0
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
会员中心
创作中心
发布
  • 发文章

  • 发资料

  • 发帖

  • 提问

  • 发视频

创作活动
TLV627432YFPR

TLV627432YFPR

  • 厂商:

    BURR-BROWN(德州仪器)

  • 封装:

    DSBGA8_1.57X0.88MM

  • 描述:

    DC-DC电源芯片 DSBGA8_1.57X0.88MM Vi=2.15V~5.5V Io=400mA 可调式

  • 数据手册
  • 价格&库存
TLV627432YFPR 数据手册
TLV627432 ZHCSKJ9B – JUNE 2016 – REVISED MARCH 2021 TLV627432 具有超低静态电流的高效降压转换器 1 特性 • • • • • • 输入电压范围:2.15V 至 5.5V 高达 400mA 的输出电流 工作静态电流很低 10µA 输出电流时的效率高达 90% 节能模式操作 可选输出电压 – 八个电压选项(1.2V 至 3.3V) 输出电压放电 低输出电压纹波 自动转换至无纹波 100% 模式 射频 (RF) 友好型 DCS-Control 总体解决方案尺寸小于 10mm2 小型 1.57mm × 0.88mm 8 焊球 WCSP 封装 2 应用 • • • • • • • 可穿戴设备 健身追踪器 智能手表 健康监测 ®低功耗蓝牙、RF4CE、Zigbee 高效率、超低功耗应用 能量收集 VIN 2.15 V to 5.5 V CIN 4.7 mF TLV627432 VIN SW EN VOS (1) L 2.2 mH VOUT COUT 10 mF VSEL1 VSEL2 VSEL3 TLV627432 是一款高效降压转换器,具有典型值为 360nA 的超低工作静态电流。该器件经过优化,可与 2.2µH 电感和 10µF 输出电容配合使用。该器件采用 DCS-Control 技术,开关频率典型值为 1.2MHz。在节 能模式下,该器件可将轻负载效率向下扩展至 10µA 负 载电流及以下。TLV627432 的输出电流为 300mA。 TLV627432 提供了八个可编程的输出电压,可通过三 个选择引脚在 1.2V 至 3.3V 范围内进行选择。 TLV627432 经优化,使用一个小型输出电容即可获得 低输出电压纹波和低噪声。一旦输入电压接近输出电 压,器件便会进入无纹波 100% 模式,以防止输出纹 波电压增大。在此工作模式下,器件会停止开关操作并 导通高侧 MOSFET。 器件信息 GND 典型应用 Low Power MCU & RF Efficiency % • • • • • • 3 说明 器件型号 封装(1) 封装尺寸(标称值) TLV627432 DSBGA (8) 1.57mm × 0.88mm 如需了解所有可用封装,请参阅数据表末尾的可订购产品附 录。 100 95 90 85 80 75 70 65 60 55 50 45 40 0.001 VIN = 5.0V VIN = 4.2V VIN = 3.6V 0.01 0.1 1 IOUT [mA] 10 100 1000 C001 效率 本文档旨在为方便起见,提供有关 TI 产品中文版本的信息,以确认产品的概要。有关适用的官方英文版本的最新信息,请访问 www.ti.com,其内容始终优先。TI 不保证翻译的准确性和有效性。在实际设计之前,请务必参考最新版本的英文版本。 English Data Sheet: SLVSDH5 TLV627432 www.ti.com.cn ZHCSKJ9B – JUNE 2016 – REVISED MARCH 2021 Table of Contents 1 特性................................................................................... 1 2 应用................................................................................... 1 3 说明................................................................................... 1 4 Revision History.............................................................. 2 5 Device Comparison Table ..............................................3 6 Pin Configuration and Functions...................................4 7 Specifications.................................................................. 6 7.1 Absolute Maximum Ratings........................................ 6 7.2 ESD Ratings .............................................................. 6 7.3 Recommended Operating Conditions.........................6 7.4 Thermal Information ...................................................6 7.5 Electrical Characteristics.............................................7 7.6 Timing Requirements.................................................. 8 7.7 Typical Characteristics................................................ 8 8 Detailed Description........................................................9 8.1 Overview..................................................................... 9 8.2 Functional Block Diagram........................................... 9 8.3 Feature Description.....................................................9 8.4 Device Functional Modes..........................................10 9 Application and Implementation.................................. 12 9.1 Application Information............................................. 12 9.2 Typical Application ................................................... 12 10 Power Supply Recommendations..............................18 11 Layout........................................................................... 19 11.1 Layout Guidelines................................................... 19 11.2 Layout Example...................................................... 19 12 Device and Documentation Support..........................20 12.1 Device Support....................................................... 20 12.2 接收文档更新通知................................................... 20 12.3 支持资源..................................................................20 12.4 Trademarks............................................................. 20 12.5 静电放电警告.......................................................... 20 12.6 术语表..................................................................... 20 13 Mechanical, Packaging, and Orderable Information.................................................................... 21 4 Revision History 注:以前版本的页码可能与当前版本的页码不同 Changes from Revision A (December 2019) to Revision B (March 2021) Page • 更新了整个文档的表、图和交叉参考的编号格式。.............................................................................................1 Changes from Revision * (June 2016) to Revision A (December 2019) Page • 首次公开发布的文档........................................................................................................................................... 1 2 Submit Document Feedback Copyright © 2022 Texas Instruments Incorporated Product Folder Links: TLV627432 TLV627432 www.ti.com.cn ZHCSKJ9B – JUNE 2016 – REVISED MARCH 2021 5 Device Comparison Table TA PART NUMBER OUTPUT VOLTAGE SETTINGS (VSEL 1 - 3) OUTPUT CURRENT PACKAGE MARKING –40°C to 85°C TLV627432 1.2 V, 1.5 V, 1.8 V, 2.1 V, 2.5 V, 2.8 V, 3.0 V, 3.3 V 400 mA 160322 Submit Document Feedback Copyright © 2022 Texas Instruments Incorporated Product Folder Links: TLV627432 3 TLV627432 www.ti.com.cn ZHCSKJ9B – JUNE 2016 – REVISED MARCH 2021 6 Pin Configuration and Functions 1 2 A SW VIN B EN GND C VSEL1 VOS D VSEL2 VSEL3 图 6-1. 8-Pin DSBGA YFP Package (Top View) 表 6-1. Pin Functions PIN 4 NAME NO VIN A2 SW GND I/O DESCRIPTION PWR VIN power supply pin. Connect the input capacitor close to this pin for best noise and voltage spike suppression. A ceramic capacitor of 4.7 µF is required. A1 OUT The switch pin is connected to the internal MOSFET switches. Connect the inductor to this terminal. B2 PWR GND supply pin. Connect this pin close to the GND terminal of the input and output capacitor. VOS C2 IN Feedback pin for the internal feedback divider network and regulation loop. Discharges VOUT when the converter is disabled. Connect this pin directly to the output capacitor with a short trace. VSEL3 D2 IN VSEL2 D1 IN Output voltage selection pins. See 表 6-2 for VOUT selection. These pin must be terminated. The pins can be dynamically changed during operation. VSEL1 C1 IN EN B1 IN High level enables the devices, low level turns the device off. The pin must be terminated. Submit Document Feedback Copyright © 2022 Texas Instruments Incorporated Product Folder Links: TLV627432 TLV627432 www.ti.com.cn ZHCSKJ9B – JUNE 2016 – REVISED MARCH 2021 表 6-2. Output Voltage Setting Output Voltage Setting VOUT [V] VSEL Setting TLV627432 VSEL3 VSEL2 VSEL1 1.2 0 0 0 1.5 0 0 1 1.8 0 1 0 2.1 0 1 1 2.5 1 0 0 2.8 1 0 1 3.0 1 1 0 3.3 1 1 1 Submit Document Feedback Copyright © 2022 Texas Instruments Incorporated Product Folder Links: TLV627432 5 TLV627432 www.ti.com.cn ZHCSKJ9B – JUNE 2016 – REVISED MARCH 2021 7 Specifications 7.1 Absolute Maximum Ratings over operating free-air temperature range (unless otherwise noted) (1) MIN MAX UNIT VIN –0.3 6 V SW –0.3 VIN +0.3V V EN, VSEL1-3 –0.3 VIN +0.3V V –0.3 3.7 V Operating junction temperature, TJ –40 125 °C Storage temperature, Tstg –65 150 °C Pin voltage(2) VOS (1) (2) Stresses beyond those listed under absolute maximum ratings may cause permanent damage to the device. These are stress ratings only and functional operation of the device at these or any other conditions beyond those indicated under recommended operating conditions is not implied. Exposure to absolute–maximum–rated conditions for extended periods may affect device reliability. All voltage values are with respect to network ground terminal GND. 7.2 ESD Ratings VALUE V(ESD) (1) (2) Electrostatic discharge Human body model (HBM), per ANSI/ESDA/JEDEC JS-001, all pins(1) ±2000 Charged device model (CDM), per JEDEC specification JESD22-C101, all pins(2) ±500 UNIT V JEDEC document JEP155 states that 500-V HBM allows safe manufacturing with a standard ESD control process. The human body model is a 100-pF capacitor discharged through a 1.5-kΩ resistor into each pin. JEDEC document JEP157 states that 250-V CDM allows safe manufacturing with a standard ESD control process. 7.3 Recommended Operating Conditions MIN NOM VIN Supply voltage VIN 2.15 IOUT Device output current TJ Operating junction temperature range MAX UNIT 5.5 5.5V ≥ VIN ≥ (VOUTnom + 0.7V) ≥ 2.15V 300 5.5V ≥ VIN ≥ (VOUTnom + 0.7V) ≥ 3V 400 -40 V mA 125 °C 7.4 Thermal Information TLV627432 THERMAL METRIC(1) YFP Package (DSBGA) UNIT 8 PINS RθJA Junction-to-ambient thermal resistance 103 °C/W RθJC(top) Junction-to-case (top) thermal resistance 1.0 °C/W RθJB Junction-to-board thermal resistance 20 °C/W ψJT Junction-to-top characterization parameter 0.3 °C/W ψJB Junction-to-board characterization parameter 20 °C/W RθJC(bot) Junction-to-case (bottom) thermal resistance N/A °C/W (1) 6 For more information about traditional and new thermal metrics, see the Semiconductor and IC Package Thermal Metrics application report, SPRA953. Submit Document Feedback Copyright © 2022 Texas Instruments Incorporated Product Folder Links: TLV627432 TLV627432 www.ti.com.cn ZHCSKJ9B – JUNE 2016 – REVISED MARCH 2021 7.5 Electrical Characteristics VIN = 3.6V, TA = –40°C to 85°C typical values are at TA = 25°C (unless otherwise noted) PARAMETER TEST CONDITIONS MIN TYP MAX 360 1800 UNIT SUPPLY IQ Operating quiescent EN = VIN, IOUT = 0µA, VOUT = 1.8V, device not switching current EN = VIN, IOUT = 0mA, VOUT = 1.8V , device switching ISD Shutdown current EN = GND, shutdown current into VIN 70 1000 VTH_ UVLO+ Undervoltage lockout threshold Rising VIN 2.075 2.15 Falling VIN 1.925 2 VTH_UVLO- 460 nA nA V INPUTS (EN, VSEL1-3) VIH TH High level input threshold 2.2V ≤ VIN ≤ 5.5V VIL TH Low level input threshold 2.2V ≤ VIN ≤ 5.5V IIN Input bias Current 1.1 0.4 V V 10 25 0.45 1.12 0.22 0.65 650 800 nA POWER SWITCHES RDS(ON) High side MOSFET on-resistance Low Side MOSFET on-resistance High side MOSFET switch current limit ILIMF Ω IOUT = 50mA 3.0V ≤ VIN ≤ 5.5V 590 mA Low side MOSFET switch current limit 650 OUTPUT VOLTAGE DISCHARGE RDSCH_VOS MOSFET onresistance EN = GND, IVOS = -10mA into VOS pin 30 65 Ω IIN_VOS Bias current into VOS pin EN = VIN, VOUT = 2V 40 1010 nA 250 350 AUTO 100% MODE TRANSITION VTH_100+ Auto 100% Mode leave detection threshold (1) Rising VIN,100% Mode is left with VIN = VOUT + VTH_100+ VTH_100- Auto 100% Mode enter detection threshold (1) Falling VIN, 100% Mode is entered with VIN = VOUT + VTH_100- 150 mV 85 200 290 80 150 200 OUTPUT ILIM_softstart High side softstart switch current limit Low side softstart switch current limit Output voltage range VOUT (1) Output voltage accuracy EN=low to high mA 150 Output voltages are selected with pins VSEL 1 - 3 1.2 3.3 IOUT = 10mA, VOUT = 1.8V -2.5 0% 2.5 IOUT = 100mA, VOUT = 1.8V –2 0% 2 DC output voltage load regulation VOUT = 1.8V DC output voltage line regulation VOUT = 1.8V, IOUT = 100mA, 2.5V ≤ VIN ≤ 5.0V 0.001 0 V %/mA %/V VIN is compared to the programmed output voltage (VOUT). When VIN–VOUT falls below VTH_100- the device enters 100% Mode by turning the high side MOSFET on. The 100% Mode is exited when VIN–VOUT exceeds VTH_100+ and the device starts switching. The hysteresis for the 100% Mode detection threshold VTH_100+ - VTH_100- will always be positive and will be approximately 50 mV(typ) Submit Document Feedback Copyright © 2022 Texas Instruments Incorporated Product Folder Links: TLV627432 7 TLV627432 www.ti.com.cn ZHCSKJ9B – JUNE 2016 – REVISED MARCH 2021 7.6 Timing Requirements VIN = 3.6V, TJ = –40°C to 85°C typical values are at TA = 25°C (unless otherwise noted) PARAMETER TEST CONDITIONS MIN tONmin Minimum ON time VOUT = 2.0V, IOUT = 0 mA tOFFmin Minimum OFF time tStartup_delay Regulator start up delay time From transition EN = low to high until device starts switching tSoftstart Softstart time 2.5V ≤ VIN ≤ 5.5V, EN = VIN TYP MAX UNIT 225 ns 50 ns 10 25 ms 700 1200 µs 60 80 100 7.7 Typical Characteristics 700 225 200 Shutdown Current (nA) Quiescent Current (nA) 600 250 VIN = 2.2 V VIN = 2.5 V VIN = 3.6 V VIN = 5.5 V VIN = 6.0 V 500 400 175 VIN = 2.2 V VIN = 2.5 V VIN = 3.6 V VIN = 5.5 V VIN = 6.0 V 150 125 100 75 50 300 25 200 -60 -40 -20 0 20 40 Temperature (qC) EN = VIN, VOUT = 1.8V 60 80 0.8 0.4 Low Side RDSON (:) High Side RDSON (:) 0.5 0.45 0.7 0.6 0.5 0.4 0.3 0.2 -20 0 20 40 Temperature (qC) 60 80 0.35 0.3 0.25 0.2 0.15 VIN = 2.2 V VIN = 2.5 V VIN = 3.6 V 0.05 100 D003 图 7-3. High Side RDSON vs Temperature D002 0.1 VIN = 2.2 V VIN = 2.5 V VIN = 3.6 V 0.1 0 20 40 Temperature (qC) 图 7-2. Shutdown Current ISD vs Temperature 1 -40 -20 EN = GND Device Not Switching 0.9 0 -60 -40 D001 图 7-1. Quiescent Current vs Temperature 8 0 -60 100 0 -60 -40 -20 0 20 40 Temperature (qC) 60 80 100 D004 图 7-4. Low-side RDSON vs Temperature Submit Document Feedback Copyright © 2022 Texas Instruments Incorporated Product Folder Links: TLV627432 TLV627432 www.ti.com.cn ZHCSKJ9B – JUNE 2016 – REVISED MARCH 2021 8 Detailed Description 8.1 Overview The TLV627432 is a high frequency step down converter with ultra low quiescent current. The device operates with a quasi fixed switching frequency typically at 1.2 MHz. Using TI's DCS-Control™ topology the device extends the high efficiency operation area down to a few microamperes of load current during Power Save Mode Operation. 8.2 Functional Block Diagram Ultra Low Power Reference EN Softstart VOS UVLO EN VOS VSEL1 Internal VFB feedback divider network* VSEL2 VSEL3 UVLO Comp ̶ VIN UVLO Auto 100% Mode Comp 100% ̶ VIN Mode VTH_100 + VTH_UVLO + VOS VFB VREF VIN VOS Power Stage Current Limit Comparator Timer DCS Control VOUT Discharge UVLO Min. On VIN Limit High Side Min. OFF Direct Control & Compensation EN Control Logic ̶ Gate Driver Anti Shoot-Through SW + Error amplifier PMOS Main Comparator Limit Low Side Current Limit Comparator NMOS GND * typical 50 MW 8.3 Feature Description 8.3.1 DCS-Control™ TI's ™DCS-Control (Direct Control with Seamless Transition into Power Save Mode) is an advanced regulation topology, which combines the advantages of hysteretic and voltage mode control. Characteristics of DCSControl™ are excellent AC load regulation and transient response, low output ripple voltage and a seamless transition between PFM and PWM mode operation. DCS-Control™ includes an AC loop which senses the output voltage (VOS pin) and directly feeds the information to a fast comparator stage. This comparator sets the switching frequency, which is constant for steady state operating conditions, and provides immediate response to dynamic load changes. In order to achieve accurate DC load regulation, a voltage feedback loop is used. The internally compensated regulation network achieves fast and stable operation with small external components and low ESR capacitors. The DCS-Control ™ topology supports PWM (Pulse Width Modulation) mode for medium and high load conditions and a Power Save Mode at light loads. During PWM mode, it operates in continuous conduction mode. The switching frequency is typically 1.2 MHz with a controlled frequency variation depending on the input voltage and load current. If the load current decreases, the converter seamlessly enters Power Save Mode to maintain high efficiency down to very light loads. In Power Save Mode, the switching frequency varies linearly with the load current. Since DCS-Control™ supports both operation modes within one single building block, the Submit Document Feedback Copyright © 2022 Texas Instruments Incorporated Product Folder Links: TLV627432 9 TLV627432 www.ti.com.cn ZHCSKJ9B – JUNE 2016 – REVISED MARCH 2021 transition from PWM to Power Save Mode is seamless with minimum output voltage ripple. The TLV627432 offers both excellent DC voltage and superior load transient regulation, combined with low output voltage ripple, minimizing interference with RF circuits. 8.3.2 Power Save Mode Operation In Power Save Mode the device operates in PFM (Pulse Frequency Modulation) that generates a single switching pulse to ramp up the inductor current and recharges the output capacitor, followed by a sleep period where most of the internal circuits are shutdown to achieve lowest operating quiescent current. During this time, the load current is supported by the output capacitor. The duration of the sleep period depends on the load current and the inductor peak current. During the sleep periods, the current consumption of TLV627432 is reduced to 360 nA. This low quiescent current consumption is achieved by an ultra low power voltage reference, an integrated high impedance feedback divider network and an optimized Power Save Mode operation. 8.3.3 Output Voltage Selection The TLV627432 doesn't require an external resistor divider network to program the output voltage. The device integrates a high impedance feedback resistor divider network that is programmed by the pins VSEL1-3. TLV627432 supports an output voltage range from 1.2 V to 3.3 V. The output voltage is programmed according to 表 6-2. The output voltage can be changed during operation. This can be used for simple dynamic output voltage scaling. 8.3.4 Output Voltage Discharge of the Buck Converter The device provides automatic output voltage discharge when EN is pulled low or the UVLO is triggered. The output of the buck converter is discharged over VOS. Because of this the output voltage will ramp up from zero once the device is enabled again. This is very helpful for accurate start-up sequencing. 8.3.5 Undervoltage Lockout UVLO To avoid misoperation of the device at low input voltages, an undervoltage lockout is used. The UVLO shuts down the device at a maximum voltage level of 2.0 V. The device will start at a UVLO level of 2.15 V. 8.3.6 Short circuit protection The TLV627432 integrates a current limit on the high side, as well on the low side MOSFETs to protect the device against overload or short circuit conditions. The peak current in the switches is monitored cycle by cycle. If the high side MOSFET current limit is reached, the high side MOSFET is turned off and the low side MOSFET is turned on until the switch current decreases below the low side MOSFET current limit. Once the low side MOSFET current limit trips, the low side MOSFET is turned off and the high side MOSFET turns on again. 8.4 Device Functional Modes 8.4.1 Enable and Shutdown The device is turned on with EN=high. With EN=low the device enters shutdown. This pin must be terminated. 8.4.2 Device Start-up and Softstart The device has an internal softstart to minimize input voltage drop during start-up. This allows the operation from high impedance battery cells. Once the device is enabled the device starts switching after a typical delay time of 10ms. Then the softstart time of typical 700 µs begins with a reduced current limit of typical 150 mA. When this time passed by the device enters full current limit operation. This allows a smooth start-up and the device can start into full load current. Furthermore, larger output capacitors impact the start-up behaviour of the DC/DC converter. Especially when the output voltage does not reach its nominal value after the typical soft-start time of 700 µs, has passed. 8.4.3 Automatic Transition Into No Ripple 100% Mode Once the input voltage comes close to the output voltage, the DC/DC converter stops switching and enters 100% duty cycle operation. It connects the output VOUT via the inductor and the internal high side MOSFET switch to the input VIN, once the input voltage VIN falls below the 100% mode enter threshold, VTH_100-. The DC/DC regulator is turned off, switching stops and therefore no output voltage ripple is generated. Since the 10 Submit Document Feedback Copyright © 2022 Texas Instruments Incorporated Product Folder Links: TLV627432 TLV627432 www.ti.com.cn ZHCSKJ9B – JUNE 2016 – REVISED MARCH 2021 output is connected to the input, the output voltage follows the input voltage minus the voltage drop across the internal high side switch and the inductor. Once the input voltage increases and trips the 100% mode exit threshold, VTH_100+ , the DC/DC regulator turns on and starts switching again. See 图 8-1 and 图 9-14. VIN VIN, VOUT 100% Mode 100% Mode VTH_100+ VTH_100VOUT tracks VIN Step Down Operation VOUT tracks VIN VUVLO+ VUVLOVOUT discharge tsoftstart 图 8-1. Automatic Transition into 100% Mode Submit Document Feedback Copyright © 2022 Texas Instruments Incorporated Product Folder Links: TLV627432 11 TLV627432 www.ti.com.cn ZHCSKJ9B – JUNE 2016 – REVISED MARCH 2021 9 Application and Implementation 备注 以下应用部分中的信息不属于 TI 器件规格的范围,TI 不担保其准确性和完整性。TI 的客 户应负责确定 器件是否适用于其应用。客户应验证并测试其设计,以确保系统功能。 9.1 Application Information The TLV627432 is a high efficiency step down converter with ultra low quiescent current of typically 360 nA. The device operates with a tiny 2.2-µH inductor and 10-µF output capacitor over the entire recommended operation range. A dedicated measurement set-up is required for the light load efficiency measurement and device quiescent current due to the operation in the sub microampere range. In this range any leakage current in the measurement set-up will impact the measurement results. 9.2 Typical Application VIN 2.15 V to 5.5 V TLV627432 CIN 4.7 mF L 2.2 mH VIN SW EN VOS VOUT Low Power MCU & RF COUT 10 mF VSEL1 VSEL2 VSEL3 GND 图 9-1. TLV627432 Typical Application Circuit 9.2.1 Design Requirements The TLV627432 is a highly integrated DC/DC converter. The output voltage is set via a VSEL pin interface. The design guideline provides a component selection to operate the device within the recommended operating conditions. 表 9-1 shows the list of components for the Application Characteristic Curves 表 9-1. Components for Application Characteristic Curves (1) Reference Description TLV627432 360nA Iq step down converter Manufacturer (1) Value Texas Instruments CIN Ceramic capacitor, GRM155R61C475ME15 4.7 µF Murata COUT Ceramic capacitor, GRM155R60J106ME11 10 µF Murata L Inductor DFE201610C 2.2 µH Toko See Third-Party Products Disclaimer 9.2.2 Detailed Design Procedure The first step in the design procedure is the selection of the output filter components. To simplify this process, 表 9-2 outlines possible inductor and capacitor value combinations. 表 9-2. Recommended LC Output Filter Combinations Inductor Value [µH](2) 2.2 (1) (2) 12 Output Capacitor Value [µF](1) 4.7µF 10µF 22µF 47µF √ √(3) √ √ 100µF Capacitance tolerance and bias voltage de-rating is anticipated. The effective capacitance varies by +20% and –50%. Inductor tolerance and current de-rating is anticipated. The effective inductance can vary by 20% and -30%. Submit Document Feedback Copyright © 2022 Texas Instruments Incorporated Product Folder Links: TLV627432 TLV627432 www.ti.com.cn (3) ZHCSKJ9B – JUNE 2016 – REVISED MARCH 2021 Typical application configuration. Other check marks indicate alternative filter combinations. 9.2.2.1 Inductor Selection The inductor value affects the peak-to-peak ripple current, the PWM-to-PFM transition point, the output voltage ripple and the efficiency. The selected inductor has to be rated for its DC resistance and saturation current. The inductor ripple current (ΔIL) decreases with higher inductance and increases with higher VIN or VOUT and can be estimated according to 方程式 1. 方程式 2 calculates the maximum inductor current under static load conditions. The saturation current of the inductor should be rated higher than the maximum inductor current, as calculated with 方程式 2. This is recommended because during a heavy load transient the inductor current rises above the calculated value. A more conservative way is to select the inductor saturation current according to the high-side MOSFET switch current limit, ILIMF. Vout Vin L ´ ¦ 1D IL = Vout ´ ILmax = Ioutmax + (1) DIL 2 (2) where • • • • f = switching frequency L = inductor value ΔIL= Peak to Peak inductor ripple current ILmax = Maximum Inductor current The table below shows a list of possible inductors. 表 9-3. List of Possible Inductors INDUCTANCE [µH] DIMENSIONS [mm3] INDCUTOR TYPE ISAT/DCR SUPPLIER 2.2 2.0 x 1.6 x 1.0 DFE201610C 1.4 A/170 mΩ TOKO 2.2 2.0 × 1.25 × 1.0 MIPSZ2012D 2R2 0.7 A/230 mΩ FDK 2.2 2.0 x 1.2 x 1.0 744 797 752 22 0.7 A/200 mΩ Wurth Electronik 2.2 1.6 x 0.8 x 0.8 MDT1608-CH2R2M 0.7 A/300 mΩ TOKO COMMENT Efficiency plot 9.2.2.2 Output Capacitor Selection The DCS-Control™ scheme of the TLV627432 allows the use of tiny ceramic capacitors. Ceramic capacitors with low ESR values have the lowest output voltage ripple and are recommended. The output capacitor requires either an X7R or X5R dielectric. At light load currents, the converter operates in Power Save Mode and the output voltage ripple is dependent on the output capacitor value. A larger output capacitors can be used reducing the output voltage ripple. The leakage current of the output capacitor adds to the overall quiescent current. 9.2.2.3 Input Capacitor Selection Because the buck converter has a pulsating input current, a low ESR input capacitor is required for best input voltage filtering to minimize input voltage spikes. For most applications a 4.7-µF input capacitor is sufficient. The input capacitor can be increased without any limit for better input voltage filtering. The leakage current of the input capacitor adds to the overall quiescent current. 表 9-4 shows a selection of input and output capacitors. 表 9-4. List of Possible Capacitors CAPACITANCE [μF] SIZE CAPACITOR TYPE SUPPLIER 4.7 0402 GRM155R61C475ME15 Murata Submit Document Feedback Copyright © 2022 Texas Instruments Incorporated Product Folder Links: TLV627432 13 TLV627432 www.ti.com.cn ZHCSKJ9B – JUNE 2016 – REVISED MARCH 2021 表 9-4. List of Possible Capacitors (continued) 14 CAPACITANCE [μF] SIZE CAPACITOR TYPE SUPPLIER 10 0402 GRM155R60J106ME11 Murata Submit Document Feedback Copyright © 2022 Texas Instruments Incorporated Product Folder Links: TLV627432 TLV627432 www.ti.com.cn ZHCSKJ9B – JUNE 2016 – REVISED MARCH 2021 9.2.3 Application Curves VIN = 5.0V VIN = 4.2V VIN = 3.6V 0.01 0.1 1 IOUT [mA] 10 100 1000 VIN = 4.2V VIN = 3.6V VIN = 3.0V 0 0 0 1 IOUT [mA] 10 100 1000 C001 图 9-3. Efficiency vs Load Current; VOUT = 1.8 V 1800 VIN = 5.0 V VIN = 3.6 V 1600 Switching Frequency (kHz) Efficiency % VIN = 5.0V C001 图 9-2. Efficiency vs Load Current, VOUT = 3.3 V 90 85 80 75 70 65 60 55 50 45 40 35 30 0.001 100 95 90 85 80 75 70 65 60 55 50 45 40 35 30 Efficiency % Efficiency % 100 95 90 85 80 75 70 65 60 55 50 45 40 0.001 VIN = 5.0V VIN = 4.2V VIN = 3.6V VIN = 3.0V 1400 1200 1000 800 600 400 200 0.01 0.1 1 IOUT [mA] 10 100 1000 0 0 C001 50 100 图 9-4. Efficiency vs Load Current; VOUT = 1.2 V 150 200 IOUT (mA) 250 300 350 D011 1600 1400 1400 1200 Switching Frequency (kHz) Switching Frequency (kHz) 图 9-5. Switching Frequency vs Load Current VOUT = 3.3 V 1200 1000 800 VIN = 5.0 V VIN = 3.6 V VIN = 3.0 V VIN = 2.2 V 600 400 1000 800 600 400 VIN = 5.0 V VIN = 3.6 V VIN = 3.0 V VIN = 2.0 V 200 200 0 0 0 50 100 150 200 IOUT (mA) 250 300 350 0 D012 图 9-6. Switching Frequency vs Load Current VOUT = 1.8 V 50 100 150 200 IOUT (mA) 250 300 350 D013 图 9-7. Switching Frequency vs Load Current VOUT = 1.2 V Submit Document Feedback Copyright © 2022 Texas Instruments Incorporated Product Folder Links: TLV627432 15 TLV627432 www.ti.com.cn ZHCSKJ9B – JUNE 2016 – REVISED MARCH 2021 图 9-8. PFM (Power Save Mode) Mode Operation 图 9-9. PWM Mode Operation IL IL 图 9-10. Startup Into 100 mA Electronic Load EN Delay + Soft-Start Delay IL IL 图 9-12. Load Transient Response; 100 mA to 290 mA 16 图 9-11. Startup Into 300 mA Electronic Load Soft-Start Delay 图 9-13. Load Transient Response; 5 mA to 290 mA Submit Document Feedback Copyright © 2022 Texas Instruments Incorporated Product Folder Links: TLV627432 TLV627432 www.ti.com.cn ZHCSKJ9B – JUNE 2016 – REVISED MARCH 2021 图 9-14. 100% Mode Entry and Leave Operation IOUT = 30 mA Submit Document Feedback Copyright © 2022 Texas Instruments Incorporated Product Folder Links: TLV627432 17 TLV627432 www.ti.com.cn ZHCSKJ9B – JUNE 2016 – REVISED MARCH 2021 10 Power Supply Recommendations The power supply must provide a current rating according to the supply voltage, output voltage and output current of the TLV627432. 18 Submit Document Feedback Copyright © 2022 Texas Instruments Incorporated Product Folder Links: TLV627432 TLV627432 www.ti.com.cn ZHCSKJ9B – JUNE 2016 – REVISED MARCH 2021 11 Layout 11.1 Layout Guidelines • As for all switching power supplies, the layout is an important step in the design. Care must be taken in board layout to get the specified performance. • It is critical to provide a low inductance, impedance ground path. Therefore, use wide and short traces for the main current paths. • The input capacitor should be placed as close as possible to the IC pins VIN and GND. This is the most critical component placement. • The VOS line is a sensitive high impedance line and should be connected to the output capacitor and routed away from noisy components and traces (e.g. SW line) or other noise sources. 11.2 Layout Example VOUT GND COUT L CIN VIN 图 11-1. Recommended PCB Layout Submit Document Feedback Copyright © 2022 Texas Instruments Incorporated Product Folder Links: TLV627432 19 TLV627432 www.ti.com.cn ZHCSKJ9B – JUNE 2016 – REVISED MARCH 2021 12 Device and Documentation Support 12.1 Device Support 12.1.1 第三方产品免责声明 TI 发布的与第三方产品或服务有关的信息,不能构成与此类产品或服务或保修的适用性有关的认可,不能构成此 类产品或服务单独或与任何 TI 产品或服务一起的表示或认可。 12.2 接收文档更新通知 要接收文档更新通知,请导航至 ti.com 上的器件产品文件夹。点击订阅更新 进行注册,即可每周接收产品信息更 改摘要。有关更改的详细信息,请查看任何已修订文档中包含的修订历史记录。 12.3 支持资源 TI E2E™ 支持论坛是工程师的重要参考资料,可直接从专家获得快速、经过验证的解答和设计帮助。搜索现有解 答或提出自己的问题可获得所需的快速设计帮助。 链接的内容由各个贡献者“按原样”提供。这些内容并不构成 TI 技术规范,并且不一定反映 TI 的观点;请参阅 TI 的《使用条款》。 12.4 Trademarks TI E2E™ is a trademark of Texas Instruments. 所有商标均为其各自所有者的财产。 12.5 静电放电警告 静电放电 (ESD) 会损坏这个集成电路。德州仪器 (TI) 建议通过适当的预防措施处理所有集成电路。如果不遵守正确的处理 和安装程序,可能会损坏集成电路。 ESD 的损坏小至导致微小的性能降级,大至整个器件故障。精密的集成电路可能更容易受到损坏,这是因为非常细微的参 数更改都可能会导致器件与其发布的规格不相符。 12.6 术语表 TI 术语表 20 本术语表列出并解释了术语、首字母缩略词和定义。 Submit Document Feedback Copyright © 2022 Texas Instruments Incorporated Product Folder Links: TLV627432 TLV627432 www.ti.com.cn ZHCSKJ9B – JUNE 2016 – REVISED MARCH 2021 13 Mechanical, Packaging, and Orderable Information The following pages include mechanical, packaging, and orderable information. This information is the most current data available for the designated devices. This data is subject to change without notice and revision of this document. For browser-based versions of this data sheet, refer to the left-hand navigation. Submit Document Feedback Copyright © 2022 Texas Instruments Incorporated Product Folder Links: TLV627432 21 TLV627432 www.ti.com.cn ZHCSKJ9B – JUNE 2016 – REVISED MARCH 2021 PACKAGE OUTLINE YFP0008-C01 DSBGA - 0.531 mm max height SCALE 10.000 DIE SIZE BALL GRID ARRAY B E A BALL A1 CORNER D 0.341 0.283 C 0.531 MAX SEATING PLANE 0.19 0.13 0.05 C SYMM D C SYMM 1.2 TYP D: Max = 1.592 mm, Min = 1.531 mm B E: Max = 0.896 mm, Min = 0.836 mm 0.4 TYP A 8X 0.015 0.25 0.21 C A B 1 2 0.4 TYP 4226583/A 03/2021 NOTES: 1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing per ASME Y14.5M. 2. This drawing is subject to change without notice. www.ti.com 22 Submit Document Feedback Copyright © 2022 Texas Instruments Incorporated Product Folder Links: TLV627432 TLV627432 www.ti.com.cn ZHCSKJ9B – JUNE 2016 – REVISED MARCH 2021 EXAMPLE BOARD LAYOUT YFP0008-C01 DSBGA - 0.531 mm max height DIE SIZE BALL GRID ARRAY (0.4) TYP 8X ( 0.23) 1 2 A (0.4) TYP B SYMM C D SYMM LAND PATTERN EXAMPLE EXPOSED METAL SHOWN SCALE: 50X 0.05 MAX 0.05 MIN METAL UNDER SOLDER MASK ( 0.23) METAL EXPOSED METAL SOLDER MASK OPENING ( 0.23) SOLDER MASK OPENING EXPOSED METAL SOLDER MASK DEFINED NON-SOLDER MASK DEFINED (PREFERRED) SOLDER MASK DETAILS NOT TO SCALE 4226583/A 03/2021 NOTES: (continued) 3. Final dimensions may vary due to manufacturing tolerance considerations and also routing constraints. See Texas Instruments Literature No. SNVA009 (www.ti.com/lit/snva009). www.ti.com Submit Document Feedback Copyright © 2022 Texas Instruments Incorporated Product Folder Links: TLV627432 23 TLV627432 www.ti.com.cn ZHCSKJ9B – JUNE 2016 – REVISED MARCH 2021 EXAMPLE STENCIL DESIGN YFP0008-C01 DSBGA - 0.531 mm max height DIE SIZE BALL GRID ARRAY (0.4) TYP (R0.05) TYP 8X ( 0.25) 1 2 A (0.4) TYP B SYMM METAL TYP C D SYMM SOLDER PASTE EXAMPLE BASED ON 0.1 mm THICK STENCIL SCALE: 50X 4226583/A 03/2021 NOTES: (continued) 4. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. www.ti.com 24 Submit Document Feedback Copyright © 2022 Texas Instruments Incorporated Product Folder Links: TLV627432 PACKAGE OPTION ADDENDUM www.ti.com 11-Mar-2021 PACKAGING INFORMATION Orderable Device Status (1) Package Type Package Pins Package Drawing Qty Eco Plan (2) Lead finish/ Ball material MSL Peak Temp Op Temp (°C) Device Marking (3) (4/5) (6) TLV627432YFPR ACTIVE DSBGA YFP 8 3000 RoHS & Green SNAGCU Level-1-260C-UNLIM -40 to 85 160322 (1) The marketing status values are defined as follows: ACTIVE: Product device recommended for new designs. LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect. NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design. PREVIEW: Device has been announced but is not in production. Samples may or may not be available. OBSOLETE: TI has discontinued the production of the device. (2) RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may reference these types of products as "Pb-Free". RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption. Green: TI defines "Green" to mean the content of Chlorine (Cl) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of
TLV627432YFPR 价格&库存

很抱歉,暂时无法提供与“TLV627432YFPR”相匹配的价格&库存,您可以联系我们找货

免费人工找货
TLV627432YFPR
    •  国内价格
    • 1+1.18800

    库存:51000

    TLV627432YFPR
      •  国内价格
      • 200+3.01032

      库存:895