0
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
会员中心
创作中心
发布
  • 发文章

  • 发资料

  • 发帖

  • 提问

  • 发视频

创作活动
TLV73333PDBVR

TLV73333PDBVR

  • 厂商:

    BURR-BROWN(德州仪器)

  • 封装:

    SOT23-5

  • 描述:

    线性稳压器/LDO Positive 5.5V 3.3V 300mA 68~28dB SOT23-5

  • 数据手册
  • 价格&库存
TLV73333PDBVR 数据手册
Product Folder Sample & Buy Support & Community Tools & Software Technical Documents TLV733P ZHCSD13B – OCTOBER 2014 – REVISED NOVEMBER 2015 TLV733P 采用 1mm x 1mm SON 封装的无电容、300mA 低压降稳压器 1 特性 • • • • 1 • • • • • • 3 说明 输入电压范围:1.4V 至 5.5V 有无电容器均可实现稳定运行 折返过流保护 封装: – 1.0mm × 1.0mm X2SON (4) – SOT-23 (5) 超低压降:300mA (3.3 VOUT) 时为 125mV 精度:典型值 1%,最大值 1.4% 低 IQ:34µA 可提供固定输出电压: 1.0V 至 3.3V 高电源抑制比 (PSRR):1kHz 频率时为 50dB 有源输出放电 2 应用 • • • • • • TLV733 系列低压降线性稳压器 (LDO) 尺寸超小且静 态电流较低,可提供 300mA 的拉电流,并且线路和负 载瞬态性能出色。此系列器件可提供典型值为 1% 的 精度。 TLV733 系列采用现代无电容架构设计,无需使用输入 或输出电容即可确保运行稳定。移除输出电容有助于减 小解决方案的尺寸,并且可以消除启动时的浪涌电流。 不过,TLV733 系列在使用陶瓷输出电容时也可以稳定 运行。使用输出电容时,TLV733 还可以在器件上电和 使能期间提供折返电流控制。此功能对于电池供电类器 件尤为重要。 TLV733 提供了有源下拉电路,当被禁用时可以使输出 负载快速放电。 TLV733 系列采用标准的 DBV (SOT-23) 和 DQN (X2SON) 封装。 平板电脑 智能手机 笔记本和台式计算机 便携式工业和消费类产品 无线局域网 (WLAN) 和其他 PC 附加卡 摄像机模块 器件信息(1) 器件型号 封装 TLV733P 封装尺寸(标称值) SOT-23 (5) 2.90mm x 1.60mm X2SON (4) 1.00mm x 1.00mm (1) 要了解所有可用封装,请参见数据表末尾的封装选项附录。 典型应用电路 压降电压与输出电流间的关系 180 TLV733 CIN EN Optional ON OFF OUT 140 COUT GND VOUT = 3.3 V VOUT = 1.8 V 160 120 Optional VDO (mV) IN 100 80 60 40 20 0 0 30 60 90 120 150 180 IOUT (mA) 210 240 270 300 D020 1 An IMPORTANT NOTICE at the end of this data sheet addresses availability, warranty, changes, use in safety-critical applications, intellectual property matters and other important disclaimers. PRODUCTION DATA. English Data Sheet: SBVS235 TLV733P ZHCSD13B – OCTOBER 2014 – REVISED NOVEMBER 2015 www.ti.com.cn 目录 1 2 3 4 5 6 7 特性 .......................................................................... 应用 .......................................................................... 说明 .......................................................................... 修订历史记录 ........................................................... Pin Configuration and Functions ......................... Specifications......................................................... 1 1 1 2 3 4 6.1 6.2 6.3 6.4 6.5 6.6 4 4 4 4 5 6 Absolute Maximum Ratings ...................................... ESD Ratings.............................................................. Recommended Operating Conditions....................... Thermal Information .................................................. Electrical Characteristics........................................... Typical Characteristics .............................................. Detailed Description ............................................ 12 7.1 Overview ................................................................. 12 7.2 Functional Block Diagram ....................................... 12 7.3 Feature Description................................................. 13 7.4 Device Functional Modes........................................ 14 8 Application and Implementation ........................ 15 8.1 Application Information............................................ 15 8.2 Typical Applications ............................................... 17 9 Power-Supply Recommendations...................... 19 10 Layout................................................................... 19 10.1 Layout Guidelines ................................................. 19 10.2 Layout Examples................................................... 19 11 器件和文档支持 ..................................................... 20 11.1 11.2 11.3 11.4 11.5 器件支持 ............................................................... 文档支持................................................................ 商标 ....................................................................... 静电放电警告......................................................... Glossary ................................................................ 20 20 20 20 20 12 机械、封装和可订购信息 ....................................... 21 4 修订历史记录 Changes from Revision A (December 2014) to Revision B Page • 已将低压降特性要点的值从 122mV 改为 125mV,以匹配电气特性中的值............................................................................ 1 • 已更改首页曲线图中的 VOUT 标签 ........................................................................................................................................... 1 • Changed min junction temperature value from –55 to –40 in Absolute Maximum Ratings table .......................................... 4 • Changed max junction temperature value from 160 to 150 in Absolute Maximum Ratings table ........................................ 4 • Changed max storage temperature value from 150 to 160 in Absolute Maximum Ratings table.......................................... 4 • Added test condition to line regulation parameter in Electrical Characteristics table............................................................. 5 • Changed unit for line regulation parameter from mV/V to mV ............................................................................................... 5 • Added test condition to load regulation parameter in Electrical Characteristics table .......................................................... 5 Changes from Original (October 2014) to Revision A Page • 已更改数据表首页的标题信息,以反映器件系列而非各个器件............................................................................................... 1 • 已将输入电压范围 特性 更改为列表中的第一个要点............................................................................................................... 1 • 已更改 首页的典型应用电路;修正了可选电容标识中的错误 ................................................................................................. 1 • Changed format of I/O column contents and order of packages in Pin Functions table ....................................................... 3 • Moved storage temperature range specification to Absolute Maximum Ratings table ......................................................... 4 • Changed Handling Ratings table title to ESD Ratings, updated table format ........................................................................ 4 • Added new first row to the VDO parameter in the Electrical Characteristics table .................................................................. 5 • Changed condition text for Figure 34 .................................................................................................................................. 16 • 已添加 评估模块小节 ............................................................................................................................................................ 20 • 已删除 相关链接部分 ............................................................................................................................................................ 20 2 Copyright © 2014–2015, Texas Instruments Incorporated TLV733P www.ti.com.cn ZHCSD13B – OCTOBER 2014 – REVISED NOVEMBER 2015 5 Pin Configuration and Functions DBV Package 5-Pin SOT-23 Top View IN 1 GND 2 EN 3 5 OUT 4 NC DQN Package 4-Pin 1-mm × 1-mm X2SON Top View IN EN 4 3 1 2 OUT GND Pin Functions PIN NO. NAME DQN DBV I/O DESCRIPTION Enable pin. Drive EN greater than 0.9 V to turn on the regulator. Drive EN less than 0.35 V to put the LDO into shutdown mode. EN 3 3 I GND 2 2 — IN 4 1 I NC N/A 4 — No internal connection OUT 1 5 O Regulated output voltage pin. For best transient response, use a small 1-μF ceramic capacitor from this pin to ground. See the Input and Output Capacitor Selection section for more details. — — The thermal pad is electrically connected to the GND node. Connect to the GND plane for improved thermal performance. Thermal pad Copyright © 2014–2015, Texas Instruments Incorporated Ground pin Input pin. A small capacitor is recommended from this pin to ground. See the Input and Output Capacitor Selection section for more details. 3 TLV733P ZHCSD13B – OCTOBER 2014 – REVISED NOVEMBER 2015 www.ti.com.cn 6 Specifications 6.1 Absolute Maximum Ratings over operating junction temperature range (unless otherwise noted); all voltages are with respect to GND (1) Voltage Current MIN MAX VIN –0.3 6.0 VEN –0.3 VIN + 0.3 VOUT –0.3 3.6 IOUT V Internally limited Output short-circuit duration A Indefinite Temperature (1) UNIT Operating junction, TJ –40 150 Storage, Tstg –65 160 °C Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings only, which do not imply functional operation of the device at these or any other conditions beyond those indicated under Recommended Operating Conditions. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability. 6.2 ESD Ratings VALUE V(ESD) (1) (2) Electrostatic discharge Human-body model (HBM), per ANSI/ESDA/JEDEC JS-001 (1) ±2000 Charged-device model (CDM), per JEDEC specification JESD22-C101 (2) ±500 UNIT V JEDEC document JEP155 states that 500-V HBM allows safe manufacturing with a standard ESD control process. JEDEC document JEP157 states that 250-V CDM allows safe manufacturing with a standard ESD control process. 6.3 Recommended Operating Conditions over operating junction temperature range (unless otherwise noted) MIN NOM MAX UNIT Input range, VIN 1.4 5.5 V Output range, VOUT 1.0 3.3 V Output current, IOUT 0 300 mA Enable range, VEN 0 VIN V –40 125 °C Junction temperature, TJ 6.4 Thermal Information TLV733P THERMAL METRIC (1) DQN (X2SON) DBV (SOT-23) UNIT 4 PINS 5 PINS RθJA Junction-to-ambient thermal resistance 218.6 228.4 °C/W RθJC(top) Junction-to-case (top) thermal resistance 164.8 151.5 °C/W RθJB Junction-to-board thermal resistance 164.9 55.8 °C/W ψJT Junction-to-top characterization parameter 5.6 31.4 °C/W ψJB Junction-to-board characterization parameter 163.9 54.8 °C/W RθJC(bot) Junction-to-case (bottom) thermal resistance 131.4 N/A °C/W (1) 4 For more information about traditional and new thermal metrics, see the IC Package Thermal Metrics application report, SPRA953. Copyright © 2014–2015, Texas Instruments Incorporated TLV733P www.ti.com.cn ZHCSD13B – OCTOBER 2014 – REVISED NOVEMBER 2015 6.5 Electrical Characteristics At operating temperature range (TJ = –40°C to +125°C), VIN = VOUT(nom) + 0.5 V or 2.0 V (whichever is greater), IOUT = 1 mA, VEN = VIN, and CIN = COUT = 1 µF (unless otherwise noted). All typical values at TJ = 25°C. PARAMETER VIN TEST CONDITIONS Input voltage DC output accuracy UVLO Undervoltage lockout ΔVO(ΔVI) Line regulation ΔVO(ΔIO) Load regulation Dropout voltage (1) VDO MIN TYP 1.4 TJ = 25°C –40°C ≤ TJ ≤ +125°C 5.5 –1% 1% –1.4% 1.4% VIN rising 1.3 VIN falling 1.25 ΔVI = VIN(nom) to VIN(nom) + 1 1 DQN package 16 DBV package 25 ΔIO = 1 mA to 300 mA VOUT = 0.98 × VOUT(nom), IOUT = 300 mA MAX 1.4 V V mV mV VOUT = 1.1 V, –40°C ≤ TJ ≤ 85°C 460 1.2 V ≤ VOUT < 1.5 V, –40°C ≤ TJ ≤ 85°C 420 1.5 V ≤ VOUT < 1.8 V, –40°C ≤ TJ ≤ 85°C 370 1.8 V ≤ VOUT < 2.5 V, –40°C ≤ TJ ≤ 85°C 270 2.5 V ≤ VOUT < 3.3 V, –40°C ≤ TJ ≤ 85°C UNIT 260 VOUT = 3.3 V, –40°C ≤ TJ ≤ 85°C 125 220 1.2 V ≤ VOUT < 1.5 V, –40°C ≤ TJ ≤ 125°C 450 1.5 V ≤ VOUT < 1.8 V, –40°C ≤ TJ ≤ 125°C 400 1.8 V ≤ VOUT < 2.5 V, –40°C ≤ TJ ≤ 125°C 300 2.5 V ≤ VOUT < 3.3 V, –40°C ≤ TJ ≤ 125°C 290 VOUT = 3.3 V, –40°C ≤ TJ ≤ 125°C mV 125 270 IGND Ground pin current IOUT = 0 mA 34 60 µA ISHDN Shutdown current VEN ≤ 0.35 V, 2.0 V ≤ VIN ≤ 5.5 V, TJ = 25°C 0.1 1 µA f = 100 Hz 68 PSRR Power-supply rejection ratio VOUT = 1.8 V, IOUT = 300 mA f = 10 kHz 35 f = 100 kHz 28 Vn Output noise voltage VEN(HI) EN pin high voltage (enabled) VEN(LO) EN pin low voltage (disabled) IEN EN pin current tSTR Startup time Pull-down resistor ILIM Output current limit IOS Short-circuit current limit Tsd Thermal shutdown (1) BW = 10 Hz to 100 kHz, VOUT = 1.8 V, IOUT = 10 mA 0.9 dB 120 µVRMS 0.63 V 0.52 VEN = 5.5 V 0.01 Time from EN assertion to 98% × VOUT(nom), VOUT = 1.0 V, IOUT = 0 mA 250 Time from EN assertion to 98% × VOUT(nom), VOUT = 3.3 V, IOUT = 0 mA 800 VIN = 2.3 V 120 0.35 V µA µs 360 Ω mA VOUT shorted to GND, VOUT = 1.0 V 150 VOUT shorted to GND, VOUT = 3.3 V 170 Shutdown, temperature increasing 160 Reset, temperature decreasing 140 mA °C Dropout voltage for the TLV73310P is not valid at room temperature. The device engages undervoltage lockout (VIN < UVLOFALL) before the dropout condition is met. Copyright © 2014–2015, Texas Instruments Incorporated 5 TLV733P ZHCSD13B – OCTOBER 2014 – REVISED NOVEMBER 2015 www.ti.com.cn 6.6 Typical Characteristics at operating temperature range (TJ = –40°C to +125°C), VIN = VOUT(nom) + 0.5 V or 2.0 V (whichever is greater), IOUT = 1 mA, VEN = VIN, and CIN = COUT = 1 µF (unless otherwise noted) 1.03 1.004 TJ = -40 qC TJ = 0 qC TJ = 25 qC TJ = 85 qC TJ = 125 qC 1.02 0.996 VOUT (V) VOUT (V) 1.01 TJ = -40 qC TJ = 0 qC TJ = 25 qC TJ = 85 qC TJ = 125 qC 1 1 0.99 0.992 0.988 0.98 0.984 0.97 0.98 0.96 0.976 0 50 100 150 200 Current (mA) 250 300 0 50 TLV73310PDBV Figure 1. 1.0-V Load Regulation vs IOUT and Temperature 300 D005 1.8 TJ = -40 qC TJ = 0 qC TJ = 25 qC TJ = 85 qC TJ = 125 qC 1.797 1.794 VOUT (V) 1.8 VOUT (V) 250 Figure 2. 1.0-V Load Regulation vs IOUT and Temperature TJ = -40 qC TJ = 0 qC TJ = 25 qC TJ = 85 qC TJ = 125 qC 1.808 1.792 1.784 1.791 1.788 1.776 1.785 1.768 1.782 1.76 1.779 0 50 100 150 200 Current (mA) 250 300 0 50 100 D002 TLV73318PDBV 150 200 Current (mA) 250 300 D006 TLV73318PDQN Figure 3. 1.8-V Load Regulation vs IO and Temperature Figure 4. 1.8-V Load Regulation vs IOUT and Temperature 3.345 3.32 TJ = -40 qC TJ = 0 qC TJ = 25 qC TJ = 85 qC TJ = 125 qC 3.33 TJ = -40 qC TJ = 0 qC TJ = 25 qC TJ = 85 qC TJ = 125 qC 3.312 3.304 VOUT (V) 3.315 VOUT (V) 150 200 Current (mA) TLV73310PDQN 1.816 3.3 3.285 3.296 3.288 3.27 3.28 3.255 3.272 3.24 3.264 0 50 100 150 200 Current (mA) 250 300 D003 TLV73333PDBV Figure 5. 3.3-V Load Regulation vs IOUT and Temperature 6 100 D001 0 50 100 150 200 Current (mA) 250 300 D007 TLV73333PDQN Figure 6. 3.3-V Load Regulation vs IOUT and Temperature Copyright © 2014–2015, Texas Instruments Incorporated TLV733P www.ti.com.cn ZHCSD13B – OCTOBER 2014 – REVISED NOVEMBER 2015 Typical Characteristics (continued) at operating temperature range (TJ = –40°C to +125°C), VIN = VOUT(nom) + 0.5 V or 2.0 V (whichever is greater), IOUT = 1 mA, VEN = VIN, and CIN = COUT = 1 µF (unless otherwise noted) 390 400 TJ = -40 qC TJ = 0 qC TJ = 25 qC TJ = 85 qC TJ = 125 qC 350 330 300 VDO (mV) VDO (mV) 300 TJ = -40 qC TJ = 0 qC TJ = 25 qC TJ = 85 qC TJ = 125 qC 360 250 200 270 240 210 180 150 150 120 100 90 60 50 0 30 60 90 120 150 180 Current (mA) 210 240 270 0 300 30 60 90 D024 TLV73312PDBV 210 240 270 300 D025 TLV73312PDQN Figure 7. 1.2-V Dropout Voltage vs IOUT and Temperature Figure 8. 1.2-V Dropout Voltage vs IOUT and Temperature 300 275 TJ = -40 qC TJ = 0 qC TJ = 25 qC TJ = 85 qC TJ = 125 qC 250 225 200 TJ = -40 qC TJ = 0 qC TJ = 25 qC TJ = 85 qC TJ = 125 qC 250 200 175 VDO (mV) VDO (mV) 120 150 180 Current (mA) 150 125 100 150 100 75 50 50 25 0 0 0 30 60 90 120 150 180 Current (mA) 210 240 270 300 0 30 60 90 D008 TLV73318PDBV 210 240 270 300 D010 TLV73318PDQN Figure 9. 1.8-V Dropout Voltage vs IOUT and Temperature Figure 10. 1.8-V Dropout Voltage vs IOUT and Temperature 300 300 TJ = -40 qC TJ = 0 qC TJ = 25 qC TJ = 85 qC TJ = 125 qC 250 TJ = -40 qC TJ = 0 qC TJ = 25 qC TJ = 85 qC TJ = 125 qC 250 200 VDO (mV) 200 VDO (mV) 120 150 180 Current (mA) 150 150 100 100 50 50 0 0 0 30 60 90 120 150 180 Current (mA) 210 240 270 300 D009 TLV73333PDBV Figure 11. 3.3-V Dropout Voltage vs IOUT and Temperature Copyright © 2014–2015, Texas Instruments Incorporated 0 30 60 90 120 150 180 Current (mA) 210 240 270 300 D011 TLV73333PDQN Figure 12. 3.3-V Dropout Voltage vs IOUT and Temperature 7 TLV733P ZHCSD13B – OCTOBER 2014 – REVISED NOVEMBER 2015 www.ti.com.cn Typical Characteristics (continued) at operating temperature range (TJ = –40°C to +125°C), VIN = VOUT(nom) + 0.5 V or 2.0 V (whichever is greater), IOUT = 1 mA, VEN = VIN, and CIN = COUT = 1 µF (unless otherwise noted) 1.816 70 TJ = -40 qC TJ = 0 qC TJ = 25 qC TJ = 85 qC TJ = 125 qC 1.814 1.812 60 55 1.808 IGND (PA) VOUT (V) 1.81 TJ = -40 qC TJ = 0 qC TJ = 25 qC TJ = 85 qC TJ = 125 qC 65 1.806 1.804 50 45 40 1.802 1.8 35 1.798 30 1.796 25 2 2.5 3 3.5 4 VIN (V) 4.5 5 5.5 0 30 60 90 120 150 180 IOUT (mA) D019 D010 210 240 270 300 D012 TLV73318PDBV Figure 13. 1.8-V Regulation vs VIN (Line Regulation) and Temperature Figure 14. Ground Pin Current vs IOUT and Temperature 100 50 40 TJ = 25 qC 20 10 5 24 ISHDN (PA) IGND (PA) 32 16 2 1 0.5 0.2 0.1 0.05 8 0 0.5 TJ = -40 qC TJ = 0 qC TJ = 25 qC TJ = 85 qC TJ = 125 qC 0.02 0.01 1 1.5 2 2.5 3 3.5 VIN (V) 4 4.5 5 0 5.5 1 D013 2 3 VIN (V) 4 5 6 D015 IOUT = 0 mA Figure 15. Ground Pin Current vs VIN Figure 16. Shutdown Current vs VIN and Temperature 1 0.675 VEN(LO) VEN(HI) 0.9 0.625 0.8 0.6 0.7 0.575 0.6 VOUT (V) Enable Threshold (V) 0.65 0.55 0.525 0.5 0.4 0.5 0.3 0.475 0.2 0.45 0.1 0.425 -40 -20 0 20 40 60 TJ (qC) 80 100 120 140 D014 TJ = -40 qC TJ = 0 qC TJ = 25 qC TJ = 85 qC TJ = 125 qC 0 150 200 250 300 350 400 450 500 550 600 650 700 Foldback Current Limit (mA) D023 TLV73310PDBV Figure 17. Enable Threshold vs Temperature 8 Figure 18. 1.0-V Foldback Current Limit vs IOUT and Temperature Copyright © 2014–2015, Texas Instruments Incorporated TLV733P www.ti.com.cn ZHCSD13B – OCTOBER 2014 – REVISED NOVEMBER 2015 Typical Characteristics (continued) at operating temperature range (TJ = –40°C to +125°C), VIN = VOUT(nom) + 0.5 V or 2.0 V (whichever is greater), IOUT = 1 mA, VEN = VIN, and CIN = COUT = 1 µF (unless otherwise noted) 2 1.75 TJ = -40 qC TJ = 0 qC TJ = 25 qC TJ = 85 qC TJ = 125 qC 3 2.5 1.25 VOUT (V) VOUT (V) 1.5 3.5 TJ = -40 qC TJ = 0 qC TJ = 25 qC TJ = 85 qC TJ = 125 qC 1 2 1.5 0.75 1 0.5 0.5 0.25 0 150 200 250 300 350 400 Foldback Current Limit (mA) 450 0 150 500 200 D021 TLV73318PDBV 450 500 D022 TLV73333PDBV Figure 19. 1.8-V Foldback Current Limit vs IOUT and Temperature Figure 20. 3.3-V Foldback Current Limit vs IOUT and Temperature 80 10 No Output Capacitor 1 PF Output Capacitor VOUT = 1 V VOUT = 1.8 V VOUT = 3.3 V 5 Noise Density (PV/—Hz) 60 PSRR (dB) 250 300 350 400 Foldback Current Limit (mA) 40 20 2 1 0.5 0.2 0.1 0.05 0.02 0.01 0 10 20 50 100 1000 10000 Frequency (Hz) 100000 1000000 D017 TLV73318PDQN, IOUT = 300 mA Figure 21. Power-Supply Rejection Ratio vs Frequency VIN (2 V/div) VOUT (1 V/div, AC Coupled) 0.005 10 20 50 100 1000 10000 Frequency (Hz) 100000 1000000 Figure 22. Output Spectral Noise Density VIN (2 V/div) VOUT (1 V/div, AC Coupled) Time (20 µs/div) Time (20 µs/div) TLV73318PDBV, IOUT = 10 mA, 1-µF output capacitor TLV73318PDBV, IOUT = 300 mA, 1-µF output capacitor Figure 23. Line Transient Copyright © 2014–2015, Texas Instruments Incorporated D016 IOUT = 300 mA Figure 24. Line Transient 9 TLV733P ZHCSD13B – OCTOBER 2014 – REVISED NOVEMBER 2015 www.ti.com.cn Typical Characteristics (continued) at operating temperature range (TJ = –40°C to +125°C), VIN = VOUT(nom) + 0.5 V or 2.0 V (whichever is greater), IOUT = 1 mA, VEN = VIN, and CIN = COUT = 1 µF (unless otherwise noted) VOUT (200 mV/div, AC Coupled) VOUT (200 mV/div, AC Coupled) ILOAD (100 mA/div) ILOAD (100 mA/div) Time (20 µs/div) Time (20 µs/div) TLV73310PDBV, VIN = 2.0 V, 1-µF output capacitor, output current slew rate = 0.25 A/µs TLV73310PDBV, VIN = 2.0 V, no output capacitor, output current slew rate = 0.25 A/µs Figure 25. 1.0-V, 50-mA to 300-mA Load Transient Figure 26. 1.0 V, 50-mA to 300-mA Load Transient VOUT (100 mV/div, AC Coupled) VOUT (100 mV/div, AC coupled) ILOAD (100 mA/div) ILOAD (200 mA/div) Time (20 µs/div) Time (50 µs/div) TLV73333PDBV, VIN = 3.8 V,1-µF output capacitor, output current slew rate = 0.25 A/µs TLV73333PDBV, VIN = 3.8 V, no output capacitor, output current slew rate = 0.25 A/µs Figure 27. 3.3 V, 50-mA to 300-mA Load Transient Figure 28. 3.3 V, 50-mA to 300-mA Load Transient VEN (500 mV/div) VIN (1 V/div) VOUT (1 V/div) ILOAD (200 mA/div) Time (100 µs/div) TLV73318PDBV, RL = 6.2 Ω, VEN = VIN, 1-µF output capacitor Figure 29. VIN Power-Up and Power-Down 10 VOUT (500 mV/div) Time (100 µs/div) TLV73318PDBV, RL = 6.2 Ω, 1-µF output capacitor Figure 30. Startup with EN Copyright © 2014–2015, Texas Instruments Incorporated TLV733P www.ti.com.cn ZHCSD13B – OCTOBER 2014 – REVISED NOVEMBER 2015 Typical Characteristics (continued) at operating temperature range (TJ = –40°C to +125°C), VIN = VOUT(nom) + 0.5 V or 2.0 V (whichever is greater), IOUT = 1 mA, VEN = VIN, and CIN = COUT = 1 µF (unless otherwise noted) VOUT (500 mV/div) VEN (500 mV/div) VOUT (500 mV/div) ILOAD (200 mA/div) Time (100 µs/div) Time (100 µs/div) TLV73318PDBV, IOUT = 300 mA, 1-µF output capacitor TLV73318PDBV, 1-µF output capacitor Figure 31. Shutdown Response with Enable Copyright © 2014–2015, Texas Instruments Incorporated Figure 32. Foldback Current Limit Response 11 TLV733P ZHCSD13B – OCTOBER 2014 – REVISED NOVEMBER 2015 www.ti.com.cn 7 Detailed Description 7.1 Overview The TLV733 belongs to a new family of next-generation, low-dropout regulators (LDOs). These devices consume low quiescent current and deliver excellent line and load transient performance. These characteristics, combined with low noise, good PSRR with low dropout voltage, make this family of devices ideal for portable consumer applications. This family of regulators offers foldback current limit, shutdown, and thermal protection. The operating junction temperature for this family of devices is –40°C to 125°C. 7.2 Functional Block Diagram IN OUT Current Limit Thermal Shutdown UVLO EN 120 W Bandgap Logic TLV733 GND 12 Copyright © 2014–2015, Texas Instruments Incorporated TLV733P www.ti.com.cn ZHCSD13B – OCTOBER 2014 – REVISED NOVEMBER 2015 7.3 Feature Description 7.3.1 Undervoltage Lockout (UVLO) The TLV733 uses an undervoltage lockout (UVLO) circuit that disables the output until the input voltage is greater than the rising UVLO voltage, UVLORISE. This circuit ensures that the device does not exhibit any unpredictable behavior when the supply voltage is lower than the operational range of the internal circuitry. During UVLO disable, the output is connected to ground with a 120-Ω pulldown resistor. 7.3.2 Shutdown The enable pin (EN) is active high. Enable the device by forcing the EN pin to exceed VEN(HI) (0.9 V, minimum). Turn off the device by forcing the EN pin to drop below 0.35 V. If shutdown capability is not required, connect EN to IN. The TLV733 has an internal pulldown MOSFET that connects a 120-Ω resistor to ground when the device is disabled. The discharge time after disabling depends on the output capacitance (COUT) and the load resistance (RL) in parallel with the 120-Ω pulldown resistor. The time constant is calculated in Equation 1: 120 · RL t= · COUT 120 + RL (1) 7.3.3 Internal Foldback Current Limit The TLV733 has an internal foldback current limit that protects the regulator during fault conditions. The current allowed through the device is reduced as the output voltage falls. When the output is shorted, the LDO supplies a typical current of 150 mA. The output voltage is not regulated when the device is in current limit. In this condition, the output voltage is the product of the regulated current and the load resistance. When the device output is shorted, the PMOS pass transistor dissipates power [(VIN – VOUT) × IOS] until thermal shutdown is triggered and the device turns off. After the device cools down, the internal thermal shutdown circuit turns the device back on. If the fault condition continues, the device cycles between current limit and thermal shutdown. See the Thermal Information table for more details. The foldback current-limit circuit limits the current allowed through the device to current levels lower than the minimum current limit at nominal VOUT current limit (ILIM) during startup. See Figure 18 to Figure 20 for typical foldback current limit values. If the output is loaded by a constant-current load during startup, or if the output voltage is negative when the device is enabled, then the load current demanded by the load may exceed the foldback current limit and the device may not rise to the full output voltage. For constant-current loads, disable the output load until the TLV733 has fully risen to its nominal output voltage. The TLV733 PMOS pass element has an intrinsic body diode that conducts current when the voltage at the OUT pin exceeds the voltage at the IN pin. Do not force the output voltage to exceed the input voltage because excessively high current may flow through the body diode. 7.3.4 Thermal Shutdown Thermal shutdown protection disables the output when the junction temperature rises to approximately 160°C. Disabling the device eliminates the power dissipated by the device, allowing the device to cool. When the junction temperature cools to approximately 140°C, the output circuitry is again enabled. Depending on power dissipation, thermal resistance, and ambient temperature, the thermal protection circuit may cycle on and off. This cycling limits regulator dissipation, protecting it from damage as a result of overheating. Activating the thermal shutdown feature usually indicates excessive power dissipation as a result of the product of the (VIN –VOUT) voltage and the load current. For reliable operation, limit junction temperature to 125°C maximum. To estimate the margin of safety in a complete design, increase the ambient temperature until the thermal protection is triggered; use worst-case loads and signal conditions. The TLV733 internal protection circuitry protects against overload conditions but is not intended to be activated in normal operation. Continuously running the TLV733 into thermal shutdown degrades device reliability. Copyright © 2014–2015, Texas Instruments Incorporated 13 TLV733P ZHCSD13B – OCTOBER 2014 – REVISED NOVEMBER 2015 www.ti.com.cn 7.4 Device Functional Modes 7.4.1 Normal Operation The device regulates to the nominal output voltage under the following conditions: • The input voltage has previously exceeded the UVLO rising voltage and has not decreased below the UVLO falling threshold. The input voltage is greater than the nominal output voltage added to the dropout voltage. The enable voltage has previously exceeded the enable rising threshold voltage and not decreased below the enable falling threshold. The output current is less than the current limit. The device junction temperature is less than the thermal shutdown temperature. • • • • 7.4.2 Dropout Operation If the input voltage is lower than the nominal output voltage plus the specified dropout voltage, but all other conditions are met for normal operation, the device operates in dropout mode. In this condition, the output voltage is the same the input voltage minus the dropout voltage. The transient performance of the device is significantly degraded because the pass device is in a triode state and no longer controls the current through the LDO. Line or load transients in dropout may result in large output voltage deviations. 7.4.3 Disabled The device is disabled under the following conditions: • The input voltage is less than the UVLO falling voltage, or has not yet exceeded the UVLO rising threshold. • The enable voltage is less than the enable falling threshold voltage or has not yet exceeded the enable rising threshold. • The device junction temperature is greater than the thermal shutdown temperature. When the device is disabled, the active pulldown resistor discharges the output. Table 1 shows the conditions that lead to the different modes of operation. Table 1. Device Functional Mode Comparison OPERATING MODE PARAMETER VIN VEN IOUT TJ Normal mode VIN > VOUT(nom) + VDO and VIN > UVLORISE VEN > VEN(HI) IOUT < ILIM TJ < 160°C Dropout mode UVLORISE < VIN < VOUT(nom) + VDO VEN > VEN(HI) IOUT < ILIM TJ < 160°C VIN < UVLOFALL VEN < VEN(LO) — TJ > 160°C Disabled mode (any true condition disables the device) 14 Copyright © 2014–2015, Texas Instruments Incorporated TLV733P www.ti.com.cn ZHCSD13B – OCTOBER 2014 – REVISED NOVEMBER 2015 8 Application and Implementation 8.1 Application Information 8.1.1 Input and Output Capacitor Selection The TLV733 uses an advanced internal control loop to obtain stable operation both with and without the use of input or output capacitors. Dynamic performance is improved with the use of an output capacitor, and may be improved with an input capacitor. An output capacitance of 0.1 μF or larger generally provides good dynamic response. Use X5R- and X7R-type ceramic capacitors because these capacitors have minimal variation in value and equivalent series resistance (ESR) over temperature. Although an input capacitor is not required for stability, increased output impedance from the input supply may compromise the performance of the TLV733. Good analog design practice is to connect a 0.1-µF to 1-µF capacitor from IN to GND. This capacitor counteracts reactive input sources and improves transient response, input ripple, and PSRR. Use an input capacitor if the source impedance is greater than 0.5 Ω. Use a higher-value capacitor if large, fast, rise-time load transients are anticipated, or if the device is located several inches from the input power source. Figure 33 shows the transient performance improvements with an external 1-µF capacitor on the output versus no output capacitor. The data in this figure are taken with an increasing load step from 50 mA to 300 mA, and the peak output voltage deviation (load transient response) is measured. For low output current slew rates, (< 0.1 A/µs), the transient performance of the device is similar with or without an output capacitor. As the current slew rate is increased, the peak voltage deviation is significantly increased. For loads that exhibit fast current slew rates above 0.1 A/µs, use an output capacitor. For best performance, the maximum recommended output capacitance is 100 µF. Peak Output Voltage Change (%VOUT) 35 30 1 PF COUT COUT Removed 25 20 15 10 5 0 0.01 0.02 0.03 0.050.07 0.1 0.2 0.3 0.5 0.7 Output Load Transient Slew Rate (A/Ps) 1 D027 TLV73333PDBV, output current stepped from 50 mA to 300 mA, output voltage change measured at positive dI/dt Figure 33. Output Voltage Deviation vs Load Step Slew Rate Some applications benefit from the removal of the output capacitor. In addition to space and cost savings, the removal of the output capacitor lowers inrush current as a result of eliminating the required current flow into the output capacitor upon startup. In these cases, take care to ensure that the load is tolerant of the additional output voltage deviations. Copyright © 2014–2015, Texas Instruments Incorporated 15 TLV733P ZHCSD13B – OCTOBER 2014 – REVISED NOVEMBER 2015 www.ti.com.cn Application Information (continued) 8.1.2 Dropout Voltage The TLV733 uses a PMOS pass transistor to achieve low dropout. When (VIN – VOUT) is less than the dropout voltage (VDO), the PMOS pass device is in the linear region of operation and the input-to-output resistance is the RDS(ON) of the PMOS pass element. VDO scales approximately with output current because the PMOS device behaves like a resistor in dropout mode. As with any linear regulator, PSRR and transient response degrade as (VIN – VOUT) approaches dropout operation. See Figure 7 to Figure 12 for typical dropout values. 8.1.3 Power Dissipation The ability to remove heat from the die is different for each package type, presenting different considerations in the printed circuit board (PCB) layout. The PCB area around the device that is free of other components moves the heat from the device to ambient air. Performance data for JEDEC high-K boards are given in the Thermal Information table. Using heavier copper increases the effectiveness in removing heat from the device. The addition of plated through-holes to heat-dissipating layers also improves heatsink effectiveness. Power dissipation (PD) depends on input voltage and load conditions. PD is equal to the product of the output current and voltage drop across the output pass element, as shown in Equation 2. PD = (VIN – VOUT) × IOUT (2) Maximum Ambient Temperature (qC) Figure 34 shows the maximum ambient temperature versus the power dissipation of the TLV733 in the DQN package. This figure assumes the device is soldered on JEDEC standard high-K layout with no airflow over the board. Actual board thermal impedances vary widely. If the application requires high power dissipation, having a thorough understanding of the board temperature and thermal impedances is helpful to make sure the TLV733 does not operate continuously above a junction temperature of 125°C. 125 120 115 110 105 100 95 90 85 80 75 70 65 60 55 TLV733 DQN, High-K Layout TLV733 DBV, High-K Layout 0 0.03 0.06 0.09 0.12 0.15 0.18 0.21 0.24 0.27 Power Dissipation (W) 0.3 D028 TLV733, high-K layout Figure 34. Maximum Ambient Temperature vs Device Power Dissipation 16 Copyright © 2014–2015, Texas Instruments Incorporated TLV733P www.ti.com.cn ZHCSD13B – OCTOBER 2014 – REVISED NOVEMBER 2015 8.2 Typical Applications 8.2.1 DC-DC Converter Post Regulation VOUT 1.8 V IN CIN 1 µF DC-DC Converter OUT VOUT 1.5 V COUT 1 µF TLV733 EN Load GND ON OFF Figure 35. DC-DC Converter Post Regulation 8.2.1.1 Design Requirements Table 2. Design Parameters PARAMETER DESIGN REQUIREMENT Input voltage 1.8 V, ±5% Output voltage 1.5 V, ±1% Output current 200-mA dc, 300-mA peak Output voltage transient deviation < 10%, 1-A/µs load step from 50 mA to 200 mA Maximum ambient temperature 85°C 8.2.1.2 Design Considerations Input and output capacitors are required to achieve the output voltage transient requirements. Capacitance values of 1 µF are selected to give the maximum output capacitance in a small, low-cost package. Figure 7 shows the 1.2-V option dropout voltage. Given that dropout voltages are higher for lower output-voltage options, and given that the 1.2-V option dropout voltage is typically less than 300 mV at 125°C, then the 1.5-V option dropout voltage is typically less than 300 mV at 125°C. Verify that the maximum junction temperature is not exceeded by referring to Figure 34. 8.2.1.3 Application Curve VIN (500 mV/div) VOUT (500 mV/div) IOUT (100 mA/div) Time (50 µs/div) Figure 36. 1.8-V to 1.5-V Regulation at 300 mA Copyright © 2014–2015, Texas Instruments Incorporated 17 TLV733P ZHCSD13B – OCTOBER 2014 – REVISED NOVEMBER 2015 www.ti.com.cn 8.2.2 Capacitor-Free Operation from Battery Input Supply IN OUT TLV733 VBAT Load EN GND Figure 37. Capacitor-Free Operation from Battery Input Supply 8.2.2.1 Design Requirements Table 3. Design Parameters PARAMETER DESIGN REQUIREMENT Input voltage 3.0 V to 1.8 V (two 1.5-V batteries) Output voltage 1.0 V, ±1% Input current 200 mA, maximum Output load 100-mA dc Maximum ambient temperature 70°C 8.2.2.2 Design Considerations An input capacitor is not required for this design because of the low impedance connection directly to the battery. No output capacitor allows for the minimal possible inrush current during startup, ensuring the 200-mA maximum input current is not exceeded. Verify that the maximum junction temperature is not exceeded by referring to Figure 34. 8.2.2.3 Application Curve VIN (1 V/div) VOUT (500 mV/div) IIN (100 mA/div) Time (50 µs/div) Figure 38. No Inrush Startup, 3.0-V to 1.0-V Regulation 18 Copyright © 2014–2015, Texas Instruments Incorporated TLV733P www.ti.com.cn ZHCSD13B – OCTOBER 2014 – REVISED NOVEMBER 2015 9 Power-Supply Recommendations Connect a low output impedance power supply directly to the IN pin of the TLV733. Inductive impedances between the input supply and the IN pin can create significant voltage excursions at the IN pin during startup or load transient events. If inductive impedances are unavoidable, use an input capacitor. 10 Layout 10.1 Layout Guidelines • • • • Place input and output capacitors as close to the device as possible. Use copper planes for device connections, in order to optimize thermal performance. Place thermal vias around the device to distribute the heat. Do not place a thermal via directly beneath the thermal pad of the DQN package. A via can wick solder or solder paste away from the thermal pad joint during the soldering process, leading to a compromised solder joint on the thermal pad. 10.2 Layout Examples VOUT VIN TLV733 1 4 COUT* CIN* 3 2 GND PLANE Represents via used for application specific connections *not required Figure 39. Layout Example for the DQN package VOUT VIN 1 CIN* 5 COUT* 2 3 4 GND PLANE Represents via used for application specific connections *not required Figure 40. Layout Example for the DBV Package 版权 © 2014–2015, Texas Instruments Incorporated 19 TLV733P ZHCSD13B – OCTOBER 2014 – REVISED NOVEMBER 2015 www.ti.com.cn 11 器件和文档支持 11.1 器件支持 11.1.1 开发支持 11.1.1.1 评估模块 评估模块 (EVM) 可与 TLV733 配套使用,帮助评估初始电路性能。TLV73312PEVM-643 评估模块(和相关的用户 指南)可在德州仪器 (TI) 网站上的产品文件夹中获取,也可直接从 TI 网上商店购买。 11.1.2 器件命名规则 表 4. 器件命名规则 (1) (2) (1) (2) 产品 VOUT TLV733xx(x)Pyyyz xx(x) 为标称输出电压。对于分辨率为 100mV 的输出电压,订货编号中使用两位数字;否则,使用三位数 字(例如,28 = 2.8V;125 = 1.25V)。 P 表示有源输出放电功能。TLV733 系列的所有成员在被禁用时都可以使输出进行有源放电。 yyy 为封装标识符。 z 为封装数量。R 表示卷(3000 片),T 表示带(250 片)。 要获得最新的封装和订货信息,请参见本文档末尾的封装选项附录,或者访问器件产品文件夹(www.ti.com.cn)。 可提供 1.0V 至 3.3V 范围内的输出电压(以 50mV 为单位增量)。更多详细信息及可用性,请联系制造商。 11.2 文档支持 11.2.1 相关文档  《TLV73312PDQN-643 评估模块用户指南》,SBVU024 11.3 商标 All trademarks are the property of their respective owners. 11.4 静电放电警告 ESD 可能会损坏该集成电路。德州仪器 (TI) 建议通过适当的预防措施处理所有集成电路。如果不遵守正确的处理措施和安装程序 , 可 能会损坏集成电路。 ESD 的损坏小至导致微小的性能降级 , 大至整个器件故障。 精密的集成电路可能更容易受到损坏 , 这是因为非常细微的参数更改都可 能会导致器件与其发布的规格不相符。 11.5 Glossary SLYZ022 — TI Glossary. This glossary lists and explains terms, acronyms, and definitions. 20 版权 © 2014–2015, Texas Instruments Incorporated TLV733P www.ti.com.cn ZHCSD13B – OCTOBER 2014 – REVISED NOVEMBER 2015 12 机械、封装和可订购信息 以下页中包括机械、封装和可订购信息。这些信息是针对指定器件可提供的最新数据。这些数据会在无通知且不对 本文档进行修订的情况下发生改变。欲获得该数据表的浏览器版本,请查阅左侧的导航栏。 版权 © 2014–2015, Texas Instruments Incorporated 21 TLV733P ZHCSD13B – OCTOBER 2014 – REVISED NOVEMBER 2015 www.ti.com.cn PACKAGE OUTLINE DQN0004A X2SON - 0.4 mm max height PLASTIC SMALL OUTLINE - NO LEAD 4215302/C 11/2015 NOTES: 1. 2. 3. 4. 22 All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing per ASME Y14.5M. This drawing is subject to change without notice. The package thermal pad must be soldered to the printed circuit board for thermal and mechanical performance. Features may not exist. Recommend use of pin 1 marking on top of package for orientation purposes. 版权 © 2014–2015, Texas Instruments Incorporated TLV733P www.ti.com.cn ZHCSD13B – OCTOBER 2014 – REVISED NOVEMBER 2015 EXAMPLE BOARD LAYOUT DQN0004A X2SON - 0.4 mm max height PLASTIC SMALL OUTLINE - NO LEAD 4215302/C 11/2015 NOTES: (continued) 5. This package is designed to be soldered to a thermal pad on the board. For more information, see Texas Instruments literature number SLUA271 (www.ti.com/lit/slua271) . 版权 © 2014–2015, Texas Instruments Incorporated 23 TLV733P ZHCSD13B – OCTOBER 2014 – REVISED NOVEMBER 2015 www.ti.com.cn EXAMPLE STENCIL DESIGN DQN0004A X2SON - 0.4 mm max height PLASTIC SMALL OUTLINE - NO LEAD 4215302/C 11/2015 NOTES: (continued) 6. 24 Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate design recommendations. 版权 © 2014–2015, Texas Instruments Incorporated 重要声明 德州仪器(TI) 及其下属子公司有权根据 JESD46 最新标准, 对所提供的产品和服务进行更正、修改、增强、改进或其它更改, 并有权根据 JESD48 最新标准中止提供任何产品和服务。客户在下订单前应获取最新的相关信息, 并验证这些信息是否完整且是最新的。所有产品的销售 都遵循在订单确认时所提供的TI 销售条款与条件。 TI 保证其所销售的组件的性能符合产品销售时 TI 半导体产品销售条件与条款的适用规范。仅在 TI 保证的范围内,且 TI 认为 有必要时才会使 用测试或其它质量控制技术。除非适用法律做出了硬性规定,否则没有必要对每种组件的所有参数进行测试。 TI 对应用帮助或客户产品设计不承担任何义务。客户应对其使用 TI 组件的产品和应用自行负责。为尽量减小与客户产品和应 用相关的风险, 客户应提供充分的设计与操作安全措施。 TI 不对任何 TI 专利权、版权、屏蔽作品权或其它与使用了 TI 组件或服务的组合设备、机器或流程相关的 TI 知识产权中授予 的直接或隐含权 限作出任何保证或解释。TI 所发布的与第三方产品或服务有关的信息,不能构成从 TI 获得使用这些产品或服 务的许可、授权、或认可。使用 此类信息可能需要获得第三方的专利权或其它知识产权方面的许可,或是 TI 的专利权或其它 知识产权方面的许可。 对于 TI 的产品手册或数据表中 TI 信息的重要部分,仅在没有对内容进行任何篡改且带有相关授权、条件、限制和声明的情况 下才允许进行 复制。TI 对此类篡改过的文件不承担任何责任或义务。复制第三方的信息可能需要服从额外的限制条件。 在转售 TI 组件或服务时,如果对该组件或服务参数的陈述与 TI 标明的参数相比存在差异或虚假成分,则会失去相关 TI 组件 或服务的所有明 示或暗示授权,且这是不正当的、欺诈性商业行为。TI 对任何此类虚假陈述均不承担任何责任或义务。 客户认可并同意,尽管任何应用相关信息或支持仍可能由 TI 提供,但他们将独力负责满足与其产品及在其应用中使用 TI 产品 相关的所有法 律、法规和安全相关要求。客户声明并同意,他们具备制定与实施安全措施所需的全部专业技术和知识,可预见 故障的危险后果、监测故障 及其后果、降低有可能造成人身伤害的故障的发生机率并采取适当的补救措施。客户将全额赔偿因 在此类安全关键应用中使用任何 TI 组件而 对 TI 及其代理造成的任何损失。 在某些场合中,为了推进安全相关应用有可能对 TI 组件进行特别的促销。TI 的目标是利用此类组件帮助客户设计和创立其特 有的可满足适用 的功能安全性标准和要求的终端产品解决方案。尽管如此,此类组件仍然服从这些条款。 TI 组件未获得用于 FDA Class III(或类似的生命攸关医疗设备)的授权许可,除非各方授权官员已经达成了专门管控此类使 用的特别协议。 只有那些 TI 特别注明属于军用等级或“增强型塑料”的 TI 组件才是设计或专门用于军事/航空应用或环境的。购买者认可并同 意,对并非指定面 向军事或航空航天用途的 TI 组件进行军事或航空航天方面的应用,其风险由客户单独承担,并且由客户独 力负责满足与此类使用相关的所有 法律和法规要求。 TI 已明确指定符合 ISO/TS16949 要求的产品,这些产品主要用于汽车。在任何情况下,因使用非指定产品而无法达到 ISO/TS16949 要 求,TI不承担任何责任。 产品 应用 数字音频 www.ti.com.cn/audio 通信与电信 www.ti.com.cn/telecom 放大器和线性器件 www.ti.com.cn/amplifiers 计算机及周边 www.ti.com.cn/computer 数据转换器 www.ti.com.cn/dataconverters 消费电子 www.ti.com/consumer-apps DLP® 产品 www.dlp.com 能源 www.ti.com/energy DSP - 数字信号处理器 www.ti.com.cn/dsp 工业应用 www.ti.com.cn/industrial 时钟和计时器 www.ti.com.cn/clockandtimers 医疗电子 www.ti.com.cn/medical 接口 www.ti.com.cn/interface 安防应用 www.ti.com.cn/security 逻辑 www.ti.com.cn/logic 汽车电子 www.ti.com.cn/automotive 电源管理 www.ti.com.cn/power 视频和影像 www.ti.com.cn/video 微控制器 (MCU) www.ti.com.cn/microcontrollers RFID 系统 www.ti.com.cn/rfidsys OMAP应用处理器 www.ti.com/omap 无线连通性 www.ti.com.cn/wirelessconnectivity 德州仪器在线技术支持社区 www.deyisupport.com IMPORTANT NOTICE 邮寄地址: 上海市浦东新区世纪大道1568 号,中建大厦32 楼邮政编码: 200122 Copyright © 2016, 德州仪器半导体技术(上海)有限公司 PACKAGE OPTION ADDENDUM www.ti.com 9-Oct-2016 PACKAGING INFORMATION Orderable Device Status (1) Package Type Package Pins Package Drawing Qty Eco Plan Lead/Ball Finish MSL Peak Temp (2) (6) (3) Op Temp (°C) Device Marking (4/5) TLV73310PDBVR ACTIVE SOT-23 DBV 5 3000 Green (RoHS & no Sb/Br) CU NIPDAU Level-1-260C-UNLIM -40 to 125 VCCQ TLV73310PDBVT ACTIVE SOT-23 DBV 5 250 Green (RoHS & no Sb/Br) CU NIPDAU Level-1-260C-UNLIM -40 to 125 VCCQ TLV73310PDQNR ACTIVE X2SON DQN 4 3000 Green (RoHS & no Sb/Br) CU NIPDAU Level-1-260C-UNLIM -40 to 125 FG TLV73310PDQNT ACTIVE X2SON DQN 4 250 Green (RoHS & no Sb/Br) CU NIPDAU Level-1-260C-UNLIM -40 to 125 FG TLV73311PDBVR ACTIVE SOT-23 DBV 5 3000 Green (RoHS & no Sb/Br) CU NIPDAU Level-1-260C-UNLIM -40 to 125 ZBLW TLV73311PDBVT ACTIVE SOT-23 DBV 5 250 Green (RoHS & no Sb/Br) CU NIPDAU Level-1-260C-UNLIM -40 to 125 ZBLW TLV73311PDQNR ACTIVE X2SON DQN 4 3000 Green (RoHS & no Sb/Br) CU NIPDAU Level-1-260C-UNLIM -40 to 125 GR TLV73311PDQNT ACTIVE X2SON DQN 4 250 Green (RoHS & no Sb/Br) CU NIPDAU Level-1-260C-UNLIM -40 to 125 GR TLV73312PDBVR ACTIVE SOT-23 DBV 5 3000 Green (RoHS & no Sb/Br) CU NIPDAU Level-1-260C-UNLIM -40 to 125 VCDQ TLV73312PDBVT ACTIVE SOT-23 DBV 5 250 Green (RoHS & no Sb/Br) CU NIPDAU Level-1-260C-UNLIM -40 to 125 VCDQ TLV73312PDQNR ACTIVE X2SON DQN 4 3000 Green (RoHS & no Sb/Br) CU NIPDAU Level-1-260C-UNLIM -40 to 125 FI TLV73312PDQNR3 ACTIVE X2SON DQN 4 3000 Green (RoHS & no Sb/Br) CU NIPDAU Level-1-260C-UNLIM -40 to 125 FI TLV73312PDQNT ACTIVE X2SON DQN 4 250 Green (RoHS & no Sb/Br) CU NIPDAU Level-1-260C-UNLIM -40 to 125 FI TLV73315PDBVR ACTIVE SOT-23 DBV 5 3000 Green (RoHS & no Sb/Br) CU NIPDAU Level-1-260C-UNLIM -40 to 125 VCFQ TLV73315PDBVT ACTIVE SOT-23 DBV 5 250 Green (RoHS & no Sb/Br) CU NIPDAU Level-1-260C-UNLIM -40 to 125 VCFQ TLV73315PDQNR ACTIVE X2SON DQN 4 3000 Green (RoHS & no Sb/Br) CU NIPDAU Level-1-260C-UNLIM -40 to 125 FJ TLV73315PDQNR3 ACTIVE X2SON DQN 4 3000 Green (RoHS & no Sb/Br) CU NIPDAU Level-1-260C-UNLIM -40 to 125 FJ Addendum-Page 1 Samples PACKAGE OPTION ADDENDUM www.ti.com Orderable Device 9-Oct-2016 Status (1) Package Type Package Pins Package Drawing Qty Eco Plan Lead/Ball Finish MSL Peak Temp (2) (6) (3) Op Temp (°C) Device Marking (4/5) TLV73315PDQNT ACTIVE X2SON DQN 4 250 Green (RoHS & no Sb/Br) CU NIPDAU Level-1-260C-UNLIM -40 to 125 FJ TLV73318PDBVR ACTIVE SOT-23 DBV 5 3000 Green (RoHS & no Sb/Br) CU NIPDAU Level-1-260C-UNLIM -40 to 125 VCGQ TLV73318PDBVT ACTIVE SOT-23 DBV 5 250 Green (RoHS & no Sb/Br) CU NIPDAU Level-1-260C-UNLIM -40 to 125 VCGQ TLV73318PDQNR ACTIVE X2SON DQN 4 3000 Green (RoHS & no Sb/Br) CU NIPDAU Level-1-260C-UNLIM -40 to 125 FK TLV73318PDQNR3 ACTIVE X2SON DQN 4 3000 Green (RoHS & no Sb/Br) CU NIPDAU Level-1-260C-UNLIM -40 to 125 FK TLV73318PDQNT ACTIVE X2SON DQN 4 250 Green (RoHS & no Sb/Br) CU NIPDAU Level-1-260C-UNLIM -40 to 125 FK TLV73325PDBVR ACTIVE SOT-23 DBV 5 3000 Green (RoHS & no Sb/Br) CU NIPDAU Level-1-260C-UNLIM -40 to 125 VCHQ TLV73325PDBVT ACTIVE SOT-23 DBV 5 250 Green (RoHS & no Sb/Br) CU NIPDAU Level-1-260C-UNLIM -40 to 125 VCHQ TLV73325PDQNR ACTIVE X2SON DQN 4 3000 Green (RoHS & no Sb/Br) CU NIPDAU Level-1-260C-UNLIM -40 to 125 FL TLV73325PDQNT ACTIVE X2SON DQN 4 250 Green (RoHS & no Sb/Br) CU NIPDAU Level-1-260C-UNLIM -40 to 125 FL TLV733285PDBVR ACTIVE SOT-23 DBV 5 3000 Green (RoHS & no Sb/Br) CU NIPDAU Level-1-260C-UNLIM -40 to 125 ZDRW TLV733285PDBVT ACTIVE SOT-23 DBV 5 250 Green (RoHS & no Sb/Br) CU NIPDAU Level-1-260C-UNLIM -40 to 125 ZDRW TLV733285PDQNR ACTIVE X2SON DQN 4 3000 Green (RoHS & no Sb/Br) CU NIPDAU Level-1-260C-UNLIM -40 to 125 GZ TLV733285PDQNT ACTIVE X2SON DQN 4 250 Green (RoHS & no Sb/Br) CU NIPDAU Level-1-260C-UNLIM -40 to 125 GZ TLV73328PDBVR ACTIVE SOT-23 DBV 5 3000 Green (RoHS & no Sb/Br) CU NIPDAU Level-1-260C-UNLIM -40 to 125 ZDQW TLV73328PDBVT ACTIVE SOT-23 DBV 5 250 Green (RoHS & no Sb/Br) CU NIPDAU Level-1-260C-UNLIM -40 to 125 ZDQW TLV73328PDQNR ACTIVE X2SON DQN 4 3000 Green (RoHS & no Sb/Br) CU NIPDAU Level-1-260C-UNLIM -40 to 125 GY TLV73328PDQNR3 ACTIVE X2SON DQN 4 3000 Green (RoHS & no Sb/Br) CU NIPDAU Level-1-260C-UNLIM -40 to 125 GY Addendum-Page 2 Samples PACKAGE OPTION ADDENDUM www.ti.com Orderable Device 9-Oct-2016 Status (1) Package Type Package Pins Package Drawing Qty Eco Plan Lead/Ball Finish MSL Peak Temp (2) (6) (3) Op Temp (°C) Device Marking (4/5) TLV73328PDQNT ACTIVE X2SON DQN 4 250 Green (RoHS & no Sb/Br) CU NIPDAU Level-1-260C-UNLIM -40 to 125 GY TLV73330PDBVR ACTIVE SOT-23 DBV 5 3000 Green (RoHS & no Sb/Br) CU NIPDAU Level-1-260C-UNLIM -40 to 125 ZDMW TLV73330PDBVT ACTIVE SOT-23 DBV 5 250 Green (RoHS & no Sb/Br) CU NIPDAU Level-1-260C-UNLIM -40 to 125 ZDMW TLV73330PDQNR ACTIVE X2SON DQN 4 3000 Green (RoHS & no Sb/Br) CU NIPDAU Level-1-260C-UNLIM -40 to 125 GW TLV73330PDQNT ACTIVE X2SON DQN 4 250 Green (RoHS & no Sb/Br) CU NIPDAU Level-1-260C-UNLIM -40 to 125 GW TLV73333PDBVR ACTIVE SOT-23 DBV 5 3000 Green (RoHS & no Sb/Br) CU NIPDAU Level-1-260C-UNLIM -40 to 125 VCIQ TLV73333PDBVT ACTIVE SOT-23 DBV 5 250 Green (RoHS & no Sb/Br) CU NIPDAU Level-1-260C-UNLIM -40 to 125 VCIQ TLV73333PDQNR ACTIVE X2SON DQN 4 3000 Green (RoHS & no Sb/Br) CU NIPDAU Level-1-260C-UNLIM -40 to 125 FM TLV73333PDQNT ACTIVE X2SON DQN 4 250 Green (RoHS & no Sb/Br) CU NIPDAU Level-1-260C-UNLIM -40 to 125 FM (1) The marketing status values are defined as follows: ACTIVE: Product device recommended for new designs. LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect. NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design. PREVIEW: Device has been announced but is not in production. Samples may or may not be available. OBSOLETE: TI has discontinued the production of the device. (2) Eco Plan - The planned eco-friendly classification: Pb-Free (RoHS), Pb-Free (RoHS Exempt), or Green (RoHS & no Sb/Br) - please check http://www.ti.com/productcontent for the latest availability information and additional product content details. TBD: The Pb-Free/Green conversion plan has not been defined. Pb-Free (RoHS): TI's terms "Lead-Free" or "Pb-Free" mean semiconductor products that are compatible with the current RoHS requirements for all 6 substances, including the requirement that lead not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, TI Pb-Free products are suitable for use in specified lead-free processes. Pb-Free (RoHS Exempt): This component has a RoHS exemption for either 1) lead-based flip-chip solder bumps used between the die and package, or 2) lead-based die adhesive used between the die and leadframe. The component is otherwise considered Pb-Free (RoHS compatible) as defined above. Green (RoHS & no Sb/Br): TI defines "Green" to mean Pb-Free (RoHS compatible), and free of Bromine (Br) and Antimony (Sb) based flame retardants (Br or Sb do not exceed 0.1% by weight in homogeneous material) (3) MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature. Addendum-Page 3 Samples PACKAGE OPTION ADDENDUM www.ti.com (4) 9-Oct-2016 There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device. (5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation of the previous line and the two combined represent the entire Device Marking for that device. (6) Lead/Ball Finish - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead/Ball Finish values may wrap to two lines if the finish value exceeds the maximum column width. Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release. In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis. Addendum-Page 4 PACKAGE MATERIALS INFORMATION www.ti.com 3-May-2017 TAPE AND REEL INFORMATION *All dimensions are nominal Device Package Package Pins Type Drawing SPQ TLV73310PDBVR SOT-23 3000 178.0 9.0 DBV 5 Reel Reel A0 Diameter Width (mm) (mm) W1 (mm) B0 (mm) K0 (mm) P1 (mm) W Pin1 (mm) Quadrant 3.23 3.17 1.37 4.0 8.0 Q3 TLV73310PDBVT SOT-23 DBV 5 250 178.0 8.4 3.23 3.17 1.37 4.0 8.0 Q3 TLV73310PDQNR X2SON DQN 4 3000 180.0 9.5 1.16 1.16 0.5 4.0 8.0 Q2 TLV73310PDQNT X2SON DQN 4 250 180.0 9.5 1.16 1.16 0.5 4.0 8.0 Q2 TLV73311PDBVR SOT-23 DBV 5 3000 178.0 9.0 3.23 3.17 1.37 4.0 8.0 Q3 TLV73311PDBVT SOT-23 DBV 5 250 178.0 8.4 3.23 3.17 1.37 4.0 8.0 Q3 TLV73311PDQNR X2SON DQN 4 3000 180.0 9.5 1.16 1.16 0.5 4.0 8.0 Q2 TLV73311PDQNT X2SON DQN 4 250 180.0 9.5 1.16 1.16 0.5 4.0 8.0 Q2 TLV73312PDBVR SOT-23 DBV 5 3000 178.0 9.0 3.23 3.17 1.37 4.0 8.0 Q3 TLV73312PDBVT SOT-23 DBV 5 250 178.0 8.4 3.23 3.17 1.37 4.0 8.0 Q3 TLV73312PDQNR X2SON DQN 4 3000 180.0 9.5 1.16 1.16 0.5 4.0 8.0 Q2 TLV73312PDQNR3 X2SON DQN 4 3000 180.0 9.5 1.16 1.16 0.5 4.0 8.0 Q3 TLV73312PDQNT X2SON DQN 4 250 180.0 9.5 1.16 1.16 0.5 4.0 8.0 Q2 TLV73315PDBVR SOT-23 DBV 5 3000 178.0 9.0 3.23 3.17 1.37 4.0 8.0 Q3 TLV73315PDBVT SOT-23 DBV 5 250 178.0 8.4 3.23 3.17 1.37 4.0 8.0 Q3 TLV73315PDQNR X2SON DQN 4 3000 180.0 9.5 1.16 1.16 0.5 4.0 8.0 Q2 TLV73315PDQNR3 X2SON DQN 4 3000 180.0 9.5 1.16 1.16 0.5 4.0 8.0 Q3 TLV73315PDQNT X2SON DQN 4 250 180.0 9.5 1.16 1.16 0.5 4.0 8.0 Q2 Pack Materials-Page 1 PACKAGE MATERIALS INFORMATION www.ti.com 3-May-2017 Device Package Package Pins Type Drawing SPQ Reel Reel A0 Diameter Width (mm) (mm) W1 (mm) TLV73318PDBVR SOT-23 DBV 5 3000 178.0 9.0 TLV73318PDBVT SOT-23 DBV 5 250 178.0 8.4 B0 (mm) K0 (mm) P1 (mm) W Pin1 (mm) Quadrant 3.23 3.17 1.37 4.0 8.0 Q3 3.23 3.17 1.37 4.0 8.0 Q3 TLV73318PDQNR X2SON DQN 4 3000 180.0 9.5 1.16 1.16 0.5 4.0 8.0 Q2 TLV73318PDQNR3 X2SON DQN 4 3000 180.0 9.5 1.16 1.16 0.5 4.0 8.0 Q3 TLV73318PDQNT X2SON DQN 4 250 180.0 9.5 1.16 1.16 0.5 4.0 8.0 Q2 TLV73325PDBVR SOT-23 DBV 5 3000 178.0 9.0 3.23 3.17 1.37 4.0 8.0 Q3 TLV73325PDBVT SOT-23 DBV 5 250 178.0 8.4 3.23 3.17 1.37 4.0 8.0 Q3 TLV73325PDQNR X2SON DQN 4 3000 180.0 9.5 1.16 1.16 0.5 4.0 8.0 Q2 TLV73325PDQNT X2SON DQN 4 250 180.0 9.5 1.16 1.16 0.5 4.0 8.0 Q2 TLV733285PDBVR SOT-23 DBV 5 3000 178.0 9.0 3.23 3.17 1.37 4.0 8.0 Q3 TLV733285PDBVT SOT-23 DBV 5 250 178.0 9.0 3.23 3.17 1.37 4.0 8.0 Q3 TLV733285PDQNR X2SON DQN 4 3000 180.0 9.5 1.16 1.16 0.5 4.0 8.0 Q2 TLV733285PDQNT X2SON DQN 4 250 180.0 9.5 1.16 1.16 0.5 4.0 8.0 Q2 TLV73328PDBVR SOT-23 DBV 5 3000 178.0 9.0 3.23 3.17 1.37 4.0 8.0 Q3 TLV73328PDBVT SOT-23 DBV 5 250 178.0 9.0 3.23 3.17 1.37 4.0 8.0 Q3 TLV73328PDQNR X2SON DQN 4 3000 180.0 9.5 1.16 1.16 0.5 4.0 8.0 Q2 TLV73328PDQNR3 X2SON DQN 4 3000 180.0 9.5 1.16 1.16 0.5 4.0 8.0 Q3 TLV73328PDQNT X2SON DQN 4 250 180.0 9.5 1.16 1.16 0.5 4.0 8.0 Q2 TLV73330PDBVR SOT-23 DBV 5 3000 178.0 9.0 3.23 3.17 1.37 4.0 8.0 Q3 TLV73330PDBVT SOT-23 DBV 5 250 178.0 9.0 3.23 3.17 1.37 4.0 8.0 Q3 TLV73330PDQNR X2SON DQN 4 3000 180.0 9.5 1.16 1.16 0.5 4.0 8.0 Q2 TLV73330PDQNT X2SON DQN 4 250 180.0 9.5 1.16 1.16 0.5 4.0 8.0 Q2 TLV73333PDBVR SOT-23 DBV 5 3000 178.0 9.0 3.23 3.17 1.37 4.0 8.0 Q3 TLV73333PDBVT SOT-23 DBV 5 250 178.0 8.4 3.23 3.17 1.37 4.0 8.0 Q3 TLV73333PDQNR X2SON DQN 4 3000 180.0 9.5 1.16 1.16 0.5 4.0 8.0 Q2 TLV73333PDQNT X2SON DQN 4 250 180.0 9.5 1.16 1.16 0.5 4.0 8.0 Q2 Pack Materials-Page 2 PACKAGE MATERIALS INFORMATION www.ti.com 3-May-2017 *All dimensions are nominal Device Package Type Package Drawing Pins SPQ Length (mm) Width (mm) Height (mm) TLV73310PDBVR SOT-23 DBV 5 3000 180.0 180.0 18.0 TLV73310PDBVT SOT-23 DBV 5 250 180.0 180.0 18.0 TLV73310PDQNR X2SON DQN 4 3000 184.0 184.0 19.0 TLV73310PDQNT X2SON DQN 4 250 184.0 184.0 19.0 TLV73311PDBVR SOT-23 DBV 5 3000 180.0 180.0 18.0 TLV73311PDBVT SOT-23 DBV 5 250 180.0 180.0 18.0 TLV73311PDQNR X2SON DQN 4 3000 184.0 184.0 19.0 TLV73311PDQNT X2SON DQN 4 250 184.0 184.0 19.0 TLV73312PDBVR SOT-23 DBV 5 3000 180.0 180.0 18.0 TLV73312PDBVT SOT-23 DBV 5 250 180.0 180.0 18.0 TLV73312PDQNR X2SON DQN 4 3000 184.0 184.0 19.0 TLV73312PDQNR3 X2SON DQN 4 3000 184.0 184.0 19.0 TLV73312PDQNT X2SON DQN 4 250 184.0 184.0 19.0 TLV73315PDBVR SOT-23 DBV 5 3000 180.0 180.0 18.0 TLV73315PDBVT SOT-23 DBV 5 250 180.0 180.0 18.0 TLV73315PDQNR X2SON DQN 4 3000 184.0 184.0 19.0 TLV73315PDQNR3 X2SON DQN 4 3000 184.0 184.0 19.0 TLV73315PDQNT X2SON DQN 4 250 184.0 184.0 19.0 TLV73318PDBVR SOT-23 DBV 5 3000 180.0 180.0 18.0 TLV73318PDBVT SOT-23 DBV 5 250 180.0 180.0 18.0 Pack Materials-Page 3 PACKAGE MATERIALS INFORMATION www.ti.com 3-May-2017 Device Package Type Package Drawing Pins SPQ Length (mm) Width (mm) Height (mm) TLV73318PDQNR X2SON DQN 4 3000 184.0 184.0 19.0 TLV73318PDQNR3 X2SON DQN 4 3000 184.0 184.0 19.0 TLV73318PDQNT X2SON DQN 4 250 184.0 184.0 19.0 TLV73325PDBVR SOT-23 DBV 5 3000 180.0 180.0 18.0 TLV73325PDBVT SOT-23 DBV 5 250 180.0 180.0 18.0 TLV73325PDQNR X2SON DQN 4 3000 184.0 184.0 19.0 TLV73325PDQNT X2SON DQN 4 250 184.0 184.0 19.0 TLV733285PDBVR SOT-23 DBV 5 3000 180.0 180.0 18.0 TLV733285PDBVT SOT-23 DBV 5 250 180.0 180.0 18.0 TLV733285PDQNR X2SON DQN 4 3000 184.0 184.0 19.0 TLV733285PDQNT X2SON DQN 4 250 184.0 184.0 19.0 TLV73328PDBVR SOT-23 DBV 5 3000 180.0 180.0 18.0 TLV73328PDBVT SOT-23 DBV 5 250 180.0 180.0 18.0 TLV73328PDQNR X2SON DQN 4 3000 184.0 184.0 19.0 TLV73328PDQNR3 X2SON DQN 4 3000 184.0 184.0 19.0 TLV73328PDQNT X2SON DQN 4 250 184.0 184.0 19.0 TLV73330PDBVR SOT-23 DBV 5 3000 180.0 180.0 18.0 TLV73330PDBVT SOT-23 DBV 5 250 180.0 180.0 18.0 TLV73330PDQNR X2SON DQN 4 3000 184.0 184.0 19.0 TLV73330PDQNT X2SON DQN 4 250 184.0 184.0 19.0 TLV73333PDBVR SOT-23 DBV 5 3000 180.0 180.0 18.0 TLV73333PDBVT SOT-23 DBV 5 250 180.0 180.0 18.0 TLV73333PDQNR X2SON DQN 4 3000 184.0 184.0 19.0 TLV73333PDQNT X2SON DQN 4 250 184.0 184.0 19.0 Pack Materials-Page 4 IMPORTANT NOTICE 重要声明 德州仪器 (TI) 公司有权按照最新发布的 JESD46 对其半导体产品和服务进行纠正、增强、改进和其他修改,并不再按最新发布的 JESD48 提 供任何产品和服务。买方在下订单前应获取最新的相关信息,并验证这些信息是否完整且是最新的。 TI 公布的半导体产品销售条款 (http://www.ti.com/sc/docs/stdterms.htm) 适用于 TI 已认证和批准上市的已封装集成电路产品的销售。另有其 他条款可能适用于其他类型 TI 产品及服务的使用或销售。 复制 TI 数据表上 TI 信息的重要部分时,不得变更该等信息,且必须随附所有相关保证、条件、限制和通知,否则不得复制。TI 对该等复制文 件不承担任何责任。第三方信息可能受到其它限制条件的制约。在转售 TI 产品或服务时,如果存在对产品或服务参数的虚假陈述,则会失去 相关 TI 产品或服务的明示或暗示保证,且构成不公平的、欺诈性商业行为。TI 对此类虚假陈述不承担任何责任。 买方和在系统中整合 TI 产品的其他开发人员(总称“设计人员”)理解并同意,设计人员在设计应用时应自行实施独立的分析、评价和判断,且 应全权 负责并确保 应用的安全性, 及设计人员的 应用 (包括应用中使用的所有 TI 产品)应符合所有适用的法律法规及其他相关要求。设计 人员就自己设计的 应用声明,其具备制订和实施下列保障措施所需的一切必要专业知识,能够 (1) 预见故障的危险后果,(2) 监视故障及其后 果,以及 (3) 降低可能导致危险的故障几率并采取适当措施。设计人员同意,在使用或分发包含 TI 产品的任何 应用前, 将彻底测试该等 应用 和 该等应用中所用 TI 产品的 功能。 TI 提供技术、应用或其他设计建议、质量特点、可靠性数据或其他服务或信息,包括但不限于与评估模块有关的参考设计和材料(总称“TI 资 源”),旨在帮助设计人员开发整合了 TI 产品的 应用, 如果设计人员(个人,或如果是代表公司,则为设计人员的公司)以任何方式下载、 访问或使用任何特定的 TI 资源,即表示其同意仅为该等目标,按照本通知的条款使用任何特定 TI 资源。 TI 所提供的 TI 资源,并未扩大或以其他方式修改 TI 对 TI 产品的公开适用的质保及质保免责声明;也未导致 TI 承担任何额外的义务或责任。 TI 有权对其 TI 资源进行纠正、增强、改进和其他修改。除特定 TI 资源的公开文档中明确列出的测试外,TI 未进行任何其他测试。 设计人员只有在开发包含该等 TI 资源所列 TI 产品的 应用时, 才被授权使用、复制和修改任何相关单项 TI 资源。但并未依据禁止反言原则或 其他法理授予您任何TI知识产权的任何其他明示或默示的许可,也未授予您 TI 或第三方的任何技术或知识产权的许可,该等产权包括但不限 于任何专利权、版权、屏蔽作品权或与使用TI产品或服务的任何整合、机器制作、流程相关的其他知识产权。涉及或参考了第三方产品或服务 的信息不构成使用此类产品或服务的许可或与其相关的保证或认可。使用 TI 资源可能需要您向第三方获得对该等第三方专利或其他知识产权 的许可。 TI 资源系“按原样”提供。TI 兹免除对资源及其使用作出所有其他明确或默认的保证或陈述,包括但不限于对准确性或完整性、产权保证、无屡 发故障保证,以及适销性、适合特定用途和不侵犯任何第三方知识产权的任何默认保证。TI 不负责任何申索,包括但不限于因组合产品所致或 与之有关的申索,也不为或对设计人员进行辩护或赔偿,即使该等产品组合已列于 TI 资源或其他地方。对因 TI 资源或其使用引起或与之有关 的任何实际的、直接的、特殊的、附带的、间接的、惩罚性的、偶发的、从属或惩戒性损害赔偿,不管 TI 是否获悉可能会产生上述损害赔 偿,TI 概不负责。 除 TI 已明确指出特定产品已达到特定行业标准(例如 ISO/TS 16949 和 ISO 26262)的要求外,TI 不对未达到任何该等行业标准要求而承担 任何责任。 如果 TI 明确宣称产品有助于功能安全或符合行业功能安全标准,则该等产品旨在帮助客户设计和创作自己的 符合 相关功能安全标准和要求的 应用。在应用内使用产品的行为本身不会 配有 任何安全特性。设计人员必须确保遵守适用于其应用的相关安全要求和 标准。设计人员不可将 任何 TI 产品用于关乎性命的医疗设备,除非已由各方获得授权的管理人员签署专门的合同对此类应用专门作出规定。关乎性命的医疗设备是 指出现故障会导致严重身体伤害或死亡的医疗设备(例如生命保障设备、心脏起搏器、心脏除颤器、人工心脏泵、神经刺激器以及植入设 备)。此类设备包括但不限于,美国食品药品监督管理局认定为 III 类设备的设备,以及在美国以外的其他国家或地区认定为同等类别设备的 所有医疗设备。 TI 可能明确指定某些产品具备某些特定资格(例如 Q100、军用级或增强型产品)。设计人员同意,其具备一切必要专业知识,可以为自己的 应用选择适合的 产品, 并且正确选择产品的风险由设计人员承担。设计人员单方面负责遵守与该等选择有关的所有法律或监管要求。 设计人员同意向 TI 及其代表全额赔偿因其不遵守本通知条款和条件而引起的任何损害、费用、损失和/或责任。 邮寄地址:上海市浦东新区世纪大道 1568 号中建大厦 32 楼,邮政编码:200122 Copyright © 2017 德州仪器半导体技术(上海)有限公司
TLV73333PDBVR 价格&库存

很抱歉,暂时无法提供与“TLV73333PDBVR”相匹配的价格&库存,您可以联系我们找货

免费人工找货
TLV73333PDBVR
  •  国内价格 香港价格
  • 1+2.857101+0.34480
  • 10+1.9008010+0.22940
  • 100+0.81400100+0.09820
  • 1000+0.629701000+0.07600
  • 3000+0.487503000+0.05890
  • 9000+0.428009000+0.05170
  • 45000+0.3522045000+0.04250
  • 99000+0.3440099000+0.04150

库存:728

TLV73333PDBVR
  •  国内价格
  • 1+0.31360
  • 30+0.30240
  • 100+0.28000
  • 500+0.25760
  • 1000+0.24640

库存:1942

TLV73333PDBVR
    •  国内价格
    • 4+0.32318

    库存:4