(串联)的输入电压转换成 高达 28V 的输出电压。 TLV61046A 的工作开关频率为 1.0MHz。该器件支持 使用小型外部组件。通过将 TLV61046A 的 FB 引脚和 VIN 引脚相连,可将其默认内部输出电压设置为 12V。因此,只需要三个外部组件即可获得 12V 输出 电压。TLV61046A 的开关限流典型值为 980mA。它 具有 7ms 内置软启动时间,从而能够降低浪涌电流。 TLV61046A 处于关断模式时,隔离开关会将输出与输 入断开以最大限度降低泄漏电流。TLV61046A 还具有 输出短路保护、输出过压保护和热关断。 2 应用 • • • • • TLV61046A 采用 6 引脚,3mm x 3mm SOT23-6 封 装。 PMOLED 电源 LCD 面板 可穿戴式设备 便携式医疗设备 传感器电源 器件信息(1) 器件型号 TLV61046A 封装 SOT23-6 (6) 封装尺寸(标称值) 2.9mm x 1.6mm (1) 要了解所有可用封装,请参阅数据表末尾的可订购产品附录。 简化电路原理图 L1 1.8 V ~ 5.5 V C1 VIN SW 4.5 V ~ 28 V GND VOUT C2 ON R1 OFF EN FB R2 Copyright © 2017, Texas Instruments Incorporated 1 An IMPORTANT NOTICE at the end of this data sheet addresses availability, warranty, changes, use in safety-critical applications, intellectual property matters and other important disclaimers. PRODUCTION DATA. English Data Sheet: SLVSD82 TLV61046A ZHCSGJ6A – APRIL 2017 – REVISED APRIL 2017 www.ti.com.cn 目录 1 2 3 4 5 6 7 特性 .......................................................................... 应用 .......................................................................... 说明 .......................................................................... 修订历史记录 ........................................................... Pin Configuration and Functions ......................... Specifications......................................................... 1 1 1 2 3 4 6.1 6.2 6.3 6.4 6.5 6.6 4 4 4 4 5 6 Absolute Maximum Ratings ...................................... ESD Ratings ............................................................ Recommended Operating Conditions....................... Thermal Information .................................................. Electrical Characteristics........................................... Typical Characteristics .............................................. Detailed Description .............................................. 8 7.1 7.2 7.3 7.4 Overview ................................................................... Functional Block Diagram ......................................... Feature Description................................................... Device Functional Modes.......................................... 8 8 9 9 8 Application and Implementation ........................ 11 8.1 Application Information............................................ 11 8.2 Typical Application - 12-V Output Boost Converter 11 8.3 System Examples ................................................... 15 9 Power Supply Recommendations...................... 16 10 Layout................................................................... 17 10.1 Layout Guidelines ................................................. 17 10.2 Layout Example .................................................... 17 11 器件和文档支持 ..................................................... 18 11.1 11.2 11.3 11.4 11.5 11.6 器件支持 ............................................................... 接收文档更新通知 ................................................. 社区资源................................................................ 商标 ....................................................................... 静电放电警告......................................................... Glossary ................................................................ 18 18 18 18 18 18 12 机械、封装和可订购信息 ....................................... 18 4 修订历史记录 Changes from Original (April 2017) to Revision A Page • 已更改 更改为“生产数据” ........................................................................................................................................................ 1 2 Copyright © 2017, Texas Instruments Incorporated TLV61046A www.ti.com.cn ZHCSGJ6A – APRIL 2017 – REVISED APRIL 2017 5 Pin Configuration and Functions DBV Package 6-Pin SOT23 Top View VIN SW VOUT GND EN FB Pin Functions PIN NAME NUMBER TYPE DESCRIPTION SW 1 PWR The switch pin of the converter. It is connected to the drain of the internal power MOSFET. GND 2 PWR Ground FB 3 I Voltage feedback of adjustable output voltage. Connected to the center tap of a resistor divider to program the output voltage. When it is connected to the VIN pin, the output voltage is set to 12 V by an internal feedback. EN 4 I Enable logic input. Logic high voltage enables the device. Logic low voltage disables the device and turns it into shutdown mode. VOUT 5 PWR VIN 6 I Output of the boost converter IC power supply input Copyright © 2017, Texas Instruments Incorporated 3 TLV61046A ZHCSGJ6A – APRIL 2017 – REVISED APRIL 2017 www.ti.com.cn 6 Specifications 6.1 Absolute Maximum Ratings over operating free-air temperature range (unless otherwise noted) Voltage range at terminals (2) (1) MIN MAX UNIT VIN, EN, FB – 0.3 6 V SW, VOUT –0.3 32 V Operating junction temperature range, TJ –40 150 °C Storage temperature range, Tstg –65 150 °C (1) (2) Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings only, which do not imply functional operation of the device at these or any other conditions beyond those indicated under Recommended Operating Conditions. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability. All voltage values are with respect to network ground terminal. 6.2 ESD Ratings Human body model (HBM), per ANSI/ESDA/JEDEC JS-001, all pins V(ESD) (1) (2) (3) (1) Electrostatic discharge (2) Charged device model (CDM), per JEDEC specification JESD22-C101, all pins (3) VALUE UNIT ±2000 V ±500 V Electrostatic discharge (ESD) to measure device sensitivity and immunity to damage caused by assembly line electrostatic discharges in to the device. JEDEC document JEP155 states that 500-V HBM allows safe manufacturing with a standard ESD control process. JEDEC document JEP157 states that 250-V CDM allows safe manufacturing with a standard ESD control process. 6.3 Recommended Operating Conditions over operating free-air temperature range (unless otherwise noted) MIN TYP MAX UNIT VIN Input voltage range 1.8 5.5 V VOUT Output voltage range 3.3 28 V L Effective inductance range 2.2×0.7 10 CIN Effective input capacitance range 0.22 1.0 COUT Effective output capacitance range 0.22 1.0 TJ Operating junction temperature –40 22×1.3 µH µF 10 µF 125 °C 6.4 Thermal Information TLV61046A THERMAL METRIC (1) DBV (SOT23) UNIT 6 PINS RθJA Junction-to-ambient thermal resistance 177.7 RθJC(top) Junction-to-case (top) thermal resistance 120.6 RθJB Junction-to-board thermal resistance 33.2 ψJT Junction-to-top characterization parameter 21.5 ψJB Junction-to-board characterization parameter 32.6 RθJC(bot) Junction-to-case (bottom) thermal resistance n/a (1) 4 °C/W For more information about traditional and new thermal metrics, see the Semiconductor and IC Package Thermal Metrics application report. Copyright © 2017, Texas Instruments Incorporated TLV61046A www.ti.com.cn ZHCSGJ6A – APRIL 2017 – REVISED APRIL 2017 6.5 Electrical Characteristics TA = –40°C to 85°C, VIN = 3.6 V and VOUT = 12 V. Typical values are at TA = 25°C, unless otherwise noted. PARAMETER TEST CONDITIONS MIN TYP MAX UNIT POWER SUPPLY VIN Input voltage range VIN_UVLO Under voltage lockout threshold VIN_HYS VIN UVLO hysteresis 1.8 5.5 VIN rising 1.75 1.8 VIN falling 1.55 1.6 200 IQ_VIN Quiescent current into VIN pin IC enabled, no load, no switching, VIN = 1.8 V to 5.5 V, VOUT = 12 V ISD Shutdown current into VIN pin IC disabled, VIN = 1.8 V to 5.5 V, TA = 25°C V V mV 110 200 µA 0.1 1.0 µA 28 V 11.7 12.1 12.4 V PWM mode, TA=25°C 0.783 0.795 0.807 V PWM mode, TJ=-40°C to 125°C 0.775 0.795 0.815 V OUTPUT VOUT Output voltage range VOUT_12V 12-V output voltage accuracy VREF Feedback voltage 3.3 FB pin connected to VIN pin, TJ=0°C to 125°C PFM mode, TA=25°C VOVP Output overvoltage protection threshold VOVP_HYS Over voltage protection hysteresis IFB_LKG Leakage current into FB pin ISW_LKG Leakage current into SW pin 0.803 28 29.2 V 30.4 V TA = 25°C 200 nA IC disabled, TA = 25°C 500 nA 0.9 V POWER SWITCH Isolation MOSFET on resistance VOUT = 12 V 850 Low-side MOSFET on resistance VOUT = 12 V 450 fSW Switching frequency VIN = 3.6 V, VOUT = 12 V, PWM mode tON_min Minimal switch on time RDS(on) 850 VIN = 3.6 V, VOUT = 12 V 680 VIN = 2.4 V, VOUT = 3.3 V 20 ILIM_SW Peak switch current limit ILIM_CHG Pre-charge current VIN = 3.6 V, VOUT = 0 V tSTARTUP Startup time VOUT from VIN to 12 V, COUT_effective = 2.2 µF, IOUT = 0 A 2 mΩ 1050 1250 150 250 kHz ns 980 1250 mA 30 50 mA 5 mA ms LOGIC INTERFACE VEN_H EN Logic high threshold VEN_L EN Logic Low threshold 1.2 0.4 V V PROTECTION TSD Thermal shutdown threshold TJ rising TSD_HYS Thermal shutdown hysteresis TJ falling below TSD 版权 © 2017, Texas Instruments Incorporated 150 °C 20 °C 5 TLV61046A ZHCSGJ6A – APRIL 2017 – REVISED APRIL 2017 www.ti.com.cn 6.6 Typical Characteristics 100 100 90 90 80 80 70 70 Efficency (%) Efficiency (%) VIN = 3.6 V, VOUT = 12 V, TA = 25°C, unless otherwise noted. 60 50 40 60 50 40 30 30 VIN = 1.8 V VIN = 3 V VIN = 3.6 V VIN = 4.2 V 20 10 0 0.0001 0.001 0.01 Output Current (A) 0.1 20 VOUT = 5 V VOUT = 12 V VOUT = 24 V 10 0 0.0001 1 0.001 D001 VOUT = 12 V 0.1 1 D002 VIN = 3.6 V 图 1. Efficiency vs Output Current 图 2. Efficiency vs Output Current 12.2 810 12.15 805 Reference Voltage (mV) 12-V Fixed Output Voltage (V) 0.01 Output Current (A) 12.1 12.05 12 800 795 790 785 11.95 11.9 -40 -20 0 20 40 60 Temperature (qC) 80 100 780 -40 120 -20 0 20 40 60 Temperature (qC) D003 VIN = 3.6 V, VOUT = 12 V, FB pin connected to VIN pin, PWM mode 80 100 120 D004 VIN = 3.6 V, VOUT = 12 V, PWM mode 图 4. FB Reference Voltage vs Temperature 150 150 140 140 130 130 Quiescent Current (PA) Quiescent Current (PA) 图 3. 12-V Fixed Output Voltage vs Temperature 120 110 100 90 80 110 100 90 80 70 -40 -20 0 20 40 60 Temperature (qC) 80 100 120 D005 VIN = 3.6 V, VOUT = 12 V, No switching 图 5. Quiescent Current into VIN vs Temperature 6 120 70 1.8 2.4 3 3.6 4.2 Input Voltage (V) 4.8 5.4 6 D001 VIN = 1.8 V ~ 6 V, VOUT = 12 V, No switching 图 6. Quiescent Current into VIN vs Input Voltage 版权 © 2017, Texas Instruments Incorporated TLV61046A www.ti.com.cn ZHCSGJ6A – APRIL 2017 – REVISED APRIL 2017 Typical Characteristics (接 接下页) 0.3 1100 0.25 1000 Current Limit (mA) Shutdown Current (PA) VIN = 3.6 V, VOUT = 12 V, TA = 25°C, unless otherwise noted. 0.2 0.15 0.1 800 700 600 0.05 0 -40 900 -20 0 20 40 Temperature (qC) 60 500 -40 80 -20 0 20 40 60 Temperature (qC) D007 VIN = 3.6 V 80 100 120 D008 VIN = 3.6 V, VOUT = 12 V 图 7. Shutdown Current vs Temperature 图 8. Current Limit vs Temperature 1100 Current Limit (mA) 1000 900 800 700 600 500 1.8 2.4 3 3.6 4.2 Input Voltage (V) 4.8 5.4 6 D009 VIN = 1.8 V ~ 6 V, VOUT = 12 V 图 9. Current Limit vs Input Voltage 版权 © 2017, Texas Instruments Incorporated 7 TLV61046A ZHCSGJ6A – APRIL 2017 – REVISED APRIL 2017 www.ti.com.cn 7 Detailed Description 7.1 Overview The TLV61046A is a highly integrated boost converter designed for applications requiring high voltage and small solution size such as PMOLED panel power supply and sensor module. The TLV61046A integrates a 30-V power switch, an input to output isolation switch and a rectifier diode. It can output up to 28 V from input of a Li+ battery or two cell alkaline batteries in series. One common issue with conventional boost regulators is the conduction path from input to output even when the power switch is turned off. It creates three problems, which are inrush current during start-up, output leakage current during shutdown and excessive over load current. In the TLV61046A, the isolation switch is turned off under shutdown mode and over load conditions, thereby opening the current path. Thus the TLV61046A can truely disconnect the load from the input voltage and minimize the leakage current during shutdown mode. The TLV61046A operates with a switching frequency at 1.0 MHz. This allows the use of small external components. The TLV61046A has an internal default 12-V output voltage setting by connecting the FB pin to the VIN pin. Thus it only needs three external components to get 12-V output voltage. The TLV61046A has typical 980-mA switch current limit. It has 7-ms built-in soft start time to minimize the inrush current. The TLV61046A also implements output short circuit protection, output over-voltage protection and thermal shutdown. 7.2 Functional Block Diagram VIN SW 6 1 VIN VOUT UVLO Thermal Shutdown 4 Logic VOUT 3 FB Gate Driver Gate Driver EN 5 Pre-charge & Short Circuit Protection & On/Off Control EN PWM / PFM Control 1.2V FB GND 2 OVP REF VOUT Soft Start & Current Limit Control EA REF Copyright © 2016, Texas Instruments Incorporated 8 版权 © 2017, Texas Instruments Incorporated TLV61046A www.ti.com.cn ZHCSGJ6A – APRIL 2017 – REVISED APRIL 2017 7.3 Feature Description 7.3.1 Under-Voltage Lockout An under-voltage lockout (UVLO) circuit stops the operation of the converter when the input voltage drops below the typical UVLO threshold of 1.55 V. A hysteresis of 200 mV is added so that the device cannot be enabled again until the input voltage goes up to 1.75 V. This function is implemented in order to prevent malfunctioning of the device when the input voltage is between 1.55 V and 1.75 V. 7.3.2 Enable and Disable When the input voltage is above maximal UVLO rising threshold of 1.8 V and the EN pin is pulled high, the TLV61046A is enabled. When the EN pin is pulled low, the TLV61046A goes into shutdown mode. The device stops switching and the isolation switch is turned off providing the isolation between input and output. In shutdown mode, less than 1-µA input current is consumed. 7.3.3 Soft Start The TLV61046A begins soft start when the EN pin is pulled high. at the beginning of the soft start period, the isolation FET is turned on slowly to charge the output capacitor with 30-mA current for about 2 ms. This is called the pre-charge phase. After the pre-charge phase, the TLV61046A starts switching. This is called switching soft start phase. An internal soft start circuit limits the peak inductor current according to the output voltage. When the output voltage is below 3 V, the peak inductor current is limited to 140 mA. Along with the output voltage going up from 3 V to 5 V, the peak current limit is gradually increased to the normal value of 980 mA. The switching soft start phase is about 5 ms typically. The soft start funciton reduces the inrush current during startup. 7.3.4 Over-voltage Protection The TLV61046A has internal output over-voltage protection (OVP) function. When the output voltage exceeds the OVP threshold of 29.2 V, the device stops switching. Once the output voltage falls 0.9 V below the OVP threshold, the device resumes operation again. 7.3.5 Output Short Circuit Protection The TLV61046A starts to limit the output current whenever the output voltage drops below 4 V. The lower output voltage, the smaller output current limit. When the VOUT pin is shorted to ground, the output current is limited to less than 200 mA. This function protects the device from being damaged when the output is shorted to ground. 7.3.6 Thermal Shutdown The TLV61046A goes into thermal shutdown once the junction temperature exceeds the thermal shutdown termperature threshold of 150°C typically. When the junction temperature drops below 130°C typically, the device starts operating again. 7.4 Device Functional Modes The TLV61046A has two operation modes, PWM mode and power save mode. 7.4.1 PWM Mode The TLV61046A uses a quasi-constant 1.0-MHz frequency pulse width modulation (PWM) at moderate to heavy load current. Based on the input voltage to output votlage ratio, a circuit predicts the required off-time. At the beginning of the switching cycle, the NMOS switching FET, shown in the functional block diagram, is turned on. The input voltage is applied across the inductor and the inductor current ramps up. In this phase, the output capacitor is discharged by the load current. When the inductor current hits the current threshold that is set by the output of the error amplifier, the PWM switch is turned off, and the power diode is forward-biased. The inductor transfers its stored energy to replenish the output capacitor and supply the load. When the off-time is expired, the next switching cycle starts again. The error amplifier compares the FB pin voltage with an internal reference votlage, and its output determines the inductor peak current. The TLV61046A has a built-in compensation circuit that can accommodate a wide range of input voltage, output voltage, inductor value and output capacitor value for stable operation. 版权 © 2017, Texas Instruments Incorporated 9 TLV61046A ZHCSGJ6A – APRIL 2017 – REVISED APRIL 2017 www.ti.com.cn Device Functional Modes (接 接下页) 7.4.2 Power Save Mode The TLV61046A implements a power save mode with pulse frequency modulation (PFM) to improve efficiency at light load. When the load current decreases, the inductor peak current set by the output of the error amplifier declines to regulate the output voltage. When the inductor peak current hits the low limit of 200 mA, the output voltage will exceed the setting voltage as the load current decreases further. When the FB voltage hits the PFM reference voltage, the TLV61046A goes into the power save mode. In the power save mode, when the FB voltage rises and hits the PFM reference voltage, the device continues switching for several cycles because of the delay time of the internal comparator. Then it stops switching. The load is supplied by the output capacitor and the output voltage declines. When the FB voltage falls below the PFM reference voltage, after the delay time of the comparator, the device starts switching again to ramp up the output voltage. Output Voltage PFM mode at light load 1.01 x VOUT_NOM VOUT_NOM PWM mode at heavy load 图 10. Output Voltage in PWM Mode and PFM Mode 10 版权 © 2017, Texas Instruments Incorporated TLV61046A www.ti.com.cn ZHCSGJ6A – APRIL 2017 – REVISED APRIL 2017 8 Application and Implementation 注 Information in the following applications sections is not part of the TI component specification, and TI does not warrant its accuracy or completeness. TI’s customers are responsible for determining suitability of components for their purposes. Customers should validate and test their design implementation to confirm system functionality. 8.1 Application Information The TLV61046A is a boost DC-DC converter integrating a power switch, an input to output isolation switch and a rectifier diode. The device supports up to 28-V output with the input voltage range from 1.8 V to 5.5 V. The TLV61046A adopts the current-mode control with adaptive constant off-time. The switching frequency is quasiconstant at 1.0 MHz. The isolation switch disconnects the output from the input during shutdown to minimize leakage current. The following design procedure can be used to select component values for the TLV61046A. 8.2 Typical Application - 12-V Output Boost Converter spacing L1 2.7 V ~ 4.2 V 10 µH C1 1.0 µF VIN SW 12 V VOUT GND C2 TLV61046A ON 4.7 µF R1 OFF 1.0 M FB EN R2 71.5 k 图 11. 12-V Boost Converter 8.2.1 Design Requirements 表 1. Design Requirements PARAMETERS VALUES Input Voltage 2.7 V ~ 4.2 V Output Voltage 12 V Output Current 50 mA Output Voltage Ripple ±50mV 版权 © 2017, Texas Instruments Incorporated 11 TLV61046A ZHCSGJ6A – APRIL 2017 – REVISED APRIL 2017 www.ti.com.cn 8.2.2 Detailed Design Procedure 8.2.2.1 Programming the Output Voltage There are two ways to set the output voltage of the TLV61046A. When the FB pin is connected to the input voltage, the output voltage is fixed to 12 V. This function makes the TLV61046A only need three external components to minimize the solution size. The second way is to use an external resistor divider to set the desired output voltage. By selecting the external resistor divider R1 and R2, as shown in 公式 1, the output voltage is programmed to the desired value. When the output voltage is regulated, the typical voltage at the FB pin is VREF of 795 mV. §V R1 ¨ OUT © VREF · 1¸ u R2 ¹ where • • VOUT is the desired output voltage VREF is the internal reference voltage at the FB pin (1) For best accuracy, R2 should be kept smaller than 80 kΩ to ensure the current flowing through R2 is at least 100 times larger than the FB pin leakage current. Changing R2 towards a lower value increases the immunity against noise injection. Changing the R2 towards a higher value reduces the quiescent current for achieving higher efficiency at low load currents. 8.2.2.2 Inductor Selection Because the selection of the inductor affects steady state operation, transient behavior, and loop stability, the inductor is the most important component in power regulator design. There are three important inductor specifications, inductor value, saturation current, and dc resistance (DCR). The TLV61046A is designed to work with inductor values between 2.2 µH and 22 µH. Follow 公式 2 to 公式 4 to calculate the inductor’s peak current for the application. To calculate the peak current in the worst case, use the minimum input voltage, maximum output voltage, and maximum load current of the application. To have enough design margin, choose the inductor value with -30% tolerance, and a low power-conversion efficiency for the calculation. In a boost regulator, the inductor dc current can be calculated with 公式 2. VOUT u IOUT IL(DC) VIN u K where • • • • VOUT = output voltage IOUT = output current VIN = input voltage η = power conversion efficiency, use 80% for most applications (2) The inductor ripple current is calculated with the 公式 3 for an asynchronous boost converter in continuous conduction mode (CCM). VIN u VOUT 0.8V VIN 'IL(P P) L u fSW u VOUT 0.8V where • • • • • ΔIL(P-P) = inductor ripple current L = inductor value fSW = switching frequency VOUT = output voltage VIN = input voltage (3) Therefore, the inductor peak current is calculated with 公式 4. 12 版权 © 2017, Texas Instruments Incorporated TLV61046A www.ti.com.cn IL P ZHCSGJ6A – APRIL 2017 – REVISED APRIL 2017 IL DC 'IL P P 2 (4) Normally, it is advisable to work with an inductor peak-to-peak current of less than 40% of the average inductor current for maximum output current. A smaller ripple from a larger valued inductor reduces the magnetic hysteresis losses in the inductor, and EMI. But in the same way, load transient response time is increased. Because the TLV61046A is for relatively small output current application, the inductor peak-to-peak current could be as high as 200% of the average current with a small inductor value, which means the TLV61046A always works in DCM mode.表 2 lists the recommended inductors for the TLV61046A. 表 2. Recommended Inductors for the TLV61046A (1) PART NUMBER L(µH) DCR MAX (mΩ) FDSD0420-H-100M 10 CDRH3D23/HP 10 74438336100 VLS4012-4R7M VENDOR (1) SATURATION CURRENT (A) SIZE (LxWxH) 200 2.5 4.2x4.2x2.0 Toko 198 1.02 4.0x4.0x2.5 Sumida 10 322 2.35 3.2x3.2x2.0 Wurth 4.7 132 1.1 4.0x4.0x1.2 TDK See Third-party Products Disclaimer 8.2.2.3 Input and Output Capacitor Selection The output capacitor is mainly selected to meet the requirements for output ripple and loop stability. This ripple voltage is related to the capacitor’s capacitance and its equivalent series resistance (ESR). Assuming a ceramic capacitor with zero ESR, the minimum capacitance needed for a given ripple can be calculated by: IOUT u DMAX COUT fSW u VRIPPLE where • • DMAX = maximum switching duty cycle VRIPPLE = peak to peak output voltage ripple (5) The ESR impact on the output ripple must be considered if tantalum or aluminum electrolytic capacitors are used. Care must be taken when evaluating a ceramic capacitor’s derating under dc bias, aging, and ac signal. For example, the dc bias can significantly reduce capacitance. A ceramic capacitor can lose more than 50% of its capacitance at its rated voltage. Therefore, always leave margin on the voltage rating to ensure adequate capacitance at the required output voltage. It is recommended to use the output capacitor with effective capacitance in the range of 0.47 μF to 10 μF. The output capacitor affects loop stability of the boost regulator. If the output capacitor is below the range, the boost regulator can potentially become unstable. Increasing the output capacitor makes the output voltage ripple smaller in PWM mode. For input capacitor, a ceramic capacitor with more than 1.0 µF is enough for most applications. 版权 © 2017, Texas Instruments Incorporated 13 TLV61046A ZHCSGJ6A – APRIL 2017 – REVISED APRIL 2017 www.ti.com.cn 8.2.3 Application Performance Curves SW 10 V / div SW 10 V / div VOUT (AC) 30 mV / div VOUT (AC) 10 mV / div Inductor Current 100 mA / div Inductor Current 100 mA / div VIN = 3.6 V, VOUT = 12 V, IOUT = 50 mA VIN = 3.6 V, VOUT = 12 V, IOUT = 18 mA 图 13. Switching Waveforms in PWM DCM Mode 图 12. Switching Waveforms in PWM CCM Mode SW 10 V / div EN 1 V / div VOUT (AC) 50 mV / div Inductor Current 100 mA / div VOUT 3 V / div Inductor Current 100 mA / div VIN = 3.6 V, VOUT = 12 V, IOUT = 3 mA VIN = 3.6 V, VOUT = 12 V, IOUT = 50 mA 图 14. Switching Waveforms in Power Save Mode 图 15. Soft Startup Waveforms EN 1 V / div VOUT (AC) 200 mV / div VOUT (AC) 3 V / div Inductor Current 100 mA / div Output Current 50 mA / div VIN = 3.6 V, VOUT = 12 V, IOUT = 50 mA 图 16. Shutdown Waveforms 14 VIN = 3.6 V, VOUT = 12 V 图 17. 30-mA to 70-mA Load Transient Response 版权 © 2017, Texas Instruments Incorporated TLV61046A www.ti.com.cn ZHCSGJ6A – APRIL 2017 – REVISED APRIL 2017 VOUT (AC) 200 mV / div VIN (3.3 V offset) 500 mV / div VOUT = 12 V, IOUT = 50 mA 图 18. Input Voltage from 3.3-V to 4.2-V Line Transient Response 8.3 System Examples 8.3.1 Fixed 12-V Output Voltage with Three External Components The TLV61046A can output fixed 12-V voltage by connecting the FB pin to the VIN pin to save the external resistor divider. The 图 19 shows the application circuit. L1 1.8 V ~ 5.5 V C1 10PH 2.2PF VIN SW 12 V FB VOUT C2 10PF ON OFF EN GND Copyright © 2017, Texas Instruments Incorporated 图 19. Fixed 12-V Output Voltage by Connecting the FB Pin to VIN Pin 版权 © 2017, Texas Instruments Incorporated 15 TLV61046A ZHCSGJ6A – APRIL 2017 – REVISED APRIL 2017 www.ti.com.cn 9 Power Supply Recommendations The device is designed to operate from an input voltage supply range between 1.8 V to 5.5 V. This input supply must be well regulated. If the input supply is located more than a few inches from the converter, additional bulk capacitance may be required in addition to the ceramic bypass capacitors. A typical choice is an electrolytic or tantalum capacitor with a value of 47 µF. The input power supply’s output current needs to be rated according to the supply voltage, output voltage and output current of the TLV61046A. 16 版权 © 2017, Texas Instruments Incorporated TLV61046A www.ti.com.cn ZHCSGJ6A – APRIL 2017 – REVISED APRIL 2017 10 Layout 10.1 Layout Guidelines As for all switching power supplies, especially those running at high switching frequency and high currents, layout is an important design step. If the layout is not carefully done, the regulator could suffer from instability and noise problems. To maximize efficiency, switch rise and fall time are very fast. To prevent radiation of high frequency noise (for example, EMI), proper layout of the high-frequency switching path is essential. Minimize the length and area of all traces connected to the SW pin, and always use a ground plane under the switching regulator to minimize interplane coupling. The input capacitor needs not only to be close to the VIN pin, but also to the GND pin in order to reduce input supply ripple. The most critical current path for all boost converters is from the switching FET, through the rectifier diode, then the output capacitors, and back to ground of the switching FET. This high current path contains nanosecond rise and fall time and should be kept as short as possible. Therefore, the output capacitors need not only to be close to the VOUT pin, but also to the GND pin to reduce the overshoot at the SW pin and VOUT pin. 10.2 Layout Example A large ground plane on the bottom layer connects the ground pins of the components on the top layer through vias. GND VIN VIN VOUT EN VOUT GND SW GND FB 图 20. PCB Layout Example 版权 © 2017, Texas Instruments Incorporated 17 TLV61046A ZHCSGJ6A – APRIL 2017 – REVISED APRIL 2017 www.ti.com.cn 11 器件和文档支持 11.1 器件支持 11.1.1 Third-Party Products Disclaimer TI'S PUBLICATION OF INFORMATION REGARDING THIRD-PARTY PRODUCTS OR SERVICES DOES NOT CONSTITUTE AN ENDORSEMENT REGARDING THE SUITABILITY OF SUCH PRODUCTS OR SERVICES OR A WARRANTY, REPRESENTATION OR ENDORSEMENT OF SUCH PRODUCTS OR SERVICES, EITHER ALONE OR IN COMBINATION WITH ANY TI PRODUCT OR SERVICE. 11.2 接收文档更新通知 要接收文档更新通知,请导航至德州仪器 TI.com.cn 上的器件产品文件夹。请单击右上角的通知我 进行注册,即可 收到任意产品信息更改每周摘要。有关更改的详细信息,请查看任意已修订文档中包含的修订历史记录。 11.3 社区资源 下列链接提供到 TI 社区资源的连接。链接的内容由各个分销商“按照原样”提供。这些内容并不构成 TI 技术规范, 并且不一定反映 TI 的观点;请参阅 TI 的 《使用条款》。 TI E2E™ 在线社区 TI 的工程师对工程师 (E2E) 社区。此社区的创建目的在于促进工程师之间的协作。在 e2e.ti.com 中,您可以咨询问题、分享知识、拓展思路并与同行工程师一道帮助解决问题。 设计支持 TI 参考设计支持 可帮助您快速查找有帮助的 E2E 论坛、设计支持工具以及技术支持的联系信息。 11.4 商标 E2E is a trademark of Texas Instruments. All other trademarks are the property of their respective owners. 11.5 静电放电警告 ESD 可能会损坏该集成电路。德州仪器 (TI) 建议通过适当的预防措施处理所有集成电路。如果不遵守正确的处理措施和安装程序 , 可 能会损坏集成电路。 ESD 的损坏小至导致微小的性能降级 , 大至整个器件故障。 精密的集成电路可能更容易受到损坏 , 这是因为非常细微的参数更改都可 能会导致器件与其发布的规格不相符。 11.6 Glossary SLYZ022 — TI Glossary. This glossary lists and explains terms, acronyms, and definitions. 12 机械、封装和可订购信息 以下页面包括机械、封装和可订购信息。这些信息是指定器件的最新可用数据。这些数据发生变化时,我们可能不 会另行通知或修订此文档。如欲获取此产品说明书的浏览器版本,请参阅左侧的导航栏。 18 版权 © 2017, Texas Instruments Incorporated PACKAGE OPTION ADDENDUM www.ti.com 15-Aug-2017 PACKAGING INFORMATION Orderable Device Status (1) Package Type Package Pins Package Drawing Qty Eco Plan Lead/Ball Finish MSL Peak Temp (2) (6) (3) Op Temp (°C) Device Marking (4/5) TLV61046ADBVR ACTIVE SOT-23 DBV 6 3000 Green (RoHS & no Sb/Br) CU NIPDAU Level-1-260C-UNLIM -40 to 125 1C4F TLV61046ADBVT ACTIVE SOT-23 DBV 6 250 Green (RoHS & no Sb/Br) CU NIPDAU Level-1-260C-UNLIM -40 to 125 1C4F (1) The marketing status values are defined as follows: ACTIVE: Product device recommended for new designs. LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect. NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design. PREVIEW: Device has been announced but is not in production. Samples may or may not be available. OBSOLETE: TI has discontinued the production of the device. (2) RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may reference these types of products as "Pb-Free". RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption. Green: TI defines "Green" to mean the content of Chlorine (Cl) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of
TLV61046ADBVT 价格&库存

很抱歉,暂时无法提供与“TLV61046ADBVT”相匹配的价格&库存,您可以联系我们找货

免费人工找货
TLV61046ADBVT
  •  国内价格
  • 1+7.22996
  • 10+6.33140
  • 30+5.77152
  • 250+4.63796
  • 500+4.38221
  • 1000+4.26471

库存:157