0
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
会员中心
创作中心
发布
  • 发文章

  • 发资料

  • 发帖

  • 提问

  • 发视频

创作活动
TLV62130EVM-505

TLV62130EVM-505

  • 厂商:

    BURR-BROWN(德州仪器)

  • 封装:

    -

  • 描述:

    EVAL MODULE FOR TLV62130-505

  • 数据手册
  • 价格&库存
TLV62130EVM-505 数据手册
www.ti.com Table of Contents User’s Guide TLV621x0 Step-Down Converter Evaluation Module User's Guide ABSTRACT This user’s guide describes the characteristics, operation, and use of the Texas Instruments TLV62130 and TLV62150 evaluation modules (EVM). The TLV62130EVM-505 and TLV62150EVM-505 evaluate the performance of the TLV62130 or TLV62150 IC in a standard buck regulator topology. The EVM converts a 4-V to 17-V input voltage to 3.3 V and provides up to 3 A (1 A for the TLV62150EVM-505) of output current. The user’s guide includes setup instructions for the EVM, the printed-circuit board layout, the schematic diagram, the bill of materials, and test results for the EVM. After the release of the A-version devices in the summer of 2013, these EVMs are assembled with the TLV62130A or TLV62150A. Table of Contents 1 Introduction.............................................................................................................................................................................3 1.1 Background........................................................................................................................................................................ 3 1.2 Performance Specification................................................................................................................................................. 3 1.3 Modifications...................................................................................................................................................................... 3 2 Setup........................................................................................................................................................................................4 2.1 Input/Output Connector Descriptions................................................................................................................................. 4 2.2 Setup..................................................................................................................................................................................4 3 TLV621x0EVM-505 Test Results............................................................................................................................................ 5 4 Board Layout.........................................................................................................................................................................14 5 Schematic and Bill of Materials...........................................................................................................................................17 5.1 Schematic........................................................................................................................................................................ 17 5.2 Bill of Materials.................................................................................................................................................................18 6 Revision History................................................................................................................................................................... 18 List of Figures Figure 1-1. Loop Response Measurement Modification.............................................................................................................. 4 Figure 3-1. Efficiency With 1-µH Inductor and FSW = LOW (High Frequency)............................................................................ 5 Figure 3-2. Efficiency With 2.2-µH Inductor and FSW = LOW (High Frequency)......................................................................... 5 Figure 3-3. Efficiency With 2.2-µH Inductor and FSW = HIGH (Low Frequency)......................................................................... 6 Figure 3-4. Load Regulation With 2.2-µH Inductor and FSW = LOW (High Frequency)...............................................................6 Figure 3-5. Line Regulation With 2.2-µH Inductor and FSW = LOW (High Frequency) and IOUT = 1 A........................................7 Figure 3-6. Loop Response With 2.2-µH Inductor and FSW = LOW (High Frequency) and VIN = 12 V and IOUT = 1 A...............7 Figure 3-7. Input Voltage Ripple With 2.2-µH Inductor and FSW = LOW (High Frequency) and VIN = 12 V and IOUT = 1 A........8 Figure 3-8. Output Voltage Ripple With 2.2-µH Inductor and FSW = LOW (High Frequency) and VIN = 12 V and IOUT = 1 A..... 8 Figure 3-9. Output Voltage Ripple With 2.2-µH Inductor and FSW = HIGH (Low Frequency) and VIN = 12 V and IOUT = 1 A..... 9 Figure 3-10. Load Transient Response With 1-µH Inductor and VIN = 12 V................................................................................9 Figure 3-11. Load Transient Response With 2.2-µH Inductor and VIN = 12 V........................................................................... 10 Figure 3-12. Start-Up on EN with 1-A Load and VIN = 12 V...................................................................................................... 10 Figure 3-13. Shutdown on EN with 1-A Load and VIN = 12 V.................................................................................................... 11 Figure 3-14. TLV62130 Prebias Start-Up and Shutdown on EN With 1-A Load and VIN = 12 V............................................... 11 Figure 3-15. TLV62130A Prebias Start-Up and Shutdown on EN With 1-A Load and VIN = 12 V.............................................12 Figure 3-16. Thermal Performance With 1-µH Inductor.............................................................................................................13 Figure 3-17. Thermal Performance With 2.2-µH Inductor..........................................................................................................13 Figure 4-1. Assembly Layer.......................................................................................................................................................14 Figure 4-2. Top Layer Routing................................................................................................................................................... 14 Figure 4-3. Internal Layer-1 Routing..........................................................................................................................................15 Figure 4-4. Internal Layer-2 Routing..........................................................................................................................................15 SLAU416B – JANUARY 2012 – REVISED NOVEMBER 2021 TLV621x0 Step-Down Converter Evaluation Module User's Guide Submit Document Feedback Copyright © 2021 Texas Instruments Incorporated 1 Trademarks www.ti.com Figure 4-5. Bottom Layer Routing..............................................................................................................................................16 Figure 5-1. TLV621x0EVM-505 Schematic................................................................................................................................17 List of Tables Table 1-1. Performance Specification Summary..........................................................................................................................3 Table 5-1. TLV621x0EVM-505 Bill of Materials..........................................................................................................................18 Trademarks All trademarks are the property of their respective owners. 2 TLV621x0 Step-Down Converter Evaluation Module User's Guide SLAU416B – JANUARY 2012 – REVISED NOVEMBER 2021 Submit Document Feedback Copyright © 2021 Texas Instruments Incorporated www.ti.com Introduction 1 Introduction The TLV62130 is a 3-A, synchronous, step-down converter in a 3-mm × 3-mm, 16-pin QFN package. The TLV62150 is a 1-A, synchronous, step-down converter in a 3-mm × 3-mm, 16-pin QFN package. 1.1 Background The TLV62130EVM-505 (HPA505-004) uses the TLV62130A and is set to a 3.3-V output. The EVM operates with full-rated performance with an input voltage between 4 V and 17 V. The TLV62150EVM-505 (HPA505-005) uses the TLV62150A and is set to a 3.3-V output. The EVM operates with full-rated performance with an input voltage between 4 V and 17 V. 1.2 Performance Specification Table 1-1 provides a summary of the TLV621x0EVM-505 performance specifications. All specifications are given for an ambient temperature of 25°C. Table 1-1. Performance Specification Summary SPECIFICATION TEST CONDITIONS MIN Output voltage PWM mode of operation 3.244 Output current TLV62130EVM-505 TLV62150EVM-505 Input voltage TYP MAX UNIT 17 V 3.327 3.410 V 0 3000 mA 0 1000 mA 4 Peak efficiency TLV62130EVM-505, FSW = LOW (high frequency) 93.2% Peak efficiency TLV62150EVM-505, FSW = HIGH (low frequency) 95.0% Soft-start time 1.65 ms 1.3 Modifications The printed-circuit board (PCB) for this EVM is designed to accommodate various modifications that affect the performance of the IC. Additional input and output capacitors can be added, the soft-start time can be changed, and the loop response of the IC can be measured. 1.3.1 Input and Output Capacitors C2 is provided for an additional input capacitor. This capacitor is not required for proper operation but can be used to reduce the input voltage ripple. C7 is provided for an input capacitor on the AVIN pin. This capacitor is required and populated on the TLV62130EVM-505. It can be added on the other EVM version but is not required. C4 is provided for an additional output capacitor. This capacitor is not required for proper operation but can be used to reduce the output voltage ripple and to improve the load transient response. The total output capacitance must remain within the recommended range in the data sheet for proper operation. 1.3.2 Soft-Start Time C5 controls the soft-start time of the output voltage on the TLV621x0EVM-505. It can be changed for a shorter or slower ramp up of VOUT. Note that as the value of C5 is decreased, the inrush current increases. 1.3.3 Loop Response Measurement The loop response of the TLV621x0EVM-505 can be measured with two simple changes to the circuitry. First, install a 10-Ω resistor across the pads in the middle of the back of the PCB. The pads are spaced to allow installation of 0805- or 0603-sized resistors. Second, cut the trace between the via on the output voltage and the trace that connects to the VOS pin via. These changes are shown in Figure 1-1. With these changes, an ac signal (10-mV, peak-to-peak amplitude recommended) can be injected into the control loop across the added resistor. SLAU416B – JANUARY 2012 – REVISED NOVEMBER 2021 TLV621x0 Step-Down Converter Evaluation Module User's Guide Submit Document Feedback Copyright © 2021 Texas Instruments Incorporated 3 Setup www.ti.com Cut This Trace Added Resistor Figure 1-1. Loop Response Measurement Modification 2 Setup This section describes how to properly use the TLV621x0EVM-505. 2.1 Input/Output Connector Descriptions J1 – VIN Positive input connection from the input supply for the EVM. Use when the steady-state input current is less than 1 A. Otherwise, use J8. J2 – S+/S– Input voltage sense connections. Measure the input voltage at this point. J3 – GND Return connection from the input supply for the EVM. Use when the steady-state input current is less than 1 A. Otherwise, use J8. J4 – VOUT Output voltage connection. Use when the steady-state output current is less than 1 A. Otherwise, use J9. J5 – S+/S– Output voltage sense connections. Measure the output voltage at this point. J6 – GND Output return connection. Use when the steady-state output current is less than 1 A. Otherwise, use J9. J7 – PG/GND The PG output appears on pin 1 of this header with a convenient ground on pin 2. J8 – VIN/GND Pin 1 is the positive input connection with pin 2, serving as the return connection. Use this terminal block if the steady-state input current is greater than 1 A. J9 – VOUT/GND Pin 2 is the output voltage connection with pin 1, serving as the output return connection. Use this terminal block if the steady-state output current is greater than 1 A. J10 – SS/TR & GND The SS/TR input appears on pin 1 of this header with a convenient ground on pin 2. JP1 – EN EN pin input jumper. Place the supplied jumper across ON and EN to turn on the IC. Place the jumper across OFF and EN to turn off the IC. JP2 – DEF DEF pin input jumper. Place the supplied jumper across HIGH and DEF to set the output voltage at 5% above nominal. Place the jumper across LOW and DEF to set the output voltage at the nominal level. JP3 – FSW FSW pin input jumper. Place the supplied jumper across 1.25 MHz and FSW to operate the IC at a reduced switching frequency of nominally 1.25 MHz. Place the jumper across 2.5 MHz and FSW to operate the IC at the full switching frequency of nominally 2.5 MHz. JP4 – PG Pullup Voltage PG pin pullup voltage jumper. Place the supplied jumper on JP4 to connect the PG pin pullup resistor to Vout. Alternatively, the jumper can be removed and a different voltage can be supplied on pin 2 to pull up the PG pin to a different level. This externally applied voltage must remain below 7 V. 2.2 Setup To operate the EVM, set jumpers JP1 through JP4 to the desired positions per Section 2.1. Connect the input supply to either J1 and J3 or J8, and connect the load to either J4 and J6 or J9. 4 TLV621x0 Step-Down Converter Evaluation Module User's Guide SLAU416B – JANUARY 2012 – REVISED NOVEMBER 2021 Submit Document Feedback Copyright © 2021 Texas Instruments Incorporated www.ti.com TLV621x0EVM-505 Test Results 3 TLV621x0EVM-505 Test Results This section provides test results of the TLV621x0EVM-505. 100 VI = 9 V 90 VI = 12 V VI = 15 V VI = 5 V Efficiency - % 80 VI = 17 V 70 60 50 40 0.0001 0.001 0.01 0.1 Load Current - A 1 10 Figure 3-1. Efficiency With 1-µH Inductor and FSW = LOW (High Frequency) 100 VI = 15 V 90 VI = 12 V VI = 9 V Efficiency - % 80 VI = 5 V 70 VI = 17 V 60 50 40 0.0001 0.001 0.01 0.1 Load Current - A 1 10 Figure 3-2. Efficiency With 2.2-µH Inductor and FSW = LOW (High Frequency) SLAU416B – JANUARY 2012 – REVISED NOVEMBER 2021 TLV621x0 Step-Down Converter Evaluation Module User's Guide Submit Document Feedback Copyright © 2021 Texas Instruments Incorporated 5 TLV621x0EVM-505 Test Results www.ti.com 100 VI = 9 V 90 VI = 12 V VI = 15 V VI = 5 V Efficiency - % 80 VI = 17 V 70 60 50 40 0.0001 0.001 0.01 0.1 Load Current - A 1 10 Figure 3-3. Efficiency With 2.2-µH Inductor and FSW = HIGH (Low Frequency) 0.6 VI = 17 V 0.5 VI = 15 V VI = 12 V Load Regulation - % 0.4 VI = 9 V 0.3 0.2 0.1 VI = 5 V 0 -0.1 -0.2 0.0001 0.001 0.01 0.1 Load Current - A 1 10 Figure 3-4. Load Regulation With 2.2-µH Inductor and FSW = LOW (High Frequency) 6 TLV621x0 Step-Down Converter Evaluation Module User's Guide SLAU416B – JANUARY 2012 – REVISED NOVEMBER 2021 Submit Document Feedback Copyright © 2021 Texas Instruments Incorporated www.ti.com TLV621x0EVM-505 Test Results 0.2 Load Regulation - % 0.15 0.1 0.05 0 -0.05 -0.1 4 6 8 10 12 14 16 17 Input Voltage - V 60 180 50 150 40 120 30 90 20 60 10 30 0 0 Phase - deg Gain - dB Figure 3-5. Line Regulation With 2.2-µH Inductor and FSW = LOW (High Frequency) and IOUT = 1 A -10 -30 -20 -60 -30 -90 -40 -120 -50 -150 -60 100 1k 10k f - Frequency - Hz 100k -180 1M Figure 3-6. Loop Response With 2.2-µH Inductor and FSW = LOW (High Frequency) and VIN = 12 V and IOUT = 1 A SLAU416B – JANUARY 2012 – REVISED NOVEMBER 2021 TLV621x0 Step-Down Converter Evaluation Module User's Guide Submit Document Feedback Copyright © 2021 Texas Instruments Incorporated 7 TLV621x0EVM-505 Test Results www.ti.com VIN (AC Coupled) 20 mV/div Iind 0.5 A/div SW 10 V/div t - Time - 200 ns/div Figure 3-7. Input Voltage Ripple With 2.2-µH Inductor and FSW = LOW (High Frequency) and VIN = 12 V and IOUT = 1 A VOUT (AC Coupled) 20 mV/div Iind 0.5 A/div SW 10 V/div t - Time - 200 ns/div Figure 3-8. Output Voltage Ripple With 2.2-µH Inductor and FSW = LOW (High Frequency) and VIN = 12 V and IOUT = 1 A 8 TLV621x0 Step-Down Converter Evaluation Module User's Guide SLAU416B – JANUARY 2012 – REVISED NOVEMBER 2021 Submit Document Feedback Copyright © 2021 Texas Instruments Incorporated www.ti.com TLV621x0EVM-505 Test Results VOUT (AC Coupled) 20 mV/div Iind 0.5 A/div SW 10 V/div t - Time - 200 ns/div Figure 3-9. Output Voltage Ripple With 2.2-µH Inductor and FSW = HIGH (Low Frequency) and VIN = 12 V and IOUT = 1 A VOUT (AC Coupled) 20 mV/div 1 A to 2 A Load Step ILoad 1 A/div t - Time - 2 ms/div Figure 3-10. Load Transient Response With 1-µH Inductor and VIN = 12 V SLAU416B – JANUARY 2012 – REVISED NOVEMBER 2021 TLV621x0 Step-Down Converter Evaluation Module User's Guide Submit Document Feedback Copyright © 2021 Texas Instruments Incorporated 9 TLV621x0EVM-505 Test Results www.ti.com VOUT (AC Coupled) 20 mV/div 0.5 A to 1 A Load Step ILoad 0.5 A/div t - Time - 2 ms/div Figure 3-11. Load Transient Response With 2.2-µH Inductor and VIN = 12 V VIN 10 V/div EN 10 V/div VOUT 1 V/div SS/TR 1 V/div t - Time - 1 ms/div Figure 3-12. Start-Up on EN with 1-A Load and VIN = 12 V 10 TLV621x0 Step-Down Converter Evaluation Module User's Guide SLAU416B – JANUARY 2012 – REVISED NOVEMBER 2021 Submit Document Feedback Copyright © 2021 Texas Instruments Incorporated www.ti.com TLV621x0EVM-505 Test Results VIN 10 V/div EN 10 V/div VOUT 1 V/div PG 1 V/div t - Time - 100 ms/div Figure 3-13. Shutdown on EN with 1-A Load and VIN = 12 V VIN 10 V/div EN 1 V/div 1.5 V Pre-bias VOUT 1 V/div PG 2 V/div t - Time - 500 ms/div Figure 3-14. TLV62130 Prebias Start-Up and Shutdown on EN With 1-A Load and VIN = 12 V SLAU416B – JANUARY 2012 – REVISED NOVEMBER 2021 TLV621x0 Step-Down Converter Evaluation Module User's Guide Submit Document Feedback Copyright © 2021 Texas Instruments Incorporated 11 TLV621x0EVM-505 Test Results www.ti.com VIN 10 V/div EN 1 V/div 1.5 V Pre-bias VOUT 1 V/div PG 2 V/div t - Time - 500 ms/div Figure 3-15. TLV62130A Prebias Start-Up and Shutdown on EN With 1-A Load and VIN = 12 V 12 TLV621x0 Step-Down Converter Evaluation Module User's Guide SLAU416B – JANUARY 2012 – REVISED NOVEMBER 2021 Submit Document Feedback Copyright © 2021 Texas Instruments Incorporated www.ti.com TLV621x0EVM-505 Test Results VIN = 12 V and IOUT = 3 A and FSW = LOW (high frequency) Figure 3-16. Thermal Performance With 1-µH Inductor VIN = 12 V and IOUT = 3 A and FSW = HIGH (low frequency) Figure 3-17. Thermal Performance With 2.2-µH Inductor SLAU416B – JANUARY 2012 – REVISED NOVEMBER 2021 TLV621x0 Step-Down Converter Evaluation Module User's Guide Submit Document Feedback Copyright © 2021 Texas Instruments Incorporated 13 Board Layout www.ti.com 4 Board Layout This section provides the TLV621x0EVM-505 board layout and illustrations. Figure 4-1. Assembly Layer Figure 4-2. Top Layer Routing 14 TLV621x0 Step-Down Converter Evaluation Module User's Guide SLAU416B – JANUARY 2012 – REVISED NOVEMBER 2021 Submit Document Feedback Copyright © 2021 Texas Instruments Incorporated www.ti.com Board Layout Figure 4-3. Internal Layer-1 Routing Figure 4-4. Internal Layer-2 Routing SLAU416B – JANUARY 2012 – REVISED NOVEMBER 2021 TLV621x0 Step-Down Converter Evaluation Module User's Guide Submit Document Feedback Copyright © 2021 Texas Instruments Incorporated 15 Board Layout www.ti.com Figure 4-5. Bottom Layer Routing 16 TLV621x0 Step-Down Converter Evaluation Module User's Guide SLAU416B – JANUARY 2012 – REVISED NOVEMBER 2021 Submit Document Feedback Copyright © 2021 Texas Instruments Incorporated www.ti.com Schematic and Bill of Materials 5 Schematic and Bill of Materials This section provides the TLV621x0EVM-505 schematic and bill of materials. + 5.1 Schematic Figure 5-1. TLV621x0EVM-505 Schematic SLAU416B – JANUARY 2012 – REVISED NOVEMBER 2021 TLV621x0 Step-Down Converter Evaluation Module User's Guide Submit Document Feedback Copyright © 2021 Texas Instruments Incorporated 17 Schematic and Bill of Materials www.ti.com 5.2 Bill of Materials Table 5-1. TLV621x0EVM-505 Bill of Materials COUNT VALUE DESCRIPTION SIZE PART NUMBER MFR C1 10 µF Capacitor, Ceramic, 25 V, X5R, 20% 1210 Std Std C3 22 µF Capacitor, Ceramic, 6.3 V, X5R, 20% 0805 Std Std 1 C5 3300 pF Capacitor, Ceramic, 25 V, X7R, 10% 0603 Std Std 1 1 C6 68 µF Capacitor, Tantalum, 35 V, 68 μF, ±20% 7361[V] TPSV686M035R0150 AVX 1 0 C7 0.1 µF Capacitor, Ceramic, 25 V, X5R, 20% 0603 Std Std 1 0 L1 1.0 µH Inductor, Power, 5.1 A, ±20% 0.165 × 0.165 inch XFL4020-102ME Coilcraft 0 1 L1 2.2 µH Inductor, Power, 3.5 A, ±20% 0.165 × 0.165 inch XFL4020-222ME Coilcraft 1 1 R1 1.21M Resistor, Chip, 1/16W, 1% 0603 Std Std 1 1 R2 383 k Resistor, Chip, 1/16W, 1% 0603 Std Std 1 1 R3 100 k Resistor, Chip, 1/16W, 1% 0603 Std Std 1 0 U1(1) TLV62130ARGT IC, 17-V, 3-A Step-Down Converter in 3-mm × 3-mm QFN Package 3-mm × 3-mm QFN TLV62130ARGT TI 0 1 U1(1) TLV62150ARGT IC, 17-V, 1-A Step-Down Converter in 3-mm × 3-mm QFN Package 3-mm × 3-mm QFN TLV62150ARGT TI -004 -005 1 1 1 1 1 (1) REFDES EVMs made before August of 2013 use the non-A version of U1. The only difference between these devices is the operation of the PG pin when the device is disabled, as shown in Figure 3-14 and Figure 3-15. 6 Revision History NOTE: Page numbers for previous revisions may differ from page numbers in the current version. Changes from Revision A (July 2013) to Revision B (May 2021) Page • Changed user's guide title.................................................................................................................................. 3 • Updated the numbering format for tables, figures, and cross-references throughout the document. ................3 18 TLV621x0 Step-Down Converter Evaluation Module User's Guide SLAU416B – JANUARY 2012 – REVISED NOVEMBER 2021 Submit Document Feedback Copyright © 2021 Texas Instruments Incorporated IMPORTANT NOTICE AND DISCLAIMER TI PROVIDES TECHNICAL AND RELIABILITY DATA (INCLUDING DATA SHEETS), DESIGN RESOURCES (INCLUDING REFERENCE DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND OTHER RESOURCES “AS IS” AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS AND IMPLIED, INCLUDING WITHOUT LIMITATION ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT OF THIRD PARTY INTELLECTUAL PROPERTY RIGHTS. These resources are intended for skilled developers designing with TI products. You are solely responsible for (1) selecting the appropriate TI products for your application, (2) designing, validating and testing your application, and (3) ensuring your application meets applicable standards, and any other safety, security, regulatory or other requirements. These resources are subject to change without notice. TI grants you permission to use these resources only for development of an application that uses the TI products described in the resource. Other reproduction and display of these resources is prohibited. No license is granted to any other TI intellectual property right or to any third party intellectual property right. TI disclaims responsibility for, and you will fully indemnify TI and its representatives against, any claims, damages, costs, losses, and liabilities arising out of your use of these resources. TI’s products are provided subject to TI’s Terms of Sale or other applicable terms available either on ti.com or provided in conjunction with such TI products. TI’s provision of these resources does not expand or otherwise alter TI’s applicable warranties or warranty disclaimers for TI products. TI objects to and rejects any additional or different terms you may have proposed. IMPORTANT NOTICE Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265 Copyright © 2022, Texas Instruments Incorporated
TLV62130EVM-505 价格&库存

很抱歉,暂时无法提供与“TLV62130EVM-505”相匹配的价格&库存,您可以联系我们找货

免费人工找货