0
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
会员中心
创作中心
发布
  • 发文章

  • 发资料

  • 发帖

  • 提问

  • 发视频

创作活动
TLV7012DGKR

TLV7012DGKR

  • 厂商:

    BURR-BROWN(德州仪器)

  • 封装:

    VSSOP8_3X3MM

  • 描述:

    低功耗比较器 VSSOP8_3X3MM 5μA -40°C~125°C

  • 数据手册
  • 价格&库存
TLV7012DGKR 数据手册
Order Now Product Folder Support & Community Tools & Software Technical Documents TLV7011, TLV7021, TLV7012, TLV7022 ZHCSGK4E – SEPTEMBER 2017 – REVISED NOVEMBER 2019 TLV701x 和 TLV702x 小尺寸、低功耗、低电压比较器 1 特性 • • • • • • • • • • 1 2 超小型封装:X2SON (0.8 x 0.8mm ) 标准封装:SOT23、SC70、VSSOP 1.6V 至 6.5V 的宽电源电压范围 5µA 静态电源电流 260ns 低传播延迟 轨至轨共模输入电压 内部迟滞 推挽和开漏输出选项 过驱动输入无相位反转 –40°C 至 +125°C 的工作环境温度范围 2 应用 • • • • • • • 手机和平板电脑 便携式电池供电器件 红外接收器 电平转换器 阈值检测器与鉴别器 窗口比较器 过零检测器 TLV701x 和 TLV702x 提供出色的速度功率综合性能, 其传播延迟为 260ns,静态电源电流为 5μA。得益于 这种微功率下快速响应时间的综合性能,功率敏感型系 统能够监测故障状况并快速做出响应。这些比较器的工 作电压范围为 1.6V 至 6.5V,因此可与 3V 和 5V 系统 兼容。 此外,这些比较器在发生过驱动输入和内部迟滞时,不 会产生输出相位反转。这些 特性 该系列的比较器非常 适合在恶劣嘈杂环境中进行精密电压监测,其中缓慢输 入信号必须转换为无噪声数字输出。 TLV701x 具有推挽式输出级,能够灌/拉毫安级电流, 同时可对 LED 进行控制或驱动容性负载。TLV702x 具 有可上拉到 VCC 之上的漏极开路输出级,因此适用于 电平转换器和双极至单端转换器。 器件信息(1) 器件型号 封装(引脚) TLV7011、 TLV7021 TLV7012、 TLV7022 3 说明 TLV7011/7021(单通道)和 TLV7012/7022(双通 道)是微功耗比较器,采用低工作电压,具有轨至轨输 入功能。这些比较器采用 0.8mm × 0.8mm 超小型无引 线封装和标准引线式封装,适用于空间紧凑型设计,例 如智能手机和其他便携式或电池供电 应用。 封装尺寸(标称值) X2SON (5) 0.80mm × 0.80mm SC70 (5) 2.00mm × 1.25mm SOT-23 (5) 2.90mm × 1.60mm VSSOP (8) 3mm x 3mm (1) 如需了解所有可用封装,请参阅数据表末尾的可订购产品附 录。 TLV70x1 系列低功耗比较器 部件号 输出 IQ(典型值) tPD(典型值) TLV701x 推挽 5µA 260ns TLV702x 漏极开路 5µA 260ns TLV703x 推挽 335nA 3µs TLV704x 漏极开路 335nA 3µs X2SON 封装与 SC70 和美元硬币对比 传播延迟与过驱动 0.4 US dime (18x18x1.35 mm3) Rising Edge Falling Edge 5-Pin X2SON Propagation Delay (Ps) 5-Lead SC70 0.35 0.3 0.25 0.2 10 20 30 40 50 60 70 Input Overdrive (mV) 80 90 100 TLV7 TA = 25°C,VCC = 5V,CL = 15pF 1 本文档旨在为方便起见,提供有关 TI 产品中文版本的信息,以确认产品的概要。 有关适用的官方英文版本的最新信息,请访问 www.ti.com,其内容始终优先。 TI 不保证翻译的准确 性和有效性。 在实际设计之前,请务必参考最新版本的英文版本。 English Data Sheet: SLVSDM5 TLV7011, TLV7021, TLV7012, TLV7022 ZHCSGK4E – SEPTEMBER 2017 – REVISED NOVEMBER 2019 www.ti.com.cn 目录 1 2 3 4 5 6 特性 .......................................................................... 应用 .......................................................................... 说明 .......................................................................... 修订历史记录 ........................................................... Pin Configuration and Functions ......................... Specifications......................................................... 6.1 6.2 6.3 6.4 6.5 6.6 6.7 6.8 6.9 6.10 6.11 6.12 6.13 7 1 1 1 2 3 5 Absolute Maximum Ratings (Single)......................... 5 Absolute Maximum Ratings (Dual) ........................... 5 ESD Ratings.............................................................. 5 Recommended Operating Conditions (Single) ......... 5 Recommended Operating Conditions (Dual) ............ 6 Thermal Information (Single) .................................... 6 Thermal Information (Dual) ....................................... 6 Electrical Characteristics (Single) ............................. 7 Switching Characteristics (Single) ............................ 7 Electrical Characteristics (Dual) .............................. 8 Switching Characteristics (Dual) ............................. 8 Timing Diagrams ..................................................... 8 Typical Characteristics .......................................... 10 Detailed Description ............................................ 16 7.1 7.2 7.3 7.4 8 Overview ................................................................. Functional Block Diagram ....................................... Feature Description................................................. Device Functional Modes........................................ 16 16 16 16 Application and Implementation ........................ 18 8.1 Application Information............................................ 18 8.2 Typical Applications ................................................ 20 9 Power Supply Recommendations...................... 25 10 Layout................................................................... 25 10.1 Layout Guidelines ................................................. 25 10.2 Layout Example .................................................... 25 11 器件和文档支持 ..................................................... 26 11.1 11.2 11.3 11.4 11.5 11.6 11.7 器件支持................................................................ 相关链接................................................................ 接收文档更新通知 ................................................. 社区资源................................................................ 商标 ....................................................................... 静电放电警告......................................................... Glossary ................................................................ 26 26 26 26 26 26 26 12 机械、封装和可订购信息 ....................................... 26 4 修订历史记录 Changes from Revision D (February 2019) to Revision E • Page 已添加 添加了双通道选项 ....................................................................................................................................................... 1 Changes from Revision C (March 2018) to Revision D Page • 已添加 添加了引线式封装选项,目标位置: 特性 .................................................................................................................. 1 • 已删除 SOT23 封装的预览状态 .............................................................................................................................................. 1 • Deleted preview status of SOT23 package ............................................................................................................................ 3 Changes from Revision B (November 2017) to Revision C • Page 将预览 SC70 封装更改为生产数据.......................................................................................................................................... 1 Changes from Revision A (July 2017) to Revision B Page • 已将传播延迟从 200ns 更改为 260ns .................................................................................................................................... 1 • 向数据表添加了预览 SC70 和 SOT-23 封装........................................................................................................................... 1 • 应营销部门请求添加了 TLV70x1 系列微功耗比较器............................................................................................................... 1 • 已将重要图形标题从传播延迟与过驱电压 (TLV7011) 间的关系更改为传播延迟与过驱电压间的关系 .................................... 1 • Removed (TLV7011 only) text from several Typical Characteristics graphs ....................................................................... 10 • Removed some Typical Characteristics graphs .................................................................................................................. 10 • Added 图 14.......................................................................................................................................................................... 10 • Added 图 21 ......................................................................................................................................................................... 12 • Added content to the Inputs section ..................................................................................................................................... 16 • Added the IR Receiver Analog Front End section................................................................................................................ 21 2 版权 © 2017–2019, Texas Instruments Incorporated TLV7011, TLV7021, TLV7012, TLV7022 www.ti.com.cn ZHCSGK4E – SEPTEMBER 2017 – REVISED NOVEMBER 2019 Changes from Original (May 2017) to Revision A • Page 将器件状态从“高级信息”更改为“生产数据” .............................................................................................................................. 1 5 Pin Configuration and Functions DPW Package 5-Pin X2SON Top View OUT 1 5 IN+ 3 VEE VCC 2 4 ± IN Not to scale DBV and DCK Package 5-Pin SOT-23 and SC70 Top View OUT 1 VEE 2 IN+ 3 5 VCC 4 IN- Pin Functions PIN NAME I/O/P (1) DESCRIPTION X2SON SOT-23, SC70 OUT 1 1 O Output VCC 2 5 P Positive (highest) power supply VEE 3 2 P Negative (lowest) power supply IN– 4 4 I Inverting input IN+ 5 3 I Noninverting input (1) I = Input, O = Output, P = Power Copyright © 2017–2019, Texas Instruments Incorporated 3 TLV7011, TLV7021, TLV7012, TLV7022 ZHCSGK4E – SEPTEMBER 2017 – REVISED NOVEMBER 2019 www.ti.com.cn TLV7012/22 DGK Packages 8-Pin VSSOP Top View OUTA INAINA+ 1 8 2 7 3 6 VEE 4 5 VCC OUTB INBINB+ Pin Functions: TLV7012/22 PIN NAME NO. I/O DESCRIPTION INA– 2 I Inverting input, channel A INA+ 3 I Noninverting input, channel A INB– 6 I Inverting input, channel B INB+ 5 I Noninverting input, channel B OUTA 1 O Output, channel A OUTB 7 O Output, channel B VEE 4 — Negative (lowest) supply or ground (for single-supply operation) VCC 8 — Positive (highest) supply 4 Copyright © 2017–2019, Texas Instruments Incorporated TLV7011, TLV7021, TLV7012, TLV7022 www.ti.com.cn ZHCSGK4E – SEPTEMBER 2017 – REVISED NOVEMBER 2019 6 Specifications 6.1 Absolute Maximum Ratings (Single) over operating free-air temperature range (unless otherwise noted) (1) MIN MAX Supply voltage (VS = VCC – VEE) Input pins (IN+, IN–) (2) VEE – 0.3 TLV7011/7012 (3) VEE – 0.3 VCC + 0.3 TLV7021/7022 VEE – 0.3 6 Junction temperature, TJ Storage temperature, Tstg (2) (3) (4) V ±10 Output short-circuit duration (4) (1) V 6 Current into Input pins (IN+, IN–) (2) Output (OUT) UNIT 6 –65 mA V 10 s 150 °C 150 °C Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings only, which do not imply functional operation of the device at these or any other conditions beyond those indicated under Recommended Operating Conditions. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability. Input terminals are diode-clamped to VEE. Input signals that can swing 0.3V below VEE must be current-limited to 10mA or less. Output maximum is (VCC + 0.3V) or 6V, whichever is less. Short-circuit to ground, one comparator per package. 6.2 Absolute Maximum Ratings (Dual) over operating free-air temperature range (unless otherwise noted) (1) MIN MAX –0.3 7 VEE – 0.3 7 Supply voltage VS = VCC - VEE Input pins (IN+, IN-) (2) Current into Input pins (IN+, IN-) UNIT V V ±10 mA Output (OUT) (TLV7012) (3) VEE – 0.3 VCC + 0.3 V Output (OUT) (TLV7022) VEE – 0.3 7 V 10 s 150 °C 150 °C Output short-circuit duration (4) Junction temperature, TJ Storage temperature, Tstg (1) (2) (3) (4) –65 Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings only, which do not imply functional operation of the device at these or any other conditions beyond those indicated under Recommended Operating Conditions. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability. Input terminals are diode-clamped to VEE. Input signals that can swing 0.3V below VEE must be current-limited to 10mA or less Output maximum is (VCC + 0.3 V) or 7 V, whichever is less. Short-circuit to ground, one comparator per package. 6.3 ESD Ratings VALUE V(ESD) (1) (2) Electrostatic discharge Human-body model (HBM), per ANSI/ESDA/JEDEC JS-001 (1) ±2000 Charged-device model (CDM), per JEDEC specification JESD22-C101 (2) ±1000 UNIT V JEDEC document JEP155 states that 500-V HBM allows safe manufacturing with a standard ESD control process. JEDEC document JEP157 states that 250-V CDM allows safe manufacturing with a standard ESD control process. 6.4 Recommended Operating Conditions (Single) over operating free-air temperature range (unless otherwise noted) MIN Supply voltage (VS = VCC – VEE) Input Voltage Range Ambient temperature, TA Copyright © 2017–2019, Texas Instruments Incorporated NOM MAX UNIT 1.6 5.5 VEE – 0.1 VCC + 0.2 V V –40 125 °C 5 TLV7011, TLV7021, TLV7012, TLV7022 ZHCSGK4E – SEPTEMBER 2017 – REVISED NOVEMBER 2019 www.ti.com.cn 6.5 Recommended Operating Conditions (Dual) over operating free-air temperature range (unless otherwise noted) MIN MAX 1.6 6.5 VCC – 0.1 VEE + 0.2 V –40 125 °C Supply voltage VS = VCC – VEE Input voltage range Ambient temperature, TA UNIT V 6.6 Thermal Information (Single) TLV7011/TLV7021 THERMAL METRIC (1) DPW (X2SON) DBV (SOT23) DCK (SC70) UNIT 5 PINS 5 PINS 5 PINS RθJA Junction-to-ambient thermal resistance 497.5 306.3 278.8 °C/W RθJC(top) Junction-to-case (top) thermal resistance 275.5 228.4 188.6 °C/W RθJB Junction-to-board thermal resistance 372.2 166.5 113.2 °C/W ΨJT Junction-to-top characterization parameter 55.5 138.5 82.3 °C/W ΨJB Junction-to-board characterization parameter 370.3 165.3 112.4 °C/W RθJC(bot) Junction-to-case (bottom) thermal resistance 165.1 N/A N/A °C/W (1) For more information about traditional and new thermal metrics, see the Semiconductor and IC Package Thermal Metrics application report. 6.7 Thermal Information (Dual) TLV7012/TLV7022 THERMAL METRIC (1) DGK (VSSOP) UNIT 8 PINS RθJA Junction-to-ambient thermal resistance 211.7 °C/W RθJC(top) Junction-to-case (top) thermal resistance 96.1 °C/W RθJB Junction-to-board thermal resistance 133.5 °C/W ΨJT Junction-to-top characterization parameter 28.3 °C/W ΨJB Junction-to-board characterization parameter 131.7 °C/W RθJC(bot) Junction-to-case (bottom) thermal resistance N/A °C/W (1) 6 For more information about traditional and new thermal metrics, see the Semiconductor and IC Package Thermal Metrics application report. Copyright © 2017–2019, Texas Instruments Incorporated TLV7011, TLV7021, TLV7012, TLV7022 www.ti.com.cn ZHCSGK4E – SEPTEMBER 2017 – REVISED NOVEMBER 2019 6.8 Electrical Characteristics (Single) VS = 1.8 V to 5 V, VCM = VS / 2; minimum and maximum values are at TA = –40°C to +125°C (unless otherwise noted). Typical values are at TA = 25°C. PARAMETER TEST CONDITIONS MIN TYP MAX ±0.5 ±8 mV 4.2 14 mV VIO Input offset voltage VS = 1.8 V and 5 V, VCM = VS / 2 VHYS Hysteresis VS = 1.8 V and 5 V, VCM = VS / 2 1.2 VS = 2.5 V to 5 V VEE VCC + 0.1 VEE + 0.1 VCC + 0.1 UNIT VCM Common-mode voltage range IB Input bias current 5 pA IOS Input offset current 1 pA VOH Output voltage high (for TLV7011 only) VS = 5 V, IO = 3 mA 4.8 V VOL Output voltage low VS = 5 V, IO = 3 mA 120 ILKG Open-drain output leakage current (TLV7021 only) VS = 5 V, VID = +0.1 V (output high), VPULLUP = VCC 100 pA CMRR Common-mode rejection ratio VEE < VCM < VCC, VS = 5 V 78 dB PSRR Power supply rejection ratio VS = 1.8 V to 5 V, VCM = VS / 2 78 dB VS = 5 V, sourcing 65 VS = 5 V, sinking 44 ISC Short-circuit current ICC Supply current VS = 1.8 V to 2.5 V 4.7 VS = 1.8 V, no load, VID = –0.1 V (Output Low) 5 220 V mV mA 10 µA 6.9 Switching Characteristics (Single) Typical values are at TA = 25°C, VCC = 5 V, VCM = 2.5 V; CL = 15 pF, input overdrive = 100 mV (unless otherwise noted). PARAMETER TEST CONDITIONS MIN TYP MAX UNIT tPHL Propagation delay time, high-to-low (RP = 2.5 kΩ TLV7021 only) Midpoint of input to midpoint of output, VOD = 100 mV 260 ns tPLH Propagation delay time, low-to-high (RP = 2.5 kΩ TLV7021 only) Midpoint of input to midpoint of output, VOD = 100 mV 310 ns tR Rise time (for TLV7011 only) 20% to 80% 5 ns tF Fall time 80% to 20% 5 ns tON Power-up time 20 µs (1) (1) During power on, VS must exceed 1.6 V for tON before the output tracks the input. Copyright © 2017–2019, Texas Instruments Incorporated 7 TLV7011, TLV7021, TLV7012, TLV7022 ZHCSGK4E – SEPTEMBER 2017 – REVISED NOVEMBER 2019 www.ti.com.cn 6.10 Electrical Characteristics (Dual) VS = 1.8 V to 5 V, VCM = VS / 2; minimum and maximum values are at TA = –40°C to +125°C (unless otherwise noted). Typical values are at TA = 25°C. PARAMETER TEST CONDITIONS MIN TYP MAX ±0.1 ±8 UNIT mV 9 15 mV VIO Input Offset Voltage VS = 1.8 V and 5 V, VCM = VS / 2 VHYS Hysteresis VS = 1.8 V and 5 V, VCM = VS / 2 VCM Common-mode voltage range IB Input bias current 2 pA IOS Input offset current 1 pA VOH Output voltage high (for TLV7012 only) VS = 5 V, VEE = 0 V, IO = 3 mA 4.8 V VOL Output voltage low VS = 5 V, VEE = 0 V, IO = 3 mA 250 ILKG Open-drain output leakage current (TLV7022 only) VS = 5 V, VID = +0.1 V (output high), VPULLUP = VCC 100 pA CMRR Common-mode rejection ratio VEE < VCM < VCC, VS = 5 V 73 dB PSRR Power supply rejection ratio VS = 1.8 V to 5 V, VCM = VS / 2 77 dB VS = 5 V, sourcing (for TLV7012 only) 29 VS = 5 V, sinking 33 VS = 1.8 V, no load, VID = –0.1 V (Output Low) 4.7 ISC Short-circuit current ICC Supply current / Channel 2 VEE 4.65 VCC + 0.1 350 V mV mA 9 µA 6.11 Switching Characteristics (Dual) Typical values are at TA = 25°C, VS = 5 V, VCM = VS / 2; CL = 15 pF, input overdrive = 100 mV (unless otherwise noted). PARAMETER TEST CONDITIONS MIN TYP MAX UNIT tPHL Propagation delay time, high tolow (RP = 4.99 kΩ TLV7022 only) (1) Midpoint of input to midpoint of output, VOD = 100 mV 310 ns tPLH Propagation delay time, low-to high (RP = 4.99 kΩ TLV7022 only) (1) Midpoint of input to midpoint of output, VOD = 100 mV 260 ns tR Rise time (TLV7012 only) Measured from 20% to 80% 5 ns tF Fall time Measured from 20% to 80% 5 ns Power-up time During power on, VCC must exceed 1.6V for 200 µs before the output is in correct state. 20 µs tON (1) The lower limit for RP is 650 Ω 6.12 Timing Diagrams tON VEE VCC VEE + 1.6V VOH/2 VEE OUT 图 1. Start-Up Time Timing Diagram (IN+ > IN–) 8 版权 © 2017–2019, Texas Instruments Incorporated TLV7011, TLV7021, TLV7012, TLV7022 www.ti.com.cn ZHCSGK4E – SEPTEMBER 2017 – REVISED NOVEMBER 2019 Timing Diagrams (接 接下页) V+ Input Input + Output VREF + 100 mV ± VREF VREF + ± V± 95() Å 100 mV V± tpLH tpHL V+ 80% Output 80% 50% 50% 20% V± 20% tR tF 图 2. Propagation Delay Timing Diagram 版权 © 2017–2019, Texas Instruments Incorporated 9 TLV7011, TLV7021, TLV7012, TLV7022 ZHCSGK4E – SEPTEMBER 2017 – REVISED NOVEMBER 2019 www.ti.com.cn 6.13 Typical Characteristics TA = 25°C, VCC = 5 V, VEE = 0 V, VCM = VCC/2, CL = 15 pF 0.5 0.5 VCC = 3.3 V VCC = 5 V Propagation Delay (Ps) Propagation Delay (Ps) VCC = 3.3 V VCC = 5 V 0.4 0.3 0.2 0.4 0.3 0.2 0 20 40 60 80 100 120 140 Input Overdrive (mV) 160 180 200 0 TA = 25°C, 60 80 100 120 140 Input Overdrive (mV) 180 200 TLV7 0.5 Propagation Delay (Ps) T = 40qC T = 25qC T = 85qC T = 125qC 0.4 0.3 0.2 T = 40qC T = 25qC T = 85qC T = 125qC 0.4 0.3 0.2 0 20 40 60 80 100 120 140 Input Overdrive (mV) 160 180 200 0 20 40 60 TLV7 VCC = 5 V 80 100 120 140 Input Overdrive (mV) 160 180 200 TLV7 VCC = 5 V 图 5. TLV7011 Propagation Delay (L-H) vs. Input Overdrive 图 6. Propagation Delay (H-L) vs. Input Overdrive 0.5 16 T = 40qC T = 25qC T = 85qC T = 125qC 14 12 Hysteresis (mV) 0.4 0.3 10 8 6 4 VCM = VCC / 2 VCM = VCC VCM = 100 mV 2 0.2 0 20 40 60 80 100 120 140 Input Overdrive (mV) 160 180 200 0 -40 TLV7 Rpull-up = 2.5k 图 7. TLV7021 Propagation Delay (L-H) vs. Input Overdrive 10 160 图 4. Propagation Delay (H-L) vs. Input Overdrive 0.5 Propagation Delay (Ps) 40 TA = 25°C 图 3. TLV7011 Propagation Delay (L-H) vs. Input Overdrive Propagation Delay (Ps) 20 TLV7 -20 0 20 40 60 Temperature (qC) 80 100 120 TLV7 VCC = 1.8 V 图 8. Hysteresis vs. Temperature 版权 © 2017–2019, Texas Instruments Incorporated TLV7011, TLV7021, TLV7012, TLV7022 www.ti.com.cn ZHCSGK4E – SEPTEMBER 2017 – REVISED NOVEMBER 2019 Typical Characteristics (接 接下页) 16 16 14 14 12 12 Hysteresis (mV) Hysteresis (mV) TA = 25°C, VCC = 5 V, VEE = 0 V, VCM = VCC/2, CL = 15 pF 10 8 6 4 10 8 6 4 VCM = VCC / 2 VCM = VCC VCM = 0 2 0 -40 -20 0 20 40 60 Temperature (qC) 80 100 VCM = VCC / 2 VCM = VCC VCM = 0 2 0 -40 120 -20 VCC = 3.3 V 80 100 120 TLV7 图 10. Hysteresis vs. Temperature 20 20 -40qC 25qC 85qC 125qC 18 16 -40qC 25qC 85qC 125qC 18 16 Hysteresis (mV) 14 12 10 8 6 14 12 10 8 6 4 4 2 2 0 0.1 0 0.3 0.5 0.7 0.9 1.1 VCM (V) 1.3 1.5 1.7 0 0.5 1 TLV7 VCC = 1.8 V 1.5 2 VCM (V) 2.5 3 3.4 TLV7 VCC = 3.3 V 图 11. Hysteresis vs. VCM 图 12. Hysteresis vs. VCM 40 20 -40qC 25qC 85qC 125qC 18 16 35 30 14 Frequency (%) Hysteresis (mV) 20 40 60 Temperature (qC) VCC = 5 V 图 9. Hysteresis vs. Temperature Hysteresis (mV) 0 TLV7 12 10 8 25 20 15 6 10 4 5 2 0 0 0 1 2 3 VCM (V) VCC = 5 V 4 5 TLV7 3 4 5 Hysteresis (mV) 6 7 TLV7 Distribution Taken From 10,777 Comparators 图 13. Hysteresis vs. VCM 版权 © 2017–2019, Texas Instruments Incorporated 图 14. Hysteresis Histogram 11 TLV7011, TLV7021, TLV7012, TLV7022 ZHCSGK4E – SEPTEMBER 2017 – REVISED NOVEMBER 2019 www.ti.com.cn Typical Characteristics (接 接下页) TA = 25°C, VCC = 5 V, VEE = 0 V, VCM = VCC/2, CL = 15 pF 0.7 0.7 VCM = VCC / 2 VCM = VCC VCM = 100 mV 0.5 0.4 0.3 0.5 0.4 0.3 0.2 0.2 0.1 0.1 0 -40 -20 0 20 40 60 Temperature (qC) 80 100 VCM = VCC / 2 VCM = VCC VCM = 0 0.6 Input Offset (mV) Input Offset (mV) 0.6 0 -40 120 -20 VCM = VCC / 2 VCM = VCC VCM = 0 0.6 120 TLV7 3 2 0.5 Input Offset (mV) Input Offset (mV) 100 4 0.7 0.4 0.3 0.2 1 0 -1 -2 0.1 -3 -20 0 20 40 60 Temperature (qC) 80 100 -4 0.1 120 0.3 0.5 0.7 TLV7 VCC = 5 V 0.9 VCM (V) 1.1 1.3 1.5 1.7 TLV7 VCC = 1.8 V, 50 devices 图 17. Input Offset vs. Temperature 图 18. Input Offset Voltage vs. VCM 4 4 3 3 2 2 Input Offset (mV) Input Offset (mV) 80 图 16. Input Offset vs. Temperature 图 15. Input Offset vs. Temperature 1 0 -1 1 0 -1 -2 -2 -3 -3 -4 -4 0 1 2 3 VCM (V) VCC = 3.3 V, 50 devices 图 19. Input Offset Voltage vs. VCM 12 20 40 60 Temperature (qC) VCC = 3.3 V VCC = 1.8 V 0 -40 0 TLV7 0 0.5 1 TLV7 1.5 2 2.5 3 VCM (V) 3.5 4 4.5 5 TLV7 VCC = 5 V, 50 devices 图 20. Input Offset Voltage vs. VCM 版权 © 2017–2019, Texas Instruments Incorporated TLV7011, TLV7021, TLV7012, TLV7022 www.ti.com.cn ZHCSGK4E – SEPTEMBER 2017 – REVISED NOVEMBER 2019 Typical Characteristics (接 接下页) TA = 25°C, VCC = 5 V, VEE = 0 V, VCM = VCC/2, CL = 15 pF 20 1.8 1.795 1.79 1.785 VOH (V) Frequency (%) 15 10 1.78 1.775 1.77 1.765 5 -40qC 25qC 85qC 125qC 1.76 1.755 0 -3 -2 -2 -1 0 1 Input Offset (mV) 2 3 1.75 0.1 4 0.3 0.4 0.5 TLV7 VCC = 1.8 V Distribution Taken From 10,777 Comparators 图 22. TLV7011 Output Voltage High vs. Output Source Current 图 21. Input Offset Voltage Histogram 5 0.05 4.95 0.04 4.9 0.03 VOL (V) VOH (V) 0.2 IOUT (mA) TLV7 4.85 -4q0C 25qC 85qC 125qC 4.8 4.75 0.1 -40qC 25qC 125qC 0.02 0.01 1 IOUT (mA) 0 0.1 5 0.2 IOUT (mA) TLV7 VCC = 5 V 0.3 0.4 0.5 TLV7 VCC = 1.8 V 图 23. TLV7011 Output Voltage High vs. Output Source Current 图 24. Output Voltage Low vs. Output Sink Current 60 0.25 -40qC 25qC 125qC 0.2 50 ISC (mA) VOL (V) 40 0.15 0.1 30 20 0.05 10 0 0.1 0.2 0.3 0.4 0.5 0.7 1 IOUT (mA) 2 3 4 5 -40 TLV7 VCC = 5 V 图 25. Output Voltage Low vs. Output Sink Current 版权 © 2017–2019, Texas Instruments Incorporated 0 -60 VCC = 3.5 V VCC = 5.5 V -20 0 20 40 60 80 Temperature (qC) 100 120 140 TLV7 VCM = VCC/2 图 26. Output Short-Circuit (Sink) Current vs. Temperature 13 TLV7011, TLV7021, TLV7012, TLV7022 ZHCSGK4E – SEPTEMBER 2017 – REVISED NOVEMBER 2019 www.ti.com.cn Typical Characteristics (接 接下页) TA = 25°C, VCC = 5 V, VEE = 0 V, VCM = VCC/2, CL = 15 pF 90 60 80 50 70 40 ISC (mA) ISC (mA) 60 50 40 30 20 30 -40qC 25qC 85qC 125qC 20 10 VCC = 3.5 V VCC = 5.5 V 10 0 -60 -40 -20 0 20 40 60 80 Temperature (qC) 100 120 0 1.8 140 2.8 90 7 80 6.5 4.3 4.8 5.3 TLV7 6 70 5.5 ICC (PA) 60 50 40 30 5 4.5 4 3.5 -40qC 25qC 85qC 125qC 20 10 0 1.8 2.3 2.8 3.3 3.8 VCC (V) 4.3 4.8 3 VCC = 3.3 V VCC = 5 V 2.5 2 -60 5.3 -40 -20 0 TLV7 VCM = VCC/2 20 40 60 80 Temperature (qC) 100 120 140 TLV7 VCM = VCC/2 图 29. TLV7011 Output Short Circuit (Source) vs. VCC 图 30. ICC vs. Temperature 7 7 6.5 6.5 6 6 5.5 5.5 5 ICC (PA) ICC (PA) 3.8 VCC (V) 图 28. Output Short Circuit (Sink) vs. VCC 图 27. TLV7011 Output Short-Circuit (Source) Current vs. Temperature 4.5 4 3.5 5 4.5 4 3.5 -40qC 25qC 85qC 125qC 3 2.5 -40qC 25qC 85qC 125qC 3 2.5 2 2 1 1.5 2 2.5 3 3.5 VCC (V) VCM = VCC/2 4 4.5 5 0 TLV7 0.5 1 1.5 VCM (V) 2 2.5 3 TLV7 VCC = 3.3 V 图 31. ICC vs. VCC 14 3.3 VCM = VCC/2 VCM = VCC/2 ISC (mA) 2.3 TLV7 图 32. ICC vs. VCM 版权 © 2017–2019, Texas Instruments Incorporated TLV7011, TLV7021, TLV7012, TLV7022 www.ti.com.cn ZHCSGK4E – SEPTEMBER 2017 – REVISED NOVEMBER 2019 Typical Characteristics (接 接下页) TA = 25°C, VCC = 5 V, VEE = 0 V, VCM = VCC/2, CL = 15 pF 10000 7 6.5 1000 6 100 5 IBIAS (pA) ICC (PA) 5.5 4.5 4 10 1 3.5 -40qC 25qC 85qC 125qC 3 2.5 0.1 2 0 1 2 3 VCM (V) 4 5 0.01 -40 5.5 -20 0 TLV7 VCC = 5 V 20 40 60 Temperature (qC) 80 100 120 TLV7 VCC = 3.3V 图 33. ICC vs. VCM 图 34. Input Bias Current vs. Temperature 100000 10000 10000 Fall Time (ns) Rise Time (ns) 1000 100 10 1 10 1000 100 10 100 1000 10000 Load Capacitance (pF) 100000 100 TLV7 VOD = 100mV 图 35. TLV7011 Output Rise Time vs. Load Capacitance 版权 © 2017–2019, Texas Instruments Incorporated 1 10 1000 10000 Load Capacitance (pF) 100000 TLV7 VOD = 100mV 图 36. Output Fall Time vs. Load Capacitance 15 TLV7011, TLV7021, TLV7012, TLV7022 ZHCSGK4E – SEPTEMBER 2017 – REVISED NOVEMBER 2019 www.ti.com.cn 7 Detailed Description 7.1 Overview The TLV701x and TLV702x devices are single-channel, micro-power comparators with push-pull and open-drain outputs. Operating down to 1.6 V and consuming only 5 µA, the TLV701x and TLV702x are ideally suited for portable and industrial applications. The comparators are available in leadless and leaded packages to offer significant board space saving in space-challenged designs. 7.2 Functional Block Diagram VCC IN+ + IN- ± OUT Bias Power-on-reset GND Copyright © 2017, Texas Instruments Incorporated 7.3 Feature Description The TLV701x (push-pull) and TLV702x (open-drain) devices are micro-power comparators that are capable of operating at low voltages. The TLV701x and TLV702x feature a rail-to-rail input stage capable of operating up to 100 mV beyond the VCC power supply rail. The comparators also feature a push-pull and open-drain output stage with internal hysteresis. 7.4 Device Functional Modes The TLV701x and TLV702x have a Power-on-Reset (POR) circuit. While the power supply (VS) is ramping up or ramping down, the POR circuitry will be activated. For the TLV701x, the POR circuit will hold the output low (at VEE) while activated. For the TLV702x, the POR circuit will keep the output high impedance (logical high) while activated. When the supply voltage is greater than, or equal to, the minimum supply voltage, the comparator output reflects the state of the differential input (VID). 7.4.1 Inputs The TLV701x and TLV702x input common-mode extends from VEE to 100 mV above VCC. The differential input voltage (VID) can be any voltage within these limits. No phase-inversion of the comparator output will occur when the input pins exceed VCC and VEE. 16 版权 © 2017–2019, Texas Instruments Incorporated TLV7011, TLV7021, TLV7012, TLV7022 www.ti.com.cn ZHCSGK4E – SEPTEMBER 2017 – REVISED NOVEMBER 2019 Device Functional Modes (接 接下页) While TI recommends operating the TLV701x and TLV702x within the specified common-mode range, the inputs are fault tolerant to voltages up to 5.5 V independent of the applied VCC value. Fault tolerant is defined as maintaining the same high input impedance when VCC is unpowered or within the recommended operating range. Because the inputs of the TLV701x and TLV702x are fault tolerant, the inputs to the comparator can be any value between 0 V and 5.5 V while VCC is ramping up. This feature allows any supply and input driven sequence as long as the input value and supply are within the specified ranges. In this case, no current limiting resistor is required. This is possible since the VCC is isolated from the inputs such that it maintains its value even when a higher voltage is applied to the input. The input bias current is typically 1 pA for input voltages between VCC and VEE. The comparator inputs are protected from undervoltage by internal diodes connected to VEE. As the input voltage goes under VEE, the protection diodes become forward biased and begin to conduct causing the input bias current to increase exponentially. Input bias current typically doubles for 10°C temperature increases. 7.4.2 Internal Hysteresis The device hysteresis transfer curve is shown in 图 37. This curve is a function of three components: VTH, VOS, and VHYST: • VTH is the actual set voltage or threshold trip voltage. • VOS is the internal offset voltage between VIN+ and VIN–. This voltage is added to VTH to form the actual trip point at which the comparator must respond to change output states. • VHYST is the internal hysteresis (or trip window) that is designed to reduce comparator sensitivity to noise (4.2 mV for the TLV7011). VTH + VOS - (VHYST / 2) VTH + VOS VTH + VOS + (VHYST / 2) 图 37. Hysteresis Transfer Curve 7.4.3 Output The TLV701x feature a push-pull output stage eliminating the need for an external pull-up resistor. On the other hand, the TLV702x feature an open-drain output stage enabling the output logic levels to be pulled up to an external source independent of the supply voltage. 版权 © 2017–2019, Texas Instruments Incorporated 17 TLV7011, TLV7021, TLV7012, TLV7022 ZHCSGK4E – SEPTEMBER 2017 – REVISED NOVEMBER 2019 www.ti.com.cn 8 Application and Implementation 注 Information in the following applications sections is not part of the TI component specification, and TI does not warrant its accuracy or completeness. TI’s customers are responsible for determining suitability of components for their purposes. Customers should validate and test their design implementation to confirm system functionality. 8.1 Application Information The TLV701x and TLV702x are micro-power comparators with reasonable response time. The comparators have a rail-to-rail input stage that can monitor signals beyond the positive supply rail with integrated hysteresis. When higher levels of hysteresis are required, positive feedback can be externally added. The push-pull output stage of the TLV701x is optimal for reduced power budget applications and features no shoot-through current. When level shifting or wire-ORing of the comparator outputs is needed, the TLV702x with its open-drain output stage is well suited to meet the system needs. In either case, the wide operating voltage range, low quiescent current, and micro-package of the TLV701x and TLV702x make these comparators excellent candidates for battery-operated and portable, handheld designs. 8.1.1 Inverting Comparator With Hysteresis for TLV701x The inverting comparator with hysteresis requires a three-resistor network that is referenced to the comparator supply voltage (VCC), as shown in 图 38. When VIN at the inverting input is less than VA, the output voltage is high (for simplicity, assume VO switches as high as VCC). The three network resistors can be represented as R1 || R3 in series with R2. 公式 1 defines the high-to-low trip voltage (VA1). R2 VA1 = VCC ´ (R1 || R3) + R2 (1) When VIN is greater than VA, the output voltage is low, very close to ground. In this case, the three network resistors can be presented as R2 || R3 in series with R1. Use 公式 2 to define the low to high trip voltage (VA2). R2 || R3 VA2 = VCC ´ R1 + (R2 || R3) (2) 公式 3 defines the total hysteresis provided by the network. DVA = VA1 - VA2 (3) +VCC +5 V R1 1 MW VIN 5V RLOAD 100 kW VA VO VA2 VA1 0V 1.67 V R3 1 MW R2 1 MW VO High +VCC R1 VIN 3.33 V VO Low +VCC R3 R1 VA1 VA2 R2 R2 R3 Copyright © 2016, Texas Instruments Incorporated 图 38. TLV701x in an Inverting Configuration With Hysteresis 18 版权 © 2017–2019, Texas Instruments Incorporated TLV7011, TLV7021, TLV7012, TLV7022 www.ti.com.cn ZHCSGK4E – SEPTEMBER 2017 – REVISED NOVEMBER 2019 Application Information (接 接下页) 8.1.2 Noninverting Comparator With Hysteresis for TLV701x A noninverting comparator with hysteresis requires a two-resistor network, as shown in 图 39, and a voltage reference (VREF) at the inverting input. When VIN is low, the output is also low. For the output to switch from low to high, VIN must rise to VIN1. Use 公式 4 to calculate VIN1. VREF VIN1 = R1 ´ + VREF (4) R2 When VIN is high, the output is also high. For the comparator to switch back to a low state, VIN must drop to VIN2 such that VA is equal to VREF. Use 公式 5 to calculate VIN2. VREF (R1 + R2) - VCC ´ R1 VIN2 = (5) R2 The hysteresis of this circuit is the difference between VIN1 and VIN2, as shown in 公式 6. R1 DVIN = VCC ´ R2 (6) +VCC +5 V VREF +2.5 V VO VA VIN RLOAD R1 330 kW R2 1 MW VO High +VCC VO Low VIN1 5V R2 R1 VA = VREF VA = VREF R1 R2 VO VIN2 VIN1 0V 1.675 V 3.325 V VIN VIN2 Copyright © 2016, Texas Instruments Incorporated 图 39. TLV701x in a Noninverting Configuration With Hysteresis 版权 © 2017–2019, Texas Instruments Incorporated 19 TLV7011, TLV7021, TLV7012, TLV7022 ZHCSGK4E – SEPTEMBER 2017 – REVISED NOVEMBER 2019 www.ti.com.cn 8.2 Typical Applications 8.2.1 Window Comparator Window comparators are commonly used to detect undervoltage and overvoltage conditions. 图 40 shows a simple window comparator circuit. 3.3 V RPU R1 UV_OV + MicroController ± Sensor TLV7021 R2 + ± R3 TLV7021 Copyright © 2017, Texas Instruments Incorporated 图 40. Window Comparator 8.2.1.1 Design Requirements For this design, follow these design requirements: • Alert (logic low output) when an input signal is less than 1.1 V • Alert (logic low output) when an input signal is greater than 2.2 V • Alert signal is active low • Operate from a 3.3-V power supply 8.2.1.2 Detailed Design Procedure Configure the circuit as shown in 图 40. Connect VCC to a 3.3-V power supply and VEE to ground. Make R1, R2 and R3 each 10-MΩ resistors. These three resistors are used to create the positive and negative thresholds for the window comparator (VTH+ and VTH–). With each resistor being equal, VTH+ is 2.2 V and VTH- is 1.1 V. Large resistor values such as 10-MΩ are used to minimize power consumption. The sensor output voltage is applied to the inverting and noninverting inputs of the two TLV702x's. The TLV7021 is used for its open-drain output configuration. Using the TLV702x allows the two comparator outputs to be Wire-Ored together. The respective comparator outputs will be low when the sensor is less than 1.1 V or greater than 2.2 V. VOUT will be high when the sensor is in the range of 1.1 V to 2.2 V. 20 版权 © 2017–2019, Texas Instruments Incorporated TLV7011, TLV7021, TLV7012, TLV7022 www.ti.com.cn ZHCSGK4E – SEPTEMBER 2017 – REVISED NOVEMBER 2019 Typical Applications (接 接下页) 8.2.1.3 Application Curve VIN VTH+ = 2.2 V VTH± = 1.1 V Time (usec) VOUT 50 100 150 200 Time (usec) 图 41. Window Comparator Results 8.2.2 IR Receiver Analog Front End A single TLV7011 device can be used to build a complete IR receiver analog front end (AFE). The nanoamp quiescent current and low input bias current make it possible to be powered with a coin cell battery, which could last for years. Vref 470 k 3V R2 IR LED 470 k R3 10M R4 + U1 Output to MCU (Also to wake-up MCU) ± 10M C1 VIN VOUT TLV7011 R1 0.01 F GND Copyright © 2017, Texas Instruments Incorporated 图 42. IR Receiver Analog Front End Using TLV7011 8.2.2.1 Design Requirements For this design, follow these design requirements: • Use a proper resistor (R1) value to generate an adequate signal amplitude applied to the inverting input of the comparator. • The low input bias current IB (2 pA typical) ensures that a greater value of R1 to be used. 版权 © 2017–2019, Texas Instruments Incorporated 21 TLV7011, TLV7021, TLV7012, TLV7022 ZHCSGK4E – SEPTEMBER 2017 – REVISED NOVEMBER 2019 www.ti.com.cn Typical Applications (接 接下页) • The RC constant value (R2 and C1) must support the targeted data rate (that is, 9,600 bauds) to maintain a valid tripping threshold. The hysteresis introduced with R3 and R4 helps to avoid spurious output toggles. • 8.2.2.2 Detailed Design Procedure The IR receiver AFE design is highly streamlined and optimized. R1 converts the IR light energy induced current into voltage and applies to the inverting input of the comparator. Because a reverse biased IR LED is used as the IR receiver, a higher I/V transimpedance gain is required to boost the amplitude of reduced current. A 10M resistor is used as R1 to support a 1-V, 100-nA transimpedance gain. This is made possible with the picoamps Input bias current IB (5pA typical). The RC network of R2 and C1 establishes a reference voltage Vref which tracks the mean amplitude of the IR signal. The RC constant of R2 and C1 (about 4.7 ms) is chosen for Vref to track the received IR current fluctuation but not the actual data bit stream. The noninverting input is connected to Vref and the output over the R3 and R4 resistor network which provides additional hysteresis for improved guard against spurious toggles. To reduce the current drain from the coin cell battery, data transmission must be short and infrequent. 8.2.2.3 Application Curve 1.8 V VIN 1.2 V 4.0 V VOUT 0.0 V 1.61 V VREF 1.58 V 0.0 200.0 u 400.0 u 600.0 u 800.0 u Time 图 43. IR Receiver AFE Waveforms 22 版权 © 2017–2019, Texas Instruments Incorporated TLV7011, TLV7021, TLV7012, TLV7022 www.ti.com.cn ZHCSGK4E – SEPTEMBER 2017 – REVISED NOVEMBER 2019 Typical Applications (接 接下页) 8.2.3 Square-Wave Oscillator Square-wave oscillator can be used as low cost timing reference or system supervisory clock source. 图 44. Square-Wave Oscillator 8.2.3.1 Design Requirements The square-wave period is determined by the RC time constant of the capacitor and resistor. The maximum frequency is limited by propagation delay of the device and the capacitance load at the output. The low input bias current allows a lower capacitor value and larger resistor value combination for a given oscillator frequency, which may help to reduce BOM cost and board space. 8.2.3.2 Detailed Design Procedure The oscillation frequency is determined by the resistor and capacitor values. The following calculation provides details of the steps. 图 45. Square-Wave Oscillator Timing Thresholds First consider the output of Figure 图 44 is high which indicates the inverted input VC is lower than the noninverting input (VA). This causes the C1 to be charged through R4, and the voltage VC increases until it is equal to the noninverting input. The value of VA at the point is calculated by 公式 7. VCC u R 2 VA1 R 2 R 1 IIR 3 (7) if R1 = R2= R3, then VA1 = 2 VCC/ 3 版权 © 2017–2019, Texas Instruments Incorporated 23 TLV7011, TLV7021, TLV7012, TLV7022 ZHCSGK4E – SEPTEMBER 2017 – REVISED NOVEMBER 2019 www.ti.com.cn Typical Applications (接 接下页) At this time the comparator output trips pulling down the output to the negative rail. The value of VAat this point is calculated by 公式 8. VCC (R 2IIR 3 ) VA 2 R 1+ R 2IIR 3 (8) if R1 = R2 = R3, then VA2 = VCC/3 The C1 now discharges though the R4, and the voltage VCC decreases until it reaches VA2. At this point, the output switches back to the starting state. The oscillation period equals to the time duration from for C1 from 2VCC/3 to VCC / 3 then back to 2VCC/3, which is given by R4C1 × ln 2 fro each trip. Therefore, the total time duration is calculated as 2 R4C1 × ln 2. The oscillation frequency can be obtained by 公式 9: f 1/ 2 R4 u C1u In2 (9) 8.2.3.3 Application Curve 图 46 shows the simulated results of tan oscillator using the following component values: • • • • R1 = R2 = R3 = R4 = 100 kΩ C1 = 100 pF, CL = 20 pF V+ = 5 V, V– = GND Cstray (not shown) from VA TO GND = 10 pF 图 46. Square-Wave Oscillator Output Waveform 24 版权 © 2017–2019, Texas Instruments Incorporated TLV7011, TLV7021, TLV7012, TLV7022 www.ti.com.cn ZHCSGK4E – SEPTEMBER 2017 – REVISED NOVEMBER 2019 9 Power Supply Recommendations The TLV701x and TLV702x have a recommended operating voltage range (VS) of 1.6 V to 5.5 / 6.5 V. VS is defined as VCC – VEE. Therefore, the supply voltages used to create VS can be single-ended or bipolar. For example, single-ended supply voltages of 5 V and 0 V and bipolar supply voltages of +2.5 V and –2.5 V create comparable operating voltages for VS. However, when bipolar supply voltages are used, it is important to realize that the logic low level of the comparator output is referenced to VEE. Output capacitive loading and output toggle rate will cause the average supply current to rise over the quiescent current. 10 Layout 10.1 Layout Guidelines To reduce PCB fabrication cost and improve reliability, TI recommends using a 4-mil via at the center pad connected to the ground trace or plane on the bottom layer. A power-supply bypass capacitor of 100 nF is recommended when supply output impedance is high, supply traces are long, or when excessive noise is expected on the supply lines. Bypass capacitors are also recommended when the comparator output drives a long trace or is required to drive a capacitive load. Due to the fast rising and falling edge rates and high-output sink and source capability of the TLV7011 and TLV7021 output stages, higher than normal quiescent current can be drawn from the power supply. Under this circumstance, the system would benefit from a bypass capacitor across the supply pins. 10.2 Layout Example OUT IN+ Top-Layer Trace Bottom-Layer Trace 4 mil VIA VCC IN8 mil VIA Top-View 0.1 uF Package Body Outline 图 47. Layout Example 版权 © 2017–2019, Texas Instruments Incorporated 25 TLV7011, TLV7021, TLV7012, TLV7022 ZHCSGK4E – SEPTEMBER 2017 – REVISED NOVEMBER 2019 www.ti.com.cn 11 器件和文档支持 11.1 器件支持 11.1.1 开发支持 11.1.1.1 评估模块 我们为您提供了评估模块 (EVM),可以借此来对使用 TLV70x1 器件系列的电路性能进行初始评估。TLV7011 微功 耗比较器 DIP 适配器评估模块 可在德州仪器 (TI) 网站上的产品文件夹下申请,也可以直接从 TI 网上商店购买。 11.2 相关链接 下表列出了快速访问链接。类别包括技术文档、支持与社区资源、工具和软件,以及申请样片或购买产品的快速链 接。 表 1. 相关链接 器件 产品文件夹 样片与购买 技术文档 工具与软件 支持和社区 TLV7011 请单击此处 请单击此处 请单击此处 请单击此处 请单击此处 TLV7021 请单击此处 请单击此处 请单击此处 请单击此处 请单击此处 11.3 接收文档更新通知 要接收文档更新通知,请导航至 ti.com. 上的器件产品文件夹。单击右上角的通知我进行注册,即可每周接收产品 信息更改摘要。有关更改的详细信息,请查看任何已修订文档中包含的修订历史记录。 11.4 社区资源 TI E2E™ support forums are an engineer's go-to source for fast, verified answers and design help — straight from the experts. Search existing answers or ask your own question to get the quick design help you need. Linked content is provided "AS IS" by the respective contributors. They do not constitute TI specifications and do not necessarily reflect TI's views; see TI's Terms of Use. 11.5 商标 E2E is a trademark of Texas Instruments. All other trademarks are the property of their respective owners. 11.6 静电放电警告 ESD 可能会损坏该集成电路。德州仪器 (TI) 建议通过适当的预防措施处理所有集成电路。如果不遵守正确的处理措施和安装程序 , 可 能会损坏集成电路。 ESD 的损坏小至导致微小的性能降级 , 大至整个器件故障。 精密的集成电路可能更容易受到损坏 , 这是因为非常细微的参数更改都可 能会导致器件与其发布的规格不相符。 11.7 Glossary SLYZ022 — TI Glossary. This glossary lists and explains terms, acronyms, and definitions. 12 机械、封装和可订购信息 以下页面包含机械、封装和可订购信息。这些信息是指定器件的最新可用数据。数据如有变更,恕不另行通知,且 不会对此文档进行修订。如需获取此数据表的浏览器版本,请查阅左侧的导航栏。 26 版权 © 2017–2019, Texas Instruments Incorporated PACKAGE OPTION ADDENDUM www.ti.com 1-Oct-2022 PACKAGING INFORMATION Orderable Device Status (1) Package Type Package Pins Package Drawing Qty Eco Plan (2) Lead finish/ Ball material MSL Peak Temp Op Temp (°C) Device Marking (3) Samples (4/5) (6) TLV7011DBVR ACTIVE SOT-23 DBV 5 3000 RoHS & Green NIPDAUAG Level-1-260C-UNLIM -40 to 125 1IC2 Samples TLV7011DCKR ACTIVE SC70 DCK 5 3000 RoHS & Green NIPDAU Level-2-260C-1 YEAR -40 to 125 19N Samples TLV7011DCKT ACTIVE SC70 DCK 5 250 RoHS & Green NIPDAU Level-2-260C-1 YEAR -40 to 125 19N Samples TLV7011DPWR ACTIVE X2SON DPW 5 3000 RoHS & Green NIPDAU Level-1-260C-UNLIM -40 to 125 7N Samples TLV7012DDFR ACTIVE SOT-23-THIN DDF 8 3000 RoHS & Green NIPDAU Level-1-260C-UNLIM -40 to 125 7012 Samples TLV7012DGKR ACTIVE VSSOP DGK 8 2500 RoHS & Green NIPDAUAG | SN Level-1-260C-UNLIM -40 to 125 7012 Samples TLV7012DSGR ACTIVE WSON DSG 8 3000 RoHS & Green NIPDAU Level-1-260C-UNLIM -40 to 125 7012 Samples TLV7021DBVR ACTIVE SOT-23 DBV 5 3000 RoHS & Green NIPDAUAG Level-1-260C-UNLIM -40 to 125 1ID2 Samples TLV7021DCKR ACTIVE SC70 DCK 5 3000 RoHS & Green NIPDAU Level-2-260C-1 YEAR -40 to 125 19O Samples TLV7021DCKT ACTIVE SC70 DCK 5 250 RoHS & Green NIPDAU Level-2-260C-1 YEAR -40 to 125 19O Samples TLV7021DPWR ACTIVE X2SON DPW 5 3000 RoHS & Green NIPDAU Level-1-260C-UNLIM -40 to 125 7P Samples TLV7022DDFR ACTIVE SOT-23-THIN DDF 8 3000 RoHS & Green NIPDAU Level-1-260C-UNLIM -40 to 125 7022 Samples TLV7022DGKR ACTIVE VSSOP DGK 8 2500 RoHS & Green NIPDAUAG | SN Level-1-260C-UNLIM -40 to 125 7022 Samples TLV7022DSGR ACTIVE WSON DSG 8 3000 RoHS & Green NIPDAU Level-1-260C-UNLIM -40 to 125 7022 Samples (1) The marketing status values are defined as follows: ACTIVE: Product device recommended for new designs. LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect. NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design. PREVIEW: Device has been announced but is not in production. Samples may or may not be available. OBSOLETE: TI has discontinued the production of the device. (2) RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may reference these types of products as "Pb-Free". Addendum-Page 1 PACKAGE OPTION ADDENDUM www.ti.com 1-Oct-2022 RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption. Green: TI defines "Green" to mean the content of Chlorine (Cl) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of
TLV7012DGKR 价格&库存

很抱歉,暂时无法提供与“TLV7012DGKR”相匹配的价格&库存,您可以联系我们找货

免费人工找货