0
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
会员中心
创作中心
发布
  • 发文章

  • 发资料

  • 发帖

  • 提问

  • 发视频

创作活动
TLV70218DBV

TLV70218DBV

  • 厂商:

    BURR-BROWN(德州仪器)

  • 封装:

    SOT23-5

  • 描述:

    具有使能功能的 300mA、高 PSRR、低 IQ、低压降稳压器

  • 数据手册
  • 价格&库存
TLV70218DBV 数据手册
Order Now Product Folder Tools & Software Technical Documents Support & Community TLV702 ZHCSK00D – SEPTEMBER 2010 – REVISED JULY 2019 TLV702 300mA、 、低 IQ、低压降稳压器 1 特性 • 1 • • • • • • • (1) 3 说明 TLV702 系列低压降 (LDO) 线性稳压器是具有出色线 路和负载瞬态性能的低静态电流器件。这些 LDO 专为 功耗敏感型 应用中节省电路板空间。高精度带隙与误 差放大器可提供 2% 的总精度。低输出噪声、极高电 源抑制比 (PSRR) 和低压降电压使得这个器件成为广 泛电池供电手持设备的理想选择。所有器件版本具有热 关断和电流限值以保证安全。 极低压降: – 在 I输出 = 50mA 并且 V输出 = 2.8V 时,为 37mV – 在 I输出 = 100mA 并且 V输出 = 2.8V 时,为 75mV – 在 IOUT = 300mA,VOUT = 2.8V 时,电压为 220mV 精度 2% 低 IQ:35μA 可提供从 1.2V 至 4.8V 的固定输出电压组合 高电源抑制比 (PSRR):频率 1kHz 时为 68dB 可在采用 0.1 μF(1) 的有效电容时保持稳定 热关断保护和过流保护 封装:5 引脚 SOT-23 封装和 1.5mm × 1.5mm 6 引脚 WSON 封装 此外,这些器件在有效输出电容只有 0.1μF 时保持稳 定。这一特性允许使用具有较高偏置电压和温度降额的 成本效益型电容器。这些器件在不产生输出负载的情况 下可调节至特定的精度。 TLV702P 系列还可提供有源下拉电路,用于对输出进 行快速放电。 请参阅应用信息中的输入和输出电容器要求。 TLV702 系列 LDO 线性稳压器采用 SOT23-5 和 1.5mm × 1.5mm WSON-6 封装。 2 应用 • • • • • • 无线手持终端 智能手机 ZigBee®网络 Bluetooth®器件 锂离子电池供电手持设备产品 WLAN 和其他 PC 附加卡 器件信息(1) 器件型号 TLV702 封装 封装尺寸(标称值) SOT-23 (5) 2.90mm × 1.60mm WSON (6) 1.50mm × 1.50mm (1) 如需了解所有可用封装,请参阅数据表末尾的可订购产品附 录。 典型应用电路 VIN IN OUT CIN COUT VOUT 1 mF Ceramic TLV702xx On Off EN GND 1 本文档旨在为方便起见,提供有关 TI 产品中文版本的信息,以确认产品的概要。 有关适用的官方英文版本的最新信息,请访问 www.ti.com,其内容始终优先。 TI 不保证翻译的准确 性和有效性。 在实际设计之前,请务必参考最新版本的英文版本。 English Data Sheet: SLVSAG6 TLV702 ZHCSK00D – SEPTEMBER 2010 – REVISED JULY 2019 www.ti.com.cn 目录 1 2 3 4 5 6 7 特性 .......................................................................... 应用 .......................................................................... 说明 .......................................................................... 修订历史记录 ........................................................... Pin Configuration and Functions ......................... Specifications......................................................... 1 1 1 2 3 4 6.1 6.2 6.3 6.4 6.5 6.6 4 4 4 4 5 6 Absolute Maximum Ratings ...................................... ESD Ratings ............................................................ Recommended Operating Conditions....................... Thermal Information .................................................. Electrical Characteristics........................................... Typical Characteristics .............................................. Detailed Description ............................................ 10 7.1 7.2 7.3 7.4 Overview ................................................................. Functional Block Diagrams ..................................... Feature Description................................................. Device Functional Modes........................................ 10 10 11 12 8 Application and Implementation ........................ 13 8.1 Application Information............................................ 13 8.2 Typical Application .................................................. 13 9 Power Supply Recommendations...................... 15 9.1 Power Dissipation ................................................... 15 10 Layout................................................................... 15 10.1 Layout Guidelines ................................................. 15 10.2 Layout Examples................................................... 16 11 器件和文档支持 ..................................................... 17 11.1 11.2 11.3 11.4 11.5 11.6 11.7 器件支持 ............................................................... 文档支持................................................................ 接收文档更新通知 ................................................. 社区资源................................................................ 商标 ....................................................................... 静电放电警告......................................................... Glossary ................................................................ 17 17 17 17 17 17 18 12 机械、封装和可订购信息 ....................................... 18 4 修订历史记录 注:之前版本的页码可能与当前版本有所不同。 Changes from Revision C (March 2015) to Revision D Page • Changed OUT pin number from 5 to 3 for WSON package................................................................................................... 3 • Added footnote to maximum EN voltage specification .......................................................................................................... 4 • Added parameter names to Recommended Operating Conditions table............................................................................... 4 Changes from Revision B (February 2011) to Revision C Page • 已添加 添加了 ESD 额定值 表、特性 说明 部分、器件功能模式、应用和实施 部分、电源建议 部分、布局 部分、器 件和文档支持 部分以及机械、封装和可订购信息 部分 ........................................................................................................... 1 • Changed Pin Configuration and Functions section; updated table format ............................................................................ 3 • Deleted Ordering Information table ....................................................................................................................................... 3 • Changed "free-air temperature" to "junction temperature" in Absolute Maximum Ratings condition statement ................... 4 • Changed Thermal Information table; updated thermal resistance values for all packages .................................................. 4 • Deleted Dissipation Ratings table .......................................................................................................................................... 4 • Changed VDO dropout voltage test conditions; deleted IOUT = 50 mA and IOUT = 100 mA with VOUT = 2.8 V test parameters ............................................................................................................................................................................. 5 • Deleted EVM Dissipation Ratings table ............................................................................................................................... 16 Changes from Revision A (October 2010) to Revision B Page • 向数据表中添加了 SON-6 (DSE) 封装和相关基准.................................................................................................................. 1 2 Copyright © 2010–2019, Texas Instruments Incorporated TLV702 www.ti.com.cn ZHCSK00D – SEPTEMBER 2010 – REVISED JULY 2019 5 Pin Configuration and Functions DBV Package 5-Pin SOT-23 Top View IN GND EN 5 1 DSE Package 6-Pin WSON Top View OUT 2 3 4 IN 1 6 EN GND 2 5 N/C OUT 3 4 N/C NC Pin Functions PIN NAME I/O DESCRIPTION 1 I Input pin. A small, 1-μF ceramic capacitor is recommended from this pin to ground to assure stability and good transient performance. See Input and Output Capacitor Requirements in Application Information for more details. 2 — SOT-23 WSON IN 1 GND 2 Ground pin Enable pin. Driving EN over 0.9 V turns on the regulator. Driving EN below 0.4 V puts the regulator into shutdown mode and reduces operating current to 1 μA, nominal. For TLV702P, output voltage is discharged through an internal 120-Ω resistor when device is shut down. EN 3 6 I NC 4 4, 5 — No connection. This pin can be tied to ground to improve thermal dissipation. OUT 5 3 O Regulated output voltage pin. A small, 1-μF ceramic capacitor is needed from this pin to ground to assure stability. See Input and Output Capacitor Requirements in Application Information for more details. Copyright © 2010–2019, Texas Instruments Incorporated 3 TLV702 ZHCSK00D – SEPTEMBER 2010 – REVISED JULY 2019 www.ti.com.cn 6 Specifications 6.1 Absolute Maximum Ratings over operating junction temperature range (unless otherwise noted) (1) Voltage (2) Current (source) MIN MAX IN –0.3 6 EN –0.3 6 (3) OUT –0.3 6 OUT Indefinite Total continuous power dissipation (1) (2) (3) V Internally limited Output short-circuit duration Temperature UNIT See Thermal Information Operating virtual junction, TJ –55 150 Storage, Tstg –55 150 °C Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under Recommended Operating Conditions is not implied. Exposure to absolute-maximum-rated conditions for extended periods my affect device reliability. All voltages are with respect to network ground terminal. The absolute maximum rating is VIN + 0.3 V or 6.0 V, whichever is smaller. 6.2 ESD Ratings VALUE V(ESD) (1) (2) Electrostatic discharge Human body model (HBM), per ANSI/ESDA/JEDEC JS-001, all pins (1) ±2000 Charged device model (CDM), per JEDEC specification JESD22-C101, all pins (2) ±500 UNIT V JEDEC document JEP155 states that 500-V HBM allows safe manufacturing with a standard ESD control process. JEDEC document JEP157 states that 250-V CDM allows safe manufacturing with a standard ESD control process. 6.3 Recommended Operating Conditions over operating free-air temperature range (unless otherwise noted). MIN VIN Input voltage VOUT IOUT NOM MAX UNIT 2 5.5 V Output voltage 1.2 4.8 V Output current 0 300 mA 6.4 Thermal Information TLV702 THERMAL METRIC (1) DBV (SOT-23) DSE (WSON) 5 PINS 6 PINS UNIT RθJA Junction-to-ambient thermal resistance 249.2 321.3 °C/W RθJC(top) Junction-to-case (top) thermal resistance 136.4 207.9 °C/W RθJB Junction-to-board thermal resistance 85.9 281.5 °C/W ψJT Junction-to-top characterization parameter 19.5 42.4 °C/W ψJB Junction-to-board characterization parameter 85.3 284.8 °C/W RθJC(bot) Junction-to-case (bottom) thermal resistance N/A 142.3 °C/W (1) 4 For more information about traditional and new thermal metrics, see the Semiconductor and IC Package Thermal Metrics application report. Copyright © 2010–2019, Texas Instruments Incorporated TLV702 www.ti.com.cn ZHCSK00D – SEPTEMBER 2010 – REVISED JULY 2019 6.5 Electrical Characteristics At VIN = VOUT(nom) + 0.5 V or 2 V (whichever is greater); IOUT = 10 mA, VEN = 0.9 V, COUT = 1 μF, and TJ = –40°C to +125°C, unless otherwise noted. Typical values are at TJ = 25°C. PARAMETER TEST CONDITIONS MIN TYP VOUT DC output accuracy –40°C ≤ TJ ≤ 125°C 0.5% 2% ΔVOUT(ΔVIN) Line regulation VOUT(nom) + 0.5 V ≤ VIN ≤ 5.5 V, IOUT = 10 mA 1 5 mV ΔVOUT(ΔIOUT) Load regulation 0 mA ≤ IOUT ≤ 300 mA 1 15 mV 260 375 mV 500 860 mA 35 55 μA VDO Dropout voltage ICL Output current limit IGND Ground pin current –2% VIN = 0.98 × VOUT(nom), IOUT = 300 mA VOUT = 0.9 × VOUT(nom) 320 IOUT = 0 mA 5.5 UNIT Input voltage range (1) 2 MAX VIN V IOUT = 300 mA, VIN = VOUT + 0.5 V 370 μA VEN ≤ 0.4 V, VIN = 2 V 400 nA ISHDN Ground pin current (shutdown) PSRR Power-supply rejection ratio VIN = 2.3 V, VOUT = 1.8 V, IOUT = 10 mA, f = 1 kHz 68 dB Vn Output noise voltage BW = 100 Hz to 100 kHz, VIN = 2.3 V, VOUT = 1.8 V, IOUT = 10 mA 48 μVRMS tSTR Start-up time (2) COUT = 1 μF, IOUT = 300 mA VEN(high) Enable pin high (enabled) 0.9 VIN V VEN(low) Enable pin low (disabled) 0 0.4 V IEN Enable pin current VIN = VEN = 5.5 V 0.04 μA UVLO Undervoltage lockout VIN rising 1.9 V RDISCHARGE Active pulldown resistance (TLV702P only) VEN = 0 V 120 Ω Tsd Thermal shutdown temperature Shutdown, temperature increasing 165 °C Reset, temperature decreasing 145 °C TJ Operating junction temperature (1) (2) VEN ≤ 0.4 V, 2 V ≤ VIN ≤ 4.5 V, TJ = –40°C to +85°C 1 2 100 –40 μA μs 125 °C VDO is measured for devices with VOUT(nom) ≥ 2.35 V. Start-up time = time from EN assertion to 0.98 × VOUT(nom). Copyright © 2010–2019, Texas Instruments Incorporated 5 TLV702 ZHCSK00D – SEPTEMBER 2010 – REVISED JULY 2019 www.ti.com.cn 6.6 Typical Characteristics Over operating temperature range (TJ = –40°C to +125°C), VIN = VOUT(nom) + 0.5 V or 2 V, whichever is greater; IOUT = 10 mA, VEN = VIN, COUT = 1 μF, unless otherwise noted. Typical values are at TJ = 25°C. 1.90 1.90 VOUT = 1.8 V IOUT = 10 mA 1.88 1.86 1.84 1.84 1.82 1.82 VOUT (V) VOUT (V) 1.86 1.80 1.78 1.76 1.72 1.80 1.78 1.76 +125°C +85°C +25°C -40°C 1.74 VOUT = 1.8 V IOUT = 300 mA 1.88 +125°C +85°C +25°C -40°C 1.74 1.72 1.70 1.70 2.1 2.6 3.1 3.6 4.1 VIN (V) 4.6 5.1 2.3 5.6 2.7 3.1 Figure 1. Line Regulation 3.5 3.9 VIN (V) 4.3 4.7 5.5 5.1 Figure 2. Line Regulation 350 1.90 IOUT = 300 mA VOUT = 1.8 V 1.88 300 1.86 250 VDO (mV) VOUT (V) 1.84 1.82 1.80 1.78 1.76 1.72 50 100 150 200 250 +125°C +85°C +25°C –40°C 50 0 2.25 1.70 0 150 100 +125°C +85°C +25°C -40°C 1.74 200 300 2.75 3.25 IOUT (mA) 300 1.90 VOUT = 4.8 V VOUT = 1.8 V 1.88 250 1.86 1.84 VOUT (V) 200 VDO (mV) 4.75 4.25 Figure 4. Dropout Voltage vs Input Voltage Figure 3. Load Regulation 150 100 +125°C +85°C +25°C -40°C 50 0 1.82 1.80 1.78 1.76 10mA 150mA 200mA 1.74 1.72 1.70 0 50 100 150 200 250 IOUT (mA) Figure 5. Dropout Voltage vs Output Current 6 3.75 VIN (V) 300 -40 -25 -10 5 20 35 50 65 Temperature (°C) 80 95 110 125 Figure 6. Output Voltage vs Temperature Copyright © 2010–2019, Texas Instruments Incorporated TLV702 www.ti.com.cn ZHCSK00D – SEPTEMBER 2010 – REVISED JULY 2019 Typical Characteristics (continued) Over operating temperature range (TJ = –40°C to +125°C), VIN = VOUT(nom) + 0.5 V or 2 V, whichever is greater; IOUT = 10 mA, VEN = VIN, COUT = 1 μF, unless otherwise noted. Typical values are at TJ = 25°C. 450 50 VOUT = 1.8 V 45 40 350 35 300 30 IGND (mA) IGND (mA) VOUT = 1.8 V 400 25 20 15 5 200 150 +125°C +85°C +25°C -40°C 10 250 +125°C +85°C +25°C -40°C 100 50 0 0 2.1 2.6 3.1 3.6 4.1 VIN (V) 4.6 5.1 0 5.6 Figure 7. Ground Pin Current vs Input Voltage 50 200 150 IOUT (mA) 250 300 Figure 8. Ground Pin Current vs Load 2.5 VOUT = 1.8 V 45 100 50 VOUT = 1.8 V 2 40 ISHDN (mA) IGND (mA) 35 30 25 20 1.5 1 15 +125°C +85°C +25°C -40°C 0.5 10 5 0 0 -40 -25 -10 5 20 35 50 65 Temperature (°C) 80 95 2.1 110 125 Figure 9. Ground Pin Current vs Temperature 2.6 3.1 3.6 4.1 VIN (V) 5.1 5.6 Figure 10. Shutdown Current vs Input Voltage 100 700 VOUT = 1.8 V IOUT = 10 mA 90 600 80 500 IOUT = 150 mA 70 PSRR (dB) ILIM (mA) 4.6 400 300 200 +125°C +85°C +25°C -40°C 100 0 2.3 2.7 3.1 3.5 3.9 VIN (V) 4.3 4.7 5.1 Figure 11. Current Limit vs Input Voltage Copyright © 2010–2019, Texas Instruments Incorporated 5.5 60 50 40 30 20 10 VIN - VOUT = 0.5 V 0 10 100 1k 10 k 100 k 1M 10 M Frequency (Hz) Figure 12. Power-Supply Ripple Rejection vs Frequency 7 TLV702 ZHCSK00D – SEPTEMBER 2010 – REVISED JULY 2019 www.ti.com.cn Typical Characteristics (continued) Over operating temperature range (TJ = –40°C to +125°C), VIN = VOUT(nom) + 0.5 V or 2 V, whichever is greater; IOUT = 10 mA, VEN = VIN, COUT = 1 μF, unless otherwise noted. Typical values are at TJ = 25°C. 60 PSRR (dB) VOUT = 1.8 V 1 kHz 70 Output Spectral Noise Density (mV/ÖHz) 80 10 kHz 50 100 kHz 40 30 20 10 0 2.1 2.2 2.3 2.4 2.5 2.6 2.7 10 VOUT = 1.8 V IOUT = 10 mA CIN = COUT = 1 mF 1 0.1 0.01 0.001 10 2.8 100 1k Figure 13. Power-Supply Ripple Rejection vs Input Voltage VOUT 20 mA/div 0 mA 0 mA IOUT VOUT VOUT = 1.8 V 10 ms/div 10 ms/div Figure 15. Load Transient Response Figure 16. Load Transient Response tR = tF = 1 ms 50 mA 0 mA 200 mA/div 300 mA IOUT 100 mV/div 50 mA/div tR = tF = 1 ms 20 mV/div 10 M 10 mA VOUT = 1.8 V VOUT IOUT 0 mA VOUT VOUT = 1.8 V VOUT = 1.8 V 10 ms/div Figure 17. Load Transient Response 8 1M tR = tF = 1 ms 200 mA IOUT 100 k Figure 14. Output Spectral Noise Density vs Frequency 5 mV/div 50 mV/div 100 mA/div tR = tF = 1 ms 10 k Frequency (Hz) Input Voltage (V) 10 ms/div Figure 18. Load Transient Response Copyright © 2010–2019, Texas Instruments Incorporated TLV702 www.ti.com.cn ZHCSK00D – SEPTEMBER 2010 – REVISED JULY 2019 Typical Characteristics (continued) Over operating temperature range (TJ = –40°C to +125°C), VIN = VOUT(nom) + 0.5 V or 2 V, whichever is greater; IOUT = 10 mA, VEN = VIN, COUT = 1 μF, unless otherwise noted. Typical values are at TJ = 25°C. 1 V/div 2.9 V VIN Slew Rate = 1 V/ms 2.9 V 2.3 V VIN VOUT VOUT = 1.8 V IOUT = 300 mA 5 mV/div 2.3 V 5 mV/div 1 V/div Slew Rate = 1 V/ms VOUT VOUT = 1.8 V IOUT = 1 mA 1 ms/div 1 ms/div Figure 20. Line Transient Response Slew Rate = 1 V/ms VOUT = 1.8 V IOUT = 300 mA 5.5 V VIN 10 mV/div 2.1 V VOUT = 1.8 V IOUT = 1 mA VIN 1 V/div 1 V/div Figure 19. Line Transient Response VOUT VOUT 1 ms/div Figure 21. Line Transient Response Copyright © 2010–2019, Texas Instruments Incorporated 200 ms/div Figure 22. VIN Ramp Up, Ramp Down Response 9 TLV702 ZHCSK00D – SEPTEMBER 2010 – REVISED JULY 2019 www.ti.com.cn 7 Detailed Description 7.1 Overview The TLV702 series of low-dropout (LDO) linear regulators are low quiescent current devices with excellent line and load transient performance. These LDOs are designed for power-sensitive applications. A precision bandgap and error amplifier provides overall 2% accuracy. Low output noise, very high power-supply rejection ratio (PSRR), and low dropout voltage make this series of devices ideal for most battery-operated handheld equipment. All device versions have integrated thermal shutdown, current limit, and undervoltage lockout (UVLO). 7.2 Functional Block Diagrams IN OUT Current Limit Thermal Shutdown UVLO EN Bandgap LOGIC TLV702xx Series GND Figure 23. TLV702 Block Diagram 10 Copyright © 2010–2019, Texas Instruments Incorporated TLV702 www.ti.com.cn ZHCSK00D – SEPTEMBER 2010 – REVISED JULY 2019 Functional Block Diagrams (continued) IN OUT Current Limit Thermal Shutdown UVLO EN 120W Bandgap LOGIC TLV702xxP Series GND Figure 24. TLV702P Block Diagram 7.3 Feature Description 7.3.1 Internal Current Limit The TLV702 internal current limit helps to protect the regulator during fault conditions. During current limit, the output sources a fixed amount of current that is largely independent of the output voltage. In such a case, the output voltage is not regulated, and is VOUT = ICL × RLOAD. The PMOS pass transistor dissipates (VIN – VOUT) × ICL until thermal shutdown is triggered and the device turns off. As the device cools, it is turned on by the internal thermal shutdown circuit. If the fault condition continues, the device cycles between current limit and thermal shutdown. See Thermal Consideration for more details. The PMOS pass element in the TLV702 has a built-in body diode that conducts current when the voltage at OUT exceeds the voltage at IN. This current is not limited, so if extended reverse voltage operation is anticipated, external limiting to 5% of the rated output current is recommended. 7.3.2 Shutdown The enable pin (EN) is active high. The device is enabled when voltage at EN pin goes above 0.9 V. The device is turned off when the EN pin is held at less than 0.4 V. When shutdown capability is not required, EN can be connected to the IN pin. The TLV702P version has internal active pulldown circuitry that discharges the output with a time constant of: (120 · RL) t= · COUT (120 + RL) where: • • RL = Load resistance COUT = Output capacitor Copyright © 2010–2019, Texas Instruments Incorporated (1) 11 TLV702 ZHCSK00D – SEPTEMBER 2010 – REVISED JULY 2019 www.ti.com.cn Feature Description (continued) 7.3.3 Dropout Voltage The TLV702 uses a PMOS pass transistor to achieve low dropout. When (VIN – VOUT) is less than the dropout voltage (VDO), the PMOS pass device is in the linear (triode) region of operation and the input-to-output resistance is the RDS(on) of the PMOS pass element. VDO scales approximately with output current because the PMOS device behaves as a resistor in dropout. As with any linear regulator, PSRR and transient response are degraded as (VIN – VOUT) approaches dropout. This effect is shown in Figure 13. 7.3.4 Undervoltage Lockout The TLV702 uses a UVLO circuit to keep the output shut off until internal circuitry is operating properly. 7.4 Device Functional Modes 7.4.1 Normal Operation The device regulates to the nominal output voltage under the following conditions: • • • The input voltage is greater than the nominal output voltage added to the dropout voltage. The output current is less than the current limit. The input voltage is greater than the UVLO voltage. 7.4.2 Dropout Operation If the input voltage is lower than the nominal output voltage plus the specified dropout voltage, but all other conditions are met for normal operation, the device operates in dropout mode. In this condition, the output voltage is the same as the input voltage minus the dropout voltage. The transient performance of the device is significantly degraded because the pass device is in a triode state and no longer regulates the output voltage of the LDO. Line or load transients in dropout may result in large output voltage deviations. Table 1 lists the conditions that lead to the different modes of operation. Table 1. Device Functional Mode Comparison OPERATING MODE 12 PARAMETER VIN IOUT Normal mode VIN > VOUT (nom) + VDO IOUT < ICL Dropout mode VIN < VOUT (nom) + VDO IOUT < ICL Current limit VIN > UVLO IOUT > ICL Copyright © 2010–2019, Texas Instruments Incorporated TLV702 www.ti.com.cn ZHCSK00D – SEPTEMBER 2010 – REVISED JULY 2019 8 Application and Implementation NOTE Information in the following applications sections is not part of the TI component specification, and TI does not warrant its accuracy or completeness. TI’s customers are responsible for determining suitability of components for their purposes. Customers should validate and test their design implementation to confirm system functionality. 8.1 Application Information The TLV702 belongs to a new family of next-generation value LDO regulators. These devices consume low quiescent current and deliver excellent line and load transient performance. These characteristics, combined with low noise and very good PSRR with little (VIN – VOUT) headroom, make this family of devices ideal for portable RF applications. This family of regulators offers current limit and thermal protection, and is specified from –40°C to +125°C. 8.2 Typical Application VIN IN OUT CIN COUT VOUT 1 mF Ceramic TLV702xx On Off EN GND Figure 25. Typical Application Circuit 8.2.1 Design Requirements Table 2 lists the design parameters. Table 2. Design Parameters PARAMETER DESIGN REQUIREMENT Input voltage 2.5 V to 3.3 V Output voltage 1.8 V Output current 100 mA 8.2.2 Detailed Design Procedure 8.2.2.1 Input and Output Capacitor Requirements 1-μF X5R- and X7R-type ceramic capacitors are recommended because these capacitors have minimal variation in value and equivalent series resistance (ESR) overtemperature. However, the TLV702 is designed to be stable with an effective capacitance of 0.1 μF or larger at the output. Thus, the device is stable with capacitors of other dielectric types as well, as long as the effective capacitance under operating bias voltage and temperature is greater than 0.1 μF. This effective capacitance refers to the capacitance that the LDO sees under operating bias voltage and temperature conditions; that is, the capacitance after taking both bias voltage and temperature derating into consideration. In addition to allowing the use of lower-cost dielectrics, this capability of being stable with 0.1-μF effective capacitance also enables the use of smaller footprint capacitors that have higher derating in size- and space-constrained applications. Using a 0.1-μF rated capacitor at the output of the LDO does not ensure stability because the effective capacitance under the specified operating conditions must not be less than 0.1 μF. Maximum ESR should be less than 200 mΩ. Copyright © 2010–2019, Texas Instruments Incorporated 13 TLV702 ZHCSK00D – SEPTEMBER 2010 – REVISED JULY 2019 www.ti.com.cn Although an input capacitor is not required for stability, it is good analog design practice to connect a 0.1-μF to 1μF, low ESR capacitor across the IN pin and GND pin of the regulator. This capacitor counteracts reactive input sources and improves transient response, noise rejection, and ripple rejection. A higher-value capacitor may be necessary if large, fast rise-time load transients are anticipated, or if the device is not located close to the power source. If source impedance is more than 2 Ω, a 0.1-μF input capacitor may be necessary to ensure stability. 8.2.2.2 Transient Response As with any regulator, increasing the size of the output capacitor reduces overshoot and undershoot magnitude but increases the duration of the transient response. 8.2.3 Application Curves 50 mA 1 V/div IOUT VIN Slew Rate = 1 V/ms 2.9 V 2.3 V 0 mA 5 mV/div 20 mV/div 50 mA/div tR = tF = 1 ms VOUT VOUT VOUT = 1.8 V IOUT = 1 mA VOUT = 1.8 V 10 ms/div Figure 26. Load Transient Response 14 1 ms/div Figure 27. Line Transient Response Copyright © 2010–2019, Texas Instruments Incorporated TLV702 www.ti.com.cn ZHCSK00D – SEPTEMBER 2010 – REVISED JULY 2019 9 Power Supply Recommendations Connect a low output impedance power supply directly to the INPUT pin of the TLV702. Inductive impedances between the input supply and the INPUT pin can create significant voltage excursions at the INPUT pin during start-up or load transient events. 9.1 Power Dissipation The ability to remove heat from the die is different for each package type, presenting different considerations in the printed-circuit-board (PCB) layout. The PCB area around the device that is free of other components moves the heat from the device to the ambient air. Refer to Thermal Information for thermal performance on the TLV702 evaluation module (EVM). The EVM is a two-layer board with two ounces of copper per side. Power dissipation depends on input voltage and load conditions. Power dissipation (PD) is equal to the product of the output current and the voltage drop across the output pass element, as shown in Equation 2. PD = (VIN - VOUT) ´ IOUT (2) 10 Layout 10.1 Layout Guidelines Input and output capacitors should be placed as close to the device pins as possible. To improve AC performance such as PSRR, output noise, and transient response, TI recommends designing the board with separate ground planes for VIN and VOUT, with the ground plane connected only at the GND pin of the device. In addition, the ground connection for the output capacitor should be connected directly to the GND pin of the device. High ESR capacitors may degrade PSRR performance. 10.1.1 Thermal Consideration Thermal protection disables the output when the junction temperature rises to approximately 165°C, allowing the device to cool. When the junction temperature cools to approximately 145°C, the output circuitry is again enabled. Depending on power dissipation, thermal resistance, and ambient temperature, the thermal protection circuit may cycle on and off. This cycling limits the dissipation of the regulator, protecting it from damage as a result of overheating. Any tendency to activate the thermal protection circuit indicates excessive power dissipation or an inadequate heatsink. For reliable operation, junction temperature should be limited to 125°C maximum. To estimate the margin of safety in a complete design (including heatsink), increase the ambient temperature until the thermal protection is triggered; use worst-case loads and signal conditions. The internal protection circuitry of the TLV702 has been designed to protect against overload conditions. It was not intended to replace proper heatsinking. Continuously running the TLV702 into thermal shutdown degrades device reliability. Copyright © 2010–2019, Texas Instruments Incorporated 15 TLV702 ZHCSK00D – SEPTEMBER 2010 – REVISED JULY 2019 www.ti.com.cn Layout Guidelines (continued) 10.1.2 Package Mounting Solder pad footprint recommendations for the TLV702 are available from the TI website at www.ti.com. The recommended land pattern for the DBV and DSE packages are shown in Figure 28 and Figure 29, respectively. 10.2 Layout Examples VOUT VIN OUT IN CIN COUT GND NC EN GND PLANE Represents via used for application specific connections Figure 28. Layout Example for the DBV Package VIN CIN IN EN GND NC OUT NC VOUT GND PLANE COUT Represents via used for application specific connections Figure 29. Layout Example for the DSE Package 16 版权 © 2010–2019, Texas Instruments Incorporated TLV702 www.ti.com.cn ZHCSK00D – SEPTEMBER 2010 – REVISED JULY 2019 11 器件和文档支持 11.1 器件支持 11.1.1 开发支持 11.1.1.1 Spice 模型 分析模拟电路和系统的性能时,使用 SPICE 模型对电路性能进行计算机仿真非常有用。您可以从产品文件夹中的 工具和软件 下获取 TLV702 的 SPICE 模型。 11.1.2 器件命名规则 表 3. 订购信息 (1) 产品 TLV702xx yyyz (1) (2) VOUT (2) XX 为标称输出电压(例如 28 = 2.8V)。 YYY 为封装符号。 Z 为卷带数量(R = 3000,T = 250)。 要获得最新的封装和订货信息,请参阅本文档末尾的封装选项附录,或者访问器件产品文件夹,此文件夹位于www.ti.com.cn内。 可提供 1.2V 至 4.8V 范围内的输出电压(以 50mV 为单位增加)。更多详细信息及可用性,请联系制造商。 11.2 文档支持 11.2.1 相关文档 请参阅如下相关文档: 德州仪器 (TI),《使用 TLV700xxEVM-503》 用户指南 11.3 接收文档更新通知 要接收文档更新通知,请导航至 TI.com.cn 上的器件产品文件夹。单击右上角的通知我 进行注册,即可每周接收产 品信息更改摘要。有关更改的详细信息,请查看任何已修订文档中包含的修订历史记录。 11.4 社区资源 The following links connect to TI community resources. Linked contents are provided "AS IS" by the respective contributors. They do not constitute TI specifications and do not necessarily reflect TI's views; see TI's Terms of Use. TI E2E™ Online Community TI's Engineer-to-Engineer (E2E) Community. Created to foster collaboration among engineers. At e2e.ti.com, you can ask questions, share knowledge, explore ideas and help solve problems with fellow engineers. Design Support TI's Design Support Quickly find helpful E2E forums along with design support tools and contact information for technical support. 11.5 商标 E2E is a trademark of Texas Instruments. Bluetooth is a registered trademark of Bluetooth SIG. ZigBee is a registered trademark of the ZigBee Alliance. All other trademarks are the property of their respective owners. 11.6 静电放电警告 ESD 可能会损坏该集成电路。德州仪器 (TI) 建议通过适当的预防措施处理所有集成电路。如果不遵守正确的处理措施和安装程序 , 可 能会损坏集成电路。 ESD 的损坏小至导致微小的性能降级 , 大至整个器件故障。 精密的集成电路可能更容易受到损坏 , 这是因为非常细微的参数更改都可 能会导致器件与其发布的规格不相符。 版权 © 2010–2019, Texas Instruments Incorporated 17 TLV702 ZHCSK00D – SEPTEMBER 2010 – REVISED JULY 2019 www.ti.com.cn 11.7 Glossary SLYZ022 — TI Glossary. This glossary lists and explains terms, acronyms, and definitions. 12 机械、封装和可订购信息 以下页面包含机械、封装和可订购信息。这些信息是指定器件的最新可用数据。数据如有变更,恕不另行通知,且 不会对此文档进行修订。如需获取此数据表的浏览器版本,请查阅左侧的导航栏。 18 版权 © 2010–2019, Texas Instruments Incorporated PACKAGE OPTION ADDENDUM www.ti.com 15-Jul-2022 PACKAGING INFORMATION Orderable Device Status (1) Package Type Package Pins Package Drawing Qty Eco Plan (2) Lead finish/ Ball material MSL Peak Temp Op Temp (°C) Device Marking (3) Samples (4/5) (6) HPA01091DBVR ACTIVE SOT-23 DBV 5 3000 TBD Call TI Call TI -40 to 125 Samples HPA01198DBVR ACTIVE SOT-23 DBV 5 3000 TBD Call TI Call TI -40 to 125 Samples TLV70212DBVR ACTIVE SOT-23 DBV 5 3000 RoHS & Green NIPDAU Level-1-260C-UNLIM -40 to 125 QVN Samples TLV70212DBVT ACTIVE SOT-23 DBV 5 250 RoHS & Green NIPDAU Level-1-260C-UNLIM -40 to 125 QVN Samples TLV70213DBVR ACTIVE SOT-23 DBV 5 3000 RoHS & Green NIPDAU Level-1-260C-UNLIM -40 to 125 12UW Samples TLV70213DBVT ACTIVE SOT-23 DBV 5 250 RoHS & Green NIPDAU Level-1-260C-UNLIM -40 to 125 12UW Samples TLV70215DBVR ACTIVE SOT-23 DBV 5 3000 RoHS & Green NIPDAU Level-1-260C-UNLIM -40 to 125 SIR Samples TLV70215DBVT ACTIVE SOT-23 DBV 5 250 RoHS & Green NIPDAU Level-1-260C-UNLIM -40 to 125 SIR Samples TLV70215PDBVR ACTIVE SOT-23 DBV 5 3000 RoHS & Green NIPDAU Level-1-260C-UNLIM -40 to 125 SLG Samples TLV70215PDBVT ACTIVE SOT-23 DBV 5 250 RoHS & Green NIPDAU Level-1-260C-UNLIM -40 to 125 SLG Samples TLV70218DBVR ACTIVE SOT-23 DBV 5 3000 RoHS & Green NIPDAU Level-1-260C-UNLIM -40 to 125 QUW Samples TLV70218DBVT ACTIVE SOT-23 DBV 5 250 RoHS & Green NIPDAU Level-1-260C-UNLIM -40 to 125 QUW Samples TLV70220PDBVR ACTIVE SOT-23 DBV 5 3000 RoHS & Green NIPDAU Level-1-260C-UNLIM -40 to 125 QXL Samples TLV70220PDBVT ACTIVE SOT-23 DBV 5 250 RoHS & Green NIPDAU Level-1-260C-UNLIM -40 to 125 QXL Samples TLV70225DBVR ACTIVE SOT-23 DBV 5 3000 RoHS & Green NIPDAU Level-1-260C-UNLIM -40 to 125 QVF Samples TLV70225DBVT ACTIVE SOT-23 DBV 5 250 RoHS & Green NIPDAU Level-1-260C-UNLIM -40 to 125 QVF Samples TLV70225DSER ACTIVE WSON DSE 6 3000 RoHS & Green NIPDAUAG Level-1-260C-UNLIM -40 to 125 SY Samples TLV70225DSET ACTIVE WSON DSE 6 250 RoHS & Green NIPDAUAG Level-1-260C-UNLIM -40 to 125 SY Samples TLV70228DBVR ACTIVE SOT-23 DBV 5 3000 RoHS & Green NIPDAU Level-1-260C-UNLIM -40 to 125 QUX Samples TLV70228DBVT ACTIVE SOT-23 DBV 5 250 RoHS & Green NIPDAU Level-1-260C-UNLIM -40 to 125 QUX Samples Addendum-Page 1 PACKAGE OPTION ADDENDUM www.ti.com Orderable Device 15-Jul-2022 Status (1) Package Type Package Pins Package Drawing Qty Eco Plan (2) Lead finish/ Ball material MSL Peak Temp Op Temp (°C) Device Marking (3) Samples (4/5) (6) TLV70228DSER ACTIVE WSON DSE 6 3000 RoHS & Green NIPDAUAG Level-1-260C-UNLIM -40 to 125 VY Samples TLV70228DSET ACTIVE WSON DSE 6 250 RoHS & Green NIPDAUAG Level-1-260C-UNLIM -40 to 125 VY Samples TLV70228PDBVR ACTIVE SOT-23 DBV 5 3000 RoHS & Green NIPDAU Level-1-260C-UNLIM -40 to 125 QVA Samples TLV70228PDBVT ACTIVE SOT-23 DBV 5 250 RoHS & Green NIPDAU Level-1-260C-UNLIM -40 to 125 QVA Samples TLV70229DBVR ACTIVE SOT-23 DBV 5 3000 RoHS & Green NIPDAU Level-1-260C-UNLIM -40 to 125 SJW Samples TLV70229DBVT ACTIVE SOT-23 DBV 5 250 RoHS & Green NIPDAU Level-1-260C-UNLIM -40 to 125 SJW Samples TLV70229DSER ACTIVE WSON DSE 6 3000 RoHS & Green NIPDAUAG Level-1-260C-UNLIM -40 to 125 SZ Samples TLV70229DSET ACTIVE WSON DSE 6 250 RoHS & Green NIPDAUAG Level-1-260C-UNLIM -40 to 125 SZ Samples TLV70230DBVR ACTIVE SOT-23 DBV 5 3000 RoHS & Green NIPDAU Level-1-260C-UNLIM -40 to 125 QUY Samples TLV70230DBVT ACTIVE SOT-23 DBV 5 250 RoHS & Green NIPDAU Level-1-260C-UNLIM -40 to 125 QUY Samples TLV70231DBVR ACTIVE SOT-23 DBV 5 3000 RoHS & Green NIPDAU Level-1-260C-UNLIM -40 to 125 QUZ Samples TLV70231DBVT ACTIVE SOT-23 DBV 5 250 RoHS & Green NIPDAU Level-1-260C-UNLIM -40 to 125 QUZ Samples TLV70233DBVR ACTIVE SOT-23 DBV 5 3000 RoHS & Green NIPDAU Level-1-260C-UNLIM -40 to 125 QVD Samples TLV70233DBVT ACTIVE SOT-23 DBV 5 250 RoHS & Green NIPDAU Level-1-260C-UNLIM -40 to 125 QVD Samples TLV70233DSER ACTIVE WSON DSE 6 3000 RoHS & Green NIPDAUAG Level-1-260C-UNLIM -40 to 125 WK Samples TLV70233DSET ACTIVE WSON DSE 6 250 RoHS & Green NIPDAUAG Level-1-260C-UNLIM -40 to 125 WK Samples TLV70233PDBVR ACTIVE SOT-23 DBV 5 3000 RoHS & Green NIPDAU Level-1-260C-UNLIM -40 to 125 SLH Samples TLV70233PDBVT ACTIVE SOT-23 DBV 5 250 RoHS & Green NIPDAU Level-1-260C-UNLIM -40 to 125 SLH Samples TLV70235DBVR ACTIVE SOT-23 DBV 5 3000 RoHS & Green NIPDAU Level-1-260C-UNLIM -40 to 125 SDT Samples TLV70235DBVT ACTIVE SOT-23 DBV 5 250 RoHS & Green NIPDAU Level-1-260C-UNLIM -40 to 125 SDT Samples TLV70236DSER ACTIVE WSON DSE 6 3000 RoHS & Green NIPDAUAG Level-1-260C-UNLIM -40 to 125 VZ Samples Addendum-Page 2 PACKAGE OPTION ADDENDUM www.ti.com Orderable Device 15-Jul-2022 Status (1) Package Type Package Pins Package Drawing Qty Eco Plan (2) Lead finish/ Ball material MSL Peak Temp Op Temp (°C) Device Marking (3) Samples (4/5) (6) TLV70236DSET ACTIVE WSON DSE 6 250 RoHS & Green NIPDAUAG Level-1-260C-UNLIM -40 to 125 VZ Samples TLV70237DBVR ACTIVE SOT-23 DBV 5 3000 RoHS & Green NIPDAU Level-1-260C-UNLIM -40 to 125 QXR Samples TLV70237DBVT ACTIVE SOT-23 DBV 5 250 RoHS & Green NIPDAU Level-1-260C-UNLIM -40 to 125 QXR Samples TLV70237DSER ACTIVE WSON DSE 6 3000 RoHS & Green NIPDAUAG Level-1-260C-UNLIM -40 to 125 D8 Samples TLV70237DSET ACTIVE WSON DSE 6 250 RoHS & Green NIPDAUAG Level-1-260C-UNLIM -40 to 125 D8 Samples TLV70242PDSER ACTIVE WSON DSE 6 3000 RoHS & Green NIPDAUAG Level-1-260C-UNLIM -40 to 125 B9 Samples TLV70242PDSET ACTIVE WSON DSE 6 250 RoHS & Green NIPDAUAG Level-1-260C-UNLIM -40 to 125 B9 Samples TLV70243DSER ACTIVE WSON DSE 6 3000 RoHS & Green NIPDAUAG Level-1-260C-UNLIM -40 to 125 5Q Samples TLV70243DSET ACTIVE WSON DSE 6 250 RoHS & Green NIPDAUAG Level-1-260C-UNLIM -40 to 125 5Q Samples TLV70245DBVR ACTIVE SOT-23 DBV 5 3000 RoHS & Green NIPDAU Level-1-260C-UNLIM -40 to 125 SCK Samples TLV70245DBVT ACTIVE SOT-23 DBV 5 250 RoHS & Green NIPDAU Level-1-260C-UNLIM -40 to 125 SCK Samples TLV702475DBVR ACTIVE SOT-23 DBV 5 3000 RoHS & Green NIPDAU Level-1-260C-UNLIM -40 to 125 QWJ Samples TLV702475DBVT ACTIVE SOT-23 DBV 5 250 RoHS & Green NIPDAU Level-1-260C-UNLIM -40 to 125 QWJ Samples (1) The marketing status values are defined as follows: ACTIVE: Product device recommended for new designs. LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect. NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design. PREVIEW: Device has been announced but is not in production. Samples may or may not be available. OBSOLETE: TI has discontinued the production of the device. (2) RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may reference these types of products as "Pb-Free". RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption. Green: TI defines "Green" to mean the content of Chlorine (Cl) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of
TLV70218DBV 价格&库存

很抱歉,暂时无法提供与“TLV70218DBV”相匹配的价格&库存,您可以联系我们找货

免费人工找货