TLV9020-Q1, TLV9021-Q1, TLV9022-Q1, TLV9024-Q1
TLV9030-Q1, TLV9031-Q1, TLV9032-Q1, TLV9034-Q1
SNOSDA9D – JUNE 2020 – REVISED MARCH 2023
TLV902x-Q1 and TLV903x-Q1 Precision Automotive Comparator Family
1 Features
•
•
•
•
•
•
•
•
•
•
•
•
Qualified for automotive applications
AEC-Q100 qualified with the following results:
– Device temperature grade 1: –40°C to 125°C
ambient operating temperature range
– Device HBM ESD classification level 2
– Device CDM ESD classification level C6
1.65 V to 5.5 V supply range
Power-On Reset (POR) for known start-up
Precision input offset voltage 300 μV
100ns Typ propagation delay
Low quiescent current 16 μA per channel
Rail-to-Rail input voltage range exceeds the rails
Open-drain output option (TLV902x-Q1)
Push-pull output option (TLV903x-Q1)
Alternate single pinout option (TLV90x0)
2 kV ESD Protection
2 Applications
•
•
These comparators also feature fault-tolerant inputs
that can go up to 6-V without damage with no
output phase inversion. This makes this family
of comparators designed for precision voltage
monitoring in harsh, noisy environments.
The TLV902x-Q1 have an open-drain output that may
be pulled-up below or beyond the supply voltage,
making it appropriate for low voltage logic translators.
The TLV903x-Q1 have a push-pull output stage
capable of sinking and sourcing many milliamps of
current to drive LEDs or a capacitive load such as a
MOSFET gate.
The TLV90x0-Q1 and TLV90x1-Q1 are alternate
pinouts of the single device.
The family is specified for the Automotive temperature
range of -40°C to +125°C and are available in a
standard leaded and leadless packages.
Device Information
Automotive
– HEV/EV and power train
– Infotainment and cluster
– Body control module
Industrial
PACKAGE (1)
PART NUMBER
TLV90x0-Q1,
TLV90x1-Q1
(Single)
3 Description
The TLV902x-Q1 and TLV903x-Q1 are a family
of Automotive grade dual and quad channel
comparators. The family offers low input offset
voltage, fault-tolerant inputs and a excellent speed-topower combination with a propagation delay of 100
ns with a quiescent supply current of only 18 μA per
channel.
The family also includes a Power-on Reset (POR)
feature that ensures the output is in a known state
until the minimum supply voltage has been reached to
prevent output transients during system power-up and
power-down.
TLV9022-Q1,
TLV9032-Q1
(Dual)
TLV9024-Q1,
TLV9034-Q1
(Quad)
(1)
BODY SIZE (NOM)
SC-70 (5)
1.25 mm x 2.00 mm
SOT-23 (5)
1.60 mm x 2.90 mm
SOIC (8)
3.91 mm × 4.90 mm
TSSOP (8)
3.00 mm × 4.40 mm
VSSOP (8)
3.00 mm × 3.00 mm
WSON (8)
(Preview)
2.00 mm × 2.00 mm
SOT-23-THN (8)
1.60 mm × 2.90 mm
SOIC (14)
3.91 mm × 8.65 mm
TSSOP (14)
4.40 mm × 5.00 mm
SOT-23 (14)
4.20 mm x 2.00 mm
WQFN (16) (Preview)
3.00 mm × 3.00 mm
For all available packages, see the orderable addendum at
the end of the data sheet.
V+
V+
V+
IN+
+
IN-
-
V+
Output
Control
SNAPBACK
ESD
CLAMPS
V-
IN+
+
IN-
-
OUT
V-
Power-On-Reset
(POR)
Bias
Output
Control
SNAPBACK
ESD
CLAMPS
VV-
V-
V+
V-
V-
V-
OUT
Power-On-Reset
(POR)
Bias
V-
V-
TLV902x-Q1 Block Diagram
TLV903x-Q1 Block Diagram
An IMPORTANT NOTICE at the end of this data sheet addresses availability, warranty, changes, use in safety-critical applications,
intellectual property matters and other important disclaimers. UNLESS OTHERWISE NOTED, this document contains PRODUCTION
DATA.
TLV9020-Q1, TLV9021-Q1, TLV9022-Q1, TLV9024-Q1
TLV9030-Q1, TLV9031-Q1, TLV9032-Q1, TLV9034-Q1
www.ti.com
SNOSDA9D – JUNE 2020 – REVISED MARCH 2023
Table of Contents
1 Features............................................................................1
2 Applications..................................................................... 1
3 Description.......................................................................1
4 Revision History.............................................................. 2
5 Pin Configuration and Functions...................................3
5.1 Pin Functions: TLV90x0-Q1 and TLV90x1-Q1
Single............................................................................ 3
Pin Functions: TLV90x2-Q1 Dual......................................4
Pin Functions: TLV90x4-Q1 Quad.................................... 5
6 Specifications.................................................................. 6
6.1 Absolute Maximum Ratings........................................ 6
6.2 ESD Ratings............................................................... 6
6.3 Recommended Operating Conditions.........................6
Thermal Information, TLV90x0-Q1,TLV90x1-Q1 ..............6
6.4 Thermal Information, TLV90x2-Q1 .............................7
6.5 Thermal Information, TLV90x4-Q1 .............................7
6.6 Electrical Characteristics, TLV90x0Q1,TLV90x1-Q1 ........................................................... 8
6.7 Switching Characteristics, TLV90x0Q1,TLV90x1-Q1 ........................................................... 9
6.8 Electrical Characteristics, TLV90x2-Q1 ................... 10
6.9 Switching Characteristics, TLV90x2-Q1 ................... 11
6.10 Electrical Characteristics, TLV90x4-Q1 ................. 12
6.11 Switching Characteristics, TLV90x4-Q1 ................. 13
6.12 Typical Characteristics............................................ 14
7 Detailed Description......................................................20
7.1 Overview................................................................... 20
7.2 Functional Block Diagram......................................... 20
7.3 Feature Description...................................................20
7.4 Device Functional Modes..........................................20
8 Application and Implementation.................................. 23
8.1 Application Information............................................. 23
8.2 Typical Applications.................................................. 26
8.3 Power Supply Recommendations.............................33
9 Layout.............................................................................34
9.1 Layout Guidelines..................................................... 34
9.2 Layout Example........................................................ 34
10 Device and Documentation Support..........................35
10.1 Documentation Support.......................................... 35
10.2 Receiving Notification of Documentation Updates..35
10.3 Support Resources................................................. 35
10.4 Trademarks............................................................. 35
10.5 Electrostatic Discharge Caution..............................35
10.6 Glossary..................................................................35
11 Mechanical, Packaging, and Orderable
Information.................................................................... 35
4 Revision History
NOTE: Page numbers for previous revisions may differ from page numbers in the current version.
Changes from Revision C (January 2022) to Revision D (May 2023)
Page
• Added Single to front page text, device info, pinout, thermal and EC tables..................................................... 1
Changes from Revision B (August 2021) to Revision C (January 2022)
Page
• Updated VSSOP status in Device Info table...................................................................................................... 1
Changes from Revision A (December 2020) to Revision B (August 2021)
Page
• Added status to Device Info table.......................................................................................................................1
Changes from Revision * (June 2020) to Revision A (December 2020)
Page
• Updated the numbering format for tables, figures, and cross-references throughout the document................. 1
• Added tables for Quad........................................................................................................................................6
• Added Typical Graphs...................................................................................................................................... 14
2
Submit Document Feedback
Copyright © 2023 Texas Instruments Incorporated
Product Folder Links: TLV9020-Q1 TLV9021-Q1 TLV9022-Q1 TLV9024-Q1 TLV9030-Q1 TLV9031-Q1
TLV9032-Q1 TLV9034-Q1
TLV9020-Q1, TLV9021-Q1, TLV9022-Q1, TLV9024-Q1
TLV9030-Q1, TLV9031-Q1, TLV9032-Q1, TLV9034-Q1
www.ti.com
SNOSDA9D – JUNE 2020 – REVISED MARCH 2023
5 Pin Configuration and Functions
5.1 Pin Functions: TLV90x0-Q1 and TLV90x1-Q1 Single
IN+
1
V-
2
IN-
3
5
V+
4
OUT
+
Figure 5-1. TLV9020-Q1, TLV9030-Q1 DCK and DBV Packages
Standard "South East" Pinout
5-Pin SC-70 and SOT-23
Top View
1
V-
2
IN+
3
5
V+
4
IN-
+
OUT
Figure 5-2. TLV9021-Q1, TLV9031-Q1 DCK and DBV Packages
Standard "North West" Pinout
5-Pin SC-70 and SOT-23
Top View
Table 5-1. Pin Functions: TLV90x0-Q1 and TLV90x1-Q1
PIN
NAME
TLV90x0-Q1
TLV90x1-Q1
TYPE
DESCRIPTION
NO.
NO.
IN+
1
3
I
Non-Inverting (Positive) Input
IN–
3
4
I
Inverting (Negative) Input
OUT
4
1
O
Output
V+
5
5
—
Positive Power Supply
V-
2
2
—
Negative Power Supply
Copyright © 2023 Texas Instruments Incorporated
Submit Document Feedback
Product Folder Links: TLV9020-Q1 TLV9021-Q1 TLV9022-Q1 TLV9024-Q1 TLV9030-Q1 TLV9031-Q1
TLV9032-Q1 TLV9034-Q1
3
TLV9020-Q1, TLV9021-Q1, TLV9022-Q1, TLV9024-Q1
TLV9030-Q1, TLV9031-Q1, TLV9032-Q1, TLV9034-Q1
www.ti.com
SNOSDA9D – JUNE 2020 – REVISED MARCH 2023
Pin Functions: TLV90x2-Q1 Dual
OUT1
1
8
V+
IN1±
2
7
OUT2
IN1+
3
6
IN2±
V±
4
5
IN2+
Figure 5-3. D, DGK, PW, DDF Packages
8-Pin SOIC, VSSOP, TSSOP, SOT-23-8
Top View
OUT1
1
IN1±
2
IN1+
3
V±
4
Exposed
Thermal
Die Pad
on
Underside
8
V+
7
OUT2
6
IN2±
5
IN2+
NOTE: Connect exposed thermal pad directly to V- pin.
Figure 5-4. DSG Package
8-Pad WSON With Exposed Thermal Pad
Top View
Table 5-2. Pin Functions: TLV90x2-Q1
PIN
NAME
4
NO.
I/O
DESCRIPTION
OUT1
1
O
Output pin of the comparator 1
IN1–
2
I
Inverting input pin of comparator 1
IN1+
3
I
Noninverting input pin of comparator 1
V–
4
—
IN2+
5
I
Noninverting input pin of comparator 2
IN2–
6
I
Inverting input pin of comparator 2
OUT2
7
O
Output pin of the comparator 2
V+
8
—
Positive supply
Thermal Pad
—
—
Connect directly to V- pin
Submit Document Feedback
Negative (low) supply
Copyright © 2023 Texas Instruments Incorporated
Product Folder Links: TLV9020-Q1 TLV9021-Q1 TLV9022-Q1 TLV9024-Q1 TLV9030-Q1 TLV9031-Q1
TLV9032-Q1 TLV9034-Q1
TLV9020-Q1, TLV9021-Q1, TLV9022-Q1, TLV9024-Q1
TLV9030-Q1, TLV9031-Q1, TLV9032-Q1, TLV9034-Q1
www.ti.com
SNOSDA9D – JUNE 2020 – REVISED MARCH 2023
IN2±
6
9
IN3+
IN2+
7
8
IN3±
Figure 5-5. D, PW, DYY Package,
14-Pin SOIC, TSSOP, SOT-23,
Top View
OUT4
10 IN4±
13
5
2
12
V±
11
IN4+
10
NC
Thermal
NC
3
IN1+
4
Pad
9
8
IN1+
IN1±
IN3+
11 IN4+
OUT3
4
1
14
IN1±
V+
7
12 V±
IN3±
3
OUT2
V+
15
13 OUT4
6
2
IN2+
OUT1
OUT1
14 OUT3
5
1
IN2±
OUT2
16
Pin Functions: TLV90x4-Q1 Quad
IN4±
Not to scale
NOTE: Connect exposed thermal pad directly to V- pin.
Figure 5-6. RTE Package,
16-Pad WQFN With Exposed Thermal Pad,
Top View
Table 5-3. Pin Functions: TLV90x4-Q1
PIN
NAME(1)
I/O
DESCRIPTION
SOIC
WQFN
OUT2
1
15
Output
Output pin of the comparator 2
OUT1
2
16
Output
Output pin of the comparator1
V+
3
1
—
IN1–
4
2
Input
Negative input pin of the comparator 1
IN1+
5
4
Input
Positive input pin of the comparator 1
IN2–
6
5
Input
Negative input pin of the comparator 2
IN2+
7
6
Input
Positive input pin of the comparator 2
IN3–
8
7
Input
Negative input pin of the comparator 3
IN3+
9
8
Input
Positive input pin of the comparator 3
IN4–
10
9
Input
Negative input pin of the comparator 4
IN4+
11
11
Input
Positive input pin of the comparator 4
V–
12
12
—
OUT4
13
13
Output
Output pin of the comparator 4
OUT3
14
14
Output
Output pin of the comparator 3
NC
—
3
—
No Internal Connection - Leave floating or GND
NC
—
10
—
No Internal Connection - Leave floating or GND
Thermal Pad
—
PAD
—
Connect directly to V- pin.
(1)
Positive supply
Negative supply
Some manufacturers transpose the names of channels 1 & 2. Electrically the pinouts are identical, just a difference in channel naming
convention.
Copyright © 2023 Texas Instruments Incorporated
Submit Document Feedback
Product Folder Links: TLV9020-Q1 TLV9021-Q1 TLV9022-Q1 TLV9024-Q1 TLV9030-Q1 TLV9031-Q1
TLV9032-Q1 TLV9034-Q1
5
TLV9020-Q1, TLV9021-Q1, TLV9022-Q1, TLV9024-Q1
TLV9030-Q1, TLV9031-Q1, TLV9032-Q1, TLV9034-Q1
www.ti.com
SNOSDA9D – JUNE 2020 – REVISED MARCH 2023
6 Specifications
6.1 Absolute Maximum Ratings
over operating free-air temperature range (unless otherwise noted)(1)
Supply voltage: VS = (V+) – (V–)
Input pins (IN+, IN–) from
V–(2)
MIN
MAX
–0.3
6
UNIT
V
–0.3
6
V
Current into Input pins (IN+, IN–)
–10
10
mA
Output (OUT) from V–, open drain
only(3)
–0.3
6
V
Output (OUT) from V–, push-pull only
–0.3
(V+) + 0.3
V
10
s
150
°C
150
°C
Output short circuit duration(4)
Junction temperature, TJ
Storage temperature, Tstg
(1)
(2)
(3)
(4)
–65
Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress
ratings only, which do not imply functional operation of the device at these or any other conditions beyond those indicated under
Recommended Operating Conditions. Exposure to absolute-maximum-rated conditions for extended periods may affect device
reliability.
Input terminals are diode-clamped to (V–). Input signals that can swing more than 0.3 V beyond the supply rails must be current-limited
to 10 mA or less. Additionally, Inputs (IN+, IN–) can be greater than V+ and OUT as long as it is within the –0.3 V to 6 V range
Output (OUT) for open drain can be greater than V+ and inputs (IN+, IN–) as long as it is within the –0.3 V to 6 V range
Short-circuit to V– or V+. Short circuits from outputs can cause excessive heating and eventual destruction.
6.2 ESD Ratings
VALUE
Electrostatic
discharge
V(ESD)
(1)
Human-body model (HBM), , per AEC Q100-002(1)
±2000
Charged-device model (CDM), per AEC Q100-0111
±1000
UNIT
V
AEC Q100-002 indicates that HBM stressing shall be in accordance with the ANSI/ESDA/JEDEC JS-001 specification.
6.3 Recommended Operating Conditions
over operating free-air temperature range (unless otherwise noted)
MIN
MAX
Supply voltage: VS = (V+) – (V–)
1.65
5.5
UNIT
V
Input voltage range (IN+, IN–) from (V–)
–0.2
5.7
V
Ambient temperature, TA
–40
125
°C
Thermal Information, TLV90x0-Q1,TLV90x1-Q1
TLV90x0-Q1,TLV90x1-Q1
THERMAL METRIC (1)
DBV
(SOT-23)
5 PINS
5 PINS
UNIT
RqJA
Junction-to-ambient thermal resistance
238.5
223.7
°C/W
RqJC(top)
Junction-to-case (top) thermal resistance
134.0
123.2
°C/W
RqJB
Junction-to-board thermal resistance
87.6
91.4
°C/W
yJT
Junction-to-top characterization parameter
59.1
58.7
°C/W
yJB
Junction-to-board characterization parameter
87.2
91.0
°C/W
RqJC(bot)
Junction-to-case (bottom) thermal resistance
–
–
°C/W
(1)
6
DCK
(SC-70)
For more information about traditional and new thermal metrics, see the Semiconductor and IC Package Thermal Metrics application
report.
Submit Document Feedback
Copyright © 2023 Texas Instruments Incorporated
Product Folder Links: TLV9020-Q1 TLV9021-Q1 TLV9022-Q1 TLV9024-Q1 TLV9030-Q1 TLV9031-Q1
TLV9032-Q1 TLV9034-Q1
TLV9020-Q1, TLV9021-Q1, TLV9022-Q1, TLV9024-Q1
TLV9030-Q1, TLV9031-Q1, TLV9032-Q1, TLV9034-Q1
www.ti.com
SNOSDA9D – JUNE 2020 – REVISED MARCH 2023
6.4 Thermal Information, TLV90x2-Q1
TLV90x2-Q1
THERMAL METRIC (1)
D
(SOIC)
PW
DGK
(TSSOP) (VSSOP)
DSG
(WSON)
DDF
(SOT-23)
UNIT
8 PINS
8 PINS
8 PINS
8 PINS
8 PINS
RqJA
Junction-to-ambient thermal resistance
167.7
221.7
215.8
175.2
240.0
°C/W
RqJC(top)
Junction-to-case (top) thermal resistance
107.0
109.1
105.2
178.1
151.0
°C/W
RqJB
Junction-to-board thermal resistance
111.2
152.5
137.5
139.5
157.0
°C/W
yJT
Junction-to-top characterization parameter
53.1
36.4
39.6
47.2
32.8
°C/W
yJB
Junction-to-board characterization parameter
110.4
150.7
135.9
138.9
155.4
°C/W
RqJC(bot)
Junction-to-case (bottom) thermal resistance
–
–
–
127.3
–
°C/W
(1)
For more information about traditional and new thermal metrics, see the Semiconductor and IC Package Thermal Metrics application
report.
6.5 Thermal Information, TLV90x4-Q1
TLV90x4-Q1
THERMAL METRIC(1)
D (SOIC)
PW
(TSSOP)
RTE
(WQFN)
DYY
(SOT-23)
UNIT
14 PINS
14 PINS
16 PINS
14 PINS
RqJA
Junction-to-ambient thermal resistance
136.0
155.0
134.1
211.1
°C/W
RqJC(top)
Junction-to-case (top) thermal resistance
91.2
82.0
122.6
121.1
°C/W
RqJB
Junction-to-board thermal resistance
92.0
98.5
109.3
120.4
°C/W
yJT
Junction-to-top characterization parameter
46.9
25.7
30.9
22.3
°C/W
yJB
Junction-to-board characterization parameter
91.6
97.6
108.3
120.1
°C/W
RqJC(bot)
Junction-to-case (bottom) thermal resistance
–
–
98.7
–
°C/W
(1)
For more information about traditional and new thermal metrics, see the Semiconductor and IC Package Thermal Metrics application
report.
Copyright © 2023 Texas Instruments Incorporated
Submit Document Feedback
Product Folder Links: TLV9020-Q1 TLV9021-Q1 TLV9022-Q1 TLV9024-Q1 TLV9030-Q1 TLV9031-Q1
TLV9032-Q1 TLV9034-Q1
7
TLV9020-Q1, TLV9021-Q1, TLV9022-Q1, TLV9024-Q1
TLV9030-Q1, TLV9031-Q1, TLV9032-Q1, TLV9034-Q1
www.ti.com
SNOSDA9D – JUNE 2020 – REVISED MARCH 2023
6.6 Electrical Characteristics, TLV90x0-Q1,TLV90x1-Q1
For VS (Total Supply Voltage) = (V+) – (V–) = 5 V, VCM = (V–) at TA = 25°C (Unless otherwise noted)
PARAMETER
TEST CONDITIONS
MIN
TYP
MAX
–1.5
±0.3
1.5
UNIT
OFFSET VOLTAGE
VOS
Input offset voltage
VS = 1.8 V and 5 Vx
VOS
Input offset voltage
VS = 1.8 V and 5 V, TA = –40°C to +125°C
dVIO/dT
Input offset voltage drift
VS = 1.8 V and 5 V, TA = –40°C to +125°C
±0.5
Quiescent current
VS = 1.8 V and 5 V, No Load, Output Low
17.1
IQ
Quiescent current
VS = 1.8 V and 5 V, No Load, Output Low, TA =
–40°C to +125°C
PSRR
Power-supply
rejection ratio
VS = 1.8 V to 5 V, TA = –40°C to +125°C
(push-pull verison)
75
95
dB
PSRR
Power-supply rejection
ratio
VS = 1.8 V to 5 V, TA = –40°C to +125°C
(open drain version)
80
95
dB
–2
2
mV
µV/°C
POWER SUPPLY
IQ
30
35
µA
INPUT BIAS CURRENT
IB
Input bias current
VCM = VS/2
5
pA
IOS
Input offset current
VCM = VS/2
1
pA
INPUT CAPACITANCE
CID
Input Capacitance,
Differential
VCM = VS/2
2
pF
CIC
Input Capacitance,
Common Mode
VCM = VS/2
3
pF
INPUT VOLTAGE RANGE
VCM-Range
Common-mode voltage
range
VS = 1.8 V and 5 V, TA = –40°C to +125°C
CMRR
Common-mode
rejection ratio
VS = 5 V, (V–) – 0.2 V < VCM < (V+) + 0.2 V, TA
= –40°C to +125°C
60
70
dB
CMRR
Common-mode
rejection ratio
VS = 1.8 V, (V–) – 0.2 V < VCM < (V+) + 0.2 V,
TA = –40°C to +125°C
50
60
dB
For open drain version only
50
200
V/mV
(V–) – 0.2
(V+) + 0.2
V
OPEN-LOOP GAIN
Large signal differential
voltage amplification
AVD
OUTPUT
8
VOL
Voltage swing from (V–) ISINK = 4 mA, TA = 25°C
VOL
Voltage swing from (V–) ISINK = 4 mA, TA = –40°C to +125°C
VOH
Voltage swing from (V+) ISOURCE = 4 mA, TA = 25°C (push-pull only)
VOH
I
= 4 mA, TA = –40°C to +125°C (pushVoltage swing from (V+) SOURCE
pull only)
ILKG
Open-drain output
leakage current
VPULLUP = (V+), TA = 25°C (open drain only)
ISC
Short-circuit current
VS = 5 V, Sinking
ISC
Short-circuit current
VS = 5 V, Sourcing (push-pull only)
Submit Document Feedback
75
75
125
mV
175
mV
125
mV
175
mV
100
pA
90
100
mA
90
100
mA
Copyright © 2023 Texas Instruments Incorporated
Product Folder Links: TLV9020-Q1 TLV9021-Q1 TLV9022-Q1 TLV9024-Q1 TLV9030-Q1 TLV9031-Q1
TLV9032-Q1 TLV9034-Q1
TLV9020-Q1, TLV9021-Q1, TLV9022-Q1, TLV9024-Q1
TLV9030-Q1, TLV9031-Q1, TLV9032-Q1, TLV9034-Q1
www.ti.com
SNOSDA9D – JUNE 2020 – REVISED MARCH 2023
6.7 Switching Characteristics, TLV90x0-Q1,TLV90x1-Q1
For VS (Total Supply Voltage) = (V+) – () = 5 V, VCM = VS / 2, CL = 15 pF at TA = 25°C (Unless otherwise noted)
PARAMETER
TEST CONDITIONS
MIN
TYP
MAX
UNIT
OUTPUT
TPD-HL
Propagation delay time, highto-low
TPD-LH
VID = –100 mV; Delay from mid-point of
input to mid-point of output (RP = 2.5 KΩ
for open drain only)
100
ns
VID = 100 mV; Delay from mid-point of
Propagation delay time, low-toinput to mid-point of output (for push-pull
high
only)
115
ns
TPD-LH
VID = 100 mV; Delay from mid-point of
Propagation delay time, low-toinput to mid-point of output (RP = 2.5 KΩ
high
for open drain only)
150
ns
TFALL
5V Output Fall Time, 80% to
20%
VID = –100 mV
3
ns
TRISE
5V Output Rise Time, 20% to
80%
VID = 100 mV (for push-pull only)
3
ns
FTOGGLE
5V, Toggle Frequency
VID = 100 mV (RP = 2.5 KΩ for open drain
only)
3
MHz
20
µs
POWER ON TIME
PON
Power on-time
Copyright © 2023 Texas Instruments Incorporated
VS = 1.8 V and 5 V, VCM = (V–), VID = –0.1
V, VPULL-UP = VS / 2, Delay from VS / 2 to
VOUT = 0.1 x VS / 2 (RP = 2.5 KΩ for open
drain only)
Submit Document Feedback
Product Folder Links: TLV9020-Q1 TLV9021-Q1 TLV9022-Q1 TLV9024-Q1 TLV9030-Q1 TLV9031-Q1
TLV9032-Q1 TLV9034-Q1
9
TLV9020-Q1, TLV9021-Q1, TLV9022-Q1, TLV9024-Q1
TLV9030-Q1, TLV9031-Q1, TLV9032-Q1, TLV9034-Q1
www.ti.com
SNOSDA9D – JUNE 2020 – REVISED MARCH 2023
6.8 Electrical Characteristics, TLV90x2-Q1
For VS (Total Supply Voltage) = (V+) – (V–) = 5 V, VCM = (V–) at TA = 25°C (Unless otherwise noted)
PARAMETER
TEST CONDITIONS
MIN
TYP
MAX
–1.5
±0.3
1.5
UNIT
OFFSET VOLTAGE
VOS
Input offset voltage
VS = 1.8 V and 5 Vx
VOS
Input offset voltage
VS = 1.8 V and 5 V, TA = –40°C to +125°C
dVIO/dT
Input offset voltage drift
VS = 1.8 V and 5 V, TA = –40°C to +125°C
–2
2
±0.5
mV
µV/°C
POWER SUPPLY
IQ
Quiescent current per
comparator
VS = 1.8 V and 5 V, No Load, Output Low
IQ
Quiescent current per
comparator
VS = 1.8 V and 5 V, No Load, Output Low, TA =
–40°C to +125°C
PSRR
Power-supply rejection
ratio
VS = 1.8 V to 5 V, TA = –40°C to +125°C, (pushpull verison)
75
95
dB
PSRR
Power-supply rejection
ratio
VS = 1.8 V to 5 V, TA = –40°C to +125°C (open
drain version)
80
95
dB
16
30
µA
35
INPUT BIAS CURRENT
IB
Input bias current
VCM = VS/2
5
pA
IOS
Input offset current
VCM = VS/2
1
pA
INPUT CAPACITANCE
CID
Input Capacitance,
Differential
VCM = VS/2
2
pF
CIC
Input Capacitance,
Common Mode
VCM = VS/2
3
pF
INPUT VOLTAGE RANGE
VCM-Range
Common-mode voltage
range
VS = 1.8 V and 5 V, TA = –40°C to +125°C
CMRR
Common-mode
rejection ratio
VS = 5 V, (V–) – 0.2 V < VCM < (V+) + 0.2 V, TA
= –40°C to +125°C
60
70
dB
CMRR
Common-mode
rejection ratio
VS = 1.8 V, (V–) – 0.2 V < VCM < (V+) + 0.2 V,
TA = –40°C to +125°C
50
60
dB
For open drain version only
50
200
V/mV
(V–) – 0.2
(V+) + 0.2
V
OPEN-LOOP GAIN
Large signal differential
voltage amplification
AVD
OUTPUT
VOL
Voltage swing from (V–) ISINK = 4 mA, TA = 25°C
VOL
Voltage swing from (V–) ISINK = 4 mA, TA = –40°C to +125°C
VOH
Voltage swing from (V+) ISOURCE = 4 mA, TA = 25°C (push-pull only)
VOH
Voltage swing from (V+)
ISOURCE = 4 mA, TA = –40°C to +125°C (pushpull only)
ILKG
Open-drain output
leakage current
VPULLUP = (V+), TA = 25°C (open drain only)
ISC
Short-circuit current
VS = 5 V, Sinking
ISC
Short-circuit current
VS = 5 V, Sourcing (push-pull only)
10
Submit Document Feedback
75
75
125
mV
175
mV
125
mV
175
mV
100
pA
90
100
mA
90
100
mA
Copyright © 2023 Texas Instruments Incorporated
Product Folder Links: TLV9020-Q1 TLV9021-Q1 TLV9022-Q1 TLV9024-Q1 TLV9030-Q1 TLV9031-Q1
TLV9032-Q1 TLV9034-Q1
TLV9020-Q1, TLV9021-Q1, TLV9022-Q1, TLV9024-Q1
TLV9030-Q1, TLV9031-Q1, TLV9032-Q1, TLV9034-Q1
www.ti.com
SNOSDA9D – JUNE 2020 – REVISED MARCH 2023
6.9 Switching Characteristics, TLV90x2-Q1
For VS (Total Supply Voltage) = (V+) – () = 5 V, VCM = VS / 2, CL = 15 pF at TA = 25°C (Unless otherwise noted)
PARAMETER
TEST CONDITIONS
MIN
TYP
MAX
UNIT
OUTPUT
TPD-HL
Propagation delay time, highto-low
TPD-LH
VID = –100 mV; Delay from mid-point of
input to mid-point of output (RP = 2.5 KΩ
for open drain only)
100
ns
VID = 100 mV; Delay from mid-point of
Propagation delay time, low-toinput to mid-point of output (for push-pull
high
only)
115
ns
TPD-LH
VID = 100 mV; Delay from mid-point of
Propagation delay time, low-toinput to mid-point of output (RP = 2.5 KΩ
high
for open drain only)
150
ns
TFALL
5V Output Fall Time, 80% to
20%
VID = –100 mV
3
ns
TRISE
5V Output Rise Time, 20% to
80%
VID = 100 mV (for push-pull only)
3
ns
FTOGGLE
5V, Toggle Frequency
VID = 100 mV (RP = 2.5 KΩ for open drain
only)
3
MHz
20
µs
POWER ON TIME
PON
Power on-time
Copyright © 2023 Texas Instruments Incorporated
VS = 1.8 V and 5 V, VCM = (V–), VID = –0.1
V, VPULL-UP = VS / 2, Delay from VS / 2 to
VOUT = 0.1 x VS / 2 (RP = 2.5 KΩ for open
drain only)
Submit Document Feedback
Product Folder Links: TLV9020-Q1 TLV9021-Q1 TLV9022-Q1 TLV9024-Q1 TLV9030-Q1 TLV9031-Q1
TLV9032-Q1 TLV9034-Q1
11
TLV9020-Q1, TLV9021-Q1, TLV9022-Q1, TLV9024-Q1
TLV9030-Q1, TLV9031-Q1, TLV9032-Q1, TLV9034-Q1
www.ti.com
SNOSDA9D – JUNE 2020 – REVISED MARCH 2023
6.10 Electrical Characteristics, TLV90x4-Q1
For VS (Total Supply Voltage) = (V+) – (V–) = 5 V, VCM = (V–) at TA = 25°C (Unless otherwise noted)
PARAMETER
TEST CONDITIONS
MIN
TYP
MAX
–1.5
±0.3
1.5
UNIT
OFFSET VOLTAGE
VOS
Input offset voltage
VS = 1.8 V and 5 Vx
VOS
Input offset voltage
VS = 1.8 V and 5 V, TA = –40°C to +125°C
dVIO/dT
Input offset voltage drift
VS = 1.8 V and 5 V, TA = –40°C to +125°C
–2
2
±0.5
mV
µV/°C
POWER SUPPLY
IQ
Quiescent current per
comparator
VS = 1.8 V and 5 V, No Load, Output Low
IQ
Quiescent current per
comparator
VS = 1.8 V and 5 V, No Load, Output Low, TA =
–40°C to +125°C
PSRR
Power-supply rejection
ratio
VS = 1.8 V to 5 V, TA = –40°C to +125°C, (pushpull version)
PSRR
Power-supply rejection
ratio
VS = 1.8 V to 5 V, TA = –40°C to +125°C, (pushpull version)
PSRR
Power-supply rejection
ratio
VS = 1.8 V to 5 V, TA = –40°C to +125°C, (open
drain version)
PSRR
Power-supply rejection
ratio
VS = 1.8 V to 5 V, TA = –40°C to +125°C, (open
drain version)
16
30
µA
35
177.8
75
95
dB
100
80
µV/V
µV/V
95
dB
INPUT BIAS CURRENT
IB
Input bias current
VCM = VS/2
5
pA
IOS
Input offset current
VCM = VS/2
1
pA
INPUT CAPACITANCE
CID
Input Capacitance,
Differential
VCM = VS/2
2
pF
CIC
Input Capacitance,
Common Mode
VCM = VS/2
3
pF
INPUT VOLTAGE RANGE
VCM-Range
Common-mode voltage
range
VS = 1.8 V and 5 V, TA = –40°C to +125°C
CMRR
Common-mode
rejection ratio
VS = 5 V, (V–) – 0.2 V < VCM < (V+) + 0.2 V, TA
= –40°C to +125°C
60
70
dB
CMRR
Common-mode
rejection ratio
VS = 1.8 V, (V–) – 0.2 V < VCM < (V+) + 0.2 V,
TA = –40°C to +125°C
50
60
dB
For open-drain version only
50
200
V/mV
(V–) – 0.2
(V+) + 0.2
V
OPEN-LOOP GAIN
Large signal differential
voltage amplification
AVD
OUTPUT
VOL
Voltage swing from (V–) ISINK = 4 mA, TA = 25°C
VOL
Voltage swing from (V–) ISINK = 4 mA, TA = –40°C to +125°C
VOH
Voltage swing from (V+) ISOURCE = 4 mA, TA = 25°C (push-pull only)
VOH
I
= 4 mA, TA = –40°C to +125°C (pushVoltage swing from (V+) SOURCE
pull only)
ILKG
Open-drain output
leakage current
VPULLUP = (V+), TA = 25°C (open drain only)
ISC
Short-circuit current
VS = 5 V, Sinking
ISC
Short-circuit current
VS = 5 V, Sourcing (push-pull only)
12
Submit Document Feedback
75
75
125
mV
175
mV
125
mV
175
mV
100
pA
90
100
mA
90
100
mA
Copyright © 2023 Texas Instruments Incorporated
Product Folder Links: TLV9020-Q1 TLV9021-Q1 TLV9022-Q1 TLV9024-Q1 TLV9030-Q1 TLV9031-Q1
TLV9032-Q1 TLV9034-Q1
TLV9020-Q1, TLV9021-Q1, TLV9022-Q1, TLV9024-Q1
TLV9030-Q1, TLV9031-Q1, TLV9032-Q1, TLV9034-Q1
www.ti.com
SNOSDA9D – JUNE 2020 – REVISED MARCH 2023
6.11 Switching Characteristics, TLV90x4-Q1
For VS (Total Supply Voltage) = (V+) – (V–) = 5 V, VCM = VS / 2, CL = 15 pF at TA = 25°C (Unless otherwise noted)
PARAMETER
TEST CONDITIONS
MIN
TYP
MAX
UNIT
OUTPUT
TPD-HL
Propagation delay time, highto-low
VID = –100 mV; Delay from mid-point of
input to mid-point of output (RP = 2.5 KΩ
for open drain only)
100
ns
TPD-LH
VID = 100 mV; Delay from mid-point of
Propagation delay time, low-toinput to mid-point of output (for push-pull
high
only)
115
ns
TPD-LH
VID = 100 mV; Delay from mid-point of
Propagation delay time, low-toinput to mid-point of output (RP = 2.5 KΩ
high
for open drain only)
150
ns
TFALL
5V Output Fall Time, 80% to
20%
VID = –100 mV
3
ns
TRISE
5V Output Rise Time, 20% to
80%
VID = 100 mV, for push-pull only
3
ns
FTOGGLE
5V, Toggle Frequency
VID = 100 mV (RP = 2.5 KΩ for open drain
only)
3
MHz
VS = 1.8 V and 5 V, VCM = (V–), VID = –0.1
V, VPULL-UP = VS / 2, Delay from VS / 2 to
VOUT = 0.1 x VS / 2 (RP = 2.5 KΩ for open
drain only)
30
µs
POWER ON TIME
PON
Power on-time
Copyright © 2023 Texas Instruments Incorporated
Submit Document Feedback
Product Folder Links: TLV9020-Q1 TLV9021-Q1 TLV9022-Q1 TLV9024-Q1 TLV9030-Q1 TLV9031-Q1
TLV9032-Q1 TLV9034-Q1
13
TLV9020-Q1, TLV9021-Q1, TLV9022-Q1, TLV9024-Q1
TLV9030-Q1, TLV9031-Q1, TLV9032-Q1, TLV9034-Q1
www.ti.com
SNOSDA9D – JUNE 2020 – REVISED MARCH 2023
6.12 Typical Characteristics
TA = 25°C, VS = 5 V, RPULLUP = 2.5k, CL = 15 pF, VCM = 0 V, VUNDERDRIVE = 100 mV, VOVERDRIVE = 100 mV unless otherwise
noted.
22
27
Supply Current Per Channel (PA)
Supply Current Per Channel (PA)
30
24
21
18
15
12
9
125°C
85°C
25°C
-40°C
6
3
0
1.5
2
2.5
3
3.5
4
Supply Voltage (V)
4.5
5
20
18
16
14
1.8V
3.3V
5V
12
10
-40
5.5
30
30
27
27
24
21
18
15
12
9
125°C
85°C
25°C
-40°C
6
3
VS=1.8V
0
-0.2
0
0.2
0.4
0.6 0.8 1
1.2
Input Voltage (V)
1.4
1.6
1.8
2
Figure 6-3. Supply Current vs. Input Voltage, 1.8V
20 35 50 65
Temperature (°C)
80
95
110 125
24
21
18
15
12
9
125°C
85°C
25°C
-40°C
6
3
VS=3.3V
0
-0.2
0.2
0.6
1
1.4 1.8 2.2
Input Voltage (V)
2.6
3
3.4
1000
27
24
21
18
15
12
9
125°C
85°C
25°C
-40°C
6
3
0
-0.5
0
0.5
1
1.5
2 2.5 3 3.5
Input Voltage (V)
4
4.5
Figure 6-5. Supply Current vs. Input Voltage, 5V
Submit Document Feedback
5
5.5
Input Bias Current (pA)
Supply Current Per Channel (PA)
5
Figure 6-4. Supply Current vs. Input Voltage, 3.3V
30
14
-10
Figure 6-2. Supply Current vs. Temperature
Supply Current Per Channel (PA)
Supply Current Per Channel (PA)
Figure 6-1. Supply Current vs. Supply Voltage
-25
100
10
1
0.1
VS = 5V
VIN = VS/2
0.01
0.002
-40
-25
-10
5
20 35 50 65
Temperature (°C)
80
95
110 125
Figure 6-6. Input Bias Current vs. Temperature
Copyright © 2023 Texas Instruments Incorporated
Product Folder Links: TLV9020-Q1 TLV9021-Q1 TLV9022-Q1 TLV9024-Q1 TLV9030-Q1 TLV9031-Q1
TLV9032-Q1 TLV9034-Q1
TLV9020-Q1, TLV9021-Q1, TLV9022-Q1, TLV9024-Q1
TLV9030-Q1, TLV9031-Q1, TLV9032-Q1, TLV9034-Q1
www.ti.com
SNOSDA9D – JUNE 2020 – REVISED MARCH 2023
6.12 Typical Characteristics (continued)
TA = 25°C, VS = 5 V, RPULLUP = 2.5k, CL = 15 pF, VCM = 0 V, VUNDERDRIVE = 100 mV, VOVERDRIVE = 100 mV unless otherwise
noted.
10
10
1
100m
125°C
85°C
25°C
-40°C
10m
1m
100P
1m
10m
Output Sinking Current (A)
Output Voltage from V+ (V)
Output Voltage to V- (V)
P-P Output Only
100m
125°C
85°C
25°C
-40°C
10m
1m
100P
100m
Figure 6-7. Output Sinking Current vs. Output Voltage, 1.8V
1
1m
10m
Output Sourcing Current (A)
100m
Figure 6-8. Output Sourcing Current vs. Output Voltage, 1.8V
10
10
1
100m
125°C
85°C
25°C
-40°C
10m
1m
100P
1m
10m
Output Sinking Current (A)
Output Voltage to V+ (V)
Output Voltage to V- (V)
P-P Output Only
100m
125°C
85°C
25°C
-40°C
10m
1m
100P
100m
Figure 6-9. Output Sinking Current vs. Output Voltage, 3.3V
1
1m
10m
Output Sourcing Current (A)
100m
Figure 6-10. Output Sourcing Current vs. Output Voltage, 3.3V
10
10
1
100m
125°C
85°C
25°C
-40°C
10m
1m
100P
1m
10m
Output Sinking Current (A)
100m
Figure 6-11. Output Sinking Current vs. Output Voltage, 5V
Copyright © 2023 Texas Instruments Incorporated
Output Voltage to V+ (V)
Output Voltage to V- (V)
P-P Output Only
1
100m
125°C
85°C
25°C
-40°C
10m
1m
100P
1m
10m
Output Sourcing Current (A)
100m
Figure 6-12. Output Sourcing Current vs. Output Voltage, 5V
Submit Document Feedback
Product Folder Links: TLV9020-Q1 TLV9021-Q1 TLV9022-Q1 TLV9024-Q1 TLV9030-Q1 TLV9031-Q1
TLV9032-Q1 TLV9034-Q1
15
TLV9020-Q1, TLV9021-Q1, TLV9022-Q1, TLV9024-Q1
TLV9030-Q1, TLV9031-Q1, TLV9032-Q1, TLV9034-Q1
www.ti.com
SNOSDA9D – JUNE 2020 – REVISED MARCH 2023
6.12 Typical Characteristics (continued)
130
120
110
100
90
80
70
60
50
40
30
20
10
0
-40
5V
3.3V
1.8
-25
-10
5
20 35 50 65
Temperature (°C)
80
95
Sourcing Short Circuit Current (mA)
Sinking Short Circuit Current (mA)
TA = 25°C, VS = 5 V, RPULLUP = 2.5k, CL = 15 pF, VCM = 0 V, VUNDERDRIVE = 100 mV, VOVERDRIVE = 100 mV unless otherwise
noted.
110 125
Figure 6-13. Sinking Short Circuit Current vs. Temperature
130
120
110
100
90
80
70
60
50
40
30
20
10
0
-40
-10
5
20 35 50 65
Temperature (°C)
80
95
110 125
1k
VS = 5V
VS = 5V
100
Falltime (ns)
Risetime (ns)
-25
5V
3.3V
1.8
Figure 6-14. Sourcing Short Circuit Current vs. Temperature
1k
10
125°C
85°C
25°C
-40°C
1
10p
100p
1n
Output Capacittive Load (F)
10n
Figure 6-15. Risetime vs. Capacitive Load
16
Push-Pull Output Only
Submit Document Feedback
100
10
125°C
85°C
25°C
-40°C
1
10p
100p
1n
Output Capacittive Load (F)
10n
Figure 6-16. Falltime vs. Capacitive Load
Copyright © 2023 Texas Instruments Incorporated
Product Folder Links: TLV9020-Q1 TLV9021-Q1 TLV9022-Q1 TLV9024-Q1 TLV9030-Q1 TLV9031-Q1
TLV9032-Q1 TLV9034-Q1
TLV9020-Q1, TLV9021-Q1, TLV9022-Q1, TLV9024-Q1
TLV9030-Q1, TLV9031-Q1, TLV9032-Q1, TLV9034-Q1
www.ti.com
SNOSDA9D – JUNE 2020 – REVISED MARCH 2023
6.12 Typical Characteristics (continued)
700
650
600
550
500
450
400
350
300
250
200
150
100
50
0
VS = 1.8V
5 6 7 8 10
-40°C
25°C
85°C
125°C
20 30 4050 70 100
200 300 500
Input Overdrive (mV)
Propagation Delay, Low to High (ns)
Propagation Delay, High to Low (ns)
TA = 25°C, VS = 5 V, RPULLUP = 2.5k, CL = 15 pF, VCM = 0 V, VUNDERDRIVE = 100 mV, VOVERDRIVE = 100 mV unless otherwise
noted.
1000
5 6 7 8 10
125°C
85°C
25°C
-40°C
20 30 4050 70 100
200 300 500
Input Overdrive (mV)
5 6 7 8 10
Figure 6-21. Propagation Delay, High to Low, 5V
Copyright © 2023 Texas Instruments Incorporated
1000
-40°C
25°C
85°C
125°C
20 30 4050 70 100
200 300 500
Input Overdrive (mV)
1000
Figure 6-20. Propagation Delay, Low to High, 3.3V
-40°C
25°C
85°C
125°C
20 30 4050 70 100
200 300 500
Input Overdrive (mV)
20 30 4050 70 100
200 300 500
Input Overdrive (mV)
VS = 3.3V
5 6 7 8 10
1000
Propagation Delay, Low to High (ns)
Propagation Delay, High to Low (ns)
VS = 5V
700
650
600
550
500
450
400
350
300
250
200
150
100
50
0
1000
Figure 6-19. Propagation Delay, High to Low, 3.3V
700
650
600
550
500
450
400
350
300
250
200
150
100
50
0
-40°C
25°C
85°C
125°C
Figure 6-18. Propagation Delay, Low to High, 1.8V
Propagation Delay, Low to High (ns)
Propagation Delay, High to Low (ns)
VS = 3.3V
VS = 1.8V
5 6 7 8 10
Figure 6-17. Propagation Delay, High to Low, 1.8V
700
650
600
550
500
450
400
350
300
250
200
150
100
50
0
700
650
600
550
500
450
400
350
300
250
200
150
100
50
0
700
650
600
550
500
450
400
350
300
250
200
150
100
50
0
VS = 5V
5 6 7 8 10
-40°C
25°C
85°C
125°C
20 30 4050 70 100
200 300 500
Input Overdrive (mV)
1000
Figure 6-22. Propagation Delay, Low to High, 5V
Submit Document Feedback
Product Folder Links: TLV9020-Q1 TLV9021-Q1 TLV9022-Q1 TLV9024-Q1 TLV9030-Q1 TLV9031-Q1
TLV9032-Q1 TLV9034-Q1
17
TLV9020-Q1, TLV9021-Q1, TLV9022-Q1, TLV9024-Q1
TLV9030-Q1, TLV9031-Q1, TLV9032-Q1, TLV9034-Q1
www.ti.com
SNOSDA9D – JUNE 2020 – REVISED MARCH 2023
6.12 Typical Characteristics (continued)
TA = 25°C, VS = 5 V, RPULLUP = 2.5k, CL = 15 pF, VCM = 0 V, VUNDERDRIVE = 100 mV, VOVERDRIVE = 100 mV unless otherwise
noted.
2
2
TA = 125°C
1.6
1.2
Input Offset Voltage (mV)
Input Offset Voltage (mV)
1.6
0.8
0.4
0
-0.4
-0.8
Unit 1
Unit 2
Unit 3
Unit 4
-1.2
-1.6
-2
-0.2
0
0.2
0.4
0.6 0.8 1
1.2
Input Voltage (V)
1.4
1.6
1.8
0
-0.4
Unit 1
Unit 2
Unit 3
Unit 4
-0.8
-1.2
0
0.5
1
1.5
2 2.5 3 3.5
Input Voltage (V)
4
4.5
5
5.5
2
1.6
1.2
Input Offset Voltage (mV)
Input Offset Voltage (mV)
0.4
Figure 6-24. Offset Voltage vs. Input Votlage at 125°C, 5V
TA = 25°C
0.8
0.4
0
-0.4
-0.8
Unit 1
Unit 2
Unit 3
Unit 4
-1.2
-1.6
-2
-0.2
0
0.2
0.4
0.6 0.8 1
1.2
Input Voltage (V)
1.4
1.6
1.8
0.8
0.4
0
-0.4
-0.8
Unit 1
Unit 2
Unit 3
Unit 4
-1.2
0
0.5
1
1.5
2 2.5 3 3.5
Input Voltage (V)
4
4.5
5
5.5
Figure 6-26. Offset Voltage vs. Input Votlage at 25°C, 5V
2
TA = -40°C
1.6
Input Offset Voltage (mV)
1.2
0.8
0.4
0
-0.4
-0.8
Unit 1
Unit 2
Unit 3
Unit 4
-1.2
-1.6
-2
-0.2
1.2
-2
-0.5
2
2
1.6
TA = 25°C
-1.6
Figure 6-25. Offset Voltage vs. Input Votlage at 25°C, 1.8V
Input Offset Voltage (mV)
0.8
-2
-0.5
2
2
0
0.2
TA = -40°C
1.2
0.8
0.4
0
-0.4
-0.8
Unit 1
Unit 2
Unit 3
Unit 4
-1.2
-1.6
0.4
0.6 0.8 1
1.2
Input Voltage (V)
1.4
1.6
1.8
2
Figure 6-27. Offset Voltage vs. Input Votlage at -40°C, 1.8V
18
1.2
-1.6
Figure 6-23. Offset Voltage vs. Input Votlage at 125°C, 1.8V
1.6
TA = 125°C
Submit Document Feedback
-2
-0.5
0
0.5
1
1.5
2 2.5 3 3.5
Input Voltage (V)
4
4.5
5
5.5
Figure 6-28. Offset Voltage vs. Input Votlage at -40°C, 5V
Copyright © 2023 Texas Instruments Incorporated
Product Folder Links: TLV9020-Q1 TLV9021-Q1 TLV9022-Q1 TLV9024-Q1 TLV9030-Q1 TLV9031-Q1
TLV9032-Q1 TLV9034-Q1
TLV9020-Q1, TLV9021-Q1, TLV9022-Q1, TLV9024-Q1
TLV9030-Q1, TLV9031-Q1, TLV9032-Q1, TLV9034-Q1
www.ti.com
SNOSDA9D – JUNE 2020 – REVISED MARCH 2023
6.12 Typical Characteristics (continued)
TA = 25°C, VS = 5 V, RPULLUP = 2.5k, CL = 15 pF, VCM = 0 V, VUNDERDRIVE = 100 mV, VOVERDRIVE = 100 mV unless otherwise
noted.
2
2
TA = 125°C
Vin = V+
1.6
1.2
0.8
0.4
0
-0.4
-0.8
Unit 1
Unit 2
Unit 3
Unit 4
-1.2
-1.6
-2
1.5
2
2.5
3
3.5
4
Supply Voltage (V)
4.5
5
Input Offset Voltage (mV)
Input Offset Voltage (mV)
1.6
0.4
0
-0.4
-0.8
-1.2
Unit 1
Unit 2
Unit 3
Unit 4
-1.2
2
2.5
3
3.5
4
Supply Voltage (V)
4.5
5
5.5
Unit 1
Unit 2
Unit 3
Unit 4
TA = -40°C
Vin = V-
1.2
0.8
0.4
0
-0.4
-0.8
-1.2
-1.6
2
2.5
3
3.5
4
Supply Voltage (V)
4.5
5
-2
1.5
5.5
Figure 6-31. Offset Voltage vs. Supply Voltage at 25°C, VIN=V+
2
2.5
3
3.5
4
Supply Voltage (V)
4.5
5
5.5
Figure 6-32. Offset Voltage vs. Supply Voltage at 25°C, VIN=V-
2
2
TA = -40°C
Vin = V+
1.6
1.2
0.8
0.4
0
-0.4
-0.8
Unit 1
Unit 2
Unit 3
Unit 4
-1.2
-1.6
2
2.5
3
3.5
4
Supply Voltage (V)
4.5
5
5.5
Figure 6-33. Offset Voltage vs. Supply Voltage at -40°C, VIN=V+
Copyright © 2023 Texas Instruments Incorporated
Input Offset Voltage (mV)
Input Offset Voltage (mV)
-0.8
1.6
-1.6
-2
1.5
0
-0.4
Figure 6-30. Offset Voltage vs. Supply Voltage at 125°C, VIN=V-
Input Offset Voltage (mV)
Input Offset Voltage (mV)
0.8
1.6
0.4
2
Unit 1
Unit 2
Unit 3
Unit 4
TA = 25°C
Vin = V+
1.2
-2
1.5
0.8
-2
1.5
2
1.6
1.2
-1.6
5.5
Figure 6-29. Offset Voltage vs. Supply Voltage at 125°C, VIN=V+
TA = 125°C
Vin = V-
Unit 1
Unit 2
Unit 3
Unit 4
TA = -40°C
Vin = V-
1.2
0.8
0.4
0
-0.4
-0.8
-1.2
-1.6
-2
1.5
2
2.5
3
3.5
4
Supply Voltage (V)
4.5
5
5.5
Figure 6-34. Offset Voltage vs. Supply Voltage at -40°C, VIN=V-
Submit Document Feedback
Product Folder Links: TLV9020-Q1 TLV9021-Q1 TLV9022-Q1 TLV9024-Q1 TLV9030-Q1 TLV9031-Q1
TLV9032-Q1 TLV9034-Q1
19
TLV9020-Q1, TLV9021-Q1, TLV9022-Q1, TLV9024-Q1
TLV9030-Q1, TLV9031-Q1, TLV9032-Q1, TLV9034-Q1
www.ti.com
SNOSDA9D – JUNE 2020 – REVISED MARCH 2023
7 Detailed Description
7.1 Overview
The TLV902x-Q1 and TLV903x-Q1 devices are dual-channel, micro-power comparators with push-pull and
open-drain outputs and low input offset voltage. Operating down to 1.65 V while only consuming only 16 µA per
channel, the TLV902x-Q1 and TLV903x-Q1 are ideally suited for portable, automotive and industrial applications.
An internal power-on reset circuit ensures that the output remains in a known state during power-up and
power-down while fail-safe inputs can tolerate input transients without damage or false outputs.
7.2 Functional Block Diagram
V+
V+
*
IN+
+
IN-
SNAPBACK
ESD
CLAMPS
V-
V+
*
Output
Control
OUT
Power
Clamp
VV-
V-
Power-On
Reset
Bias
* Push-Pull
Version Only
V-
7.3 Feature Description
The TLV902x-Q1 (open-drain output) and TLV903x-Q1 (push-pull output) devices are micro-power comparators
that have low input offset voltages and are capable of operating at low voltages. The TLV90xx-Q1 family feature
a rail-to-rail input stage capable of operating up to 200 mV beyond the power supply rails. The comparators also
feature push-pull and open-drain output stage options and Power-on Reset for known start-up conditions.
7.4 Device Functional Modes
7.4.1 Outputs
7.4.1.1 TLV9022-Q1 and TLV9024-Q1 Open Drain Output
The TLV902x-Q1 features an open-drain (also commonly called open collector) sinking-only output stage
enabling the output logic levels to be pulled up to an external voltage from 0 V up to 5.5 V, independent of the
comparator supply voltage (VS). The open-drain output also allows logical OR'ing of multiple open drain outputs
and logic level translation. TI recommends setting the pull-up resistor current to between 100uA and 1mA. Lower
pull-up resistor values will help increase the rising edge risetime, but at the expense of increasing VOL and
higher power dissipation. The risetime will be dependant on the time constant of the total pull-up resistance and
total load capacitance. Large value pull-up resistors (>1 MΩ) will create an exponential rising edge due to the RC
time constant and increase the risetime.
Unused open drain outputs must be left floating, or can be tied to the V- pin if floating pins are not allowed. While
an individual output can typically sink up to 125 mA, the total combined current for all channels must be less than
200 mA.
20
Submit Document Feedback
Copyright © 2023 Texas Instruments Incorporated
Product Folder Links: TLV9020-Q1 TLV9021-Q1 TLV9022-Q1 TLV9024-Q1 TLV9030-Q1 TLV9031-Q1
TLV9032-Q1 TLV9034-Q1
TLV9020-Q1, TLV9021-Q1, TLV9022-Q1, TLV9024-Q1
TLV9030-Q1, TLV9031-Q1, TLV9032-Q1, TLV9034-Q1
www.ti.com
SNOSDA9D – JUNE 2020 – REVISED MARCH 2023
7.4.1.2 TLV9032-Q1 and TLV9034-Q1 Push-Pull Output
The TLV903x-Q1 features a push-pull output stage capable of both sinking and sourcing current. This allows
driving loads such as LED's and MOSFET gates, as well as eliminating the need for a power-wasting external
pull-up resistor. The push-pull output must never be connected to another output.
Unused push-pull outputs must be left floating, and never tied to a supply, ground, or another output. While an
individual output can typically sink and source up to 100mA, the total combined current for all channels must be
less than 200 mA.
7.4.2 Power-On Reset (POR)
The TLV90xx-Q1 has an internal Power-on-Reset (POR) circuit for known start-up or power-down conditions.
While the power supply (Vs) is ramping up or ramping down, the POR circuitry will be activated for up to 30µs
after the minimum supply voltage threshold of 1.5V is crossed, or immediately when the supply voltage drops
below 1.5V. When the supply voltage is equal to or greater than the minimum supply voltage, and after the delay
period, the comparator output reflects the state of the differential input (VID).
The POR circuit will keep the output high impedance (HI-Z) during the POR period (ton).
Power On Reset Time (tON)
0V
+1.5V
VS
VOH / 2
VOL
OUT
Figure 7-1. Power-On Reset Timing Diagram
Note that it the nature of an open collector output that the output will rise with the pull-up voltage during the POR
period.
For the TL903x-Q1 push-pull output devices, the output is "floating" during the POR period. A light pull-up (to
V+) or pull-down (to V-) resistor can be used to pre-bias the output condition to prevent the output from floating.
If output high is the desired start-up condition, then use the open collector TL902x-Q1, since a pull-up resistor is
already required.
7.4.3 Inputs
7.4.3.1 Rail to Rail Input
The TLV90xx-Q1 input voltage range extends from 200mV below V- to 200 mV above V+. The differential input
voltage (VID) can be any voltage within these limits. No phase-inversion of the comparator output will occur when
the input pins exceed V+ or V-.
7.4.3.2 Fault Tolerant Inputs
The TLV90xx-Q1 inputs are fault tolerant up to 5.5V independent of VS. Fault tolerant is defined as maintaining
the same high input impedance when VS is unpowered or within the recommended operating ranges.
The fault tolerant inputs can be any value between 0 V and 5.5 V, even while VS is zero or ramping up or down.
This feature avoids power sequencing issues as long as the input voltage range and supply voltage are within
the specified ranges. This is possible since the inputs are not clamped to V+ and the input current maintains its
value even when a higher voltage is applied to the inputs.
As long as one of the input pins remains within the valid input range, and the supply voltage is valid and not in
POR, the output state will be correct.
The following is a summary of input voltage excursions and their outcomes:
1. When both IN- and IN+ are within the specified input voltage range:
a. If IN- is higher than IN+ and the offset voltage, the output is low.
b. If IN- is lower than IN+ and the offset voltage, the output is high.
Copyright © 2023 Texas Instruments Incorporated
Submit Document Feedback
Product Folder Links: TLV9020-Q1 TLV9021-Q1 TLV9022-Q1 TLV9024-Q1 TLV9030-Q1 TLV9031-Q1
TLV9032-Q1 TLV9034-Q1
21
TLV9020-Q1, TLV9021-Q1, TLV9022-Q1, TLV9024-Q1
TLV9030-Q1, TLV9031-Q1, TLV9032-Q1, TLV9034-Q1
www.ti.com
SNOSDA9D – JUNE 2020 – REVISED MARCH 2023
2. When IN- is higher than the specified input voltage range and IN+ is within the specified voltage range, the
output is low.
3. When IN+ is higher than the specified input voltage range and IN- is within the specified input voltage range,
the output is high
4. When IN- and IN+ are both outside the specified input voltage range, the output is indeterminate (random).
Do not operate in this region.
Even with the fault tolerant feature, TI strongly recommends keeping the inputs within the specified input voltage
range during normal system operation to maintain datasheet specifications. Operating outside the specified input
range can cause changes in specifications such as propagation delay and input bias current, which can lead to
unpredictable behavior.
7.4.3.3 Input Protection
The input bias current is typically 5 pA for input voltages between V+ and V-. The comparator inputs are
protected from reverse voltage by the internal ESD diodes connected to V-. As the input voltage goes under
V-, or above the input Absolute Maximum ratings the protection diodes become forward biased and begin to
conduct causing the input bias current to increase exponentially. Input bias current typically doubles for each
10°C temperature increase.
If the inputs are to be connected to a low impedance source, such as a power supply or buffered reference line,
TI recommends adding a current-limiting resistor in series with the input to limit any transient currents should the
clamps conduct. The current should be limited 10 mA or less. This series resistance can be part of any resistive
input dividers or networks.
7.4.4 ESD Protection
The TLV90xx-Q1 family incorporates internal ESD protection circuits on all pins. The inputs, and the open-drain
output, use a proprietary "snapback" type ESD clamp from each pin to V-, which allows the pins to exceed the
supply voltage (V+). While shown as Zener diodes, snapback "short" and go low impedance (like an SCR) when
the threshold is exceeded, as opposed to clamping to a defined voltage like a Zener.
The TLV902x-Q1 open-drain output protection also consists of a ESD clamp between the output and V- to allow
the output to be pulled above V+ to a maximum of 5.5V.
The TLV903x-Q1 push-pull output protection consists of a ESD clamp between the output and V-, but also
includes a ESD diode clamp to V+, as the output must not exceed the supply rails.
If the inputs are to be connected to a low impedance source, such as a power supply or buffered reference line,
TI recommends adding a current-limiting resistor in series with the input to limit any transient currents must the
clamps conduct. The current must be limited 10 mA or less. This series resistance can be part of any resistive
input dividers or networks. TI does not specify the performance of the ESD clamps and external clamping must
be added if the inputs or output could exceed the maximum ratings as part of normal operation.
7.4.5 Unused Inputs
If a channel is not to be used, DO NOT tie the inputs together. Due to the high equivalent bandwidth and low
offset voltage, tying the inputs directly together can cause high frequency oscillations as the device triggers on
it's own internal wideband noise. Instead, the inputs must be tied to any available voltage that resides within the
specified input voltage range and provides a minimum of 50mV differential voltage. For example, one input can
be grounded and the other input connected to a reference voltage, or even V+ as long as the input is directly
connected to the V+ pin to avoid transients).
7.4.6 Hysteresis
The TLV90xx-Q1 family does not have internal hysteresis. Due to the wide effective bandwidth and low input
offset voltage, it is possible for the output to "chatter" (oscillate) when the absolute differential voltage near
zero as the comparator triggers on it's own internal wideband noise. This is normal comparator behavior and
is expected. TI recommends that the user add external hysteresis if slow moving signals are expected. See
Section 8.1.2 in the following section.
22
Submit Document Feedback
Copyright © 2023 Texas Instruments Incorporated
Product Folder Links: TLV9020-Q1 TLV9021-Q1 TLV9022-Q1 TLV9024-Q1 TLV9030-Q1 TLV9031-Q1
TLV9032-Q1 TLV9034-Q1
TLV9020-Q1, TLV9021-Q1, TLV9022-Q1, TLV9024-Q1
TLV9030-Q1, TLV9031-Q1, TLV9032-Q1, TLV9034-Q1
www.ti.com
SNOSDA9D – JUNE 2020 – REVISED MARCH 2023
8 Application and Implementation
Note
Information in the following applications sections is not part of the TI component specification, and
TI does not warrant its accuracy or completeness. TI’s customers are responsible for determining
suitability of components for their purposes. Customers should validate and test their design
implementation to confirm system functionality.
8.1 Application Information
8.1.1 Basic Comparator Definitions
8.1.1.1 Operation
The basic comparator compares the input voltage (VIN) on one input to a reference voltage (VREF) on the other
input. In the Figure 8-1 example below, if VIN is less than VREF, the output voltage (VO) is logic low (VOL). If VIN
is greater than VREF, the output voltage (VO) is at logic high (VOH). Table 8-1 summarizes the output conditions.
The output logic can be inverted by simply swapping the input pins.
Table 8-1. Output Conditions
Inputs Condition
Output
IN+ > IN-
HIGH (VOH)
IN+ = IN-
Indeterminate (chatters - see Hysteresis)
IN+ < IN-
LOW (VOL)
8.1.1.2 Propagation Delay
There is a delay between from when the input crosses the reference voltage and the output responds. This
is called the Propagation Delay. Propagation delay can be different between high-to low and low-to-high input
transitions. This is shown as tpLH and tpHL in Figure 8-1 and is measured from the mid-point of the input to the
midpoint of the output.
VREF + 200mV
V+
Input
VIN
VOD (+200mV)
VREF + 100mV
+
Output
±
VIN
VREF
VREF
+
GND
±
VREF 5 100mV
VOD (-200mV)
VREF - 200mV
tpLH
tpHL
VOH
80%
Output
80%
50%
50%
20%
VOL
20%
tR
tF
Figure 8-1. Comparator Timing Diagram
Copyright © 2023 Texas Instruments Incorporated
Submit Document Feedback
Product Folder Links: TLV9020-Q1 TLV9021-Q1 TLV9022-Q1 TLV9024-Q1 TLV9030-Q1 TLV9031-Q1
TLV9032-Q1 TLV9034-Q1
23
TLV9020-Q1, TLV9021-Q1, TLV9022-Q1, TLV9024-Q1
TLV9030-Q1, TLV9031-Q1, TLV9032-Q1, TLV9034-Q1
www.ti.com
SNOSDA9D – JUNE 2020 – REVISED MARCH 2023
8.1.1.3 Overdrive Voltage
The overdrive voltage, VOD, is the amount of input voltage beyond the reference voltage (and not the total input
peak-to-peak voltage). The overdrive voltage is 100mV as shown in the Figure 8-1 example. The overdrive
voltage can influence the propagation delay (tp). The smaller the overdrive voltage, the longer the propagation
delay, particularly when