TLV9052IDGKR

TLV9052IDGKR

  • 厂商:

    BURR-BROWN(德州仪器)

  • 封装:

    VSSOP8_3X3MM

  • 描述:

    通用放大器 VSSOP8_3X3MM 5MHz 15V/μs -40℃~+125℃

  • 数据手册
  • 价格&库存
TLV9052IDGKR 数据手册
TLV9051, TLV9052, TLV9054 ZHCSI62I – AUGUST 2018 – REVISED NOVEMBER 2022 TLV9051/TLV9052/TLV9054 5MHz 15V/µs 高压摆率 RRIO 运算放大器 器件信息(1) 1 特性 • • • • • • • • • • • • 高压摆率:15V/µs 低静态电流:330µA 轨至轨输入和输出 低输入失调电压:±0.33 mV 单位增益带宽:5MHz 低宽带噪声:15 nV/√Hz 低输入偏置电流:2pA 单位增益稳定 内置 RFI 和 EMI 滤波器 适用于低成本应用的可扩展 CMOS 运算放大器系列 可在电源电压低至 1.8V 的情况下运行 工作温度范围:–40°C 至 125°C 2 应用 • • • • • • • HVAC:暖通空调 光电二极管放大器 用于实现直流电机控制的电流分流监控 白色家电(冰箱、洗衣机等) 传感器信号调节 有源滤波器 低侧电流检测 3 说明 器件型号 TLV9051 TLV9051S TLV9052 TLV9052S TLV9054 TLV9054S (1) (2) 1.60mm × 2.90mm SC70 (5) 1.25mm × 2.00mm SOT553 (5)(2) 1.65mm × 1.20mm X2SON (5) 0.80mm × 0.80mm SOT-23 (6) 1.60mm × 2.90mm SOIC (8) 3.91mm × 4.90mm TSSOP (8) 3.00mm × 4.40mm VSSOP (8) 3.00mm × 3.00mm SOT-23 (8) 1.60mm × 2.90mm WSON (8) 2.00mm × 2.00mm VSSOP (10) 3.00mm × 3.00mm X2QFN (10) 1.50mm x 2.00mm SOIC (14) 8.65mm × 3.91mm TSSOP (14) 4.40mm × 5.00mm X2QFN (14) 2.00mm × 2.00mm WQFN (16) 3.00mm × 3.00mm WQFN (16) 3.00mm × 3.00mm 如需了解所有可用封装,请参阅数据表末尾的可订购产品附 录。 封装仅为预发布版。 RG TLV9051、TLV9052 和 TLV9054 器件分别为单通道、 双通道和四通道的运算放大器。这些器件旨在 1.8V 至 6.0V 的低电压下运行。它们可以在非常高的压摆率下 实现轨到轨输入和输出。这些器件非常适合需要低工作 电压、高压摆率和低静态电流的成本受限应用。 TLV905x 系列的容性负载驱动器具有 150pF 的电容, 而电阻式开环输出阻抗使其能够在更高的容性负载下更 轻松地实现稳定。 RF R1 VOUT VIN C1 f-3 dB = ( RF VOUT = 1+ RG VIN (( 1 1 + sR1C1 1 2pR1C1 ( 单极低通滤波器 TLV905xS 器件具有关断模式,允许放大器切换至典型 电流消耗低于 1µA 的待机模式。 17 16.5 16 Slew Rate (V/Ps) TLV905x 系列易于使用,因为它具有稳定的单位增 益,集成了 RFI 和 EMI 滤波器,且不会在过驱动情况 下出现相位反转。 封装尺寸(标称值) 封装 SOT-23 (5) 15.5 15 14.5 14 13.5 13 50 100 150 200 250 Capacitive Load (pF) 300 350 D019 压摆率与负载电容间的关系 本文档旨在为方便起见,提供有关 TI 产品中文版本的信息,以确认产品的概要。有关适用的官方英文版本的最新信息,请访问 www.ti.com,其内容始终优先。TI 不保证翻译的准确性和有效性。在实际设计之前,请务必参考最新版本的英文版本。 English Data Sheet: SBOS942 TLV9051, TLV9052, TLV9054 www.ti.com.cn ZHCSI62I – AUGUST 2018 – REVISED NOVEMBER 2022 Table of Contents 1 特性................................................................................... 1 2 应用................................................................................... 1 3 说明................................................................................... 1 4 Revision History.............................................................. 2 5 Device Comparison Table...............................................4 6 Pin Configuration and Functions...................................5 7 Specifications................................................................ 11 7.1 绝对最大额定值......................................................... 11 7.2 ESD Ratings..............................................................11 7.3 Recommended Operating Conditions....................... 11 7.4 Thermal Information for Single Channel................... 11 7.5 Thermal Information for Dual Channel......................12 7.6 Thermal Information for Quad Channel.................... 12 7.7 电气特性:VS(总电源电压)= (V+) – (V-) = 1.8V 至 5.5V................................................................ 13 7.8 Typical Characteristics.............................................. 15 8 Detailed Description......................................................22 8.1 Overview................................................................... 22 8.2 Functional Block Diagram......................................... 22 8.3 Feature Description...................................................23 8.4 Device Functional Modes..........................................26 9 Application and Implementation.................................. 27 9.1 Application Information............................................. 27 9.2 Typical Low-Side Current Sense Application............ 27 9.3 Power Supply Recommendations.............................29 9.4 Layout....................................................................... 29 10 Device and Documentation Support..........................31 10.1 Documentation Support.......................................... 31 10.2 Related Links.......................................................... 31 10.3 Receiving Notification of Documentation Updates..31 10.4 支持资源..................................................................31 10.5 Trademarks............................................................. 31 10.6 Electrostatic Discharge Caution..............................31 10.7 术语表..................................................................... 31 11 Mechanical, Packaging, and Orderable Information.................................................................... 32 4 Revision History 注:以前版本的页码可能与当前版本的页码不同 Changes from Revision H (October 2019) to Revision I (November 2022) Page • 将绝对最大额定值 中的最大电源电压从 6V 更改为 7V..................................................................................... 11 • 添加了输入偏置电流和输入失调电流的最大值..................................................................................................13 Changes from Revision G (September 2019) to Revision H (October 2019) Page • Added new human-body model and charged-device model ratings for TLV9051 X2SON package to the ESD Ratings .............................................................................................................................................................11 • Added Packages With an Exposed Thermal Pad section to Feature Description section................................24 Changes from Revision F (June 2019) to Revision G (September 2019) • • • • • Changes from Revision E (May 2019) to Revision F (June 2019) • • • • • Page 删除了所有 TLV9051 封装的预发布标记.............................................................................................................1 删除了 TLV9052 SOT-23 (8) - DDF 封装的预发布标记.......................................................................................1 Added link to Shutdown Function section in all of the SHDN pin function rows................................................. 5 Added EMI Rejection section to Feature Description section...........................................................................23 Added clarification to the Shutdown Function section...................................................................................... 25 Page 删除了器件信息 中 TLV9052S 器件的封装预发布标记....................................................................................... 1 Deleted package preview notation for TLV9052S devices under Device Comparison Table ............................ 4 Deleted preview notation for TLV9052S devices in Device Comparison Table ................................................. 4 Deleted package preview notation for TLV9052S in Pin Configuration and Functions section.......................... 5 Deleted package preview notation for TLV9052S under Thermal Information for Dual Channel .................... 12 Changes from Revision D (April 2019) to Revision E (May 2019) Page • Added DDF (SOT-23) information to Thermal Information for Dual Channel table.......................................... 12 Changes from Revision C (April 2019) to Revision D (April 2019) Page • 删除了器件信息 中 TLV9054/S 器件的预发布标记..............................................................................................1 2 Submit Document Feedback Copyright © 2022 Texas Instruments Incorporated Product Folder Links: TLV9051 TLV9052 TLV9054 TLV9051, TLV9052, TLV9054 www.ti.com.cn • • • • • ZHCSI62I – AUGUST 2018 – REVISED NOVEMBER 2022 Deleted preview notations for TLV9054 devices in Device Comparison Table ..................................................4 Deleted preview notations for TLV9054S device in Device Comparison Table ................................................. 4 Deleted preview notations for TLV9054 packages in Pin Configurations and Functions section....................... 5 Deleted preview notation for TLV9054S RTE package in Pin Configurations and Functions section................ 5 Deleted preview notation for TLV9054/S packages in Thermal Information for Quad Channel ...................... 12 Changes from Revision B (March 2019) to Revision C (April 2019) Page • Added TLV9051 thermal information for DPW, DBV, and DCK packages........................................................ 11 Changes from Revision A (December 2018) to Revision B (March 2019) • • • • • • • • • • • • • • • • Page 向说明 部分添加了关断器件说明........................................................................................................................ 1 向器件信息 中添加了 SOT-23 (8) 封装............................................................................................................... 1 向器件信息 中添加了关断器件............................................................................................................................ 1 向 TLV9054 器件信息 中添加了 X2QFN (RUC) 封装..........................................................................................1 Added DDF package information to Device Comparison Table .........................................................................4 Added Shutdown devices (TLV9051S/TLV9052S/TLV9054S) and packages (DGS/RUG/RTE) to Device Comparison Table ..............................................................................................................................................4 Added DDF (SOT-23) package...........................................................................................................................5 Added TLV9051S pinout information to Pin Configurations and Functions section............................................5 Added TLV9052S pinout information to Pin Configurations and Functions section............................................5 Added TLV9054S and TLV9054 X2QFN (RUC) pinout information to Pin Configurations and Functions section................................................................................................................................................................ 5 Added TLV9051 and TLV9051S thermal information to Thermal Information for Single Channel ................... 11 Added TLV9052S thermal info to Thermal Information for Dual Channel ........................................................12 Added DDF (SOT-23) package to Thermal Information for Dual Channel ...................................................... 12 Added TLV9054 and TLV9054S thermal information to Thermal Information for Quad Channel .................... 12 Added Shutdown Function information in Feature Description section............................................................ 25 Added "S" suffix to Related Links to reflect the addition of Shutdown devices.................................................31 Changes from Revision * (August 2018) to Revision A (December 2018) Page • 将器件状态从预告信息 更改为量产数据 .............................................................................................................1 Submit Document Feedback Copyright © 2022 Texas Instruments Incorporated Product Folder Links: TLV9051 TLV9052 TLV9054 3 TLV9051, TLV9052, TLV9054 www.ti.com.cn ZHCSI62I – AUGUST 2018 – REVISED NOVEMBER 2022 5 Device Comparison Table PACKAGE LEADS DEVICE TLV9051 TLV9051S TLV9052 TLV9052S TLV9054 TLV9054S (1) 4 NO. OF CH. 1 2 4 SC70 DCK SOT-23 DBV SOT-553 (1) DRL X2SON DPW SOIC D WSON DSG VSSOP DGK TSSOP PW SOT-23 DDF VSSOP DGS X2QFN RUG X2QFN RUC WQFN RTE 5 5 5 5 — — — — — — — — — — 6 — — — — — — — — — — — — — — — 8 8 8 8 8 — — — — — — — — — — — — — 10 10 — — — — — — 14 — — 14 — — — 14 16 — — — — — — — — — — — — 16 Package is for preview only. Submit Document Feedback Copyright © 2022 Texas Instruments Incorporated Product Folder Links: TLV9051 TLV9052 TLV9054 TLV9051, TLV9052, TLV9054 www.ti.com.cn ZHCSI62I – AUGUST 2018 – REVISED NOVEMBER 2022 6 Pin Configuration and Functions OUT 1 V± 2 IN+ 3 5 V+ 4 IN± IN+ 1 V± 2 IN± 3 Not to scale 5 V+ 4 OUT Not to scale 图 6-1. TLV9051 DBV, DRL Packages 5-Pin SOT-23, 图 6-2. TLV9051 DCK Package 5-Pin SC70 Top View SOT-553 Top View OUT 1 5 V+ 4 IN+ 3 V± IN± 2 Not to scale 图 6-3. TLV9051 DPW Package 5-Pin X2SON Top View 表 6-1. Pin Functions: TLV9051 PIN NAME SOT-23, SOT-553 SC-70 X2SON I/O DESCRIPTION IN– 4 3 2 I Inverting input IN+ 3 1 4 I Noninverting input OUT 1 4 1 O Output V– 2 2 3 — Negative (low) supply or ground (for single-supply operation) V+ 5 5 5 — Positive (high) supply Submit Document Feedback Copyright © 2022 Texas Instruments Incorporated Product Folder Links: TLV9051 TLV9052 TLV9054 5 TLV9051, TLV9052, TLV9054 www.ti.com.cn ZHCSI62I – AUGUST 2018 – REVISED NOVEMBER 2022 +IN 1 6 V+ V± 2 5 SHDN ±IN 3 4 OUT Not to scale 图 6-4. TLV9051S DBV Package 6-Pin SOT-23 Top View 表 6-2. Pin Functions: TLV9051S PIN NAME 6 NO. I/O DESCRIPTION –IN 4 I Inverting input +IN 3 I Noninverting input OUT 1 O Output SHDN 5 I Shutdown: low = amp disabled, high = amp enabled. See 节 8.3.9 for more information. V– 2 — Negative (lowest) supply or ground (for single-supply operation). V+ 6 — Positive (highest) supply Submit Document Feedback Copyright © 2022 Texas Instruments Incorporated Product Folder Links: TLV9051 TLV9052 TLV9054 TLV9051, TLV9052, TLV9054 www.ti.com.cn ZHCSI62I – AUGUST 2018 – REVISED NOVEMBER 2022 OUT1 1 8 V+ IN1± 2 7 OUT2 OUT1 1 IN1± 2 IN1+ 3 6 IN2± IN1+ 3 V± 4 5 IN2+ V± 4 Not to scale Thermal Pad 8 V+ 7 OUT2 6 IN2± 5 IN2+ Not to scale 图 6-5. TLV9052 D, DGK, PW, DDF Packages 8-Pin SOIC, VSSOP, TSSOP, SOT-23 Top View Connect exposed thermal pad to V–. See 节 8.3.6 for more information. 图 6-6. TLV9052 DSG Package 8-Pin WSON With Exposed Thermal Pad Top View 表 6-3. Pin Functions: TLV9052 PIN NAME NO. I/O DESCRIPTION IN1– 2 I Inverting input, channel 1 IN1+ 3 I Noninverting input, channel 1 IN2– 6 I Inverting input, channel 2 IN2+ 5 I Noninverting input, channel 2 OUT1 1 O Output, channel 1 OUT2 7 O Output, channel 2 V– 4 — Negative (low) supply or ground (for single-supply operation) V+ 8 — Positive (high) supply Submit Document Feedback Copyright © 2022 Texas Instruments Incorporated Product Folder Links: TLV9051 TLV9052 TLV9054 7 TLV9051, TLV9052, TLV9054 www.ti.com.cn IN1+ ZHCSI62I – AUGUST 2018 – REVISED NOVEMBER 2022 1 10 V+ IN1± 2 9 OUT2 IN1+ 3 8 IN2± V± 4 7 IN2+ SHDN1 5 6 SHDN2 V± 1 9 IN1± SHDN1 2 8 OUT1 SHDN2 3 7 V+ IN2+ 4 6 OUT2 10 OUT1 Not to scale 5 图 6-7. TLV9052S DGS Package 10-Pin VSSOP Top View IN2± Not to scale 图 6-8. TLV9052S RUG Package 10-Pin X2QFN Top View 表 6-4. Pin Functions: TLV9052S PIN NAME 8 VSSOP X2QFN I/O DESCRIPTION IN1– 2 9 I Inverting input, channel 1 IN1+ 3 10 I Noninverting input, channel 1 IN2– 8 5 I Inverting input, channel 2 IN2+ 7 4 I Noninverting input, channel 2 OUT1 1 8 O Output, channel 1 OUT2 9 6 O Output, channel 2 SHDN1 5 2 I Shutdown: low = amp disabled, high = amp enabled, channel 1. See 节 8.3.9 for more information. SHDN2 6 3 I Shutdown: low = amp disabled, high = amp enabled, channel 2. See 节 8.3.9 for more information. V– 4 1 — Negative (low) supply or ground (for single-supply operation) V+ 10 7 — Positive (high) supply Submit Document Feedback Copyright © 2022 Texas Instruments Incorporated Product Folder Links: TLV9051 TLV9052 TLV9054 TLV9051, TLV9052, TLV9054 www.ti.com.cn 3 12 IN4+ V+ 4 11 V± IN2+ 5 10 IN3+ IN2± 6 9 IN3± OUT2 7 8 OUT3 IN1± 1 IN1+ 2 V+ OUT4 IN1+ 12 IN4± 11 IN4+ 3 10 V± IN2+ 4 9 IN3+ IN2± 5 8 IN3± Not to scale OUT2 图 6-9. TLV9054 D, PW Packages 14-Pin SOIC, TSSOP Top View 13 IN4± 7 OUT4 13 OUT3 14 2 14 1 IN1± 6 OUT1 OUT1 ZHCSI62I – AUGUST 2018 – REVISED NOVEMBER 2022 Not to scale IN1+ 1 V+ 2 IN2+ 3 IN2± 4 IN1± OUT1 OUT4 IN4± 16 15 14 13 图 6-10. TLV9054 RUC Package 14-Pin X2QFN Top View 12 IN4+ 11 V± Thermal 5 6 7 8 OUT2 NC NC OUT3 Pad 10 IN3+ 9 IN3± Not to scale Connect exposed thermal pad to V–. See 节 8.3.6 for more information. 图 6-11. TLV9054 RTE Package 16-Pin WQFN With Exposed Thermal Pad Top View 表 6-5. Pin Functions: TLV9054 PIN I/O DESCRIPTION SOIC, TSSOP WQFN X2QFN IN1– 2 16 1 I Inverting input, channel 1 IN1+ 3 1 2 I Noninverting input, channel 1 IN2– 6 4 5 I Inverting input, channel 2 IN2+ 5 3 4 I Noninverting input, channel 2 NAME IN3– 9 9 8 I Inverting input, channel 3 IN3+ 10 10 9 I Noninverting input, channel 3 IN4– 13 13 12 I Inverting input, channel 4 IN4+ 12 12 11 I Noninverting input, channel 4 NC — 6, 7 — — No internal connection OUT1 1 15 14 O Output, channel 1 OUT2 7 5 6 O Output, channel 2 OUT3 8 8 7 O Output, channel 3 OUT4 14 14 13 O Output, channel 4 V– 11 11 10 — Negative (low) supply or ground (for single-supply operation) V+ 4 2 3 — Positive (high) supply Submit Document Feedback Copyright © 2022 Texas Instruments Incorporated Product Folder Links: TLV9051 TLV9052 TLV9054 9 TLV9051, TLV9052, TLV9054 www.ti.com.cn IN1+ 1 V+ 2 IN1± OUT1 OUT4 IN4± 16 15 14 13 ZHCSI62I – AUGUST 2018 – REVISED NOVEMBER 2022 12 IN4+ 11 V± 10 IN3+ 9 IN3± Thermal 6 7 8 SHDN34 OUT3 4 SHDN12 IN2± Pad 5 3 OUT2 IN2+ Not to scale Connect exposed thermal pad to V–. See 节 8.3.6 for more information. 图 6-12. TLV9054S RTE Package 16-Pin WQFN With Exposed Thermal Pad Top View 表 6-6. Pin Functions: TLV9054S PIN NAME NO. I/O DESCRIPTION IN1+ 1 I Noninverting input, channel 1 IN1– 16 I Inverting input, channel 1 IN2+ 3 I Noninverting input, channel 2 IN2– 4 I Inverting input, channel 2 IN3+ 10 I Noninverting input, channel 3 IN3– 9 I Inverting input, channel 3 IN4+ 12 I Noninverting input, channel 4 IN4– 13 I Inverting input, channel 4 SHDN12 6 I Shutdown: low = amp disabled, high = amp enabled, channel 1 and 2. See 节 8.3.9 for more information. SHDN34 7 I Shutdown: low = amp disabled, high = amp enabled, channel 3 and 4. See 节 8.3.9 for more information. OUT1 15 O Output, channel 1 OUT2 5 O Output, channel 2 OUT3 8 O Output, channel 3 OUT4 14 O Output, channel 4 V– 11 — Negative (low) supply or ground (for single-supply operation) V+ 2 — Positive (high) supply 10 Submit Document Feedback Copyright © 2022 Texas Instruments Incorporated Product Folder Links: TLV9051 TLV9052 TLV9054 TLV9051, TLV9052, TLV9054 www.ti.com.cn ZHCSI62I – AUGUST 2018 – REVISED NOVEMBER 2022 7 Specifications 7.1 绝对最大额定值 在自然通风温度下测得(除非另有说明)(1) 最小值 最大值 电压(2) -10 输出短路(3) 10 -40 125 150 结温,TJ -65 贮存温度,Tstg mA mA 连续 额定温度,TA (2) (3) V (V+) – (V–) + 0.2 差分 电流(2) (1) V (V+) + 0.5 (V–) – 0.5 共模 信号输入引脚 温度 单位 7 电源电压 °C 150 应力超出绝对最大额定值 下所列的值可能会对器件造成永久损坏。这些仅为压力额定值,并不表示器件在这些条件下以及在建议运行条 件 以外的任何其他条件下能够正常运行。长时间处于绝对最大额定条件下可能会影响器件的可靠性。 输入引脚被二极管钳制至电源轨。对于摆幅能超过电源轨 0.5V 的输入信号,应将其电流限制在 10mA 或者更低。 接地短路,每个封装对应一个放大器。 7.2 ESD Ratings VALUE UNIT TLV9051 X2SON PACKAGE V(ESD) Electrostatic discharge Human-body model (HBM), per ANSI/ESDA/JEDEC JS-001(1) ±3000 Charged-device model (CDM), per JEDEC specification JESD22-C101(2) ±1500 Human-body model (HBM), per ANSI/ESDA/JEDEC JS-001(1) ±4000 V ALL OTHER PACKAGES V(ESD) (1) (2) Electrostatic discharge Charged-device model (CDM), per JEDEC specification JESD22-C101(2) ±1500 V JEDEC document JEP155 states that 500-V HBM allows safe manufacturing with a standard ESD control process. JEDEC document JEP157 states that 250-V CDM allows safe manufacturing with a standard ESD control process. 7.3 Recommended Operating Conditions over operating junction temperature range (unless otherwise noted) VS Supply voltage, VS = (V+) – (V–) VIN Input pin voltage MIN MAX UNIT 1.8 6.0 V (V–) – 0.1 (V+) + 0.1 V –40 125 °C Specified temperature 7.4 Thermal Information for Single Channel TLV9051, TLV9051S THERMAL METRIC(1) DPW (X2SON) DBV (SOT-23) DCK (SC70) DRL (SOT553) (2) UNIT 5 PINS 5 PINS 6 PINS 5 PINS 5 PINS Junction-to-ambient thermal resistance 470.0 228.1 210.8 231.2 TBD °C/W JC(top) Junction-to-case(top) thermal resistance 211.9 152.1 152.1 144.4 TBD °C/W RθJB Junction-to-board thermal resistance 334.8 97.7 92.3 78.6 TBD °C/W ψJT Junction-to-top characterization parameter 29.8 74.1 76.2 51.3 TBD °C/W ψJB Junction-to-board characterization parameter 333.2 97.3 92.1 78.3 TBD °C/W RθJA Rθ Submit Document Feedback Copyright © 2022 Texas Instruments Incorporated Product Folder Links: TLV9051 TLV9052 TLV9054 11 TLV9051, TLV9052, TLV9054 www.ti.com.cn ZHCSI62I – AUGUST 2018 – REVISED NOVEMBER 2022 TLV9051, TLV9051S THERMAL METRIC(1) Rθ JC(bot) (1) (2) DPW (X2SON) DBV (SOT-23) DCK (SC70) DRL (SOT553) (2) 5 PINS 5 PINS 6 PINS 5 PINS 5 PINS N/A N/A N/A N/A TBD Junction-to-case(bottom) thermal resistance UNIT °C/W For more information about traditional and new thermal metrics, see the Semiconductor and IC Package Thermal Metrics application report. This package option is for preview only. 7.5 Thermal Information for Dual Channel TLV9052, TLV9052S THERMAL METRIC(1) D (SOIC) DGK (VSSOP) DSG (WSON) PW (TSSOP) DDF (SOT-23) DGS (VSSOP) RUG (X2QFN) UNIT 8 PINS 8 PINS 8 PINS 8 PINS 8 PINS 10 PINS 10 PINS Junction-to-ambient thermal resistance 155.4 208.8 102.3 205.1 184.4 170.4 197.2 °C/W Junction-to-case(top) thermal resistance 95.5 93.3 120.0 93.7 112.8 84.9 93.3 °C/W RθJB Junction-to-board thermal resistance 98.9 130.7 68.2 135.7 99.9 113.5 123.8 °C/W ψJT Junction-to-top characterization parameter 41.9 26.1 15.1 25.0 18.7 16.4 3.7 °C/W ψJB Junction-to-board characterization parameter 98.1 128.9 68.2 134.0 99.3 112.3 120.2 °C/W Junction-to-case(bottom) thermal resistance N/A N/A 43.6 N/A N/A N/A N/A °C/W RθJA Rθ JC(top) Rθ JC(bot) (1) For more information about traditional and new thermal metrics, see the Semiconductor and IC Package Thermal Metrics application report. 7.6 Thermal Information for Quad Channel TLV9054, TLV9054S THERMAL METRIC(1) D (SOIC) PW (TSSOP) RTE (WQFN) RUC (X2SQFN) UNIT 14 PINS 14 PINS 14 PINS 16 PINS 14 PINS Junction-to-ambient thermal resistance 115.0 147.2 65.5 65.6 209.4 °C/W JC(top) Junction-to-case(top) thermal resistance 71.1 67.2 70.6 70.6 68.8 °C/W RθJB Junction-to-board thermal resistance 71.0 91.6 40.5 40.5 153.3 °C/W ψJT Junction-to-top characterization parameter 29.7 16.6 5.8 5.8 3.0 °C/W ψJB Junction-to-board characterization parameter 70.6 90.7 40.5 40.5 152.8 °C/W Junction-to-case(bottom) thermal resistance N/A N/A 24.5 24.5 N/A °C/W RθJA Rθ Rθ JC(bot) (1) 12 For more information about traditional and new thermal metrics, see the Semiconductor and IC Package Thermal Metrics application report. Submit Document Feedback Copyright © 2022 Texas Instruments Incorporated Product Folder Links: TLV9051 TLV9052 TLV9054 TLV9051, TLV9052, TLV9054 www.ti.com.cn ZHCSI62I – AUGUST 2018 – REVISED NOVEMBER 2022 7.7 电气特性:VS(总电源电压)= (V+) – (V-) = 1.8V 至 5.5V TA = 25°C,RL = 10kΩ(连接至 VS/2),VCM = VS/2,VOUT = VS/2(除非另有说明); 参数 测试条件 最小值 典型值 最大值 ±0.33 ±1.6 单位 失调电压 VOS 输入失调电压 dVOS/dT 漂移 PSRR VS = 5V ±2 VS = 5V,TA = –40°C 至 +125°C VS = 5V,TA = –40°C 至 +125°C ±0.5 电源抑制比 VS = 1.8V – 5.5V,VCM = (V–) ±13 通道分离,直流 在直流 115 mV µV/°C ±80 µV/V dB 输入电压范围 VCM CMRR VS = 1.8V 至 5.5V 共模电压 共模抑制比 (V+)+0.1 (V–) – 0.1 VS = 5.5 V,(V–) – 0.1V < VCM < (V+) – 1.4V, TA = –40°C 至 +125°C 80 96 VS = 5.5V,VCM = -0.1V 至 5.6V, TA = -40°C 至 +125°C 62 79 V dB VS = 1.8V,(V–) – 0.1V < VCM < (V+) – 1.4V, TA = –40°C 至 +125°C 88 VS = 1.8V,VCM = -0.1V 至 1.9V, TA = -40°C 至 +125°C 72 输入偏置电流 IB IOS ±2 输入偏置电流 TA=-40°C 至 +125°C ±1 输入失调电流 TA=-40°C 至 +125°C ±18(2) pA ±525(2) pA ±15(2) pA ±440(2) pA 噪声 En 输入电压噪声(峰峰值) en 输入电压噪声密度 in 输入电流噪声密度 6 µVPP VS = 5V,f = 10kHz 15 nV/√Hz VS = 5V,f = 1kHz 20 nV/√Hz f = 1kHz 18 fA/√Hz VS = 5V,f = 0.1Hz 至 10Hz 输入电容 CID 差分 2 pF CIC 共模 4 pF 开环增益 VS = 1.8V,(V–) + 0.04V < VO < (V+) – 0.04V, RL = 10kΩ AOL VS = 5.5V,(V–) + 0.05V < VO < (V+) – 0.05V, RL = 10kΩ 开环电压增益 106 104 128 dB VS = 1.8V,(V–) + 0.06V < VO < (V+) – 0.06V, RL = 2kΩ 108 VS = 5.5V,(V–) + 0.15V < VO < (V+) – 0.15V, RL = 2kΩ 130 频率响应 GBP 增益带宽积 VS = 5.5V,G = +1 5 φm 相位裕度 VS = 5.5V,G = +1 60 度 SR 压摆率 VS = 5.5V,G = +1,CL = 130pF 15 V/µs tS 趋稳时间 tOR THD + N 精度达到 0.1%,VS = 5.5V,2V 阶跃,G = +1,CL = 100pF 精度达到 0.01%,VS = 5.5V,2V 阶跃,G = +1,CL = 100pF VS = 5.5V,VIN × 增益 > VS 过载恢复时间 总谐波失真 + 噪声(1) VS = 5.5V,VCM = 2.5V,VO = 1VRMS,G = +1,f = 1kHz MHz 0.75 µs 1 0.3 µs 0.0006% 输出 Submit Document Feedback Copyright © 2022 Texas Instruments Incorporated Product Folder Links: TLV9051 TLV9052 TLV9054 13 TLV9051, TLV9052, TLV9054 www.ti.com.cn ZHCSI62I – AUGUST 2018 – REVISED NOVEMBER 2022 7.7 电气特性:VS(总电源电压)= (V+) – (V-) = 1.8V 至 5.5V (continued) TA = 25°C,RL = 10kΩ(连接至 VS/2),VCM = VS/2,VOUT = VS/2(除非另有说明); 参数 VO 测试条件 最小值 典型值 S 最大值 16 相对于电源轨的电压输出摆 VS = 5.5V,RL = 10kΩ, 幅 V = 5.5V,R = 2kΩ, 40 L 单位 mV ISC 短路电流 VS = 5V ±50 mA ZO 开环输出阻抗 VS = 5V,f = 5 MHz 250 Ω VS = 5.5V,IO = 0mA, 330 电源 IQ (1) (2) 14 每个放大器的静态电流 VS = 5.5V,IO = 0mA,TA = -40°C 至 +125°C 450 475 µA 三阶滤波器;–3dB 时的带宽 = 80kHz。 根据设计和特征确定;未经生产测试。 Submit Document Feedback Copyright © 2022 Texas Instruments Incorporated Product Folder Links: TLV9051 TLV9052 TLV9054 TLV9051, TLV9052, TLV9054 www.ti.com.cn ZHCSI62I – AUGUST 2018 – REVISED NOVEMBER 2022 7.8 Typical Characteristics at TA = 25°C, VS = 5.5 V, RL = 10 kΩ connected to VS / 2, VCM = VS / 2, and VOUT = VS / 2 (unless otherwise noted) 21 40 18 30 Devices (%) Devices (%) 15 12 9 6 20 10 3 0 0 -1200 -900 -600 -300 0 300 600 900 Offset Voltage (µV) 1200 0 DC15 0.4 VS = 5.5 V 图 7-1. Offset Voltage Production Distribution 350 300 Offset Voltage (µV) Offset Voltage (µV) 2 DC16 450 400 200 100 0 -100 -200 -300 250 150 50 -50 -150 -400 -250 -500 -25 -10 5 20 35 50 65 Temperature (°C) 80 95 -350 -3 110 125 Input Bias Current and Offset Current (pA) 400 300 200 100 0 -100 -200 -300 -400 2.5 3 3.5 4 Supply Voltage (V) 4.5 图 7-5. Offset Voltage vs Power Supply -1 0 1 Common-Mode Voltage (V) 2 3 DC21 图 7-4. Offset Voltage vs Common-Mode Voltage 500 2 -2 DC08 图 7-3. Offset Voltage vs Temperature Offset Voltage (µV) 1.6 图 7-2. Offset Voltage Drift Distribution 500 -500 1.5 1.2 VS = 5.5 V, TA = –40°C to 125°C 600 -600 -40 0.8 Offset Voltage Drift (µV/C) 5 5.5 120 110 100 IBIB+ IOS 90 80 70 60 50 40 30 20 10 0 -50 -25 DC23 0 25 50 Temperature (°C) 75 100 125 DC02 图 7-6. Input Bias Current vs Temperature Submit Document Feedback Copyright © 2022 Texas Instruments Incorporated Product Folder Links: TLV9051 TLV9052 TLV9054 15 TLV9051, TLV9052, TLV9054 www.ti.com.cn ZHCSI62I – AUGUST 2018 – REVISED NOVEMBER 2022 7.8 Typical Characteristics 18 IBIB+ IOS 16 14 Voltage (1µV/div) Input Bias Current and Offset Current (pA) at TA = 25°C, VS = 5.5 V, RL = 10 kΩ connected to VS / 2, VCM = VS / 2, and VOUT = VS / 2 (unless otherwise noted) 12 10 8 6 4 2 0 -3 -2 -1 0 1 Input Common-Mode Voltage (V) 2 Time (1s/div) 3 D008 DC03 图 7-8. 0.1-Hz to 10-Hz Input Voltage Noise 120 140 120 100 80 60 40 0 10 100 1k Frequency (Hz) 10k 10k 100k Frequency (Hz) 1M D018 20 19 18 VS = 5.5 V, VCM = -0.1 V to (V+) - 1.4 V VS = 5.5 V, VCM = -0.1 V to 5.6 V VS = 1.8 V, VCM = -0.1 V to (V+) - 1.4 V VS = 1.8 V, VCM = -0.1 V to 5.6 V PSRR (µV/V) 17 120 100 80 16 15 14 60 13 40 12 20 0 -50 1k 图 7-10. CMRR and PSRR vs Frequency (Referred to Input) 200 CMRR (µV/V) 40 D024 220 140 60 0 100 100k 图 7-9. Input Voltage Noise Spectral Density vs Frequency 160 80 20 20 180 PSRR+ PSRRCMRR 100 PSRR and CMRR (dB) Input Voltage Noise Spectral Density (nV/—Hz) 图 7-7. Input Bias Current and Offset Current vs Common-Mode Voltage 11 -25 0 25 50 Temperature (°C) 75 100 125 10 -50 -25 0 DC17 图 7-11. CMRR vs Temperature 25 50 Temperature (°C) 75 100 125 DC18 VS = 1.8 V to 5.5 V 图 7-12. PSRR vs Temperature 16 Submit Document Feedback Copyright © 2022 Texas Instruments Incorporated Product Folder Links: TLV9051 TLV9052 TLV9054 TLV9051, TLV9052, TLV9054 www.ti.com.cn ZHCSI62I – AUGUST 2018 – REVISED NOVEMBER 2022 7.8 Typical Characteristics (continued) 120 80 100 60 80 40 60 20 40 0 130 20 Gain Phase -20 100 135 Open Loop Voltage Gain (dB) 100 Phase Margin (q) Open Loop Voltage Gain (dB) at TA = 25°C, VS = 5.5 V, RL = 10 kΩ connected to VS / 2, VCM = VS / 2, and VOUT = VS / 2 (unless otherwise noted) 125 120 115 110 105 VS = 1.8V, RL = 2k: VS = 5.5V, RL = 2k: VS = 1.8V, RL = 10k: VS = 5.5V, RL = 10k: 100 1k 10k 100k Frequency (Hz) 0 10M 1M 95 -40 D004 -20 0 图 7-13. Open Loop Voltage Gain and Phase vs Frequency 20 40 60 80 Temperature (°C) 100 120 140 DC01 180 70 160 60 Closed Lopp Voltage Gain (dB) Open Loop Voltage Gain (dB) 图 7-14. Open Loop Voltage Gain vs Temperature 140 120 100 80 60 40 20 0 -0.5 G=1 G = -1 G = 10 G = 100 G = 1000 50 40 30 20 10 0 -10 -20 0.5 1.5 2.5 3.5 Output Voltage (V) 4.5 -30 1k 5.5 10k DC26 图 7-15. Open Loop Voltage Gain vs Output Voltage 100k Frequency (Hz) 1M D005 图 7-16. Closed Loop Voltage Gain vs Frequency 70 VOUT VIN 60 50 Voltage (1 V/div) Phase Margin (q) 10M 40 30 20 10 0 0 50 100 150 200 250 Capacitive Load (pF) 300 图 7-17. Phase Margin vs Capacitive Load Time (100 Ps/div) 350 D013 D017 图 7-18. No Phase Reversal Submit Document Feedback Copyright © 2022 Texas Instruments Incorporated Product Folder Links: TLV9051 TLV9052 TLV9054 17 TLV9051, TLV9052, TLV9054 www.ti.com.cn ZHCSI62I – AUGUST 2018 – REVISED NOVEMBER 2022 7.8 Typical Characteristics (continued) at TA = 25°C, VS = 5.5 V, RL = 10 kΩ connected to VS / 2, VCM = VS / 2, and VOUT = VS / 2 (unless otherwise noted) 60 60 Overshoot(+) Overshoot(-) Overshoot(+) Overshoot(-) 50 50 Overshoot (%) Overshoot (%) 40 30 20 40 30 20 10 10 0 0 50 100 150 200 250 300 Capacitive Load (pF) 350 400 0 450 50 100 D016 G = +1 V/V VOUT step = 100 mVp-p 150 200 250 300 Capacitive Load (pF) 350 400 450 D015 G = –1 V/V VOUT step = 100 mVp-p 图 7-19. Small-Signal Overshoot vs Load Capacitance 图 7-20. Small-Signal Overshoot vs Load Capacitance 17 Slew Rate (V/Ps) 16 15.5 15 14.5 14 Output Input Output Voltage (2 V/div) Input Voltage (0.2 V/div) 16.5 13.5 13 50 100 150 200 250 Capacitive Load (pF) 300 350 Time (2 us/div) D019 D014 图 7-21. Slew Rate vs Capacitive Load G = –10 V/V 图 7-22. Overload Recovery VIN Voltage (2 mV/div) VOUT Voltage (2 mV/div) VOUT VIN Time (1 Ps/div) Time (1 Ps) D021 D020 G = +1 V/V VOUT step = 10 mVp-p 图 7-23. Small-Signal Step Response 18 G = –1 V/V VOUT step = 10 mVp-p 图 7-24. Small-Signal Step Response Submit Document Feedback Copyright © 2022 Texas Instruments Incorporated Product Folder Links: TLV9051 TLV9052 TLV9054 TLV9051, TLV9052, TLV9054 www.ti.com.cn ZHCSI62I – AUGUST 2018 – REVISED NOVEMBER 2022 7.8 Typical Characteristics (continued) at TA = 25°C, VS = 5.5 V, RL = 10 kΩ connected to VS / 2, VCM = VS / 2, and VOUT = VS / 2 (unless otherwise noted) VOUT VIN Voltage (1 V/div) VIN Voltage (1 V/div) VOUT Time (1 Ps/div) Time (1 Ps/div) D012 D011 G = +1 V/V VOUT step = 4 Vp-p G = –1 V/V VOUT step = 4 Vp-p 图 7-25. Large-Signal Step Response 图 7-26. Large-Signal Step Response 20 Output Delta from Final Value (mV) Output Delta from Final Value (mV) 20 10 0 0.1% Settling = r 2 mV -10 -20 -30 0.2 0.4 CL = 100 pF 0.6 0.8 Time (µs) 1 1.2 10 0 0.1% Settling = r 2 mV -10 -20 -30 0.2 1.4 0.4 0.6 D010 CL = 100 pF G = +1 V/V 0.8 Time (µs) 1 1.2 1.4 D009 G = +1 V/V 图 7-28. Negative Large-Signal Settling Time 图 7-27. Positive Large-Signal Settling Time -10 -65 RL = 10 k: RL = 2 k: RL = 600 : G = +1, RL = 10 k: G = +1, RL = 2 k: G = +1, RL = 600 : -30 THD + N (dB) THD + N (dB) -75 -85 -50 -70 -95 -90 -105 100 1k Frequency (Hz) VOUT = 0.5 VRMS -110 1m 10k 10m 100m Output Voltage Amplitude (V RMS) D023 G = +1 BW = 80 kHz VCM = 2.5 V 图 7-29. THD + N vs Frequency f = 1 kHz G = +1 BW = 80 kHz 1 D022 VCM = 2.5 V 图 7-30. THD + N vs Amplitude Submit Document Feedback Copyright © 2022 Texas Instruments Incorporated Product Folder Links: TLV9051 TLV9052 TLV9054 19 TLV9051, TLV9052, TLV9054 www.ti.com.cn ZHCSI62I – AUGUST 2018 – REVISED NOVEMBER 2022 7.8 Typical Characteristics (continued) at TA = 25°C, VS = 5.5 V, RL = 10 kΩ connected to VS / 2, VCM = VS / 2, and VOUT = VS / 2 (unless otherwise noted) 6 3 2.5 Maximum Output Voltage (V) 2 Output Voltage (V) 1.5 125qC 1 85qC 0.5 25qC -40qC 0 -0.5 85qC -1 25qC -40qC 125qC -1.5 -2 5 4 3 2 1 VS = 5.5 V VS = 1.8 V -2.5 -3 0 10 20 30 40 Output Current (mA) 50 0 60 1 图 7-31. Output Voltage Swing vs Output Current 100 1k 10k 100k Frequency (Hz) 1M 10M 100M DC25 图 7-32. Maximum Output Voltage vs Frequency and Supply Voltage 330 100 Sinking Sourcing 80 325 60 Quiescent Current (µA) Short Circuit Current Limit (mA) 10 DC07 40 20 0 -20 -40 320 315 310 305 -60 -80 -40 -25 -10 5 20 35 50 65 Temperature (°C) 80 95 300 1.8 110 125 图 7-33. Short-Circuit Current vs Temperature Open Loop Output Impedance (:) Quiescent Current (µA) 325 320 315 310 305 0 20 40 60 Temperature (°C) 80 100 图 7-35. Quiescent Current vs Temperature 20 3.3 3.8 4.3 Supply Voltage (V) 4.8 5.3 DC05 500 400 VS = 1.8V VS = 5.5V -20 2.8 图 7-34. Quiescent Current vs Supply Voltage 330 300 -40 2.3 DC06 120 300 200 100 IOUT = 0 mA IOUT = 5 mA IOUT = -5 mA 70 50 40 30 20 10k DC04 100k Frequency (Hz) 1M D025 图 7-36. Open-Loop Output Impedance vs Frequency Submit Document Feedback Copyright © 2022 Texas Instruments Incorporated Product Folder Links: TLV9051 TLV9052 TLV9054 TLV9051, TLV9052, TLV9054 www.ti.com.cn ZHCSI62I – AUGUST 2018 – REVISED NOVEMBER 2022 7.8 Typical Characteristics (continued) at TA = 25°C, VS = 5.5 V, RL = 10 kΩ connected to VS / 2, VCM = VS / 2, and VOUT = VS / 2 (unless otherwise noted) -70 120 -80 Channel Separation (dB) 140 EMIRR (dB) 100 80 60 40 -100 -110 -120 20 0 10M -90 100M Frequency (Hz) -130 100 1G 1k D007 1M D006 PRF = –10 dBm PRF = –10 dBm 图 7-37. Electromagnetic Interference Rejection Ratio Referred to Noninverting Input (EMIRR+) vs Frequency 10k 100k Frequency (Hz) 图 7-38. Channel Separation vs Frequency Submit Document Feedback Copyright © 2022 Texas Instruments Incorporated Product Folder Links: TLV9051 TLV9052 TLV9054 21 TLV9051, TLV9052, TLV9054 ZHCSI62I – AUGUST 2018 – REVISED NOVEMBER 2022 www.ti.com.cn 8 Detailed Description 8.1 Overview The TLV905x devices are a 5-MHz family of low-power, rail-to-rail input and output op amps. These devices operate from 1.8 V to 5.5 V, are unity-gain stable, and are designed for a wide range of general-purpose applications. The input common-mode voltage range includes both rails and allows the TLV905x family to be used in virtually any single-supply application. The unique combination of a high slew rate and low quiescent current makes this family a potential choice for battery-powered motor-drive applications. Rail-to-rail input and output swing significantly increase dynamic range, especially in low-supply applications. 8.2 Functional Block Diagram 22 Submit Document Feedback Copyright © 2022 Texas Instruments Incorporated Product Folder Links: TLV9051 TLV9052 TLV9054 TLV9051, TLV9052, TLV9054 www.ti.com.cn ZHCSI62I – AUGUST 2018 – REVISED NOVEMBER 2022 8.3 Feature Description 8.3.1 Operating Voltage The TLV905x family of op amps is specified for operation from 1.8 V to 6.0 V. In addition, many specifications apply from –40°C to 125°C. Parameters that vary significantly with operating voltages or temperature are illustrated in the 节 7.8. 8.3.2 Rail-to-Rail Input The input common-mode voltage range of the TLV905x family extends 100 mV beyond the supply rails for the full supply voltage range of 1.8 V to 6.0 V. This performance is achieved with a complementary input stage: an N-channel input differential pair in parallel with a P-channel differential pair, as shown in the 节 8.2. The Nchannel pair is active for input voltages close to the positive rail, typically (V+) – 1.4 V to 200 mV above the positive supply, whereas the P-channel pair is active for inputs from 200 mV below the negative supply to approximately (V+) – 1.4 V. There is a small transition region, typically (V+) – 1.2 V to (V+) – 1 V, in which both pairs are on. This 200-mV transition region can vary up to 200 mV with process variation. Thus, the transition region (with both stages on) can range from (V+) – 1.4 V to (V+) – 1.2 V on the low end, and up to (V+) – 1 V to (V+) – 0.8 V on the high end. Within this transition region, PSRR, CMRR, offset voltage, offset drift, and THD can degrade compared to device operation outside this region. 8.3.3 Rail-to-Rail Output Designed as low-power, low-voltage operational amplifiers, the TLV905x family delivers a robust output drive capability. A class AB output stage with common-source transistors achieves full rail-to-rail output swing capability. For resistive loads of 10 kΩ, the output swings to within 16 mV of either supply rail, regardless of the applied power-supply voltage. Different load conditions change the ability of the amplifier to swing close to the rails. 8.3.4 EMI Rejection The TLV905x uses integrated electromagnetic interference (EMI) filtering to reduce the effects of EMI from sources such as wireless communications and densely-populated boards with a mix of analog signal chain and digital components. EMI immunity can be improved with circuit design techniques; the TLV905x benefits from these design improvements. Texas Instruments has developed the ability to accurately measure and quantify the immunity of an operational amplifier over a broad frequency spectrum extending from 10 MHz to 6 GHz. 图 8-1 shows the results of this testing on the TLV905x. 表 8-1 shows the EMIRR IN+ values for the TLV905x at particular frequencies commonly encountered in real-world applications. The EMI Rejection Ratio of Operational Amplifiers application report contains detailed information on the topic of EMIRR performance as it relates to op amps and is available for download from www.ti.com. 140 120 EMIRR (dB) 100 80 60 40 20 0 10M 100M Frequency (Hz) 1G D007 图 8-1. EMIRR Testing Submit Document Feedback Copyright © 2022 Texas Instruments Incorporated Product Folder Links: TLV9051 TLV9052 TLV9054 23 TLV9051, TLV9052, TLV9054 www.ti.com.cn ZHCSI62I – AUGUST 2018 – REVISED NOVEMBER 2022 表 8-1. TLV905x EMIRR IN+ for Frequencies of Interest FREQUENCY APPLICATION OR ALLOCATION EMIRR IN+ 400 MHz Mobile radio, mobile satellite, space operation, weather, radar, ultra-high frequency (UHF) applications 41.8 dB 900 MHz Global system for mobile communications (GSM) applications, radio communication, navigation, GPS (to 1.6 GHz), GSM, aeronautical mobile, UHF applications 53.1 dB 1.8 GHz GSM applications, mobile personal communications, broadband, satellite, L-band (1 GHz to 2 GHz) 71.8 dB Bluetooth®, 2.4 GHz 802.11b, 802.11g, 802.11n, mobile personal communications, industrial, scientific and medical (ISM) radio band, amateur radio and satellite, S-band (2 GHz to 4 GHz) 70.0 dB 3.6 GHz Radiolocation, aero communication and navigation, satellite, mobile, S-band 81.2 dB 802.11a, 802.11n, aero communication and navigation, mobile communication, space and satellite operation, C-band (4 GHz to 8 GHz) 92.5 dB 5 GHz 8.3.5 Overload Recovery Overload recovery is defined as the time required for the operational amplifier output to recover from a saturated state to a linear state. The output devices of the operational amplifier enter a saturation region when the output voltage exceeds the rated operating voltage, because of the high input voltage or high gain. After the device enters the saturation region, the output devices require time to return to the linear operating state. After the output devices return to their linear operating state, the device begins to slew at the specified slew rate. Therefore, the propagation delay (in case of an overload condition) is the sum of the overload recovery time and the slew time. The overload recovery time for the TLV905x family is approximately 300 ns. 8.3.6 Packages With an Exposed Thermal Pad The TLV905x family is available in packages such as the WSON-8 (DSG) and WQFN-16 (RTE) which feature an exposed thermal pad. Inside the package, the die is attached to this thermal pad using an electrically conductive compound. For this reason, when using a package with an exposed thermal pad, the thermal pad must either be connected to V– or left floating. Attaching the thermal pad to a potential other then V– is not allowed, and the performance of the device is not verified when doing so. 8.3.7 Electrical Overstress Designers often ask questions about the capability of an operational amplifier to withstand electrical overstress. These questions tend to focus on the device inputs, but can involve the supply voltage pins or even the output pin. Each of these different pin functions have electrical stress limits determined by the voltage breakdown characteristics of the particular semiconductor fabrication process and specific circuits connected to the pin. Additionally, internal electrostatic discharge (ESD) protection is built into these circuits to protect them from accidental ESD events both before and during product assembly. Having a good understanding of this basic ESD circuitry and its relevance to an electrical overstress event is helpful. 图 8-2 shows the ESD circuits contained in the TLV905x devices. The ESD protection circuitry involves several current-steering diodes connected from the input and output pins and routed back to the internal power supply lines, where they meet at an absorption device internal to the operational amplifier. This protection circuitry is intended to remain inactive during normal circuit operation. 24 Submit Document Feedback Copyright © 2022 Texas Instruments Incorporated Product Folder Links: TLV9051 TLV9052 TLV9054 TLV9051, TLV9052, TLV9054 www.ti.com.cn ZHCSI62I – AUGUST 2018 – REVISED NOVEMBER 2022 V+ Power Supply ESD Cell +IN + ± ± IN OUT V± 图 8-2. Equivalent Internal ESD Circuitry 8.3.8 Input Protection The TLV905x family incorporates internal ESD protection circuits on all pins. For input and output pins, this protection primarily consists of current-steering diodes connected between the input and power-supply pins. These ESD protection diodes provide in-circuit, input overdrive protection, as long as the current is limited to 10 mA, as shown in the 节 7.1. 图 8-3 shows how a series input resistor can be added to the driven input to limit the input current. The added resistor contributes thermal noise at the amplifier input and the value must be kept to a minimum in noise-sensitive applications. V+ IOVERLOAD 10-mA maximum Device VOUT VIN 5 kW 图 8-3. Input Current Protection 8.3.9 Shutdown Function The TLV905xS devices feature SHDN pins that disable the op amp, placing the device into a low-power standby mode. In this mode, the op amp typically consumes less than 1 µA. The SHDN pins are active low, meaning that shutdown mode is enabled when the input to the SHDN pin is a valid logic low. The SHDN pins are referenced to the negative supply voltage of the op amp. The threshold of the shutdown feature lies around 800 mV (typical) and does not change with respect to the supply voltage. Hysteresis has been included in the switching threshold to ensure smooth switching characteristics. To ensure shutdown behavior, the SHDN pins should be driven with valid logic signals. A valid logic low is defined as a voltage between V– and V– + 0.4 V. A valid logic high is defined as a voltage between V– + 1.2 V and V+. The shutdown pin circuitry includes a pull-up resistor, which will inherently pull the voltage of the pin to the positive supply rail if not driven. Thus, to enable the amplifier, the SHDN pins must either be left floating or driven to a valid logic high. To disable the amplifier, the SHDN pins must be driven to a valid logic low .While TI highly recommends that the shutdown pin be connected to a valid high or a low voltage or driven, TI has included a pull-up resistor connected to VCC. The maximum voltage allowed at the SHDN pins is (V+) + 0.5 V. Exceeding this voltage level will damage the device. The SHDN pins are high-impedance CMOS inputs. Dual op amp versions are independently controlled and quad op amp versions are controlled in pairs with logic inputs. For battery-operated applications, this feature may be Submit Document Feedback Copyright © 2022 Texas Instruments Incorporated Product Folder Links: TLV9051 TLV9052 TLV9054 25 TLV9051, TLV9052, TLV9054 ZHCSI62I – AUGUST 2018 – REVISED NOVEMBER 2022 www.ti.com.cn used to greatly reduce the average current and extend battery life. The enable time is 35 µs for full shutdown of all channels; disable time is 6 µs. When disabled, the output assumes a high-impedance state. This architecture allows the TLV905xS to be operated as a gated amplifier (or to have the device output multiplexed onto a common analog output bus). Shutdown time (tOFF) depends on loading conditions and increases as load resistance increases. To ensure shutdown (disable) within a specific shutdown time, the specified 10-kΩ load to midsupply (VS / 2) is required. If using the TLV905xS without a load, the resulting turnoff time is significantly increased. 8.4 Device Functional Modes The TLV905x family is operational when the power-supply voltage is between 1.8 V (±0.9 V) and 6.0 V (±3.0 V). The TLV905xS devices feature a shutdown mode and are shutdown when a valid logic low is applied to the shutdown pin. 26 Submit Document Feedback Copyright © 2022 Texas Instruments Incorporated Product Folder Links: TLV9051 TLV9052 TLV9054 TLV9051, TLV9052, TLV9054 www.ti.com.cn ZHCSI62I – AUGUST 2018 – REVISED NOVEMBER 2022 9 Application and Implementation 备注 以下应用部分中的信息不属于 TI 器件规格的范围,TI 不担保其准确性和完整性。TI 的客 户应负责确定 器件是否适用于其应用。客户应验证并测试其设计,以确保系统功能。 9.1 Application Information The TLV905x family features 5-MHz bandwidth and very high slew rate of 15 V/µs with only 330 µA of supply current per channel, providing excellent AC performance at very low-power consumption. DC applications are well served with a very low input noise voltage of 15 nV/√ Hz at 10 kHz, low input bias current, and a typical input offset voltage of 0.33 mV. 9.2 Typical Low-Side Current Sense Application 图 9-1 shows the TLV905x configured in a low-side current sensing application. VBUS ILOAD Z LOAD 5V + TLV905x RSHUNT 0.1 Ÿ VSHUNT VOUT í + í RF 165 NŸ RG 3.4 NŸ 图 9-1. TLV905x in a Low-Side, Current-Sensing Application 9.2.1 Design Requirements The design requirements for this design are: • Load current: 0 A to 1 A • Output voltage: 4.95 V • Maximum shunt voltage: 100 mV Submit Document Feedback Copyright © 2022 Texas Instruments Incorporated Product Folder Links: TLV9051 TLV9052 TLV9054 27 TLV9051, TLV9052, TLV9054 www.ti.com.cn ZHCSI62I – AUGUST 2018 – REVISED NOVEMBER 2022 9.2.2 Detailed Design Procedure The transfer function of the circuit in 图 9-1 is given in 方程式 1. VOUT = ILOAD × RSHUNT × Gain (1) The load current (ILOAD) produces a voltage drop across the shunt resistor (RSHUNT). The load current is set from 0 A to 1 A. To keep the shunt voltage below 100 mV at maximum load current, the largest shunt resistor is defined using 方程式 2. V RSHUNT =   ISHUNT_MAX =   100 mV 1 A = 100 mΩ (2) LOAD_MAX Using 方程式 2, RSHUNT equals 100 mΩ. The voltage drop produced by ILOAD and RSHUNT is amplified by the TLV905x device to produce an output voltage of approximately 0 V to 4.95 V. 方程式 3 calculates the gain required for the TLV905x device to produce the required output voltage. Gain =   VOUT_MAX −  VOUT MIN (3) VIN_MAX − VIN_MIN Using 方程式 3, the required gain equals 49.5 V/V, which is set with the RF and R G resistors. 方程式 4 sizes the RF and RG, resistors to set the gain of the TLV905x device to 49.5 V/V. Gain = 1 + RF RG (4) Selecting RF to equal 165 kΩ and RG to equal 3.4 kΩ provides a combination that equals approximately 49.5 V/V. 图 9-2 shows the measured transfer function of the circuit shown in 图 9-1. 9.2.3 Application Curve 5 Output (V) 4 3 2 1 0 0 0.2 0.4 0.6 0.8 ILOAD (A) 1 C219 图 9-2. Low-Side, Current-Sense Transfer Function 28 Submit Document Feedback Copyright © 2022 Texas Instruments Incorporated Product Folder Links: TLV9051 TLV9052 TLV9054 TLV9051, TLV9052, TLV9054 www.ti.com.cn ZHCSI62I – AUGUST 2018 – REVISED NOVEMBER 2022 9.3 Power Supply Recommendations The TLV905x family is specified for operation from 1.8 V to 6.0 V (±0.9 V to ±3.0 V); many specifications apply from –40°C to 125°C. The 节 7.8 section presents parameters that can exhibit significant variance with regard to operating voltage or temperature. CAUTION Supply voltages larger than 7 V can permanently damage the device; see the 节 7.1 table. Place 0.1-µF bypass capacitors close to the power-supply pins to reduce errors coupling in from noisy or highimpedance power supplies. For more-detailed information on bypass capacitor placement, see the 节 9.4.2 section. 9.4 Layout 9.4.1 Layout Guidelines For best operational performance of the device, use good printed circuit board (PCB) layout practices, including: • Noise can propagate into analog circuitry through the power pins of the circuit as a whole and of the op amp itself. Bypass capacitors are used to reduce the coupled noise by providing low-impedance power sources local to the analog circuitry. – Connect low-ESR, 0.1-µF ceramic bypass capacitors between each supply pin and ground, placed as close to the device as possible. A single bypass capacitor from V+ to ground is applicable for singlesupply applications. • Separate grounding for analog and digital portions of circuitry is one of the simplest and most-effective methods of noise suppression. One or more layers on multilayer PCBs are usually devoted to ground planes. A ground plane helps distribute heat and reduces electromagnetic interference (EMI) noise pickup. Take care to physically separate digital and analog grounds, paying attention to the flow of the ground current. For more detailed information, see Circuit Board Layout Techniques. • To reduce parasitic coupling, run the input traces as far away from the supply or output traces as possible. If these traces cannot be kept separate, crossing the sensitive trace perpendicular is much better as opposed to in parallel with the noisy trace. • Place the external components as close to the device as possible. As illustrated in 图 9-4, keeping RF and RG close to the inverting input minimizes parasitic capacitance on the inverting input. • Keep the length of input traces as short as possible. Always remember that the input traces are the most sensitive part of the circuit. • Consider a driven, low-impedance guard ring around the critical traces. A guard ring can significantly reduce leakage currents from nearby traces that are at different potentials. • Cleaning the PCB following board assembly is recommended for best performance. • Any precision integrated circuit can experience performance shifts resulting from moisture ingress into the plastic package. Following any aqueous PCB cleaning process, baking the PCB assembly is recommended to remove moisture introduced into the device packaging during the cleaning process. A low-temperature, post-cleaning bake at 85°C for 30 minutes is sufficient for most circumstances. Submit Document Feedback Copyright © 2022 Texas Instruments Incorporated Product Folder Links: TLV9051 TLV9052 TLV9054 29 TLV9051, TLV9052, TLV9054 www.ti.com.cn ZHCSI62I – AUGUST 2018 – REVISED NOVEMBER 2022 9.4.2 Layout Example + VIN 1 + VIN 2 VOUT 1 RG VOUT 2 RG RF RF 图 9-3. Schematic Representation for 图 9-4 Place components close to device and to each other to reduce parasitic errors . OUT 1 VS+ OUT1 Use low-ESR, ceramic bypass capacitor . Place as close to the device as possible . GND V+ RF OUT 2 GND IN1 ± OUT2 IN1 + IN2 ± RF RG VIN 1 GND RG V± Use low-ESR, ceramic bypass capacitor . Place as close to the device as possible . GND VS± IN2 + Ground (GND) plane on another layer VIN 2 Keep input traces short and run the input traces as far away from the supply lines as possible . 图 9-4. Layout Example 30 Submit Document Feedback Copyright © 2022 Texas Instruments Incorporated Product Folder Links: TLV9051 TLV9052 TLV9054 TLV9051, TLV9052, TLV9054 www.ti.com.cn ZHCSI62I – AUGUST 2018 – REVISED NOVEMBER 2022 10 Device and Documentation Support 10.1 Documentation Support 10.1.1 Related Documentation Texas Instruments, TLVx313 Low-Power, Rail-to-Rail In/Out, 500-µV Typical Offset, 1-MHz Operational Amplifier for Cost-Sensitive Systems Texas Instruments, TLVx314 3-MHz, Low-Power, Internal EMI Filter, RRIO, Operational Amplifier Texas Instruments, EMI Rejection Ratio of Operational Amplifiers Texas Instruments, QFN/SON PCB Attachment Texas Instruments, Quad Flatpack No-Lead Logic Packages Texas Instruments, Circuit Board Layout Techniques Texas Instruments, Single-Ended Input to Differential Output Conversion Circuit Reference Design 10.2 Related Links The table below lists quick access links. Categories include technical documents, support and community resources, tools and software, and quick access to order now. 表 10-1. Related Links PARTS PRODUCT FOLDER ORDER NOW TECHNICAL DOCUMENTS TOOLS & SOFTWARE SUPPORT & COMMUNITY TLV9051/S Click here Click here Click here Click here Click here TLV9052/S Click here Click here Click here Click here Click here TLV9054/S Click here Click here Click here Click here Click here 10.3 Receiving Notification of Documentation Updates To receive notification of documentation updates, navigate to the device product folder on ti.com. In the upper right corner, click on Alert me to register and receive a weekly digest of any product information that has changed. For change details, review the revision history included in any revised document. 10.4 支持资源 TI E2E™ 支持论坛是工程师的重要参考资料,可直接从专家获得快速、经过验证的解答和设计帮助。搜索现有解 答或提出自己的问题可获得所需的快速设计帮助。 链接的内容由各个贡献者“按原样”提供。这些内容并不构成 TI 技术规范,并且不一定反映 TI 的观点;请参阅 TI 的《使用条款》。 10.5 Trademarks TI E2E™ is a trademark of Texas Instruments. Bluetooth® is a registered trademark of Bluetooth SIG, Inc. 所有商标均为其各自所有者的财产。 10.6 Electrostatic Discharge Caution This integrated circuit can be damaged by ESD. Texas Instruments recommends that all integrated circuits be handled with appropriate precautions. Failure to observe proper handling and installation procedures can cause damage. ESD damage can range from subtle performance degradation to complete device failure. Precision integrated circuits may be more susceptible to damage because very small parametric changes could cause the device not to meet its published specifications. 10.7 术语表 TI 术语表 本术语表列出并解释了术语、首字母缩略词和定义。 Submit Document Feedback Copyright © 2022 Texas Instruments Incorporated Product Folder Links: TLV9051 TLV9052 TLV9054 31 TLV9051, TLV9052, TLV9054 ZHCSI62I – AUGUST 2018 – REVISED NOVEMBER 2022 www.ti.com.cn 11 Mechanical, Packaging, and Orderable Information The following pages include mechanical, packaging, and orderable information. This information is the mostcurrent data available for the designated devices. This data is subject to change without notice and without revision of this document. For browser-based versions of this data sheet, see the left-hand navigation pane. 32 Submit Document Feedback Copyright © 2022 Texas Instruments Incorporated Product Folder Links: TLV9051 TLV9052 TLV9054 PACKAGE OPTION ADDENDUM www.ti.com 7-Jul-2023 PACKAGING INFORMATION Orderable Device Status (1) Package Type Package Pins Package Drawing Qty Eco Plan (2) Lead finish/ Ball material MSL Peak Temp Op Temp (°C) Device Marking (3) Samples (4/5) (6) TLV9051IDBVR ACTIVE SOT-23 DBV 5 3000 RoHS & Green NIPDAU | SN Level-1-260C-UNLIM -40 to 125 T51D Samples TLV9051IDCKR ACTIVE SC70 DCK 5 3000 RoHS & Green SN Level-2-260C-1 YEAR -40 to 125 T51 Samples TLV9051IDPWR ACTIVE X2SON DPW 5 3000 RoHS & Green NIPDAUAG Level-2-260C-1 YEAR -40 to 125 FH Samples TLV9051SIDBVR ACTIVE SOT-23 DBV 6 3000 RoHS & Green NIPDAU Level-1-260C-UNLIM -40 to 125 T51S Samples TLV9052IDDFR ACTIVE SOT-23-THIN DDF 8 3000 RoHS & Green NIPDAU Level-1-260C-UNLIM -40 to 125 T052 Samples TLV9052IDGKR ACTIVE VSSOP DGK 8 2500 RoHS & Green NIPDAU | SN | NIPDAUAG Level-2-260C-1 YEAR -40 to 125 1PWX Samples TLV9052IDR ACTIVE SOIC D 8 2500 RoHS & Green NIPDAU Level-2-260C-1 YEAR -40 to 125 TL9052 Samples TLV9052IDSGR ACTIVE WSON DSG 8 3000 RoHS & Green NIPDAU Level-1-260C-UNLIM -40 to 125 9052 Samples TLV9052IPWR ACTIVE TSSOP PW 8 2000 RoHS & Green NIPDAU Level-2-260C-1 YEAR -40 to 125 TL9052 Samples TLV9052SIDGSR ACTIVE VSSOP DGS 10 2500 RoHS & Green NIPDAUAG Level-2-260C-1 YEAR -40 to 125 T052 Samples TLV9052SIRUGR ACTIVE X2QFN RUG 10 3000 RoHS & Green NIPDAUAG Level-2-260C-1 YEAR -40 to 125 FPF Samples TLV9054IDR ACTIVE SOIC D 14 2500 RoHS & Green NIPDAU Level-2-260C-1 YEAR -40 to 125 TLV9054D Samples TLV9054IPWR ACTIVE TSSOP PW 14 2000 RoHS & Green SN Level-2-260C-1 YEAR -40 to 125 T9054PW Samples TLV9054IRTER ACTIVE WQFN RTE 16 3000 RoHS & Green NIPDAU Level-1-260C-UNLIM -40 to 125 T54RT Samples TLV9054IRUCR ACTIVE QFN RUC 14 3000 RoHS & Green NIPDAU Level-2-260C-1 YEAR -40 to 125 1FF Samples TLV9054SIRTER ACTIVE WQFN RTE 16 3000 RoHS & Green NIPDAU Level-1-260C-UNLIM -40 to 125 T9054S Samples (1) The marketing status values are defined as follows: ACTIVE: Product device recommended for new designs. LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect. NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design. PREVIEW: Device has been announced but is not in production. Samples may or may not be available. OBSOLETE: TI has discontinued the production of the device. Addendum-Page 1 PACKAGE OPTION ADDENDUM www.ti.com 7-Jul-2023 (2) RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may reference these types of products as "Pb-Free". RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption. Green: TI defines "Green" to mean the content of Chlorine (Cl) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of
TLV9052IDGKR 价格&库存

很抱歉,暂时无法提供与“TLV9052IDGKR”相匹配的价格&库存,您可以联系我们找货

免费人工找货
TLV9052IDGKR
  •  国内价格 香港价格
  • 2500+2.905432500+0.36359
  • 5000+2.829545000+0.35409
  • 7500+2.791547500+0.34934
  • 12500+2.7494112500+0.34406
  • 17500+2.7248117500+0.34098
  • 25000+2.7011325000+0.33802

库存:4358

TLV9052IDGKR
  •  国内价格
  • 1+4.52490
  • 10+3.34720
  • 100+2.86900
  • 1000+2.39080

库存:357

TLV9052IDGKR
  •  国内价格
  • 1+3.09100
  • 100+2.38700
  • 1250+2.07900
  • 2500+1.98000

库存:357

TLV9052IDGKR
  •  国内价格 香港价格
  • 1+6.351151+0.79478
  • 10+4.5013110+0.56330
  • 25+4.0391225+0.50546
  • 100+3.53605100+0.44250
  • 250+3.29564250+0.41242
  • 500+3.15071500+0.39428
  • 1000+3.031371000+0.37935

库存:4358