Product
Folder
Order
Now
Technical
Documents
Tools &
Software
Support &
Community
OMAP-L138
SPRS586J – JUNE 2009 – REVISED JANUARY 2017
OMAP-L138 C6000™ DSP+ ARM® Processor
1 Device Overview
1.1
Features
1
• Dual-Core SoC
– 375- and 456-MHz ARM926EJ-S™ RISC MPU
– 375- and 456-MHz C674x Fixed- and FloatingPoint VLIW DSP
• ARM926EJ-S Core
– 32- and 16-Bit (Thumb®) Instructions
– DSP Instruction Extensions
– Single-Cycle MAC
– ARM Jazelle® Technology
– Embedded ICE-RT™ for Real-Time Debug
• ARM9™ Memory Architecture
– 16KB of Instruction Cache
– 16KB of Data Cache
– 8KB of RAM (Vector Table)
– 64KB of ROM
• C674x Instruction Set Features
– Superset of the C67x+ and C64x+ ISAs
– Up to 3648 MIPS and 2746 MFLOPS
– Byte-Addressable (8-, 16-, 32-, and 64-Bit Data)
– 8-Bit Overflow Protection
– Bit-Field Extract, Set, Clear
– Normalization, Saturation, Bit-Counting
– Compact 16-Bit Instructions
• C674x Two-Level Cache Memory Architecture
– 32KB of L1P Program RAM/Cache
– 32KB of L1D Data RAM/Cache
– 256KB of L2 Unified Mapped RAM/Cache
– Flexible RAM/Cache Partition (L1 and L2)
• Enhanced Direct Memory Access Controller 3
(EDMA3):
– 2 Channel Controllers
– 3 Transfer Controllers
– 64 Independent DMA Channels
– 16 Quick DMA Channels
– Programmable Transfer Burst Size
• TMS320C674x Floating-Point VLIW DSP Core
– Load-Store Architecture With Nonaligned
Support
– 64 General-Purpose Registers (32-Bit)
– Six ALU (32- and 40-Bit) Functional Units
•
•
•
•
– Supports 32-Bit Integer, SP (IEEE Single
Precision/32-Bit) and DP (IEEE Double
Precision/64-Bit) Floating Point
– Supports up to Four SP Additions Per Clock,
Four DP Additions Every Two Clocks
– Supports up to Two Floating-Point (SP or DP)
Reciprocal Approximation (RCPxP) and
Square-Root Reciprocal Approximation
(RSQRxP) Operations Per Cycle
– Two Multiply Functional Units:
– Mixed-Precision IEEE Floating-Point Multiply
Supported up to:
– 2 SP × SP → SP Per Clock
– 2 SP × SP → DP Every Two Clocks
– 2 SP × DP → DP Every Three Clocks
– 2 DP × DP → DP Every Four Clocks
– Fixed-Point Multiply Supports Two 32 × 32Bit Multiplies, Four 16 × 16-Bit Multiplies, or
Eight 8 × 8-Bit Multiplies per Clock Cycle,
and Complex Multiples
– Instruction Packing Reduces Code Size
– All Instructions Conditional
– Hardware Support for Modulo Loop Operation
– Protected Mode Operation
– Exceptions Support for Error Detection and
Program Redirection
Software Support
– TI DSP BIOS™
– Chip Support Library and DSP Library
128KB of RAM Shared Memory
1.8-V or 3.3-V LVCMOS I/Os (Except for USB and
DDR2 Interfaces)
Two External Memory Interfaces:
– EMIFA
– NOR (8- or 16-Bit-Wide Data)
– NAND (8- or 16-Bit-Wide Data)
– 16-Bit SDRAM With 128-MB Address Space
– DDR2/Mobile DDR Memory Controller With one
of the Following:
– 16-Bit DDR2 SDRAM With 256-MB Address
Space
1
An IMPORTANT NOTICE at the end of this data sheet addresses availability, warranty, changes, use in safety-critical applications,
intellectual property matters and other important disclaimers. PRODUCTION DATA.
OMAP-L138
SPRS586J – JUNE 2009 – REVISED JANUARY 2017
•
•
•
•
•
•
•
•
•
•
•
•
2
www.ti.com
– 16-Bit mDDR SDRAM With 256-MB Address
Space
Three Configurable 16550-Type UART Modules:
– With Modem Control Signals
– 16-Byte FIFO
– 16x or 13x Oversampling Option
LCD Controller
Two Serial Peripheral Interfaces (SPIs) Each With
Multiple Chip Selects
Two Multimedia Card (MMC)/Secure Digital (SD)
Card Interfaces With Secure Data I/O (SDIO)
Interfaces
Two Master and Slave Inter-Integrated Circuits
(I2C Bus™)
One Host-Port Interface (HPI) With 16-Bit-Wide
Muxed Address and Data Bus For High Bandwidth
Programmable Real-Time Unit Subsystem
(PRUSS)
– Two Independent Programmable Real-Time Unit
(PRU) Cores
– 32-Bit Load-Store RISC Architecture
– 4KB of Instruction RAM Per Core
– 512 Bytes of Data RAM Per Core
– PRUSS can be Disabled Through Software to
Save Power
– Register 30 of Each PRU is Exported From
the Subsystem in Addition to the Normal R31
Output of the PRU Cores.
– Standard Power-Management Mechanism
– Clock Gating
– Entire Subsystem Under a Single PSC Clock
Gating Domain
– Dedicated Interrupt Controller
– Dedicated Switched Central Resource
USB 1.1 OHCI (Host) With Integrated PHY (USB1)
USB 2.0 OTG Port With Integrated PHY (USB0)
– USB 2.0 High- and Full-Speed Client
– USB 2.0 High-, Full-, and Low-Speed Host
– End Point 0 (Control)
– End Points 1, 2, 3, and 4 (Control, Bulk,
Interrupt, or ISOC) RX and TX
One Multichannel Audio Serial Port (McASP):
– Two Clock Zones and 16 Serial Data Pins
– Supports TDM, I2S, and Similar Formats
– DIT-Capable
– FIFO Buffers for Transmit and Receive
Two Multichannel Buffered Serial Ports (McBSPs):
– Supports TDM, I2S, and Similar Formats
– AC97 Audio Codec Interface
– Telecom Interfaces (ST-Bus, H100)
– 128-Channel TDM
– FIFO Buffers for Transmit and Receive
10/100 Mbps Ethernet MAC (EMAC):
•
•
•
•
•
•
•
•
•
•
– IEEE 802.3 Compliant
– MII Media-Independent Interface
– RMII Reduced Media-Independent Interface
– Management Data I/O (MDIO) Module
Video Port Interface (VPIF):
– Two 8-Bit SD (BT.656), Single 16-Bit or Single
Raw (8-, 10-, and 12-Bit) Video Capture
Channels
– Two 8-Bit SD (BT.656), Single 16-Bit Video
Display Channels
Universal Parallel Port (uPP):
– High-Speed Parallel Interface to FPGAs and
Data Converters
– Data Width on Both Channels is 8- to 16-Bit
Inclusive
– Single-Data Rate or Dual-Data Rate Transfers
– Supports Multiple Interfaces With START,
ENABLE, and WAIT Controls
Serial ATA (SATA) Controller:
– Supports SATA I (1.5 Gbps) and SATA II
(3.0 Gbps)
– Supports All SATA Power-Management
Features
– Hardware-Assisted Native Command Queueing
(NCQ) for up to 32 Entries
– Supports Port Multiplier and Command-Based
Switching
Real-Time Clock (RTC) With 32-kHz Oscillator and
Separate Power Rail
Three 64-Bit General-Purpose Timers (Each
Configurable as Two 32-Bit Timers)
One 64-Bit General-Purpose or Watchdog Timer
(Configurable as Two 32-Bit General-Purpose
Timers)
Two Enhanced High-Resolution Pulse Width
Modulators (eHRPWMs):
– Dedicated 16-Bit Time-Base Counter With
Period and Frequency Control
– 6 Single-Edge Outputs, 6 Dual-Edge Symmetric
Outputs, or 3 Dual-Edge Asymmetric Outputs
– Dead-Band Generation
– PWM Chopping by High-Frequency Carrier
– Trip Zone Input
Three 32-Bit Enhanced Capture (eCAP) Modules:
– Configurable as 3 Capture Inputs or 3 Auxiliary
Pulse Width Modulator (APWM) Outputs
– Single-Shot Capture of up to Four Event
Timestamps
Packages:
– 361-Ball Pb-Free Plastic Ball Grid Array (PBGA)
[ZCE Suffix], 0.65-mm Ball Pitch
– 361-Ball Pb-Free PBGA [ZWT Suffix],
0.80-mm Ball Pitch
Commercial, Extended, or Industrial Temperature
Device Overview
Copyright © 2009–2017, Texas Instruments Incorporated
Submit Documentation Feedback
Product Folder Links: OMAP-L138
OMAP-L138
www.ti.com
1.2
•
•
•
•
•
SPRS586J – JUNE 2009 – REVISED JANUARY 2017
Applications
Professional or Private Mobile Radio (PMR)
Remote Radio Unit (RRU)
Remote Radio Head (RRH)
Industrial Automation
Currency Inspection
1.3
•
•
•
•
Biometric Identification
Machine Vision (Low-End)
Smart Grid Substation Protection
Industrial Portable Navigation Devices
Description
The OMAP-L138 C6000 DSP+ARM processor is a low-power applications processor based on an
ARM926EJ-S and a C674x DSP core. This processor provides significantly lower power than other
members of the TMS320C6000™ platform of DSPs.
The device enables original-equipment manufacturers (OEMs) and original-design manufacturers (ODMs)
to quickly bring to market devices with robust operating systems, rich user interfaces, and high processor
performance through the maximum flexibility of a fully integrated, mixed processor solution.
The dual-core architecture of the device provides benefits of both DSP and reduced instruction set
computer (RISC) technologies, incorporating a high-performance TMS320C674x DSP core and an
ARM926EJ-S core.
The ARM926EJ-S is a 32-bit RISC processor core that performs 32-bit or 16-bit instructions and
processes 32-, 16-, or 8-bit data. The core uses pipelining so that all parts of the processor and memory
system can operate continuously.
The ARM9 core has a coprocessor 15 (CP15), protection module, and data and program memory
management units (MMUs) with table look-aside buffers. The ARM9 core has separate 16-KB instruction
and 16-KB data caches. Both caches are 4-way associative with virtual index virtual tag (VIVT). The
ARM9 core also has 8KB of RAM (Vector Table) and 64KB of ROM.
The device DSP core uses a 2-level cache-based architecture. The level 1 program cache (L1P) is a 32KB direct mapped cache, and the level 1 data cache (L1D) is a 32-KB 2-way, set-associative cache. The
level 2 program cache (L2P) consists of a 256-KB memory space that is shared between program and
data space. L2 memory can be configured as mapped memory, cache, or combinations of the two.
Although the DSP L2 is accessible by the ARM9 and other hosts in the system, an additional 128KB of
RAM shared memory is available for use by other hosts without affecting DSP performance.
For security-enabled devices, TI’s Basic Secure Boot lets users protect proprietary intellectual property
and prevents external entities from modifying user-developed algorithms. By starting from a hardwarebased “root-of-trust,” the secure boot flow ensures a known good starting point for code execution. By
default, the JTAG port is locked down to prevent emulation and debug attacks; however, the JTAG port
can be enabled during the secure boot process during application development. The boot modules are
encrypted while sitting in external nonvolatile memory, such as flash or EEPROM, and are decrypted and
authenticated when loaded during secure boot. Encryption and decryption protects the users’ IP and lets
them securely set up the system and begin device operation with known, trusted code.
Basic Secure Boot uses either SHA-1 or SHA-256, and AES-128 for boot image validation. Basic Secure
Boot also uses AES-128 for boot image encryption. The secure boot flow employs a multilayer encryption
scheme which not only protects the boot process but also offers the ability to securely upgrade boot and
application software code. A 128-bit device-specific cipher key, known only to the device and generated
using a NIST-800-22 certified random number generator, is used to protect user encryption keys. When
an update is needed, the customer uses the encryption keys to create a new encrypted image. Then the
device can acquire the image through an external interface, such as Ethernet, and overwrite the existing
code. For more details on the supported security features or TI’s Basic Secure Boot, see the
TMS320C674x/OMAP-L1x Processor Security User’s Guide.
Device Overview
Copyright © 2009–2017, Texas Instruments Incorporated
Submit Documentation Feedback
Product Folder Links: OMAP-L138
3
OMAP-L138
SPRS586J – JUNE 2009 – REVISED JANUARY 2017
www.ti.com
The peripheral set includes: a 10/100 Mbps Ethernet media access controller (EMAC) with a management
data input/output (MDIO) module; one USB2.0 OTG interface; one USB1.1 OHCI interface; two I2C Bus
interfaces; one multichannel audio serial port (McASP) with 16 serializers and FIFO buffers; two
multichannel buffered serial ports (McBSPs) with FIFO buffers; two serial peripheral interfaces (SPIs) with
multiple chip selects; a configurable 16-bit host-port interface (HPI); up to 9 banks of general-purpose
input/output (GPIO) pins, with each bank containing 16 pins with programmable interrupt and event
generation modes, multiplexed with other peripherals; three UART interfaces (each with RTS and CTS);
two enhanced high-resolution pulse width modulator (eHRPWM) peripherals; three 32-bit enhanced
capture (eCAP) module peripherals which can be configured as 3 capture inputs or 3 APWM outputs; two
external memory interfaces: an asynchronous and SDRAM external memory interface (EMIFA) for slower
memories or peripherals; and a higher speed DDR2/Mobile DDR controller.
The EMAC provides an efficient interface between the device and a network. The EMAC supports both
10Base-T and 100Base-TX, or 10 Mbps and 100 Mbps in either half- or full-duplex mode. Additionally, an
MDIO interface is available for PHY configuration. The EMAC supports both MII and RMII interfaces.
The Serial ATA (SATA) controller provides a high-speed interface to mass data storage devices. The
SATA controller supports both SATA I (1.5 Gbps) and SATA II (3.0 Gbps).
The Universal Parallel Port (uPP) provides a high-speed interface to many types of data converters,
FPGAs, or other parallel devices. The uPP supports programmable data widths between 8- to 16-bits on
both channels. Single-data rate and double-data rate transfers are supported as well as START, ENABLE,
and WAIT signals to provide control for a variety of data converters.
A video port interface (VPIF) provides a flexible video I/O port.
The rich peripheral set provides the ability to control external peripheral devices and communicate with
external processors. For details on each peripheral, see the related sections in this document and the
associated peripheral reference guides.
The device has a complete set of development tools for the ARM9 and DSP. These tools include C
compilers, a DSP assembly optimizer to simplify programming and scheduling, and a Windows® debugger
interface for visibility into source code execution.
Device Information (1)
PACKAGE
BODY SIZE
OMAPL138ZCE
PART NUMBER
NFBGA (361)
13,00 mm x 13,00 mm
OMAPL138ZWT
NFBGA (361)
16,00 mm x 16,00 mm
(1)
4
For more information on these devices, see Section 8.
Device Overview
Copyright © 2009–2017, Texas Instruments Incorporated
Submit Documentation Feedback
Product Folder Links: OMAP-L138
OMAP-L138
www.ti.com
1.4
SPRS586J – JUNE 2009 – REVISED JANUARY 2017
Functional Block Diagram
Figure 1-1 shows the functional block diagram of the device.
ARM Subsystem
DSP Subsystem
ARM926EJ-S CPU
With MMU
C674x™
DSP CPU
4KB ETB
AET
JTAG Interface
System Control
PLL/Clock
Generator
w/OSC
Input
Clock(s)
Memory
Protection
GeneralPurpose
Timer (x4)
16KB
16KB
I-Cache D-Cache
Power/Sleep
Controller
RTC/
32-kHz
OSC
Pin
Multiplexing
32KB
L1 Pgm
32KB
L1 RAM
8KB RAM
(Vector Table)
256KB L2 RAM
64KB ROM
BOOT ROM
Switched Central Resource (SCR)
Peripherals
DMA
Audio Ports
EDMA3
(x2)
McASP
w/FIFO
Serial Interfaces
McBSP
(x2)
I2C
(x2)
(1)
eCAP
(x3)
Video
LCD
Ctlr
VPIF
UART
(x3)
Parallel Port Internal Memory Customizable Interface
Connectivity
Control Timers
ePWM
(x2)
SPI
(x2)
Display
USB2.0
OTG Ctlr
PHY
USB1.1
OHCI Ctlr
PHY
EMAC
10/100 MDIO
(MII/RMII)
uPP
128KB
RAM
PRU Subsystem
External Memory Interfaces
HPI
MMC/SD
(8b)
(x2)
SATA
EMIFA(8b/16B)
NAND/Flash
16b SDRAM
DDR2/MDDR
Controller
Note: Not all peripherals are available at the same time due to multiplexing.
Figure 1-1. Functional Block Diagram
Device Overview
Copyright © 2009–2017, Texas Instruments Incorporated
Submit Documentation Feedback
Product Folder Links: OMAP-L138
5
OMAP-L138
SPRS586J – JUNE 2009 – REVISED JANUARY 2017
www.ti.com
Table of Contents
1
2
3
1
6.11
DDR2/mDDR Memory Controller .................. 127
1.1
Features .............................................. 1
6.12
Memory Protection Units
1.2
Applications ........................................... 3
6.13
MMC / SD / SDIO (MMCSD0, MMCSD1)
1.3
Description ............................................ 3
6.14
1.4
Device Overview
Functional Block Diagram ............................ 5
6.15
Revision History ......................................... 7
Device Comparison ..................................... 8
6.16
3.1
Device Characteristics ................................ 8
3.2
Device Compatibility .................................. 9
6.18
6.19
3.3
ARM Subsystem ...................................... 9
3.4
DSP Subsystem ..................................... 11
3.5
Memory Map Summary ............................. 22
....................................
3.7
Pin Multiplexing Control .............................
3.8
Terminal Functions ..................................
3.9
Unused Pin Configurations..........................
Device Configuration ..................................
4.1
Boot Modes .........................................
4.2
SYSCFG Module ....................................
4.3
Pullup/Pulldown Resistors ..........................
Specifications ...........................................
3.6
4
5
........................................
Pin Assignments
6.17
6.20
6.21
25
143
146
151
160
169
190
Universal Asynchronous Receiver/Transmitter
(UART) ............................................. 194
Universal Serial Bus OTG Controller (USB0)
[USB2.0 OTG] ..................................... 196
Universal Serial Bus Host Controller (USB1)
[USB1.1 OHCI]..................................... 203
28
6.22
Ethernet Media Access Controller (EMAC) ........ 204
6.23
Management Data Input/Output (MDIO) ........... 211
71
6.24
LCD Controller (LCDC)
73
6.25
Host-Port Interface (UHPI) ......................... 228
73
6.26
Universal Parallel Port (uPP)
73
6.27
Video Port Interface (VPIF) ........................ 241
76
6.28
6.29
Enhanced Capture (eCAP) Peripheral............. 247
Enhanced High-Resolution Pulse-Width Modulator
(eHRPWM) ......................................... 250
6.30
Timers .............................................. 255
6.31
Real Time Clock (RTC) ............................ 257
6.32
6.33
General-Purpose Input/Output (GPIO)............. 260
Programmable Real-Time Unit Subsystem
(PRUSS) ........................................... 264
6.34
Emulation Logic .................................... 267
77
Absolute Maximum Ratings Over Operating
Junction Temperature Range
(Unless Otherwise Noted) ................................. 77
5.2
Handling Ratings .................................... 77
5.3
Recommended Operating Conditions ............... 78
5.4
5.5
Notes on Recommended Power-On Hours (POH) . 80
Electrical Characteristics Over Recommended
Ranges of Supply Voltage and Operating Junction
Temperature (Unless Otherwise Noted) ............ 81
7
............................
......................
213
236
Device and Documentation Support .............. 276
Peripheral Information and Electrical
Specifications ........................................... 82
7.1
Device Nomenclature .............................. 276
7.2
Tools and Software ................................ 277
Parameter Information .............................. 82
Recommended Clock and Control Signal Transition
Behavior ............................................. 83
7.3
Documentation Support ............................ 277
7.4
Community Resources............................. 278
7.5
Trademarks ........................................ 278
7.6
Electrostatic Discharge Caution
7.7
Export Control Notice .............................. 278
7.8
Glossary............................................ 278
6.1
6.2
6.3
Power Supplies ...................................... 83
6.4
Reset ................................................ 84
6.5
Crystal Oscillator or External Clock Input ........... 88
6.6
Clock PLLs .......................................... 89
6.7
Interrupts
6.8
6.9
Power and Sleep Controller (PSC) ................ 104
Enhanced Direct Memory Access Controller
(EDMA3) ........................................... 109
6.10
6
140
29
5.1
6
..........................
.........
Serial ATA Controller (SATA) ......................
Multichannel Audio Serial Port (McASP) ..........
Multichannel Buffered Serial Port (McBSP)........
Serial Peripheral Interface Ports (SPI0, SPI1) .....
Inter-Integrated Circuit Serial Ports (I2C) ..........
............................................
94
External Memory Interface A (EMIFA) ............. 115
8
...................
278
Mechanical Packaging and Orderable
Information ............................................. 279
8.1
Thermal Data for ZCE Package ................... 279
8.2
Thermal Data for ZWT Package ................... 280
8.3
Packaging Information ............................. 280
Table of Contents
Copyright © 2009–2017, Texas Instruments Incorporated
Submit Documentation Feedback
Product Folder Links: OMAP-L138
OMAP-L138
www.ti.com
SPRS586J – JUNE 2009 – REVISED JANUARY 2017
2 Revision History
NOTE: Page numbers for previous revisions may differ from page numbers in the current version.
Changes from September 30, 2014 to January 31, 2017
•
•
•
Page
Removed internal pullup designation from RESET in Table 3-5 .............................................................. 29
Added footnote to CLKOUT Description in Table 3-6 .......................................................................... 30
Added new column to Table 3-32 called "Configuration (When USB1 is used and USB0 is not used)" ................ 71
Revision History
Copyright © 2009–2017, Texas Instruments Incorporated
Submit Documentation Feedback
Product Folder Links: OMAP-L138
7
OMAP-L138
SPRS586J – JUNE 2009 – REVISED JANUARY 2017
www.ti.com
3 Device Comparison
3.1
Device Characteristics
Table 3-1 provides an overview of the device. The table shows significant features of the device, including
the capacity of on-chip RAM, peripherals, and the package type with pin count.
Table 3-1. Characteristics of OMAP-L138
HARDWARE FEATURES
OMAP-L138
DDR2/mDDR Memory Controller
DDR2, 16-bit bus width, up to 156 MHz
Mobile DDR, 16-bit bus width, up to 150 MHz
Asynchronous (8/16-bit bus width) RAM, Flash,
16-bit SDRAM, NOR, NAND
EMIFA
Flash Card Interface
2 MMC and SD cards supported
EDMA3
64 independent channels, 16 QDMA channels,
2 channel controllers, 3 transfer controllers
Timers
4 64-Bit General Purpose (each configurable as 2 separate
32-bit timers, one configurable as Watch Dog)
UART
3 (each with RTS and CTS flow control)
SPI
2 (Each with one hardware chip select)
I2C
Peripherals
Not all peripherals pins
are available at the
same time (for more
detail, see the Device
Configurations section).
2 (both Master/Slave)
Multichannel Audio Serial Port [McASP]
Multichannel Buffered Serial Port [McBSP]
1 (each with transmit/receive, FIFO buffer, 16 serializers)
2 (each with transmit/receive, FIFO buffer, 16)
10/100 Ethernet MAC with Management Data I/O
1 (MII or RMII Interface)
4 Single Edge, 4 Dual Edge Symmetric, or
2 Dual Edge Asymmetric Outputs
eHRPWM
eCAP
3 32-bit capture inputs or 3 32-bit auxiliary PWM outputs
UHPI
1 (16-bit multiplexed address/data)
USB 2.0 (USB0)
High-Speed OTG Controller with on-chip OTG PHY
USB 1.1 (USB1)
Full-Speed OHCI (as host) with on-chip PHY
General-Purpose Input/Output Port
9 banks of 16-bit
LCD Controller
1
SATA Controller
1 (Supports both SATA I and SATAII)
Universal Parallel Port (uPP)
1
Video Port Interface (VPIF)
1 (video in and video out)
PRU Subsystem (PRUSS)
2 Programmable PRU Cores
Size (Bytes)
488KB RAM
Organization
DSP
32KB L1 Program (L1P)/Cache (up to 32KB)
32KB L1 Data (L1D)/Cache (up to 32KB)
256KB Unified Mapped RAM/Cache (L2)
DSP Memories can be made accessible to ARM, EDMA3,
and other peripherals.
ARM
16KB I-Cache
16KB D-Cache
8KB RAM (Vector Table)
64KB ROM
ADDITIONAL SHARED MEMORY
128KB RAM
Security
Secure Boot
TI Basic Secure Boot
C674x CPU ID + CPU
Rev ID
Control Status Register (CSR.[31:16])
0x1400
C674x Megamodule
Revision
Revision ID Register (MM_REVID[15:0])
0x0000
JTAG BSDL_ID
DEVIDR0 Register
On-Chip Memory
8
see Section 6.34.4.1, JTAG Peripheral Register Description
Device Comparison
Copyright © 2009–2017, Texas Instruments Incorporated
Submit Documentation Feedback
Product Folder Links: OMAP-L138
OMAP-L138
www.ti.com
SPRS586J – JUNE 2009 – REVISED JANUARY 2017
Table 3-1. Characteristics of OMAP-L138 (continued)
HARDWARE FEATURES
CPU Frequency
MHz
OMAP-L138
674x DSP 375 MHz (1.2V) or 456 MHz (1.3V)
ARM926 375 MHz (1.2V) or 456 MHz (1.3V)
Variable (1.2V-1.0V) for 375 MHz version
Variable (1.3V-1.0V) for 456 MHz version
Core (V)
Voltage
I/O (V)
Packages
Product Status (1)
(1)
1.8V or 3.3 V
13 mm x 13 mm, 361-Ball 0.65 mm pitch, PBGA (ZCE)
16 mm x 16 mm, 361-Ball 0.80 mm pitch, PBGA (ZWT)
Product Preview (PP),
Advance Information (AI),
or Production Data (PD)
375 MHz versions - PD
456 MHz versions - PD
ADVANCE INFORMATION concerns new products in the sampling or preproduction phase of development. Characteristic data and
other specifications are subject to change without notice. PRODUCTION DATA information is current as of publication date. Products
conform to specifications per the terms of the Texas Instruments standard warranty. Production processing does not necessarily include
testing of all parameters.
3.2
Device Compatibility
The ARM926EJ-S RISC CPU is compatible with other ARM9 CPUs from ARM Holdings plc.
The C674x DSP core is code-compatible with the C6000™ DSP platform and supports features of both
the C64x+ and C67x+ DSP families.
3.3
ARM Subsystem
The ARM Subsystem includes the following features:
• ARM926EJ-S RISC processor
• ARMv5TEJ (32/16-bit) instruction set
• Little endian
• System Control Co-Processor 15 (CP15)
• MMU
• 16KB Instruction cache
• 16KB Data cache
• Write Buffer
• Embedded Trace Module and Embedded Trace Buffer (ETM/ETB)
• ARM Interrupt controller
3.3.1
ARM926EJ-S RISC CPU
The ARM Subsystem integrates the ARM926EJ-S processor. The ARM926EJ-S processor is a member of
ARM9 family of general-purpose microprocessors. This processor is targeted at multi-tasking applications
where full memory management, high performance, low die size, and low power are all important. The
ARM926EJ-S processor supports the 32-bit ARM and 16 bit THUMB instruction sets, enabling the user to
trade off between high performance and high code density. Specifically, the ARM926EJ-S processor
supports the ARMv5TEJ instruction set, which includes features for efficient execution of Java byte codes,
providing Java performance similar to Just in Time (JIT) Java interpreter, but without associated code
overhead.
The ARM926EJ-S processor supports the ARM debug architecture and includes logic to assist in both
hardware and software debug. The ARM926EJ-S processor has a Harvard architecture and provides a
complete high performance subsystem, including:
• ARM926EJ -S integer core
• CP15 system control coprocessor
• Memory Management Unit (MMU)
Device Comparison
Copyright © 2009–2017, Texas Instruments Incorporated
Submit Documentation Feedback
Product Folder Links: OMAP-L138
9
OMAP-L138
SPRS586J – JUNE 2009 – REVISED JANUARY 2017
•
•
•
•
•
www.ti.com
Separate instruction and data caches
Write buffer
Separate instruction and data (internal RAM) interfaces
Separate instruction and data AHB bus interfaces
Embedded Trace Module and Embedded Trace Buffer (ETM/ETB)
For more complete details on the ARM9, refer to the ARM926EJ-S Technical Reference Manual, available
at http://www.arm.com
3.3.2
CP15
The ARM926EJ-S system control coprocessor (CP15) is used to configure and control instruction and
data caches, Memory Management Unit (MMU), and other ARM subsystem functions. The CP15 registers
are programmed using the MRC and MCR ARM instructions, when the ARM in a privileged mode such as
supervisor or system mode.
3.3.3
MMU
A single set of two level page tables stored in main memory is used to control the address translation,
permission checks and memory region attributes for both data and instruction accesses. The MMU uses a
single unified Translation Lookaside Buffer (TLB) to cache the information held in the page tables. The
MMU features are:
• Standard ARM architecture v4 and v5 MMU mapping sizes, domains and access protection scheme.
• Mapping sizes are:
– 1MB (sections)
– 64KB (large pages)
– 4KB (small pages)
– 1KB (tiny pages)
• Access permissions for large pages and small pages can be specified separately for each quarter of
the page (subpage permissions)
• Hardware page table walks
• Invalidate entire TLB, using CP15 register 8
• Invalidate TLB entry, selected by MVA, using CP15 register 8
• Lockdown of TLB entries, using CP15 register 10
3.3.4
Caches and Write Buffer
The size of the Instruction cache is 16KB, Data cache is 16KB. Additionally, the caches have the following
features:
• Virtual index, virtual tag, and addressed using the Modified Virtual Address (MVA)
• Four-way set associative, with a cache line length of eight words per line (32-bytes per line) and with
two dirty bits in the Dcache
• Dcache supports write-through and write-back (or copy back) cache operation, selected by memory
region using the C and B bits in the MMU translation tables
• Critical-word first cache refilling
• Cache lockdown registers enable control over which cache ways are used for allocation on a line fill,
providing a mechanism for both lockdown, and controlling cache corruption
• Dcache stores the Physical Address TAG (PA TAG) corresponding to each Dcache entry in the TAG
RAM for use during the cache line write-backs, in addition to the Virtual Address TAG stored in the
TAG RAM. This means that the MMU is not involved in Dcache write-back operations, removing the
possibility of TLB misses related to the write-back address.
• Cache maintenance operations provide efficient invalidation of, the entire Dcache or Icache, regions of
the Dcache or Icache, and regions of virtual memory.
10
Device Comparison
Copyright © 2009–2017, Texas Instruments Incorporated
Submit Documentation Feedback
Product Folder Links: OMAP-L138
OMAP-L138
www.ti.com
SPRS586J – JUNE 2009 – REVISED JANUARY 2017
The write buffer is used for all writes to a noncachable bufferable region, write-through region and write
misses to a write-back region. A separate buffer is incorporated in the Dcache for holding write-back for
cache line evictions or cleaning of dirty cache lines. The main write buffer has 16-word data buffer and a
four-address buffer. The Dcache write-back has eight data word entries and a single address entry.
3.3.5
Advanced High-Performance Bus (AHB)
The ARM Subsystem uses the AHB port of the ARM926EJ-S to connect the ARM to the Config bus and
the external memories. Arbiters are employed to arbitrate access to the separate D-AHB and I-AHB by the
Config Bus and the external memories bus.
3.3.6
Embedded Trace Macrocell (ETM) and Embedded Trace Buffer (ETB)
To support real-time trace, the ARM926EJ-S processor provides an interface to enable connection of an
Embedded Trace Macrocell (ETM). The ARM926ES-J Subsystem in the device also includes the
Embedded Trace Buffer (ETB). The ETM consists of two parts:
• Trace Port provides real-time trace capability for the ARM9.
• Triggering facilities provide trigger resources, which include address and data comparators, counter,
and sequencers.
The device trace port is not pinned out and is instead only connected to the Embedded Trace Buffer. The
ETB has a 4KB buffer memory. ETB enabled debug tools are required to read/interpret the captured trace
data.
3.3.7
ARM Memory Mapping
By default the ARM has access to most on and off chip memory areas, including the DSP Internal
memories, EMIFA, DDR2, and the additional 128K byte on chip shared SRAM. Likewise almost all of the
on chip peripherals are accessible to the ARM by default.
To improve security and/or robustness, the device has extensive memory and peripheral protection units
which can be configured to limit access rights to the various on/off chip resources to specific hosts;
including the ARM as well as other master peripherals. This allows the system tasks to be partitioned
between the ARM and DSP as best suites the particular application; while enhancing the overall
robustness of the solution
See Table 3-4 for a detailed top level device memory map that includes the ARM memory space.
3.4
DSP Subsystem
The DSP Subsystem includes the following features:
• C674x DSP CPU
• 32KB L1 Program (L1P)/Cache (up to 32KB)
• 32KB L1 Data (L1D)/Cache (up to 32KB)
• 256KB Unified Mapped RAM/Cache (L2)
• Boot ROM (cannot be used for application code)
• Little endian
Device Comparison
Copyright © 2009–2017, Texas Instruments Incorporated
Submit Documentation Feedback
Product Folder Links: OMAP-L138
11
OMAP-L138
SPRS586J – JUNE 2009 – REVISED JANUARY 2017
www.ti.com
32K Bytes
L1P RAM/
Cache
256K Bytes
L2 RAM
256
256
256
Cache Control
Memory Protect
BOOT
ROM
256
Cache Control
Memory Protect
L1P
Bandwidth Mgmt
L2
Bandwidth Mgmt
256
256
256
Instruction Fetch
256
Power Down
Interrupt
Controller
C674x
Fixed/Floating Point CPU
IDMA
Register
File A
Register
File B
64
64
256
CFG
Bandwidth Mgmt
Memory Protect
EMC
L1D
Cache Control
32
MDMA
8 x 32
64
Configuration
Peripherals
Bus
SDMA
64
64
64
High
Performance
Switch Fabric
32K Bytes
L1D RAM/
Cache
Figure 3-1. C674x Megamodule Block Diagram
3.4.1
C674x DSP CPU Description
The C674x Central Processing Unit (CPU) consists of eight functional units, two register files, and two
data paths as shown in Figure 3-2. The two general-purpose register files (A and B) each contain 32 32bit registers for a total of 64 registers. The general-purpose registers can be used for data or can be data
address pointers. The data types supported include packed 8-bit data, packed 16-bit data, 32-bit data, 40bit data, and 64-bit data. Values larger than 32 bits, such as 40-bit-long or 64-bit-long values are stored in
register pairs, with the 32 LSBs of data placed in an even register and the remaining 8 or 32 MSBs in the
next upper register (which is always an odd-numbered register).
The eight functional units (.M1, .L1, .D1, .S1, .M2, .L2, .D2, and .S2) are each capable of executing one
instruction every clock cycle. The .M functional units perform all multiply operations. The .S and .L units
perform a general set of arithmetic, logical, and branch functions. The .D units primarily load data from
memory to the register file and store results from the register file into memory.
The C674x CPU combines the performance of the C64x+ core with the floating-point capabilities of the
C67x+ core.
12
Device Comparison
Copyright © 2009–2017, Texas Instruments Incorporated
Submit Documentation Feedback
Product Folder Links: OMAP-L138
OMAP-L138
www.ti.com
SPRS586J – JUNE 2009 – REVISED JANUARY 2017
Each C674x .M unit can perform one of the following each clock cycle: one 32 x 32 bit multiply, one 16 x
32 bit multiply, two 16 x 16 bit multiplies, two 16 x 32 bit multiplies, two 16 x 16 bit multiplies with
add/subtract capabilities, four 8 x 8 bit multiplies, four 8 x 8 bit multiplies with add operations, and four
16 x 16 multiplies with add/subtract capabilities (including a complex multiply). There is also support for
Galois field multiplication for 8-bit and 32-bit data. Many communications algorithms such as FFTs and
modems require complex multiplication. The complex multiply (CMPY) instruction takes for 16-bit inputs
and produces a 32-bit real and a 32-bit imaginary output. There are also complex multiplies with rounding
capability that produces one 32-bit packed output that contain 16-bit real and 16-bit imaginary values. The
32 x 32 bit multiply instructions provide the extended precision necessary for high-precision algorithms on
a variety of signed and unsigned 32-bit data types.
The .L or (Arithmetic Logic Unit) now incorporates the ability to do parallel add/subtract operations on a
pair of common inputs. Versions of this instruction exist to work on 32-bit data or on pairs of 16-bit data
performing dual 16-bit add and subtracts in parallel. There are also saturated forms of these instructions.
The C674x core enhances the .S unit in several ways. On the previous cores, dual 16-bit MIN2 and MAX2
comparisons were only available on the .L units. On the C674x core they are also available on the .S unit
which increases the performance of algorithms that do searching and sorting. Finally, to increase data
packing and unpacking throughput, the .S unit allows sustained high performance for the quad 8-bit/16-bit
and dual 16-bit instructions. Unpack instructions prepare 8-bit data for parallel 16-bit operations. Pack
instructions return parallel results to output precision including saturation support.
Other new features include:
• SPLOOP - A small instruction buffer in the CPU that aids in creation of software pipelining loops where
multiple iterations of a loop are executed in parallel. The SPLOOP buffer reduces the code size
associated with software pipelining. Furthermore, loops in the SPLOOP buffer are fully interruptible.
• Compact Instructions - The native instruction size for the C6000 devices is 32 bits. Many common
instructions such as MPY, AND, OR, ADD, and SUB can be expressed as 16 bits if the C674x
compiler can restrict the code to use certain registers in the register file. This compression is
performed by the code generation tools.
• Instruction Set Enhancement - As noted above, there are new instructions such as 32-bit
multiplications, complex multiplications, packing, sorting, bit manipulation, and 32-bit Galois field
multiplication.
• Exceptions Handling - Intended to aid the programmer in isolating bugs. The C674x CPU is able to
detect and respond to exceptions, both from internally detected sources (such as illegal op-codes) and
from system events (such as a watchdog time expiration).
• Privilege - Defines user and supervisor modes of operation, allowing the operating system to give a
basic level of protection to sensitive resources. Local memory is divided into multiple pages, each with
read, write, and execute permissions.
• Time-Stamp Counter - Primarily targeted for Real-Time Operating System (RTOS) robustness, a freerunning time-stamp counter is implemented in the CPU which is not sensitive to system stalls.
For more details on the C674x CPU and its enhancements over the C64x architecture, see the following
documents:
• TMS320C64x/C64x+ DSP CPU and Instruction Set Reference Guide (literature number SPRUFE8)
• TMS320C64x Technical Overview (literature number SPRU395)
Device Comparison
Copyright © 2009–2017, Texas Instruments Incorporated
Submit Documentation Feedback
Product Folder Links: OMAP-L138
13
OMAP-L138
SPRS586J – JUNE 2009 – REVISED JANUARY 2017
ÁÁ
ÁÁ
Á
Á
ÁÁ Á
ÁÁ Á
Á
Á
Á
Á
Á
Á
Á Á
Á Á
Á
Á
Á
Á Á
Á
Á
Á
Á
Á
Á
Á
Á
Á
Á
Á
Á
Á
Á
Á
Á
Á
Á
www.ti.com
src1
Odd
register
file A
(A1, A3,
A5...A31)
src2
.L1
odd dst
Even
register
file A
(A0, A2,
A4...A30)
(D)
even dst
long src
ST1b
ST1a
32 MSB
32 LSB
long src
8
8
even dst
odd dst
.S1
src1
Data path A
(D)
src2
LD1b
LD1a
32 LSB
DA2
32
32
src2
32 MSB
DA1
LD2a
LD2b
Á
Á
Á
Á
Á
Á
.M1
dst2
dst1
src1
(A)
(B)
(C)
dst
.D1
src1
src2
2x
1x
Odd
register
file B
(B1, B3,
B5...B31)
src2
.D2
32 LSB
32 MSB
src1
dst
src2
.M2
Even
register
file B
(B0, B2,
B4...B30)
(C)
src1
dst2
32
(B)
dst1
32
(A)
src2
src1
.S2 odd dst
even dst
long src
Data path B
ST2a
ST2b
32 MSB
32 LSB
long src
even dst
.L2
(D)
8
8
(D)
odd dst
src2
src1
Control Register
A.
B.
C.
D.
On .M unit, dst2 is 32 MSB.
On .M unit, dst1 is 32 LSB.
On C64x CPU .M unit, src2 is 32 bits; on C64x+ CPU .M unit, src2 is 64 bits.
On .L and .S units, odd dst connects to odd register files and even dst connects to even register files.
Figure 3-2. TMS320C674x CPU (DSP Core) Data Paths
14
Device Comparison
Copyright © 2009–2017, Texas Instruments Incorporated
Submit Documentation Feedback
Product Folder Links: OMAP-L138
OMAP-L138
www.ti.com
3.4.2
SPRS586J – JUNE 2009 – REVISED JANUARY 2017
DSP Memory Mapping
The DSP memory map is shown in Section 3.5.
By default the DSP also has access to most on and off chip memory areas, with the exception of the ARM
RAM, ROM, and AINTC interrupt controller.
Additionally, the DSP megamodule includes the capability to limit access to its internal memories through
its SDMA port; without needing an external MPU unit.
3.4.2.1
ARM Internal Memories
The DSP does not have access to the ARM internal memory.
3.4.2.2
External Memories
The DSP has access to the following External memories:
• Asynchronous EMIF / SDRAM / NAND / NOR Flash (EMIFA)
• SDRAM (DDR2)
3.4.2.3
DSP Internal Memories
The DSP has access to the following DSP memories:
• L2 RAM
• L1P RAM
• L1D RAM
3.4.2.4
C674x CPU
The C674x core uses a two-level cache-based architecture. The Level 1 Program cache (L1P) is 32 KB
direct mapped cache and the Level 1 Data cache (L1D) is 32 KB 2-way set associated cache. The Level 2
memory/cache (L2) consists of a 256 KB memory space that is shared between program and data space.
L2 memory can be configured as mapped memory, cache, or a combination of both.
Table 3-2 shows a memory map of the C674x CPU cache registers for the device.
Table 3-2. C674x Cache Registers
Byte Address
Register Name
0x0184 0000
L2CFG
0x0184 0020
L1PCFG
0x0184 0024
L1PCC
0x0184 0040
L1DCFG
Register Description
L2 Cache configuration register
L1P Size Cache configuration register
L1P Freeze Mode Cache configuration register
L1D Size Cache configuration register
0x0184 0044
L1DCC
0x0184 0048 - 0x0184 0FFC
-
L1D Freeze Mode Cache configuration register
0x0184 1000
EDMAWEIGHT
Reserved
L2 EDMA access control register
0x0184 1004 - 0x0184 1FFC
-
0x0184 2000
L2ALLOC0
Reserved
L2 allocation register 0
0x0184 2004
L2ALLOC1
L2 allocation register 1
0x0184 2008
L2ALLOC2
L2 allocation register 2
0x0184 200C
L2ALLOC3
L2 allocation register 3
0x0184 2010 - 0x0184 3FFF
-
0x0184 4000
L2WBAR
L2 writeback base address register
0x0184 4004
L2WWC
L2 writeback word count register
0x0184 4010
L2WIBAR
L2 writeback invalidate base address register
0x0184 4014
L2WIWC
L2 writeback invalidate word count register
0x0184 4018
L2IBAR
L2 invalidate base address register
Reserved
Device Comparison
Copyright © 2009–2017, Texas Instruments Incorporated
Submit Documentation Feedback
Product Folder Links: OMAP-L138
15
OMAP-L138
SPRS586J – JUNE 2009 – REVISED JANUARY 2017
www.ti.com
Table 3-2. C674x Cache Registers (continued)
Byte Address
Register Name
0x0184 401C
L2IWC
Register Description
0x0184 4020
L1PIBAR
L1P invalidate base address register
0x0184 4024
L1PIWC
L1P invalidate word count register
0x0184 4030
L1DWIBAR
L1D writeback invalidate base address register
0x0184 4034
L1DWIWC
L1D writeback invalidate word count register
0x0184 4038
-
0x0184 4040
L1DWBAR
L1D Block Writeback
0x0184 4044
L1DWWC
L1D Block Writeback
0x0184 4048
L1DIBAR
L1D invalidate base address register
0x0184 404C
L1DIWC
L1D invalidate word count register
0x0184 4050 - 0x0184 4FFF
-
L2 invalidate word count register
Reserved
Reserved
0x0184 5000
L2WB
0x0184 5004
L2WBINV
0x0184 5008
L2INV
0x0184 500C - 0x0184 5027
-
0x0184 5028
L1PINV
0x0184 502C - 0x0184 5039
-
L2 writeback all register
L2 writeback invalidate all register
L2 Global Invalidate without writeback
Reserved
L1P Global Invalidate
Reserved
0x0184 5040
L1DWB
0x0184 5044
L1DWBINV
L1D Global Writeback
0x0184 5048
L1DINV
L1D Global Invalidate without writeback
0x0184 8000 – 0x0184 80FF
MAR0 - MAR63
Reserved 0x0000 0000 – 0x3FFF FFFF
0x0184 8100 – 0x0184 817F
MAR64 – MAR95
Memory Attribute Registers for EMIFA SDRAM Data (CS0)
External memory addresses 0x4000 0000 – 0x5FFF FFFF
0x0184 8180 – 0x0184 8187
MAR96 - MAR97
Memory Attribute Registers for EMIFA Async Data (CS2)
External memory addresses 0x6000 0000 – 0x61FF FFFF
0x0184 8188 – 0x0184 818F
MAR98 – MAR99
Memory Attribute Registers for EMIFA Async Data (CS3)
External memory addresses 0x6200 0000 – 0x63FF FFFF
0x0184 8190 – 0x0184 8197
MAR100 – MAR101
Memory Attribute Registers for EMIFA Async Data (CS4)
External memory addresses 0x6400 0000 – 0x65FF FFFF
0x0184 8198 – 0x0184 819F
MAR102 – MAR103
Memory Attribute Registers for EMIFA Async Data (CS5)
External memory addresses 0x6600 0000 – 0x67FF FFFF
0x0184 81A0 – 0x0184 81FF
MAR104 – MAR127
Reserved 0x6800 0000 – 0x7FFF FFFF
0x0184 8200
MAR128
L1D Global Writeback with Invalidate
Memory Attribute Register for Shared RAM
External memory addresses 0x8000 0000 – 0x8001 FFFF
Reserved 0x8002 0000 – 0x81FF FFFF
0x0184 8204 – 0x0184 82FF
MAR129 – MAR191
Reserved 0x8200 0000 – 0xBFFF FFFF
0x0184 8300 – 0x0184 837F
MAR192 – MAR223
Memory Attribute Registers for DDR2 Data (CS2)
External memory addresses 0xC000 0000 – 0xDFFF FFFF
0x0184 8380 – 0x0184 83FF
MAR224 – MAR255
Reserved 0xE000 0000 – 0xFFFF FFFF
Table 3-3. C674x L1/L2 Memory Protection Registers
HEX ADDRESS RANGE
REGISTER ACRONYM
DESCRIPTION
0x0184 A000
L2MPFAR
L2 memory protection fault address register
0x0184 A004
L2MPFSR
L2 memory protection fault status register
0x0184 A008
L2MPFCR
L2 memory protection fault command register
0x0184 A00C - 0x0184 A0FF
-
0x0184 A100
L2MPLK0
L2 memory protection lock key bits [31:0]
0x0184 A104
L2MPLK1
L2 memory protection lock key bits [63:32]
0x0184 A108
L2MPLK2
L2 memory protection lock key bits [95:64]
16
Reserved
Device Comparison
Copyright © 2009–2017, Texas Instruments Incorporated
Submit Documentation Feedback
Product Folder Links: OMAP-L138
OMAP-L138
www.ti.com
SPRS586J – JUNE 2009 – REVISED JANUARY 2017
Table 3-3. C674x L1/L2 Memory Protection Registers (continued)
HEX ADDRESS RANGE
REGISTER ACRONYM
0x0184 A10C
L2MPLK3
DESCRIPTION
L2 memory protection lock key bits [127:96]
0x0184 A110
L2MPLKCMD
L2 memory protection lock key command register
0x0184 A114
L2MPLKSTAT
L2 memory protection lock key status register
0x0184 A118 - 0x0184 A1FF
-
0x0184 A200
L2MPPA0
L2 memory protection page attribute register 0 (controls memory address
0x0080 0000 - 0x0080 1FFF)
0x0184 A204
L2MPPA1
L2 memory protection page attribute register 1 (controls memory address
0x0080 2000 - 0x0080 3FFF)
0x0184 A208
L2MPPA2
L2 memory protection page attribute register 2 (controls memory address
0x0080 4000 - 0x0080 5FFF)
0x0184 A20C
L2MPPA3
L2 memory protection page attribute register 3 (controls memory address
0x0080 6000 - 0x0080 7FFF)
0x0184 A210
L2MPPA4
L2 memory protection page attribute register 4 (controls memory address
0x0080 8000 - 0x0080 9FFF)
0x0184 A214
L2MPPA5
L2 memory protection page attribute register 5 (controls memory address
0x0080 A000 - 0x0080 BFFF)
0x0184 A218
L2MPPA6
L2 memory protection page attribute register 6 (controls memory address
0x0080 C000 - 0x0080 DFFF)
0x0184 A21C
L2MPPA7
L2 memory protection page attribute register 7 (controls memory address
0x0080 E000 - 0x0080 FFFF)
0x0184 A220
L2MPPA8
L2 memory protection page attribute register 8 (controls memory address
0x0081 0000 - 0x0081 1FFF)
0x0184 A224
L2MPPA9
L2 memory protection page attribute register 9 (controls memory address
0x0081 2000 - 0x0081 3FFF)
0x0184 A228
L2MPPA10
L2 memory protection page attribute register 10 (controls memory address
0x0081 4000 - 0x0081 5FFF)
0x0184 A22C
L2MPPA11
L2 memory protection page attribute register 11 (controls memory address
0x0081 6000 - 0x0081 7FFF)
0x0184 A230
L2MPPA12
L2 memory protection page attribute register 12 (controls memory address
0x0081 8000 - 0x0081 9FFF)
0x0184 A234
L2MPPA13
L2 memory protection page attribute register 13 (controls memory address
0x0081 A000 - 0x0081 BFFF)
0x0184 A238
L2MPPA14
L2 memory protection page attribute register 14 (controls memory address
0x0081 C000 - 0x0081 DFFF)
0x0184 A23C
L2MPPA15
L2 memory protection page attribute register 15 (controls memory address
0x0081 E000 - 0x0081 FFFF)
0x0184 A240
L2MPPA16
L2 memory protection page attribute register 16 (controls memory address
0x0082 0000 - 0x0082 1FFF)
0x0184 A244
L2MPPA17
L2 memory protection page attribute register 17 (controls memory address
0x0082 2000 - 0x0082 3FFF)
0x0184 A248
L2MPPA18
L2 memory protection page attribute register 18 (controls memory address
0x0082 4000 - 0x0082 5FFF)
0x0184 A24C
L2MPPA19
L2 memory protection page attribute register 19 (controls memory address
0x0082 6000 - 0x0082 7FFF)
0x0184 A250
L2MPPA20
L2 memory protection page attribute register 20 (controls memory address
0x0082 8000 - 0x0082 9FFF)
0x0184 A254
L2MPPA21
L2 memory protection page attribute register 21 (controls memory address
0x0082 A000 - 0x0082 BFFF)
0x0184 A258
L2MPPA22
L2 memory protection page attribute register 22 (controls memory address
0x0082 C000 - 0x0082 DFFF)
0x0184 A25C
L2MPPA23
L2 memory protection page attribute register 23 (controls memory address
0x0082 E000 - 0x0082 FFFF)
0x0184 A260
L2MPPA24
L2 memory protection page attribute register 24 (controls memory address
0x0083 0000 - 0x0083 1FFF)
Reserved
Device Comparison
Copyright © 2009–2017, Texas Instruments Incorporated
Submit Documentation Feedback
Product Folder Links: OMAP-L138
17
OMAP-L138
SPRS586J – JUNE 2009 – REVISED JANUARY 2017
www.ti.com
Table 3-3. C674x L1/L2 Memory Protection Registers (continued)
HEX ADDRESS RANGE
18
REGISTER ACRONYM
DESCRIPTION
0x0184 A264
L2MPPA25
L2 memory protection page attribute register 25 (controls memory address
0x0083 2000 - 0x0083 3FFF)
0x0184 A268
L2MPPA26
L2 memory protection page attribute register 26 (controls memory address
0x0083 4000 - 0x0083 5FFF)
0x0184 A26C
L2MPPA27
L2 memory protection page attribute register 27 (controls memory address
0x0083 6000 - 0x0083 7FFF)
0x0184 A270
L2MPPA28
L2 memory protection page attribute register 28 (controls memory address
0x0083 8000 - 0x0083 9FFF)
0x0184 A274
L2MPPA29
L2 memory protection page attribute register 29 (controls memory address
0x0083 A000 - 0x0083 BFFF)
0x0184 A278
L2MPPA30
L2 memory protection page attribute register 30 (controls memory address
0x0083 C000 - 0x0083 DFFF)
0x0184 A27C
L2MPPA31
L2 memory protection page attribute register 31 (controls memory address
0x0083 E000 - 0x0083 FFFF)
0x0184 A280
L2MPPA32
L2 memory protection page attribute register 32 (controls memory address
0x0070 0000 - 0x0070 7FFF)
0x0184 A284
L2MPPA33
L2 memory protection page attribute register 33 (controls memory address
0x0070 8000 - 0x0070 FFFF)
0x0184 A288
L2MPPA34
L2 memory protection page attribute register 34 (controls memory address
0x0071 0000 - 0x0071 7FFF)
0x0184 A28C
L2MPPA35
L2 memory protection page attribute register 35 (controls memory address
0x0071 8000 - 0x0071 FFFF)
0x0184 A290
L2MPPA36
L2 memory protection page attribute register 36 (controls memory address
0x0072 0000 - 0x0072 7FFF)
0x0184 A294
L2MPPA37
L2 memory protection page attribute register 37 (controls memory address
0x0072 8000 - 0x0072 FFFF)
0x0184 A298
L2MPPA38
L2 memory protection page attribute register 38 (controls memory address
0x0073 0000 - 0x0073 7FFF)
0x0184 A29C
L2MPPA39
L2 memory protection page attribute register 39 (controls memory address
0x0073 8000 - 0x0073 FFFF)
0x0184 A2A0
L2MPPA40
L2 memory protection page attribute register 40 (controls memory address
0x0074 0000 - 0x0074 7FFF)
0x0184 A2A4
L2MPPA41
L2 memory protection page attribute register 41 (controls memory address
0x0074 8000 - 0x0074 FFFF)
0x0184 A2A8
L2MPPA42
L2 memory protection page attribute register 42 (controls memory address
0x0075 0000 - 0x0075 7FFF)
0x0184 A2AC
L2MPPA43
L2 memory protection page attribute register 43 (controls memory address
0x0075 8000 - 0x0075 FFFF)
0x0184 A2B0
L2MPPA44
L2 memory protection page attribute register 44 (controls memory address
0x0076 0000 - 0x0076 7FFF)
0x0184 A2B4
L2MPPA45
L2 memory protection page attribute register 45 (controls memory address
0x0076 8000 - 0x0076 FFFF)
0x0184 A2B8
L2MPPA46
L2 memory protection page attribute register 46 (controls memory address
0x0077 0000 - 0x0077 7FFF)
0x0184 A2BC
L2MPPA47
L2 memory protection page attribute register 47 (controls memory address
0x0077 8000 - 0x0077 FFFF)
0x0184 A2C0
L2MPPA48
L2 memory protection page attribute register 48 (controls memory address
0x0078 0000 - 0x0078 7FFF)
0x0184 A2C4
L2MPPA49
L2 memory protection page attribute register 49 (controls memory address
0x0078 8000 - 0x0078 FFFF)
0x0184 A2C8
L2MPPA50
L2 memory protection page attribute register 50 (controls memory address
0x0079 0000 - 0x0079 7FFF)
0x0184 A2CC
L2MPPA51
L2 memory protection page attribute register 51 (controls memory address
0x0079 8000 - 0x0079 FFFF)
0x0184 A2D0
L2MPPA52
L2 memory protection page attribute register 52 (controls memory address
0x007A 0000 - 0x007A 7FFF)
Device Comparison
Copyright © 2009–2017, Texas Instruments Incorporated
Submit Documentation Feedback
Product Folder Links: OMAP-L138
OMAP-L138
www.ti.com
SPRS586J – JUNE 2009 – REVISED JANUARY 2017
Table 3-3. C674x L1/L2 Memory Protection Registers (continued)
HEX ADDRESS RANGE
REGISTER ACRONYM
DESCRIPTION
0x0184 A2D4
L2MPPA53
L2 memory protection page attribute register 53 (controls memory address
0x007A 8000 - 0x007A FFFF)
0x0184 A2D8
L2MPPA54
L2 memory protection page attribute register 54 (controls memory address
0x007B 0000 - 0x007B 7FFF)
0x0184 A2DC
L2MPPA55
L2 memory protection page attribute register 55 (controls memory address
0x007B 8000 - 0x007B FFFF)
0x0184 A2E0
L2MPPA56
L2 memory protection page attribute register 56 (controls memory address
0x007C 0000 - 0x007C 7FFF)
0x0184 A2E4
L2MPPA57
L2 memory protection page attribute register 57 (controls memory address
0x007C 8000 - 0x007C FFFF)
0x0184 A2E8
L2MPPA58
L2 memory protection page attribute register 58 (controls memory address
0x007D 0000 - 0x007D 7FFF)
0x0184 A2EC
L2MPPA59
L2 memory protection page attribute register 59 (controls memory address
0x007D 8000 - 0x007D FFFF)
0x0184 A2F0
L2MPPA60
L2 memory protection page attribute register 60 (controls memory address
0x007E 0000 - 0x007E 7FFF)
0x0184 A2F4
L2MPPA61
L2 memory protection page attribute register 61 (controls memory address
0x007E 8000 - 0x007E FFFF)
0x0184 A2F8
L2MPPA62
L2 memory protection page attribute register 62 (controls memory address
0x007F 0000 - 0x007F 7FFF)
0x0184 A2FC
L2MPPA63
L2 memory protection page attribute register 63 (controls memory address
0x007F 8000 - 0x007F FFFF)
0x0184 A300 - 0x0184 A3FF
-
0x0184 A400
L1PMPFAR
L1P memory protection fault address register
0x0184 A404
L1PMPFSR
L1P memory protection fault status register
0x0184 A408
L1PMPFCR
L1P memory protection fault command register
Reserved
0x0184 A40C - 0x0184 A4FF
-
0x0184 A500
L1PMPLK0
Reserved
L1P memory protection lock key bits [31:0]
0x0184 A504
L1PMPLK1
L1P memory protection lock key bits [63:32]
0x0184 A508
L1PMPLK2
L1P memory protection lock key bits [95:64]
0x0184 A50C
L1PMPLK3
L1P memory protection lock key bits [127:96]
0x0184 A510
L1PMPLKCMD
L1P memory protection lock key command register
0x0184 A514
L1PMPLKSTAT
L1P memory protection lock key status register
0x0184 A518 - 0x0184 A5FF
-
Reserved
0x0184 A600 - 0x0184 A63F
-
Reserved
0x0184 A640
L1PMPPA16
L1P memory protection page attribute register 16 (controls memory address
0x00E0 0000 - 0x00E0 07FF)
0x0184 A644
L1PMPPA17
L1P memory protection page attribute register 17 (controls memory address
0x00E0 0800 - 0x00E0 0FFF)
0x0184 A648
L1PMPPA18
L1P memory protection page attribute register 18 (controls memory address
0x00E0 1000 - 0x00E0 17FF)
0x0184 A64C
L1PMPPA19
L1P memory protection page attribute register 19 (controls memory address
0x00E0 1800 - 0x00E0 1FFF)
0x0184 A650
L1PMPPA20
L1P memory protection page attribute register 20 (controls memory address
0x00E0 2000 - 0x00E0 27FF)
0x0184 A654
L1PMPPA21
L1P memory protection page attribute register 21 (controls memory address
0x00E0 2800 - 0x00E0 2FFF)
0x0184 A658
L1PMPPA22
L1P memory protection page attribute register 22 (controls memory address
0x00E0 3000 - 0x00E0 37FF)
0x0184 A65C
L1PMPPA23
L1P memory protection page attribute register 23 (controls memory address
0x00E0 3800 - 0x00E0 3FFF)
(1)
(1)
These addresses correspond to the L1P memory protection page attribute registers 0-15 (L1PMPPA0-L1PMPPA15) of the C674x
megamaodule. These registers are not supported for this device.
Device Comparison
Copyright © 2009–2017, Texas Instruments Incorporated
Submit Documentation Feedback
Product Folder Links: OMAP-L138
19
OMAP-L138
SPRS586J – JUNE 2009 – REVISED JANUARY 2017
www.ti.com
Table 3-3. C674x L1/L2 Memory Protection Registers (continued)
HEX ADDRESS RANGE
REGISTER ACRONYM
DESCRIPTION
0x0184 A660
L1PMPPA24
L1P memory protection page attribute register 24 (controls memory address
0x00E0 4000 - 0x00E0 47FF)
0x0184 A664
L1PMPPA25
L1P memory protection page attribute register 25 (controls memory address
0x00E0 4800 - 0x00E0 4FFF)
0x0184 A668
L1PMPPA26
L1P memory protection page attribute register 26 (controls memory address
0x00E0 5000 - 0x00E0 57FF)
0x0184 A66C
L1PMPPA27
L1P memory protection page attribute register 27 (controls memory address
0x00E0 5800 - 0x00E0 5FFF)
0x0184 A670
L1PMPPA28
L1P memory protection page attribute register 28 (controls memory address
0x00E0 6000 - 0x00E0 67FF)
0x0184 A674
L1PMPPA29
L1P memory protection page attribute register 29 (controls memory address
0x00E0 6800 - 0x00E0 6FFF)
0x0184 A678
L1PMPPA30
L1P memory protection page attribute register 30 (controls memory address
0x00E0 7000 - 0x00E0 77FF)
0x0184 A67C
L1PMPPA31
L1P memory protection page attribute register 31 (controls memory address
0x00E0 7800 - 0x00E0 7FFF)
0x0184 A67F – 0x0184 ABFF
-
0x0184 AC00
L1DMPFAR
Reserved
L1D memory protection fault address register
0x0184 AC04
L1DMPFSR
L1D memory protection fault status register
L1D memory protection fault command register
0x0184 AC08
L1DMPFCR
0x0184 AC0C - 0x0184 ACFF
-
0x0184 AD00
L1DMPLK0
L1D memory protection lock key bits [31:0]
0x0184 AD04
L1DMPLK1
L1D memory protection lock key bits [63:32]
0x0184 AD08
L1DMPLK2
L1D memory protection lock key bits [95:64]
0x0184 AD0C
L1DMPLK3
L1D memory protection lock key bits [127:96]
Reserved
0x0184 AD10
L1DMPLKCMD
L1D memory protection lock key command register
0x0184 AD14
L1DMPLKSTAT
L1D memory protection lock key status register
0x0184 AD18 - 0x0184 ADFF
-
Reserved
0x0184 AE00 - 0x0184 AE3F
-
Reserved
0x0184 AE40
L1DMPPA16
L1D memory protection page attribute register 16 (controls memory address
0x00F0 0000 - 0x00F0 07FF)
0x0184 AE44
L1DMPPA17
L1D memory protection page attribute register 17 (controls memory address
0x00F0 0800 - 0x00F0 0FFF)
0x0184 AE48
L1DMPPA18
L1D memory protection page attribute register 18 (controls memory address
0x00F0 1000 - 0x00F0 17FF)
0x0184 AE4C
L1DMPPA19
L1D memory protection page attribute register 19 (controls memory address
0x00F0 1800 - 0x00F0 1FFF)
0x0184 AE50
L1DMPPA20
L1D memory protection page attribute register 20 (controls memory address
0x00F0 2000 - 0x00F0 27FF)
0x0184 AE54
L1DMPPA21
L1D memory protection page attribute register 21 (controls memory address
0x00F0 2800 - 0x00F0 2FFF)
0x0184 AE58
L1DMPPA22
L1D memory protection page attribute register 22 (controls memory address
0x00F0 3000 - 0x00F0 37FF)
0x0184 AE5C
L1DMPPA23
L1D memory protection page attribute register 23 (controls memory address
0x00F0 3800 - 0x00F0 3FFF)
0x0184 AE60
L1DMPPA24
L1D memory protection page attribute register 24 (controls memory address
0x00F0 4000 - 0x00F0 47FF)
0x0184 AE64
L1DMPPA25
L1D memory protection page attribute register 25 (controls memory address
0x00F0 4800 - 0x00F0 4FFF)
0x0184 AE68
L1DMPPA26
L1D memory protection page attribute register 26 (controls memory address
0x00F0 5000 - 0x00F0 57FF)
(2)
20
(2)
These addresses correspond to the L1D memory protection page attribute registers 0-15 (L1DMPPA0-L1DMPPA15) of the C674x
megamaodule. These registers are not supported for this device.
Device Comparison
Copyright © 2009–2017, Texas Instruments Incorporated
Submit Documentation Feedback
Product Folder Links: OMAP-L138
OMAP-L138
www.ti.com
SPRS586J – JUNE 2009 – REVISED JANUARY 2017
Table 3-3. C674x L1/L2 Memory Protection Registers (continued)
HEX ADDRESS RANGE
REGISTER ACRONYM
DESCRIPTION
0x0184 AE6C
L1DMPPA27
L1D memory protection page attribute register 27 (controls memory address
0x00F0 5800 - 0x00F0 5FFF)
0x0184 AE70
L1DMPPA28
L1D memory protection page attribute register 28 (controls memory address
0x00F0 6000 - 0x00F0 67FF)
0x0184 AE74
L1DMPPA29
L1D memory protection page attribute register 29 (controls memory address
0x00F0 6800 - 0x00F0 6FFF)
0x0184 AE78
L1DMPPA30
L1D memory protection page attribute register 30 (controls memory address
0x00F0 7000 - 0x00F0 77FF)
0x0184 AE7C
L1DMPPA31
L1D memory protection page attribute register 31 (controls memory address
0x00F0 7800 - 0x00F0 7FFF)
0x0184 AE80 – 0x0185 FFFF
-
Reserved
Device Comparison
Copyright © 2009–2017, Texas Instruments Incorporated
Submit Documentation Feedback
Product Folder Links: OMAP-L138
21
OMAP-L138
SPRS586J – JUNE 2009 – REVISED JANUARY 2017
3.5
www.ti.com
Memory Map Summary
Note: Read/Write accesses to illegal or reserved addresses in the memory map may cause undefined
behavior.
Table 3-4. Top Level Memory Map
Start Address
End Address
Size
ARM Mem
Map
DSP Mem Map
0x0000 0000
0x0000 0FFF
4K
0x0000 1000
0x006F FFFF
0x0070 0000
0x007F FFFF
1024K
0x0080 0000
0x0083 FFFF
256K
DSP L2 RAM
0x0084 0000
0x00DF FFFF
32K
DSP L1P RAM
32K
DSP L1D RAM
EDMA Mem
Map
DSP L2 ROM
LCDC
Mem
Map
(1)
0x00E0 7FFF
0x00E0 8000
0x00EF FFFF
0x00F0 0000
0x00F0 7FFF
0x00F0 8000
0x017F FFFF
0x0180 0000
0x0180 FFFF
64K
DSP Interrupt
Controller
0x0181 0000
0x0181 0FFF
4K
DSP Powerdown
Controller
0x0181 1000
0x0181 1FFF
4K
DSP Security ID
0x0181 2000
0x0181 2FFF
4K
DSP Revision ID
0x0181 3000
0x0181 FFFF
52K
-
0x0182 0000
0x0182 FFFF
64K
DSP EMC
0x0183 0000
0x0183 FFFF
64K
DSP Internal
Reserved
0x0184 0000
0x0184 FFFF
64K
DSP Memory
System
0x0185 0000
0x01BB FFFF
0x01BC 0000
0x01BC 0FFF
0x01BC 1000
0x01BC 1800
0x01BC 1900
0x01BF FFFF
0x01C0 0000
0x01C0 7FFF
32K
EDMA3 CC
0x01C0 8000
0x01C0 83FF
1K
EDMA3 TC0
0x01C0 8400
0x01C0 87FF
1K
EDMA3 TC1
0x01C0 8800
0x01C0 FFFF
0x01C1 0000
0x01C1 0FFF
4K
PSC 0
0x01C1 1000
0x01C1 1FFF
4K
PLL Controller 0
0x01C1 2000
0x01C1 3FFF
0x01C1 4000
0x01C1 4FFF
4K
SYSCFG0
0x01C1 5000
0x01C1 FFFF
0x01C2 0000
0x01C2 0FFF
4K
Timer0
0x01C2 1000
0x01C2 1FFF
4K
Timer1
0x01C2 2000
0x01C2 2FFF
4K
I2C 0
0x01C2 3000
0x01C2 3FFF
4K
RTC
0x01C2 4000
0x01C3 FFFF
22
Master
Peripheral
Mem Map
PRUSS Local
Address Space
0x00E0 0000
(1)
PRUSS Mem
Map
4K
ARM ETB
memory
0x01BC 17FF
2K
ARM ETB reg
0x01BC 18FF
256
ARM Ice
Crusher
The DSP L2 ROM is used for boot purposes and cannot be programmed with application code
Device Comparison
Copyright © 2009–2017, Texas Instruments Incorporated
Submit Documentation Feedback
Product Folder Links: OMAP-L138
OMAP-L138
www.ti.com
SPRS586J – JUNE 2009 – REVISED JANUARY 2017
Table 3-4. Top Level Memory Map (continued)
Start Address
End Address
Size
ARM Mem
Map
DSP Mem Map
EDMA Mem
Map
0x01C4 0000
0x01C4 0FFF
4K
MMC/SD 0
0x01C4 1000
0x01C4 1FFF
4K
SPI 0
0x01C4 2000
0x01C4 2FFF
4K
UART 0
0x01C4 3000
0x01CF FFFF
0x01D0 0000
0x01D0 0FFF
4K
McASP 0 Control
0x01D0 1000
0x01D0 1FFF
4K
McASP 0 AFIFO Ctrl
0x01D0 2000
0x01D0 2FFF
4K
McASP 0 Data
0x01D0 3000
0x01D0 BFFF
0x01D0 C000
0x01D0 CFFF
4K
UART 1
0x01D0 D000
0x01D0 DFFF
4K
UART 2
0x01D0 E000
0x01D0 FFFF
0x01D1 0000
0x01D1 07FF
2K
McBSP0
0x01D1 0800
0x01D1 0FFF
2K
McBSP0 FIFO Ctrl
0x01D1 1000
0x01D1 17FF
2K
McBSP1
0x01D1 1800
0x01D1 1FFF
2K
McBSP1 FIFO Ctrl
0x01D1 2000
0x01DF FFFF
0x01E0 0000
0x01E0 FFFF
64K
USB0
0x01E1 0000
0x01E1 0FFF
4K
UHPI
0x01E1 1000
0x01E1 2FFF
0x01E1 3000
0x01E1 3FFF
4K
LCD Controller
0x01E1 4000
0x01E1 4FFF
4K
Memory Protection Unit 1 (MPU 1)
0x01E1 5000
0x01E1 5FFF
4K
Memory Protection Unit 2 (MPU 2)
0x01E1 6000
0x01E1 6FFF
4K
UPP
0x01E1 7000
0x01E1 7FFF
4K
VPIF
0x01E1 8000
0x01E1 9FFF
8K
SATA
0x01E1 A000
0x01E1 AFFF
4K
PLL Controller 1
4K
MMCSD1
PRUSS Mem
Map
0x01E1 B000
0x01E1 BFFF
0x01E1 C000
0x01E1 FFFF
0x01E2 0000
0x01E2 1FFF
8K
EMAC Control Module RAM
0x01E2 2000
0x01E2 2FFF
4K
EMAC Control Module Registers
0x01E2 3000
0x01E2 3FFF
4K
EMAC Control Registers
0x01E2 4000
0x01E2 4FFF
4K
EMAC MDIO port
0x01E2 5000
0x01E2 5FFF
4K
USB1
0x01E2 6000
0x01E2 6FFF
4K
GPIO
0x01E2 7000
0x01E2 7FFF
4K
PSC 1
0x01E2 8000
0x01E2 8FFF
4K
I2C 1
4K
SYSCFG1
0x01E2 9000
0x01E2 BFFF
0x01E2 C000
0x01E2 CFFF
0x01E2 D000
0x01E2 FFFF
0x01E3 0000
0x01E3 7FFF
32K
EDMA3 CC1
0x01E3 8000
0x01E3 83FF
1K
EDMA3 TC2
0x01E3 8400
0x01EF FFFF
0x01F0 0000
0x01F0 0FFF
4K
eHRPWM 0
0x01F0 1000
0x01F0 1FFF
4K
HRPWM 0
0x01F0 2000
0x01F0 2FFF
4K
eHRPWM 1
0x01F0 3000
0x01F0 3FFF
4K
HRPWM 1
Master
Peripheral
Mem Map
Device Comparison
Copyright © 2009–2017, Texas Instruments Incorporated
Submit Documentation Feedback
Product Folder Links: OMAP-L138
LCDC
Mem
Map
23
OMAP-L138
SPRS586J – JUNE 2009 – REVISED JANUARY 2017
www.ti.com
Table 3-4. Top Level Memory Map (continued)
Start Address
End Address
Size
ARM Mem
Map
DSP Mem Map
EDMA Mem
Map
0x01F0 4000
0x01F0 5FFF
0x01F0 6000
0x01F0 6FFF
4K
ECAP 0
0x01F0 7000
0x01F0 7FFF
4K
ECAP 1
0x01F0 8000
0x01F0 8FFF
4K
ECAP 2
0x01F0 9000
0x01F0 BFFF
0x01F0 C000
0x01F0 CFFF
4K
Timer2
0x01F0 D000
0x01F0 DFFF
4K
Timer3
0x01F0 E000
0x01F0 EFFF
4K
SPI1
0x01F0 F000
0x01F0 FFFF
0x01F1 0000
0x01F1 0FFF
4K
McBSP0 FIFO Data
0x01F1 1000
0x01F1 1FFF
4K
McBSP1 FIFO Data
0x01F1 2000
0x116F FFFF
0x1170 0000
0x117F FFFF
1024K
DSP L2 ROM (1)
0x1180 0000
0x1183 FFFF
256K
DSP L2 RAM
0x1184 0000
0x11DF FFFF
0x11E0 0000
0x11E0 7FFF
32K
DSP L1P RAM
0x11E0 8000
0x11EF FFFF
32K
DSP L1D RAM
0x11F0 0000
0x11F0 7FFF
0x11F0 8000
0x3FFF FFFF
0x4000 0000
0x5FFF FFFF
512M
EMIFA SDRAM data (CS0)
0x6000 0000
0x61FF FFFF
32M
EMIFA async data (CS2)
0x6200 0000
0x63FF FFFF
32M
EMIFA async data (CS3)
0x6400 0000
0x65FF FFFF
32M
EMIFA async data (CS4)
0x6600 0000
0x67FF FFFF
32M
EMIFA async data (CS5)
0x6800 0000
0x6800 7FFF
32K
EMIFA Control Regs
0x6800 8000
0x7FFF FFFF
0x8000 0000
0x8001 FFFF
0x8002 0000
0xAFFF FFFF
0xB000 0000
0xB000 7FFF
0xB000 8000
0xBFFF FFFF
0xC000 0000
0xCFFF FFFF
0xD000 0000
0xFFFC FFFF
0xFFFD 0000
0xFFFD FFFF
128K
Shared RAM
32K
DDR2/mDDR Control Regs
256M
DDR2/mDDR Data
64K
ARM local
ROM
0xFFFE 0000
0xFFFE DFFF
0xFFFE E000
0xFFFE FFFF
8K
ARM Interrupt
Controller
0xFFFF 0000
0xFFFF 1FFF
8K
ARM local
RAM
0xFFFF 2000
0xFFFF FFFF
24
PRUSS Mem
Map
Device Comparison
Master
Peripheral
Mem Map
LCDC
Mem
Map
ARM Local
RAM (PRU0
only)
Copyright © 2009–2017, Texas Instruments Incorporated
Submit Documentation Feedback
Product Folder Links: OMAP-L138
OMAP-L138
www.ti.com
3.6
SPRS586J – JUNE 2009 – REVISED JANUARY 2017
Pin Assignments
Extensive use of pin multiplexing is used to accommodate the largest number of peripheral functions in
the smallest possible package. Pin multiplexing is controlled using a combination of hardware
configuration at device reset and software programmable register settings.
3.6.1
Pin Map (Bottom View)
The following graphics show the bottom view of the ZCE and ZWT packages pin assignments in four
quadrants (A, B, C, and D). The pin assignments for both packages are identical.
1
2
3
4
5
6
7
8
9
10
W
VP_DOUT[0]/
LCD_D[0]/
UPP_XD[8]/
GP7[8]/
PRU1_R31[8]
VP_DOUT[1]/
LCD_D[1]/
UPP_XD[9]/
GP7[9]/
PRU1_R31[9]
VP_DOUT[2]/
LCD_D[2]/
UPP_XD[10]/
GP7[10]/
PRU1_R31[10]
DDR_A[10]
DDR_A[6]
DDR_A[2]
DDR_CLKN
DDR_CLKP
DDR_RAS
DDR_D[15]
W
V
VP_DOUT[3]/
LCD_D[3]/
UPP_XD[11]/
GP7[11]/
PRU1_R31[11]
VP_DOUT[4]/
LCD_D[4]/
UPP_XD[12]/
GP7[12]/
PRU1_R31[12]
VP_DOUT[5]/
LCD_D[5]/
UPP_XD[13]/
GP7[13]/
PRU1_R31[13]
DDR_A[12]
DDR_A[5]
DDR_A[3]
DDR_CKE
DDR_BA[0]
DDR_CS
DDR_D[13]
V
U
VP_DOUT[6]/
LCD_D[6]/
UPP_XD[14]/
GP7[14]/
PRU1_R31[14]
VP_DOUT[7]/
LCD_D[7]/
UPP_XD[15]/
GP7[15]/
PRU1_R31[15]
VP_DOUT[8]/
LCD_D[8]/
UPP_XD[0]/
GP7[0]/
BOOT[0]
DDR_A[8]
DDR_A[4]
DDR_A[7]
DDR_A[0]
DDR_BA[2]
DDR_CAS
DDR_D[12]
U
T
VP_DOUT[9]/
LCD_D[9]/
UPP_XD[1]/
GP7[1]/
BOOT[1]
VP_DOUT[10]/
LCD_D[10]/
UPP_XD[2]/
GP7[2]/
BOOT[2]
VP_DOUT[11]/
LCD_D[11]/
UPP_XD[3]/
GP7[3]/
BOOT[3]
DDR_A[11]
DDR_A[13]
DDR_A[9]
DDR_A[1]
DDR_WE
DDR_BA[1]
DDR_D[10]
T
R
VP_DOUT[12]/
LCD_D[12]/
UPP_XD[4]/
GP7[4]/
BOOT[4]
VP_DOUT[13]/
LCD_D[13]/
UPP_XD[5]/
GP7[5]/
BOOT[5]
VP_DOUT[14]/
LCD_D[14]/
UPP_XD[6]/
GP7[6]/
BOOT[6]
DVDD3318_C
LCD_AC_ENB_CS/
GP6[0]/
PRU1_R31[28]
DDR_VREF
DDR_DVDD18
DDR_DVDD18
DDR_DVDD18
DDR_DQM[1]
R
P
SATA_VDD
SATA_VDD
SATA_VDDR
VP_DOUT[15]/
LCD_D[15]/
UPP_XD[7]/
GP7[7]/
BOOT[7]
DVDD3318_C
DVDD3318_C
DDR_DVDD18
DDR_DVDD18
DDR_DVDD18
DDR_DVDD18
P
N
SATA_REFCLKN
SATA_REFCLKP
SATA_REG
SATA_VDD
VSS
DDR_DVDD18
RVDD
CVDD
DDR_DVDD18
DDR_DVDD18
N
M
SATA_VSS
SATA_VDD
VSS
VSS
VSS
VSS
CVDD
CVDD
VSS
M
L
SATA_RXP
SATA_RXN
SATA_VSS
DVDD3318_C
VSS
DVDD18
VSS
VSS
VSS
VSS
L
K
SATA_VSS
SATA_VSS
VP_CLKOUT2/
MMCSD1_DAT[2]/
PRU1_R30[2]/
GP6[3]/
PRU1_R31[3]
VP_CLKOUT3/
PRU1_R30[0]/
GP6[1]/
PRU1_R31[1]
DVDD18
CVDD
VSS
VSS
VSS
VSS
K
1
2
3
4
5
6
7
8
9
10
NC
Figure 3-3. Pin Map (Quad A)
Device Comparison
Copyright © 2009–2017, Texas Instruments Incorporated
Submit Documentation Feedback
Product Folder Links: OMAP-L138
25
OMAP-L138
SPRS586J – JUNE 2009 – REVISED JANUARY 2017
www.ti.com
11
12
13
14
15
16
17
18
19
W
DDR_D[7]
DDR_D[6]
DDR_DQM[0]
VP_CLKIN0/
UHPI_HCS/
PRU1_R30[10]/
GP6[7]/
UPP_2xTXCLK
PRU0_R30[28]/
UHPI_HCNTL1/
UPP_CHA_START/
GP6[10]
VP_DIN[4]/
UHPI_HD[12]/
UPP_D[12]/
RMII_RXD[1]/
PRU0_R31[26]
VP_DIN[2]/
UHPI_HD[10]/
UPP_D[10]/
RMII_RXER /
PRU0_R31[24]
VP_DIN[1]/
UHPI_HD[9]/
UPP_D[9]/
RMII_MHZ_50
_CLK /
PRU0_R31[23]
VP_DIN[0]/
UHPI_HD[8]/
UPP_D[8]/
RMII_CRS_DV/
PRU1_R31[29]
W
V
DDR_DQS[1]
DDR_D[5]
DDR_D[4]
DDR_D[2]
VP_CLKIN1/
UHPI_HDS1/
PRU1_R30[9]/
GP6[6]/
PRU1_R31[16]
VP_DIN[6]/
UHPI_HD[14]/
UPP_D[14]/
RMII_TXD[0]/
PRU0_R31[28]
VP_DIN[3]/
UHPI_HD[11]/
UPP_D[11]/
RMII_RXD[0]/
PRU0_R31[25]
VP_DIN[15]_
VSYNC/
UHPI_HD[7]/
UPP_D[7]/
PRU0_R30[15]/
PRU0_R31[15]
VP_DIN[14]_
HSYNC/
UHPI_HD[6]/
UPP_D[6]/
PRU0_R30[14]/
PRU0_R31[14]
V
U
DDR_D[14]
DDR_ZP
DDR_D[3]
DDR_D[1]
DDR_D[0]
PRU0_R30[27]/
UHPI_HHWIL/
UPP_CHA
_ENABLE/
GP6[9]
PRU0_R30[29]/
UHPI_HCNTL0/
UPP_CHA_CLOCK/
GP6[11]
VP_DIN[7]/
UHPI_HD[15]/
UPP_D[15]/
RMII_TXD[1]/
PRU0_R31[29]
VP_DIN[13]_
FIELD/
UHPI_HD[5]/
UPP_D[5]/
PRU0_R30[13]/
PRU0_R31[13]
U
T
DDR_D[9]
DDR_D[11]
DDR_D[8]
DDR_DQS[0]
PRU0_R30[26]/
UHPI_HRW/
UPP_CHA_WAIT/
GP6[8]/
PRU1_R31[17]
VP_DIN[12]/
UHPI_HD[4]/
UPP_D[4]/
PRU0_R30[12]/
PRU0_R31[12]
RESETOUT/
UHPI_HAS/
PRU1_R30[14]/
GP6[15]
CLKOUT/
UHPI_HDS2/
PRU1_R30[13]/
GP6[14]
RSV2
T
R
DDR_DQGATE0
DDR_DQGATE1
DVDD18
VP_DIN[5]/
UHPI_HD[13]/
UPP_D[13]/
RMII_TXEN/
PRU0_R31[27]
VP_DIN[9]/
UHPI_HD[1]/
UPP_D[1]/
PRU0_R30[9]/
PRU0_R31[9]
PRU0_R30[30] /
UHPI_HINT/
PRU1_R30[11]/
GP6[12]
PRU0_R30[31]/
UHPI_HRDY/
PRU1_R30[12]
GP6[13]
VP_DIN[11]/
UHPI_HD[3]/
UPP_D[3]/
PRU0_R30[11]/
PRU0_R31[11]
VP_DIN[10]/
UHPI_HD[2]/
UPP_D[2]/
PRU0_R30[10]/
PRU0_R31[10]
R
P
VSS
DVDD3318_C
DVDD18
USB1_VDDA18
USB1_VDDA33
USB0_ID
USB1_DM
USB1_DP
P
N
VSS
VSS
DVDD3318_C
USB0_VDDA18
PLL1_VDDA
NC
USB0_VDDA12
USB0_VDDA33
USB0_VBUS
N
M
VSS
USB_CVDD
DVDD3318_C
NC
PLL1_VSSA
TDI
PLL0_VSSA
USB0_DM
USB0_DP
M
L
VSS
CVDD
DVDD3318_C
PLL0_VDDA
TMS
TRST
OSCVSS
OSCIN
L
K
VSS
CVDD
DVDD3318_C
RESET
DVDD3318_B
EMU1
RTCK/
GP8[0]
USB0_DRVVBUS
OSCOUT
K
11
12
13
14
15
16
17
18
19
RTC_CVDD
VP_DIN[8]/
UHPI_HD[0]/
UPP_D[0]/
GP6[5]/
PRU1_R31[0]
Figure 3-4. Pin Map (Quad B)
26
Device Comparison
Copyright © 2009–2017, Texas Instruments Incorporated
Submit Documentation Feedback
Product Folder Links: OMAP-L138
OMAP-L138
www.ti.com
SPRS586J – JUNE 2009 – REVISED JANUARY 2017
11
12
13
14
15
16
17
18
19
J
VSS
CVDD
DVDD18
DVDD3318_B
TCK
EMU0
NMI
TDO
RTC_XI
J
H
CVDD
CVDD
CVDD
RVDD
VSS
SPI1_ENA/
GP2[12]
SPI1_SOMI/
GP2[11]
RTC_VSS
RTC_XO
H
G
DVDD18
DVDD18
CVDD
DVDD3318_A
DVDD3318_A
SPI1_SCS[7]/
I2C0_SCL/
TM64P2_OUT12/
GP1[5]
SPI1_SIMO/
GP2[10]
SPI1_SCS[6]/
I2C0_SDA/
TM64P3_OUT12/
GP1[4]
SPI1_CLK/
GP2[13]
G
F
DVDD3318_B
DVDD3318_B
DVDD3318_B
DVDD18
DVDD3318_A
SPI1_SCS[4]/
UART2_TXD/
I2C1_SDA/
GP1[2]
SPI1_SCS[5]/
UART2_RXD/
I2C1_SCL/
GP1[3]
SPI1_SCS[1]/
EPWM1A/
PRU0_R30[8]/
GP2[15]/
TM64P2_IN12
SPI1_SCS[2]/
UART1_TXD/
SATA_CP_POD/
GP1[0]
F
E
EMA_A[18]/
MMCSD0_DAT[3]/
PRU1_R30[26]/
GP4[2]
EMA_A[16]/
MMCSD0_DAT[5]/
PRU1_R30[24]/
GP4[0]
EMA_A[6]/
GP5[6]
DVDD3318_B
CVDD
SPI0_SCS[1]/
TM64P0_OUT12/
GP1[7]/
MDCLK/
TM64P0_IN12
SPI0_SCS[3]/
UART0_CTS/
GP8[2]/
MII_RXD[1]/
SATA_MP_SWITCH
SPI1_SCS[3]/
UART1_RXD/
SATA_LED/
GP1[1]
SPI1_SCS[0]/
EPWM1B/
PRU0_R30[7]/
GP2[14]/
TM64P3_IN12
E
D
EMA_A[13]/
PRU0_R30[21]/
PRU1_R30[21] /
GP5[13]/
PRU1_R31[21]
EMA_A[9]/
PRU1_R30[17]/
GP5[9]
EMA_A[12]/
PRU1_R30[20]/
GP5[12]/
PRU1_R31[20]
EMA_A[3]/
GP5[3]
EMA_A[1]/
GP5[1]
SPI0_SCS[2]/
UART0_RTS/
GP8[1]/
MII_RXD[0]/
SATA_CP_DET
SPI0_SCS[0]/
TM64P1_OUT12/
GP1[6]/
MDIO/
TM64P1_IN12
SPI0_SCS[4]/
UART0_TXD/
GP8[3]/
MII_RXD[2]
SPI0_CLK/
EPWM0A/
GP1[8]/
MII_RXCLK
D
C
EMA_A[15]/
MMCSD0_DAT[6]/
PRU1_R30[23]/
GP5[15]/
PRU1_R31[23]
EMA_A[10]/
PRU1_R30[18]/
GP5[10]/
PRU1_R31[18]
EMA_A[5]/
GP5[5]
EMA_A[0]/
GP5[0]
EMA_BA[0]/
GP2[8]
SPI0_SOMI/
EPWMSYNCI/
GP8[6]/
MII_RXER
SPI0_ENA/
EPWM0B/
PRU0_R30[6]/
MII_RXDV
SPI0_SIMO/
EPWMSYNCO/
GP8[5]/
MII_CRS
SPI0_SCS[5]/
UART0_RXD/
GP8[4]/
MII_RXD[3]
C
B
EMA_A[17]/
MMCSD0_DAT[4]/
PRU1_R30[25]
GP4[1]
EMA_A[11]/
PRU1_R30[19]/
GP5[11]/
PRU1_R31[19]
EMA_A[7]/
PRU1_R30[15]/
GP5[7]
EMA_A[2]/
GP5[2]
EMA_OE/
GP3[10]
EMA_CS[5]/
GP3[12]
EMA_CS[2]/
GP3[15]
EMA_WAIT[0]/
PRU0_R30[0]/
GP3[8]/
PRU0_R31[0]
EMA_WAIT[1]/
PRU0_R30[1]/
GP2[1]/
PRU0_R31[1]
B
A
EMA_A[20]/
MMCSD0_DAT[1]/
PRU1_R30[28]/
GP4[4]
EMA_A[14]/
MMCSD0_DAT[7]/
PRU1_R30[22]/
GP5[14]/
PRU1_R31[22]
EMA_A[8]/
PRU1_R30[16]/
GP5[8]
EMA_A[4]/
GP5[4]
EMA_BA[1]/
GP2[9]
EMA_RAS/
PRU0_R30[3]/
GP2[5]/
PRU0_R31[3]
EMA_CS[3]/
GP3[14]
EMA_CS[0]/
GP2[0]
VSS
A
11
12
13
14
15
16
17
18
19
Figure 3-5. Pin Map (Quad C)
Device Comparison
Copyright © 2009–2017, Texas Instruments Incorporated
Submit Documentation Feedback
Product Folder Links: OMAP-L138
27
OMAP-L138
SPRS586J – JUNE 2009 – REVISED JANUARY 2017
www.ti.com
1
2
3
4
5
6
7
8
9
10
J
SATA_TXP
SATA_TXN
VP_CLKIN3/
MMCSD1_DAT[1]/
PRU1_R30[1]/
GP6[2]/
PRU1_R31[2]
PRU0_R30[23]/
MMCSD1_CMD/
UPP_CHB_ENABLE/
GP8[13]/
PRU1_R31[25]
DVDD3318_C
CVDD
VSS
VSS
VSS
VSS
J
H
SATA_VSS
SATA_VSS
VP_CLKIN2/
MMCSD1_DAT[3]/
PRU1_R30[3]/
GP6[4]/
PRU1_R31[4]
MMCSD1_DAT[5]/
LCD_HSYNC/
PRU1_R30[5]/
GP8[9]/
PRU1_R31[6]
DVDD3318_A
CVDD
CVDD
VSS
VSS
CVDD
H
G
PRU0_R30[25]/
MMCSD1_DAT[0]/
UPP_CHB_CLOCK/
GP8[15]/
PRU1_R31[27]
PRU0_R30[24]/
MMCSD1_CLK/
UPP_CHB_START/
GP8[14]/
PRU1_R31[26]
PRU0_R30[22]/
PRU1_R30[8]/
UPP_CHB_WAIT/
GP8[12]/
PRU1_R31[24]
MMCSD1_DAT[4]/
LCD_VSYNC/
PRU1_R30[4]/
GP8[8]/
PRU1_R31[5]
DVDD3318_A
DVDD18
CVDD
CVDD
DVDD3318_B
DVDD18
G
F
MMCSD1_DAT[7]/
LCD_PCLK/
PRU1_R30[7]/
GP8[11]
MMCSD1_DAT[6]/
LCD_MCLK/
PRU1_R30[6]/
GP8[10]/
PRU1_R31[7]
AXR0/
ECAP0_APWM0/
GP8[7]/
MII_TXD[0]/
CLKS0
RTC_ALARM/
UART2_CTS/
GP0[8]/
DEEPSLEEP
DVDD3318_A
DVDD3318_B
DVDD3318_B
DVDD3318_B
EMA_CS[4]/
GP3[13]
DVDD3318_B
F
E
AXR1/
DX0/
GP1[9]/
MII_TXD[1]
AXR2/
DR0/
GP1[10]/
MII_TXD[2]
AXR3/
FSX0/
GP1[11]/
MII_TXD[3]
AXR8/
CLKS1/
ECAP1_APWM1/
GP0[0]/
PRU0_R31[8]
RVDD
EMA_D[15]/
GP3[7]
EMA_D[5]/
GP4[13]
EMA_D[3]/
GP4[11]
MMCSD0_CLK/
PRU1_R30[31]/
GP4[7]
EMA_D[8]/
GP3[0]
E
D
AXR4/
FSR0/
GP1[12]/
MII_COL
AXR7/
EPWM1TZ[0]/
PRU0_R30[17]
GP1[15]/
PRU0_R31[7]
AXR5/
CLKX0/
GP1[13]/
MII_TXCLK
AXR10/
DR1/
GP0[2]
AMUTE/
PRU0_R30[16]/
UART2_RTS/
GP0[9]/
PRU0_R31[16]
EMA_D[11]/
GP3[3]
EMA_D[7]/
GP4[15]
EMA_SDCKE/
PRU0_R30[4]/
GP2[6]/
PRU0_R31[4]
EMA_D[9]/
GP3[1]
EMA_A_RW/
GP3[9]
D
C
AXR6/
CLKR0/
GP1[14]/
MII_TXEN/
PRU0_R31[6]
AFSR/
GP0[13]/
PRU0_R31[20]
AXR9/
DX1/
GP0[1]
AXR12/
FSR1/
GP0[4]
AXR11/
FSX1/
GP0[3]
EMA_D[6]/
GP4[14]
EMA_D[14]/
GP3[6]
EMA_WEN_DQM[0]/
GP2[3]
EMA_D[0]/
GP4[8]
EMA_A[19]/
MMCSD0_DAT[2]/
PRU1_R30[27]/
GP4[3]
C
B
ACLKX/
PRU0_R30[19]/
GP0[14]/
PRU0_R31[21]
AFSX/
GP0[12]/
PRU0_R31[19]
AXR13/
CLKX1/
GP0[5]
AXR14/
CLKR1/
GP0[6]
EMA_D[4]/
GP4[12]
EMA_D[13]/
GP3[5]
EMA_CLK/
PRU0_R30[5]/
GP2[7]/
PRU0_R31[5]
EMA_D[2]/
GP4[10]
EMA_WE/
GP3[11]
EMA_A[21]/
MMCSD0_DAT[0]/
PRU1_R30[29]/
GP4[5]
B
A
ACLKR/
PRU0_R30[20]/
GP0[15]/
PRU0_R31[22]
AHCLKR/
PRU0_R30[18]/
UART1_RTS/
GP0[11]/
PRU0_R31[18]
AHCLKX/
USB_REFCLKIN/
UART1_CTS/
GP0[10]/
PRU0_R31[17]
AXR15/
EPWM0TZ[0]/
ECAP2_APWM2/
GP0[7]
EMA_WEN_DQM[1]/
GP2[2]
EMA_D[12]/
GP3[4]
EMA_D[10]/
GP3[2]
EMA_D[1]/
GP4[9]
EMA_CAS/
PRU0_R30[2]/
GP2[4]/
PRU0_R31[2]
EMA_A[22]/
MMCSD0_CMD/
PRU1_R30[30]/
GP4[6]
A
1
2
3
4
5
6
7
8
9
10
Figure 3-6. Pin Map (Quad D)
3.7
Pin Multiplexing Control
Device level pin multiplexing is controlled by registers PINMUX0 - PINMUX19 in the SYSCFG module.
For the device family, pin multiplexing can be controlled on a pin-by-pin basis. Each pin that is multiplexed
with several different functions has a corresponding 4-bit field in one of the PINMUX registers.
Pin multiplexing selects which of several peripheral pin functions controls the pin's IO buffer output data
and output enable values only. The default pin multiplexing control for almost every pin is to select 'none'
of the peripheral functions in which case the pin's IO buffer is held tri-stated.
Note that the input from each pin is always routed to all of the peripherals that share the pin; the PINMUX
registers have no effect on input from a pin.
28
Device Comparison
Copyright © 2009–2017, Texas Instruments Incorporated
Submit Documentation Feedback
Product Folder Links: OMAP-L138
OMAP-L138
www.ti.com
3.8
SPRS586J – JUNE 2009 – REVISED JANUARY 2017
Terminal Functions
Table 3-5 to Table 3-31 identify the external signal names, the associated pin/ball numbers along with the
mechanical package designator, the pin type (I, O, IO, OZ, or PWR), whether the pin/ball has any internal
pullup/pulldown resistors, whether the pin/ball is configurable as an IO in GPIO mode, and a functional pin
description.
3.8.1
Device Reset, NMI and JTAG
Table 3-5. Reset, NMI and JTAG Terminal Functions
SIGNAL
NAME
NO.
TYPE (1)
PULL (2)
POWER
GROUP (3)
DESCRIPTION
RESET
RESET
K14
I
—
B
Device reset input
NMI
IPU
B
Non-Maskable Interrupt
CP[21]
C
Reset output
J17
I
RESETOUT / UHPI_HAS / PRU1_R30[14] /
GP6[15]
T17
O
(4)
TMS
L16
I
IPU
B
JTAG test mode select
TDI
M16
I
IPU
B
JTAG test data input
TDO
J18
O
IPU
B
JTAG test data output
TCK
J15
I
IPU
B
JTAG test clock
TRST
L17
I
IPD
B
JTAG test reset
EMU0
J16
I/O
IPU
B
Emulation pin
EMU1
K16
I/O
IPU
B
Emulation pin
RTCK/ GP8[0] (5)
K17
I/O
IPD
B
General-purpose input/output
JTAG
(1)
(2)
(3)
(4)
(5)
I = Input, O = Output, I/O = Bidirectional, Z = High impedance, PWR = Supply voltage, GND = Ground, A = Analog signal.
Note: For multiplexed pins where functions have different types (ie., input versus output), the table reflects the pin function direction for
that particular peripheral.
IPD = Internal Pulldown resistor, IPU = Internal Pullup resistor. CP[n] = configurable pull-up/pull-down (where n is the pin group) using
the PUPDENA and PUPDSEL registers in the System Module. For more detailed information on pullup/pulldown resistors and situations
where external pullup/pulldown resistors are required, see the Device Configuration section. For electrical specifications on pullup and
internal pulldown circuits, see the Device Operating Conditions section.
This signal is part of a dual-voltage IO group (A, B or C). These groups can be operated at 3.3V or 1.8V nominal. The three groups can
be operated at independent voltages but all pins withina group will operate at the same voltage. Group A operates at the voltage of
power supply DVDD3318_A. Group B operates at the voltage of power supply DVDD3318_B. Group C operates at the voltage of power
supply DVDD3318_C.
Open drain mode for RESETOUT function.
GP8[0] is initially configured as a reserved function after reset and will not be in a predictable state. This signal will only be stable after
the GPIO configuration for this pin has been completed. Users should carefully consider the system implications of this pin being in an
unknown state after reset.
Device Comparison
Copyright © 2009–2017, Texas Instruments Incorporated
Submit Documentation Feedback
Product Folder Links: OMAP-L138
29
OMAP-L138
SPRS586J – JUNE 2009 – REVISED JANUARY 2017
3.8.2
www.ti.com
High-Frequency Oscillator and PLL
Table 3-6. High-Frequency Oscillator and PLL Terminal Functions
SIGNAL
NAME
CLKOUT / UHPI_HDS2 /
PRU1_R30[13] / GP6[14]
NO.
T18
TYPE (1)
PULL (2)
POWER
GROUP (3)
O
CP[22]
C
DESCRIPTION
PLL Observation Clock (4)
1.2-V OSCILLATOR
OSCIN
L19
I
—
—
Oscillator input
OSCOUT
K19
O
—
—
Oscillator output
OSCVSS
L18
GND
—
—
Oscillator ground
PLL0_VDDA
L15
PWR
—
—
PLL analog VDD (1.2-V filtered supply)
PLL0_VSSA
M17
GND
—
—
PLL analog VSS (for filter)
PLL1_VDDA
N15
PWR
—
—
PLL analog VDD (1.2-V filtered supply)
PLL1_VSSA
M15
GND
—
—
PLL analog VSS (for filter)
1.2-V PLL0
1.2-V PLL1
(1)
(2)
(3)
(4)
30
I = Input, O = Output, I/O = Bidirectional, Z = High impedance, PWR = Supply voltage, GND = Ground, A = Analog signal.
Note: For multiplexed pins where functions have different types (ie., input versus output), the table reflects the pin function direction for
that particular peripheral.
IPD = Internal Pulldown resistor; IPU = Internal Pullup resistor; CP[n] = configurable pull-up/pull-down (where n is the pin group) using
the PUPDENA and PUPDSEL registers in the System Module. For more detailed information on pullup/pulldown resistors and situations
where external pullup/pulldown resistors are required, see the Device Configuration section. For electrical specifications on pullup and
internal pulldown circuits, see the Device Operating Conditions section.
This signal is part of a dual-voltage IO group (A, B or C). These groups can be operated at 3.3V or 1.8V nominal. The three groups can
be operated at independent voltages but all pins withina group will operate at the same voltage. Group A operates at the voltage of
power supply DVDD3318_A. Group B operates at the voltage of power supply DVDD3318_B. Group C operates at the voltage of power
supply DVDD3318_C.
Note: The CLKOUT clock output is provided as PLL observation clock, and is provided for debug purposes only. It may be routed to a
test point, but should never be connected to a load.
Device Comparison
Copyright © 2009–2017, Texas Instruments Incorporated
Submit Documentation Feedback
Product Folder Links: OMAP-L138
OMAP-L138
www.ti.com
3.8.3
SPRS586J – JUNE 2009 – REVISED JANUARY 2017
Real-Time Clock and 32-kHz Oscillator
Table 3-7. Real-Time Clock (RTC) and 1.2-V, 32-kHz Oscillator Terminal Functions
SIGNAL
NAME
NO.
TYPE (1)
PULL (2)
POWER
GROUP (3)
DESCRIPTION
RTC_XI
J19
I
—
—
RTC 32-kHz oscillator input
RTC_XO
H19
O
—
—
RTC 32-kHz oscillator output
RTC_ALARM / UART2_CTS / GP0[8] / DEEPSLEEP
F4
O
CP[0]
A
RTC Alarm
RTC_CVDD
L14
PWR
—
—
RTC module core power
(isolated from chip CVDD)
RTC_Vss
H18
GND
—
—
Oscillator ground
(1)
(2)
(3)
I = Input, O = Output, I/O = Bidirectional, Z = High impedance, PWR = Supply voltage, GND = Ground, A = Analog signal.
Note: For multiplexed pins where functions have different types (ie., input versus output), the table reflects the pin function direction for
that particular peripheral.
IPD = Internal Pulldown resistor; IPU = Internal Pullup resistor; CP[n] = configurable pull-up/pull-down (where n is the pin group) using
the PUPDENA and PUPDSEL registers in the System Module. The pull-up and pull-down control of these pins is not active until the
device is out of reset. During reset, all of the pins associated with these registers are pulled down. If the application requires a pull-up,
an external pull-up can be used. For more detailed information on pullup/pulldown resistors and situations where external
pullup/pulldown resistors are required, see the Device Configuration section. For electrical specifications on pullup and internal pulldown
circuits, see the Device Operating Conditions section.
This signal is part of a dual-voltage IO group (A, B or C). These groups can be operated at 3.3V or 1.8V nominal. The three groups can
be operated at independent voltages but all pins withina group will operate at the same voltage. Group A operates at the voltage of
power supply DVDD3318_A. Group B operates at the voltage of power supply DVDD3318_B. Group C operates at the voltage of power
supply DVDD3318_C.
3.8.4
DEEPSLEEP Power Control
Table 3-8. DEEPSLEEP Power Control Terminal Functions
SIGNAL
NAME
NO.
RTC_ALARM / UART2_CTS / GP0[8] / DEEPSLEEP
(1)
(2)
(3)
F4
TYPE (1)
PULL (2)
POWER
GROUP (3)
I
CP[0]
A
DESCRIPTION
DEEPSLEEP power control output
I = Input, O = Output, I/O = Bidirectional, Z = High impedance, PWR = Supply voltage, GND = Ground, A = Analog signal.
Note: For multiplexed pins where functions have different types (ie., input versus output), the table reflects the pin function direction for
that particular peripheral.
IPD = Internal Pulldown resistor; IPU = Internal Pullup resistor; CP[n] = configurable pull-up/pull-down (where n is the pin group) using
the PUPDENA and PUPDSEL registers in the System Module. The pull-up and pull-down control of these pins is not active until the
device is out of reset. During reset, all of the pins associated with these registers are pulled down. If the application requires a pull-up,
an external pull-up can be used. For more detailed information on pullup/pulldown resistors and situations where external
pullup/pulldown resistors are required, see the Device Configuration section. For electrical specifications on pullup and internal pulldown
circuits, see the Device Operating Conditions section.
This signal is part of a dual-voltage IO group (A, B or C). These groups can be operated at 3.3V or 1.8V nominal. The three groups can
be operated at independent voltages but all pins withina group will operate at the same voltage. Group A operates at the voltage of
power supply DVDD3318_A. Group B operates at the voltage of power supply DVDD3318_B. Group C operates at the voltage of power
supply DVDD3318_C.
Device Comparison
Copyright © 2009–2017, Texas Instruments Incorporated
Submit Documentation Feedback
Product Folder Links: OMAP-L138
31
OMAP-L138
SPRS586J – JUNE 2009 – REVISED JANUARY 2017
3.8.5
www.ti.com
External Memory Interface A (EMIFA)
Table 3-9. External Memory Interface A (EMIFA) Terminal Functions
SIGNAL
NAME
NO.
TYPE (1)
PULL (2)
POWER
GROUP (3)
EMA_D[15] / GP3[7]
E6
I/O
CP[17]
B
EMA_D[14] / GP3[6]
C7
I/O
CP[17]
B
EMA_D[13] / GP3[5]
B6
I/O
CP[17]
B
EMA_D[12] / GP3[4]
A6
I/O
CP[17]
B
EMA_D[11] / GP3[3]
D6
I/O
CP[17]
B
EMA_D[10] / GP3[2]
A7
I/O
CP[17]
B
EMA_D[9] / GP3[1]
D9
I/O
CP[17]
B
EMA_D[8] / GP3[0]
E10
I/O
CP[17]
B
EMA_D[7] / GP4[15]
D7
I/O
CP[17]
B
EMA_D[6] / GP4[14]
C6
I/O
CP[17]
B
EMA_D[5] / GP4[13]
E7
I/O
CP[17]
B
EMA_D[4] / GP4[12]
B5
I/O
CP[17]
B
EMA_D[3] / GP4[11]
E8
I/O
CP[17]
B
EMA_D[2] / GP4[10]
B8
I/O
CP[17]
B
EMA_D[1] / GP4[9]
A8
I/O
CP[17]
B
EMA_D[0] / GP4[8]
C9
I/O
CP[17]
B
(1)
(2)
(3)
32
DESCRIPTION
EMIFA data bus
I = Input, O = Output, I/O = Bidirectional, Z = High impedance, PWR = Supply voltage, GND = Ground, A = Analog signal.
Note: The pin type shown refers to the input, output or high-impedance state of the pin function when configured as the signal name
highlighted in bold. All multiplexed signals may enter a high-impedance state when the configured function is input-only or the configured
function supports high-Z operation. All GPIO signals can be used as input or output. For multiplexed pins where functions have different
types (ie., input versus output), the table reflects the pin function direction for that particular peripheral.
IPD = Internal Pulldown resistor; IPU = Internal Pullup resistor; CP[n] = configurable pull-up/pull-down (where n is the pin group) using
the PUPDENA and PUPDSEL registers in the System Module. The pull-up and pull-down control of these pins is not active until the
device is out of reset. During reset, all of the pins associated with these registers are pulled down. If the application requires a pull-up,
an external pull-up can be used. For more detailed information on pullup/pulldown resistors and situations where external
pullup/pulldown resistors are required, see the Device Configuration section. For electrical specifications on pullup and internal pulldown
circuits, see the Device Operating Conditions section.
This signal is part of a dual-voltage IO group (A, B or C). These groups can be operated at 3.3V or 1.8V nominal. The three groups can
be operated at independent voltages but all pins withina group will operate at the same voltage. Group A operates at the voltage of
power supply DVDD3318_A. Group B operates at the voltage of power supply DVDD3318_B. Group C operates at the voltage of power
supply DVDD3318_C.
Device Comparison
Copyright © 2009–2017, Texas Instruments Incorporated
Submit Documentation Feedback
Product Folder Links: OMAP-L138
OMAP-L138
www.ti.com
SPRS586J – JUNE 2009 – REVISED JANUARY 2017
Table 3-9. External Memory Interface A (EMIFA) Terminal Functions (continued)
SIGNAL
NAME
NO.
TYPE (1)
PULL (2)
POWER
GROUP (3)
DESCRIPTION
EMA_A[22] / MMCSD0_CMD /
PRU1_R30[30] / GP4[6]
A10
O
CP[18]
B
EMA_A[21] / MMCSD0_DAT[0] /
PRU1_R30[29] / GP4[5]
B10
O
CP[18]
B
EMA_A[20] / MMCSD0_DAT[1] /
PRU1_R30[28] / GP4[4]
A11
O
CP[18]
B
EMA_A[19] / MMCSD0_DAT[2] /
PRU1_R30[27] / GP4[3]
C10
O
CP[18]
B
EMA_A[18] / MMCSD0_DAT[3] /
PRU1_R30[26] / GP4[2]
E11
O
CP[18]
B
EMA_A[17] / MMCSD0_DAT[4] /
PRU1_R30[25] / GP4[1]
B11
O
CP[18]
B
EMA_A[16] / MMCSD0_DAT[5] /
PRU1_R30[24] / GP4[0]
E12
O
CP[18]
B
EMA_A[15] / MMCSD0_DAT[6] /
PRU1_R30[23] / GP5[15] / PRU1_R31[23]
C11
O
CP[19]
B
EMA_A[14] / MMCSD0_DAT[7] /
PRU1_R30[22] / GP5[14] / PRU1_R31[22]
A12
O
CP[19]
B
EMA_A[13] / PRU0_R30[21] / PRU1_R30[21]
D11
/ GP5[13] / PRU1_R31[21]
O
CP[19]
B
EMA_A[12] / PRU1_R30[20] / GP5[12] /
PRU1_R31[20]
D13
O
CP[19]
B
EMA_A[11] / PRU1_R30[19] / GP5[11] /
PRU1_R31[19]
B12
O
CP[19]
B
EMA_A[10] / PRU1_R30[18] / GP5[10] /
PRU1_R31[18]
C12
O
CP[19]
B
EMA_A[9] / PRU1_R30[17] / GP5[9]
D12
O
CP[19]
B
EMA_A[8] / PRU1_R30[16] / GP5[8]
A13
O
CP[19]
B
EMA_A[7] / PRU1_R30[15] / GP5[7]
B13
O
CP[20]
B
EMA_A[6] / GP5[6]
E13
O
CP[20]
B
EMA_A[5] / GP5[5]
C13
O
CP[20]
B
EMA_A[4] / GP5[4]
A14
O
CP[20]
B
EMA_A[3] / GP5[3]
D14
O
CP[20]
B
EMA_A[2] / GP5[2]
B14
O
CP[20]
B
EMA_A[1] / GP5[1]
D15
O
CP[20]
B
EMA_A[0] / GP5[0]
C14
O
CP[20]
B
EMA_BA[0] / GP2[8]
C15
O
CP[16]
B
EMA_BA[1] / GP2[9]
A15
O
CP[16]
B
EMA_CLK / PRU0_R30[5] / GP2[7] /
PRU0_R31[5]
B7
O
CP[16]
B
EMIFA clock
EMA_SDCKE / PRU0_R30[4] / GP2[6] /
PRU0_R31[4]
D8
O
CP[16]
B
EMIFA SDRAM clock enable
EMA_RAS / PRU0_R30[3] / GP2[5] /
PRU0_R31[3]
A16
O
CP[16]
B
EMIFA SDRAM row address strobe
EMA_CAS / PRU0_R30[2] / GP2[4] /
PRU0_R31[2]
A9
O
CP[16]
B
EMIFA SDRAM column address strobe
EMA_CS[0] / GP2[0]
A18
O
CP[16]
B
EMIFA SDRAM Chip Select
EMA_CS[2] / GP3[15]
B17
O
CP[16]
B
EMA_CS[3] / GP3[14]
A17
O
CP[16]
B
EMA_CS[4] / GP3[13]
F9
O
CP[16]
B
EMA_CS[5] / GP3[12]
B16
O
CP[16]
B
EMA_A_RW / GP3[9]
D10
O
CP[16]
B
EMIFA address bus
EMIFA address bus
EMIFA bank address
EMIFA Async chip select
EMIFA Async Read/Write control
Device Comparison
Copyright © 2009–2017, Texas Instruments Incorporated
Submit Documentation Feedback
Product Folder Links: OMAP-L138
33
OMAP-L138
SPRS586J – JUNE 2009 – REVISED JANUARY 2017
www.ti.com
Table 3-9. External Memory Interface A (EMIFA) Terminal Functions (continued)
SIGNAL
NAME
NO.
TYPE (1)
PULL (2)
POWER
GROUP (3)
DESCRIPTION
EMA_WE / GP3[11]
B9
O
CP[16]
B
EMIFA SDRAM write enable
EMA_WEN_DQM[1] / GP2[2]
A5
O
CP[16]
B
EMIFA write enable/data mask for
EMA_D[15:8]
EMA_WEN_DQM[0] / GP2[3]
C8
O
CP[16]
B
EMIFA write enable/data mask for EMA_D[7:0]
EMA_OE / GP3[10]
B15
O
CP[16]
B
EMIFA output enable
EMA_WAIT[0] / PRU0_R30[0] / GP3[8] /
PRU0_R31[0]
B18
I
CP[16]
B
EMA_WAIT[1] / PRU0_R30[1] / GP2[1] /
PRU0_R31[1]
B19
I
CP[16]
B
34
EMIFA wait input/interrupt
Device Comparison
Copyright © 2009–2017, Texas Instruments Incorporated
Submit Documentation Feedback
Product Folder Links: OMAP-L138
OMAP-L138
www.ti.com
3.8.6
SPRS586J – JUNE 2009 – REVISED JANUARY 2017
DDR2/mDDR Controller
Table 3-10. DDR2/mDDR Terminal Functions
SIGNAL
NAME
NO.
TYPE (1)
PULL (2)
DESCRIPTION
DDR_D[15]
W10
I/O
IPD
DDR_D[14]
U11
I/O
IPD
DDR_D[13]
V10
I/O
IPD
DDR_D[12]
U10
I/O
IPD
DDR_D[11]
T12
I/O
IPD
DDR_D[10]
T10
I/O
IPD
DDR_D[9]
T11
I/O
IPD
DDR_D[8]
T13
I/O
IPD
DDR_D[7]
W11
I/O
IPD
DDR_D[6]
W12
I/O
IPD
DDR_D[5]
V12
I/O
IPD
DDR_D[4]
V13
I/O
IPD
DDR_D[3]
U13
I/O
IPD
DDR_D[2]
V14
I/O
IPD
DDR_D[1]
U14
I/O
IPD
DDR_D[0]
U15
I/O
IPD
DDR_A[13]
T5
O
IPD
DDR_A[12]
V4
O
IPD
DDR_A[11]
T4
O
IPD
DDR_A[10]
W4
O
IPD
DDR_A[9]
T6
O
IPD
DDR_A[8]
U4
O
IPD
DDR_A[7]
U6
O
IPD
DDR_A[6]
W5
O
IPD
DDR_A[5]
V5
O
IPD
DDR_A[4]
U5
O
IPD
DDR_A[3]
V6
O
IPD
DDR_A[2]
W6
O
IPD
DDR_A[1]
T7
O
IPD
DDR_A[0]
U7
O
IPD
DDR_CLKP
W8
O
IPD
DDR2 clock (positive)
DDR_CLKN
W7
O
IPD
DDR2 clock (negative)
DDR_CKE
V7
O
IPD
DDR2 clock enable
DDR_WE
T8
O
IPD
DDR2 write enable
DDR_RAS
W9
O
IPD
DDR2 row address strobe
DDR_CAS
U9
O
IPD
DDR2 column address strobe
DDR_CS
V9
O
IPD
DDR2 chip select
(1)
(2)
DDR2 SDRAM data bus
DDR2 row/column address
I = Input, O = Output, I/O = Bidirectional, Z = High impedance, PWR = Supply voltage, GND = Ground, A = Analog signal.
Note: The pin type shown refers to the input, output or high-impedance state of the pin function when configured as the signal name
highlighted in bold. All multiplexed signals may enter a high-impedance state when the configured function is input-only or the configured
function supports high-Z operation. All GPIO signals can be used as input or output. For multiplexed pins where functions have different
types (ie., input versus output), the table reflects the pin function direction for that particular peripheral.
IPD = Internal Pulldown resistor; IPU = Internal Pullup resistor; CP[n] = configurable pull-up/pull-down (where n is the pin group) using
the PUPDENA and PUPDSEL registers in the System Module. For more detailed information on pullup/pulldown resistors and situations
where external pullup/pulldown resistors are required, see the Device Configuration section. For electrical specifications on pullup and
internal pulldown circuits, see the Device Operating Conditions section.
Device Comparison
Copyright © 2009–2017, Texas Instruments Incorporated
Submit Documentation Feedback
Product Folder Links: OMAP-L138
35
OMAP-L138
SPRS586J – JUNE 2009 – REVISED JANUARY 2017
www.ti.com
Table 3-10. DDR2/mDDR Terminal Functions (continued)
SIGNAL
NAME
NO.
TYPE (1)
PULL (2)
DESCRIPTION
DDR_DQM[0]
W13
O
IPD
DDR_DQM[1]
R10
O
IPD
DDR_DQS[0]
T14
I/O
IPD
DDR_DQS[1]
V11
I/O
IPD
DDR_BA[2]
U8
O
IPD
DDR_BA[1]
T9
O
IPD
DDR_BA[0]
V8
O
IPD
DDR_DQGATE0
R11
O
IPD
DDR2 loopback signal for external DQS gating.
Route to DDR and back to DDR_DQGATE1 with
same constraints as used for DDR clock and data.
DDR_DQGATE1
R12
I
IPD
DDR2 loopback signal for external DQS gating.
Route to DDR and back to DDR_DQGATE0 with
same constraints as used for DDR clock and data.
DDR_ZP
U12
O
—
DDR2 reference output for drive strength calibration
of N and P channel outputs. Tie to ground via 50
ohm resistor @ 5% tolerance.
DDR_VREF
R6
I
—
DDR voltage input for the DDR2/mDDR I/O buffers.
Note even in the case of mDDR an external resistor
divider connected to this pin is necessary.
N6, N9, N10,
P7, P8, P9,
P10, R7, R8,
R9
PWR
—
DDR PHY 1.8V power supply pins
DDR_DVDD18
36
Device Comparison
DDR2 data mask outputs
DDR2 data strobe inputs/outputs
DDR2 SDRAM bank address
Copyright © 2009–2017, Texas Instruments Incorporated
Submit Documentation Feedback
Product Folder Links: OMAP-L138
OMAP-L138
www.ti.com
3.8.7
SPRS586J – JUNE 2009 – REVISED JANUARY 2017
Serial Peripheral Interface Modules (SPI)
Table 3-11. Serial Peripheral Interface (SPI) Terminal Functions
SIGNAL
NAME
NO.
TYPE (1)
PULL (2)
POWER
GROUP (3)
DESCRIPTION
SPI0
SPI0_CLK / EPWM0A / GP1[8] / MII_RXCLK
D19
I/O
CP[7]
A
SPI0 clock
SPI0_ENA / EPWM0B / PRU0_R30[6] / MII_RXDV
C17
I/O
CP[7]
A
SPI0 enable
SPI0_SCS[0] / TM64P1_OUT12 / GP1[6] / MDIO / TM64P1_IN12
D17
I/O
CP[10]
A
SPI0_SCS[1] / TM64P0_OUT12 / GP1[7] / MDCLK / TM64P0_IN12
E16
I/O
CP[10]
A
SPI0_SCS[2] / UART0_RTS / GP8[1] / MII_RXD[0] /SATA_CP_DET
D16
I/O
CP[9]
A
SPI0_SCS[3] / UART0_CTS / GP8[2] / MII_RXD[1] /
SATA_MP_SWITCH
E17
I/O
CP[9]
A
SPI0_SCS[4] / UART0_TXD / GP8[3] / MII_RXD[2]
D18
I/O
CP[8]
A
SPI0_SCS[5] / UART0_RXD / GP8[4] / MII_RXD[3]
C19
I/O
CP[8]
A
SPI0_SIMO / EPWMSYNCO / GP8[5] / MII_CRS
C18
I/O
CP[7]
A
SPI0 data slave-inmaster-out
SPI0_SOMI / EPWMSYNCI / GP8[6] / MII_RXER
C16
I/O
CP[7]
A
SPI0 data slave-outmaster-in
SPI0 chip selects
SPI1
SPI1_CLK / GP2[13]
G19
I/O
CP[15]
A
SPI1 clock
SPI1_ENA / GP2[12]
H16
I/O
CP[15]
A
SPI1 enable
SPI1_SCS[0] / EPWM1B / PRU0_R30[7] / GP2[14] / TM64P3_IN12
E19
I/O
CP[14]
A
SPI1_SCS[1] / EPWM1A / PRU0_R30[8] / GP2[15] / TM64P2_IN12
F18
I/O
CP[14]
A
SPI1_SCS[2] / UART1_TXD / SATA_CP_POD / GP1[0]
F19
I/O
CP[13]
A
SPI1_SCS[3] / UART1_RXD / SATA_LED / GP1[1]
E18
I/O
CP[13]
A
SPI1_SCS[4] / UART2_TXD / I2C1_SDA / GP1[2]
F16
I/O
CP[12]
A
SPI1_SCS[5] / UART2_RXD / I2C1_SCL / GP1[3]
F17
I/O
CP[12]
A
SPI1_SCS[6] / I2C0_SDA / TM64P3_OUT12 / GP1[4]
G18
I/O
CP[11]
A
SPI1_SCS[7] / I2C0_SCL / TM64P2_OUT12 / GP1[5]
G16
I/O
CP[11]
A
SPI1_SIMO / GP2[10]
G17
I/O
CP[15]
A
SPI1 data slave-inmaster-out
SPI1_SOMI / GP2[11]
H17
I/O
CP[15]
A
SPI1 data slave-outmaster-in
(1)
(2)
(3)
SPI1 chip selects
I = Input, O = Output, I/O = Bidirectional, Z = High impedance, PWR = Supply voltage, GND = Ground, A = Analog signal.
Note: The pin type shown refers to the input, output or high-impedance state of the pin function when configured as the signal name
highlighted in bold. All multiplexed signals may enter a high-impedance state when the configured function is input-only or the configured
function supports high-Z operation. All GPIO signals can be used as input or output. For multiplexed pins where functions have different
types (ie., input versus output), the table reflects the pin function direction for that particular peripheral.
IPD = Internal Pulldown resistor; IPU = Internal Pullup resistor; CP[n] = configurable pull-up/pull-down (where n is the pin group) using
the PUPDENA and PUPDSEL registers in the System Module. The pull-up and pull-down control of these pins is not active until the
device is out of reset. During reset, all of the pins associated with these registers are pulled down. If the application requires a pull-up,
an external pull-up can be used. For more detailed information on pullup/pulldown resistors and situations where external
pullup/pulldown resistors are required, see the Device Configuration section. For electrical specifications on pullup and internal pulldown
circuits, see the Device Operating Conditions section.
This signal is part of a dual-voltage IO group (A, B or C). These groups can be operated at 3.3V or 1.8V nominal. The three groups can
be operated at independent voltages but all pins withina group will operate at the same voltage. Group A operates at the voltage of
power supply DVDD3318_A. Group B operates at the voltage of power supply DVDD3318_B. Group C operates at the voltage of power
supply DVDD3318_C.
Device Comparison
Copyright © 2009–2017, Texas Instruments Incorporated
Submit Documentation Feedback
Product Folder Links: OMAP-L138
37
OMAP-L138
SPRS586J – JUNE 2009 – REVISED JANUARY 2017
3.8.8
www.ti.com
Programmable Real-Time Unit (PRU)
Table 3-12. Programmable Real-Time Unit (PRU) Terminal Functions
SIGNAL
NAME
NO.
TYPE (1)
PULL (2)
POWER
GROUP (3)
PRU0_R30[31] / UHPI_HRDY / PRU1_R30[12] / GP6[13]
R17
O
CP[23]
C
PRU0_R30[30] / UHPI_HINT / PRU1_R30[11] / GP6[12]
R16
O
CP[23]
C
PRU0_R30[29]/ UHPI_HCNTL0 / UPP_CHA_CLOCK / GP6[11]
U17
O
CP[24]
C
PRU0_R30[28] / UHPI_HCNTL1 / UPP_CHA_START / GP6[10]
W15
O
CP[24]
C
PRU0_R30[27] / UHPI_HHWIL / UPP_CHA_ENABLE / GP6[9]
U16
O
CP[24]
C
PRU0_R30[26] / UHPI_HRW / UPP_CHA_WAIT / GP6[8] / PRU1_R31[17]
T15
O
CP[24]
C
PRU0_R30[25] / MMCSD1_DAT[0] / UPP_CHB_CLOCK / GP8[15] /
PRU1_R31[27]
G1
O
CP30]
C
PRU0_R30[24] / MMCSD1_CLK / UPP_CHB_START / GP8[14] /
PRU1_R31[26]
G2
O
CP[30]
C
PRU0_R30[23] / MMCSD1_CMD / UPP_CHB_ENABLE / GP8[13] /
PRU1_R31[25]
J4
O
CP[30]
C
PRU0_R30[22] / PRU1_R30[8] / UPP_CHB_WAIT / GP8[12] /
PRU1_R31[24]
G3
O
CP[30]
C
EMA_A[13] / PRU0_R30[21] / PRU1_R30[21] / GP5[13] / PRU1_R31[21]
D11
O
CP[19]
B
ACLKR / PRU0_R30[20] / GP0[15] / PRU0_R31[22]
A1
O
CP[0]
A
ACLKX / PRU0_R30[19] / GP0[14] / PRU0_R31[21]
B1
O
CP[0]
A
AHCLKR / PRU0_R30[18] / UART1_RTS / GP0[11] / PRU0_R31[18]
A2
O
CP[0]
A
AXR7 / EPWM1TZ[0] / PRU0_R30[17] / GP1[15] / PRU0_R31[7]
D2
O
CP[4]
A
(1)
(2)
(3)
38
DESCRIPTION
PRU0 Output
Signals
I = Input, O = Output, I/O = Bidirectional, Z = High impedance, PWR = Supply voltage, GND = Ground, A = Analog signal.
Note: The pin type shown refers to the input, output or high-impedance state of the pin function when configured as the signal name
highlighted in bold. All multiplexed signals may enter a high-impedance state when the configured function is input-only or the configured
function supports high-Z operation. All GPIO signals can be used as input or output. For multiplexed pins where functions have different
types (ie., input versus output), the table reflects the pin function direction for that particular peripheral.
IPD = Internal Pulldown resistor; IPU = Internal Pullup resistor; CP[n] = configurable pull-up/pull-down (where n is the pin group) using
the PUPDENA and PUPDSEL registers in the System Module. The pull-up and pull-down control of these pins is not active until the
device is out of reset. During reset, all of the pins associated with these registers are pulled down. If the application requires a pull-up,
an external pull-up can be used. For more detailed information on pullup/pulldown resistors and situations where external
pullup/pulldown resistors are required, see the Device Configuration section. For electrical specifications on pullup and internal pulldown
circuits, see the Device Operating Conditions section.
This signal is part of a dual-voltage IO group (A, B or C). These groups can be operated at 3.3V or 1.8V nominal. The three groups can
be operated at independent voltages but all pins withina group will operate at the same voltage. Group A operates at the voltage of
power supply DVDD3318_A. Group B operates at the voltage of power supply DVDD3318_B. Group C operates at the voltage of power
supply DVDD3318_C.
Device Comparison
Copyright © 2009–2017, Texas Instruments Incorporated
Submit Documentation Feedback
Product Folder Links: OMAP-L138
OMAP-L138
www.ti.com
SPRS586J – JUNE 2009 – REVISED JANUARY 2017
Table 3-12. Programmable Real-Time Unit (PRU) Terminal Functions (continued)
SIGNAL
NAME
NO.
TYPE (1)
PULL (2)
POWER
GROUP (3)
AMUTE / PRU0_R30[16] / UART2_RTS / GP0[9] / PRU0_R31[16]
D5
O
CP[0]
A
VP_DIN[15]_VSYNC / UHPI_HD[7] / UPP_D[7] / PRU0_R30[15] /
PRU0_R31[15]
V18
O
CP[27]
C
VP_DIN[14]_HSYNC / UHPI_HD[6] / UPP_D[6] / PRU0_R30[14] /
PRU0_R31[14]
V19
O
CP[27]
C
VP_DIN[13]_FIELD / UHPI_HD[5] / UPP_D[5] / PRU0_R30[13] /
PRU0_R31[13]
U19
O
CP[27]
C
VP_DIN[12] / UHPI_HD[4] / UPP_D[4] / PRU0_R30[12] / PRU0_R31[12]
T16
O
CP[27]
C
VP_DIN[11] / UHPI_HD[3] / UPP_D[3] / PRU0_R30[11] / PRU0_R31[11]
R18
O
CP[27]
C
VP_DIN[10] / UHPI_HD[2] / UPP_D[2] / PRU0_R30[10] / PRU0_R31[10]
R19
O
CP[27]
C
VP_DIN[9] / UHPI_HD[1] / UPP_D[1] / PRU0_R30[9] / PRU0_R31[9]
R15
O
CP[27]
C
SPI1_SCS[1] / EPWM1A / PRU0_R30[8] / GP2[15] / TM64P2_IN12
F18
O
CP[14]
A
SPI1_SCS[0] / EPWM1B / PRU0_R30[7] / GP2[14] / TM64P3_IN12
E19
O
CP[14]
A
SPI0_ENA / EPWM0B / PRU0_R30[6] / MII_RXDV
C17
O
CP[7]
A
EMA_CLK / PRU0_R30[5] / GP2[7] / PRU0_R31[5]
B7
O
CP[16]
B
EMA_SDCKE / PRU0_R30[4] / GP2[6] / PRU0_R31[4]
D8
O
CP[16]
B
EMA_RAS / PRU0_R30[3] / GP2[5] / PRU0_R31[3]
A16
O
CP[16]
B
EMA_CAS / PRU0_R30[2] / GP2[4] / PRU0_R31[2]
A9
O
CP[16]
B
EMA_WAIT[1] / PRU0_R30[1] / GP2[1] / PRU0_R31[1]
B19
O
CP[16]
B
EMA_WAIT[0] / PRU0_R30[0] / GP3[8] / PRU0_R31[0]
B18
O
CP[16]
B
DESCRIPTION
PRU0 Output
Signals
Device Comparison
Copyright © 2009–2017, Texas Instruments Incorporated
Submit Documentation Feedback
Product Folder Links: OMAP-L138
39
OMAP-L138
SPRS586J – JUNE 2009 – REVISED JANUARY 2017
www.ti.com
Table 3-12. Programmable Real-Time Unit (PRU) Terminal Functions (continued)
SIGNAL
NAME
NO.
TYPE (1)
PULL (2)
POWER
GROUP (3)
VP_DIN[7] / UHPI_HD[15] / UPP_D[15] / RMII_TXD[1] / PRU0_R31[29]
U18
I
CP[26]
C
VP_DIN[6] / UHPI_HD[14] / UPP_D[14] / RMII_TXD[0] / PRU0_R31[28]
V16
I
CP[26]
C
VP_DIN[5] / UHPI_HD[13] / UPP_D[13] / RMII_TXEN / PRU0_R31[27]
R14
I
CP[26]
C
VP_DIN[4] / UHPI_HD[11] / UPP_D[12] / RMII_RXD[1] / PRU0_R31[26]
W16
I
CP[26]
C
VP_DIN[3] / UHPI_HD[11] / UPP_D[11] / RMII_RXD[0] / PRU0_R31[25]
V17
I
CP[26]
C
VP_DIN[2] / UHPI_HD[10] / UPP_D[10] / RMII_RXER / PRU0_R31[24]
W17
I
CP[26]
C
VP_DIN[1] / UHPI_HD[9] / UPP_D[9] / RMII_MHZ_50_CLK /
PRU0_R31[23]
W18
I
CP[26]
C
ACLKR / PRU0_R30[20] / GP0[15] / PRU0_R31[22]
A1
I
CP[0]
A
ACLKX / PRU0_R30[19] / GP0[14] / PRU0_R31[21]
B1
I
CP[0]
A
AFSR / GP0[13] / PRU0_R31[20]
C2
I
CP[0]
A
AFSX / GP0[12] / PRU0_R31[19]
B2
I
CP[0]
A
AHCLKR / PRU0_R30[18] / UART1_RTS / GP0[11] / PRU0_R31[18]
A2
I
CP[0]
A
AHCLKX / USB_REFCLKIN / UART1_CTS / GP0[10] / PRU0_R31[17]
A3
I
CP[0]
A
AMUTE / PRU0_R30[16] / UART2_RTS / GP0[9] / PRU0_R31[16]
D5
I
CP[0]
A
VP_DIN[15]_VSYNC / UHPI_HD[7] / UPP_D[7] / PRU0_R30[15] /
PRU0_R31[15]
V18
I
CP[27]
C
VP_DIN[14]_HSYNC / UHPI_HD[6] / UPP_D[6] / PRU0_R30[14] /
PRU0_R31[14]
V19
I
CP[27]
C
VP_DIN[13]_FIELD / UHPI_HD[5] / UPP_D[5] / PRU0_R30[13] /
PRU0_R31[13]
U19
I
CP[27]
C
VP_DIN[12] / UHPI_HD[4] / UPP_D[4] / PRU0_R30[12] / PRU0_R31[12]
T16
I
CP[27]
C
VP_DIN[11] / UHPI_HD[3] / UPP_D[3] / PRU0_R30[11] / PRU0_R31[11]
R18
I
CP[27]
C
VP_DIN[10] / UHPI_HD[2] / UPP_D[2] / PRU0_R30[10] / PRU0_R31[10]
R19
I
CP[27]
C
VP_DIN[9] / UHPI_HD[1] / UPP_D[1] / PRU0_R30[9] / PRU0_R31[9]
R15
I
CP[27]
C
AXR8 / CLKS1 / ECAP1_APWM1 / GP0[0] / PRU0_R31[8]
E4
I
CP[3]
A
AXR7 / EPWM1TZ[0] / PRU0_R30[17] / GP1[15] / PRU0_R31[7]
D2
I
CP[4]
A
AXR6 / CLKR0 / GP1[14] / MII_TXEN / PRU0_R31[6]
C1
I
CP[5]
A
EMA_CLK / PRU0_R30[5] / GP2[7] / PRU0_R31[5]
B7
I
CP[16]
B
EMA_SDCKE / PRU0_R30[4] / GP2[6] / PRU0_R31[4]
D8
I
CP[16]
B
EMA_RAS / PRU0_R30[3] / GP2[5] / PRU0_R31[3]
A16
I
CP[16]
B
EMA_CAS / PRU0_R30[2] / GP2[4] / PRU0_R31[2]
A9
I
CP[16]
B
EMA_WAIT[1] / PRU0_R30[1] / GP2[1] / PRU0_R31[1]
B19
I
CP[16]
B
EMA_WAIT[0] / PRU0_R30[0] / GP3[8] / PRU0_R31[0]
B18
I
CP[16]
B
40
Device Comparison
DESCRIPTION
PRU0 Input
Signals
Copyright © 2009–2017, Texas Instruments Incorporated
Submit Documentation Feedback
Product Folder Links: OMAP-L138
OMAP-L138
www.ti.com
SPRS586J – JUNE 2009 – REVISED JANUARY 2017
Table 3-12. Programmable Real-Time Unit (PRU) Terminal Functions (continued)
SIGNAL
NAME
NO.
TYPE (1)
PULL (2)
POWER
GROUP (3)
MMCSD0_CLK / PRU1_R30[31] /GP4[7]
E9
O
CP[18]
B
EMA_A[22] / MMCSD0_CMD / PRU1_R30[30] / GP4[6]
A10
O
CP[18]
B
EMA_A[21] / MMCSD0_DAT[0] / PRU1_R30[29] / GP4[5]
B10
O
CP[18]
B
EMA_A[20] / MMCSD0_DAT[1] / PRU1_R30[28] / GP4[4]
A11
O
CP[18]
B
EMA_A[19] / MMCSD0_DAT[2] / PRU1_R30[27] / GP4[3]
C10
O
CP[18]
B
EMA_A[18] / MMCSD0_DAT[3] / PRU1_R30[26] / GP4[2]
E11
O
CP[18]
B
EMA_A[17] / MMCSD0_DAT[4] / PRU1_R30[25] / GP4[1]
B11
O
CP[18]
B
EMA_A[16] / MMCSD0_DAT[5] / PRU1_R30[24] / GP4[0]
E12
O
CP[18]
B
EMA_A[15] / MMCSD0_DAT[6] / PRU1_R30[23] / GP5[15] /
PRU1_R31[23]
C11
O
CP[19]
B
EMA_A[14] / MMCSD0_DAT[7] / PRU1_R30[22] / GP5[14] /
PRU1_R31[22]
A12
O
CP[19]
B
EMA_A[13] / PRU0_R30[21] / PRU1_R30[21] / GP5[13] / PRU1_R31[21]
D11
O
CP[19]
B
EMA_A[12] / PRU1_R30[20] / GP5[12] / PRU1_R31[20]
D13
O
CP[19]
B
EMA_A[11] / PRU1_R30[19] / GP5[11] / PRU1_R31[19]
B12
O
CP[19]
B
EMA_A[10] / PRU1_R30[18] / GP5[10] / PRU1_R31[18]
C12
O
CP[19]
B
EMA_A[9] / PRU1_R30[17] / GP5[9]
D12
O
CP[19]
B
EMA_A[8] / PRU1_R30[16] / GP5[8]
A13
O
CP[19]
B
EMA_A[7] / PRU1_R30[15] / GP5[7]
B13
O
CP[20]
B
RESETOUT / UHPI_HAS / PRU1_R30[14] / GP6[15]
T17
O
CP[21]
C
CLKOUT / UHPI_HDS2 / PRU1_R30[13] / GP6[14]
T18
O
CP[22]
C
PRU0_R30[31] / UHPI_HRDY / PRU1_R30[12] / GP6[13]
R17
O
CP[23]
C
PRU0_R30[30] / UHPI_HINT / PRU1_R30[11] / GP6[12]
R16
O
CP[23]
C
VP_CLKIN0 / UHPI_HCS / PRU1_R30[10] / GP6[7] / UPP_2xTXCLK
W14
O
CP[25]
C
VP_CLKIN1 / UHPI_HDS1 / PRU1_R30[9] / GP6[6] / PRU1_R31[16]
V15
O
CP[25]
C
PRU0_R30[22] / PRU1_R30[8] / UPP_CHB_WAIT / GP8[12] /
PRU1_R31[24]
G3
O
CP[30]
C
MMCSD1_DAT[7] / LCD_PCLK / PRU1_R30[7] / GP8[11]
F1
O
CP[31]
C
MMCSD1_DAT[6] / LCD_MCLK / PRU1_R30[6] / GP8[10] / PRU1_R31[7]
F2
O
CP[31]
C
MMCSD1_DAT[5] / LCD_HSYNC / PRU1_R30[5] / GP8[9] / PRU1_R31[6]
H4
O
CP[31]
C
MMCSD1_DAT[4] / LCD_VSYNC / PRU1_R30[4] / GP8[8] / PRU1_R31[5]
G4
O
CP[31]
C
VP_CLKIN2 / MMCSD1_DAT[3] / PRU1_R30[3] / GP6[4] / PRU1_R31[4]
H3
O
CP[30]
C
VP_CLKOUT2 / MMCSD1_DAT[2] / PRU1_R30[2] / GP6[3] /
PRU1_R31[3]
K3
O
CP[30]
C
VP_CLKIN3 / MMCSD1_DAT[1] / PRU1_R30[1] / GP6[2] / PRU1_R31[2]
J3
O
CP[30]
C
VP_CLKOUT3 / PRU1_R30[0] / GP6[1] / PRU1_R31[1]
K4
O
CP[30]
C
DESCRIPTION
PRU1 Output
Signals
Device Comparison
Copyright © 2009–2017, Texas Instruments Incorporated
Submit Documentation Feedback
Product Folder Links: OMAP-L138
41
OMAP-L138
SPRS586J – JUNE 2009 – REVISED JANUARY 2017
www.ti.com
Table 3-12. Programmable Real-Time Unit (PRU) Terminal Functions (continued)
SIGNAL
NAME
NO.
VP_DIN[0] / UHPI_HD[8] / UPP_D[8] / RMII_CRS_DV / PRU1_R31[29]
TYPE (1)
PULL (2)
POWER
GROUP (3)
W19
I
CP[26]
C
LCD_AC_ENB_CS / GP6[0] / PRU1_R31[28]
R5
I
CP[31]
C
PRU0_R30[25] / MMCSD1_DAT[0] / UPP_CHB_CLOCK / GP8[15] /
PRU1_R31[27]
G1
I
CP[30]
C
PRU0_R30[24] / MMCSD1_CLK / UPP_CHB_START / GP8[14] /
PRU1_R31[26]
G2
I
CP[30]
C
PRU0_R30[23] / MMCSD1_CMD / UPP_CHB_ENABLE / GP8[13] /
PRU1_R31[25]
J4
I
CP[30]
C
PRU0_R30[22] / PRU1_R30[8] / UPP_CHB_WAIT / GP8[12] /
PRU1_R31[24]
G3
I
CP[30]
C
EMA_A[15]/MMCSD0_DAT[6]/PRU1_R30[23]/GP5[15]/PRU1_R31[23]
C11
I
CP[19]
B
EMA_A[14]/MMCSD0_DAT[7]/PRU1_R30[22]/GP5[14]/PRU1_R31[22]
A12
I
CP[19]
B
EMA_A[13]/PRU0_R30[21]/PRU1_R30[21]/GP5[13]/PRU1_R31[21]
D11
I
CP[19]
B
EMA_A[12]/PRU1_R30[20]/GP5[12]/PRU1_R31[20]
D13
I
CP[19]
B
EMA_A[11]/PRU1_R30[19]/GP5[11]/PRU1_R31[19]
B12
I
CP[19]
B
EMA_A[10]/PRU1_R30[18]/GP5[10]/PRU1_R31[18]
C12
I
CP[19]
B
PRU0_R30[26] / UHPI_HRW / UPP_CHA_WAIT / GP6[8] / PRU1_R31[17]
T15
I
CP[24]
C
VP_CLKIN1 / UHPI_HDS1 / PRU1_R30[9] / GP6[6] / PRU1_R31[16]
V15
I
CP[25]
C
VP_DOUT[7] / LCD_D[7] / UPP_XD[15] / GP7[15] / PRU1_R31[15]
U2
I
CP[28]
C
VP_DOUT[6] / LCD_D[6] / UPP_XD[14] / GP7[14] / PRU1_R31[14]
U1
I
CP[28]
C
VP_DOUT[5] / LCD_D[5] / UPP_XD[13] / GP7[13] / PRU1_R31[13]
V3
I
CP[28]
C
VP_DOUT[4] / LCD_D[4] / UPP_XD[12] / GP7[12] / PRU1_R31[12]
V2
I
CP[28]
C
VP_DOUT[3] / LCD_D[3] / UPP_XD[11] / GP7[11] / PRU1_R31[11]
V1
I
CP[28]
C
VP_DOUT[2] / LCD_D[2] / UPP_XD[10] / GP7[10] / PRU1_R31[10]
W3
I
CP[28]
C
VP_DOUT[1] / LCD_D[1] / UPP_XD[9] / GP7[9] / PRU1_R31[9]
W2
I
CP[28]
C
VP_DOUT[0] / LCD_D[0] / UPP_XD[8] / GP7[8] / PRU1_R31[8]
W1
I
CP[28]
C
MMCSD1_DAT[6] / LCD_MCLK / PRU1_R30[6] / GP8[10] / PRU1_R31[7]
F2
I
CP[31]
C
MMCSD1_DAT[5] / LCD_HSYNC / PRU1_R30[5] / GP8[9] / PRU1_R31[6]
H4
I
CP[31]
C
MMCSD1_DAT[4] / LCD_VSYNC / PRU1_R30[4] / GP8[8] / PRU1_R31[5]
G4
I
CP[31]
C
VP_CLKIN2 / MMCSD1_DAT[3] / PRU1_R30[3] / GP6[4] / PRU1_R31[4]
H3
I
CP[30]
C
VP_CLKOUT2 / MMCSD1_DAT[2] / PRU1_R30[2] / GP6[3] /
PRU1_R31[3]
K3
I
CP[30]
C
VP_CLKIN3 / MMCSD1_DAT[1] / PRU1_R30[1] / GP6[2] / PRU1_R31[2]
J3
I
CP[30]
C
VP_CLKOUT3 / PRU1_R30[0] / GP6[1] / PRU1_R31[1]
K4
I
CP[30]
C
VP_DIN[8] / UHPI_HD[0] / UPP_D[0] / GP6[5] / PRU1_R31[0]
P17
I
CP[27]
C
42
Device Comparison
DESCRIPTION
PRU1 Input
Signals
Copyright © 2009–2017, Texas Instruments Incorporated
Submit Documentation Feedback
Product Folder Links: OMAP-L138
OMAP-L138
www.ti.com
3.8.9
SPRS586J – JUNE 2009 – REVISED JANUARY 2017
Enhanced Capture/Auxiliary PWM Modules (eCAP0)
The eCAP Module pins function as either input captures or auxiliary PWM 32-bit outputs, depending upon
how the eCAP module is programmed.
Table 3-13. Enhanced Capture Module (eCAP) Terminal Functions
SIGNAL
NAME
NO.
TYPE (1)
PULL (2)
POWER
GROUP (3)
CP[6]
A
enhanced capture 0 input or
auxiliary PWM 0 output
CP[3]
A
enhanced capture 1 input or
auxiliary PWM 1 output
CP[1]
A
enhanced capture 2 input or
auxiliary PWM 2 output
DESCRIPTION
eCAP0
AXR0 / ECAP0_APWM0 / GP8[7] / MII_TXD[0] / CLKS0
F3
I/O
eCAP1
AXR8 / CLKS1 / ECAP1_APWM1 / GP0[0] / PRU0_R31[8]
E4
I/O
eCAP2
AXR15 / EPWM0TZ[0] / ECAP2_APWM2 / GP0[7]
(1)
(2)
(3)
A4
I/O
I = Input, O = Output, I/O = Bidirectional, Z = High impedance, PWR = Supply voltage, GND = Ground, A = Analog signal.
Note: The pin type shown refers to the input, output or high-impedance state of the pin function when configured as the signal name
highlighted in bold. All multiplexed signals may enter a high-impedance state when the configured function is input-only or the configured
function supports high-Z operation. All GPIO signals can be used as input or output. For multiplexed pins where functions have different
types (ie., input versus output), the table reflects the pin function direction for that particular peripheral.
IPD = Internal Pulldown resistor; IPU = Internal Pullup resistor; CP[n] = configurable pull-up/pull-down (where n is the pin group) using
the PUPDENA and PUPDSEL registers in the System Module. The pull-up and pull-down control of these pins is not active until the
device is out of reset. During reset, all of the pins associated with these registers are pulled down. If the application requires a pull-up,
an external pull-up can be used. For more detailed information on pullup/pulldown resistors and situations where external
pullup/pulldown resistors are required, see the Device Configuration section. For electrical specifications on pullup and internal pulldown
circuits, see the Device Operating Conditions section.
This signal is part of a dual-voltage IO group (A, B or C). These groups can be operated at 3.3V or 1.8V nominal. The three groups can
be operated at independent voltages but all pins withina group will operate at the same voltage. Group A operates at the voltage of
power supply DVDD3318_A. Group B operates at the voltage of power supply DVDD3318_B. Group C operates at the voltage of power
supply DVDD3318_C.
Device Comparison
Copyright © 2009–2017, Texas Instruments Incorporated
Submit Documentation Feedback
Product Folder Links: OMAP-L138
43
OMAP-L138
SPRS586J – JUNE 2009 – REVISED JANUARY 2017
3.8.10
www.ti.com
Enhanced Pulse Width Modulators (eHRPWM)
Table 3-14. Enhanced Pulse Width Modulator (eHRPWM) Terminal Functions
SIGNAL
NAME
NO.
TYPE (1)
PULL (2)
POWER
GROUP (3)
DESCRIPTION
eHRPWM0
SPI0_CLK / EPWM0A / GP1[8] / MII_RXCLK
D19
I/O
CP[7]
A
eHRPWM0 A output
(with high-resolution)
SPI0_ENA / EPWM0B / PRU0_R30[6] / MII_RXDV
C17
I/O
CP[7]
A
eHRPWM0 B output
AXR15 / EPWM0TZ[0] / ECAP2_APWM2 / GP0[7]
A4
I
CP[1]
A
eHRPWM0 trip zone input
SPI0_SOMI / EPWMSYNCI / GP8[6] / MII_RXER
C16
I
CP[7]
A
eHRPWM0 sync input
SPI0_SIMO / EPWMSYNCO / GP8[5] / MII_CRS
C18
I/O
CP[7]
A
eHRPWM0 sync output
eHRPWM1
SPI1_SCS[1] / EPWM1A / PRU0_R30[8] / GP2[15] /
TM64P2_IN12
F18
I/O
CP[14]
A
eHRPWM1 A output
(with high-resolution)
SPI1_SCS[0] / EPWM1B / PRU0_R30[7] / GP2[14] /
TM64P3_IN12
E19
I/O
CP[14]
A
eHRPWM1 B output
AXR7 / EPWM1TZ[0] / PRU0_R30[17] / GP1[15] /
PRU0_R31[7]
D2
I
CP[4]
A
eHRPWM1 trip zone input
(1)
(2)
(3)
44
I = Input, O = Output, I/O = Bidirectional, Z = High impedance, PWR = Supply voltage, GND = Ground, A = Analog signal.
Note: The pin type shown refers to the input, output or high-impedance state of the pin function when configured as the signal name
highlighted in bold. All multiplexed signals may enter a high-impedance state when the configured function is input-only or the configured
function supports high-Z operation. All GPIO signals can be used as input or output. For multiplexed pins where functions have different
types (ie., input versus output), the table reflects the pin function direction for that particular peripheral.
IPD = Internal Pulldown resistor; IPU = Internal Pullup resistor; CP[n] = configurable pull-up/pull-down (where n is the pin group) using
the PUPDENA and PUPDSEL registers in the System Module. The pull-up and pull-down control of these pins is not active until the
device is out of reset. During reset, all of the pins associated with these registers are pulled down. If the application requires a pull-up,
an external pull-up can be used. For more detailed information on pullup/pulldown resistors and situations where external
pullup/pulldown resistors are required, see the Device Configuration section. For electrical specifications on pullup and internal pulldown
circuits, see the Device Operating Conditions section.
This signal is part of a dual-voltage IO group (A, B or C). These groups can be operated at 3.3V or 1.8V nominal. The three groups can
be operated at independent voltages but all pins withina group will operate at the same voltage. Group A operates at the voltage of
power supply DVDD3318_A. Group B operates at the voltage of power supply DVDD3318_B. Group C operates at the voltage of power
supply DVDD3318_C.
Device Comparison
Copyright © 2009–2017, Texas Instruments Incorporated
Submit Documentation Feedback
Product Folder Links: OMAP-L138
OMAP-L138
www.ti.com
3.8.11
SPRS586J – JUNE 2009 – REVISED JANUARY 2017
Boot
Table 3-15. Boot Mode Selection Terminal Functions (1)
SIGNAL
NAME
NO.
TYPE (2)
PULL (3)
POWER
GROUP (4)
VP_DOUT[15] / LCD_D[15] / UPP_XD[7] / GP7[7] / BOOT[7]
P4
I
CP[29]
C
VP_DOUT[14] / LCD_D[14] / UPP_XD[6] / GP7[6] / BOOT[6]
R3
I
CP[29]
C
VP_DOUT[13] / LCD_D[13] / UPP_XD[5] / GP7[5] / BOOT[5]
R2
I
CP[29]
C
VP_DOUT[12] / LCD_D[12] / UPP_XD[4] / GP7[4] / BOOT[4]
R1
I
CP[29]
C
VP_DOUT[11] / LCD_D[11] / UPP_XD[3] / GP7[3] / BOOT[3]
T3
I
CP[29]
C
VP_DOUT[10] / LCD_D[10] / UPP_XD[2] / GP7[2] / BOOT[2]
T2
I
CP[29]
C
VP_DOUT[9] / LCD_D[9] / UPP_XD[1] / GP7[1] / BOOT[1]
T1
I
CP[29]
C
VP_DOUT[8] / LCD_D[8] / UPP_XD[0] / GP7[0] / BOOT[0]
U3
I
CP[29]
C
(1)
(2)
(3)
(4)
DESCRIPTION
Boot Mode Selection Pins
Boot decoding is defined in the bootloader application report.
I = Input, O = Output, I/O = Bidirectional, Z = High impedance, PWR = Supply voltage, GND = Ground, A = Analog signal.
Note: The pin type shown refers to the input, output or high-impedance state of the pin function when configured as the signal name
highlighted in bold. All multiplexed signals may enter a high-impedance state when the configured function is input-only or the configured
function supports high-Z operation. All GPIO signals can be used as input or output. For multiplexed pins where functions have different
types (ie., input versus output), the table reflects the pin function direction for that particular peripheral.
IPD = Internal Pulldown resistor; IPU = Internal Pullup resistor; CP[n] = configurable pull-up/pull-down (where n is the pin group) using
the PUPDENA and PUPDSEL registers in the System Module. The pull-up and pull-down control of these pins is not active until the
device is out of reset. During reset, all of the pins associated with these registers are pulled down. If the application requires a pull-up,
an external pull-up can be used. For more detailed information on pullup/pulldown resistors and situations where external
pullup/pulldown resistors are required, see the Device Configuration section. For electrical specifications on pullup and internal pulldown
circuits, see the Device Operating Conditions section.
This signal is part of a dual-voltage IO group (A, B or C). These groups can be operated at 3.3V or 1.8V nominal. The three groups can
be operated at independent voltages but all pins withina group will operate at the same voltage. Group A operates at the voltage of
power supply DVDD3318_A. Group B operates at the voltage of power supply DVDD3318_B. Group C operates at the voltage of power
supply DVDD3318_C.
Device Comparison
Copyright © 2009–2017, Texas Instruments Incorporated
Submit Documentation Feedback
Product Folder Links: OMAP-L138
45
OMAP-L138
SPRS586J – JUNE 2009 – REVISED JANUARY 2017
www.ti.com
3.8.12 Universal Asynchronous Receiver/Transmitters (UART0, UART1, UART2)
Table 3-16. Universal Asynchronous Receiver/Transmitter (UART) Terminal Functions
SIGNAL
NAME
NO.
TYPE (1)
PULL (2)
POWER
GROUP (3)
DESCRIPTION
UART0
SPI0_SCS[5] / UART0_RXD / GP8[4] / MII_RXD[3]
C19
I
CP[8]
A
UART0 receive data
SPI0_SCS[4] / UART0_TXD / GP8[3] / MII_RXD[2]
D18
O
CP[8]
A
UART0 transmit data
SPI0_SCS[2] / UART0_RTS / GP8[1] / MII_RXD[0] /
SATA_CP_DET
D16
O
CP[9]
A
UART0 ready-to-send output
SPI0_SCS[3] / UART0_CTS / GP8[2] / MII_RXD[1] /
SATA_MP_SWITCH
E17
I
CP[9]
A
UART0 clear-to-send input
SPI1_SCS[3] / UART1_RXD / SATA_LED / GP1[1]
E18
I
CP[13]
A
UART1 receive data
SPI1_SCS[2] / UART1_TXD / SATA_CP_POD / GP1[0]
F19
O
CP[13]
A
UART1 transmit data
AHCLKR / PRU0_R30[18] / UART1_RTS /GP0[11] /
PRU0_R31[18]
A2
O
CP[0]
A
UART1 ready-to-send output
AHCLKX / USB_REFCLKIN / UART1_CTS / GP0[10] /
PRU0_R31[17]
A3
I
CP[0]
A
UART1 clear-to-send input
SPI1_SCS[5] / UART2_RXD / I2C1_SCL /GP1[3]
F17
I
CP[12]
A
UART2 receive data
SPI1_SCS[4] / UART2_TXD / I2C1_SDA /GP1[2]
F16
O
CP[12]
A
UART2 transmit data
AMUTE / PRU0_R30[16] / UART2_RTS / GP0[9] /
PRU0_R31[16]
D5
O
CP[0]
A
UART2 ready-to-send output
RTC_ALARM / UART2_CTS / GP0[8] / DEEPSLEEP
F4
I
CP[0]
A
UART2 clear-to-send input
UART1
UART2
(1)
(2)
(3)
46
I = Input, O = Output, I/O = Bidirectional, Z = High impedance, PWR = Supply voltage, GND = Ground, A = Analog signal.
Note: The pin type shown refers to the input, output or high-impedance state of the pin function when configured as the signal name
highlighted in bold. All multiplexed signals may enter a high-impedance state when the configured function is input-only or the configured
function supports high-Z operation. All GPIO signals can be used as input or output. For multiplexed pins where functions have different
types (ie., input versus output), the table reflects the pin function direction for that particular peripheral.
IPD = Internal Pulldown resistor; IPU = Internal Pullup resistor; CP[n] = configurable pull-up/pull-down (where n is the pin group) using
the PUPDENA and PUPDSEL registers in the System Module.The pull-up and pull-down control of these pins is not active until the
device is out of reset. During reset, all of the pins associated with these registers are pulled down. If the application requires a pull-up,
an external pull-up can be used. For more detailed information on pullup/pulldown resistors and situations where external
pullup/pulldown resistors are required, see the Device Configuration section. For electrical specifications on pullup and internal pulldown
circuits, see the Device Operating Conditions section.
This signal is part of a dual-voltage IO group (A, B or C). These groups can be operated at 3.3V or 1.8V nominal. The three groups can
be operated at independent voltages but all pins withina group will operate at the same voltage. Group A operates at the voltage of
power supply DVDD3318_A. Group B operates at the voltage of power supply DVDD3318_B. Group C operates at the voltage of power
supply DVDD3318_C.
Device Comparison
Copyright © 2009–2017, Texas Instruments Incorporated
Submit Documentation Feedback
Product Folder Links: OMAP-L138
OMAP-L138
www.ti.com
SPRS586J – JUNE 2009 – REVISED JANUARY 2017
3.8.13 Inter-Integrated Circuit Modules(I2C0, I2C1)
Table 3-17. Inter-Integrated Circuit (I2C) Terminal Functions
SIGNAL
NAME
NO.
TYPE (1)
PULL (2)
POWER
GROUP (3)
DESCRIPTION
I2C0
SPI1_SCS[6] / I2C0_SDA / TM64P3_OUT12 / GP1[4]
G18
I/O
CP[11]
A
I2C0 serial data
SPI1_SCS[7] / I2C0_SCL / TM64P2_OUT12 / GP1[5]
G16
I/O
CP[11]
A
I2C0 serial clock
I2C1
SPI1_SCS[4] / UART2_TXD / I2C1_SDA / GP1[2]
F16
I/O
CP[12]
A
I2C1 serial data
SPI1_SCS[5] / UART2_RXD / I2C1_SCL / GP1[3]
F17
I/O
CP[12]
A
I2C1 serial clock
(1)
(2)
(3)
I = Input, O = Output, I/O = Bidirectional, Z = High impedance, PWR = Supply voltage, GND = Ground, A = Analog signal.
Note: The pin type shown refers to the input, output or high-impedance state of the pin function when configured as the signal name
highlighted in bold. All multiplexed signals may enter a high-impedance state when the configured function is input-only or the configured
function supports high-Z operation. All GPIO signals can be used as input or output. For multiplexed pins where functions have different
types (ie., input versus output), the table reflects the pin function direction for that particular peripheral.
IPD = Internal Pulldown resistor; IPU = Internal Pullup resistor; CP[n] = configurable pull-up/pull-down (where n is the pin group) using
the PUPDENA and PUPDSEL registers in the System Module.The pull-up and pull-down control of these pins is not active until the
device is out of reset. During reset, all of the pins associated with these registers are pulled down. If the application requires a pull-up,
an external pull-up can be used. For more detailed information on pullup/pulldown resistors and situations where external
pullup/pulldown resistors are required, see the Device Configuration section. For electrical specifications on pullup and internal pulldown
circuits, see the Device Operating Conditions section.
This signal is part of a dual-voltage IO group (A, B or C). These groups can be operated at 3.3V or 1.8V nominal. The three groups can
be operated at independent voltages but all pins withina group will operate at the same voltage. Group A operates at the voltage of
power supply DVDD3318_A. Group B operates at the voltage of power supply DVDD3318_B. Group C operates at the voltage of power
supply DVDD3318_C.
Device Comparison
Copyright © 2009–2017, Texas Instruments Incorporated
Submit Documentation Feedback
Product Folder Links: OMAP-L138
47
OMAP-L138
SPRS586J – JUNE 2009 – REVISED JANUARY 2017
www.ti.com
3.8.14 Timers
Table 3-18. Timers Terminal Functions
SIGNAL
NAME
NO.
TYPE (1)
PULL (2)
POWER
GROUP (3)
DESCRIPTION
TIMER0
SPI0_SCS[1] / TM64P0_OUT12 / GP1[7] / MDCLK /TM64P0_IN12
E16
I
CP[10]
A
Timer0 lower input
SPI0_SCS[1] / TM64P0_OUT12 / GP1[7] / MDCLK / TM64P0_IN12
E16
O
CP[10]
A
Timer0 lower
output
TIMER1 (Watchdog)
SPI0_SCS[0] / TM64P1_OUT12 / GP1[6] / MDIO / TM64P1_IN12
D17
I
CP[10]
A
Timer1 lower input
SPI0_SCS[0] / TM64P1_OUT12 / GP1[6] / MDIO / TM64P1_IN12
D17
O
CP[10]
A
Timer1 lower
output
SPI1_SCS[1] / EPWM1A / PRU0_R30[8] / GP2[15] / TM64P2_IN12
F18
I
CP[14]
A
Timer2 lower input
SPI1_SCS[7] / I2C0_SCL / TM64P2_OUT12 / GP1[5]
G16
O
CP[11]
A
Timer2 lower
output
SPI1_SCS[0] / EPWM1B / PRU0_R30[7] / GP2[14] / TM64P3_IN12
E19
I
CP[14]
A
Timer3 lower input
SPI1_SCS[6] / I2C0_SDA / TM64P3_OUT12 / GP1[4]
G18
O
CP[11]
A
Timer3 lower
output
TIMER2
TIMER3
(1)
(2)
(3)
48
I = Input, O = Output, I/O = Bidirectional, Z = High impedance, PWR = Supply voltage, GND = Ground, A = Analog signal.
Note: The pin type shown refers to the input, output or high-impedance state of the pin function when configured as the signal name
highlighted in bold. All multiplexed signals may enter a high-impedance state when the configured function is input-only or the configured
function supports high-Z operation. All GPIO signals can be used as input or output. For multiplexed pins where functions have different
types (ie., input versus output), the table reflects the pin function direction for that particular peripheral.
IPD = Internal Pulldown resistor; IPU = Internal Pullup resistor; CP[n] = configurable pull-up/pull-down (where n is the pin group) using
the PUPDENA and PUPDSEL registers in the System Module. The pull-up and pull-down control of these pins is not active until the
device is out of reset. During reset, all of the pins associated with these registers are pulled down. If the application requires a pull-up,
an external pull-up can be used. For more detailed information on pullup/pulldown resistors and situations where external
pullup/pulldown resistors are required, see the Device Configuration section. For electrical specifications on pullup and internal pulldown
circuits, see the Device Operating Conditions section.
This signal is part of a dual-voltage IO group (A, B or C). These groups can be operated at 3.3V or 1.8V nominal. The three groups can
be operated at independent voltages but all pins withina group will operate at the same voltage. Group A operates at the voltage of
power supply DVDD3318_A. Group B operates at the voltage of power supply DVDD3318_B. Group C operates at the voltage of power
supply DVDD3318_C.
Device Comparison
Copyright © 2009–2017, Texas Instruments Incorporated
Submit Documentation Feedback
Product Folder Links: OMAP-L138
OMAP-L138
www.ti.com
SPRS586J – JUNE 2009 – REVISED JANUARY 2017
3.8.15 Multichannel Audio Serial Ports (McASP)
Table 3-19. Multichannel Audio Serial Ports Terminal Functions
SIGNAL
NAME
NO.
TYPE (1)
PULL (2)
POWER
GROUP (3)
DESCRIPTION
McASP0
AXR15 / EPWM0TZ[0] / ECAP2_APWM2 / GP0[7]
A4
I/O
CP[1]
A
AXR14 / CLKR1 / GP0[6]
B4
I/O
CP[2]
A
AXR13 / CLKX1 / GP0[5]
B3
I/O
CP[2]
A
AXR12 / FSR1 / GP0[4]
C4
I/O
CP[2]
A
AXR11 / FSX1 / GP0[3]
C5
I/O
CP[2]
A
AXR10 / DR1 / GP0[2]
D4
I/O
CP[2]
A
AXR9 / DX1 / GP0[1]
C3
I/O
CP[2]
A
AXR8 / CLKS1 / ECAP1_APWM1 / GP0[0] / PRU0_R31[8]
E4
I/O
CP[3]
A
AXR7 / EPWM1TZ[0] / PRU0_R30[17] / GP1[15] /
PRU0_R31[7]
D2
I/O
CP[4]
A
AXR6 / CLKR0 / GP1[14] / MII_TXEN / PRU0_R31[6]
C1
I/O
CP[5]
A
AXR5 / CLKX0 / GP1[13] / MII_TXCLK
D3
I/O
CP[5]
A
AXR4 / FSR0 / GP1[12] / MII_COL
D1
I/O
CP[5]
A
AXR3 / FSX0 / GP1[11] / MII_TXD[3]
E3
I/O
CP[5]
A
AXR2 / DR0 / GP1[10] / MII_TXD[2]
E2
I/O
CP[5]
A
AXR1 / DX0 / GP1[9] / MII_TXD[1]
E1
I/O
CP[5]
A
AXR0 / ECAP0_APWM0 / GP8[7]/ MII_TXD[0] / CLKS0
F3
I/O
CP[6]
A
AHCLKX / USB_REFCLKIN / UART1_CTS / GP0[10] /
PRU0_R31[17]
A3
I/O
CP[0]
A
McASP0 transmit master clock
ACLKX / PRU0_R30[19] / GP0[14] / PRU0_R31[21]
B1
I/O
CP[0]
A
McASP0 transmit bit clock
AFSX / GP0[12] / PRU0_R31[19]
B2
I/O
CP[0]
A
McASP0 transmit frame sync
AHCLKR / PRU0_R30[18] / UART1_RTS / GP0[11] /
PRU0_R31[18]
A2
I/O
CP[0]
A
McASP0 receive master clock
ACLKR / PRU0_R30[20] / GP0[15] / PRU0_R31[22]
A1
I/O
CP[0]
A
McASP0 receive bit clock
AFSR / GP0[13] / PRU0_R31[20]
C2
I/O
CP[0]
A
McASP0 receive frame sync
AMUTE / PRU0_R30[16] / UART2_RTS / GP0[9] /
PRU0_R31[16]
D5
I/O
CP[0]
A
McASP0 mute output
(1)
(2)
(3)
McASP0 serial data
I = Input, O = Output, I/O = Bidirectional, Z = High impedance, PWR = Supply voltage, GND = Ground, A = Analog signal.
Note: The pin type shown refers to the input, output or high-impedance state of the pin function when configured as the signal name
highlighted in bold. All multiplexed signals may enter a high-impedance state when the configured function is input-only or the configured
function supports high-Z operation. All GPIO signals can be used as input or output. For multiplexed pins where functions have different
types (ie., input versus output), the table reflects the pin function direction for that particular peripheral.
IPD = Internal Pulldown resistor; IPU = Internal Pullup resistor; CP[n] = configurable pull-up/pull-down (where n is the pin group) using
the PUPDENA and PUPDSEL registers in the System Module. The pull-up and pull-down control of these pins is not active until the
device is out of reset. During reset, all of the pins associated with these registers are pulled down. If the application requires a pull-up,
an external pull-up can be used. For more detailed information on pullup/pulldown resistors and situations where external
pullup/pulldown resistors are required, see the Device Configuration section. For electrical specifications on pullup and internal pulldown
circuits, see the Device Operating Conditions section.
This signal is part of a dual-voltage IO group (A, B or C). These groups can be operated at 3.3V or 1.8V nominal. The three groups can
be operated at independent voltages but all pins withina group will operate at the same voltage. Group A operates at the voltage of
power supply DVDD3318_A. Group B operates at the voltage of power supply DVDD3318_B. Group C operates at the voltage of power
supply DVDD3318_C.
Device Comparison
Copyright © 2009–2017, Texas Instruments Incorporated
Submit Documentation Feedback
Product Folder Links: OMAP-L138
49
OMAP-L138
SPRS586J – JUNE 2009 – REVISED JANUARY 2017
www.ti.com
3.8.16 Multichannel Buffered Serial Ports (McBSP)
Table 3-20. Multichannel Buffered Serial Ports (McBSPs) Terminal Functions
SIGNAL
NAME
NO.
TYPE (1)
PULL (2)
POWER
GROUP (3)
DESCRIPTION
McBSP0
AXR0 / ECAP0_APWM0 / GP8[7] / MII_TXD[0]
/ CLKS0
F3
I
CP[6]
A
McBSP0 sample rate generator clock input
AXR6 / CLKR0 / GP1[14] / MII_TXEN /
PRU0_R31[6]
C1
I/O
CP[5]
A
McBSP0 receive clock
AXR4 / FSR0 / GP1[12] / MII_COL
D1
I/O
CP[5]
A
McBSP0 receive frame sync
AXR2 / DR0 / GP1[10] / MII_TXD[2]
E2
I
CP[5]
A
McBSP0 receive data
AXR5 / CLKX0 / GP1[13] / MII_TXCLK
D3
I/O
CP[5]
A
McBSP0 transmit clock
AXR3 / FSX0 / GP1[11] / MII_TXD[3]
E3
I/O
CP[5]
A
McBSP0 transmit frame sync
AXR1 / DX0 / GP1[9] / MII_TXD[1]
E1
O
CP[5]
A
McBSP0 transmit data
McBSP1
AXR8 / CLKS1 / ECAP1_APWM1 / GP0[0] /
PRU0_R31[8]
E4
I
CP[3]
A
McBSP1 sample rate generator clock input
AXR14 / CLKR1 / GP0[6]
B4
I/O
CP[2]
A
McBSP1 receive clock
AXR12 / FSR1 / GP0[4]
C4
I/O
CP[2]
A
McBSP1 receive frame sync
AXR10 / DR1 / GP0[2]
D4
I
CP[2]
A
McBSP1 receive data
AXR13 / CLKX1 / GP0[5]
B3
I/O
CP[2]
A
McBSP1 transmit clock
AXR11 / FSX1 / GP0[3]
C5
I/O
CP[2]
A
McBSP1 transmit frame sync
AXR9 / DX1 / GP0[1]
C3
O
CP[2]
A
McBSP1 transmit data
(1)
(2)
(3)
50
I = Input, O = Output, I/O = Bidirectional, Z = High impedance, PWR = Supply voltage, GND = Ground, A = Analog signal.
Note: The pin type shown refers to the input, output or high-impedance state of the pin function when configured as the signal name
highlighted in bold. All multiplexed signals may enter a high-impedance state when the configured function is input-only or the configured
function supports high-Z operation. All GPIO signals can be used as input or output. For multiplexed pins where functions have different
types (ie., input versus output), the table reflects the pin function direction for that particular peripheral.
IPD = Internal Pulldown resistor; IPU = Internal Pullup resistor; CP[n] = configurable pull-up/pull-down (where n is the pin group) using
the PUPDENA and PUPDSEL registers in the System Module. The pull-up and pull-down control of these pins is not active until the
device is out of reset. During reset, all of the pins associated with these registers are pulled down. If the application requires a pull-up,
an external pull-up can be used. For more detailed information on pullup/pulldown resistors and situations where external
pullup/pulldown resistors are required, see the Device Configuration section. For electrical specifications on pullup and internal pulldown
circuits, see the Device Operating Conditions section.
This signal is part of a dual-voltage IO group (A, B or C). These groups can be operated at 3.3V or 1.8V nominal. The three groups can
be operated at independent voltages but all pins withina group will operate at the same voltage. Group A operates at the voltage of
power supply DVDD3318_A. Group B operates at the voltage of power supply DVDD3318_B. Group C operates at the voltage of power
supply DVDD3318_C.
Device Comparison
Copyright © 2009–2017, Texas Instruments Incorporated
Submit Documentation Feedback
Product Folder Links: OMAP-L138
OMAP-L138
www.ti.com
SPRS586J – JUNE 2009 – REVISED JANUARY 2017
3.8.17 Universal Serial Bus Modules (USB0, USB1)
Table 3-21. Universal Serial Bus (USB) Terminal Functions
SIGNAL
NAME
NO.
TYPE (1)
PULL (2)
POWER
GROUP (3)
DESCRIPTION
USB0 2.0 OTG (USB0)
USB0_DM
M18
A
IPD
—
USB0 PHY data minus
USB0_DP
M19
A
IPD
—
USB0 PHY data plus
USB0_VDDA33
N18
PWR
—
—
USB0 PHY 3.3-V supply
USB0_ID
P16
A
—
—
USB0 PHY identification
(mini-A or mini-B plug)
USB0_VBUS
N19
A
—
—
USB0 bus voltage
USB0_DRVVBUS
K18
0
IPD
B
USB0 controller VBUS control output.
AHCLKX / USB_REFCLKIN / UART1_CTS /
GP0[10] / PRU0_R31[17]
A3
I
CP[0]
A
USB_REFCLKIN. Optional clock input
N14
PWR
—
—
USB0 PHY 1.8-V supply input
USB0_VDDA18
USB0_VDDA12
N17
A
—
—
USB0 PHY 1.2-V LDO output for bypass cap
For proper device operation, this pin must
always be connected via a 0.22-μF capacitor
to VSS (GND), even if USB0 is not being
used.
USB_CVDD
M12
PWR
—
—
USB0 and USB1 core logic 1.2-V supply
input
USB1_DM l
P18
A
—
—
USB1 PHY data minus
USB1_DP
P19
A
—
—
USB1 PHY data plus
AHCLKX / USB_REFCLKIN / UART1_CTS /
GP0[10] / PRU0_R31[17]
A3
I
CP[0]
A
USB_REFCLKIN. Optional clock input
USB1_VDDA33
P15
PWR
—
—
USB1 PHY 3.3-V supply
USB1_VDDA18
P14
PWR
—
—
USB1 PHY 1.8-V supply
USB_CVDD
M12
PWR
—
—
USB0 and USB1 core logic 1.2-V supply
input
USB1 1.1 OHCI (USB1)
(1)
(2)
(3)
I = Input, O = Output, I/O = Bidirectional, Z = High impedance, PWR = Supply voltage, GND = Ground, A = Analog signal.
Note: The pin type shown refers to the input, output or high-impedance state of the pin function when configured as the signal name
highlighted in bold. All multiplexed signals may enter a high-impedance state when the configured function is input-only or the configured
function supports high-Z operation. All GPIO signals can be used as input or output. For multiplexed pins where functions have different
types (ie., input versus output), the table reflects the pin function direction for that particular peripheral.
IPD = Internal Pulldown resistor; IPU = Internal Pullup resistor; CP[n] = configurable pull-up/pull-down (where n is the pin group) using
the PUPDENA and PUPDSEL registers in the System Module. The pull-up and pull-down control of these pins is not active until the
device is out of reset. During reset, all of the pins associated with these registers are pulled down. If the application requires a pull-up,
an external pull-up can be used. For more detailed information on pullup/pulldown resistors and situations where external
pullup/pulldown resistors are required, see the Device Configuration section. For electrical specifications on pullup and internal pulldown
circuits, see the Device Operating Conditions section.
This signal is part of a dual-voltage IO group (A, B or C). These groups can be operated at 3.3V or 1.8V nominal. The three groups can
be operated at independent voltages but all pins withina group will operate at the same voltage. Group A operates at the voltage of
power supply DVDD3318_A. Group B operates at the voltage of power supply DVDD3318_B. Group C operates at the voltage of power
supply DVDD3318_C.
Device Comparison
Copyright © 2009–2017, Texas Instruments Incorporated
Submit Documentation Feedback
Product Folder Links: OMAP-L138
51
OMAP-L138
SPRS586J – JUNE 2009 – REVISED JANUARY 2017
www.ti.com
3.8.18 Ethernet Media Access Controller (EMAC)
Table 3-22. Ethernet Media Access Controller (EMAC) Terminal Functions
SIGNAL
NAME
NO.
TYPE (1)
PULL (2)
POWER
GROUP (3)
DESCRIPTION
MII
AXR6 / CLKR0 / GP1[14] / MII_TXEN / PRU0_R31[6]
C1
O
CP[5]
A
EMAC MII Transmit enable output
AXR5 / CLKX0 / GP1[13] / MII_TXCLK
D3
I
CP[5]
A
EMAC MII Transmit clock input
AXR4 / FSR0 / GP1[12] / MII_COL
D1
I
CP[5]
A
EMAC MII Collision detect input
AXR3 / FSX0 / GP1[11] / MII_TXD[3]
E3
O
CP[5]
A
AXR2 / DR0 / GP1[10] / MII_TXD[2]
E2
O
CP[5]
A
AXR1 / DX0 / GP1[9] / MII_TXD[1]
E1
O
CP[5]
A
AXR0 / ECAP0_APWM0 / GP8[7] / MII_TXD[0] /
CLKS0
F3
O
CP[6]
A
SPI0_SOMI / EPWMSYNCI / GP8[6] / MII_RXER
C16
I
CP[7]
A
EMAC MII receive error input
SPI0_SIMO / EPWMSYNCO / GP8[5] / MII_CRS
C18
I
CP[7]
A
EMAC MII carrier sense input
SPI0_CLK / EPWM0A / GP1[8] / MII_RXCLK
D19
I
CP[7]
A
EMAC MII receive clock input
SPI0_ENA / EPWM0B / PRU0_R30[6] / MII_RXDV
C17
I
CP[7]
A
EMAC MII receive data valid input
SPI0_SCS[5] /UART0_RXD / GP8[4] / MII_RXD[3]
C19
I
CP[8]
A
SPI0_SCS[4] /UART0_TXD / GP8[3] / MII_RXD[2]
D18
I
CP[8]
A
SPI0_SCS[3] / UART0_CTS / GP8[2] / MII_RXD[1] /
SATA_MP_SWITCH
E17
I
CP[9]
A
SPI0_SCS[2] / UART0_RTS / GP8[1] / MII_RXD[0] /
SATA_CP_DET
D16
I
CP[9]
A
(1)
(2)
(3)
52
EMAC MII transmit data
EMAC MII receive data
I = Input, O = Output, I/O = Bidirectional, Z = High impedance, PWR = Supply voltage, GND = Ground, A = Analog signal.
Note: The pin type shown refers to the input, output or high-impedance state of the pin function when configured as the signal name
highlighted in bold. All multiplexed signals may enter a high-impedance state when the configured function is input-only or the configured
function supports high-Z operation. All GPIO signals can be used as input or output. For multiplexed pins where functions have different
types (ie., input versus output), the table reflects the pin function direction for that particular peripheral.
IPD = Internal Pulldown resistor; IPU = Internal Pullup resistor; CP[n] = configurable pull-up/pull-down (where n is the pin group) using
the PUPDENA and PUPDSEL registers in the System Module. The pull-up and pull-down control of these pins is not active until the
device is out of reset. During reset, all of the pins associated with these registers are pulled down. If the application requires a pull-up,
an external pull-up can be used. For more detailed information on pullup/pulldown resistors and situations where external
pullup/pulldown resistors are required, see the Device Configuration section. For electrical specifications on pullup and internal pulldown
circuits, see the Device Operating Conditions section.
This signal is part of a dual-voltage IO group (A, B or C). These groups can be operated at 3.3V or 1.8V nominal. The three groups can
be operated at independent voltages but all pins withina group will operate at the same voltage. Group A operates at the voltage of
power supply DVDD3318_A. Group B operates at the voltage of power supply DVDD3318_B. Group C operates at the voltage of power
supply DVDD3318_C.
Device Comparison
Copyright © 2009–2017, Texas Instruments Incorporated
Submit Documentation Feedback
Product Folder Links: OMAP-L138
OMAP-L138
www.ti.com
SPRS586J – JUNE 2009 – REVISED JANUARY 2017
Table 3-22. Ethernet Media Access Controller (EMAC) Terminal Functions (continued)
SIGNAL
NAME
NO.
TYPE (1)
PULL (2)
POWER
GROUP (3)
DESCRIPTION
RMII
VP_DIN[1] / UHPI_HD[9] / UPP_D[9] /
RMII_MHZ_50_CLK / PRU0_R31[23]
W18
I/O
CP[26]
C
EMAC 50-MHz clock input or output
VP_DIN[2] / UHPI_HD[10] / UPP_D[10] / RMII_RXER /
PRU0_R31[24]
W17
I
CP[26]
C
EMAC RMII receiver error
VP_DIN[3] / UHPI_HD[11] / UPP_D[11] / RMII_RXD[0]
/ PRU0_R31[25]
V17
I
CP[26]
C
VP_DIN[4] / UHPI_HD[12] / UPP_D[12] / RMII_RXD[1]
/PRU0_R31[26]
W16
I
CP[26]
C
VP_DIN[0] / UHPI_HD[8] / UPP_D[8] / RMII_CRS_DV /
W19
PRU1_R31[29]
I
CP[26]
C
EMAC RMII carrier sense data valid
VP_DIN[5] / UHPI_HD[13] / UPP_D[13] / RMII_TXEN /
PRU0_R31[27]
R14
O
CP[26]
C
EMAC RMII transmit enable
VP_DIN[6] / UHPI_HD[14] / UPP_D[14] / RMII_TXD[0]
/ PRU0_R31[28]
V16
O
CP[26]
C
VP_DIN[7] / UHPI_HD[15] / UPP_D[15] / RMII_TXD[1]
/ PRU0_R31[29]
U18
O
CP[26]
C
EMAC RMII receive data
EMAC RMII transmit data
MDIO
SPI0_SCS[0] / TM64P1_OUT12 / GP1[6] / MDIO /
TM64P1_IN12
D17
I/O
CP[10]
A
MDIO serial data
SPI0_SCS[1] / TM64P0_OUT12 / GP1[7] / MDCLK /
TM64P0_IN12
E16
O
CP[10]
A
MDIO clock
Device Comparison
Copyright © 2009–2017, Texas Instruments Incorporated
Submit Documentation Feedback
Product Folder Links: OMAP-L138
53
OMAP-L138
SPRS586J – JUNE 2009 – REVISED JANUARY 2017
www.ti.com
3.8.19 Multimedia Card/Secure Digital (MMC/SD)
Table 3-23. Multimedia Card/Secure Digital (MMC/SD) Terminal Functions
SIGNAL
NAME
NO.
TYPE (1)
PULL (2)
POWER
GROUP (3)
DESCRIPTION
MMCSD0
MMCSD0_CLK / PRU1_R30[31] /GP4[7]
E9
O
CP[18]
B
MMCSD0 Clock
EMA_A[22] / MMCSD0_CMD / PRU1_R30[30] / GP4[6]
A10
I/O
CP[18]
B
MMCSD0 Command
EMA_A[14] / MMCSD0_DAT[7] / PRU1_R30[22] / GP5[14] /
PRU1_R31[22]
A12
I/O
CP[19]
B
EMA_A[15] / MMCSD0_DAT[6] / PRU1_R30[23] / GP5[15] /
PRU1_R31[23]
C11
I/O
CP[19]
B
EMA_A[16] / MMCSD0_DAT[5] / PRU1_R30[24] / GP4[0]
E12
I/O
CP[18]
B
EMA_A[17] / MMCSD0_DAT[4] / PRU1_R30[25] / GP4[1]
B11
I/O
CP[18]
B
EMA_A[18] / MMCSD0_DAT[3] / PRU1_R30[26] / GP4[2]
E11
I/O
CP[18]
B
EMA_A[19] / MMCSD0_DAT[2] / PRU1_R30[27] / GP4[3]
C10
I/O
CP[18]
B
EMA_A[20] / MMCSD0_DAT[1] / PRU1_R30[28] / GP4[4]
A11
I/O
CP[18]
B
EMA_A[21] / MMCSD0_DAT[0] / PRU1_R30[29] / GP4[5]
B10
I/O
CP[18]
B
MMC/SD0 data
MMCSD1
PRU0_R30[24] / MMCSD1_CLK / UPP_CHB_START / GP8[14] /
PRU1_R31[26]/
G2
O
CP[30]
C
MMCSD1 Clock
PRU0_R30[23] / MMCSD1_CMD / UPP_CHB_ENABLE / GP8[13] /
PRU1_R31[25]
J4
I/O
CP[30]
C
MMCSD1 Command
MMCSD1_DAT[7] / LCD_PCLK / PRU1_R30[7] / GP8[11]
F1
I/O
CP[31]
C
MMCSD1_DAT[6] / LCD_MCLK / PRU1_R30[6] / GP8[10] /
PRU1_R31[7]
F2
I/O
CP[31]
C
MMCSD1_DAT[5] / LCD_HSYNC / PRU1_R30[5] / GP8[9] /
PRU1_R31[6]
H4
I/O
CP[31]
C
MMCSD1_DAT[4] / LCD_VSYNC / PRU1_R30[4] / GP8[8] /
PRU1_R31[5]
G4
I/O
CP[31]
C
VP_CLKIN2 / MMCSD1_DAT[3] / PRU1_R30[3] / GP6[4] /
PRU1_R31[4]
H3
I/O
CP[30]
C
VP_CLKOUT2 / MMCSD1_DAT[2] / PRU1_R30[2] / GP6[3] /
PRU1_R31[3]
K3
I/O
CP[30]
C
VP_CLKIN3 / MMCSD1_DAT[1]/ PRU1_R30[1] / GP6[2] /
PRU1_R31[2]
J3
I/O
CP[30]
C
PRU0_R30[25] / MMCSD1_DAT[0] / UPP_CHB_CLOCK / GP8[15]/
PRU1_R31[27]
G1
I/O
CP[30]
C
(1)
(2)
(3)
54
MMC/SD1 data
I = Input, O = Output, I/O = Bidirectional, Z = High impedance, PWR = Supply voltage, GND = Ground, A = Analog signal.
Note: The pin type shown refers to the input, output or high-impedance state of the pin function when configured as the signal name
highlighted in bold. All multiplexed signals may enter a high-impedance state when the configured function is input-only or the configured
function supports high-Z operation. All GPIO signals can be used as input or output. For multiplexed pins where functions have different
types (ie., input versus output), the table reflects the pin function direction for that particular peripheral.
IPD = Internal Pulldown resistor; IPU = Internal Pullup resistor; CP[n] = configurable pull-up/pull-down (where n is the pin group) using
the PUPDENA and PUPDSEL registers in the System Module. The pull-up and pull-down control of these pins is not active until the
device is out of reset. During reset, all of the pins associated with these registers are pulled down. If the application requires a pull-up,
an external pull-up can be used. For more detailed information on pullup/pulldown resistors and situations where external
pullup/pulldown resistors are required, see the Device Configuration section. For electrical specifications on pullup and internal pulldown
circuits, see the Device Operating Conditions section.
This signal is part of a dual-voltage IO group (A, B or C). These groups can be operated at 3.3V or 1.8V nominal. The three groups can
be operated at independent voltages but all pins withina group will operate at the same voltage. Group A operates at the voltage of
power supply DVDD3318_A. Group B operates at the voltage of power supply DVDD3318_B. Group C operates at the voltage of power
supply DVDD3318_C.
Device Comparison
Copyright © 2009–2017, Texas Instruments Incorporated
Submit Documentation Feedback
Product Folder Links: OMAP-L138
OMAP-L138
www.ti.com
3.8.20
SPRS586J – JUNE 2009 – REVISED JANUARY 2017
Liquid Crystal Display Controller(LCD)
Table 3-24. Liquid Crystal Display Controller (LCD) Terminal Functions
SIGNAL
NAME
NO.
TYPE (1)
PULL (2)
POWER
GROUP (3)
DESCRIPTION
VP_DOUT[15] / LCD_D[15] / UPP_XD[7] / GP7[7] / BOOT[7]
P4
I/O
CP[29]
C
VP_DOUT[14] / LCD_D[14] / UPP_XD[6] / GP7[6] / BOOT[6]
R3
I/O
CP[29]
C
VP_DOUT[13] / LCD_D[13] / UPP_XD[5] / GP7[5] / BOOT[5]
R2
I/O
CP[29]
C
VP_DOUT[12] / LCD_D[12] / UPP_XD[4] / GP7[4] / BOOT[4]
R1
I/O
CP[29]
C
VP_DOUT[11] / LCD_D[11] / UPP_XD[3] / GP7[3] / BOOT[3]
T3
I/O
CP[29]
C
VP_DOUT[10] / LCD_D[10] / UPP_XD[2] / GP7[2] / BOOT[2]
T2
I/O
CP[29]
C
VP_DOUT[9] / LCD_D[9] / UPP_XD[1] / GP7[1] / BOOT[1]
T1
I/O
CP[29]
C
VP_DOUT[8] / LCD_D[8] / UPP_XD[0] / GP7[0] / BOOT[0]
U3
I/O
CP[29]
C
VP_DOUT[7] / LCD_D[7] / UPP_XD[15] / GP7[15] /
PRU1_R31[15]
U2
I/O
CP[28]
C
VP_DOUT[6] / LCD_D[6] / UPP_XD[14] / GP7[14] /
PRU1_R31[14]
U1
I/O
CP[28]
C
VP_DOUT[5] / LCD_D[5] / UPP_XD[13] / GP7[13] /
PRU1_R31[13]
V3
I/O
CP[28]
C
VP_DOUT[4] / LCD_D[4] / UPP_XD[12] / GP7[12] /
PRU1_R31[12]
V2
I/O
CP[28]
C
VP_DOUT[3] / LCD_D[3] / UPP_XD[11] / GP7[11] /
PRU1_R31[11]
V1
I/O
CP[28]
C
VP_DOUT[2] / LCD_D[2] / UPP_XD[10] / GP7[10] /
PRU1_R31[10]
W3
I/O
CP[28]
C
VP_DOUT[1] / LCD_D[1] / UPP_XD[9] / GP7[9] / PRU1_R31[9]
W2
I/O
CP[28]
C
VP_DOUT[0] / LCD_D[0] / UPP_XD[8] / GP7[8] / PRU1_R31[8]
W1
I/O
CP[28]
C
MMCSD1_DAT[7] / LCD_PCLK / PRU1_R30[7] / GP8[11]
F1
O
CP[31]
C
LCD pixel clock
MMCSD1_DAT[5] / LCD_HSYNC / PRU1_R30[5] / GP8[9] /
PRU1_R31[6]
H4
O
CP[31]
C
LCD horizontal sync
MMCSD1_DAT[4] / LCD_VSYNC / PRU1_R30[4] / GP8[8] /
PRU1_R31[5]
G4
O
CP[31]
C
LCD vertical sync
LCD_AC_ENB_CS / GP6[0] / PRU1_R31[28]
R5
O
CP[31]
C
LCD AC bias enable chip
select
MMCSD1_DAT[6] / LCD_MCLK / PRU1_R30[6] / GP8[10] /
PRU1_R31[7]
F2
O
CP[31]
C
LCD memory clock
(1)
(2)
(3)
LCD data bus
I = Input, O = Output, I/O = Bidirectional, Z = High impedance, PWR = Supply voltage, GND = Ground, A = Analog signal.
Note: The pin type shown refers to the input, output or high-impedance state of the pin function when configured as the signal name
highlighted in bold. All multiplexed signals may enter a high-impedance state when the configured function is input-only or the configured
function supports high-Z operation. All GPIO signals can be used as input or output. For multiplexed pins where functions have different
types (ie., input versus output), the table reflects the pin function direction for that particular peripheral.
IPD = Internal Pulldown resistor; IPU = Internal Pullup resistor; CP[n] = configurable pull-up/pull-down (where n is the pin group) using
the PUPDENA and PUPDSEL registers in the System Module. The pull-up and pull-down control of these pins is not active until the
device is out of reset. During reset, all of the pins associated with these registers are pulled down. If the application requires a pull-up,
an external pull-up can be used. For more detailed information on pullup/pulldown resistors and situations where external
pullup/pulldown resistors are required, see the Device Configuration section. For electrical specifications on pullup and internal pulldown
circuits, see the Device Operating Conditions section.
This signal is part of a dual-voltage IO group (A, B or C). These groups can be operated at 3.3V or 1.8V nominal. The three groups can
be operated at independent voltages but all pins withina group will operate at the same voltage. Group A operates at the voltage of
power supply DVDD3318_A. Group B operates at the voltage of power supply DVDD3318_B. Group C operates at the voltage of power
supply DVDD3318_C.
Device Comparison
Copyright © 2009–2017, Texas Instruments Incorporated
Submit Documentation Feedback
Product Folder Links: OMAP-L138
55
OMAP-L138
SPRS586J – JUNE 2009 – REVISED JANUARY 2017
3.8.21
www.ti.com
Serial ATA Controller (SATA)
Table 3-25. Serial ATA Controller (SATA) Terminal Functions
SIGNAL
NAME
NO.
TYPE (1)
PULL (2)
POWER
GROUP (3)
DESCRIPTION
SATA_RXP
L1
I
—
—
SATA receive data (positive)
SATA_RXN
L2
I
—
—
SATA receive data (negative)
SATA_TXP
J1
O
—
—
SATA transmit data (positive)
SATA_TXN
J2
O
—
—
SATA transmit data (negative)
SATA_REFCLKP
N2
I
—
—
SATA PHY reference clock (positive)
SATA_REFCLKN
N1
I
—
—
SATA PHY reference clock (negative)
SPI0_SCS[3] / UART0_CTS / GP8[2] /
MII_RXD[1] / SATA_MP_SWITCH
E17
I
CP[9]
A
SATA mechanical presence switch input
SPI0_SCS[2] / UART0_RTS / GP8[1] /
MII_RXD[0] / SATA_CP_DET
D16
I
CP[9]
A
SATA cold presence detect input
SPI1_SCS[2] / UART1_TXD /
SATA_CP_POD / GP1[0]
F19
O
CP[13]
A
SATA cold presence power-on output
SPI1_SCS[3] / UART1_RXD / SATA_LED /
GP1[1]
E18
O
CP[13]
A
SATA LED control output
SATA_REG
N3
A
—
—
SATA PHY PLL regulator output. Requires an
external 0.1uF filter capacitor.
SATA_VDDR
P3
PWR
—
—
SATA PHY 1.8V internal regulator supply
SATA_VDD
M2,
P1,
P2,
N4
PWR
—
—
SATA PHY 1.2V logic supply
SATA_VSS
H1,
H2,
K1,
K2,
L3,
M1
GND
—
—
SATA PHY ground reference
(1)
(2)
(3)
56
I = Input, O = Output, I/O = Bidirectional, Z = High impedance, PWR = Supply voltage, GND = Ground, A = Analog signal.
Note: The pin type shown refers to the input, output or high-impedance state of the pin function when configured as the signal name
highlighted in bold. All multiplexed signals may enter a high-impedance state when the configured function is input-only or the configured
function supports high-Z operation. All GPIO signals can be used as input or output. For multiplexed pins where functions have different
types (ie., input versus output), the table reflects the pin function direction for that particular peripheral.
IPD = Internal Pulldown resistor; IPU = Internal Pullup resistor; CP[n] = configurable pull-up/pull-down (where n is the pin group) using
the PUPDENA and PUPDSEL registers in the System Module. The pull-up and pull-down control of these pins is not active until the
device is out of reset. During reset, all of the pins associated with these registers are pulled down. If the application requires a pull-up,
an external pull-up can be used. For more detailed information on pullup/pulldown resistors and situations where external
pullup/pulldown resistors are required, see the Device Configuration section. For electrical specifications on pullup and internal pulldown
circuits, see the Device Operating Conditions section.
This signal is part of a dual-voltage IO group (A, B or C). These groups can be operated at 3.3V or 1.8V nominal. The three groups can
be operated at independent voltages but all pins withina group will operate at the same voltage. Group A operates at the voltage of
power supply DVDD3318_A. Group B operates at the voltage of power supply DVDD3318_B. Group C operates at the voltage of power
supply DVDD3318_C.
Device Comparison
Copyright © 2009–2017, Texas Instruments Incorporated
Submit Documentation Feedback
Product Folder Links: OMAP-L138
OMAP-L138
www.ti.com
3.8.22
SPRS586J – JUNE 2009 – REVISED JANUARY 2017
Universal Host-Port Interface (UHPI)
Table 3-26. Universal Host-Port Interface (UHPI) Terminal Functions
SIGNAL
NAME
NO.
TYPE (1)
PULL (2)
POWER
GROUP (3)
DESCRIPTION
VP_DIN[7] / UHPI_HD[15] / UPP_D[15] / RMII_TXD[1] /
PRU0_R31[29]
U18
I/O
CP[26]
C
VP_DIN[6] / UHPI_HD[14] / UPP_D[14] / RMII_TXD[0] /
PRU0_R31[28]
V16
I/O
CP[26]
C
VP_DIN[5] / UHPI_HD[13] / UPP_D[13] / RMII_TXEN /
PRU0_R31[27]
R14
I/O
CP[26]
C
VP_DIN[4] / UHPI_HD[12] / UPP_D[12] / RMII_RXD[1] /
PRU0_R31[26]
W16
I/O
CP[26]
C
VP_DIN[3] / UHPI_HD[11] / UPP_D[11] / RMII_RXD[0] /
PRU0_R31[25]
V17
I/O
CP[26]
C
VP_DIN[2] / UHPI_HD[10] / UPP_D[10] / RMII_RXER /
PRU0_R31[24]
W17
I/O
CP[26]
C
VP_DIN[1] / UHPI_HD[9] / UPP_D[9] / RMII_MHZ_50_CLK /
PRU0_R31[23]
W18
I/O
CP[26]
C
VP_DIN[0] / UHPI_HD[8] / UPP_D[8] / RMII_CRS_DV /
PRU1_R31[29]
W19
I/O
CP[26]
C
VP_DIN[15]_VSYNC / UHPI_HD[7] / UPP_D[7] / PRU0_R30[15] /
PRU0_R31[15]
V18
I/O
CP[27]
C
VP_DIN[14]_HSYNC / UHPI_HD[6] / UPP_D[6] / PRU0_R30[14] /
PRU0_R31[14]
V19
I/O
CP[27]
C
VP_DIN[13]_FIELD / UHPI_HD[5] / UPP_D[5] / PRU0_R30[13] /
PRU0_R31[13]
U19
I/O
CP[27]
C
VP_DIN[12] / UHPI_HD[4] / UPP_D[4] / PRU0_R30[12] /
PRU0_R31[12]
T16
I/O
CP[27]
C
VP_DIN[11] / UHPI_HD[3] / UPP_D[3] / PRU0_R30[11] /
PRU0_R31[11]
R18
I/O
CP[27]
C
VP_DIN[10] / UHPI_HD[2] / UPP_D[2] / PRU0_R30[10] /
PRU0_R31[10]
R19
I/O
CP[27]
C
VP_DIN[9] / UHPI_HD[1] / UPP_D[1] / PRU0_R30[9] / PRU0_R31[9]
R15
I/O
CP[27]
C
VP_DIN[8] / UHPI_HD[0] / UPP_D[0] / GP6[5] / PRU1_R31[0]
P17
I/O
CP[27]
C
PRU0_R30[29] / UHPI_HCNTL0 / UPP_CHA_CLOCK / GP6[11]
U17
I
CP[24]
C
PRU0_R30[28] / UHPI_HCNTL1 / UPP_CHA_START / GP6[10]
W15
I
CP[24]
C
PRU0_R30[27] / UHPI_HHWIL / UPP_CHA_ENABLE / GP6[9]
U16
I
CP[24]
C
UHPI half-word
identification control
PRU0_R30[26] / UHPI_HRW / UPP_CHA_WAIT /
GP6[8]/PRU1_R31[17]
T15
I
CP[24]
C
UHPI read/write
VP_CLKIN0 / UHPI_HCS / PRU1_R30[10] / GP6[7] / UPP_2xTXCLK
W14
I
CP[25]
C
UHPI chip select
VP_CLKIN1 / UHPI_HDS1 / PRU1_R30[9] / GP6[6] / PRU1_R31[16]
V15
I
CP[25]
C
CLKOUT / UHPI_HDS2 / PRU1_R30[13] / GP6[14]
T18
I
CP[22]
C
(1)
(2)
(3)
UHPI data bus
UHPI access control
UHPI data strobe
I = Input, O = Output, I/O = Bidirectional, Z = High impedance, PWR = Supply voltage, GND = Ground, A = Analog signal.
Note: The pin type shown refers to the input, output or high-impedance state of the pin function when configured as the signal name
highlighted in bold. All multiplexed signals may enter a high-impedance state when the configured function is input-only or the configured
function supports high-Z operation. All GPIO signals can be used as input or output. For multiplexed pins where functions have different
types (ie., input versus output), the table reflects the pin function direction for that particular peripheral.
IPD = Internal Pulldown resistor; IPU = Internal Pullup resistor; CP[n] = configurable pull-up/pull-down (where n is the pin group) using
the PUPDENA and PUPDSEL registers in the System Module. The pull-up and pull-down control of these pins is not active until the
device is out of reset. During reset, all of the pins associated with these registers are pulled down. If the application requires a pull-up,
an external pull-up can be used. For more detailed information on pullup/pulldown resistors and situations where external
pullup/pulldown resistors are required, see the Device Configuration section. For electrical specifications on pullup and internal pulldown
circuits, see the Device Operating Conditions section.
This signal is part of a dual-voltage IO group (A, B or C). These groups can be operated at 3.3V or 1.8V nominal. The three groups can
be operated at independent voltages but all pins withina group will operate at the same voltage. Group A operates at the voltage of
power supply DVDD3318_A. Group B operates at the voltage of power supply DVDD3318_B. Group C operates at the voltage of power
supply DVDD3318_C.
Device Comparison
Copyright © 2009–2017, Texas Instruments Incorporated
Submit Documentation Feedback
Product Folder Links: OMAP-L138
57
OMAP-L138
SPRS586J – JUNE 2009 – REVISED JANUARY 2017
www.ti.com
Table 3-26. Universal Host-Port Interface (UHPI) Terminal Functions (continued)
SIGNAL
NAME
NO.
TYPE (1)
PULL (2)
POWER
GROUP (3)
DESCRIPTION
PRU0_R30[30] / UHPI_HINT / PRU1_R30[11] / GP6[12]
R16
O
CP[23]
C
UHPI host interrupt
PRU0_R30[31] / UHPI_HRDY / PRU1_R30[12] /GP6[13]
R17
O
CP[23]
C
UHPI ready
RESETOUT / UHPI_HAS / PRU1_R30[14] / GP6[15]
T17
I
CP[21]
C
UHPI address strobe
58
Device Comparison
Copyright © 2009–2017, Texas Instruments Incorporated
Submit Documentation Feedback
Product Folder Links: OMAP-L138
OMAP-L138
www.ti.com
3.8.23
SPRS586J – JUNE 2009 – REVISED JANUARY 2017
Universal Parallel Port (uPP)
Table 3-27. Universal Parallel Port (uPP) Terminal Functions
SIGNAL
TYPE (1)
PULL (2)
POWER
GROUP (3)
DESCRIPTION
W14
I
CP[25]
C
uPP 2x transmit clock input
PRU0_R30[25] /MMCSD1_DAT[0] / UPP_CHB_CLOCK /
GP8[15]/PRU1_R31[27]
G1
I/O
CP[30]
C
uPP channel B clock
PRU0_R30[24]/ MMCSD1_CLK / UPP_CHB_START / GP8[14] /
PRU1_R31[26]
G2
I/O
CP[30]
C
uPP channel B start
PRU0_R30[23] / MMCSD1_CMD / UPP_CHB_ENABLE /
GP8[13]/PRU1_R31[25]
J4
I/O
CP[30]
C
uPP channel B enable
PRU0_R30[22] / PRU1_R30[8] / UPP_CHB_WAIT / GP8[12]/
PRU1_R31[24]
G3
I/O
CP[30]
C
uPP channel B wait
PRU0_R30[29] /UHPI_HCNTL0 / UPP_CHA_CLOCK / GP6[11]
U17
I/O
CP[24]
C
uPP channel A clock
PRU0_R30[28] / UHPI_HCNTL1 / UPP_CHA_START / GP6[10]
W15
I/O
CP[24]
C
uPP channel A start
PRU0_R30[27] / UHPI_HHWIL / UPP_CHA_ENABLE / GP6[9]
U16
I/O
CP[24]
C
uPP channel A enable
PRU0_R30[26] /UHPI_HRW / UPP_CHA_WAIT / GP6[8] /
PRU1_R31[17]
T15
I/O
CP[24]
C
uPP channel A wait
NAME
NO.
VP_CLKIN0 / UHPI_HCS /PRU1_R30[10] / GP6[7] /
UPP_2xTXCLK
(1)
(2)
(3)
I = Input, O = Output, I/O = Bidirectional, Z = High impedance, PWR = Supply voltage, GND = Ground, A = Analog signal.
Note: The pin type shown refers to the input, output or high-impedance state of the pin function when configured as the signal name
highlighted in bold. All multiplexed signals may enter a high-impedance state when the configured function is input-only or the configured
function supports high-Z operation. All GPIO signals can be used as input or output. For multiplexed pins where functions have different
types (ie., input versus output), the table reflects the pin function direction for that particular peripheral.
IPD = Internal Pulldown resistor; IPU = Internal Pullup resistor; CP[n] = configurable pull-up/pull-down (where n is the pin group) using
the PUPDENA and PUPDSEL registers in the System Module. The pull-up and pull-down control of these pins is not active until the
device is out of reset. During reset, all of the pins associated with these registers are pulled down. If the application requires a pull-up,
an external pull-up can be used. For more detailed information on pullup/pulldown resistors and situations where external
pullup/pulldown resistors are required, see the Device Configuration section. For electrical specifications on pullup and internal pulldown
circuits, see the Device Operating Conditions section.
This signal is part of a dual-voltage IO group (A, B or C). These groups can be operated at 3.3V or 1.8V nominal. The three groups can
be operated at independent voltages but all pins withina group will operate at the same voltage. Group A operates at the voltage of
power supply DVDD3318_A. Group B operates at the voltage of power supply DVDD3318_B. Group C operates at the voltage of power
supply DVDD3318_C.
Device Comparison
Copyright © 2009–2017, Texas Instruments Incorporated
Submit Documentation Feedback
Product Folder Links: OMAP-L138
59
OMAP-L138
SPRS586J – JUNE 2009 – REVISED JANUARY 2017
www.ti.com
Table 3-27. Universal Parallel Port (uPP) Terminal Functions (continued)
SIGNAL
NAME
NO.
TYPE (1)
PULL (2)
POWER
GROUP (3)
VP_DOUT[7] / LCD_D[7] / UPP_XD[15] / GP7[15] /
PRU1_R31[15]
U2
I/O
CP[28]
C
VP_DOUT[6] / LCD_D[6] / UPP_XD[14] / GP7[14] /
PRU1_R31[14]
U1
I/O
CP[28]
C
VP_DOUT[5] / LCD_D[5] / UPP_XD[13] / GP7[13] /
PRU1_R31[13]
V3
I/O
CP[28]
C
VP_DOUT[4] / LCD_D[4] / UPP_XD[12] / GP7[12] /
PRU1_R31[12]
V2
I/O
CP[28]
C
VP_DOUT[3] / LCD_D[3] / UPP_XD[11] / GP7[11] /
PRU1_R31[11]
V1
I/O
CP[28]
C
VP_DOUT[2] / LCD_D[2] / UPP_XD[10] / GP7[10] /
PRU1_R31[10]
W3
I/O
CP[28]
C
VP_DOUT[1] / LCD_D[1] / UPP_XD[9] / GP7[9] / PRU1_R31[9]
W2
I/O
CP[28]
C
VP_DOUT[0] / LCD_D[0] / UPP_XD[8] / GP7[8] / PRU1_R31[8]
W1
I/O
CP[28]
C
VP_DOUT[15] / LCD_D[15] / UPP_XD[7] / GP7[7] / BOOT[7]
P4
I/O
CP[29]
C
VP_DOUT[14] / LCD_D[14] / UPP_XD[6] / GP7[6] / BOOT[6]
R3
I/O
CP[29]
C
VP_DOUT[13] / LCD_D[13] / UPP_XD[5] / GP7[5] / BOOT[5]
R2
I/O
CP[29]
C
VP_DOUT[12] / LCD_D[12] / UPP_XD[4] / GP7[4] / BOOT[4]
R1
I/O
CP[29]
C
VP_DOUT[11] / LCD_D[11] / UPP_XD[3] / GP7[3] / BOOT[3]
T3
I/O
CP[29]
C
VP_DOUT[10] / LCD_D[10] / UPP_XD[2] / GP7[2] / BOOT[2]
T2
I/O
CP[29]
C
VP_DOUT[9] / LCD_D[9] / UPP_XD[1] / GP7[1] / BOOT[1]
T1
I/O
CP[29]
C
VP_DOUT[8] / LCD_D[8] / UPP_XD[0] / GP7[0] / BOOT[0]
U3
I/O
CP[29]
C
VP_DIN[7] / UHPI_HD[15] / UPP_D[15] / RMII_TXD[1] /
PRU0_R31[29]
U18
I/O
CP[26]
C
VP_DIN[6] / UHPI_HD[14] / UPP_D[14] / RMII_TXD[0] /
PRU0_R31[28]
V16
I/O
CP[26]
C
VP_DIN[5] / UHPI_HD[13] / UPP_D[13] / RMII_TXEN /
PRU0_R31[27]
R14
I/O
CP[26]
C
VP_DIN[4] / UHPI_HD[12] / UPP_D[12] / RMII_RXD[1] /
PRU0_R31[26]
W16
I/O
CP[26]
C
VP_DIN[3] / UHPI_HD[11] / UPP_D[11] / RMII_RXD[0] /
PRU0_R31[25]
V17
I/O
CP[26]
C
VP_DIN[2] / UHPI_HD[10] / UPP_D[10] / RMII_RXER /
PRU0_R31[24]
W17
I/O
CP[26]
C
VP_DIN[1] / UHPI_HD[9] / UPP_D[9] / RMII_MHZ_50_CLK /
PRU0_R31[23]
W18
I/O
CP[26]
C
VP_DIN[0] / UHPI_HD[8] / UPP_D[8] / RMII_CRS_DV /
PRU1_R31[29]
W19
I/O
CP[26]
C
VP_DIN[15]_VSYNC / UHPI_HD[7] / UPP_D[7]/PRU0_R30[15] /
PRU0_R31[15]
V18
I/O
CP[27]
C
VP_DIN[14]_HSYNC / UHPI_HD[6] / UPP_D[6]/ PRU0_R30[14] /
PRU0_R31[14]
V19
I/O
CP[27]
C
VP_DIN[13]_FIELD / UHPI_HD[5] / UPP_D[5] /PRU0_R30[13] /
PRU0_R31[13]
U19
I/O
CP[27]
C
VP_DIN[12] / UHPI_HD[4] / UPP_D[4]/ PRU0_R30[12] /
PRU0_R31[12]
T16
I/O
CP[27]
C
VP_DIN[11] / UHPI_HD[3] / UPP_D[3]/ PRU0_R30[11] /
PRU0_R31[11]
R18
I/O
CP[27]
C
VP_DIN[10] / UHPI_HD[2] / UPP_D[2]/ PRU0_R30[10] /
PRU0_R31[10]
R19
I/O
CP[27]
C
VP_DIN[9] / UHPI_HD[1] / UPP_D[1]/ PRU0_R30[9] /
PRU0_R31[9]
R15
I/O
CP[27]
C
VP_DIN[8] / UHPI_HD[0] / UPP_D[0] / GP6[5] / PRU1_R31[0]
P17
I/O
CP[27]
C
60
Device Comparison
DESCRIPTION
uPP data bus
Copyright © 2009–2017, Texas Instruments Incorporated
Submit Documentation Feedback
Product Folder Links: OMAP-L138
OMAP-L138
www.ti.com
3.8.24
SPRS586J – JUNE 2009 – REVISED JANUARY 2017
Video Port Interface (VPIF)
Table 3-28. Video Port Interface (VPIF) Terminal Functions
SIGNAL
NAME
NO.
TYPE (1)
PULL (2)
POWER
GROUP (3)
DESCRIPTION
VIDEO INPUT
VP_CLKIN0 / UHPI_HCS / PRU1_R30[10] / GP6[7] /
UPP_2xTXCLK
W14
I
CP[25]
C
VPIF capture channel 0
input clock
VP_CLKIN1 / UHPI_HDS1/PRU1_R30[9] / GP6[6] / PRU1_R31[16]
V15
I
CP[25]
C
VPIF capture channel 1
input clock
VP_DIN[15]_VSYNC / UHPI_HD[7] / UPP_D[7] / PRU0_R30[15] /
PRU0_R31[15]
V18
I
CP[27]
C
VP_DIN[14]_HSYNC / UHPI_HD[6] / UPP_D[6] / RU0_R30[14] /
PRU0_R31[14]
V19
I
CP[27]
C
VP_DIN[13]_FIELD / UHPI_HD[5] / UPP_D[5] / PRU0_R30[13] /
PRU0_R31[13]
U19
I
CP[27]
C
VP_DIN[12] / UHPI_HD[4] / UPP_D[4] / PRU0_R30[12] /
PRU0_R31[12]
T16
I
CP[27]
C
VP_DIN[11] / UHPI_HD[3] / UPP_D[3] / PRU0_R30[11] /
PRU0_R31[11]
R18
I
CP[27]
C
VP_DIN[10] / UHPI_HD[2] / UPP_D[2] / PRU0_R30[10] /
PRU0_R31[10]
R19
I
CP[27]
C
VP_DIN[9] / UHPI_HD[1] / UPP_D[1] / PRU0_R30[9] /
PRU0_R31[9]
R15
I
CP[27]
C
VP_DIN[8] / UHPI_HD[0] / UPP_D[0] / GP6[5] / PRU1_R31[0]
P17
I
CP[27]
C
VP_DIN[7] / UHPI_HD[15] / UPP_D[15] / RMII_TXD[1] /
PRU0_R31[29]
U18
I
CP[26]
C
VP_DIN[6] / UHPI_HD[14] / UPP_D[14] / RMII_TXD[0] /
PRU0_R31[28]
V16
I
CP[26]
C
VP_DIN[5] / UHPI_HD[13] / UPP_D[13] / RMII_TXEN /
PRU0_R31[27]
R14
I
CP[26]
C
VP_DIN[4] / UHPI_HD[12] / UPP_D[12] / RMII_RXD[1] /
PRU0_R31[26]
W16
I
CP[26]
C
VP_DIN[3] / UHPI_HD[11] / UPP_D[11] / MII_RXD[0] /
PRU0_R31[25]
V17
I
CP[26]
C
VP_DIN[2] / UHPI_HD[10] / UPP_D[10] / RMII_RXER /
PRU0_R31[24]
W17
I
CP[26]
C
VP_DIN[1] / UHPI_HD[9] / UPP_D[9] / RMII_MHZ_50_CLK /
PRU0_R31[23]
W18
I
CP[26]
C
VP_DIN[0] / UHPI_HD[8] / UPP_D[8] / RMII_CRS_DV /
PRU1_R31[29]
W19
I
CP[26]
C
(1)
(2)
(3)
VPIF capture data bus
I = Input, O = Output, I/O = Bidirectional, Z = High impedance, PWR = Supply voltage, GND = Ground, A = Analog signal.
Note: The pin type shown refers to the input, output or high-impedance state of the pin function when configured as the signal name
highlighted in bold. All multiplexed signals may enter a high-impedance state when the configured function is input-only or the configured
function supports high-Z operation. All GPIO signals can be used as input or output. For multiplexed pins where functions have different
types (ie., input versus output), the table reflects the pin function direction for that particular peripheral.
IPD = Internal Pulldown resistor; IPU = Internal Pullup resistor; CP[n] = configurable pull-up/pull-down (where n is the pin group) using
the PUPDENA and PUPDSEL registers in the System Module. The pull-up and pull-down control of these pins is not active until the
device is out of reset. During reset, all of the pins associated with these registers are pulled down. If the application requires a pull-up,
an external pull-up can be used. or more detailed information on pullup/pulldown resistors and situations where external pullup/pulldown
resistors are required, see the Device Configuration section. For electrical specifications on pullup and internal pulldown circuits, see the
Device Operating Conditions section.
This signal is part of a dual-voltage IO group (A, B or C). These groups can be operated at 3.3V or 1.8V nominal. The three groups can
be operated at independent voltages but all pins withina group will operate at the same voltage. Group A operates at the voltage of
power supply DVDD3318_A. Group B operates at the voltage of power supply DVDD3318_B. Group C operates at the voltage of power
supply DVDD3318_C.
Device Comparison
Copyright © 2009–2017, Texas Instruments Incorporated
Submit Documentation Feedback
Product Folder Links: OMAP-L138
61
OMAP-L138
SPRS586J – JUNE 2009 – REVISED JANUARY 2017
www.ti.com
Table 3-28. Video Port Interface (VPIF) Terminal Functions (continued)
SIGNAL
NAME
NO.
TYPE (1)
PULL (2)
POWER
GROUP (3)
DESCRIPTION
VIDEO OUTPUT
VP_CLKIN2 / MMCSD1_DAT[3] / PRU1_R30[3] / GP6[4] /
PRU1_R31[4]
H3
I
CP[30]
C
VPIF display channel 2
input clock
VP_CLKOUT2 / MMCSD1_DAT[2] / PRU1_R30[2] / GP6[3] /
PRU1_R31[3]
K3
O
CP[30]
C
VPIF display channel 2
output clock
VP_CLKIN3 / MMCSD1_DAT[1] / PRU1_R30[1] / GP6[2] /
PRU1_R31[2]
J3
I
CP[30]
C
VPIF display channel 3
input clock
VP_CLKOUT3 / PRU1_R30[0] / GP6[1] / PRU1_R31[1]
K4
O
CP[30]
C
VPIF display channel 3
output clock
VP_DOUT[15] / LCD_D[15] / UPP_XD[7] / GP7[7] / BOOT[7]
P4
O
CP[29]
C
VP_DOUT[14] / LCD_D[14] / UPP_XD[6] / GP7[6] / BOOT[6]
R3
O
CP[29]
C
VP_DOUT[13] / LCD_D[13] / UPP_XD[5] / GP7[5] / BOOT[5]
R2
O
CP[29]
C
VP_DOUT[12] / LCD_D[12] / UPP_XD[4] / GP7[4] / BOOT[4]
R1
O
CP[29]
C
VP_DOUT[11] / LCD_D[11] / UPP_XD[3] / GP7[3] / BOOT[3]
T3
O
CP[29]
C
VP_DOUT[10] / LCD_D[10] / UPP_XD[2] / GP7[2] / BOOT[2]
T2
O
CP[29]
C
VP_DOUT[9] / LCD_D[9] / UPP_XD[1] / GP7[1] / BOOT[1]
T1
O
CP[29]
C
VP_DOUT[8] / LCD_D[8] / UPP_XD[0] / GP7[0] / BOOT[0]
U3
O
CP[29]
C
VP_DOUT[7] / LCD_D[7] / UPP_XD[15] / GP7[15] / PRU1_R31[15]
U2
O
CP[28]
C
VP_DOUT[6] / LCD_D[6] / UPP_XD[14] / GP7[14] / PRU1_R31[14]
U1
O
CP[28]
C
VP_DOUT[5] / LCD_D[5] / UPP_XD[13] / GP7[13] / PRU1_R31[13]
V3
O
CP[28]
C
VP_DOUT[4] / LCD_D[4] / UPP_XD[12] / GP7[12] / PRU1_R31[12]
V2
O
CP[28]
C
VP_DOUT[3] / LCD_D[3] / UPP_XD[11] / GP7[11] / PRU1_R31[11]
V1
O
CP[28]
C
VP_DOUT[2] / LCD_D[2] / UPP_XD[10] / GP7[10] / PRU1_R31[10]
W3
O
CP[28]
C
VP_DOUT[1] / LCD_D[1] / UPP_XD[9] / GP7[9] / PRU1_R31[9]
W2
O
CP[28]
C
VP_DOUT[0] / LCD_D[0] / UPP_XD[8] / GP7[8] / PRU1_R31[8]
W1
O
CP[28]
C
62
Device Comparison
VPIF display data bus
Copyright © 2009–2017, Texas Instruments Incorporated
Submit Documentation Feedback
Product Folder Links: OMAP-L138
OMAP-L138
www.ti.com
SPRS586J – JUNE 2009 – REVISED JANUARY 2017
3.8.25 General Purpose Input Output
Table 3-29. General Purpose Input Output Terminal Functions
SIGNAL
NAME
NO.
TYPE (1)
PULL (2)
POWER
GROUP (3)
DESCRIPTION
GP0
ACLKR / PRU0_R30[20] / GP0[15] / PRU0_R31[22]
A1
I/O
CP[0]
A
ACLKX / PRU0_R30[19] / GP0[14] / PRU0_R31[21]
B1
I/O
CP[0]
A
AFSR / GP0[13] / PRU0_R31[20]
C2
I/O
CP[0]
A
AFSX / GP0[12] / PRU0_R31[19]
B2
I/O
CP[0]
A
AHCLKR / PRU0_R30[18] / UART1_RTS / GP0[11] /
PRU0_R31[18]
A2
I/O
CP[0]
A
AHCLKX / USB_REFCLKIN / UART1_CTS / GP0[10] /
PRU0_R31[17]
A3
I/O
CP[0]
A
AMUTE / PRU0_R30[16] / UART2_RTS / GP0[9] / PRU0_R31[16]
D5
I/O
CP[0]
A
RTC_ALARM / UART2_CTS / GP0[8] / DEEPSLEEP
F4
I/O
CP[0]
A
AXR15 / EPWM0TZ[0] / ECAP2_APWM2 / GP0[7]
A4
I/O
CP[1]
A
AXR14 / CLKR1 / GP0[6]
B4
I/O
CP[2]
A
AXR13 / CLKX1 / GP0[5]
B3
I/O
CP[2]
A
AXR12 / FSR1 / GP0[4]
C4
I/O
CP[2]
A
AXR11 / FSX1 / GP0[3]
C5
I/O
CP[2]
A
AXR10 / DR1 / GP0[2]
D4
I/O
CP[2]
A
AXR9 / DX1 / GP0[1]
C3
I/O
CP[2]
A
AXR8 / CLKS1 / ECAP1_APWM1 /GP0[0] / PRU0_R31[8]
E4
I/O
CP[3]
A
(1)
(2)
(3)
GPIO Bank 0
I = Input, O = Output, I/O = Bidirectional, Z = High impedance, PWR = Supply voltage, GND = Ground, A = Analog signal.
Note: The pin type shown refers to the input, output or high-impedance state of the pin function when configured as the signal name
highlighted in bold. All multiplexed signals may enter a high-impedance state when the configured function is input-only or the configured
function supports high-Z operation. All GPIO signals can be used as input or output. For multiplexed pins where functions have different
types (ie., input versus output), the table reflects the pin function direction for that particular peripheral.
IPD = Internal Pulldown resistor; IPU = Internal Pullup resistor; CP[n] = configurable pull-up/pull-down (where n is the pin group) using
the PUPDENA and PUPDSEL registers in the System Module. The pull-up and pull-down control of these pins is not active until the
device is out of reset. During reset, all of the pins associated with these registers are pulled down. If the application requires a pull-up,
an external pull-up can be used. For more detailed information on pullup/pulldown resistors and situations where external
pullup/pulldown resistors are required, see the Device Configuration section. For electrical specifications on pullup and internal pulldown
circuits, see the Device Operating Conditions section.
This signal is part of a dual-voltage IO group (A, B or C). These groups can be operated at 3.3V or 1.8V nominal. The three groups can
be operated at independent voltages but all pins withina group will operate at the same voltage. Group A operates at the voltage of
power supply DVDD3318_A. Group B operates at the voltage of power supply DVDD3318_B. Group C operates at the voltage of power
supply DVDD3318_C.
Device Comparison
Copyright © 2009–2017, Texas Instruments Incorporated
Submit Documentation Feedback
Product Folder Links: OMAP-L138
63
OMAP-L138
SPRS586J – JUNE 2009 – REVISED JANUARY 2017
www.ti.com
Table 3-29. General Purpose Input Output Terminal Functions (continued)
SIGNAL
NAME
NO.
TYPE (1)
PULL (2)
POWER
GROUP (3)
DESCRIPTION
GP1
AXR7 / EPWM1TZ[0] / PRU0_R30[17] / GP1[15] / PRU0_R31[7]
D2
I/O
CP[4]
A
AXR6 / CLKR0 / GP1[14] / MII_TXEN / PRU0_R31[6]
C1
I/O
CP[5]
A
AXR5 / CLKX0 / GP1[13] / MII_TXCLK
D3
I/O
CP[5]
A
AXR4 / FSR0 / GP1[12] / MII_COL
D1
I/O
CP[5]
A
AXR3 / FSX0 / GP1[11] / MII_TXD[3]
E3
I/O
CP[5]
A
AXR2 / DR0 / GP1[10] / MII_TXD[2]
E2
I/O
CP[5]
A
AXR1 / DX0 / GP1[9] / MII_TXD[1]
E1
I/O
CP[5]
A
SPI0_CLK / EPWM0A / GP1[8] / MII_RXCLK
D19
I/O
CP[7]
A
SPI0_SCS[1] / TM64P0_OUT12 / GP1[7] / MDCLK / TM64P0_IN12
E16
I/O
CP[10]
A
SPI0_SCS[0] / TM64P1_OUT12 / GP1[6] / MDIO / TM64P1_IN12
D17
I/O
CP[10]
A
SPI1_SCS[7] / I2C0_SCL / TM64P2_OUT12 / GP1[5]
G16
I/O
CP[11]
A
SPI1_SCS[6] / I2C0_SDA / TM64P3_OUT12 / GP1[4]
G18
I/O
CP[11]
A
SPI1_SCS[5] / UART2_RXD / I2C1_SCL / GP1[3]
F17
I/O
CP[12]
A
SPI1_SCS[4] / UART2_TXD / I2C1_SDA / GP1[2]
F16
I/O
CP[12]
A
SPI1_SCS[3] / UART1_RXD / SATA_LED / GP1[1]
E18
I/O
CP[13]
A
SPI1_SCS[2] / UART1_TXD / SATA_CP_POD / GP1[0]
F19
I/O
CP[13]
A
64
Device Comparison
GPIO Bank 1
Copyright © 2009–2017, Texas Instruments Incorporated
Submit Documentation Feedback
Product Folder Links: OMAP-L138
OMAP-L138
www.ti.com
SPRS586J – JUNE 2009 – REVISED JANUARY 2017
Table 3-29. General Purpose Input Output Terminal Functions (continued)
SIGNAL
NAME
NO.
TYPE (1)
PULL (2)
POWER
GROUP (3)
DESCRIPTION
GP2
SPI1_SCS[1] / EPWM1A / PRU0_R30[8] / GP2[15] / TM64P2_IN12
F18
I/O
CP[14]
A
SPI1_SCS[0] / EPWM1B / PRU0_R30[7] / GP2[14] / TM64P3_IN12
E19
I/O
CP[14]
A
SPI1_CLK / GP2[13]
G19
I/O
CP[15]
A
SPI1_ENA / GP2[12]
H16
I/O
CP[15]
A
SPI1_SOMI / GP2[11]
H17
I/O
CP[15]
A
SPI1_SIMO / GP2[10]
G17
I/O
CP[15]
A
EMA_BA[1] / GP2[9]
A15
I/O
CP[16]
B
EMA_BA[0] / GP2[8]
C15
I/O
CP[16]
B
B7
I/O
CP[16]
B
EMA_SDCKE / PRU0_R30[4] / GP2[6] / PRU0_R31[4]
D8
I/O
CP[16]
B
EMA_RAS / PRU0_R30[3] / GP2[5] / PRU0_R31[3]
A16
I/O
CP[16]
B
EMA_CAS / PRU0_R30[2] / GP2[4] / PRU0_R31[2]
A9
I/O
CP[16]
B
EMA_WEN_DQM[0] / GP2[3]
C8
I/O
CP[16]
B
EMA_WEN_DQM[1] / GP2[2]
A5
I/O
CP[16]
B
EMA_WAIT[1] / PRU0_R30[1] / GP2[1] / PRU0_R31[1]
B19
I/O
CP[16]
B
A18
I/O
CP[16]
B
EMA_CLK / PRU0_R30[5] / GP2[7] / PRU0_R31[5]
EMA_CS[0] / GP2[0]
GPIO Bank 2
GP3
EMA_CS[2] / GP3[15]
B17
I/O
CP[16]
B
EMA_CS[3] / GP3[14]
A17
I/O
CP[16]
B
EMA_CS[4] / GP3[13]
F9
I/O
CP[16]
B
EMA_CS[5] / GP3[12]
B16
I/O
CP[16]
B
EMA_WE / GP3[11]
B9
I/O
CP[16]
B
EMA_OE / GP3[10]
B15
I/O
CP[16]
B
EMA_A_RW / GP3[9]
D10
I/O
CP[16]
B
EMA_WAIT[0] / PRU0_R30[0] / GP3[8] / PRU0_R31[0]
B18
I/O
CP[16]
B
EMA_D[15] / GP3[7]
E6
I/O
CP[17]
B
EMA_D[14] / GP3[6]
C7
I/O
CP[17]
B
EMA_D[13] / GP3[5]
B6
I/O
CP[17]
B
EMA_D[12] / GP3[4]
A6
I/O
CP[17]
B
EMA_D[11] / GP3[3]
D6
I/O
CP[17]
B
EMA_D[10] / GP3[2]
A7
I/O
CP[17]
B
EMA_D[9] / GP3[1]
D9
I/O
CP[17]
B
EMA_D[8] / GP3[0]
E10
I/O
CP[17]
B
GPIO Bank 3
Device Comparison
Copyright © 2009–2017, Texas Instruments Incorporated
Submit Documentation Feedback
Product Folder Links: OMAP-L138
65
OMAP-L138
SPRS586J – JUNE 2009 – REVISED JANUARY 2017
www.ti.com
Table 3-29. General Purpose Input Output Terminal Functions (continued)
SIGNAL
NAME
NO.
TYPE (1)
PULL (2)
POWER
GROUP (3)
DESCRIPTION
GP4
EMA_D[7] / GP4[15]
D7
I/O
CP[17]
B
EMA_D[6] / GP4[14]
C6
I/O
CP[17]
B
EMA_D[5] / GP4[13]
E7
I/O
CP[17]
B
EMA_D[4] / GP4[12]
B5
I/O
CP[17]
B
EMA_D[3] / GP4[11]
E8
I/O
CP[17]
B
EMA_D[2] / GP4[10]
B8
I/O
CP[17]
B
EMA_D[1] / GP4[9]
A8
I/O
CP[17]
B
EMA_D[0] / GP4[8]
C9
I/O
CP[17]
B
MMCSD0_CLK / PRU1_R30[31] / GP4[7]
E9
I/O
CP[18]
B
EMA_A[22] / MMCSD0_CMD / PRU1_R30[30] / GP4[6]
A10
I/O
CP[18]
B
EMA_A[21] / MMCSD0_DAT[0] / PRU1_R30[29] / GP4[5]
B10
I/O
CP[18]
B
EMA_A[20] / MMCSD0_DAT[1] / PRU1_R30[28] / GP4[4]
A11
I/O
CP[18]
B
EMA_A[19] / MMCSD0_DAT[2] / PRU1_R30[27] / GP4[3]
C10
I/O
CP[18]
B
EMA_A[18] / MMCSD0_DAT[3] / PRU1_R30[26] / GP4[2]
E11
I/O
CP[18]
B
EMA_A[17] / MMCSD0_DAT[4] / PRU1_R30[25] / GP4[1]
B11
I/O
CP[18]
B
E12
I/O
CP[18]
B
EMA_A[16] / MMCSD0_DAT[5] / PRU1_R30[24] / GP4[0]
GPIO Bank 4
GP5
EMA_A[15] / MMCSD0_DAT[6] / PRU1_R30[23] / GP5[15] /
PRU1_R31[23]
C11
I/O
CP[19]
B
EMA_A[14] / MMCSD0_DAT[7] / PRU1_R30[22] / GP5[14] /
PRU1_R31[22]
A12
I/O
CP[19]
B
EMA_A[13] / PRU0_R30[21] / PRU1_R30[21] / GP5[13] /
PRU1_R31[21]
D11
I/O
CP[19]
B
EMA_A[12] / PRU1_R30[20] / GP5[12] / PRU1_R31[20]
D13
I/O
CP[19]
B
EMA_A[11] / PRU1_R30[19] / GP5[11] / PRU1_R31[19]
B12
I/O
CP[19]
B
EMA_A[10] / PRU1_R30[18] / GP5[10] / PRU1_R31[18]
C12
I/O
CP[19]
B
EMA_A[9] / PRU1_R30[17] / GP5[9]
D12
I/O
CP[19]
B
EMA_A[8] / PRU1_R30[16] / GP5[8]
A13
I/O
CP[19]
B
EMA_A[7] / PRU1_R30[15] / GP5[7]
B13
I/O
CP[20]
B
EMA_A[6] / GP5[6]
E13
I/O
CP[20]
B
EMA_A[5] / GP5[5]
C13
I/O
CP[20]
B
EMA_A[4] / GP5[4]
A14
I/O
CP[20]
B
EMA_A[3] / GP5[3]
D14
I/O
CP[20]
B
EMA_A[2] / GP5[2]
B14
I/O
CP[20]
B
EMA_A[1] / GP5[1]
D15
I/O
CP[20]
B
EMA_A[0] / GP5[0]
C14
I/O
CP[20]
B
66
Device Comparison
GPIO Bank 5
Copyright © 2009–2017, Texas Instruments Incorporated
Submit Documentation Feedback
Product Folder Links: OMAP-L138
OMAP-L138
www.ti.com
SPRS586J – JUNE 2009 – REVISED JANUARY 2017
Table 3-29. General Purpose Input Output Terminal Functions (continued)
SIGNAL
NAME
NO.
TYPE (1)
PULL (2)
POWER
GROUP (3)
DESCRIPTION
GP6
RESETOUT / UHPI_HAS / PRU1_R30[14] / GP6[15]
T17
I/O
CP[21]
C
CLKOUT / UHPI_HDS2 / PRU1_R30[13] / GP6[14]
T18
I/O
CP[22]
C
PRU0_R30[31] / UHPI_HRDY / PRU1_R30[12] / GP6[13]
R17
I/O
CP[23]
C
PRU0_R30[30] / UHPI_HINT / PRU1_R30[11] / GP6[12]
R16
I/O
CP[23]
C
PRU0_R30[29] / UHPI_HCNTL0 / UPP_CHA_CLOCK / GP6[11]
U17
I/O
CP[24]
C
PRU0_R30[28] / UHPI_HCNTL1 / UPP_CHA_START / GP6[10]
W15
I/O
CP[24]
C
PRU0_R30[27] / UHPI_HHWIL / UPP_CHA_ENABLE / GP6[9]
U16
I/O
CP[24]
C
PRU0_R30[26] / UHPI_HRW / UPP_CHA_WAIT/GP6[8] /
PRU1_R31[17]
T15
I/O
CP[24]
C
VP_CLKIN0 / UHPI_HCS / PRU1_R30[10] GP6[7] / UPP_2xTXCLK W14
I/O
CP[25]
C
VP_CLKIN1 / UHPI_HDS1 / PRU1_R30[9] / GP6[6] /
PRU1_R31[16]
V15
I/O
CP[25]
C
VP_DIN[8] / UHPI_HD[0] / UPP_D[0] / GP6[5] / PRU1_R31[0]
P17
I/O
CP[27]
C
VP_CLKIN2 / MMCSD1_DAT[3] / PRU1_R30[3] / GP6[4] /
PRU1_R31[4]
H3
I/O
CP[30]
C
VP_CLKOUT2 / MMCSD1_DAT[2] / PRU1_R30[2] / GP6[3] /
PRU1_R31[3]
K3
I/O
CP[30]
C
VP_CLKIN3 / MMCSD1_DAT[1] / PRU1_R30[1] / GP6[2] /
PRU1_R31[2]
J3
I/O
CP[30]
C
VP_CLKOUT3 / PRU1_R30[0] / GP6[1] / PRU1_R31[1]
K4
I/O
CP[30]
C
R5
I/O
CP[31]
C
LCD_AC_ENB_CS / GP6[0] / PRU1_R31[28]
GPIO Bank 6
GP7
VP_DOUT[7] / LCD_D[7] / UPP_XD[15] / GP7[15] / PRU1_R31[15]
U2
I/O
CP[28]
C
VP_DOUT[6] / LCD_D[6] / UPP_XD[14] / GP7[14] / PRU1_R31[14]
U1
I/O
CP[28]
C
VP_DOUT[5] / LCD_D[5] / UPP_XD[13] / GP7[13] / PRU1_R31[13]
V3
I/O
CP[28]
C
VP_DOUT[4] / LCD_D[4] / UPP_XD[12] / GP7[12] / PRU1_R31[12]
V2
I/O
CP[28]
C
VP_DOUT[3] / LCD_D[3] / UPP_XD[11] / GP7[11] / PRU1_R31[11]
V1
I/O
CP[28]
C
VP_DOUT[2] / LCD_D[2] / UPP_XD[10] / GP7[10] / PRU1_R31[10]
W3
I/O
CP[28]
C
VP_DOUT[1] / LCD_D[1] / UPP_XD[9] / GP7[9] / PRU1_R31[9]
W2
I/O
CP[28]
C
VP_DOUT[0] / LCD_D[0] / UPP_XD[8] / GP7[8] / PRU1_R31[8]
W1
I/O
CP[28]
C
VP_DOUT[15] / LCD_D[15] / UPP_XD[7] / GP7[7] / BOOT[7]
P4
I/O
CP[29]
C
VP_DOUT[14] / LCD_D[14] / UPP_XD[6] / GP7[6] / BOOT[6]
R3
I/O
CP[29]
C
VP_DOUT[13] / LCD_D[13] / UPP_XD[5] / GP7[5]/ BOOT[5]
R2
I/O
CP[29]
C
VP_DOUT[12] / LCD_D[12] / UPP_XD[4] / GP7[4] / BOOT[4]
R1
I/O
CP[29]
C
VP_DOUT[11] / LCD_D[11] / UPP_XD[3] / GP7[3] / BOOT[3]
T3
I/O
CP[29]
C
VP_DOUT[10] / LCD_D[10] / UPP_XD[2] / GP7[2] / BOOT[2]
T2
I/O
CP[29]
C
VP_DOUT[9] / LCD_D[9] / UPP_XD[1] / GP7[1] / BOOT[1]
T1
I/O
CP[29]
C
VP_DOUT[8] / LCD_D[8] / UPP_XD[0] / GP7[0] / BOOT[0]
U3
I/O
CP[29]
C
GPIO Bank 7
Device Comparison
Copyright © 2009–2017, Texas Instruments Incorporated
Submit Documentation Feedback
Product Folder Links: OMAP-L138
67
OMAP-L138
SPRS586J – JUNE 2009 – REVISED JANUARY 2017
www.ti.com
Table 3-29. General Purpose Input Output Terminal Functions (continued)
SIGNAL
NAME
NO.
TYPE (1)
PULL (2)
POWER
GROUP (3)
DESCRIPTION
GP8
PRU0_R30[25] / MMCSD1_DAT[0] / UPP_CHB_CLOCK / GP8[15]
/ PRU1_R31[27]
G1
I/O
CP30]
C
PRU0_R30[24] / MMCSD1_CLK / UPP_CHB_START / GP8[14] /
PRU1_R31[26]
G2
I/O
CP[30]
C
PRU0_R30[23] / MMCSD1_CMD / UPP_CHB_ENABLE / GP8[13] /
PRU1_R31[25]
J4
I/O
CP[30]
C
PRU0_R30[22] / PRU1_R30[8] / UPP_CHB_WAIT / GP8[12] /
PRU1_R31[24]
G3
I/O
CP[30]
C
MMCSD1_DAT[7] / LCD_PCLK / PRU1_R30[7] / GP8[11]
F1
I/O
CP[31]
C
MMCSD1_DAT[6] / LCD_MCLK / PRU1_R30[6] / GP8[10] /
PRU1_R31[7]
F2
I/O
CP[31]
C
MMCSD1_DAT[5] / LCD_HSYNC / PRU1_R30[5] / GP8[9] /
PRU1_R31[6]
H4
I/O
CP[31]
C
MMCSD1_DAT[4] / LCD_VSYNC / PRU1_R30[4] / GP8[8] /
PRU1_R31[5]
G4
I/O
CP[31]
C
AXR0 / ECAP0_APWM0 / GP8[7] / MII_TXD[0] / CLKS0
GPIO Bank 8
F3
I/O
CP[6]
A
SPI0_SOMI / EPWMSYNCI / GP8[6] / MII_RXER
C16
I/O
CP[7]
A
SPI0_SIMO / EPWMSYNCO / GP8[5] / MII_CRS
C18
I/O
CP[7]
A
SPI0_SCS[5] / UART0_RXD / GP8[4] / MII_RXD[3]
C19
I/O
CP[8]
A
SPI0_SCS[4] / UART0_TXD / GP8[3] / MII_RXD[2]
D18
I/O
CP[8]
A
SPI0_SCS[3] / UART0_CTS / GP8[2] / MII_RXD[1] /
SATA_MP_SWITCH
E17
I/O
CP[9]
A
SPI0_SCS[2] / UART0_RTS / GP8[1] / MII_RXD[0] /
SATA_CP_DET
D16
I/O
CP[9]
A
RTCK / GP8[0] (4)
K17
I/O
IPD
B
(4)
68
GP8[0] is initially configured as a reserved function after reset and will not be in a predictable state. This signal will only be stable after
the GPIO configuration for this pin has been completed. Users should carefully consider the system implications of this pin being in an
unknown state after reset.
Device Comparison
Copyright © 2009–2017, Texas Instruments Incorporated
Submit Documentation Feedback
Product Folder Links: OMAP-L138
OMAP-L138
www.ti.com
SPRS586J – JUNE 2009 – REVISED JANUARY 2017
3.8.26 Reserved and No Connect
Table 3-30. Reserved and No Connect Terminal Functions
SIGNAL
NAME
RSV2
NC
(1)
NO.
T19
M3, M14, N16
TYPE (1)
PWR
DESCRIPTION
Reserved. For proper device operation, this pin must be tied either directly to
CVDD or left unconnected (do not connect to ground).
Pin M3 should be left unconnected (do not connect to power or ground)
Pins M14 and N16 may be left unconnected or connected to ground (VSS)
PWR = Supply voltage.
Device Comparison
Copyright © 2009–2017, Texas Instruments Incorporated
Submit Documentation Feedback
Product Folder Links: OMAP-L138
69
OMAP-L138
SPRS586J – JUNE 2009 – REVISED JANUARY 2017
www.ti.com
3.8.27 Supply and Ground
Table 3-31. Supply and Ground Terminal Functions
SIGNAL
NAME
TYPE (1)
NO.
DESCRIPTION
CVDD (Core supply)
E15, G7, G8,
G13, H6, H7,
H10, H11,
H12, H13, J6,
J12, K6, K12,
L12, M8, M9,
N8
PWR
Variable (1.3V - 1.0V) core supply voltage pins
RVDD (Internal RAM supply)
E5, H14, N7
PWR
1.3V internal ram supply voltage pins (for 456 MHz versions)
1.2V internal ram supply voltage pins (for 375 MHz versions)
DVDD18 (I/O supply)
F14, G6, G10,
G11, G12,
J13, K5, L6,
P13, R13
PWR
1.8V I/O supply voltage pins. DVDD18 must be powered even if all of
the DVDD3318_x supplies are operated at 3.3V.
DVDD3318_A (I/O supply)
F5, F15, G5,
G14, G15, H5
PWR
1.8V or 3.3-V dual-voltage LVCMOS I/O supply voltage pins, Group A
DVDD3318_B (I/O supply)
E14, F6, F7,
F8, F10, F11,
F12, F13, G9,
J14, K15
PWR
1.8V or 3.3-V dual-voltage LVCMOS I/O supply voltage pins, Group B
DVDD3318_C (I/O supply)
J5, K13, L4,
L13, M13,
N13, P5, P6,
P12, R4
PWR
1.8V or 3.3-V dual-voltage LVCMOS I/O supply voltage pins, Group C
VSS (Ground)
A19, H8, H9,
H15, J7, J8,
J9, J10, J11,
K7, K8, K9,
K10, K11, L5,
L7, L8, L9,
L10, L11, M4,
M5, M6, M7,
M10, M11, N5,
N11, N12, P11
GND
Ground pins.
USB0_VDDA33
N18
PWR
USB0 PHY 3.3-V supply
USB0_VDDA18
N14
PWR
USB0 PHY 1.8-V supply input
USB0_VDDA12
N17
A
USB_CVDD
M12
PWR
USB0 core logic 1.2-V supply input
USB1_VDDA33
P15
PWR
USB1 PHY 3.3-V supply
USB1_VDDA18
P14
PWR
USB1 PHY 1.8-V supply
SATA_VDD
M2, N4, P1,
P2
PWR
SATA PHY 1.2V logic supply
SATA_VSS
H1, H2, K1,
K2, L3, M1
GND
SATA PHY ground reference
DDR_DVDD18
N6, N9, N10,
P7, P8, P9,
P10, R7, R8,
R9
PWR
DDR PHY 1.8V power supply pins
(1)
70
USB0 PHY 1.2-V LDO output for bypass cap
PWR = Supply voltage, GND - Ground.
Device Comparison
Copyright © 2009–2017, Texas Instruments Incorporated
Submit Documentation Feedback
Product Folder Links: OMAP-L138
OMAP-L138
www.ti.com
3.9
SPRS586J – JUNE 2009 – REVISED JANUARY 2017
Unused Pin Configurations
All signals multiplexed with multiple functions may be used as an alternate function if a given peripheral is
not used. Unused non-multiplexed signals and some other specific signals should be handled as specified
in the tables below.
If NMI is unused, it should be pulled-high externally through a 10k-ohm resistor to supply DVDD3318_B.
Table 3-32. Unused USB0 and USB1 Signal Configurations
SIGNAL NAME
Configuration (When USB0 and
USB1 are not used)
Configuration (When only USB1 is
not used)
Configuration (When USB1 is used
and USB0 is not used)
USB0_DM
No Connect
Use as USB0 function
VSS or No Connect
USB0_DP
No Connect
Use as USB0 function
VSS or No Connect
USB0_ID
No Connect
Use as USB0 function
No Connect
USB0_VBUS
No Connect
Use as USB0 function
No Connect
USB0_DRVVBU
S
No Connect
Use as USB0 function
No Connect
USB0_VDDA33
No Connect
3.3V
3.3V
USB0_VDDA18
No Connect
1.8V
1.8V
USB0_VDDA12
Internal USB PHY output connected to an external 0.22-μF filter capacitor
USB1_DM
No Connect
VSS or No Connect
Use as USB1 function
USB1_DP
No Connect
VSS or No Connect
Use as USB1 function
USB1_VDDA33
No Connect
No Connect
Use as USB1 function
USB1_VDDA18
No Connect
No Connect
Use as USB1 function
USB_REFCLKIN
No Connect or other peripheral
function
Use for USB0 or other peripheral
function
Ext Ref Clk / USB0 PHY PLL output
(see SPRUH77 Device Clocking)
USB_CVDD
1.2V
1.2V
1.2V
Table 3-33. Unused SATA Signal Configuration
SIGNAL NAME
Configuration
SATA_RXP
No Connect
SATA_RXN
No Connect
SATA_TXP
No Connect
SATA_TXN
No Connect
SATA_REFCLKP
No Connect
SATA_REFCLKN
No Connect
SATA_MP_SWITCH
May be used as GPIO or other peripheral function
SATA_CP_DET
May be used as GPIO or other peripheral function
SATA_CP_POD
May be used as GPIO or other peripheral function
SATA_LED
May be used as GPIO or other peripheral function
SATA_REG
No Connect
SATA_VDDR
No Connect
SATA_VDD
Prior to silicon revision 2.0, this supply must be connected to a static 1.2V nominal supply.
For silicon revision 2.0 and later, this supply may be left unconnected for additional power
conservation.
SATA_VSS
VSS
Table 3-34. Unused RTC Signal Configuration
SIGNAL NAME
Configuration
RTC_XI
May be held high (CVDD) or low
RTC_XO
No Connect
RTC_ALARM
May be used as GPIO or other peripheral function
Device Comparison
Copyright © 2009–2017, Texas Instruments Incorporated
Submit Documentation Feedback
Product Folder Links: OMAP-L138
71
OMAP-L138
SPRS586J – JUNE 2009 – REVISED JANUARY 2017
www.ti.com
Table 3-34. Unused RTC Signal Configuration (continued)
SIGNAL NAME
Configuration
RTC_CVDD
Connect to CVDD
RTC_VSS
VSS
Table 3-35. Unused DDR2/mDDR Memory Controller Signal Configuration
SIGNAL NAME
(1)
72
Configuration
DDR_D[15:0]
No Connect
DDR_A[13:0]
No Connect
DDR_CLKP
No Connect
DDR_CLKN
No Connect
DDR_CKE
No Connect
DDR_WE
No Connect
DDR_RAS
No Connect
DDR_CAS
No Connect
DDS_CS
No Connect
DDR_DQM[1:0]
No Connect
DDR_DQS[1:0]
No Connect
DDR_BA[2:0]
No Connect
DDR_DQGATE0
No Connect
DDR_DQGATE1
No Connect
DDR_ZP
No Connect
DDR_VREF
No Connect
DDR_DVDD18
No Connect
(1)
The DDR2/mDDR input buffers are enabled by default on device power up and a maximum current draw of 25mA can result on the 1.8V
supply. To minimize power consumption, the DDR2/mDDR controller input receivers should be placed in power-down mode by setting
VTPIO[14] = 1.
Device Comparison
Copyright © 2009–2017, Texas Instruments Incorporated
Submit Documentation Feedback
Product Folder Links: OMAP-L138
OMAP-L138
www.ti.com
SPRS586J – JUNE 2009 – REVISED JANUARY 2017
4 Device Configuration
4.1
Boot Modes
This device supports a variety of boot modes through an internal ARM ROM bootloader. This device does
not support dedicated hardware boot modes; therefore, all boot modes utilize the internal ARM ROM. The
input states of the BOOT pins are sampled and latched into the BOOTCFG register, which is part of the
system configuration (SYSCFG) module, when device reset is deasserted. Boot mode selection is
determined by the values of the BOOT pins.
See Using the OMAP-L132/L138 Bootloader Application Report (SPRAB41) for more details on the ROM
Boot Loader.
The following boot modes are supported:
• NAND Flash boot
– 8-bit NAND
– 16-bit NAND (supported on ROM revisions after d800k002 -- see the bootloader documents
mentioned above to determine the ROM revision)
• NOR Flash boot
– NOR Direct boot (8-bit or 16-bit)
– NOR Legacy boot (8-bit or 16-bit)
– NOR AIS boot (8-bit or 16-bit)
• HPI Boot
• I2C0/I2C1 Boot
– EEPROM (Master Mode)
– External Host (Slave Mode)
• SPI0/SPI1 Boot
– Serial Flash (Master Mode)
– SERIAL EEPROM (Master Mode)
– External Host (Slave Mode)
• UART0/UART1/UART2 Boot
– External Host
• MMC/SD0 Boot
4.2
SYSCFG Module
The following system level features of the chip are controlled by the SYSCFG peripheral:
• Readable Device, Die, and Chip Revision ID
• Control of Pin Multiplexing
• Priority of bus accesses different bus masters in the system
• Capture at power on reset the chip BOOT pin values and make them available to software
• Control of the DeepSleep power management function
• Enable and selection of the programmable pin pullups and pulldowns
Device Configuration
Copyright © 2009–2017, Texas Instruments Incorporated
Submit Documentation Feedback
Product Folder Links: OMAP-L138
73
OMAP-L138
SPRS586J – JUNE 2009 – REVISED JANUARY 2017
•
•
•
www.ti.com
Special case settings for peripherals:
– Locking of PLL controller settings
– Default burst sizes for EDMA3 transfer controllers
– Selection of the source for the eCAP module input capture (including on chip sources)
– McASP AMUTEIN selection and clearing of AMUTE status for the McASP
– Control of the reference clock source and other side-band signals for both of the integrated USB
PHYs
– Clock source selection for EMIFA
– DDR2 Controller PHY settings
– SATA PHY power management controls
Selects the source of emulation suspend signal (from either ARM or DSP) of peripherals supporting
this function.
Control of on-chip inter-processor interrupts for signaling between ARM and DSP
Many registers are accessible only by a host (ARM or DSP) when it is operating in its privileged mode.
(ex. from the kernel, but not from user space code).
Table 4-1. System Configuration (SYSCFG) Module Register Access
74
BYTE ADDRESS
ACRONYM
0x01C1 4000
REVID
Revision Identification Register
REGISTER DESCRIPTION
REGISTER ACCESS
—
0x01C1 4008
DIEIDR0
Device Identification Register 0
—
0x01C1 400C
DIEIDR1
Device Identification Register 1
—
0x01C1 4010
DIEIDR2
Device Identification Register 2
—
0x01C1 4014
DIEIDR3
Device Identification Register 3
—
0x01C1 4020
BOOTCFG
Boot Configuration Register
Privileged mode
0x01C1 4038
KICK0R
Kick 0 Register
Privileged mode
0x01C1 403C
KICK1R
Kick 1 Register
Privileged mode
0x01C1 4040
HOST0CFG
Host 0 Configuration Register
0x01C1 4044
HOST1CFG
Host 1 Configuration Register
0x01C1 40E0
IRAWSTAT
Interrupt Raw Status/Set Register
Privileged mode
0x01C1 40E4
IENSTAT
Interrupt Enable Status/Clear Register
Privileged mode
—
—
0x01C1 40E8
IENSET
Interrupt Enable Register
Privileged mode
0x01C1 40EC
IENCLR
Interrupt Enable Clear Register
Privileged mode
0x01C1 40F0
EOI
End of Interrupt Register
Privileged mode
0x01C1 40F4
FLTADDRR
Fault Address Register
Privileged mode
0x01C1 40F8
FLTSTAT
Fault Status Register
0x01C1 4110
MSTPRI0
Master Priority 0 Registers
Privileged mode
0x01C1 4114
MSTPRI1
Master Priority 1 Registers
Privileged mode
0x01C1 4118
MSTPRI2
Master Priority 2 Registers
Privileged mode
0x01C1 4120
PINMUX0
Pin Multiplexing Control 0 Register
Privileged mode
0x01C1 4124
PINMUX1
Pin Multiplexing Control 1 Register
Privileged mode
—
0x01C1 4128
PINMUX2
Pin Multiplexing Control 2 Register
Privileged mode
0x01C1 412C
PINMUX3
Pin Multiplexing Control 3 Register
Privileged mode
0x01C1 4130
PINMUX4
Pin Multiplexing Control 4 Register
Privileged mode
0x01C1 4134
PINMUX5
Pin Multiplexing Control 5 Register
Privileged mode
0x01C1 4138
PINMUX6
Pin Multiplexing Control 6 Register
Privileged mode
0x01C1 413C
PINMUX7
Pin Multiplexing Control 7 Register
Privileged mode
0x01C1 4140
PINMUX8
Pin Multiplexing Control 8 Register
Privileged mode
0x01C1 4144
PINMUX9
Pin Multiplexing Control 9 Register
Privileged mode
0x01C1 4148
PINMUX10
Pin Multiplexing Control 10 Register
Privileged mode
Device Configuration
Copyright © 2009–2017, Texas Instruments Incorporated
Submit Documentation Feedback
Product Folder Links: OMAP-L138
OMAP-L138
www.ti.com
SPRS586J – JUNE 2009 – REVISED JANUARY 2017
Table 4-1. System Configuration (SYSCFG) Module Register Access (continued)
BYTE ADDRESS
ACRONYM
0x01C1 414C
PINMUX11
Pin Multiplexing Control 11 Register
REGISTER DESCRIPTION
REGISTER ACCESS
Privileged mode
0x01C1 4150
PINMUX12
Pin Multiplexing Control 12 Register
Privileged mode
0x01C1 4154
PINMUX13
Pin Multiplexing Control 13 Register
Privileged mode
0x01C1 4158
PINMUX14
Pin Multiplexing Control 14 Register
Privileged mode
0x01C1 415C
PINMUX15
Pin Multiplexing Control 15 Register
Privileged mode
0x01C1 4160
PINMUX16
Pin Multiplexing Control 16 Register
Privileged mode
0x01C1 4164
PINMUX17
Pin Multiplexing Control 17 Register
Privileged mode
0x01C1 4168
PINMUX18
Pin Multiplexing Control 18 Register
Privileged mode
0x01C1 416C
PINMUX19
Pin Multiplexing Control 19 Register
Privileged mode
0x01C1 4170
SUSPSRC
Suspend Source Register
Privileged mode
0x01C1 4174
CHIPSIG
Chip Signal Register
0x01C1 4178
CHIPSIG_CLR
0x01C1 417C
CFGCHIP0
Chip Configuration 0 Register
Privileged mode
0x01C1 4180
CFGCHIP1
Chip Configuration 1 Register
Privileged mode
0x01C1 4184
CFGCHIP2
Chip Configuration 2 Register
Privileged mode
0x01C1 4188
CFGCHIP3
Chip Configuration 3 Register
Privileged mode
0x01C1 418C
CFGCHIP4
Chip Configuration 4 Register
Privileged mode
0x01E2 C000
Chip Signal Clear Register
—
—
VTPIO_CTL
VTPIO COntrol Register
Privileged mode
DDR_SLEW
DDR Slew Register
Privileged mode
0x01E2 C008
DeepSleep
DeepSleep Register
Privileged mode
0x01E2 C00C
PUPD_ENA
Pullup / Pulldown Enable Register
Privileged mode
0x01E2 C010
PUPD_SEL
Pullup / Pulldown Selection Register
Privileged mode
0x01E2 C014
RXACTIVE
RXACTIVE Control Register
Privileged mode
0x01E2 C018
PWRDN
PWRDN Control Register
Privileged mode
0x01E2 C004
Device Configuration
Copyright © 2009–2017, Texas Instruments Incorporated
Submit Documentation Feedback
Product Folder Links: OMAP-L138
75
OMAP-L138
SPRS586J – JUNE 2009 – REVISED JANUARY 2017
4.3
www.ti.com
Pullup/Pulldown Resistors
Proper board design should ensure that input pins to the device always be at a valid logic level and not
floating. This may be achieved via pullup/pulldown resistors. The device features internal pullup (IPU) and
internal pulldown (IPD) resistors on most pins to eliminate the need, unless otherwise noted, for external
pullup/pulldown resistors.
An external pullup/pulldown resistor needs to be used in the following situations:
• Boot and Configuration Pins: If the pin is both routed out and 3-stated (not driven), an external
pullup/pulldown resistor is strongly recommended, even if the IPU/IPD matches the desired value/state.
• Other Input Pins: If the IPU/IPD does not match the desired value/state, use an external
pullup/pulldown resistor to pull the signal to the opposite rail.
For the boot and configuration pins, if they are both routed out and 3-stated (not driven), it is strongly
recommended that an external pullup/pulldown resistor be implemented. Although, internal
pullup/pulldown resistors exist on these pins and they may match the desired configuration value,
providing external connectivity can help ensure that valid logic levels are latched on these device boot and
configuration pins. In addition, applying external pullup/pulldown resistors on the boot and configuration
pins adds convenience to the user in debugging and flexibility in switching operating modes.
Tips for choosing an external pullup/pulldown resistor:
• Consider the total amount of current that may pass through the pullup or pulldown resistor. Make sure
to include the leakage currents of all the devices connected to the net, as well as any internal pullup or
pulldown resistors.
• Decide a target value for the net. For a pulldown resistor, this should be below the lowest VIL level of
all inputs connected to the net. For a pullup resistor, this should be above the highest VIH level of all
inputs on the net. A reasonable choice would be to target the VOL or VOH levels for the logic family of
the limiting device; which, by definition, have margin to the VIL and VIH levels.
• Select a pullup/pulldown resistor with the largest possible value; but, which can still ensure that the net
will reach the target pulled value when maximum current from all devices on the net is flowing through
the resistor. The current to be considered includes leakage current plus, any other internal and
external pullup/pulldown resistors on the net.
• For bidirectional nets, there is an additional consideration which sets a lower limit on the resistance
value of the external resistor. Verify that the resistance is small enough that the weakest output buffer
can drive the net to the opposite logic level (including margin).
• Remember to include tolerances when selecting the resistor value.
• For pullup resistors, also remember to include tolerances on the IO supply rail.
• For most systems, a 1-kΩ resistor can be used to oppose the IPU/IPD while meeting the above
criteria. Users should confirm this resistor value is correct for their specific application.
• For most systems, a 20-kΩ resistor can be used to compliment the IPU/IPD on the boot and
configuration pins while meeting the above criteria. Users should confirm this resistor value is correct
for their specific application.
• For more detailed information on input current (II), and the low-/high-level input voltages (VIL and VIH)
for the device, see Section 5.3, Recommended Operating Conditions.
• For the internal pullup/pulldown resistors for all device pins, see the peripheral/system-specific terminal
functions table.
76
Specifications
Copyright © 2009–2017, Texas Instruments Incorporated
Submit Documentation Feedback
Product Folder Links: OMAP-L138
OMAP-L138
www.ti.com
SPRS586J – JUNE 2009 – REVISED JANUARY 2017
5 Specifications
5.1 Absolute Maximum Ratings Over Operating Junction Temperature Range
(Unless Otherwise Noted) (1)
Core Logic, Variable and Fixed
(CVDD, RVDD, RTC_CVDD, PLL0_VDDA , PLL1_VDDA ,
SATA_VDD, USB_CVDD) (2)
-0.5 V to 1.4 V
I/O, 1.8V
(USB0_VDDA18, USB1_VDDA18, SATA_VDDR, DDR_DVDD18) (2)
Supply voltage ranges
-0.5 V to 2 V
I/O, 3.3V
(DVDD3318_A, DVDD3318_B, DVDD3318_C, USB0_VDDA33,
USB1_VDDA33) (2)
Input voltage (VI) ranges
Oscillator inputs (OSCIN, RTC_XI), 1.2V
-0.3 V to CVDD + 0.3V
Dual-voltage LVCMOS inputs, 3.3V or 1.8V (Steady State)
-0.3V to DVDD + 0.3V
Dual-voltage LVCMOS inputs, operated at 3.3V
(Transient Overshoot/Undershoot)
DVDD + 20%
up to 20% of Signal
Period
Dual-voltage LVCMOS inputs, operated at 1.8V
(Transient Overshoot/Undershoot)
DVDD + 30%
up to 30% of Signal
Period
USB 5V Tolerant IOs:
(USB0_DM, USB0_DP, USB0_ID, USB1_DM, USB1_DP)
5.25V (3)
USB0 VBUS Pin
5.50V (3)
Dual-voltage LVCMOS outputs, 3.3V or 1.8V
(Steady State)
Output voltage (VO) ranges
-0.5 V to 3.8V
-0.3 V to DVDD + 0.3V
Dual-voltage LVCMOS outputs, operated at 3.3V
(Transient Overshoot/Undershoot)
DVDD + 20%
up to 20% of Signal
Period
Dual-voltage LVCMOS outputs, operated at 1.8V
(Transient Overshoot/Undershoot)
DVDD + 30%
up to 30% of Signal
Period
Input or Output Voltages 0.3V above or below their respective power
rails. Limit clamp current that flows through the I/O's internal diode
protection cells.
Clamp Current
±20mA
Commercial (default)
Operating Junction Temperature ranges,
TJ
(1)
(2)
(3)
5.2
Extended (A suffix)
-40°C to 105°C
Handling Ratings
ESD Stress Voltage, VESD
(3)
-40°C to 90°C
Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. These are stress ratings
only, and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating
conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.
All voltage values are with respect to VSS, USB0_VSSA33, USB0_VSSA, PLL0_VSSA, OSCVSS, RTC_VSS
Up to a maximum of 24 hours.
Storage temperature range, Tstg
(1)
(2)
0°C to 90°C
Industrial (D suffix)
(1)
(default)
Human Body Model (HBM)
(2)
Charged Device Model (CDM)
(3)
MIN
MAX
-55
150
UNIT
°C
>1
>1
kV
>500
>500
V
Electrostatic discharge (ESD) to measure device sensitivity/immunity to damage caused by electrostatic discharges into the device.
Level listed above is the passing level per ANSI/ESDA/JEDEC JS-001-2010. JEDEC document JEP 155 states that 500V HBM allows
safe manufacturing with a standard ESD control process, and manufacturing with less than 500V HBM is possible if necessary
precautions are taken. Pins listed as 1000V may actually have higher performance.
Level listed above is the passing level per EIA-JEDEC JESD22-C101E. JEDEC document JEP 157 states that 250V CDM allows safe
manufacturing with a standard ESD control process. Pins listed as 250V may actually have higher performance.
Specifications
Copyright © 2009–2017, Texas Instruments Incorporated
Submit Documentation Feedback
Product Folder Links: OMAP-L138
77
OMAP-L138
SPRS586J – JUNE 2009 – REVISED JANUARY 2017
5.3
www.ti.com
Recommended Operating Conditions
NAME
DESCRIPTION
CVDD
Core Logic Supply Voltage (variable)
RVDD
RTC_CVDD
Supply
Voltage
Internal RAM Supply Voltage
(1)
MIN
NOM
MAX
1.25
1.3
1.35
1.2V operating point
1.14
1.2
1.32
1.1V operating point
1.05
1.1
1.16
1.0V operating point
0.95
1.0
1.05
456 MHz versions
1.25
1.3
1.35
375 MHz versions
1.14
1.2
1.32
UNIT
V
V
RTC Core Logic Supply Voltage
0.9
1.2
1.32
V
PLL0_VDDA
PLL0 Supply Voltage
1.14
1.2
1.32
V
PLL1_VDDA
PLL1 Supply Voltage
1.14
1.2
1.32
V
SATA_VDD
SATA Core Logic Supply Voltage
1.14
1.2
1.32
V
USB_CVDD
USB0, USB1 Core Logic Supply Voltage
1.14
1.2
1.32
V
USB0_VDDA18 USB0 PHY Supply Voltage
1.71
1.8
1.89
V
USB0_VDDA33 USB0 PHY Supply Voltage
3.15
3.3
3.45
V
USB1_VDDA18 USB1 PHY Supply Voltage
1.71
1.8
1.89
V
USB1_VDDA33 USB1 PHY Supply Voltage
3.15
3.3
3.45
V
DVDD18 (2)
1.8V Logic Supply
1.71
1.8
1.89
V
SATA_VDDR
SATA PHY Internal Regulator Supply Voltage
1.71
1.8
1.89
V
2)
DDR2 PHY Supply Voltage
1.71
1.8
1.89
V
DDR_VREF
DDR2/mDDR reference voltage
0.49*
DDR_DVDD18
0.5*
DDR_DVDD18
0.51*
DDR_DVDD18
V
DDR_ZP
DDR2/mDDR impedance control,
connected via 50Ω resistor to Vss
DVDD3318_A
Power Group A Dual-voltage IO
Supply Voltage
1.8V operating point
1.71
1.8
1.89
V
3.3V operating point
3.15
3.3
3.45
V
Power Group B Dual-voltage IO
Supply Voltage
1.8V operating point
1.71
1.8
1.89
V
3.3V operating point
3.15
3.3
3.45
V
DVDD3318_C
Power Group C Dual-voltage IO
Supply Voltage
1.8V operating point
1.71
1.8
1.89
V
3.3V operating point
3.15
3.3
3.45
V
VSS
Core Logic Digital Ground
PLL0_VSSA
PLL0 Ground
PLL1_VSSA
PLL1 Ground
SATA_VSS
SATA PHY Ground
OSCVSS (3)
Oscillator Ground
0
0
0
V
RTC_VSS (3)
RTC Oscillator Ground
USB0_VSSA
USB0 PHY Ground
DDR_DVDD18 (
DVDD3318_B
Supply
Ground
CONDITION
1.3V operating point
Vss
V
USB0_VSSA33 USB0 PHY Ground
High-level input voltage, Dual-voltage I/O, 3.3V (4)
Voltage
Input High
VIH
2
V
0.65*DVDD
V
High-level input voltage, RTC_XI
0.8*RTC_CVDD
V
High-level input voltage, OSCIN
0.8*CVDD
High-level input voltage, Dual-voltage I/O, 1.8V
(4)
Low-level input voltage, Dual-voltage I/O, 3.3V (4)
Voltage
Input Low
(1)
(2)
(3)
(4)
78
VIL
V
0.8
V
0.35*DVDD
V
Low-level input voltage, RTC_XI
0.2*RTC_CVDD
V
Low-level input voltage, OSCIN
0.2*CVDD
V
Low-level input voltage, Dual-voltage I/O, 1.8V
(4)
The RTC provides an option for isolating the RTC_CVDD from the CVDD to reduce current leakage when the RTC is powered
independently. If these power supplies are not isolated (CTRL.SPLITPOWER=0), RTC_CVDD must be equal to or greater than CVDD.
If these power supplies are isolated (CTRL.SPLITPOWER=1), RTC_CVDD may be lower than CVDD.
DVDD18 must be powered even if all of the DVDD3318_x supplies are operated at 3.3V.
When an external crystal is used oscillator (OSC_VSS, RTC_VSS) ground must be kept separate from other grounds and connected
directly to the crystal load capacitor ground. These pins are shorted to VSS on the device itself and should not be connected to VSS on
the circuit board. If a crystal is not used and the clock input is driven directly, then the oscillator VSS may be connected to board ground.
These IO specifications apply to the dual-voltage IOs only and do not apply to DDR2/mDDR or SATA interfaces. DDR2/mDDR IOs are
1.8V IOs and adhere to the JESD79-2A standard.
Specifications
Copyright © 2009–2017, Texas Instruments Incorporated
Submit Documentation Feedback
Product Folder Links: OMAP-L138
OMAP-L138
www.ti.com
SPRS586J – JUNE 2009 – REVISED JANUARY 2017
Recommended Operating Conditions (continued)
NAME
USB
USB0_VBUS
Differential
Clock Input
Voltage
Transition
Time
DESCRIPTION
CONDITION
USB external charge pump input
Differential input voltage, SATA_REFCLKP and
SATA_REFCLKN
tt
FPLL0_SYSCLK1,6
Industrial temperature grade
(D suffix)
Extended temperature grade
(A suffix)
(5)
(6)
(7)
MAX
UNIT
0
5.25
V
250
2000
mV
Transition time, 10%-90%, All Inputs (unless otherwise
specified in the electrical data sections)
Commercial temperature grade
(default)
Operating
Frequency
MIN
NOM
0.25P or 10
CVDD = 1.3V
operating point
0
456 (6)
CVDD = 1.2V
operating point
0
375 (7)
CVDD = 1.1V
operating point
0
200 (6)
CVDD = 1.0V
operating point
0
100 (6)
CVDD = 1.3V
operating point
0
456 (6)
CVDD = 1.2V
operating point
0
375 (7)
CVDD = 1.1V
operating point
0
200 (6)
CVDD = 1.0V
operating point
0
100 (6)
CVDD = 1.2V
operating point
0
375 (7)
CVDD = 1.1V
operating point
0
200 (6)
CVDD = 1.0V
operating point
0
100 (6)
(5)
ns
MHz
MHz
MHz
Whichever is smaller. P = the period of the applied signal. Maintaining transition times as fast as possible is recommended to improve
noise immunity on input signals.
This operating point is not supported on revision 1.x silicon.
This operating point is 300 MHz on revision 1.x silicon.
Specifications
Copyright © 2009–2017, Texas Instruments Incorporated
Submit Documentation Feedback
Product Folder Links: OMAP-L138
79
OMAP-L138
SPRS586J – JUNE 2009 – REVISED JANUARY 2017
5.4
www.ti.com
Notes on Recommended Power-On Hours (POH)
The information in the section below is provided solely for your convenience and does not extend
or modify the warranty provided under TI’s standard terms and conditions for TI semiconductor
products.
To avoid significant degradation, the device power-on hours (POH) must be limited to the following:
Table 5-1. Recommended Power-On Hours
Silicon
Revision
Speed Grade
Operating Junction
Temperature (Tj)
Nominal CVDD Voltage (V)
Power-On Hours [POH]
(hours)
100,000
(1)
A
300 MHz
0 to 90 °C
1.2V
B/E
375 MHz
0 to 90 °C
1.2V
B/E
375 MHz
-40 to 105 °C
1.2V
B/E
456 MHz
0 to 90 °C
1.3V
100,000
B/E
456 MHz
-40 to 90 °C
1.3V
100,000
100,000
75,000
(1)
100,000 POH can be achieved at this temperature condition if the device operation is limited to 345 MHz
Note: Logic functions and parameter values are not assured out of the range specified in the
recommended operating conditions.
The above notations cannot be deemed a warranty or deemed to extend or modify the warranty
under TI’s standard terms and conditions for TI semiconductor products.
80
Specifications
Copyright © 2009–2017, Texas Instruments Incorporated
Submit Documentation Feedback
Product Folder Links: OMAP-L138
OMAP-L138
www.ti.com
5.5
SPRS586J – JUNE 2009 – REVISED JANUARY 2017
Electrical Characteristics Over Recommended Ranges of Supply Voltage and
Operating Junction Temperature (Unless Otherwise Noted)
PARAMETER
TEST CONDITIONS
High-level output voltage
(dual-voltage LVCMOS IOs at 3.3V) (1)
VOH
High-level output voltage
(dual-voltage LVCMOS IOs at 1.8V) (1)
Low-level output voltage
(dual-voltage LVCMOS I/Os at 3.3V)
VOL
Low-level output voltage
(dual-voltage LVCMOS I/Os at 1.8V)
Input current (1)
(dual-voltage LVCMOS I/Os)
II
(2)
Input current (DDR2/mDDR I/Os)
MIN
TYP
MAX
UNIT
DVDD= 3.15V, IOH = -4 mA
2.4
V
DVDD= 3.15V, IOH = -100 μA
2.95
V
DVDD-0.45
V
DVDD= 1.71V, IOH = -2 mA
DVDD= 3.15V, IOL = 4mA
0.4
V
DVDD= 3.15V, IOL = 100 μA
0.2
V
DVDD= 1.71V, IOL = 2mA
0.45
V
VI = VSS to DVDD without
opposing internal resistor
±9
μA
VI = VSS to DVDD with
opposing internal pullup
resistor (3)
70
310
μA
VI = VSS to DVDD with
opposing internal pulldown
resistor (3)
-75
-270
μA
VI = VSS to DVDD with
opposing internal pulldown
resistor (3)
-77
-286
μA
IOH
High-level output current (1)
(dual-voltage LVCMOS I/Os)
-6
mA
IOL
Low-level output current (1)
(dual-voltage LVCMOS I/Os)
6
mA
Capacitance
(1)
(2)
(3)
Input capacitance (dual-voltage LVCMOS)
3
pF
Output capacitance (dual-voltage LVCMOS)
3
pF
These IO specifications apply to the dual-voltage IOs only and do not apply to DDR2/mDDR or SATA interfaces. DDR2/mDDR IOs are
1.8V IOs and adhere to the JESD79-2A standard. USB0 I/Os adhere to the USB2.0 standard. USB1 I/Os adhere to the USB1.1
standard. SATA I/Os adhere to the SATA-I and SATA-II standards.
II applies to input-only pins and bi-directional pins. For input-only pins, II indicates the input leakage current. For bi-directional pins, II
indicates the input leakage current and off-state (Hi-Z) output leakage current.
Applies only to pins with an internal pullup (IPU) or pulldown (IPD) resistor. The pull-up and pull-down strengths shown represent the
minimum and maximum strength across process variation.
Specifications
Copyright © 2009–2017, Texas Instruments Incorporated
Submit Documentation Feedback
Product Folder Links: OMAP-L138
81
OMAP-L138
SPRS586J – JUNE 2009 – REVISED JANUARY 2017
www.ti.com
6 Peripheral Information and Electrical Specifications
6.1
Parameter Information
6.1.1
Parameter Information Device-Specific Information
Tester Pin Electronics
42 Ω
3.5 nH
Transmission Line
Z0 = 50 Ω
(see note)
4.0 pF
A.
1.85 pF
Data Sheet Timing Reference Point
Output
Under
Test
Device Pin
(see note)
The data sheet provides timing at the device pin. For output timing analysis, the tester pin electronics and its
transmission line effects must be taken into account. A transmission line with a delay of 2 ns or longer can be used to
produce the desired transmission line effect. The transmission line is intended as a load only. It is not necessary to
add or subtract the transmission line delay (2 ns or longer) from the data sheet timings.
Input requirements in this data sheet are tested with an input slew rate of < 4 Volts per nanosecond (4 V/ns) at the
device pin and the input signals are driven between 0V and the appropriate IO supply rail for the signal.
Figure 6-1. Test Load Circuit for AC Timing Measurements
The load capacitance value stated is only for characterization and measurement of AC timing signals. This
load capacitance value does not indicate the maximum load the device is capable of driving.
6.1.1.1
Signal Transition Levels
All input and output timing parameters are referenced to Vref for both "0" and "1" logic levels.
For 3.3 V I/O, Vref = 1.65 V.
For 1.8 V I/O, Vref = 0.9 V.
For 1.2 V I/O, Vref = 0.6 V.
Vref
Figure 6-2. Input and Output Voltage Reference Levels for AC Timing Measurements
All rise and fall transition timing parameters are referenced to VIL MAX and VIH MIN for input clocks,
VOLMAX and VOH MIN for output clocks
Vref = VIH MIN (or VOH MIN)
Vref = VIL MAX (or VOL MAX)
Figure 6-3. Rise and Fall Transition Time Voltage Reference Levels
82
Peripheral Information and Electrical Specifications
Submit Documentation Feedback
Product Folder Links: OMAP-L138
Copyright © 2009–2017, Texas Instruments Incorporated
OMAP-L138
www.ti.com
6.2
SPRS586J – JUNE 2009 – REVISED JANUARY 2017
Recommended Clock and Control Signal Transition Behavior
All clocks and control signals must transition between VIH and VIL (or between VIL and VIH) in a monotonic
manner.
6.3
6.3.1
Power Supplies
Power-On Sequence
The device should be powered-on in the following order:
1. RTC (RTC_CVDD) may be powered from an external device (such as a battery) prior to all other
supplies being applied or powered-up at the same time as CVDD. If the RTC is not used, RTC_CVDD
should be connected to CVDD. RTC_CVDD should not be left unpowered while CVDD is powered.
2. Core logic supplies:
(a) All variable 1.3V - 1.0V core logic supplies (CVDD)
(b) All static core logic supplies (RVDD, PLL0_VDDA, PLL1_VDDA, USB_CVDD, SATA_VDD). If
voltage scaling is not used on the device, groups 2a) and 2b) can be controlled from the same
power supply and powered up together.
3. All static 1.8V IO supplies (DVDD18, DDR_DVDD18, USB0_VDDA18, USB1_VDDA18 and
SATA_VDDR) and any of the LVCMOS IO supply groups used at 1.8V nominal (DVDD3318_A,
DVDD3318_B, or DVDD3318_C).
4. All analog 3.3V PHY supplies (USB0_VDDA33 and USB1_VDDA33; these are not required if both
USB0 and USB1 are not used) and any of the LVCMOS IO supply groups used at 3.3V nominal
(DVDD3318_A, DVDD3318_B, or DVDD3318_C).
There is no specific required voltage ramp rate for any of the supplies as long as the LVCMOS supplies
operated at 3.3V (DVDD3318_A, DVDD3318_B, or DVDD3318_C) never exceed the STATIC 1.8V
supplies by more than 2 volts.
RESET must be maintained active until all power supplies have reached their nominal values.
6.3.2
Power-Off Sequence
The power supplies can be powered-off in any order as long as LVCMOS supplies operated at 3.3V
(DVDD3318_A, DVDD3318_B, or DVDD3318_C) never exceed static 1.8V supplies by more than 2 volts.
There is no specific required voltage ramp down rate for any of the supplies (except as required to meet
the above mentioned voltage condition).
Copyright © 2009–2017, Texas Instruments Incorporated
Peripheral Information and Electrical Specifications
Submit Documentation Feedback
Product Folder Links: OMAP-L138
83
OMAP-L138
SPRS586J – JUNE 2009 – REVISED JANUARY 2017
6.4
6.4.1
www.ti.com
Reset
Power-On Reset (POR)
A power-on reset (POR) is required to place the device in a known good state after power-up. Power-On
Reset is initiated by bringing RESET and TRST low at the same time. POR sets all of the device internal
logic to its default state. All pins are tri-stated with the exception of RESETOUT which remains active
through the reset sequence, and RTCK/GP8[0]. If an emulator is driving TCK into the device during reset,
then RTCK/GP8[0] will drive out RTCK. If TCK is not being driven into the device during reset, then
RTCK/GP8[0] will drive low. RESETOUT in an output for use by other controllers in the system that
indicates the device is currently in reset.
While both TRST and RESET need to be asserted upon power up, only RESET needs to be released for
the device to boot properly. TRST may be asserted indefinitely for normal operation, keeping the JTAG
port interface and device's emulation logic in the reset state.
TRST only needs to be released when it is necessary to use a JTAG controller to debug the device or
exercise the device's boundary scan functionality. Note: TRST is synchronous and must be clocked by
TCK; otherwise, the boundary scan logic may not respond as expected after TRST is asserted.
RESET must be released only in order for boundary-scan JTAG to read the variant field of IDCODE
correctly. Other boundary-scan instructions work correctly independent of current state of RESET. For
maximum reliability, the device includes an internal pulldown on the TRST pin to ensure that TRST will
always be asserted upon power up and the device's internal emulation logic will always be properly
initialized.
JTAG controllers from Texas Instruments actively drive TRST high. However, some third-party JTAG
controllers may not drive TRST high but expect the use of a pullup resistor on TRST. When using this type
of JTAG controller, assert TRST to intialize the device after powerup and externally drive TRST high
before attempting any emulation or boundary scan operations.
RTCK/GP8[0] is maintained active through a POR.
A
•
•
•
•
•
summary of the effects of Power-On Reset is given below:
All internal logic (including emulation logic and the PLL logic) is reset to its default state
Internal memory is not maintained through a POR
RESETOUT goes active
All device pins go to a high-impedance state
The RTC peripheral is not reset during a POR. A software sequence is required to reset the RTC
CAUTION: A watchdog reset triggers a POR.
6.4.2
Warm Reset
A warm reset provides a limited reset to the device. Warm Reset is initiated by bringing only RESET low
(TRST is maintained high through a warm reset). Warm reset sets certain portions of the device to their
default state while leaving others unaltered. All pins are tri-stated with the exception of RESETOUT which
remains active through the reset sequence, and RTCK/GP8[0]. If an emulator is driving TCK into the
device during reset, then RTCK/GP8[0] will drive out RTCK. If TCK is not being driven into the device
during reset, then RTCK/GP8[0] will drive low. RESETOUT is an output for use by other controllers in the
system that indicates the device is currently in reset.
During an emulation, the emulator will maintain TRST high and hence only warm reset (not POR) is
available during emulation debug and development.
RTCK/GP8[0] is maintained active through a warm reset.
A summary of the effects of Warm Reset is given below:
• All internal logic (except for the emulation logic and the PLL logic) is reset to its default state
84
Peripheral Information and Electrical Specifications
Submit Documentation Feedback
Product Folder Links: OMAP-L138
Copyright © 2009–2017, Texas Instruments Incorporated
OMAP-L138
www.ti.com
•
•
•
•
SPRS586J – JUNE 2009 – REVISED JANUARY 2017
Internal memory is maintained through a warm reset
RESETOUT goes active
All device pins go to a high-impedance state
The RTC peripheral is not reset during a warm reset. A software sequence is required to reset the
RTC
Copyright © 2009–2017, Texas Instruments Incorporated
Peripheral Information and Electrical Specifications
Submit Documentation Feedback
Product Folder Links: OMAP-L138
85
OMAP-L138
SPRS586J – JUNE 2009 – REVISED JANUARY 2017
6.4.3
www.ti.com
Reset Electrical Data Timings
Table 6-1 assumes testing over the recommended operating conditions.
Table 6-1. Reset Timing Requirements ( (1),
(2)
)
1.3V, 1.2V
NO.
MIN
MAX
1.1V
MIN
1.0V
MAX
MIN
MAX
UNIT
1
tw(RSTL)
Pulse width, RESET/TRST low
100
100
100
ns
2
tsu(BPV-RSTH)
Setup time, boot pins valid before RESET/TRST high
20
20
20
ns
3
th(RSTH-BPV)
Hold time, boot pins valid after RESET/TRST high
20
20
20
ns
td(RSTH-
RESET high to RESETOUT high; Warm reset
4096
4096
4096
cycles (3)
RESETOUTH)
RESET high to RESETOUT high; Power-on Reset
6169
4
5
(1)
(2)
(3)
td(RSTL-RESETOUTL) Delay time, RESET/TRST low to RESETOUT low
6169
14
6169
16
20
ns
RESETOUT is multiplexed with other pin functions. See the Terminal Functions table, Table 3-5 for details.
For power-on reset (POR), the reset timings in this table refer to RESET and TRST together. For warm reset, the reset timings in this
table refer to RESET only (TRST is held high).
OSCIN cycles.
Power
Supplies
Ramping
Power Supplies Stable
Clock Source Stable
OSCIN
1
RESET
TRST
4
RESETOUT
3
2
Boot Pins
Config
Figure 6-4. Power-On Reset (RESET and TRST active) Timing
86
Peripheral Information and Electrical Specifications
Submit Documentation Feedback
Product Folder Links: OMAP-L138
Copyright © 2009–2017, Texas Instruments Incorporated
OMAP-L138
www.ti.com
SPRS586J – JUNE 2009 – REVISED JANUARY 2017
Power Supplies Stable
OSCIN
TRST
1
RESET
5
4
RESETOUT
3
2
Boot Pins
Driven or Hi-Z
Config
Figure 6-5. Warm Reset (RESET active, TRST high) Timing
Copyright © 2009–2017, Texas Instruments Incorporated
Peripheral Information and Electrical Specifications
Submit Documentation Feedback
Product Folder Links: OMAP-L138
87
OMAP-L138
SPRS586J – JUNE 2009 – REVISED JANUARY 2017
6.5
www.ti.com
Crystal Oscillator or External Clock Input
The device includes two choices to provide an external clock input, which is fed to the on-chip PLLs to
generate
high-frequency system clocks. These options are illustrated in Figure 6-6 and Figure 6-7. For input clock
frequencies between 12 and 20 MHz, a crystal with 80 ohm max ESR is recommended. For input clock
frequencies between 20 and 30 MHz, a crystal with 60 ohm max ESR is recommended. Typical load
capacitance values are 10-20 pF, where the load capacitance is the series combination of C1 and C2.
The CLKMODE bit in the PLLCTL register must be 0 to use the on-chip oscillator. If CLKMODE is set to 1,
the internal oscillator is disabled.
Figure 6-6 illustrates the option that uses on-chip 1.2V oscillator with external crystal circuit. Figure 6-7
illustrates the option that uses an external 1.2V clock input.
C2
OSCIN
Clock Input
to PLL
X1
OSCOUT
C1
OSCVSS
Figure 6-6. On-Chip Oscillator
Table 6-2. Oscillator Timing Requirements
PARAMETER
fosc
88
Oscillator frequency range (OSCIN/OSCOUT)
Peripheral Information and Electrical Specifications
Submit Documentation Feedback
Product Folder Links: OMAP-L138
MIN
MAX
UNIT
12
30
MHz
Copyright © 2009–2017, Texas Instruments Incorporated
OMAP-L138
www.ti.com
SPRS586J – JUNE 2009 – REVISED JANUARY 2017
OSCIN
NC
Clock
Input
to PLL
OSCOUT
OSCVSS
Figure 6-7. External 1.2V Clock Source
Table 6-3. OSCIN Timing Requirements for an Externally Driven Clock
MIN
MAX
UNIT
fOSCIN
OSCIN frequency range
PARAMETER
12
50
MHz
tc(OSCIN)
Cycle time, external clock driven on OSCIN
20
ns
tw(OSCINH)
Pulse width high, external clock on OSCIN
0.4 tc(OSCIN)
ns
tw(OSCINL)
Pulse width low, external clock on OSCIN
0.4 tc(OSCIN)
tt(OSCIN)
Transition time, OSCIN
tj(OSCIN)
Period jitter, OSCIN
(1)
6.6
ns
0.25P or 10
(1)
0.02P
ns
ns
Whichever is smaller. P = the period of the applied signal. Maintaining transition times as fast as possible is recommended to improve
noise immunity on input signals.
Clock PLLs
The device has two PLL controllers that provide clocks to different parts of the system. PLL0 provides
clocks (though various dividers) to most of the components of the device. PLL1 provides clocks to the
DDR2/mDDR Controller and provides an alternate clock source for the ASYNC3 clock domain. This allows
the peripherals on the ASYNC3 clock domain to be immune to frequency scaling operation on PLL0.
The PLL controller provides the following:
• Glitch-Free Transitions (on changing clock settings)
• Domain Clocks Alignment
• Clock Gating
• PLL power down
The various clock outputs given by the controller are as follows:
• Domain Clocks: SYSCLK [1:n]
• Auxiliary Clock from reference clock source: AUXCLK
Various dividers that can be used are as follows:
• Post-PLL Divider: POSTDIV
• SYSCLK Divider: D1, ¼, Dn
Various other controls supported are as follows:
• PLL Multiplier Control: PLLM
• Software programmable PLL Bypass: PLLEN
Copyright © 2009–2017, Texas Instruments Incorporated
Peripheral Information and Electrical Specifications
Submit Documentation Feedback
Product Folder Links: OMAP-L138
89
OMAP-L138
SPRS586J – JUNE 2009 – REVISED JANUARY 2017
6.6.1
www.ti.com
PLL Device-Specific Information
The device DSP generates the high-frequency internal clocks it requires through an on-chip PLL.
The PLL requires some external filtering components to reduce power supply noise as shown in Figure 68.
1.14V - 1.32V
PLL0_VDDA
50R
0.1
µF
0.01
µF
VSS
50R
PLL0_VSSA
1.14V - 1.32V
50R
PLL1_VDDA
0.1
µF
VSS
0.01
µF
50R
PLL1_VSSA
Ferrite Bead: Murata BLM31PG500SN1L or Equivalent
Figure 6-8. PLL External Filtering Components
The external filtering components shown above provide noise immunity for the PLLs. PLL0_VDDA and
PLL1_VDDA should not be connected together to provide noise immunity between the two PLLs.
Likewise, PLL0_VSSA and PLL1_VSSA should not be connected together.
The input to the PLL is either from the on-chip oscillator or from an external clock on the OSCIN pin. PLL0
outputs seven clocks that have programmable divider options. PLL1 outputs three clocks that have
programmable divider options. Figure 6-9 illustrates the high-level view of the PLL Topology.
The PLLs are disabled by default after a device reset. They must be configured by software according to
the allowable operating conditions listed in Table 6-4 before enabling the device to run from the PLL by
setting PLLEN = 1.
90
Peripheral Information and Electrical Specifications
Submit Documentation Feedback
Product Folder Links: OMAP-L138
Copyright © 2009–2017, Texas Instruments Incorporated
OMAP-L138
www.ti.com
SPRS586J – JUNE 2009 – REVISED JANUARY 2017
PLL Controller 0
PLLCTL[EXTCLKSRC]
PLL1_SYSCLK3
1
PLLCTL[PLLEN]
PLLCTL[CLKMODE]
OSCIN
0
0
Square
Wave
1
Crystal
0
PREDIV
POSTDIV
PLL
1
PLLM
PLLDIV1 (/1)
SYSCLK1
PLLDIV2 (/2)
SYSCLK2
PLLDIV4 (/4)
SYSCLK4
PLLDIV5 (/3)
SYSCLK5
PLLDIV6 (/1)
SYSCLK6
PLLDIV7 (/6)
SYSCLK7
PLLDIV3 (/3)
SYSCLK3
EMIFA
Internal
Clock
Source
0
1
DIV4.5
CFGCHIP3[EMA_CLKSRC]
AUXCLK
PLLC0 OBSCLK
(CLKOUT Pin)
DIV4.5
OSCDIV
14h
17h
18h
19h
1Ah
1Bh
1Ch
1Dh
1Eh
SYSCLK1
SYSCLK2
SYSCLK3
SYSCLK4
SYSCLK5
SYSCLK6
SYSCLK7
PLLC1 OBSCLK
OCSEL[OCSRC]
PLLCTL[PLLEN]
0
POSTDIV
PLL
1
PLLM
SYSCLK1
SYSCLK2
SYSCLK3
PLL Controller 1
PLLDIV2 (/2)
SYSCLK2
PLLDIV3 (/3)
SYSCLK3
PLLDIV1 (/1)
SYSCLK1
DDR2/mDDR
Internal
Clock
Source
14h
17h
18h
19h
OSCDIV
PLLC1 OBSCLK
OCSEL[OCSRC]
Figure 6-9. PLL Topology
Copyright © 2009–2017, Texas Instruments Incorporated
Peripheral Information and Electrical Specifications
Submit Documentation Feedback
Product Folder Links: OMAP-L138
91
OMAP-L138
SPRS586J – JUNE 2009 – REVISED JANUARY 2017
www.ti.com
Table 6-4. Allowed PLL Operating Conditions (PLL0 and PLL1)
NO.
1
PARAMETER
PLLRST: Assertion time during initialization
Lock time: The time that the application has to wait for
the PLL to acquire lock before setting PLLEN, after
changing PREDIV, PLLM, or OSCIN
2
Default
Value
MIN
MAX
UNIT
N/A
1000
N/A
ns
N/A
2000 N
Max PLL Lock Time =
m
where N = Pre-Divider Ratio
N/A
M = PLL Multiplier
OSCIN
cycles
(1)
3
(1)
PREDIV: Pre-divider value
/1
/1
/32
-
12
30 (if internal oscillator is used)
50 (if external clock is used)
MHz
4
PLLREF: PLL input frequency
5
PLLM: PLL multiplier values
x20
x4
x32
6
PLLOUT: PLL output frequency
N/A
300
600
MHz
7
POSTDIV: Post-divider value
/1
/1
/32
-
The multiplier values must be chosen such that the PLL output frequency (at PLLOUT) is between300 and 600 MHz, but the frequency
going into the SYSCLK dividers (after the post divider) cannot exceed the maximum clock frequency defined for the device at a given
voltage operating point.
6.6.2
Device Clock Generation
PLL0 is controlled by PLL Controller 0 and PLL1 is controlled by PLL Controller 1. PLLC0 and PLLC1
manage the clock ratios, alignment, and gating for the system clocks to the chip. The PLLCs are
responsible for controlling all modes of the PLL through software, in terms of pre-division of the clock
inputs (PLLC0 only), multiply factors within the PLLs, and post-division for each of the chip-level clocks
from the PLLs outputs. PLLC0 also controls reset propagation through the chip, clock alignment, and test
points.
PLLC0 provides clocks for the majority of the system but PLLC1 provides clocks to the DDR2/mDDR
Controller and the ASYNC3 clock domain to provide frequency scaling immunity to a defined set or
peripherals. The ASYNC3 clock domain can either derive its clock from PLL1_SYSCLK2 (for frequency
scaling immunity from PLL0) or from PLL0_SYSCLK2 (for synchronous timing with PLL0) depending on
the application requirements. In addition, some peripherals have specific clock options independent of the
ASYNC clock domain.
6.6.3
Dynamic Voltage and Frequency Scaling (DVFS)
The processor supports multiple operating points by scaling voltage and frequency to minimize power
consumption for a given level of processor performance.
Frequency scaling is achieved by modifying the setting of the PLL controllers’ multipliers, post-dividers
(POSTDIV), and system clock dividers (SYSCLKn). Modification of the POSTDIV and SYSCLK values
does not require relocking the PLL and provides lower latency to switch between operating points, but at
the expense of the frequencies being limited by the integer divide values (only the divide values are
altered the PLL multiplier is left unmodified). Non integer divide frequency values can be achieved by
changing both the multiplier and the divide values, but when the PLL multiplier is changed the PLL must
relock, incurring additional latency to change between operating points. Detailed information on modifying
the PLL Controller settings can be found in the OMAP-L138 C6-Integra DSP+ARM Technical Reference
Manual (SPRUH77).
92
Peripheral Information and Electrical Specifications
Submit Documentation Feedback
Product Folder Links: OMAP-L138
Copyright © 2009–2017, Texas Instruments Incorporated
OMAP-L138
www.ti.com
SPRS586J – JUNE 2009 – REVISED JANUARY 2017
Voltage scaling is enabled from outside the device by controlling an external voltage regulator. The
processor may communicate with the regulator using GPIOs, I2C or some other interface. When switching
between voltage-frequency operating points, the voltage must always support the desired frequency.
When moving from a high-performance operating point to a lower performance operating point, the
frequency should be lowered first followed by the voltage. When moving from a low-performance operating
point to a higher performance operating point, the voltage should be raised first followed by the frequency.
Voltage operating points refer to the CVdd voltage at that point. Other static supplies must be maintained
at their nominal voltages at all operating points.
The maximum voltage slew rate for CVdd supply changes is 1 mV/us.
For additional information on power management solutions from TI for this processor, follow the Power
Management link in the Product Folder on www.ti.com for this processor.
The processor supports multiple clock domains some of which have clock ratio requirements to each
other. SYSCLK1:SYSCLK2:SYSCLK4:SYSCLK6 are synchronous to each other and the SYSCLKn
dividers must always be configured such that the ratio between these domains is 1:2:4:1. The ASYNC and
ASYNC3 clock domains are asynchronous to the other clock domains and have no specific ratio
requirement.
Table 6-5 summarizes the maximum internal clock frequencies at each of the voltage operating points.
Table 6-5. Maximum Internal Clock Frequencies at Each Voltage Operating Point
CLOCK
SOURCE
CLOCK DOMAIN
1.3V NOM
1.2V NOM
1.1V NOM
1.0V NOM
PLL0_SYSCLK1
DSP subsystem
456 MHz
375 MHz
200 MHz
100 MHz
PLL0_SYSCLK2
SYSCLK2 clock domain peripherals and optional clock
source for ASYNC3 clock domain peripherals
228 MHz
187.5 MHz
100 MHz
50 MHz
PLL0_SYSCLK3
Optional clock for ASYNC1 clock domain
(See ASYNC1 row)
PLL0_SYSCLK4
SYSCLK4 domain peripherals
114 MHz
93.75 MHz
50 MHz
25 MHz
PLL0_SYSCLK5
Not used on this processor
-
-
-
-
PLL0_SYSCLK6
ARM subsystem
456 MHz
375 MHz
200 MHz
100 MHz
PLL0_SYSCLK7
Optional 50 MHz clock source for EMAC RMII interface
50 MHz
50 MHz
-
-
PLL1_SYSCLK1
DDR2/mDDR Interface clock source
(memory interface clock is one-half of the value shown)
312 MHz
312 MHz
300 MHz
266 MHz
PLL1_SYSCLK2
Optional clock source for ASYNC3 clock domain
peripherals
152 MHz
150 MHz
100 MHz
75 MHz
PLL1_SYSCLK3
Alternate clock source input to PLL Controller 0
75 MHz
75 MHz
75 MHz
75 MHz
50 MHz
50 MHz
50 MHz
50 MHz
48 MHz
48 MHz
48 MHz
48 MHz
Async Mode
148 MHz
148 MHz
75 MHz
50 MHz
SDRAM Mode
100 MHz
100 MHz
66.6 MHz
50 MHz
50 MHz
50 MHz
50 MHz
50 MHz
McASP AUXCLK Bypass clock source for the McASP
PLL0_AUXCLK
Bypass clock source for the USB0 and USB1
ASYNC1
ASYNC Clock Domain (EMIFA)
ASYNC2
ASYNC2 Clock Domain (multiple peripherals)
Some interfaces have specific limitations on supported modes/speeds at each operating point. See the
corresponding peripheral sections of this document for more information.
TI provides software components (called the Power Manager) to perform DVFS and abstract the task from
the user. The Power Manager controls changing operating points (both frequency and voltage) and
handles the related tasks involved such as informing/controlling peripherals to provide graceful transitions
between operating points. The Power Manager is bundled as a component of DSP/BIOS.
Copyright © 2009–2017, Texas Instruments Incorporated
Peripheral Information and Electrical Specifications
Submit Documentation Feedback
Product Folder Links: OMAP-L138
93
OMAP-L138
SPRS586J – JUNE 2009 – REVISED JANUARY 2017
6.7
www.ti.com
Interrupts
The device has a large number of interrupts to service the needs of its many peripherals and subsystems.
Both the ARM and C674x CPUs are capable of servicing these interrupts equally. The interrupts can be
selectively enabled or disabled in either of the controllers. Also, the ARM and DSP can communicate with
each other through interrupts controlled by registers in the SYSCFG module.
6.7.1
ARM CPU Interrupts
The ARM9 CPU core supports two direct interrupts: FIQ and IRQ. The ARM Interrupt Controller (AINTC)
extends the number of interrupts to 100, and provides features like programmable masking, priority,
hardware nesting support, and interrupt vector generation.
6.7.1.1
ARM Interrupt Controller (AINTC) Interrupt Signal Hierarchy
The ARM Interrupt controller organizes interrupts into the following hierarchy:
• Peripheral Interrupt Requests
– Individual Interrupt Sources from Peripherals
• 101 System Interrupts
– One or more Peripheral Interrupt Requests are combined (fixed configuration) to generate a
System Interrupt.
– After prioritization, the AINTC will provide an interrupt vector based unique to each System Interrupt
• 32 Interrupt Channels
– Each System Interrupt is mapped to one of the 32 Interrupt Channels
– Channel Number determines the first level of prioritization, Channel 0 is highest priority and 31
lowest.
– If more than one system interrupt is mapped to a channel, priority within the channel is determined
by system interrupt number (0 highest priority)
• Host Interrupts (FIQ and IRQ)
– Interrupt Channels 0 and 1 generate the ARM FIQ interrupt
– Interrupt Channels 2 through 31 Generate the ARM IRQ interrupt
• Debug Interrupts
– Two Debug Interrupts are supported and can be used to trigger events in the debug subsystem
– Sources can be selected from any of the System Interrupts or Host Interrupts
6.7.1.2
AINTC Hardware Vector Generation
The AINTC also generates an interrupt vector in hardware for both IRQ and FIQ host interrupts. This may
be used to accelerate interrupt dispatch. A unique vector is generated for each of the 100 system
interrupts. The vector is computed in hardware as:
VECTOR = BASE + (SYSTEM INTERRUPT NUMBER × SIZE)
Where BASE and SIZE are programmable. The computed vector is a 32-bit address which may
dispatched to using a single instruction of type LDR PC, [PC, #-] at the FIQ and IRQ vector
locations (0xFFFF0018 and 0xFFFF001C respectively).
94
Peripheral Information and Electrical Specifications
Submit Documentation Feedback
Product Folder Links: OMAP-L138
Copyright © 2009–2017, Texas Instruments Incorporated
OMAP-L138
www.ti.com
6.7.1.3
SPRS586J – JUNE 2009 – REVISED JANUARY 2017
AINTC Hardware Interrupt Nesting Support
Interrupt nesting occurs when an interrupt service routine re-enables interrupts, to allow the CPU to
interrupt the ISR if a higher priority event occurs. The AINTC provides hardware support to facilitate
interrupt nesting. It supports both global and per host interrupt (FIQ and IRQ in this case) automatic
nesting. If enabled, the AINTC will automatically update an internal nesting register that temporarily masks
interrupts at and below the priority of the current interrupt channel. Then if the ISR re-enables interrupts;
only higher priority channels will be able to interrupt it. The nesting level is restored by the ISR by writing
to the nesting level register on completion. Support for nesting can be enabled/disabled by software, with
the option of automatic nesting on a global or per host interrupt basis; or manual nesting.
6.7.1.4
AINTC System Interrupt Assignments
Table 6-6. AINTC System Interrupt Assignments
System Interrupt
Interrupt Name
Source
0
COMMTX
ARM
1
COMMRX
ARM
2
NINT
ARM
3
PRU_EVTOUT0
PRUSS Interrupt
4
PRU_EVTOUT1
PRUSS Interrupt
5
PRU_EVTOUT2
PRUSS Interrupt
6
PRU_EVTOUT3
PRUSS Interrupt
7
PRU_EVTOUT4
PRUSS Interrupt
8
PRU_EVTOUT5
PRUSS Interrupt
9
PRU_EVTOUT6
PRUSS Interrupt
10
PRU_EVTOUT7
PRUSS Interrupt
11
EDMA3_0_CC0_INT0
EDMA3_0 Channel Controller 0 Shadow Region 0 Transfer
Completion Interrupt
12
EDMA3_0_CC0_ERRINT
EDMA3_0 Channel Controller 0 Error Interrupt
13
EDMA3_0_TC0_ERRINT
EDMA3_0 Transfer Controller 0 Error Interrupt
14
EMIFA_INT
EMIFA
15
IIC0_INT
I2C0
16
MMCSD0_INT0
MMCSD0 MMC/SD Interrupt
17
MMCSD0_INT1
MMCSD0 SDIO Interrupt
18
PSC0_ALLINT
PSC0
19
RTC_IRQS[1:0]
RTC
20
SPI0_INT
SPI0
21
T64P0_TINT12
Timer64P0 Interrupt 12
22
T64P0_TINT34
Timer64P0 Interrupt 34
23
T64P1_TINT12
Timer64P1 Interrupt 12
24
T64P1_TINT34
Timer64P1 Interrupt 34
25
UART0_INT
UART0
26
-
Reserved
27
MPU_BOOTCFG_ERR
Shared MPU and SYSCFG Address/Protection Error Interrupt
28
SYSCFG_CHIPINT0
SYSCFG CHIPSIG Register
29
SYSCFG_CHIPINT1
SYSCFG CHIPSIG Register
30
SYSCFG_CHIPINT2
SYSCFG CHIPSIG Register
31
SYSCFG_CHIPINT3
SYSCFG CHIPSIG Register
32
EDMA3_0_TC1_ERRINT
EDMA3_0 Transfer Controller 1 Error Interrupt
33
EMAC_C0RXTHRESH
EMAC - Core 0 Receive Threshold Interrupt
34
EMAC_C0RX
EMAC - Core 0 Receive Interrupt
Copyright © 2009–2017, Texas Instruments Incorporated
Peripheral Information and Electrical Specifications
Submit Documentation Feedback
Product Folder Links: OMAP-L138
95
OMAP-L138
SPRS586J – JUNE 2009 – REVISED JANUARY 2017
www.ti.com
Table 6-6. AINTC System Interrupt Assignments (continued)
System Interrupt
96
Interrupt Name
Source
35
EMAC_C0TX
EMAC - Core 0 Transmit Interrupt
36
EMAC_C0MISC
EMAC - Core 0 Miscellaneous Interrupt
37
EMAC_C1RXTHRESH
EMAC - Core 1 Receive Threshold Interrupt
38
EMAC_C1RX
EMAC - Core 1 Receive Interrupt
39
EMAC_C1TX
EMAC - Core 1 Transmit Interrupt
40
EMAC_C1MISC
EMAC - Core 1 Miscellaneous Interrupt
41
DDR2_MEMERR
DDR2 Controller
42
GPIO_B0INT
GPIO Bank 0 Interrupt
43
GPIO_B1INT
GPIO Bank 1 Interrupt
44
GPIO_B2INT
GPIO Bank 2 Interrupt
45
GPIO_B3INT
GPIO Bank 3 Interrupt
46
GPIO_B4INT
GPIO Bank 4 Interrupt
47
GPIO_B5INT
GPIO Bank 5 Interrupt
48
GPIO_B6INT
GPIO Bank 6 Interrupt
49
GPIO_B7INT
GPIO Bank 7 Interrupt
50
GPIO_B8INT
GPIO Bank 8 Interrupt
51
IIC1_INT
I2C1
52
LCDC_INT
LCD Controller
53
UART_INT1
UART1
54
MCASP_INT
McASP0 Combined RX / TX Interrupts
55
PSC1_ALLINT
PSC1
56
SPI1_INT
SPI1
57
UHPI_ARMINT
UHPI ARM Interrupt
58
USB0_INT
USB0 Interrupt
59
USB1_HCINT
USB1 OHCI Host Controller Interrupt
60
USB1_RWAKEUP
USB1 Remote Wakeup Interrupt
61
UART2_INT
UART2
62
-
Reserved
63
EHRPWM0
HiResTimer / PWM0 Interrupt
64
EHRPWM0TZ
HiResTimer / PWM0 Trip Zone Interrupt
65
EHRPWM1
HiResTimer / PWM1 Interrupt
66
EHRPWM1TZ
HiResTimer / PWM1 Trip Zone Interrupt
67
SATA_INT
SATA Controller
68
T64P2_ALL
Timer64P2 - Combined TINT12 and TINT34
69
ECAP0
ECAP0
70
ECAP1
ECAP1
71
ECAP2
ECAP2
72
MMCSD1_INT0
MMCSD1 MMC/SD Interrupt
73
MMCSD1_INT1
MMCSD1 SDIO Interrupt
74
T64P2_CMPINT0
Timer64P2 - Compare 0
75
T64P2_CMPINT1
Timer64P2 - Compare 1
76
T64P2_CMPINT2
Timer64P2 - Compare 2
77
T64P2_CMPINT3
Timer64P2 - Compare 3
78
T64P2_CMPINT4
Timer64P2 - Compare 4
79
T64P2_CMPINT5
Timer64P2 - Compare 5
80
T64P2_CMPINT6
Timer64P2 - Compare 6
81
T64P2_CMPINT7
Timer64P2 - Compare 7
Peripheral Information and Electrical Specifications
Submit Documentation Feedback
Product Folder Links: OMAP-L138
Copyright © 2009–2017, Texas Instruments Incorporated
OMAP-L138
www.ti.com
SPRS586J – JUNE 2009 – REVISED JANUARY 2017
Table 6-6. AINTC System Interrupt Assignments (continued)
System Interrupt
Interrupt Name
Source
82
T64P3_CMPINT0
Timer64P3 - Compare 0
83
T64P3_CMPINT1
Timer64P3 - Compare 1
84
T64P3_CMPINT2
Timer64P3 - Compare 2
85
T64P3_CMPINT3
Timer64P3 - Compare 3
86
T64P3_CMPINT4
Timer64P3 - Compare 4
87
T64P3_CMPINT5
Timer64P3 - Compare 5
88
T64P3_CMPINT6
Timer64P3 - Compare 6
89
T64P3_CMPINT7
Timer64P3 - Compare 7
90
ARMCLKSTOPREQ
PSC0
91
uPP_ALLINT
uPP Combined Interrupt
•
Channel I End-of-Line Interrupt
•
Channel I End-of-Window Interrupt
•
Channel I DMA Access Interrupt
•
Channel I Overflow-Underrun Interrupt
•
Channel I DMA Programming Error Interrupt
•
Channel Q End-of-Line Interrupt
•
Channel Q End-of-Window Interrupt
•
Channel Q DMA Access Interrupt
•
Channel Q Overflow-Underrun Interrupt
•
Channel Q DMA Programming Error Interrupt
92
VPIF_ALLINT
VPIF Combined Interrupt
•
Channel 0 Frame Interrupt
•
Channel 1 Frame Interrupt
•
Channel 2 Frame Interrupt
•
Channel 3 Frame Interrupt
•
Error Interrupt
93
EDMA3_1_CC0_INT0
EDMA3_1 Channel Controller 0 Shadow Region 0 Transfer
Completion Interrupt
94
EDMA3_1_CC0_ERRINT
EDMA3_1Channel Controller 0 Error Interrupt
95
EDMA3_1_TC0_ERRINT
EDMA3_1 Transfer Controller 0 Error Interrupt
96
T64P3_ALL
Timer64P 3 - Combined TINT12 and TINT34
97
MCBSP0_RINT
McBSP0 Receive Interrupt
98
MCBSP0_XINT
McBSP0 Transmit Interrupt
99
MCBSP1_RINT
McBSP1 Receive Interrupt
100
MCBSP1_XINT
McBSP1 Transmit Interrupt
Copyright © 2009–2017, Texas Instruments Incorporated
Peripheral Information and Electrical Specifications
Submit Documentation Feedback
Product Folder Links: OMAP-L138
97
OMAP-L138
SPRS586J – JUNE 2009 – REVISED JANUARY 2017
6.7.1.5
www.ti.com
AINTC Memory Map
Table 6-7. AINTC Memory Map
BYTE ADDRESS
ACRONYM
0xFFFE E000
REV
0xFFFE E004
CR
0xFFFE E008 - 0xFFFE E00F
-
0xFFFE E010
GER
Control Register
Reserved
Global Enable Register
0xFFFE E014 - 0xFFFE E01B
-
0xFFFE E01C
GNLR
Global Nesting Level Register
0xFFFE E020
SISR
System Interrupt Status Indexed Set Register
0xFFFE E024
SICR
System Interrupt Status Indexed Clear Register
Reserved
0xFFFE E028
EISR
System Interrupt Enable Indexed Set Register
0xFFFE E02C
EICR
System Interrupt Enable Indexed Clear Register
0xFFFE E030
-
Reserved
0xFFFE E034
HIEISR
Host Interrupt Enable Indexed Set Register
0xFFFE E038
HIEICR
Host Interrupt Enable Indexed Clear Register
0xFFFE E03C - 0xFFFE E04F
-
0xFFFE E050
VBR
Vector Base Register
0xFFFE E054
VSR
Vector Size Register
0xFFFE E058
VNR
Vector Null Register
0xFFFE E05C - 0xFFFE E07F
-
Reserved
Reserved
0xFFFE E080
GPIR
Global Prioritized Index Register
0xFFFE E084
GPVR
Global Prioritized Vector Register
0xFFFE E088 - 0xFFFE E1FF
-
0xFFFE E200
SRSR[1]
0xFFFE E204
SRSR[2]
0xFFFE E208
SRSR[3]
0xFFFE E20C
SRSR[4]
0xFFFE E210- 0xFFFE E27F
-
0xFFFE E280
SECR[1]
0xFFFE E284
SECR[2]
0xFFFE E288
SECR[3]
0xFFFE E28C
SECR[4]
0xFFFE E290 - 0xFFFE E2FF
-
0xFFFE E300
98
DESCRIPTION
Revision Register
ESR[1]
0xFFFE E304
ESR[2]
0xFFFE E308
ESR[3]
0xFFFE E30C
ESR[4]
0xFFFE E310 - 0xFFFE E37F
-
0xFFFE E380
ECR[1]
0xFFFE E384
ECR[2]
0xFFFE E388
ECR[3]
0xFFFE E38C
ECR[4]
0xFFFE E390 - 0xFFFE E3FF
-
Reserved
System Interrupt Status Raw / Set Registers
Reserved
System Interrupt Status Enabled / Clear Registers
Reserved
System Interrupt Enable Set Registers
Reserved
System Interrupt Enable Clear Registers
Reserved
Peripheral Information and Electrical Specifications
Submit Documentation Feedback
Product Folder Links: OMAP-L138
Copyright © 2009–2017, Texas Instruments Incorporated
OMAP-L138
www.ti.com
SPRS586J – JUNE 2009 – REVISED JANUARY 2017
Table 6-7. AINTC Memory Map (continued)
BYTE ADDRESS
ACRONYM
0xFFFE E400 - 0xFFFE E45B
CMR[0]
0xFFFE E404
CMR[1]
0xFFFE E408
CMR[2]
0xFFFE E40C
CMR[3]
0xFFFE E410
CMR[4]
0xFFFE E414
CMR[5]
0xFFFE E418
CMR[6]
0xFFFE E41C
CMR[7]
0xFFFE E420
CMR[8]
0xFFFE E424
CMR[9]
0xFFFE E428
CMR[10]
0xFFFE E42C
CMR[11]
0xFFFE E430
CMR[12]
0xFFFE E434
CMR[13]
0xFFFE E438
CMR[14]
0xFFFE E43C
CMR[15]
0xFFFE E440
CMR[16]
0xFFFE E444
CMR[17]
0xFFFE E448
CMR[18]
0xFFFE E44C
CMR[19]
0xFFFE E450
CMR[20]
0xFFFE E454
CMR[21]
0xFFFE E458
CMR[22]
0xFFFE E45C
CMR[23]
0xFFFE E460
CMR[24]
0xFFFE E464
CMR[25]
0xFFFE E468 - 0xFFFE E8FF
-
0xFFFE E900
HIPIR[1]
0xFFFE E904
HIPIR[2]
0xFFFE E908 - 0xFFFE F0FF
-
0xFFFE F100
HINLR[1]
0xFFFE F104
HINLR[2]
0xFFFE F108 - 0xFFFE F4FF
-
0xFFFE F500
HIER
0xFFFE F504 - 0xFFFE F5FF
-
0xFFFE F600
HIPVR[1]
0xFFFE F604
HIPVR[2]
0xFFFE F608 - 0xFFFE FFFF
-
Copyright © 2009–2017, Texas Instruments Incorporated
DESCRIPTION
Channel Map Registers
Reserved
Host Interrupt Prioritized Index Registers
Reserved
Host Interrupt Nesting Level Registers
Reserved
Host Interrupt Enable Register
Reserved
Host Interrupt Prioritized Vector Registers
Reserved
Peripheral Information and Electrical Specifications
Submit Documentation Feedback
Product Folder Links: OMAP-L138
99
OMAP-L138
SPRS586J – JUNE 2009 – REVISED JANUARY 2017
6.7.2
www.ti.com
DSP Interrupts
The C674x DSP interrupt controller combines device events into 12 prioritized interrupts. The source for
each of the 12 CPU interrupts is user programmable and is listed in Table 6-8. Also, the interrupt
controller controls the generation of the CPU exceptions, NMI, and emulation interrupts. Table 6-9
summarizes the C674x interrupt controller registers and memory locations.
Refer to the C674x DSP MegaModule Reference Guide (SPRUFK5) and the TMS320C674x DSP CPU
and Instruction Set Reference Guide (SPRUFE8) for details of the C674x interrupts.
Table 6-8. OMAP-L138 DSP Interrupts
100
EVT#
Interrupt Name
0
EVT0
C674x Int Ctl 0
1
EVT1
C674x Int Ctl 1
2
EVT2
C674x Int Ctl 2
3
EVT3
C674x Int Ctl 3
4
T64P0_TINT12
5
SYSCFG_CHIPINT2
6
PRU_EVTOUT0
7
EHRPWM0
8
EDMA3_0_CC0_INT1
Source
Timer64P0 - TINT12
SYSCFG CHIPSIG Register
PRUSS Interrupt
HiResTimer/PWM0 Interrupt
EDMA3_0 Channel Controller 0 Shadow Region 1 Transfer
Completion Interrupt
9
EMU_DTDMA
C674x-ECM
10
EHRPWM0TZ
HiResTimer/PWM0 Trip Zone Interrupt
11
EMU_RTDXRX
C674x-RTDX
12
EMU_RTDXTX
C674x-RTDX
13
IDMAINT0
C674x-EMC
14
IDMAINT1
C674x-EMC
15
MMCSD0_INT0
MMCSD0 MMC/SD Interrupt
16
MMCSD0_INT1
MMCSD0 SDIO Interrupt
17
PRU_EVTOUT1
PRUSS Interrupt
18
EHRPWM1
HiResTimer/PWM1 Interrupt
19
USB0_INT
USB0 Interrupt
20
USB1_HCINT
21
USB1_RWAKEUP
22
PRU_EVTOUT2
23
EHRPWM1TZ
24
SATA_INT
25
T64P2_TINTALL
26
EMAC_C0RXTHRESH
27
EMAC_C0RX
EMAC - Core 0 Receive Interrupt
28
EMAC_C0TX
EMAC - Core 0 Transmit Interrupt
USB1 OHCI Host Controller Interrupt
USB1 Remote Wakeup Interrupt
PRUSS Interrupt
HiResTimer/PWM1 Trip Zone Interrupt
SATA Controller
Timer64P2 Combined TINT12 and TINT 34 Interrupt
EMAC - Core 0 Receive Threshold Interrupt
29
EMAC_C0MISC
30
EMAC_C1RXTHRESH
EMAC - Core 0 Miscellaneous Interrupt
31
EMAC_C1RX
EMAC - Core 1 Receive Interrupt
32
EMAC_C1TX
EMAC - Core 1 Transmit Interrupt
33
EMAC_C1MISC
34
UHPI_DSPINT
35
PRU_EVTOUT3
EMAC - Core 1 Receive Threshold Interrupt
EMAC - Core 1 Miscellaneous Interrupt
UHPI DSP Interrupt
PRUSS Interrupt
36
IIC0_INT
I2C0
37
SP0_INT
SPI0
Peripheral Information and Electrical Specifications
Submit Documentation Feedback
Product Folder Links: OMAP-L138
Copyright © 2009–2017, Texas Instruments Incorporated
OMAP-L138
www.ti.com
SPRS586J – JUNE 2009 – REVISED JANUARY 2017
Table 6-8. OMAP-L138 DSP Interrupts (continued)
EVT#
Interrupt Name
Source
38
UART0_INT
UART0
39
PRU_EVTOUT5
PRUSS Interrupt
40
T64P1_TINT12
Timer64P1 Interrupt 12
41
GPIO_B1INT
GPIO Bank 1 Interrupt
42
IIC1_INT
I2C1
43
SPI1_INT
SPI1
44
PRU_EVTOUT6
PRUSS Interrupt
45
ECAP0
ECAP0
46
UART_INT1
UART1
47
ECAP1
ECAP1
48
T64P1_TINT34
Timer64P1 Interrupt 34
49
GPIO_B2INT
GPIO Bank 2 Interrupt
50
PRU_EVTOUT7
51
ECAP2
52
GPIO_B3INT
53
MMCSD1_INT1
54
GPIO_B4INT
PRUSS Interrupt
ECAP2
GPIO Bank 3 Interrupt
MMCSD1 SDIO Interrupt
GPIO Bank 4 Interrupt
55
EMIFA_INT
56
EDMA3_0_CC0_ERRINT
EMIFA
EDMA3_0 Channel Controller 0 Error Interrupt
57
EDMA3_0_TC0_ERRINT
EDMA3_0 Transfer Controller 0 Error Interrupt
58
EDMA3_0_TC1_ERRINT
EDMA3_0 Transfer Controller 1 Error Interrupt
59
GPIO_B5INT
60
DDR2_MEMERR
GPIO Bank 5 Interrupt
61
MCASP0_INT
McASP0 Combined RX/TX Interrupts
62
GPIO_B6INT
GPIO Bank 6 Interrupt
63
RTC_IRQS
64
T64P0_TINT34
Timer64P0 Interrupt 34
65
GPIO_B0INT
GPIO Bank 0 Interrupt
66
PRU_EVTOUT4
67
SYSCFG_CHIPINT3
SYSCFG_CHIPSIG Register
68
MMCSD1_INT0
MMCSD1 MMC/SD Interrupt
DDR2 Memory Error Interrupt
RTC Combined
PRUSS Interrupt
69
UART2_INT
70
PSC0_ALLINT
UART2
PSC0
71
PSC1_ALLINT
PSC1
72
GPIO_B7INT
73
LCDC_INT
LDC Controller
74
PROTERR
SYSCFG Protection Shared Interrupt
GPIO Bank 7 Interrupt
75
GPIO_B8INT
76 - 77
-
78
T64P2_CMPINT0
Timer64P2 - Compare Interrupt 0
79
T64P2_CMPINT1
Timer64P2 - Compare Interrupt 1
80
T64P2_CMPINT2
Timer64P2 - Compare Interrupt 2
81
T64P2_CMPINT3
Timer64P2 - Compare Interrupt 3
82
T64P2_CMPINT4
Timer64P2 - Compare Interrupt 4
83
T64P2_CMPINT5
Timer64P2 - Compare Interrupt 5
84
T64P2_CMPINT6
Timer64P2 - Compare Interrupt 6
85
T64P2_CMPINT7
Timer64P2 - Compare Interrupt 7
Copyright © 2009–2017, Texas Instruments Incorporated
GPIO Bank 8 Interrupt
Reserved
Peripheral Information and Electrical Specifications
Submit Documentation Feedback
Product Folder Links: OMAP-L138
101
OMAP-L138
SPRS586J – JUNE 2009 – REVISED JANUARY 2017
www.ti.com
Table 6-8. OMAP-L138 DSP Interrupts (continued)
102
EVT#
Interrupt Name
Source
86
T64P3_TINTALL
Timer64P3 Combined TINT12 and TINT 34 Interrupt
87
MCBSP0_RINT
McBSP0 Receive Interrupt
88
MCBSP0_XINT
McBSP0 Transmit Interrupt
89
MCBSP1_RINT
McBSP1 Receive Interrupt
90
MCBSP1_XINT
McBSP1 Transmit Interrupt
91
EDMA3_1_CC0_INT1
92
EDMA3_1_CC0_ERRINT
EDMA3_1 Channel Controller 0 Error Interrupt
93
EDMA3_1_TC0_ERRINT
EDMA3_1 Transfer Controller 0 Error Interrupt
94
UPP_INT
uPP Combined Interrupt
95
VPIF_INT
VPIF Combined Interrupt
EDMA3_1 Channel Controller 0 Shadow Region 1 Transfer
Completion Interrupt
96
INTERR
C674x-Int Ctl
97
EMC_IDMAERR
C674x-EMC
98 - 112
-
Reserved
113
PMC_ED
114 - 115
-
C674x-PMC
116
UMC_ED1
C674x-UMC
117
UMC_ED2
C674x-UMC
118
PDC_INT
C674x-PDC
119
SYS_CMPA
C674x-SYS
120
PMC_CMPA
C674x-PMC
121
PMC_CMPA
C674x-PMC
122
DMC_CMPA
C674x-DMC
123
DMC_CMPA
C674x-DMC
124
UMC_CMPA
C674x-UMC
125
UMC_CMPA
C674x-UMC
126
EMC_CMPA
C674x-EMC
127
EMC_BUSERR
C674x-EMC
Reserved
Peripheral Information and Electrical Specifications
Submit Documentation Feedback
Product Folder Links: OMAP-L138
Copyright © 2009–2017, Texas Instruments Incorporated
OMAP-L138
www.ti.com
SPRS586J – JUNE 2009 – REVISED JANUARY 2017
Table 6-9. C674x DSP Interrupt Controller Registers
BYTE ADDRESS
ACRONYM
DESCRIPTION
0x0180 0000
EVTFLAG0
Event flag register 0
0x0180 0004
EVTFLAG1
Event flag register 1
0x0180 0008
EVTFLAG2
Event flag register 2
0x0180 000C
EVTFLAG3
Event flag register 3
0x0180 0020
EVTSET0
Event set register 0
0x0180 0024
EVTSET1
Event set register 1
0x0180 0028
EVTSET2
Event set register 2
0x0180 002C
EVTSET3
Event set register 3
0x0180 0040
EVTCLR0
Event clear register 0
0x0180 0044
EVTCLR1
Event clear register 1
0x0180 0048
EVTCLR2
Event clear register 2
0x0180 004C
EVTCLR3
Event clear register 3
0x0180 0080
EVTMASK0
Event mask register 0
0x0180 0084
EVTMASK1
Event mask register 1
0x0180 0088
EVTMASK2
Event mask register 2
0x0180 008C
EVTMASK3
Event mask register 3
0x0180 00A0
MEVTFLAG0
Masked event flag register 0
0x0180 00A4
MEVTFLAG1
Masked event flag register 1
0x0180 00A8
MEVTFLAG2
Masked event flag register 2
0x0180 00AC
MEVTFLAG3
Masked event flag register 3
0x0180 00C0
EXPMASK0
Exception mask register 0
0x0180 00C4
EXPMASK1
Exception mask register 1
0x0180 00C8
EXPMASK2
Exception mask register 2
0x0180 00CC
EXPMASK3
Exception mask register 3
0x0180 00E0
MEXPFLAG0
Masked exception flag register 0
0x0180 00E4
MEXPFLAG1
Masked exception flag register 1
0x0180 00E8
MEXPFLAG2
Masked exception flag register 2
0x0180 00EC
MEXPFLAG3
Masked exception flag register 3
0x0180 0104
INTMUX1
Interrupt mux register 1
0x0180 0108
INTMUX2
Interrupt mux register 2
0x0180 010C
INTMUX3
Interrupt mux register 3
0x0180 0140 - 0x0180 0144
-
0x0180 0180
INTXSTAT
Interrupt exception status
0x0180 0184
INTXCLR
Interrupt exception clear
0x0180 0188
INTDMASK
Dropped interrupt mask register
0x0180 01C0
EVTASRT
Event assert register
Copyright © 2009–2017, Texas Instruments Incorporated
Reserved
Peripheral Information and Electrical Specifications
Submit Documentation Feedback
Product Folder Links: OMAP-L138
103
OMAP-L138
SPRS586J – JUNE 2009 – REVISED JANUARY 2017
6.8
www.ti.com
Power and Sleep Controller (PSC)
The Power and Sleep Controllers (PSC) are responsible for managing transitions of system power on/off,
clock on/off, resets (device level and module level). It is used primarily to provide granular power control
for on chip modules (peripherals and CPU). A PSC module consists of a Global PSC (GPSC) and a set of
Local PSCs (LPSCs). The GPSC contains memory mapped registers, PSC interrupts, a state machine for
each peripheral/module it controls. An LPSC is associated with every module that is controlled by the PSC
and provides clock and reset control.
The PSC includes the following features:
• Provides a software interface to:
– Control module clock enable/disable
– Control module reset
– Control CPU local reset
• Supports IcePick emulation features: power, clock and reset
PSC0 controls 16 local PSCs.
PSC1 controls 32 local PSCs.
Table 6-10. Power and Sleep Controller (PSC) Registers
PSC0 BYTE
ADDRESS
PSC1 BYTE
ADDRESS
0x01C1 0000
0x01E2 7000
REVID
0x01C1 0018
0x01E2 7018
INTEVAL
0x01C1 0040
0x01E2 7040
MERRPR0
ACRONYM
REGISTER DESCRIPTION
Peripheral Revision and Class Information Register
Interrupt Evaluation Register
Module Error Pending Register 0 (module 0-15) (PSC0)
Module Error Pending Register 0 (module 0-31) (PSC1)
0x01C1 0050
0x01E2 7050
MERRCR0
Module Error Clear Register 0 (module 0-15) (PSC0)
0x01C1 0060
0x01E2 7060
PERRPR
Power Error Pending Register
0x01C1 0068
0x01E2 7068
PERRCR
Power Error Clear Register
0x01C1 0120
0x01E2 7120
PTCMD
Power Domain Transition Command Register
0x01C1 0128
0x01E2 7128
PTSTAT
Power Domain Transition Status Register
0x01C1 0200
0x01E2 7200
PDSTAT0
Power Domain 0 Status Register
0x01C1 0204
0x01E2 7204
PDSTAT1
Power Domain 1 Status Register
0x01C1 0300
0x01E2 7300
PDCTL0
Power Domain 0 Control Register
0x01C1 0304
0x01E2 7304
PDCTL1
Power Domain 1 Control Register
0x01C1 0400
0x01E2 7400
PDCFG0
Power Domain 0 Configuration Register
0x01C1 0404
0x01E2 7404
PDCFG1
Power Domain 1 Configuration Register
0x01C1 0800
0x01E2 7800
MDSTAT0
Module 0 Status Register
0x01C1 0804
0x01E2 7804
MDSTAT1
Module 1 Status Register
0x01C1 0808
0x01E2 7808
MDSTAT2
Module 2 Status Register
0x01C1 080C
0x01E2 780C
MDSTAT3
Module 3 Status Register
0x01C1 0810
0x01E2 7810
MDSTAT4
Module 4 Status Register
0x01C1 0814
0x01E2 7814
MDSTAT5
Module 5 Status Register
0x01C1 0818
0x01E2 7818
MDSTAT6
Module 6 Status Register
0x01C1 081C
0x01E2 781C
MDSTAT7
Module 7 Status Register
0x01C1 0820
0x01E2 7820
MDSTAT8
Module 8 Status Register
0x01C1 0824
0x01E2 7824
MDSTAT9
Module 9 Status Register
0x01C1 0828
0x01E2 7828
MDSTAT10
Module 10 Status Register
0x01C1 082C
0x01E2 782C
MDSTAT11
Module 11 Status Register
0x01C1 0830
0x01E2 7830
MDSTAT12
Module 12 Status Register
0x01C1 0834
0x01E2 7834
MDSTAT13
Module 13 Status Register
Module Error Clear Register 0 (module 0-31) (PSC1)
104
Peripheral Information and Electrical Specifications
Submit Documentation Feedback
Product Folder Links: OMAP-L138
Copyright © 2009–2017, Texas Instruments Incorporated
OMAP-L138
www.ti.com
SPRS586J – JUNE 2009 – REVISED JANUARY 2017
Table 6-10. Power and Sleep Controller (PSC) Registers (continued)
PSC0 BYTE
ADDRESS
PSC1 BYTE
ADDRESS
ACRONYM
REGISTER DESCRIPTION
0x01C1 0838
0x01E2 7838
MDSTAT14
Module 14 Status Register
0x01C1 083C
0x01E2 783C
MDSTAT15
Module 15 Status Register
-
0x01E2 7840
MDSTAT16
Module 16 Status Register
-
0x01E2 7844
MDSTAT17
Module 17 Status Register
-
0x01E2 7848
MDSTAT18
Module 18 Status Register
-
0x01E2 784C
MDSTAT19
Module 19 Status Register
-
0x01E2 7850
MDSTAT20
Module 20 Status Register
-
0x01E2 7854
MDSTAT21
Module 21 Status Register
-
0x01E2 7858
MDSTAT22
Module 22 Status Register
-
0x01E2 785C
MDSTAT23
Module 23 Status Register
-
0x01E2 7860
MDSTAT24
Module 24 Status Register
-
0x01E2 7864
MDSTAT25
Module 25 Status Register
-
0x01E2 7868
MDSTAT26
Module 26 Status Register
-
0x01E2 786C
MDSTAT27
Module 27 Status Register
-
0x01E2 7870
MDSTAT28
Module 28 Status Register
-
0x01E2 7874
MDSTAT29
Module 29 Status Register
-
0x01E2 7878
MDSTAT30
Module 30 Status Register
-
0x01E2 787C
MDSTAT31
Module 31 Status Register
0x01C1 0A00
0x01E2 7A00
MDCTL0
Module 0 Control Register
0x01C1 0A04
0x01E2 7A04
MDCTL1
Module 1 Control Register
0x01C1 0A08
0x01E2 7A08
MDCTL2
Module 2 Control Register
0x01C1 0A0C
0x01E2 7A0C
MDCTL3
Module 3 Control Register
0x01C1 0A10
0x01E2 7A10
MDCTL4
Module 4 Control Register
0x01C1 0A14
0x01E2 7A14
MDCTL5
Module 5 Control Register
0x01C1 0A18
0x01E2 7A18
MDCTL6
Module 6 Control Register
0x01C1 0A1C
0x01E2 7A1C
MDCTL7
Module 7 Control Register
0x01C1 0A20
0x01E2 7A20
MDCTL8
Module 8 Control Register
0x01C1 0A24
0x01E2 7A24
MDCTL9
Module 9 Control Register
0x01C1 0A28
0x01E2 7A28
MDCTL10
Module 10 Control Register
0x01C1 0A2C
0x01E2 7A2C
MDCTL11
Module 11 Control Register
0x01C1 0A30
0x01E2 7A30
MDCTL12
Module 12 Control Register
0x01C1 0A34
0x01E2 7A34
MDCTL13
Module 13 Control Register
0x01C1 0A38
0x01E2 7A38
MDCTL14
Module 14 Control Register
0x01C1 0A3C
0x01E2 7A3C
MDCTL15
Module 15 Control Register
-
0x01E2 7A40
MDCTL16
Module 16 Control Register
-
0x01E2 7A44
MDCTL17
Module 17 Control Register
-
0x01E2 7A48
MDCTL18
Module 18 Control Register
-
0x01E2 7A4C
MDCTL19
Module 19 Control Register
-
0x01E2 7A50
MDCTL20
Module 20 Control Register
-
0x01E2 7A54
MDCTL21
Module 21 Control Register
-
0x01E2 7A58
MDCTL22
Module 22 Control Register
-
0x01E2 7A5C
MDCTL23
Module 23 Control Register
-
0x01E2 7A60
MDCTL24
Module 24 Control Register
-
0x01E2 7A64
MDCTL25
Module 25 Control Register
-
0x01E2 7A68
MDCTL26
Module 26 Control Register
-
0x01E2 7A6C
MDCTL27
Module 27 Control Register
-
0x01E2 7A70
MDCTL28
Module 28 Control Register
Copyright © 2009–2017, Texas Instruments Incorporated
Peripheral Information and Electrical Specifications
Submit Documentation Feedback
Product Folder Links: OMAP-L138
105
OMAP-L138
SPRS586J – JUNE 2009 – REVISED JANUARY 2017
www.ti.com
Table 6-10. Power and Sleep Controller (PSC) Registers (continued)
PSC0 BYTE
ADDRESS
PSC1 BYTE
ADDRESS
ACRONYM
-
0x01E2 7A74
MDCTL29
Module 29 Control Register
-
0x01E2 7A78
MDCTL30
Module 30 Control Register
-
0x01E2 7A7C
MDCTL31
Module 31 Control Register
6.8.1
REGISTER DESCRIPTION
Power Domain and Module Topology
The device includes two PSC modules.
Each PSC module controls clock states for several of the on chip modules, controllers and interconnect
components. Table 6-11 and Table 6-12 lists the set of peripherals/modules that are controlled by the
PSC, the power domain they are associated with, the LPSC assignment and the default (power-on reset)
module states. The module states and terminology are defined in Section 6.8.1.2.
Table 6-11. PSC0 Default Module Configuration
LPSC
Number
106
Module Name
Power Domain
Default Module State
Auto Sleep/Wake Only
0
EDMA3 Channel Controller 0
AlwaysON (PD0)
SwRstDisable
—
1
EDMA3 Transfer Controller 0
AlwaysON (PD0)
SwRstDisable
—
2
EDMA3 Transfer Controller 1
AlwaysON (PD0)
SwRstDisable
—
3
EMIFA (Br7)
AlwaysON (PD0)
SwRstDisable
—
4
SPI 0
AlwaysON (PD0)
SwRstDisable
—
5
MMC/SD 0
AlwaysON (PD0)
SwRstDisable
—
6
ARM Interrupt Controller
AlwaysON (PD0)
SwRstDisable
—
7
ARM RAM/ROM
AlwaysON (PD0)
Enable
Yes
8
—
—
—
—
9
UART 0
AlwaysON (PD0)
SwRstDisable
—
10
SCR0 (Br 0, Br 1, Br 2, Br 8)
AlwaysON (PD0)
Enable
Yes
11
SCR1 (Br 4)
AlwaysON (PD0)
Enable
Yes
12
SCR2 (Br 3, Br 5, Br 6)
AlwaysON (PD0)
Enable
Yes
13
PRUSS
AlwaysON (PD0)
SwRstDisable
—
14
ARM
AlwaysON (PD0)
SwRstDisable
—
15
DSP
PD_DSP (PD1)
Enable
—
Peripheral Information and Electrical Specifications
Submit Documentation Feedback
Product Folder Links: OMAP-L138
Copyright © 2009–2017, Texas Instruments Incorporated
OMAP-L138
www.ti.com
SPRS586J – JUNE 2009 – REVISED JANUARY 2017
Table 6-12. PSC1 Default Module Configuration
LPSC
Number
Module Name
Power Domain
Default Module State
Auto Sleep/Wake Only
0
EDMA3 Channel Controller 1
AlwaysON (PD0)
SwRstDisable
—
1
USB0 (USB2.0)
AlwaysON (PD0)
SwRstDisable
—
2
USB1 (USB1.1)
AlwaysON (PD0)
SwRstDisable
—
3
GPIO
AlwaysON (PD0)
SwRstDisable
—
4
UHPI
AlwaysON (PD0)
SwRstDisable
—
5
EMAC
AlwaysON (PD0)
SwRstDisable
—
6
DDR2 (and SCR_F3)
AlwaysON (PD0)
SwRstDisable
—
7
McASP0 ( + McASP0 FIFO)
AlwaysON (PD0)
SwRstDisable
—
8
SATA
AlwaysON (PD0)
SwRstDisable
—
9
VPIF
AlwaysON (PD0)
SwRstDisable
—
10
SPI 1
AlwaysON (PD0)
SwRstDisable
—
11
I2C 1
AlwaysON (PD0)
SwRstDisable
—
12
UART 1
AlwaysON (PD0)
SwRstDisable
—
13
UART 2
AlwaysON (PD0)
SwRstDisable
—
14
McBSP0 ( + McBSP0 FIFO)
AlwaysON (PD0)
SwRstDisable
—
15
McBSP1 ( + McBSP1 FIFO)
AlwaysON (PD0)
SwRstDisable
—
16
LCDC
AlwaysON (PD0)
SwRstDisable
—
17
eHRPWM0/1
AlwaysON (PD0)
SwRstDisable
—
18
MMCSD1
AlwaysON (PD0)
SwRstDisable
—
19
uPP
AlwaysON (PD0)
SwRstDisable
—
20
ECAP0/1/2
AlwaysON (PD0)
SwRstDisable
—
21
EDMA3 Transfer Controller 2
AlwaysON (PD0)
SwRstDisable
—
22
—
—
—
—
23
—
—
—
—
24
SCR_F0 (and bridge F0)
AlwaysON (PD0)
Enable
Yes
25
SCR_F1 (and bridge F1)
AlwaysON (PD0)
Enable
Yes
26
SCR_F2 (and bridge F2)
AlwaysON (PD0)
Enable
Yes
27
SCR_F6 (and bridge F3)
AlwaysON (PD0)
Enable
Yes
28
SCR_F7 (and bridge F4)
AlwaysON (PD0)
Enable
Yes
29
SCR_F8 (and bridge F5)
AlwaysON (PD0)
Enable
Yes
30
Bridge F7 (DDR Controller path)
AlwaysON (PD0)
Enable
Yes
31
Shared RAM (including SCR_F4
and bridge F6)
PD_SHRAM
Enable
—
Copyright © 2009–2017, Texas Instruments Incorporated
Peripheral Information and Electrical Specifications
Submit Documentation Feedback
Product Folder Links: OMAP-L138
107
OMAP-L138
SPRS586J – JUNE 2009 – REVISED JANUARY 2017
6.8.1.1
www.ti.com
Power Domain States
A power domain can only be in one of the two states: ON or OFF, defined as follows:
• ON: power to the domain is on
• OFF: power to the domain is off
For both PSC0 and PSC1, the Always ON domain, or PD0 power domain, is always in the ON state when
the chip is powered-on. This domain is not programmable to OFF state.
• On PSC0 PD1/PD_DSP Domain: Controls the sleep state for DSP L1 and L2 Memories
• On PSC1 PD1/PD_SHRAM Domain: Controls the sleep state for the 128K Shared RAM
6.8.1.2
Module States
The PSC defines several possible states for a module. This states are essentially a combination of the
module reset asserted or de-asserted and module clock on/enabled or off/disabled. The module states are
defined in Table 6-13.
Table 6-13. Module States
Module State
Module Reset
Module
Clock
Module State Definition
Enable
De-asserted
On
A module in the enable state has its module reset de-asserted and it has its clock on.
This is the normal operational state for a given module
Disable
De-asserted
Off
A module in the disabled state has its module reset de-asserted and it has its module
clock off. This state is typically used for disabling a module clock to save power. The
device is designed in full static CMOS, so when you stop a module clock, it retains the
module’s state. When the clock is restarted, the module resumes operating from the
stopping point.
SyncReset
Asserted
On
A module state in the SyncReset state has its module reset asserted and it has its
clock on. Generally, software is not expected to initiate this state
SwRstDisable
Asserted
Off
A module in the SwResetDisable state has its module reset asserted and it has its
clock disabled. After initial power-on, several modules come up in the SwRstDisable
state. Generally, software is not expected to initiate this state
Auto Sleep
De-asserted
Off
A module in the Auto Sleep state also has its module reset de-asserted and its module
clock disabled, similar to the Disable state. However this is a special state, once a
module is configured in this state by software, it can “automatically” transition to
“Enable” state whenever there is an internal read/write request made to it, and after
servicing the request it will “automatically” transition into the sleep state (with module
reset re de-asserted and module clock disabled), without any software intervention.
The transition from sleep to enabled and back to sleep state has some cycle latency
associated with it. It is not envisioned to use this mode when peripherals are fully
operational and moving data.
Auto Wake
De-asserted
Off
A module in the Auto Wake state also has its module reset de-asserted and its module
clock disabled, similar to the Disable state. However this is a special state, once a
module is configured in this state by software, it will “automatically” transition to
“Enable” state whenever there is an internal read/write request made to it, and will
remain in the “Enabled” state from then on (with module reset re de-asserted and
module clock on), without any software intervention. The transition from sleep to
enabled state has some cycle latency associated with it. It is not envisioned to use this
mode when peripherals are fully operational and moving data.
108
Peripheral Information and Electrical Specifications
Submit Documentation Feedback
Product Folder Links: OMAP-L138
Copyright © 2009–2017, Texas Instruments Incorporated
OMAP-L138
www.ti.com
6.9
SPRS586J – JUNE 2009 – REVISED JANUARY 2017
Enhanced Direct Memory Access Controller (EDMA3)
The EDMA3 controller handles all data transfers between memories and the device slave peripherals on
the device. These data transfers include cache servicing, non-cacheable memory accesses, userprogrammed data transfers, and host accesses.
6.9.1
EDMA3 Channel Synchronization Events
Each EDMA3 channel controller supports up to 32 channels which service peripherals and memory.
Table 6-14 lists the source of the EDMA3 synchronization events associated with each of the
programmable EDMA channels.
Table 6-14. EDMA Synchronization Events
EDMA3 Channel Controller 0
Event
Event Name / Source
Event
Event Name / Source
0
McASP0 Receive
16
MMCSD0 Receive
1
McASP0 Transmit
17
MMCSD0 Transmit
2
McBSP0 Receive
18
SPI1 Receive
3
McBSP0 Transmit
19
SPI1 Transmit
4
McBSP1 Receive
20
PRU_EVTOUT6
5
McBSP1 Transmit
21
PRU_EVTOUT7
6
GPIO Bank 0 Interrupt
22
GPIO Bank 2 Interrupt
7
GPIO Bank 1 Interrupt
23
GPIO Bank 3 Interrupt
8
UART0 Receive
24
I2C0 Receive
9
UART0 Transmit
25
I2C0 Transmit
10
Timer64P0 Event Out 12
26
I2C1 Receive
11
Timer64P0 Event Out 34
27
I2C1 Transmit
12
UART1 Receive
28
GPIO Bank 4 Interrupt
13
UART1 Transmit
29
GPIO Bank 5 Interrupt
14
SPI0 Receive
30
UART2 Receive
15
SPI0 Transmit
31
UART2 Transmit
EDMA3 Channel Controller 1
Event
Event Name / Source
Event
Event Name / Source
0
Timer64P2 Compare Event 0
16
GPIO Bank 6 Interrupt
1
Timer64P2 Compare Event 1
17
GPIO Bank 7 Interrupt
2
Timer64P2 Compare Event 2
18
GPIO Bank 8 Interrupt
3
Timer64P2 Compare Event 3
19
Reserved
4
Timer64P2 Compare Event 4
20
Reserved
5
Timer64P2 Compare Event 5
21
Reserved
6
Timer64P2 Compare Event 6
22
Reserved
7
Timer64P2 Compare Event 7
23
Reserved
8
Timer64P3 Compare Event 0
24
Timer64P2 Event Out 12
9
Timer64P3 Compare Event 1
25
Timer64P2 Event Out 34
10
Timer64P3 Compare Event 2
26
Timer64P3 Event Out 12
11
Timer64P3 Compare Event 3
27
Timer64P3 Event Out 34
12
Timer64P3 Compare Event 4
28
MMCSD1 Receive
13
Timer64P3 Compare Event 5
29
MMCSD1 Transmit
14
Timer64P3 Compare Event 6
30
Reserved
15
Timer64P3 Compare Event 7
31
Reserved
Copyright © 2009–2017, Texas Instruments Incorporated
Peripheral Information and Electrical Specifications
Submit Documentation Feedback
Product Folder Links: OMAP-L138
109
OMAP-L138
SPRS586J – JUNE 2009 – REVISED JANUARY 2017
6.9.2
www.ti.com
EDMA3 Peripheral Register Descriptions
Table 6-15 is the list of EDMA3 Channel Controller Registers and Table 6-16 is the list of EDMA3 Transfer
Controller registers.
Table 6-15. EDMA3 Channel Controller (EDMA3CC) Registers
EDMA3_0 Channel
Controller 0
BYTE ADDRESS
EDMA3_1 Channel
Controller 0
BYTE ADDRESS
ACRONYM
0x01C0 0000
0x01E3 0000
PID
0x01C0 0004
0x01E3 0004
CCCFG
REGISTER DESCRIPTION
Peripheral Identification Register
EDMA3CC Configuration Register
Global Registers
0x01C0 0200
0x01E3 0200
QCHMAP0
QDMA Channel 0 Mapping Register
0x01C0 0204
0x01E3 0204
QCHMAP1
QDMA Channel 1 Mapping Register
0x01C0 0208
0x01E3 0208
QCHMAP2
QDMA Channel 2 Mapping Register
0x01C0 020C
0x01E3 020C
QCHMAP3
QDMA Channel 3 Mapping Register
0x01C0 0210
0x01E3 0210
QCHMAP4
QDMA Channel 4 Mapping Register
0x01C0 0214
0x01E3 0214
QCHMAP5
QDMA Channel 5 Mapping Register
0x01C0 0218
0x01E3 0218
QCHMAP6
QDMA Channel 6 Mapping Register
0x01C0 021C
0x01E3 021C
QCHMAP7
QDMA Channel 7 Mapping Register
0x01C0 0240
0x01E3 0240
DMAQNUM0
DMA Channel Queue Number Register 0
0x01C0 0244
0x01E3 0244
DMAQNUM1
DMA Channel Queue Number Register 1
0x01C0 0248
0x01E3 0248
DMAQNUM2
DMA Channel Queue Number Register 2
0x01C0 024C
0x01E3 024C
DMAQNUM3
DMA Channel Queue Number Register 3
0x01C0 0260
0x01E3 0260
QDMAQNUM
QDMA Channel Queue Number Register
0x01C0 0284
0x01E3 0284
QUEPRI
0x01C0 0300
0x01E3 0300
EMR
0x01C0 0308
0x01E3 0308
EMCR
Event Missed Clear Register
0x01C0 0310
0x01E3 0310
QEMR
QDMA Event Missed Register
0x01C0 0314
0x01E3 0314
QEMCR
QDMA Event Missed Clear Register
0x01C0 0318
0x01E3 0318
CCERR
EDMA3CC Error Register
0x01C0 031C
0x01E3 031C
CCERRCLR
0x01C0 0320
0x01E3 0320
EEVAL
Error Evaluate Register
0x01C0 0340
0x01E3 0340
DRAE0
DMA Region Access Enable Register for Region 0
0x01C0 0348
0x01E3 0348
DRAE1
DMA Region Access Enable Register for Region 1
0x01C0 0350
0x01E3 0350
DRAE2
DMA Region Access Enable Register for Region 2
0x01C0 0358
0x01E3 0358
DRAE3
DMA Region Access Enable Register for Region 3
0x01C0 0380
0x01E3 0380
QRAE0
QDMA Region Access Enable Register for Region 0
0x01C0 0384
0x01E3 0384
QRAE1
QDMA Region Access Enable Register for Region 1
Queue Priority Register (1)
Event Missed Register
EDMA3CC Error Clear Register
0x01C0 0388
0x01E3 0388
QRAE2
QDMA Region Access Enable Register for Region 2
0x01C0 038C
0x01E3 038C
QRAE3
QDMA Region Access Enable Register for Region 3
0x01C0 0400 - 0x01C0 043C
0x01E3 0400 - 0x01E3 043C
Q0E0-Q0E15
Event Queue Entry Registers Q0E0-Q0E15
0x01C0 0440 - 0x01C0 047C
0x01E3 0440 - 0x01E3 047C
Q1E0-Q1E15
Event Queue Entry Registers Q1E0-Q1E15
0x01C0 0600
0x01E3 0600
QSTAT0
Queue 0 Status Register
0x01C0 0604
0x01E3 0604
QSTAT1
Queue 1 Status Register
0x01C0 0620
0x01E3 0620
QWMTHRA
0x01C0 0640
0x01E3 0640
CCSTAT
(1)
110
Queue Watermark Threshold A Register
EDMA3CC Status Register
On previous architectures, the EDMA3TC priority was controlled by the queue priority register (QUEPRI) in the EDMA3CC memorymap. However for this device, the priority control for the transfer controllers is controlled by the chip-level registers in the System
Configuration Module. You should use the chip-level registers and not QUEPRI to configure the TC priority.
Peripheral Information and Electrical Specifications
Submit Documentation Feedback
Product Folder Links: OMAP-L138
Copyright © 2009–2017, Texas Instruments Incorporated
OMAP-L138
www.ti.com
SPRS586J – JUNE 2009 – REVISED JANUARY 2017
Table 6-15. EDMA3 Channel Controller (EDMA3CC) Registers (continued)
EDMA3_0 Channel
Controller 0
BYTE ADDRESS
EDMA3_1 Channel
Controller 0
BYTE ADDRESS
ACRONYM
REGISTER DESCRIPTION
0x01C0 1000
0x01E3 1000
ER
0x01C0 1008
0x01E3 1008
ECR
Event Clear Register
0x01C0 1010
0x01E3 1010
ESR
Event Set Register
0x01C0 1018
0x01E3 1018
CER
Chained Event Register
0x01C0 1020
0x01E3 1020
EER
Event Enable Register
0x01C0 1028
0x01E3 1028
EECR
Event Enable Clear Register
0x01C0 1030
0x01E3 1030
EESR
Event Enable Set Register
0x01C0 1038
0x01E3 1038
SER
Secondary Event Register
0x01C0 1040
0x01E3 1040
SECR
0x01C0 1050
0x01E3 1050
IER
0x01C0 1058
0x01E3 1058
IECR
Interrupt Enable Clear Register
0x01C0 1060
0x01E3 1060
IESR
Interrupt Enable Set Register
0x01C0 1068
0x01E3 1068
IPR
Interrupt Pending Register
0x01C0 1070
0x01E3 1070
ICR
Interrupt Clear Register
0x01C0 1078
0x01E3 1078
IEVAL
0x01C0 1080
0x01E3 1080
QER
0x01C0 1084
0x01E3 1084
QEER
0x01C0 1088
0x01E3 1088
QEECR
QDMA Event Enable Clear Register
0x01C0 108C
0x01E3 108C
QEESR
QDMA Event Enable Set Register
0x01C0 1090
0x01E3 1090
QSER
QDMA Secondary Event Register
0x01C0 1094
0x01E3 1094
QSECR
0x01C0 2000
0x01E3 2000
ER
0x01C0 2008
0x01E3 2008
ECR
Event Clear Register
0x01C0 2010
0x01E3 2010
ESR
Event Set Register
0x01C0 2018
0x01E3 2018
CER
Chained Event Register
0x01C0 2020
0x01E3 2020
EER
Event Enable Register
0x01C0 2028
0x01E3 2028
EECR
Event Enable Clear Register
0x01C0 2030
0x01E3 2030
EESR
Event Enable Set Register
0x01C0 2038
0x01E3 2038
SER
Secondary Event Register
0x01C0 2040
0x01E3 2040
SECR
0x01C0 2050
0x01E3 2050
IER
0x01C0 2058
0x01E3 2058
IECR
Interrupt Enable Clear Register
0x01C0 2060
0x01E3 2060
IESR
Interrupt Enable Set Register
0x01C0 2068
0x01E3 2068
IPR
Interrupt Pending Register
0x01C0 2070
0x01E3 2070
ICR
Interrupt Clear Register
0x01C0 2078
0x01E3 2078
IEVAL
0x01C0 2080
0x01E3 2080
QER
0x01C0 2084
0x01E3 2084
QEER
0x01C0 2088
0x01E3 2088
QEECR
QDMA Event Enable Clear Register
0x01C0 208C
0x01E3 208C
QEESR
QDMA Event Enable Set Register
0x01C0 2090
0x01E3 2090
QSER
QDMA Secondary Event Register
0x01C0 2094
0x01E3 2094
QSECR
Global Channel Registers
Event Register
Secondary Event Clear Register
Interrupt Enable Register
Interrupt Evaluate Register
QDMA Event Register
QDMA Event Enable Register
QDMA Secondary Event Clear Register
Shadow Region 0 Channel Registers
Copyright © 2009–2017, Texas Instruments Incorporated
Event Register
Secondary Event Clear Register
Interrupt Enable Register
Interrupt Evaluate Register
QDMA Event Register
QDMA Event Enable Register
QDMA Secondary Event Clear Register
Peripheral Information and Electrical Specifications
Submit Documentation Feedback
Product Folder Links: OMAP-L138
111
OMAP-L138
SPRS586J – JUNE 2009 – REVISED JANUARY 2017
www.ti.com
Table 6-15. EDMA3 Channel Controller (EDMA3CC) Registers (continued)
EDMA3_0 Channel
Controller 0
BYTE ADDRESS
EDMA3_1 Channel
Controller 0
BYTE ADDRESS
ACRONYM
REGISTER DESCRIPTION
0x01C0 2200
0x01E3 2200
ER
0x01C0 2208
0x01E3 2208
ECR
Event Clear Register
0x01C0 2210
0x01E3 2210
ESR
Event Set Register
0x01C0 2218
0x01E3 2218
CER
Chained Event Register
0x01C0 2220
0x01E3 2220
EER
Event Enable Register
0x01C0 2228
0x01E3 2228
EECR
Event Enable Clear Register
0x01C0 2230
0x01E3 2230
EESR
Event Enable Set Register
0x01C0 2238
0x01E3 2238
SER
Secondary Event Register
0x01C0 2240
0x01E3 2240
SECR
0x01C0 2250
0x01E3 2250
IER
0x01C0 2258
0x01E3 2258
IECR
Interrupt Enable Clear Register
0x01C0 2260
0x01E3 2260
IESR
Interrupt Enable Set Register
0x01C0 2268
0x01E3 2268
IPR
Interrupt Pending Register
0x01C0 2270
0x01E3 2270
ICR
Interrupt Clear Register
0x01C0 2278
0x01E3 2278
IEVAL
0x01C0 2280
0x01E3 2280
QER
0x01C0 2284
0x01E3 2284
QEER
0x01C0 2288
0x01E3 2288
QEECR
QDMA Event Enable Clear Register
0x01C0 228C
0x01E3 228C
QEESR
QDMA Event Enable Set Register
0x01C0 2290
0x01E3 2290
QSER
QDMA Secondary Event Register
0x01C0 2294
0x01E3 2294
QSECR
0x01C0 4000 - 0x01C0 4FFF
0x01E3 4000 - 0x01E3 4FFF
—
Shadow Region 1 Channel Registers
Event Register
Secondary Event Clear Register
Interrupt Enable Register
Interrupt Evaluate Register
QDMA Event Register
QDMA Event Enable Register
QDMA Secondary Event Clear Register
Parameter RAM (PaRAM)
Table 6-16. EDMA3 Transfer Controller (EDMA3TC) Registers
EDMA3_0
Transfer
Controller 0
BYTE ADDRESS
EDMA3_0
Transfer
Controller 1
BYTE ADDRESS
EDMA3_1
Transfer
Controller 0
BYTE ADDRESS
ACRONYM
REGISTER DESCRIPTION
0x01C0 8000
0x01C0 8400
0x01E3 8000
PID
Peripheral Identification Register
0x01C0 8004
0x01C0 8404
0x01E3 8004
TCCFG
EDMA3TC Configuration Register
0x01C0 8100
0x01C0 8500
0x01E3 8100
TCSTAT
EDMA3TC Channel Status Register
0x01C0 8120
0x01C0 8520
0x01E3 8120
ERRSTAT
Error Status Register
0x01C0 8124
0x01C0 8524
0x01E3 8124
ERREN
Error Enable Register
0x01C0 8128
0x01C0 8528
0x01E3 8128
ERRCLR
Error Clear Register
0x01C0 812C
0x01C0 852C
0x01E3 812C
ERRDET
Error Details Register
0x01C0 8130
0x01C0 8530
0x01E3 8130
ERRCMD
Error Interrupt Command Register
0x01C0 8140
0x01C0 8540
0x01E3 8140
RDRATE
Read Command Rate Register
0x01C0 8240
0x01C0 8640
0x01E3 8240
SAOPT
Source Active Options Register
0x01C0 8244
0x01C0 8644
0x01E3 8244
SASRC
Source Active Source Address Register
0x01C0 8248
0x01C0 8648
0x01E3 8248
SACNT
Source Active Count Register
0x01C0 824C
0x01C0 864C
0x01E3 824C
SADST
Source Active Destination Address Register
0x01C0 8250
0x01C0 8650
0x01E3 8250
SABIDX
Source Active B-Index Register
0x01C0 8254
0x01C0 8654
0x01E3 8254
SAMPPRXY
Source Active Memory Protection Proxy Register
0x01C0 8258
0x01C0 8658
0x01E3 8258
SACNTRLD
Source Active Count Reload Register
0x01C0 825C
0x01C0 865C
0x01E3 825C
SASRCBREF
Source Active Source Address B-Reference Register
0x01C0 8260
0x01C0 8660
0x01E3 8260
SADSTBREF
Source Active Destination Address B-Reference Register
112
Peripheral Information and Electrical Specifications
Submit Documentation Feedback
Product Folder Links: OMAP-L138
Copyright © 2009–2017, Texas Instruments Incorporated
OMAP-L138
www.ti.com
SPRS586J – JUNE 2009 – REVISED JANUARY 2017
Table 6-16. EDMA3 Transfer Controller (EDMA3TC) Registers (continued)
EDMA3_0
Transfer
Controller 0
BYTE ADDRESS
EDMA3_0
Transfer
Controller 1
BYTE ADDRESS
EDMA3_1
Transfer
Controller 0
BYTE ADDRESS
ACRONYM
REGISTER DESCRIPTION
0x01C0 8280
0x01C0 8680
0x01C0 8284
0x01C0 8684
0x01E3 8280
DFCNTRLD
Destination FIFO Set Count Reload Register
0x01E3 8284
DFSRCBREF
Destination FIFO Set Source Address B-Reference
Register
0x01C0 8288
0x01C0 8688
0x01E3 8288
DFDSTBREF
Destination FIFO Set Destination Address B-Reference
Register
0x01C0 8300
0x01C0 8700
0x01E3 8300
DFOPT0
Destination FIFO Options Register 0
0x01C0 8304
0x01C0 8704
0x01E3 8304
DFSRC0
Destination FIFO Source Address Register 0
0x01C0 8308
0x01C0 8708
0x01E3 8308
DFCNT0
Destination FIFO Count Register 0
0x01C0 830C
0x01C0 870C
0x01E3 830C
DFDST0
Destination FIFO Destination Address Register 0
0x01C0 8310
0x01C0 8710
0x01E3 8310
DFBIDX0
Destination FIFO B-Index Register 0
0x01C0 8314
0x01C0 8714
0x01E3 8314
DFMPPRXY0
0x01C0 8340
0x01C0 8740
0x01E3 8340
DFOPT1
Destination FIFO Options Register 1
0x01C0 8344
0x01C0 8744
0x01E3 8344
DFSRC1
Destination FIFO Source Address Register 1
0x01C0 8348
0x01C0 8748
0x01E3 8348
DFCNT1
Destination FIFO Count Register 1
0x01C0 834C
0x01C0 874C
0x01E3 834C
DFDST1
Destination FIFO Destination Address Register 1
0x01C0 8350
0x01C0 8750
0x01E3 8350
DFBIDX1
Destination FIFO B-Index Register 1
0x01C0 8354
0x01C0 8754
0x01E3 8354
DFMPPRXY1
0x01C0 8380
0x01C0 8780
0x01E3 8380
DFOPT2
Destination FIFO Options Register 2
0x01C0 8384
0x01C0 8784
0x01E3 8384
DFSRC2
Destination FIFO Source Address Register 2
Destination FIFO Memory Protection Proxy Register 0
Destination FIFO Memory Protection Proxy Register 1
0x01C0 8388
0x01C0 8788
0x01E3 8388
DFCNT2
Destination FIFO Count Register 2
0x01C0 838C
0x01C0 878C
0x01E3 838C
DFDST2
Destination FIFO Destination Address Register 2
0x01C0 8390
0x01C0 8790
0x01E3 8390
DFBIDX2
Destination FIFO B-Index Register 2
0x01C0 8394
0x01C0 8794
0x01E3 8394
DFMPPRXY2
0x01C0 83C0
0x01C0 87C0
0x01E3 83C0
DFOPT3
Destination FIFO Memory Protection Proxy Register 2
Destination FIFO Options Register 3
0x01C0 83C4
0x01C0 87C4
0x01E3 83C4
DFSRC3
Destination FIFO Source Address Register 3
0x01C0 83C8
0x01C0 87C8
0x01E3 83C8
DFCNT3
Destination FIFO Count Register 3
0x01C0 83CC
0x01C0 87CC
0x01E3 83CC
DFDST3
Destination FIFO Destination Address Register 3
0x01C0 83D0
0x01C0 87D0
0x01E3 83D0
DFBIDX3
Destination FIFO B-Index Register 3
0x01C0 83D4
0x01C0 87D4
0x01E3 83D4
DFMPPRXY3
Destination FIFO Memory Protection Proxy Register 3
Table 6-17 shows an abbreviation of the set of registers which make up the parameter set for each of 128
EDMA3 events. Each of the parameter register sets consist of 8 32-bit word entries. Table 6-18 shows the
parameter set entry registers with relative memory address locations within each of the parameter sets.
Table 6-17. EDMA3 Parameter Set RAM
EDMA3_0
Channel Controller 0
BYTE ADDRESS RANGE
EDMA3_1
Channel Controller 0
BYTE ADDRESS RANGE
0x01C0 4000 - 0x01C0 401F
0x01E3 4000 - 0x01E3 401F
Parameters Set 0 (8 32-bit words)
0x01C0 4020 - 0x01C0 403F
0x01E3 4020 - 0x01E3 403F
Parameters Set 1 (8 32-bit words)
0x01C0 4040 - 0x01CC0 405F
0x01E3 4040 - 0x01CE3 405F
Parameters Set 2 (8 32-bit words)
0x01C0 4060 - 0x01C0 407F
0x01E3 4060 - 0x01E3 407F
Parameters Set 3 (8 32-bit words)
0x01C0 4080 - 0x01C0 409F
0x01E3 4080 - 0x01E3 409F
Parameters Set 4 (8 32-bit words)
0x01C0 40A0 - 0x01C0 40BF
0x01E3 40A0 - 0x01E3 40BF
Parameters Set 5 (8 32-bit words)
...
...
0x01C0 4FC0 - 0x01C0 4FDF
0x01E3 4FC0 - 0x01E3 4FDF
Parameters Set 126 (8 32-bit words)
0x01C0 4FE0 - 0x01C0 4FFF
0x01E3 4FE0 - 0x01E3 4FFF
Parameters Set 127 (8 32-bit words)
Copyright © 2009–2017, Texas Instruments Incorporated
DESCRIPTION
...
Peripheral Information and Electrical Specifications
Submit Documentation Feedback
Product Folder Links: OMAP-L138
113
OMAP-L138
SPRS586J – JUNE 2009 – REVISED JANUARY 2017
www.ti.com
Table 6-18. Parameter Set Entries
OFFSET BYTE ADDRESS
WITHIN THE PARAMETER SET
114
ACRONYM
PARAMETER ENTRY
0x0000
OPT
Option
0x0004
SRC
Source Address
0x0008
A_B_CNT
0x000C
DST
0x0010
SRC_DST_BIDX
Source B Index, Destination B Index
0x0014
LINK_BCNTRLD
Link Address, B Count Reload
0x0018
SRC_DST_CIDX
Source C Index, Destination C Index
0x001C
CCNT
Peripheral Information and Electrical Specifications
Submit Documentation Feedback
Product Folder Links: OMAP-L138
A Count, B Count
Destination Address
C Count
Copyright © 2009–2017, Texas Instruments Incorporated
OMAP-L138
www.ti.com
SPRS586J – JUNE 2009 – REVISED JANUARY 2017
6.10 External Memory Interface A (EMIFA)
EMIFA is one of two external memory interfaces supported on the device. It is primarily intended to
support asynchronous memory types, such as NAND and NOR flash and Asynchronous SRAM. However
on this device, EMIFA also provides a secondary interface to SDRAM.
6.10.1 EMIFA Asynchronous Memory Support
EMIFA supports asynchronous:
• SRAM memories
• NAND Flash memories
• NOR Flash memories
The EMIFA data bus width is up to 16-bits.The device supports up to 23 address lines and two external
wait/interrupt inputs. Up to four asynchronous chip selects are supported by EMIFA (EMA_CS[5:2]).
Each chip select has the following individually programmable attributes:
• Data Bus Width
• Read cycle timings: setup, hold, strobe
• Write cycle timings: setup, hold, strobe
• Bus turn around time
• Extended Wait Option With Programmable Timeout
• Select Strobe Option
• NAND flash controller supports 1-bit and 4-bit ECC calculation on blocks of 512 bytes.
6.10.2 EMIFA Synchronous DRAM Memory Support
The device supports 16-bit SDRAM in addition to the asynchronous memories listed in Section 6.10.1. It
has a single SDRAM chip select (EMA_CS[0]). SDRAM configurations that are supported are:
• One, Two, and Four Bank SDRAM devices
• Devices with Eight, Nine, Ten, and Eleven Column Address
• CAS Latency of two or three clock cycles
• Sixteen Bit Data Bus Width
Additionally, the SDRAM interface of EMIFA supports placing the SDRAM in Self Refresh and Powerdown
Modes. Self Refresh mode allows the SDRAM to be put into a low power state while still retaining memory
contents; since the SDRAM will continue to refresh itself even without clocks from the device. Powerdown
mode achieves even lower power, except the device must periodically wake the SDRAM up and issue
refreshes if data retention is required.
Finally, note that the EMIFA does not support Mobile SDRAM devices.
Table 6-19 shows the supported SDRAM configurations for EMIFA.
Copyright © 2009–2017, Texas Instruments Incorporated
Peripheral Information and Electrical Specifications
Submit Documentation Feedback
Product Folder Links: OMAP-L138
115
OMAP-L138
SPRS586J – JUNE 2009 – REVISED JANUARY 2017
www.ti.com
Table 6-19. EMIFA Supported SDRAM Configurations (1)
SDRAM
Memory
Data Bus
Width (bits)
16
8
(1)
Number of
Memories
EMIFA Data
Bus Size
(bits)
Rows
Columns
Banks
Total
Memory
(Mbits)
Total
Memory
(Mbytes)
Memory
Density
(Mbits)
1
16
16
8
1
256
32
256
1
16
16
8
2
512
64
512
1
16
16
8
4
1024
128
1024
1
16
16
9
1
512
64
512
1
16
16
9
2
1024
128
1024
1
16
16
9
4
2048
256
2048
1
16
16
10
1
1024
128
1024
1
16
16
10
2
2048
256
2048
1
16
16
10
4
4096
512
4096
1
16
16
11
1
2048
256
2048
1
16
16
11
2
4096
512
4096
1
16
15
11
4
4096
512
4096
2
16
16
8
1
256
32
128
2
16
16
8
2
512
64
256
2
16
16
8
4
1024
128
512
2
16
16
9
1
512
64
256
2
16
16
9
2
1024
128
512
2
16
16
9
4
2048
256
1024
2
16
16
10
1
1024
128
512
2
16
16
10
2
2048
256
1024
2
16
16
10
4
4096
512
2048
2
16
16
11
1
2048
256
1024
2
16
16
11
2
4096
512
2048
2
16
15
11
4
4096
512
2048
The shaded cells indicate configurations that are possible on the EMIFA interface but as of this writing SDRAM memories capable of
supporting these densities are not available in the market.
6.10.3 EMIFA SDRAM Loading Limitations
EMIFA supports SDRAM up to 100 MHz with up to two SDRAM or asynchronous memory loads.
Additional loads will limit the SDRAM operation to lower speeds and the maximum speed should be
confirmed by board simulation using IBIS models.
6.10.4 EMIFA Connection Examples
Figure 6-10 illustrates an example of how SDRAM, NOR, and NAND flash devices might be connected to
EMIFA simultaneously. The SDRAM chip select must be EMA_CS[0]. Note that the NOR flash is
connected to EMA_CS[2] and the NAND flash is connected to EMA_CS[3] in this example. Note that any
type of asynchronous memory may be connected to EMA_CS[5:2].
The on-chip bootloader makes some assumptions on which chip select the contains the boot image, and
this depends on the boot mode. For NOR boot mode; the on-chip bootloader requires that the image be
stored in NOR flash on EMA_CS[2]. For NAND boot mode, the bootloader requires that the boot image is
stored in NAND flash on EMA_CS[3]. It is always possible to have the image span multiple chip selects,
but this must be supported by second stage boot code stored in the external flash.
116
Peripheral Information and Electrical Specifications
Submit Documentation Feedback
Product Folder Links: OMAP-L138
Copyright © 2009–2017, Texas Instruments Incorporated
OMAP-L138
www.ti.com
SPRS586J – JUNE 2009 – REVISED JANUARY 2017
EMA_CS[0]
EMA_CAS
EMIFA
EMA_RAS
EMA_WE
EMA_CLK
EMA_SDCKE
EMA_BA[1:0]
EMA_A[12:0]
EMA_WE_DQM[0]
EMA_WE_DQM[1]
EMA_D[15:0]
EMA_CS[2]
EMA_CS[3]
EMA_WAIT
EMA_OE
RESET
EMA_BA[1]
A likely use case with more than one EMIFA chip select used for NAND flash is illustrated in Figure 6-11.
This figure shows how two multiplane NAND flash devices with two chip selects each would connect to the
EMIFA. In this case if NAND is the boot memory, then the boot image needs to be stored in the NAND
area selected by EMA_CS[3]. Part of the application image could spill over into the NAND regions
selected by other EMIFA chip selects; but would rely on the code stored in the EMA_CS[3] area to
bootload it.
GPIO
(6 Pins)
RESET
...
CE
CAS
RAS
WE
SDRAM
2M x 16 x 4
CLK
Bank
CKE
BA[1:0]
A[11:0]
LDQM
UDQM
DQ[15:0]
A[0]
A[12:1]
DQ[15:0]
NOR
CE
FLASH
WE
512K x 16
OE
RESET
A[18:13]
RY/BY
EMA_A[1]
EMA_A[2]
DVDD
ALE
CLE
DQ[15:0]
NAND
FLASH
CE
1Gb x 16
WE
RE
RB
Figure 6-10. Connection Diagram: SDRAM, NOR, NAND
Copyright © 2009–2017, Texas Instruments Incorporated
Peripheral Information and Electrical Specifications
Submit Documentation Feedback
Product Folder Links: OMAP-L138
117
OMAP-L138
SPRS586J – JUNE 2009 – REVISED JANUARY 2017
www.ti.com
EMA_A[1]
EMA_A[2]
EMA_D[7:0]
EMA_CS[2]
EMA_CS[3]
EMA_WE
EMA_OE
EMIFA
EMA_WAIT
ALE
CLE
DQ[7:0]
CE1
CE2
WE
RE
R/B1
R/B2
NAND
FLASH
x8,
MultiPlane
ALE
CLE
DQ[7:0]
CE1
CE2
WE
RE
R/B1
R/B2
NAND
FLASH
x8,
MultiPlane
DVDD
EMA_CS[4]
EMA_CS[5]
Figure 6-11. EMIFA Connection Diagram: Multiple NAND Flash Planes
118
Peripheral Information and Electrical Specifications
Submit Documentation Feedback
Product Folder Links: OMAP-L138
Copyright © 2009–2017, Texas Instruments Incorporated
OMAP-L138
www.ti.com
SPRS586J – JUNE 2009 – REVISED JANUARY 2017
6.10.5 External Memory Interface Register Descriptions
Table 6-20. External Memory Interface (EMIFA) Registers
BYTE ADDRESS
ACRONYM
REGISTER DESCRIPTION
0x6800 0000
MIDR
Module ID Register
0x6800 0004
AWCC
Asynchronous Wait Cycle Configuration Register
0x6800 0008
SDCR
SDRAM Configuration Register
0x6800 000C
SDRCR
SDRAM Refresh Control Register
0x6800 0010
CE2CFG
Asynchronous 1 Configuration Register
0x6800 0014
CE3CFG
Asynchronous 2 Configuration Register
0x6800 0018
CE4CFG
Asynchronous 3 Configuration Register
0x6800 001C
CE5CFG
Asynchronous 4 Configuration Register
0x6800 0020
SDTIMR
SDRAM Timing Register
0x6800 003C
SDSRETR
0x6800 0040
INTRAW
EMIFA Interrupt Raw Register
0x6800 0044
INTMSK
EMIFA Interrupt Mask Register
0x6800 0048
INTMSKSET
EMIFA Interrupt Mask Set Register
0x6800 004C
INTMSKCLR
EMIFA Interrupt Mask Clear Register
0x6800 0060
NANDFCR
NAND Flash Control Register
0x6800 0064
NANDFSR
NAND Flash Status Register
0x6800 0070
NANDF1ECC
NAND Flash 1 ECC Register (CS2 Space)
0x6800 0074
NANDF2ECC
NAND Flash 2 ECC Register (CS3 Space)
0x6800 0078
NANDF3ECC
NAND Flash 3 ECC Register (CS4 Space)
0x6800 007C
NANDF4ECC
NAND Flash 4 ECC Register (CS5 Space)
0x6800 00BC
NAND4BITECCLOAD
0x6800 00C0
NAND4BITECC1
NAND Flash 4-Bit ECC Register 1
0x6800 00C4
NAND4BITECC2
NAND Flash 4-Bit ECC Register 2
0x6800 00C8
NAND4BITECC3
NAND Flash 4-Bit ECC Register 3
0x6800 00CC
NAND4BITECC4
NAND Flash 4-Bit ECC Register 4
0x6800 00D0
NANDERRADD1
NAND Flash 4-Bit ECC Error Address Register 1
0x6800 00D4
NANDERRADD2
NAND Flash 4-Bit ECC Error Address Register 2
0x6800 00D8
NANDERRVAL1
NAND Flash 4-Bit ECC Error Value Register 1
0x6800 00DC
NANDERRVAL2
NAND Flash 4-Bit ECC Error Value Register 2
Copyright © 2009–2017, Texas Instruments Incorporated
SDRAM Self Refresh Exit Timing Register
NAND Flash 4-Bit ECC Load Register
Peripheral Information and Electrical Specifications
Submit Documentation Feedback
Product Folder Links: OMAP-L138
119
OMAP-L138
SPRS586J – JUNE 2009 – REVISED JANUARY 2017
www.ti.com
6.10.6 EMIFA Electrical Data/Timing
Table 6-21 through Table 6-24 assume testing over recommended operating conditions.
Table 6-21. Timing Requirements for EMIFA SDRAM Interface
1.3V, 1.2V
NO.
MIN
19
tsu(EMA_DV-EM_CLKH)
Input setup time, read data valid on EMA_D[15:0] before
EMA_CLK rising
20
th(CLKH-DIV)
Input hold time, read data valid on EMA_D[15:0] after
EMA_CLK rising
MAX
1.1V
MIN
MAX
1.0V
MIN
MAX
UNIT
2
3
3
ns
1.6
1.6
1.6
ns
Table 6-22. Switching Characteristics for EMIFA SDRAM Interface
NO.
PARAMETER
1.3V, 1.2V
MIN
1
tc(CLK)
Cycle time, EMIF clock EMA_CLK
10
2
tw(CLK)
Pulse width, EMIF clock EMA_CLK high or low
3
3
td(CLKH-CSV)
Delay time, EMA_CLK rising to EMA_CS[0] valid
4
toh(CLKH-CSIV)
Output hold time, EMA_CLK rising to EMA_CS[0] invalid
5
td(CLKH-DQMV)
Delay time, EMA_CLK rising to EMA_WE_DQM[1:0] valid
6
toh(CLKH-DQMIV)
Output hold time, EMA_CLK rising to EMA_WE_DQM[1:0]
invalid
7
td(CLKH-AV)
Delay time, EMA_CLK rising to EMA_A[12:0] and
EMA_BA[1:0] valid
8
toh(CLKH-AIV)
Output hold time, EMA_CLK rising to EMA_A[12:0] and
EMA_BA[1:0] invalid
9
td(CLKH-DV)
Delay time, EMA_CLK rising to EMA_D[15:0] valid
10
toh(CLKH-DIV)
Output hold time, EMA_CLK rising to EMA_D[15:0] invalid
11
td(CLKH-RASV)
Delay time, EMA_CLK rising to EMA_RAS valid
12
toh(CLKH-RASIV)
Output hold time, EMA_CLK rising to EMA_RAS invalid
13
td(CLKH-CASV)
Delay time, EMA_CLK rising to EMA_CAS valid
14
toh(CLKH-CASIV)
Output hold time, EMA_CLK rising to EMA_CAS invalid
15
td(CLKH-WEV)
Delay time, EMA_CLK rising to EMA_WE valid
16
toh(CLKH-WEIV)
Output hold time, EMA_CLK rising to EMA_WE invalid
17
tdis(CLKH-DHZ)
Delay time, EMA_CLK rising to EMA_D[15:0] tri-stated
18
tena(CLKH-DLZ)
Output hold time, EMA_CLK rising to EMA_D[15:0] driving
120
Peripheral Information and Electrical Specifications
Submit Documentation Feedback
Product Folder Links: OMAP-L138
MAX
1.1V
MIN
15
1
7
1
7
7
1
7
1
1
7
1
1
ns
ns
13
1
ns
ns
13
9.5
ns
ns
13
9.5
ns
ns
13
1
1
1
13
9.5
ns
ns
1
9.5
7
1
13
9.5
ns
ns
1
1
1
13
9.5
ns
ns
1
1
1
ns
1
1
UNIT
ns
13
9.5
7
MAX
8
9.5
1
1
1.0V
MIN
20
5
7
1
MAX
ns
ns
Copyright © 2009–2017, Texas Instruments Incorporated
OMAP-L138
www.ti.com
SPRS586J – JUNE 2009 – REVISED JANUARY 2017
1
BASIC SDRAM
WRITE OPERATION
2
2
EMA_CLK
3
4
EMA_CS[0]
5
6
EMA_WE_DQM[1:0]
7
8
7
8
EMA_BA[1:0]
EMA_A[12:0]
9
10
EMA_D[15:0]
11
12
EMA_RAS
13
EMA_CAS
15
16
EMA_WE
Figure 6-12. EMIFA Basic SDRAM Write Operation
BASIC SDRAM
READ OPERATION
1
2
2
EMA_CLK
3
4
EMA_CS[0]
5
6
EMA_WE_DQM[1:0]
7
8
7
8
EMA_BA[1:0]
EMA_A[12:0]
19
17
20
2 EM_CLK Delay
18
EMA_D[15:0]
11
12
EMA_RAS
13
14
EMA_CAS
EMA_WE
Figure 6-13. EMIFA Basic SDRAM Read Operation
Copyright © 2009–2017, Texas Instruments Incorporated
Peripheral Information and Electrical Specifications
Submit Documentation Feedback
Product Folder Links: OMAP-L138
121
OMAP-L138
SPRS586J – JUNE 2009 – REVISED JANUARY 2017
www.ti.com
Table 6-23. Timing Requirements for EMIFA Asynchronous Memory Interface
1.3V, 1.2V
NO.
MIN
MAX
(1)
1.1V
MIN
MAX
1.0V
MIN
MAX
UNIT
READS and WRITES
E
tc(CLK)
Cycle time, EMIFA module clock
2
tw(EM_WAIT)
Pulse duration, EM_WAIT assertion and deassertion
6.75
13.33
20
ns
2E
2E
2E
ns
READS
12
tsu(EMDV-EMOEH)
Setup time, EM_D[15:0] valid before EM_OE high
3
5
7
ns
13
th(EMOEH-EMDIV)
Hold time, EM_D[15:0] valid after EM_OE high
0
0
0
ns
14
tsu (EMOEL-
Setup Time, EM_WAIT asserted before end of Strobe
Phase (2)
4E+3
4E+3
4E+3
ns
4E+3
4E+3
4E+3
ns
EMWAIT)
WRITES
28
tsu (EMWELEMWAIT)
(1)
(2)
122
Setup Time, EM_WAIT asserted before end of Strobe
Phase (2)
E = EMA_CLK period or in ns. EMA_CLK is selected either as SYSCLK3 or the PLL0 output clock divided by 4.5. As an example, when
SYSCLK3 is selected and set to 100MHz, E=10ns
Setup before end of STROBE phase (if no extended wait states are inserted) by which EM_WAIT must be asserted to add extended
wait states. Figure 6-16 and Figure 6-17 describe EMIF transactions that include extended wait states inserted during the STROBE
phase. However, cycles inserted as part of this extended wait period should not be counted; the 4E requirement is to the start of where
the HOLD phase would begin if there were no extended wait cycles.
Peripheral Information and Electrical Specifications
Submit Documentation Feedback
Product Folder Links: OMAP-L138
Copyright © 2009–2017, Texas Instruments Incorporated
OMAP-L138
www.ti.com
SPRS586J – JUNE 2009 – REVISED JANUARY 2017
Table 6-24. Switching Characteristics for EMIFA Asynchronous Memory Interface
NO.
(1) (2) (3)
1.3V, 1.2V, 1.1V, 1.0V
PARAMETER
MIN
Nom
UNIT
MAX
READS and WRITES
1
td(TURNAROUND)
Turn around time
(TA)*E - 3
(TA)*E
(TA)*E + 3
ns
READS
3
4
tc(EMRCYCLE)
tsu(EMCEL-EMOEL)
EMIF read cycle time (EW = 0)
(RS+RST+RH)*E - 3
(RS+RST+RH)*E
(RS+RST+RH)*E + 3
ns
EMIF read cycle time (EW = 1)
(RS+RST+RH+EWC)*E - 3
(RS+RST+RH+EWC)*E
(RS+RST+RH+EWC)*E + 3
ns
Output setup time, EMA_CE[5:2] low to EMA_OE low (SS = 0)
(RS)*E-3
(RS)*E
(RS)*E+3
ns
Output setup time, EMA_CE[5:2] low to EMA_OE low (SS = 1)
-3
0
+3
ns
Output hold time, EMA_OE high to EMA_CE[5:2] high (SS = 0)
(RH)*E - 3
(RH)*E
(RH)*E + 3
ns
Output hold time, EMA_OE high to EMA_CE[5:2] high (SS = 1)
-3
0
+3
ns
5
th(EMOEH-EMCEH)
6
tsu(EMBAV-EMOEL)
Output setup time, EMA_BA[1:0] valid to EMA_OE low
(RS)*E-3
(RS)*E
(RS)*E+3
ns
7
th(EMOEH-EMBAIV)
Output hold time, EMA_OE high to EMA_BA[1:0] invalid
(RH)*E-3
(RH)*E
(RH)*E+3
ns
8
tsu(EMBAV-EMOEL)
Output setup time, EMA_A[13:0] valid to EMA_OE low
(RS)*E-3
(RS)*E
(RS)*E+3
ns
9
th(EMOEH-EMAIV)
Output hold time, EMA_OE high to EMA_A[13:0] invalid
(RH)*E-3
(RH)*E
(RH)*E+3
ns
EMA_OE active low width (EW = 0)
(RST)*E-3
(RST)*E
(RST)*E+3
ns
EMA_OE active low width (EW = 1)
(RST+EWC)*E-3
(RST+EWC)*E
(RST+EWC)*E+3
ns
3E-3
4E
4E+3
ns
(RS)*E-3
(RS)*E
(RS)*E+3
ns
(RH)*E-3
(RH)*E
(RH)*E+3
ns
(WS+WST+WH)*E-3
(WS+WST+WH)*E
(WS+WST+WH)*E+3
ns
(WS+WST+WH+EWC)*E - 3
(WS+WST+WH+EWC)*E
(WS+WST+WH+EWC)*E +
3
ns
Output setup time, EMA_CE[5:2] low to EMA_WE low (SS = 0)
(WS)*E - 3
(WS)*E
(WS)*E + 3
ns
Output setup time, EMA_CE[5:2] low to EMA_WE low (SS = 1)
-3
0
+3
ns
Output hold time, EMA_WE high to EMA_CE[5:2] high (SS = 0)
(WH)*E-3
(WH)*E
(WH)*E+3
ns
Output hold time, EMA_WE high to EMA_CE[5:2] high (SS = 1)
-3
0
+3
ns
10
tw(EMOEL)
11
td(EMWAITH-EMOEH)
Delay time from EMA_WAIT deasserted to EMA_OE high
28
tsu(EMARW-EMOEL)
Output setup time, EMA_A_RW valid to EMA_OE low
29
th(EMOEH-EMARW)
Output hold time, EMA_OE high to EMA_A_RW invalid
WRITES
EMIF write cycle time (EW = 0)
15
tc(EMWCYCLE)
16
tsu(EMCEL-EMWEL)
EMIF write cycle time (EW = 1)
17
th(EMWEH-EMCEH)
18
tsu(EMDQMV-EMWEL)
Output setup time, EMA_BA[1:0] valid to EMA_WE low
(WS)*E-3
(WS)*E
(WS)*E+3
ns
19
th(EMWEH-EMDQMIV)
Output hold time, EMA_WE high to EMA_BA[1:0] invalid
(WH)*E-3
(WH)*E
(WH)*E+3
ns
20
tsu(EMBAV-EMWEL)
Output setup time, EMA_BA[1:0] valid to EMA_WE low
(WS)*E-3
(WS)*E
(WS)*E+3
ns
21
th(EMWEH-EMBAIV)
Output hold time, EMA_WE high to EMA_BA[1:0] invalid
(WH)*E-3
(WH)*E
(WH)*E+3
ns
(1)
(2)
(3)
TA = Turn around, RS = Read setup, RST = Read strobe, RH = Read hold, WS = Write setup, WST = Write strobe, WH = Write hold, MEWC = Maximum external wait cycles. These
parameters are programmed via the Asynchronous Bank and Asynchronous Wait Cycle Configuration Registers. These support the following range of values: TA[4-1], RS[16-1], RST[641], RH[8-1], WS[16-1], WST[64-1], WH[8-1], and MEW[1-256].
E = EMA_CLK period or in ns. EMA_CLK is selected either as SYSCLK3 or the PLL0 output clock divided by 4.5. As an example, when SYSCLK3 is selected and set to 100MHz,
E=10ns.
EWC = external wait cycles determined by EMA_WAIT input signal. EWC supports the following range of values EWC[256-1]. Note that the maximum wait time before timeout is specified
by bit field MEWC in the Asynchronous Wait Cycle Configuration Register.
Peripheral Information and Electrical Specifications
Copyright © 2009–2017, Texas Instruments Incorporated
Submit Documentation Feedback
Product Folder Links: OMAP-L138
123
OMAP-L138
SPRS586J – JUNE 2009 – REVISED JANUARY 2017
www.ti.com
Table 6-24. Switching Characteristics for EMIFA Asynchronous Memory Interface
NO.
(1) (2) (3)
(continued)
1.3V, 1.2V, 1.1V, 1.0V
PARAMETER
MIN
Nom
UNIT
MAX
22
tsu(EMAV-EMWEL)
Output setup time, EMA_A[13:0] valid to EMA_WE low
(WS)*E-3
(WS)*E
(WS)*E+3
ns
23
th(EMWEH-EMAIV)
Output hold time, EMA_WE high to EMA_A[13:0] invalid
(WH)*E-3
(WH)*E
(WH)*E+3
ns
EMA_WE active low width (EW = 0)
(WST)*E-3
(WST)*E
(WST)*E+3
ns
EMA_WE active low width (EW = 1)
(WST+EWC)*E-3
(WST+EWC)*E
(WST+EWC)*E+3
ns
3E-3
4E
4E+3
ns
24
tw(EMWEL)
25
td(EMWAITH-EMWEH)
Delay time from EMA_WAIT deasserted to EMA_WE high
26
tsu(EMDV-EMWEL)
Output setup time, EMA_D[15:0] valid to EMA_WE low
(WS)*E-3
(WS)*E
(WS)*E+3
ns
27
th(EMWEH-EMDIV)
Output hold time, EMA_WE high to EMA_D[15:0] invalid
(WH)*E-3
(WH)*E
(WH)*E+3
ns
30
tsu(EMARW-EMWEL)
Output setup time, EMA_A_RW valid to EMA_WE low
(WS)*E-3
(WS)*E
(WS)*E+3
ns
31
th(EMWEH-EMARW)
Output hold time, EMA_WE high to EMA_A_RW invalid
(WH)*E-3
(WH)*E
(WH)*E+3
ns
124
Peripheral Information and Electrical Specifications
Copyright © 2009–2017, Texas Instruments Incorporated
Submit Documentation Feedback
Product Folder Links: OMAP-L138
OMAP-L138
www.ti.com
SPRS586J – JUNE 2009 – REVISED JANUARY 2017
SETUP
STROBE
HOLD
3
1
EMA_CS[5:2]
EMA_BA[1:0]
EMA_A[22:0]
EMA_WE_DQM[1:0]
1
EMA_A_RW
4
8
6
28
5
9
7
29
10
EMA_OE
13
12
EMA_D[15:0]
EMA_WE
Figure 6-14. Asynchronous Memory Read Timing for EMIFA
SETUP
STROBE
HOLD
15
1
EMA_CS[5:2]
EMA_BA[1:0]
EMA_A[22:0]
EMA_WE_DQM[1:0]
EMA_A_RW
EMA_WE
16
17
18
19
20
21
22
30
23
31
26
24
1
27
EMA_D[15:0]
EMA_OE
Figure 6-15. Asynchronous Memory Write Timing for EMIFA
Copyright © 2009–2017, Texas Instruments Incorporated
Peripheral Information and Electrical Specifications
Submit Documentation Feedback
Product Folder Links: OMAP-L138
125
OMAP-L138
SPRS586J – JUNE 2009 – REVISED JANUARY 2017
EMA_CS[5:2]
SETUP
www.ti.com
STROBE
Extended Due to EMA_WAIT
STROBE HOLD
EMA_BA[1:0]
EMA_A[22:0]
EMA_D[15:0]
EMA_A_RW
14
11
EMA_OE
2
EMA_WAIT
Asserted
2
Deasserted
Figure 6-16. EMA_WAIT Read Timing Requirements
EMA_CS[5:2]
EMA_BA[1:0]
EMA_A[22:0]
EMA_D[15:0]
EMA_A_RW
EMA_WE
EMA_WAIT
Figure 6-17. EMA_WAIT Write Timing Requirements
126
Peripheral Information and Electrical Specifications
Submit Documentation Feedback
Product Folder Links: OMAP-L138
Copyright © 2009–2017, Texas Instruments Incorporated
OMAP-L138
www.ti.com
SPRS586J – JUNE 2009 – REVISED JANUARY 2017
6.11 DDR2/mDDR Memory Controller
The DDR2/mDDR Memory Controller is a dedicated interface to DDR2/mDDR SDRAM. It supports
JESD79-2A standard compliant DDR2 SDRAM devices and compliant Mobile DDR SDRAM devices.
The DDR2/mDDR Memory Controller support the following features:
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
JESD79-2A standard compliant DDR2 SDRAM
Mobile DDR SDRAM
256 MByte memory space for DDR2
256 MByte memory space for mDDR
CAS latencies:
– DDR2: 2, 3, 4 and 5
– mDDR: 2 and 3
Internal banks:
– DDR2: 1, 2, 4 and 8
– mDDR:1, 2 and 4
Burst length: 8
Burst type: sequential
1 chip select (CS) signal
Page sizes: 256, 512, 1024, and 2048
SDRAM autoinitialization
Self-refresh mode
Partial array self-refresh (for mDDR)
Power down mode
Prioritized refresh
Programmable refresh rate and backlog counter
Programmable timing parameters
Little endian
6.11.1 DDR2/mDDR Memory Controller Electrical Data/Timing
Table 6-25. Switching Characteristics Over Recommended Operating Conditions for DDR2/mDDR
Memory Controller
No.
1
(1)
PARAMETER
tc(DDR_CLK)
1.3V, 1.2V
Cycle time,
DDR_CLKP / DDR_CLKN
1.1V
1.0V
UNIT
MIN
MAX
MIN
MAX
MIN
MAX
DDR2
125
156
125
150
— (1)
— (1)
mDDR
105
150
100
133
95
133
MHz
DDR2 is not supported at this voltage operating point.
Copyright © 2009–2017, Texas Instruments Incorporated
Peripheral Information and Electrical Specifications
Submit Documentation Feedback
Product Folder Links: OMAP-L138
127
OMAP-L138
SPRS586J – JUNE 2009 – REVISED JANUARY 2017
www.ti.com
6.11.2 DDR2/mDDR Memory Controller Register Description(s)
Table 6-26. DDR2/mDDR Memory Controller Registers
BYTE ADDRESS
ACRONYM
REGISTER DESCRIPTION
0xB000 0000
REVID
0xB000 0004
SDRSTAT
Revision ID Register
0xB000 0008
SDCR
0xB000 000C
SDRCR
0xB000 0010
SDTIMR1
SDRAM Timing Register 1
0xB000 0014
SDTIMR2
SDRAM Timing Register 2
0xB000 001C
SDCR2
SDRAM Configuration Register 2
0xB000 0020
PBBPR
Peripheral Bus Burst Priority Register
0xB000 0040
PC1
Performance Counter 1 Registers
0xB000 0044
PC2
Performance Counter 2 Register
Performance Counter Configuration Register
SDRAM Status Register
SDRAM Configuration Register
SDRAM Refresh Control Register
0xB000 0048
PCC
0xB000 004C
PCMRS
0xB000 0050
PCT
Performance Counter Time Register
0xB000 00C0
IRR
Interrupt Raw Register
0xB000 00C4
IMR
Interrupt Mask Register
0xB000 00C8
IMSR
Interrupt Mask Set Register
0xB000 00CC
IMCR
Interrupt Mask Clear Register
0xB000 00E4
DRPYC1R
DDR PHY Control Register 1
0x01E2 C000
VTPIO_CTL
Performance Counter Master Region Select Register
VTP IO Control Register
6.11.3 DDR2/mDDR Interface
This section provides the timing specification for the DDR2/mDDR interface as a PCB design and
manufacturing specification. The design rules constrain PCB trace length, PCB trace skew, signal
integrity, cross-talk, and signal timing. These rules, when followed, result in a reliable DDR2/mDDR
memory system without the need for a complex timing closure process. For more information regarding
guidelines for using this DDR2/mDDR specification, Understanding TI's PCB Routing Rule-Based DDR2
Timing Specification (SPRAAV0).
6.11.3.1 DDR2/mDDR Interface Schematic
Figure 6-18 shows the DDR2/mDDR interface schematic for a single-memory DDR2/mDDR system. The
dual-memory system shown in Figure 6-19. Pin numbers for the device can be obtained from the pin
description section.
128
Peripheral Information and Electrical Specifications
Submit Documentation Feedback
Product Folder Links: OMAP-L138
Copyright © 2009–2017, Texas Instruments Incorporated
OMAP-L138
www.ti.com
SPRS586J – JUNE 2009 – REVISED JANUARY 2017
DDR2/mDDR Memory Controller
DDR2/mDDR
ODT
DDR_D[0]
T
DQ0
DDR_D[7]
T
DQ7
DDR_DQM[0]
DDR_DQS[0]
T
T
LDM
LDQS
DDR_D[8]
T
LDQS
DQ8
DDR_D[15]
T
DQ15
DDR_DQM[1]
DDR_DQS[1]
T
UDM
UDQS
NC
T
UDQS
50 Ω 5%
NC
DDR_BA[0]
T
BA0
DDR_BA[2]
T
BA2
DDR_A[0]
T
A0
DDR_A[13]
DDR_CS
DDR_CAS
DDR_RAS
DDR_WE
DDR_CKE
DDR_CLKP
DDR_CLKN
T
A13
T
CS
CAS
RAS
WE
CKE
CK
CK
DDR_DQGATE0
DDR_DQGATE1
T
T
T
T
T
T
T
DDR_ZP
(1)
VREF
T
DDR_DVDD18
(3)
0.1 μF
1 K Ω 1%
DDR_VREF
VREF
(2)
0.1 μF
T
(1)
(2)
(3)
(2)
0.1 μF
(2)
0.1 μF
0.1 μF
1 K Ω 1%
Terminator, if desired. See terminator comments.
See Figure 6-25 for DQGATE routing specifications.
For DDR2, one of these capacitors can be eliminated if the divider and its capacitors are placed near a device VREF pin. For mDDR,
these capacitors can be eliminated completely.
VREF applies in the case of DDR2 memories. For mDDR, the DDR_VREF pin still needs to be connected to the divider circuit.
Figure 6-18. DDR2/mDDR Single-Memory High Level Schematic
Copyright © 2009–2017, Texas Instruments Incorporated
Peripheral Information and Electrical Specifications
Submit Documentation Feedback
Product Folder Links: OMAP-L138
129
OMAP-L138
SPRS586J – JUNE 2009 – REVISED JANUARY 2017
www.ti.com
DDR2/mDDR Memory Controller
ODT
T
DQ0 - DQ7
BA0-BA2
A0-A13
DDR_DQM[0]
DDR_DQS[0]
T
DM
DQS
DQS
T
NC
Lower Byte
DDR2/mDDR
DDR_D[0:7]
CK
CK
CS
CAS
RAS
WE
CKE
VREF
T
DDR_CLKP
DDR_CLKN
DDR_CS
DDR_CAS
DDR_RAS
DDR_WE
DDR_CKE
T
BA0-BA2
A0-A13
T
CK
CK
CS
CAS
RAS
WE
CKE
T
T
T
T
T
T
DDR_DQM1
DDR_DQS1
T
T
NC
50 Ω 5%
DDR_D[8:15]
T
DDR_ZP
DM
DQS
DQS
DQ0 - DQ7
DDR_DVDD18
ODT
(1)
DDR_DQGATE0
DDR_DQGATE1
Upper Byte
DDR2/mDDR
DDR_BA[0:2]
DDR_A[0:13]
T
VREF
T
(3)
0.1 μF
1 K Ω 1%
DDR_VREF
VREF
(2)
0.1 μF
T
(1)
(2)
(3)
(2)
0.1 μF
(2)
0.1 μF
0.1 μF
1 K Ω 1%
Terminator, if desired. See terminator comments.
See Figure 6-25 for DQGATE routing specifications.
For DDR2, one of these capacitors can be eliminated if the divider and its capacitors are placed near a device VREF pin. For mDDR,
these capacitors can be eliminated completely.
VREF applies in the case of DDR2 memories. For mDDR, the DDR_VREF pin still needs to be connected to the divider circuit.
Figure 6-19. DDR2/mDDR Dual-Memory High Level Schematic
130
Peripheral Information and Electrical Specifications
Submit Documentation Feedback
Product Folder Links: OMAP-L138
Copyright © 2009–2017, Texas Instruments Incorporated
OMAP-L138
www.ti.com
SPRS586J – JUNE 2009 – REVISED JANUARY 2017
6.11.3.2 Compatible JEDEC DDR2/mDDR Devices
Table 6-27 shows the parameters of the JEDEC DDR2/mDDR devices that are compatible with this
interface. Generally, the DDR2/mDDR interface is compatible with x16 DDR2-400/mDDR-200 speed
grade DDR2/mDDR devices.
The device also supports JEDEC DDR2/mDDR x8 devices in the dual chip configuration. In this case, one
chip supplies the upper byte and the second chip supplies the lower byte. Addresses and most control
signals are shared just like regular dual chip memory configurations.
Table 6-27. Compatible JEDEC DDR2/mDDR Devices
NO.
PARAMETER
MIN
MAX
UNIT
1
JEDEC DDR2/mDDR Device Speed Grade (1)
2
JEDEC DDR2/mDDR Device Bit Width
x8
x16
Bits
3
JEDEC DDR2/mDDR Device Count (2)
1
2
Devices
(1)
(2)
DDR2-400/mDDR200
Higher DDR2/mDDR speed grades are supported due to inherent JEDEC DDR2/mDDR backwards compatibility.
Supported configurations are one 16-bit DDR2/mDDR memory or two 8-bit DDR2/mDDR memories
6.11.3.3 PCB Stackup
The minimum stackup required for routing the device is a six layer stack as shown in Table 6-28.
Additional layers may be added to the PCB stack up to accommodate other circuitry or to reduce the size
of the PCB footprint.Complete stack up specifications are provided in Table 6-29.
Table 6-28. Device Minimum PCB Stack Up
LAYER
TYPE
DESCRIPTION
1
Signal
Top Routing Mostly Horizontal
2
Plane
Ground
3
Plane
Power
4
Signal
Internal Routing
5
Plane
Ground
6
Signal
Bottom Routing Mostly Vertical
Table 6-29. PCB Stack Up Specifications
NO.
(1)
(2)
(3)
PARAMETER
MIN
TYP
MAX
UNIT
1
PCB Routing/Plane Layers
6
2
Signal Routing Layers
3
3
Full ground layers under DDR2/mDDR routing region
2
4
Number of ground plane cuts allowed within DDR routing region
5
Number of ground reference planes required for each DDR2/mDDR routing layer
6
Number of layers between DDR2/mDDR routing layer and reference ground plane
7
PCB Routing Feature Size
4
Mils
8
PCB Trace Width w
4
Mils
8
PCB BGA escape via pad size
18
Mils
8
Mils
0
1
0
9
PCB BGA escape via hole size
10
Device BGA pad size (1)
11
DDR2/mDDR Device BGA pad size (2)
12
Single Ended Impedance, Zo
50
13
Impedance Control (3)
Z-5
Z
75
Ω
Z+5
Ω
Please refer to the Flip Chip Ball Grid Array Package Reference Guide (SPRU811) for device BGA pad size.
Please refer to the DDR2/mDDR device manufacturer documentation for the DDR2/mDDR device BGA pad size.
Z is the nominal singled ended impedance selected for the PCB specified by item 12.
Copyright © 2009–2017, Texas Instruments Incorporated
Peripheral Information and Electrical Specifications
Submit Documentation Feedback
Product Folder Links: OMAP-L138
131
OMAP-L138
SPRS586J – JUNE 2009 – REVISED JANUARY 2017
www.ti.com
6.11.3.4 Placement
Figure 6-19 shows the required placement for the device as well as the DDR2/mDDR devices. The
dimensions for Figure 6-20 are defined in Table 6-30. The placement does not restrict the side of the PCB
that the devices are mounted on. The ultimate purpose of the placement is to limit the maximum trace
lengths and allow for proper routing space. For single-memory DDR2/mDDR systems, the second
DDR2/mDDR device is omitted from the placement.
X
Y
OFFSET
Y
DDR2/mDDR
Device
Y
OFFSET
DDR2/mDDR
Controller
A1
A1
Recommended DDR2/mDDR
Device Orientation
Figure 6-20. OMAP-L138 and DDR2/mDDR Device Placement
Table 6-30. Placement Specifications (1) (2)
NO.
MAX
UNIT
1
X
1750
Mils
2
Y
1280
Mils
3
Y Offset
(3)
Mils
4
Clearance from non-DDR2/mDDR signal to DDR2/mDDR Keepout Region (4)
(1)
(2)
(3)
(4)
(5)
132
PARAMETER
MIN
650
4
w (5)
See Figure 6-20 for dimension definitions.
Measurements from center of device to center of DDR2/mDDR device.
For single memory systems it is recommended that Y Offset be as small as possible.
Non-DDR2/mDDR signals allowed within DDR2/mDDR keepout region provided they are separated from DDR2/mDDR routing layers by
a ground plane.
w = PCB trace width as defined in Table 6-29.
Peripheral Information and Electrical Specifications
Submit Documentation Feedback
Product Folder Links: OMAP-L138
Copyright © 2009–2017, Texas Instruments Incorporated
OMAP-L138
www.ti.com
SPRS586J – JUNE 2009 – REVISED JANUARY 2017
6.11.3.5 DDR2/mDDR Keep Out Region
The region of the PCB used for the DDR2/mDDR circuitry must be isolated from other signals. The
DDR2/mDDR keep out region is defined for this purpose and is shown in Figure 6-21. The size of this
region varies with the placement and DDR routing. Additional clearances required for the keep out region
are shown in Table 6-30.
DDR2/mDDR
Device
DDR2/mDDR
Controller
A1
A1
Region should encompass all DDR2/mDDR circuitry and varies
depending on placement. Non-DDR2/mDDR signals should not be
routed on the DDR signal layers within the DDR2/mDDR keep out
region. Non-DDR2/mDDR signals may be routed in the region
provided they are routed on layers separated from DDR2/mDDR
signal layers by a ground layer. No breaks should be allowed in the
reference ground layers in this region. In addition, the 1.8 V power
plane should cover the entire keep out region.
Figure 6-21. DDR2/mDDR Keepout Region
Copyright © 2009–2017, Texas Instruments Incorporated
Peripheral Information and Electrical Specifications
Submit Documentation Feedback
Product Folder Links: OMAP-L138
133
OMAP-L138
SPRS586J – JUNE 2009 – REVISED JANUARY 2017
www.ti.com
6.11.3.6 Bulk Bypass Capacitors
Bulk bypass capacitors are required for moderate speed bypassing of the DDR2/mDDR and other
circuitry. Table 6-31 contains the minimum numbers and capacitance required for the bulk bypass
capacitors. Note that this table only covers the bypass needs of the Soc and DDR2/mDDR interfaces.
Additional bulk bypass capacitance may be needed for other circuitry.
Table 6-31. Bulk Bypass Capacitors
NO.
PARAMETER
MIN
MAX
UNIT
1
DDR_DVDD18 Supply Bulk Bypass Capacitor Count (1)
3
2
DDR_DVDD18 Supply Bulk Bypass Total Capacitance
30
μF
3
DDR#1 Bulk Bypass Capacitor Count (1)
1
Devices
4
DDR#1 Bulk Bypass Total Capacitance
22
μF
5
DDR#2 Bulk Bypass Capacitor Count (1) (2)
1
Devices
6
DDR#2 Bulk Bypass Total Capacitance (2)
22
μF
(1)
Devices
These devices should be placed near the device they are bypassing, but preference should be given to the placement of the high-speed
(HS) bypass caps.
Only used on dual-memory systems.
(2)
6.11.3.7 High-Speed Bypass Capacitors
High-speed (HS) bypass capacitors are critical for proper DDR2/mDDR interface operation. It is
particularly important to minimize the parasitic series inductance of the HS bypass cap, Soc/DDR2/mDDR
power, and Soc/DDR2/mDDR ground connections. Table 6-32 contains the specification for the HS
bypass capacitors as well as for the power connections on the PCB.
Table 6-32. High-Speed Bypass Capacitors
NO.
PARAMETER
MIN
(1)
1
HS Bypass Capacitor Package Size
2
Distance from HS bypass capacitor to device being bypassed
3
Number of connection vias for each HS bypass capacitor
4
Trace length from bypass capacitor contact to connection via
1
5
Number of connection vias for each DDR2/mDDR device power or ground balls
1
6
Trace length from DDR2/mDDR device power ball to connection via
(3)
7
DDR_DVDD18 Supply HS Bypass Capacitor Count
8
DDR_DVDD18 Supply HS Bypass Capacitor Total Capacitance
9
DDR#1 HS Bypass Capacitor Count (3)
10
DDR#1 HS Bypass Capacitor Total Capacitance
(3) (4)
11
DDR#2 HS Bypass Capacitor Count
12
DDR#2 HS Bypass Capacitor Total Capacitance (4)
(1)
(2)
(3)
(4)
134
MAX
UNIT
0402
10 Mils
250
2 (2)
Mils
Vias
30
Mils
Vias
35
10
Mils
Devices
0.6
μF
8
Devices
0.4
μF
8
Devices
0.4
μF
LxW, 10 mil units, i.e., a 0402 is a 40x20 mil surface mount capacitor
An additional HS bypass capacitor can share the connection vias only if it is mounted on the opposite side of the board.
These devices should be placed as close as possible to the device being bypassed.
Only used on dual-memory systems.
Peripheral Information and Electrical Specifications
Submit Documentation Feedback
Product Folder Links: OMAP-L138
Copyright © 2009–2017, Texas Instruments Incorporated
OMAP-L138
www.ti.com
SPRS586J – JUNE 2009 – REVISED JANUARY 2017
6.11.3.8 Net Classes
Table 6-33 lists the clock net classes for the DDR2/mDDR interface. Table 6-34 lists the signal net
classes, and associated clock net classes, for the signals in the DDR2/mDDR interface. These net classes
are used for the termination and routing rules that follow.
Table 6-33. Clock Net Class Definitions
CLOCK NET CLASS
Soc PIN NAMES
CK
DDR_CLKP / DDR_CLKN
DQS0
DDR_DQS[0]
DQS1
DDR_DQS[1]
Table 6-34. Signal Net Class Definitions
SIGNAL NET CLASS
ASSOCIATED CLOCK
NET CLASS
ADDR_CTRL
CK
D0
DQS0
DDR_D[7:0], DDR_DQM0
D1
DQS1
DDR_D[15:8], DDR_DQM1
DQGATE
CK, DQS0, DQS1
Soc PIN NAMES
DDR_BA[2:0], DDR_A[13:0], DDR_CS, DDR_CAS, DDR_RAS, DDR_WE,
DDR_CKE
DDR_DQGATE0, DDR_DQGATE1
6.11.3.9 DDR2/mDDR Signal Termination
No terminations of any kind are required in order to meet signal integrity and overshoot requirements.
Serial terminators are permitted, if desired, to reduce EMI risk; however, serial terminations are the only
type permitted. Table 6-35 shows the specifications for the series terminators.
Table 6-35. DDR2/mDDR Signal Terminations (1) (2) (3)
NO.
PARAMETER
MIN
1
CK Net Class
0
2
ADDR_CTRL Net Class
0
3
Data Byte Net Classes (DQS[0], DQS[1], D0, D1) (4)
0
4
DQGATE Net Class (DQGATE)
0
(1)
(2)
(3)
(4)
TYP
MAX
UNIT
10
Ω
22
Zo
Ω
22
Zo
Ω
10
Zo
Ω
Only series termination is permitted, parallel or SST specifically disallowed.
Terminator values larger than typical only recommended to address EMI issues.
Termination value should be uniform across net class.
When no termination is used on data lines (0 Ω), the DDR2/mDDR devices must be programmed to operate in 60% strength mode.
Copyright © 2009–2017, Texas Instruments Incorporated
Peripheral Information and Electrical Specifications
Submit Documentation Feedback
Product Folder Links: OMAP-L138
135
OMAP-L138
SPRS586J – JUNE 2009 – REVISED JANUARY 2017
www.ti.com
6.11.3.10 VREF Routing
VREF is used as a reference by the input buffers of the DDR2/mDDR memories as well as the OMAPL138. VREF is intended to be half the DDR2/mDDR power supply voltage and should be created using a
resistive divider as shown in Figure 6-18. Other methods of creating VREF are not recommended.
Figure 6-22 shows the layout guidelines for VREF.
VREF Bypass Capacitor
DDR2/mDDR Device
A1
VREF Nominal Minimum
Trace Width is 20 Mils
DDR2/mDDR
A1
Neck down to minimum in BGA escape
regions is acceptable. Narrowing to
accomodate via congestion for short
distances is also acceptable. Best
performance is obtained if the width
of VREF is maximized.
Figure 6-22. VREF Routing and Topology
136
Peripheral Information and Electrical Specifications
Submit Documentation Feedback
Product Folder Links: OMAP-L138
Copyright © 2009–2017, Texas Instruments Incorporated
OMAP-L138
www.ti.com
SPRS586J – JUNE 2009 – REVISED JANUARY 2017
6.11.3.11 DDR2/mDDR CK and ADDR_CTRL Routing
Figure 6-23 shows the topology of the routing for the CK and ADDR_CTRL net classes. The route is a
balanced T as it is intended that the length of segments B and C be equal. In addition, the length of A
should be maximized.
B
DDR2/mDDR
Controller
A1
T
C
A
A1
Figure 6-23. CK and ADDR_CTRL Routing and Topology
Table 6-36. CK and ADDR_CTRL Routing Specification
NO.
(1)
(2)
(3)
(4)
PARAMETER
MIN
TYP
(1)
MAX
2w
UNIT
(2)
1
Center to Center CK-CKN Spacing
2
CK A to B/A to C Skew Length Mismatch (3)
25
Mils
3
CK B to C Skew Length Mismatch
25
Mils
4
Center to center CK to other DDR2/mDDR trace spacing (1)
5
CK/ADDR_CTRL nominal trace length (4)
CACLM+50
Mils
6
ADDR_CTRL to CK Skew Length Mismatch
100
Mils
7
ADDR_CTRL to ADDR_CTRL Skew Length Mismatch
100
Mils
100
Mils
100
Mils
4w (2)
CACLM-50
8
Center to center ADDR_CTRL to other DDR2/mDDR trace spacing
(1)
4w
(2)
9
Center to center ADDR_CTRL to other ADDR_CTRL trace spacing (1)
3w
(2)
10
ADDR_CTRL A to B/A to C Skew Length Mismatch
11
ADDR_CTRL B to C Skew Length Mismatch
(3)
CACLM
Center to center spacing is allowed to fall to minimum (w) for up to 500 mils of routed length to accommodate BGA escape and routing
congestion.
w = PCB trace width as defined in Table 6-29.
Series terminator, if used, should be located closest to device.
CACLM is the longest Manhattan distance of the CK and ADDR_CTRL net classes.
Copyright © 2009–2017, Texas Instruments Incorporated
Peripheral Information and Electrical Specifications
Submit Documentation Feedback
Product Folder Links: OMAP-L138
137
OMAP-L138
SPRS586J – JUNE 2009 – REVISED JANUARY 2017
www.ti.com
Figure 6-24 shows the topology and routing for the DQS and D net class; the routes are point to point.
Skew matching across bytes is not needed nor recommended.
E0
A1
T
A1
DDR2/mDDR
Controller
T
E1
Figure 6-24. DQS and D Routing and Topology
Table 6-37. DQS and D Routing Specification
NO.
PARAMETER
MIN
1
Center to center DQS to other DDR2/mDDR trace spacing (1)
4w (2)
2
DQS/D nominal trace length (3) (4)
3
D to DQS Skew Length Mismatch (4)
4
D to D Skew Length Mismatch (4)
5
Center to center D to other DDR2/mDDR trace spacing (1) (5)
4w (2)
6
Center to Center D to other D trace spacing (1) (6)
3w (2)
(1)
(2)
(3)
(4)
(5)
(6)
138
DQLM-50
TYP
MAX
UNIT
DQLM
DQLM+50
Mils
100
Mils
100
Mils
Center to center spacing is allowed to fall to minimum (w) for up to 500 mils of routed length to accommodate BGA escape and routing
congestion.
w = PCB trace width as defined in Table 6-29.
Series terminator, if used, should be located closest to DDR.
There is no need and it is not recommended to skew match across data bytes, i.e., from DQS0 and data byte 0 to DQS1 and data byte
1.
D's from other DQS domains are considered other DDR2/mDDR trace.
DQLM is the longest Manhattan distance of each of the DQS and D net class.
Peripheral Information and Electrical Specifications
Submit Documentation Feedback
Product Folder Links: OMAP-L138
Copyright © 2009–2017, Texas Instruments Incorporated
OMAP-L138
www.ti.com
SPRS586J – JUNE 2009 – REVISED JANUARY 2017
Figure 6-25 shows the routing for the DQGATE net class. Table 6-38 contains the routing specification.
A1
T
T
DDR2/mDDR
Controller
F
A1
Figure 6-25. DQGATE Routing
Table 6-38. DQGATE Routing Specification
NO.
(1)
(2)
(3)
PARAMETER
MIN
1
DQGATE Length F
2
Center to center DQGATE to any other trace spacing
3
DQS/D nominal trace length
4
DQGATE Skew (3)
TYP
CKB0B
MAX
UNIT
DQLM+50
Mils
100
Mils
(1)
4w (2)
DQLM-50
DQLM
CKB0B1 is the sum of the length of the CK net plus the average length of the DQS0 and DQS1 nets.
w = PCB trace width as defined in Table 6-29.
Skew from CKB0B1
6.11.3.12 DDR2/mDDR Boundary Scan Limitations
Due to DDR implementation and timing restrictions, it was not possible to place boundary scan cells
between core logic and the IO like boundary scan cells for other IO. Instead, the boundary scan cells are
tapped-off to the DDR PHY and there is the equivalent of a multiplexer inside the DDR PHY which selects
between functional and boundary scan paths.
The implication for boundary scan is that the DDR pins will not support the SAMPLE function of the output
enable cells on the DDR pins and this is a violation of IEEE 1149.1. Full EXTEST and PRELOAD
capability is still available.
Copyright © 2009–2017, Texas Instruments Incorporated
Peripheral Information and Electrical Specifications
Submit Documentation Feedback
Product Folder Links: OMAP-L138
139
OMAP-L138
SPRS586J – JUNE 2009 – REVISED JANUARY 2017
www.ti.com
6.12 Memory Protection Units
The MPU performs memory protection checking. It receives requests from a bus master in the system and
checks the address against the fixed and programmable regions to see if the access is allowed. If allowed,
the transfer is passed unmodified to its output bus (to the targeted address). If the transfer is illegal (fails
the protection check) then the MPU does not pass the transfer to the output bus but rather services the
transfer internally back to the input bus (to prevent a hang) returning the fault status to the requestor as
well as generating an interrupt about the fault. The following features are supported by the MPU:
• Provides memory protection for fixed and programmable address ranges.
• Supports multiple programmable address region.
• Supports secure and debug access privileges.
• Supports read, write, and execute access privileges.
• Supports privid(8) associations with ranges.
• Generates an interrupt when there is a protection violation, and saves violating transfer parameters.
• MMR access is also protected.
Table 6-39. MPU1 Configuration Registers
MPU1
BYTE ADDRESS
ACRONYM
0x01E1 4000
REVID
0x01E1 4004
CONFIG
0x01E1 4010
IRAWSTAT
0x01E1 4014
IENSTAT
REGISTER DESCRIPTION
Revision ID
Configuration
Interrupt raw status/set
Interrupt enable status/clear
0x01E1 4018
IENSET
Interrupt enable
0x01E1 401C
IENCLR
Interrupt enable clear
0x01E1 4020 - 0x01E1 41FF
-
0x01E1 4200
PROG1_MPSAR
Programmable range 1, start address
0x01E1 4204
PROG1_MPEAR
Programmable range 1, end address
0x01E1 4208
PROG1_MPPA
Reserved
Programmable range 1, memory page protection attributes
0x01E1 420C - 0x01E1 420F
-
0x01E1 4210
PROG2_MPSAR
Reserved
Programmable range 2, start address
0x01E1 4214
PROG2_MPEAR
Programmable range 2, end address
0x01E1 4218
PROG2_MPPA
Programmable range 2, memory page protection attributes
0x01E1 421C - 0x01E1 421F
-
0x01E1 4220
PROG3_MPSAR
Reserved
Programmable range 3, start address
0x01E1 4224
PROG3_MPEAR
Programmable range 3, end address
0x01E1 4228
PROG3_MPPA
0x01E1 422C - 0x01E1 422F
-
0x01E1 4230
PROG4_MPSAR
Programmable range 4, start address
0x01E1 4234
PROG4_MPEAR
Programmable range 4, end address
0x01E1 4238
PROG4_MPPA
0x01E1 423C - 0x01E1 423F
-
0x01E1 4240
PROG5_MPSAR
Programmable range 5, start address
0x01E1 4244
PROG5_MPEAR
Programmable range 5, end address
0x01E1 4248
PROG5_MPPA
0x01E1 424C - 0x01E1 424F
-
0x01E1 4250
PROG6_MPSAR
Programmable range 6, start address
0x01E1 4254
PROG6_MPEAR
Programmable range 6, end address
0x01E1 4258
PROG6_MPPA
0x01E1 425C - 0x01E1 42FF
-
140
Programmable range 3, memory page protection attributes
Reserved
Programmable range 4, memory page protection attributes
Reserved
Programmable range 5, memory page protection attributes
Reserved
Programmable range 6, memory page protection attributes
Reserved
Peripheral Information and Electrical Specifications
Submit Documentation Feedback
Product Folder Links: OMAP-L138
Copyright © 2009–2017, Texas Instruments Incorporated
OMAP-L138
www.ti.com
SPRS586J – JUNE 2009 – REVISED JANUARY 2017
Table 6-39. MPU1 Configuration Registers (continued)
MPU1
BYTE ADDRESS
ACRONYM
0x01E1 4300
FLTADDRR
0x01E1 4304
FLTSTAT
Fault status
0x01E1 4308
FLTCLR
Fault clear
0x01E1 430C - 0x01E1 4FFF
-
Reserved
REGISTER DESCRIPTION
Fault address
Table 6-40. MPU2 Configuration Registers
MPU2
BYTE ADDRESS
ACRONYM
REGISTER DESCRIPTION
0x01E1 5000
REVID
0x01E1 5004
CONFIG
Revision ID
0x01E1 5010
IRAWSTAT
0x01E1 5014
IENSTAT
0x01E1 5018
IENSET
Interrupt enable
Interrupt enable clear
Configuration
Interrupt raw status/set
Interrupt enable status/clear
0x01E1 501C
IENCLR
0x01E1 5020 - 0x01E1 51FF
-
0x01E1 5200
PROG1_MPSAR
Programmable range 1, start address
0x01E1 5204
PROG1_MPEAR
Programmable range 1, end address
Reserved
0x01E1 5208
PROG1_MPPA
0x01E1 520C - 0x01E1 520F
-
Programmable range 1, memory page protection attributes
0x01E1 5210
PROG2_MPSAR
Programmable range 2, start address
0x01E1 5214
PROG2_MPEAR
Programmable range 2, end address
0x01E1 5218
PROG2_MPPA
0x01E1 521C - 0x01E1 521F
-
0x01E1 5220
PROG3_MPSAR
Programmable range 3, start address
0x01E1 5224
PROG3_MPEAR
Programmable range 3, end address
0x01E1 5228
PROG3_MPPA
0x01E1 522C - 0x01E1 522F
-
0x01E1 5230
PROG4_MPSAR
Programmable range 4, start address
0x01E1 5234
PROG4_MPEAR
Programmable range 4, end address
0x01E1 5238
PROG4_MPPA
Reserved
Programmable range 2, memory page protection attributes
Reserved
Programmable range 3, memory page protection attributes
Reserved
Programmable range 4, memory page protection attributes
0x01E1 523C - 0x01E1 523F
-
0x01E1 5240
PROG5_MPSAR
Reserved
Programmable range 5, start address
0x01E1 5244
PROG5_MPEAR
Programmable range 5, end address
0x01E1 5248
PROG5_MPPA
0x01E1 524C - 0x01E1 524F
-
Programmable range 5, memory page protection attributes
0x01E1 5250
PROG6_MPSAR
Programmable range 6, start address
0x01E1 5254
PROG6_MPEAR
Programmable range 6, end address
Reserved
0x01E1 5258
PROG6_MPPA
0x01E1 525C - 0x01E1 525F
-
0x01E1 5260
PROG7_MPSAR
Programmable range 7, start address
0x01E1 5264
PROG7_MPEAR
Programmable range 7, end address
0x01E1 5268
PROG7_MPPA
0x01E1 526C - 0x01E1 526F
-
0x01E1 5270
PROG8_MPSAR
Programmable range 8, start address
0x01E1 5274
PROG8_MPEAR
Programmable range 8, end address
0x01E1 5278
PROG8_MPPA
0x01E1 527C - 0x01E1 527F
-
Copyright © 2009–2017, Texas Instruments Incorporated
Programmable range 6, memory page protection attributes
Reserved
Programmable range 7, memory page protection attributes
Reserved
Programmable range 8, memory page protection attributes
Reserved
Peripheral Information and Electrical Specifications
Submit Documentation Feedback
Product Folder Links: OMAP-L138
141
OMAP-L138
SPRS586J – JUNE 2009 – REVISED JANUARY 2017
www.ti.com
Table 6-40. MPU2 Configuration Registers (continued)
MPU2
BYTE ADDRESS
ACRONYM
0x01E1 5280
PROG9_MPSAR
Programmable range 9, start address
0x01E1 5284
PROG9_MPEAR
Programmable range 9, end address
0x01E1 5288
PROG9_MPPA
REGISTER DESCRIPTION
Programmable range 9, memory page protection attributes
0x01E1 528C - 0x01E1 528F
-
0x01E1 5290
PROG10_MPSAR
Reserved
Programmable range 10, start address
0x01E1 5294
PROG10_MPEAR
Programmable range 10, end address
0x01E1 5298
PROG10_MPPA
Programmable range 10, memory page protection attributes
0x01E1 529C - 0x01E1 529F
-
0x01E1 52A0
PROG11_MPSAR
Reserved
Programmable range 11, start address
0x01E1 52A4
PROG11_MPEAR
Programmable range 11, end address
0x01E1 52A8
PROG11_MPPA
0x01E1 52AC - 0x01E1 52AF
-
0x01E1 52B0
PROG12_MPSAR
Programmable range 12, start address
0x01E1 52B4
PROG12_MPEAR
Programmable range 12, end address
0x01E1 52B8
PROG12_MPPA
0x01E1 52BC - 0x01E1 52FF
-
0x01E1 5300
FLTADDRR
0x01E1 5304
FLTSTAT
Fault status
0x01E1 5308
FLTCLR
Fault clear
0x01E1 530C - 0x01E1 5FFF
-
Reserved
142
Programmable range 11, memory page protection attributes
Reserved
Programmable range 12, memory page protection attributes
Reserved
Fault address
Peripheral Information and Electrical Specifications
Submit Documentation Feedback
Product Folder Links: OMAP-L138
Copyright © 2009–2017, Texas Instruments Incorporated
OMAP-L138
www.ti.com
SPRS586J – JUNE 2009 – REVISED JANUARY 2017
6.13 MMC / SD / SDIO (MMCSD0, MMCSD1)
6.13.1 MMCSD Peripheral Description
The device includes an two MMCSD controllers which are compliant with MMC V4.0, Secure Digital Part 1
Physical Layer Specification V1.1 and Secure Digital Input Output (SDIO) V2.0 specifications.
The MMC/SD Controller have following features:
• MultiMediaCard (MMC)
• Secure Digital (SD) Memory Card
• MMC/SD protocol support
• SD high capacity support
• SDIO protocol support
• Programmable clock frequency
• 512 bit Read/Write FIFO to lower system overhead
• Slave EDMA transfer capability
The device MMC/SD Controller does not support SPI mode.
6.13.2
MMCSD Peripheral Register Description(s)
Table 6-41. Multimedia Card/Secure Digital (MMC/SD) Card Controller Registers
MMCSD0
BYTE ADDRESS
MMCSD1
BYTE ADDRESS
0x01C4 0000
0x01E1 B000
MMCCTL
MMC Control Register
0x01C4 0004
0x01E1 B004
MMCCLK
MMC Memory Clock Control Register
ACRONYM
REGISTER DESCSRIPTION
0x01C4 0008
0x01E1 B008
MMCST0
MMC Status Register 0
0x01C4 000C
0x01E1 B00C
MMCST1
MMC Status Register 1
0x01C4 0010
0x01E1 B010
MMCIM
0x01C4 0014
0x01E1 B014
MMCTOR
MMC Response Time-Out Register
0x01C4 0018
0x01E1 B018
MMCTOD
MMC Data Read Time-Out Register
0x01C4 001C
0x01E1 B01C
MMCBLEN
MMC Block Length Register
0x01C4 0020
0x01E1 B020
MMCNBLK
MMC Number of Blocks Register
0x01C4 0024
0x01E1 B024
MMCNBLC
MMC Number of Blocks Counter Register
0x01C4 0028
0x01E1 B028
MMCDRR
MMC Data Receive Register
0x01C4 002C
0x01E1 B02C
MMCDXR
MMC Data Transmit Register
0x01C4 0030
0x01E1 B030
MMCCMD
MMC Command Register
0x01C4 0034
0x01E1 B034
MMCARGHL
MMC Argument Register
0x01C4 0038
0x01E1 B038
MMCRSP01
MMC Response Register 0 and 1
0x01C4 003C
0x01E1 B03C
MMCRSP23
MMC Response Register 2 and 3
0x01C4 0040
0x01E1 B040
MMCRSP45
MMC Response Register 4 and 5
0x01C4 0044
0x01E1 B044
MMCRSP67
MMC Response Register 6 and 7
0x01C4 0048
0x01E1 B048
MMCDRSP
MMC Data Response Register
0x01C4 0050
0x01E1 B050
MMCCIDX
MMC Command Index Register
0x01C4 0064
0x01E1 B064
SDIOCTL
SDIO Control Register
0x01C4 0068
0x01E1 B068
SDIOST0
SDIO Status Register 0
0x01C4 006C
0x01E1 B06C
SDIOIEN
SDIO Interrupt Enable Register
0x01C4 0070
0x01E1 B070
SDIOIST
SDIO Interrupt Status Register
0x01C4 0074
0x01E1 B074
MMCFIFOCTL
Copyright © 2009–2017, Texas Instruments Incorporated
MMC Interrupt Mask Register
MMC FIFO Control Register
Peripheral Information and Electrical Specifications
Submit Documentation Feedback
Product Folder Links: OMAP-L138
143
OMAP-L138
SPRS586J – JUNE 2009 – REVISED JANUARY 2017
www.ti.com
6.13.3 MMC/SD Electrical Data/Timing
Table 6-42 through Table 6-43 assume testing over recommended operating conditions.
Table 6-42. Timing Requirements for MMC/SD
(see Figure 6-27 and Figure 6-29)
1.3V, 1.2V
NO.
1
MIN
tsu(CMDV-
Setup time, MMCSD_CMD valid before MMCSD_CLK high
MAX
1.1V
MIN
1.0V
MAX
MIN
MAX
UNIT
4
4
6
ns
CLKH)
2
th(CLKH-CMDV)
2.5
2.5
2.5
ns
3
tsu(DATV-CLKH) Setup time, MMCSD_DATx valid before MMCSD_CLK high
Hold time, MMCSD_CMD valid after MMCSD_CLK high
4.5
5
6
ns
4
th(CLKH-DATV)
2.5
2.5
2.5
ns
Hold time, MMCSD_DATx valid after MMCSD_CLK high
Table 6-43. Switching Characteristics for MMC/SD (see Figure 6-26 through Figure 6-29)
NO.
PARAMETER
1.3V, 1.2V
1.1V
1.0V
UNIT
MIN
MAX
MIN
MAX
MIN
MAX
0
52
0
50
0
25
MHz
0
400
0
400
0
400
KHz
7
f(CLK)
Operating frequency, MMCSD_CLK
8
f(CLK_ID)
Identification mode frequency, MMCSD_CLK
9
tW(CLKL)
Pulse width, MMCSD_CLK low
6.5
6.5
10
ns
10
tW(CLKH)
Pulse width, MMCSD_CLK high
6.5
6.5
10
ns
11
tr(CLK)
Rise time, MMCSD_CLK
3
3
10
ns
12
tf(CLK)
Fall time, MMCSD_CLK
3
3
10
ns
13
td(CLKL-CMD)
Delay time, MMCSD_CLK low to MMCSD_CMD transition
-4
2.5
-4
3
-4
4
ns
14
td(CLKL-DAT)
Delay time, MMCSD_CLK low to MMCSD_DATx transition
-4
3.3
-4
3.5
-4
4
ns
144
Peripheral Information and Electrical Specifications
Submit Documentation Feedback
Product Folder Links: OMAP-L138
Copyright © 2009–2017, Texas Instruments Incorporated
OMAP-L138
www.ti.com
SPRS586J – JUNE 2009 – REVISED JANUARY 2017
10
9
7
MMCSD_CLK
13
13
START
MMCSD_CMD
13
XMIT
Valid
Valid
13
Valid
END
Figure 6-26. MMC/SD Host Command Timing
9
7
10
MMCSD_CLK
1
2
START
MMCSD_CMD
XMIT
Valid
Valid
Valid
END
Figure 6-27. MMC/SD Card Response Timing
10
9
7
MMCSD_CLK
14
14
START
MMCSD_DATx
14
D0
D1
14
Dx
END
Figure 6-28. MMC/SD Host Write Timing
9
10
7
MMCSD_CLK
4
4
3
MMCSD_DATx
Start
3
D0
D1
Dx
End
Figure 6-29. MMC/SD Host Read and Card CRC Status Timing
Copyright © 2009–2017, Texas Instruments Incorporated
Peripheral Information and Electrical Specifications
Submit Documentation Feedback
Product Folder Links: OMAP-L138
145
OMAP-L138
SPRS586J – JUNE 2009 – REVISED JANUARY 2017
www.ti.com
6.14 Serial ATA Controller (SATA)
The Serial ATA Controller (SATA) provides a single HBA port operating in AHCI mode and is used to
interface to data storage devices at both 1.5 Gbits/second and 3.0 Gbits/second line speeds. AHCI
describes a system memory structure that contains a generic area for control and status, and a table of
entries describing a command list where each command list entry contains information necessary to
program an SATA device, and a pointer to a descriptor table for transferring data between system memory
and the device.
The SATA Controller supports the following features:
•
•
•
•
•
•
•
•
•
•
•
•
Serial ATA 1.5 Gbps (Gen 1i) and 3 Gbps (Gen 2i) line speeds
Support for the AHCI controller spec 1.1
Integrated SERDES PHY
Integrated Rx and Tx data buffers
Supports all SATA power management features
Internal DMA engine per port
Hardware-assisted native command queuing (NCQ) for up to 32 entries
32-bit addressing
Supports port multiplier with command-based switching
Activity LED support
Mechanical presence switch
Cold presence detect
The SATA Controller support is dependent on the CPU voltage operating point:
•
•
•
•
146
At
At
At
At
CVDD
CVDD
CVDD
CVDD
=
=
=
=
1.3V, SATA
1.2V, SATA
1.1V, SATA
1.0V, SATA
Gen 2i (3.0 Gbps) and SATA Gen 1i (1.5 Gbps) are supported.
Gen 2i (3.0 Gbps) and SATA Gen 1i (1.5 Gbps) are supported.
Gen 1i (1.5 Gbps) only is supported.
is not supported.
Peripheral Information and Electrical Specifications
Submit Documentation Feedback
Product Folder Links: OMAP-L138
Copyright © 2009–2017, Texas Instruments Incorporated
OMAP-L138
www.ti.com
SPRS586J – JUNE 2009 – REVISED JANUARY 2017
6.14.1 SATA Register Descriptions
Table 6-44 is a list of the SATA Controller registers.
Table 6-44. SATA Controller Registers
BYTE ADDRESS
ACRONYM
0x01E1 8000
CAP
HBA Capabilities Register
REGISTER DESCRIPTION
0x01E1 8004
GHC
Global HBA Control Register
0x01E1 8008
IS
Interrupt Status Register
0x01E1 800C
PI
Ports Implemented Register
0x01E1 8010
VS
AHCI Version Register
0x01E1 8014
CCC_CTL
0x01E1 8018
CCC_PORTS
Command Completion Coalescing Control Register
0x01E1 80A0
BISTAFR
BIST Active FIS Register
0x01E1 80A4
BISTCR
BIST Control Register
Command Completion Coalescing Ports Register
0x01E1 80A8
BISTFCTR
0x01E1 80AC
BISTSR
0x01E1 80B0
BISTDECR
BIST DWORD Error Count Register
0x01E1 80E0
TIMER1MS
BIST DWORD Error Count Register
0x01E1 80E8
GPARAM1R
Global Parameter 1 Register
0x01E1 80EC
GPARAM2R
Global Parameter 2 Register
0x01E1 80F0
PPARAMR
0x01E1 80F4
TESTR
0x01E1 80F8
VERSIONR
0x01E1 80FC
IDR
0x01E1 8100
P0CLB
0x01E1 8108
P0FB
Port FIS Base Address Register
0x01E1 8110
P0IS
Port Interrupt Status Register
0x01E1 8114
P0IE
Port Interrupt Enable Register
0x01E1 8118
P0CMD
Port Command Register
0x01E1 8120
P0TFD
Port Task File Data Register
0x01E1 8124
P0SIG
Port Signature Register
0x01E1 8128
P0SSTS
Port Serial ATA Status Register
0x01E1 812C
P0SCTL
Port Serial ATA Control Register
0x01E1 8130
P0SERR
Port Serial ATA Error Register
0x01E1 8134
P0SACT
Port Serial ATA Active Register
0x01E1 8138
P0CI
Port Command Issue Register
0x01E1 813C
P0SNTF
0x01E1 8170
P0DMACR
Port DMA Control Register
0x01E1 8178
P0PHYCR
Port PHY Control Register
0x01E1 817C
P0PHYSR
Port PHY Status Register
Copyright © 2009–2017, Texas Instruments Incorporated
BIST FIS Count Register
BIST Status Register
Port Parameter Register
Test Register
Version Register
ID Register
Port Command List Base Address Register
Port Serial ATA Notification Register
Peripheral Information and Electrical Specifications
Submit Documentation Feedback
Product Folder Links: OMAP-L138
147
OMAP-L138
SPRS586J – JUNE 2009 – REVISED JANUARY 2017
www.ti.com
6.14.2 1. SATA Interface
This section provides the timing specification for the SATA interface as a PCB design and manufacturing
specification. The design rules constrain PCB trace length, PCB trace skew, signal integrity, cross-talk,
and signal timing. TI has performed the simulation and system design work to ensure the SATA interface
requirements are met.
6.14.2.1 SATA Interface Schematic
Figure 6-30 shows the SATA interface schematic.
SATA Interface(Processor)
SATA_TXN
SATA_TXP
SATA_RXN
SATA_RXP
SATA Connector
10nF
TX–
TX+
10nF
10nF
RX–
RX+
10nF
LVDS
Oscillator
CLK–
CLK+
10nF
SATA_REFCLKN
SATA_REFCLKP
SATA_REG
10nF
0.1uF
Figure 6-30. SATA Interface High Level Schematic
6.14.2.2 Compatible SATA Components and Modes
Table 6-45 shows the compatible SATA components and supported modes. Note that the only supported
configuration is an internal cable from the processor host to the SATA device.
Table 6-45. SATA Supported Modes
148
PARAMETER
MIN
MAX
UNIT
Transfer Rates
1.5
3.0
Gbps
SUPPORTED
eSATA
No
xSATA
No
Backplane
No
Internal Cable
Yes
Peripheral Information and Electrical Specifications
Submit Documentation Feedback
Product Folder Links: OMAP-L138
Copyright © 2009–2017, Texas Instruments Incorporated
OMAP-L138
www.ti.com
SPRS586J – JUNE 2009 – REVISED JANUARY 2017
6.14.2.3 PCB Stackup Specifications
Table 6-46 shows the stackup and feature sizes required for SATA.
Table 6-46. SATA PCB Stackup Specifications
PARAMETER
MIN
TYP
PCB Routing/Plane Layers
4
6
Signal Routing Layers
2
3
MAX
Layers
Number of ground plane cuts allowed within SATA routing region
0
Number of layers between SATA routing region and reference ground plane
Layers
0
PCB Routing Feature Size
4
Mils
PCB Trace Width w
4
Mils
PCB BGA escape via pad size
18
Mils
PCB BGA escape via hole size
8
Mils
Device BGA pad size
(1)
UNIT
Layers
(1)
Please refer to the Flip Chip Ball Grid Array Package Reference Guide (SPRU811) for device BGA pad size.
6.14.2.4 Routing Specifications
The SATA data signal traces are edge-coupled and must be routed to achieve exactly 100 Ohms
differential impedance. This is impacted by trace width, trace spacing, distance between planes, and
dielectric material. Verify with a proper PCB manufacturing tool that the trace geometry for both data
signal pairs results in exactly 100 ohms differential impedance traces. Table 6-47 shows the routing
specifications for the data and REFCLK signals.
Table 6-47. SATA Routing Specifications
MAX
UNIT
Device to SATA header trace length
PARAMETER
MIN
TYP
7000
Mils
REFCLK trace length from oscillator to Device (1)
2000
Mils
Number of stubs allowed on SATA traces
0
TX/RX pair differential impedance
100
Number of vias on each SATA trace
SATA differential pair to any other trace spacing
(1)
(2)
(3)
3
2*DS
Stubs
Ohms
Vias
(2)
(3)
The SATA_REFCLK(P/N) pins include an internal 100 Ohms differential termination
Vias must be used in pairs with their distance minimized.
DS is the differential spacing of the SATA traces.
6.14.2.5 Coupling Capacitors
AC coupling capacitors are required on the receive data pair as well as the REFCLK pair. Table 6-48
shows the requirements for these capacitors.
Table 6-48. SATA Bypass and Coupling Capacitors Requirements
PARAMETER
MIN
TYP
MAX
SATA AC coupling capacitor value
0.3
10
12
nF
0603
10 Mils (1) (2)
SATA AC coupling capacitor package size
(1)
(2)
UNIT
LxW, 10 mil units, i.e., a 0402 is a 40x20 mil surface mount capacitor.
The physical size of the capacitor should be as small as possible.
6.14.2.6 SATA Interface Clock Source requirements
A high-quality, low-jitter differential clock source is required for the SATA PHY. The SATA interface
requires a LVDS differential clock source to be provided at signals SATA_REFCLKP and
SATA_REFCLKN. The clock source should be placed physically as close to the processor as possible.
Copyright © 2009–2017, Texas Instruments Incorporated
Peripheral Information and Electrical Specifications
Submit Documentation Feedback
Product Folder Links: OMAP-L138
149
OMAP-L138
SPRS586J – JUNE 2009 – REVISED JANUARY 2017
www.ti.com
Table 6-49 shows the requirements for the clock source.
Table 6-49. SATA Input Clock Source Requirements
PARAMETER
Clock Frequency
MIN
(1)
TYP
75
Jitter
Duty Cycle
40
Rise/Fall Time
(1)
MAX
UNIT
375
MHz
50
ps pk-pk
60
%
700
ps
Discrete clock frequency points are supported based on the PLL multiplier used in the SATA PHY.
6.14.3 SATA Unused Signal Configuration
If the SATA interface is not used, the SATA signals should be configured as shown below.
Table 6-50. Unused SATA Signal Configuration
SATA Signal Name
150
Configuration if SATA peripheral is not used
SATA_RXP
No Connect
SATA_RXN
No Connect
SATA_TXP
No Connect
SATA_TXN
No Connect
SATA_REFCLKP
No Connect
SATA_REFCLKN
No Connect
SATA_MPSWITCH
May be used as GPIO or other peripheral function
SATA_CP_DET
May be used as GPIO or other peripheral function
SATA_CP_POD
May be used as GPIO or other peripheral function
SATA_LED
May be used as GPIO or other peripheral function
SATA_REG
No Connect
SATA_VDDR
No Connect
SATA_VDD
Prior to silicon revision 2.0, this supply must be connected to a static 1.2V nominal supply. For silicon
revision 2.0 and later, this supply may be left unconnected for additional power conservation.
SATA_VSS
Vss
Peripheral Information and Electrical Specifications
Submit Documentation Feedback
Product Folder Links: OMAP-L138
Copyright © 2009–2017, Texas Instruments Incorporated
OMAP-L138
www.ti.com
SPRS586J – JUNE 2009 – REVISED JANUARY 2017
6.15 Multichannel Audio Serial Port (McASP)
The McASP serial port is specifically designed for multichannel audio applications. Its key features are:
• Flexible clock and frame sync generation logic and on-chip dividers
• Up to sixteen transmit or receive data pins and serializers
• Large number of serial data format options, including:
– TDM Frames with 2 to 32 time slots per frame (periodic) or 1 slot per frame (burst)
– Time slots of 8,12,16, 20, 24, 28, and 32 bits
– First bit delay 0, 1, or 2 clocks
– MSB or LSB first bit order
– Left- or right-aligned data words within time slots
• DIT Mode with 384-bit Channel Status and 384-bit User Data registers
• Extensive error checking and mute generation logic
• All unused pins GPIO-capable
•
•
Transmit & Receive FIFO Buffers allow the McASP to operate at a higher sample rate by making it
more tolerant to DMA latency.
Dynamic Adjustment of Clock Dividers
– Clock Divider Value may be changed without resetting the McASP
Pins
Peripheral
Configuration
Bus
GIO
Control
DIT RAM
384 C
384 U
Optional
Receive Logic
C lo ck /F ra m e G e n e ra to r
State Machine
Clock Check and
Error Detection
McASP
DMA Bus
(Dedicated)
Receive
F o rm a tte r
AHCLKRx
Receive Master Clock
ACLKRx
Receive Bit Clock
AFSRx
R e c e iv e L e ft/R ig h t C lo ck o r F ra m e S y n c
AMUTEINx
The McASP DOES NOT have a
AMUTEx
dedicated AMUTEIN pin.
AFSXx
AHCLKXx
Tra n s m it L e ft/R ig h t C lo ck o r F ra m e S y n c
Tra n s m it B it C lo ck
Tra n s m it M a s te r C lo ck
Serializer 0
AXRx[0]
Tra n s m it/R e c e iv e S e ria l D a ta P in
Serializer 1
AXRx[1]
Tra n s m it/R e c e iv e S e ria l D a ta P in
Serializer y
AXRx[y]
Tra n s m it/R e c e iv e S e ria l D a ta P in
Tra n s m it L o g ic
C lo ck /F ra m e G e n e ra to r
State Machine
Tra n s m it
F o rm a tte r
Function
ACLKXx
McASP
Figure 6-31. McASP Block Diagram
Copyright © 2009–2017, Texas Instruments Incorporated
Peripheral Information and Electrical Specifications
Submit Documentation Feedback
Product Folder Links: OMAP-L138
151
OMAP-L138
SPRS586J – JUNE 2009 – REVISED JANUARY 2017
www.ti.com
6.15.1 McASP Peripheral Registers Description(s)
Registers for the McASP are summarized in Table 6-51. The registers are accessed through the
peripheral configuration port. The receive buffer registers (RBUF) and transmit buffer registers (XBUF) can
also be accessed through the DMA port, as listed in Table 6-52
Registers for the McASP Audio FIFO (AFIFO) are summarized in Table 6-53. Note that the AFIFO Write
FIFO (WFIFO) and Read FIFO (RFIFO) have independent control and status registers. The AFIFO control
registers are accessed through the peripheral configuration port.
Table 6-51. McASP Registers Accessed Through Peripheral Configuration Port
BYTE ADDRESS
REGISTER DESCRIPTION
0x01D0 0000
REV
0x01D0 0010
PFUNC
Pin function register
0x01D0 0014
PDIR
Pin direction register
0x01D0 0018
PDOUT
Revision identification register
Pin data output register
0x01D0 001C
PDIN
0x01D0 001C
PDSET
Writes affect: Pin data set register (alternate write address: PDOUT)
0x01D0 0020
PDCLR
Pin data clear register (alternate write address: PDOUT)
0x01D0 0044
GBLCTL
Global control register
0x01D0 0048
AMUTE
Audio mute control register
0x01D0 004C
DLBCTL
Digital loopback control register
0x01D0 0050
DITCTL
DIT mode control register
0x01D0 0060
0x01D0 0064
RGBLCTL
RMASK
0x01D0 0068
RFMT
0x01D0 006C
AFSRCTL
0x01D0 0070
ACLKRCTL
0x01D0 0074
AHCLKRCTL
0x01D0 0078
RTDM
0x01D0 007C
RINTCTL
Read returns: Pin data input register
Receiver global control register: Alias of GBLCTL, only receive bits are affected - allows
receiver to be reset independently from transmitter
Receive format unit bit mask register
Receive bit stream format register
Receive frame sync control register
Receive clock control register
Receive high-frequency clock control register
Receive TDM time slot 0-31 register
Receiver interrupt control register
0x01D0 0080
RSTAT
Receiver status register
0x01D0 0084
RSLOT
Current receive TDM time slot register
0x01D0 0088
RCLKCHK
Receive clock check control register
0x01D0 008C
REVTCTL
Receiver DMA event control register
XGBLCTL
Transmitter global control register. Alias of GBLCTL, only transmit bits are affected - allows
transmitter to be reset independently from receiver
0x01D0 00A0
0x01D0 00A4
152
ACRONYM
XMASK
0x01D0 00A8
XFMT
0x01D0 00AC
AFSXCTL
0x01D0 00B0
ACLKXCTL
0x01D0 00B4
AHCLKXCTL
Transmit format unit bit mask register
Transmit bit stream format register
Transmit frame sync control register
Transmit clock control register
Transmit high-frequency clock control register
0x01D0 00B8
XTDM
Transmit TDM time slot 0-31 register
0x01D0 00BC
XINTCTL
Transmitter interrupt control register
0x01D0 00C0
XSTAT
Transmitter status register
0x01D0 00C4
XSLOT
Current transmit TDM time slot register
0x01D0 00C8
XCLKCHK
Transmit clock check control register
0x01D0 00CC
XEVTCTL
Transmitter DMA event control register
0x01D0 0100
DITCSRA0
Left (even TDM time slot) channel status register (DIT mode) 0
0x01D0 0104
DITCSRA1
Left (even TDM time slot) channel status register (DIT mode) 1
0x01D0 0108
DITCSRA2
Left (even TDM time slot) channel status register (DIT mode) 2
Peripheral Information and Electrical Specifications
Submit Documentation Feedback
Product Folder Links: OMAP-L138
Copyright © 2009–2017, Texas Instruments Incorporated
OMAP-L138
www.ti.com
SPRS586J – JUNE 2009 – REVISED JANUARY 2017
Table 6-51. McASP Registers Accessed Through Peripheral Configuration Port (continued)
BYTE ADDRESS
ACRONYM
0x01D0 010C
DITCSRA3
Left (even TDM time slot) channel status register (DIT mode) 3
REGISTER DESCRIPTION
0x01D0 0110
DITCSRA4
Left (even TDM time slot) channel status register (DIT mode) 4
0x01D0 0114
DITCSRA5
Left (even TDM time slot) channel status register (DIT mode) 5
0x01D0 0118
DITCSRB0
Right (odd TDM time slot) channel status register (DIT mode) 0
0x01D0 011C
DITCSRB1
Right (odd TDM time slot) channel status register (DIT mode) 1
0x01D0 0120
DITCSRB2
Right (odd TDM time slot) channel status register (DIT mode) 2
0x01D0 0124
DITCSRB3
Right (odd TDM time slot) channel status register (DIT mode) 3
0x01D0 0128
DITCSRB4
Right (odd TDM time slot) channel status register (DIT mode) 4
0x01D0 012C
DITCSRB5
Right (odd TDM time slot) channel status register (DIT mode) 5
0x01D0 0130
DITUDRA0
Left (even TDM time slot) channel user data register (DIT mode) 0
0x01D0 0134
DITUDRA1
Left (even TDM time slot) channel user data register (DIT mode) 1
0x01D0 0138
DITUDRA2
Left (even TDM time slot) channel user data register (DIT mode) 2
0x01D0 013C
DITUDRA3
Left (even TDM time slot) channel user data register (DIT mode) 3
0x01D0 0140
DITUDRA4
Left (even TDM time slot) channel user data register (DIT mode) 4
0x01D0 0144
DITUDRA5
Left (even TDM time slot) channel user data register (DIT mode) 5
0x01D0 0148
DITUDRB0
Right (odd TDM time slot) channel user data register (DIT mode) 0
0x01D0 014C
DITUDRB1
Right (odd TDM time slot) channel user data register (DIT mode) 1
0x01D0 0150
DITUDRB2
Right (odd TDM time slot) channel user data register (DIT mode) 2
0x01D0 0154
DITUDRB3
Right (odd TDM time slot) channel user data register (DIT mode) 3
0x01D0 0158
DITUDRB4
Right (odd TDM time slot) channel user data register (DIT mode) 4
0x01D0 015C
DITUDRB5
Right (odd TDM time slot) channel user data register (DIT mode) 5
0x01D0 0180
SRCTL0
Serializer control register 0
0x01D0 0184
SRCTL1
Serializer control register 1
0x01D0 0188
SRCTL2
Serializer control register 2
0x01D0 018C
SRCTL3
Serializer control register 3
0x01D0 0190
SRCTL4
Serializer control register 4
0x01D0 0194
SRCTL5
Serializer control register 5
0x01D0 0198
SRCTL6
Serializer control register 6
0x01D0 019C
SRCTL7
Serializer control register 7
0x01D0 01A0
SRCTL8
Serializer control register 8
0x01D0 01A4
SRCTL9
Serializer control register 9
0x01D0 01A8
SRCTL10
Serializer control register 10
0x01D0 01AC
SRCTL11
Serializer control register 11
0x01D0 01B0
SRCTL12
Serializer control register 12
0x01D0 01B4
SRCTL13
Serializer control register 13
0x01D0 01B8
SRCTL14
Serializer control register 14
0x01D0 01BC
SRCTL15
Serializer control register 15
Copyright © 2009–2017, Texas Instruments Incorporated
Peripheral Information and Electrical Specifications
Submit Documentation Feedback
Product Folder Links: OMAP-L138
153
OMAP-L138
SPRS586J – JUNE 2009 – REVISED JANUARY 2017
www.ti.com
Table 6-51. McASP Registers Accessed Through Peripheral Configuration Port (continued)
BYTE ADDRESS
ACRONYM
0x01D0 0200
XBUF0 (1)
Transmit buffer register for serializer 0
0x01D0 0204
XBUF1 (1)
Transmit buffer register for serializer 1
0x01D0 0208
XBUF2 (1)
Transmit buffer register for serializer 2
0x01D0 020C
XBUF3 (1)
Transmit buffer register for serializer 3
0x01D0 0210
XBUF4
(1)
Transmit buffer register for serializer 4
0x01D0 0214
XBUF5 (1)
Transmit buffer register for serializer 5
0x01D0 0218
XBUF6 (1)
Transmit buffer register for serializer 6
0x01D0 021C
XBUF7
(1)
Transmit buffer register for serializer 7
0x01D0 0220
XBUF8 (1)
Transmit buffer register for serializer 8
0x01D0 0224
XBUF9 (1)
Transmit buffer register for serializer 9
0x01D0 0228
XBUF10 (1)
Transmit buffer register for serializer 10
0x01D0 022C
XBUF11
(1)
Transmit buffer register for serializer 11
0x01D0 0230
XBUF12 (1)
Transmit buffer register for serializer 12
0x01D0 0234
XBUF13 (1)
Transmit buffer register for serializer 13
0x01D0 0238
XBUF14
(1)
Transmit buffer register for serializer 14
0x01D0 023C
XBUF15 (1)
Transmit buffer register for serializer 15
0x01D0 0280
RBUF0 (2)
Receive buffer register for serializer 0
0x01D0 0284
RBUF1
(2)
Receive buffer register for serializer 1
0x01D0 0288
RBUF2 (2)
Receive buffer register for serializer 2
0x01D0 028C
RBUF3 (2)
Receive buffer register for serializer 3
0x01D0 0290
RBUF4 (2)
Receive buffer register for serializer 4
0x01D0 0294
RBUF5
(2)
Receive buffer register for serializer 5
0x01D0 0298
RBUF6 (2)
Receive buffer register for serializer 6
0x01D0 029C
RBUF7 (2)
Receive buffer register for serializer 7
0x01D0 02A0
RBUF8
(2)
Receive buffer register for serializer 8
0x01D0 02A4
RBUF9 (2)
Receive buffer register for serializer 9
0x01D0 02A8
RBUF10 (2)
Receive buffer register for serializer 10
0x01D0 02AC
RBUF11
(2)
Receive buffer register for serializer 11
0x01D0 02B0
RBUF12 (2)
Receive buffer register for serializer 12
0x01D0 02B4
RBUF13 (2)
Receive buffer register for serializer 13
0x01D0 02B8
RBUF14 (2)
Receive buffer register for serializer 14
0x01D0 02BC
(2)
Receive buffer register for serializer 15
(1)
(2)
RBUF15
REGISTER DESCRIPTION
Writes to XRBUF originate from peripheral configuration port only when XBUSEL = 1 in XFMT.
Reads from XRBUF originate on peripheral configuration port only when RBUSEL = 1 in RFMT.
Table 6-52. McASP Registers Accessed Through DMA Port
ACCESS
TYPE
BYTE
ADDRESS
ACRONYM
Read
Accesses
0x01D0 2000
RBUF
Receive buffer DMA port address. Cycles through receive serializers, skipping over transmit
serializers and inactive serializers. Starts at the lowest serializer at the beginning of each
time slot. Reads from DMA port only if XBUSEL = 0 in XFMT.
Write
Accesses
0x01D0 2000
XBUF
Transmit buffer DMA port address. Cycles through transmit serializers, skipping over receive
and inactive serializers. Starts at the lowest serializer at the beginning of each time slot.
Writes to DMA port only if RBUSEL = 0 in RFMT.
154
REGISTER DESCRIPTION
Peripheral Information and Electrical Specifications
Submit Documentation Feedback
Product Folder Links: OMAP-L138
Copyright © 2009–2017, Texas Instruments Incorporated
OMAP-L138
www.ti.com
SPRS586J – JUNE 2009 – REVISED JANUARY 2017
Table 6-53. McASP AFIFO Registers Accessed Through Peripheral Configuration Port
BYTE ADDRESS
ACRONYM
REGISTER DESCRIPTION
0x01D0 1000
AFIFOREV
AFIFO revision identification register
0x01D0 1010
WFIFOCTL
Write FIFO control register
0x01D0 1014
WFIFOSTS
Write FIFO status register
0x01D0 1018
RFIFOCTL
Read FIFO control register
0x01D0 101C
RFIFOSTS
Read FIFO status register
6.15.2 McASP Electrical Data/Timing
6.15.2.1 Multichannel Audio Serial Port 0 (McASP0) Timing
Table 6-54 and Table 6-56 assume testing over recommended operating conditions (see Figure 6-32 and
Figure 6-33).
Table 6-54. Timing Requirements for McASP0 (1.3V, 1.2V, 1.1V) (1) (2)
1.3V, 1.2V
NO.
1
tc(AHCLKRX)
Cycle time, AHCLKR/X
2
tw(AHCLKRX)
Pulse duration, AHCLKR/X high or low
3
tc(ACLKRX)
Cycle time, ACLKR/X
4
tw(ACLKRX)
5
6
7
8
(1)
(2)
(3)
(4)
(5)
MIN
tsu(AFSRX-ACLKRX)
th(ACLKRX-AFSRX)
tsu(AXR-ACLKRX)
th(ACLKRX-AXR)
MAX
1.1V
MIN
MAX
UNIT
25
28
ns
12.5
14
ns
AHCLKR/X ext
25 (3)
28 (3)
ns
Pulse duration, ACLKR/W high or low AHCLKR/X ext
12.5
14
ns
AHCLKR/X int
11.5
12
ns
AHCLKR/X ext input
4
5
ns
AHCLKR/X ext output
4
5
ns
AHCLKR/X int
-1
-2
ns
AHCLKR/X ext input
1
1
ns
AHCLKR/X ext output
1
1
ns
AHCLKR/X int
11.5
12
ns
AHCLKR/X ext
4
5
ns
AHCLKR/X int
-1
-2
ns
AHCLKR/X ext input
3
4
ns
AHCLKR/X ext output
3
4
ns
Setup time,
AFSR/X input to ACLKR/X (4)
Hold time,
AFSR/X input after ACLKR/X (4)
Setup time,
AXR0[n] input to ACLKR/X (4) (5)
Hold time,
AXR0[n] input after ACLKR/X (4) (5)
ACLKX0 internal – McASP0 ACLKXCTL.CLKXM = 1, PDIR.ACLKX = 1
ACLKX0 external input – McASP0 ACLKXCTL.CLKXM = 0, PDIR.ACLKX = 0
ACLKX0 external output – McASP0 ACLKXCTL.CLKXM = 0, PDIR.ACLKX = 1
ACLKR0 internal – McASP0 ACLKRCTL.CLKRM = 1, PDIR.ACLKR =1
ACLKR0 external input – McASP0 ACLKRCTL.CLKRM = 0, PDIR.ACLKR = 0
ACLKR0 external output – McASP0 ACLKRCTL.CLKRM = 0, PDIR.ACLKR = 1
P = SYSCLK2 period
This timing is limited by the timing shown or 2P, whichever is greater.
McASP0 ACLKXCTL.ASYNC=1: Receiver is clocked by its own ACLKR0
McASP0 ACLKXCTL.ASYNC=0: Receiver is clocked by transmitter's ACLKX0
Copyright © 2009–2017, Texas Instruments Incorporated
Peripheral Information and Electrical Specifications
Submit Documentation Feedback
Product Folder Links: OMAP-L138
155
OMAP-L138
SPRS586J – JUNE 2009 – REVISED JANUARY 2017
www.ti.com
Table 6-55. Timing Requirements for McASP0 (1.0V) (1) (2)
1.0V
NO.
MIN
1
tc(AHCLKRX)
Cycle time, AHCLKR/X
2
tw(AHCLKRX)
Pulse duration, AHCLKR/X high or low
3
tc(ACLKRX)
Cycle time, ACLKR/X
4
tw(ACLKRX)
Pulse duration, ACLKR/W high or low
5
tsu(AFSRX-ACLKRX)
Setup time,
AFSR/X input to ACLKR/X (4)
6
7
8
(1)
(2)
(3)
(4)
(5)
156
th(ACLKRX-AFSRX)
tsu(AXR-ACLKRX)
th(ACLKRX-AXR)
Hold time,
AFSR/X input after ACLKR/X (4)
Setup time,
AXR0[n] input to ACLKR/X (4) (5)
Hold time,
AXR0[n] input after ACLKR/X (4) (5)
MAX
UNIT
35
ns
17.5
ns
AHCLKR/X ext
35 (3)
ns
AHCLKR/X ext
17.5
ns
AHCLKR/X int
16
ns
AHCLKR/X ext input
5.5
ns
AHCLKR/X ext output
5.5
ns
AHCLKR/X int
-2
ns
AHCLKR/X ext input
1
ns
AHCLKR/X ext output
1
ns
AHCLKR/X int
16
ns
AHCLKR/X ext
5.5
ns
AHCLKR/X int
-2
ns
AHCLKR/X ext input
5
ns
AHCLKR/X ext output
5
ns
ACLKX0 internal – McASP0 ACLKXCTL.CLKXM = 1, PDIR.ACLKX = 1
ACLKX0 external input – McASP0 ACLKXCTL.CLKXM = 0, PDIR.ACLKX = 0
ACLKX0 external output – McASP0 ACLKXCTL.CLKXM = 0, PDIR.ACLKX = 1
ACLKR0 internal – McASP0 ACLKRCTL.CLKRM = 1, PDIR.ACLKR =1
ACLKR0 external input – McASP0 ACLKRCTL.CLKRM = 0, PDIR.ACLKR = 0
ACLKR0 external output – McASP0 ACLKRCTL.CLKRM = 0, PDIR.ACLKR = 1
P = SYSCLK2 period
This timing is limited by the timing shown or 2P, whichever is greater.
McASP0 ACLKXCTL.ASYNC=1: Receiver is clocked by its own ACLKR0
McASP0 ACLKXCTL.ASYNC=0: Receiver is clocked by transmitter's ACLKX0
Peripheral Information and Electrical Specifications
Submit Documentation Feedback
Product Folder Links: OMAP-L138
Copyright © 2009–2017, Texas Instruments Incorporated
OMAP-L138
www.ti.com
SPRS586J – JUNE 2009 – REVISED JANUARY 2017
Table 6-56. Switching Characteristics for McASP0 (1.3V, 1.2V, 1.1V) (1)
NO.
9
tc(AHCLKRX)
Cycle time, AHCLKR/X
10
tw(AHCLKRX)
Pulse duration, AHCLKR/X high or low
11
tc(ACLKRX)
Cycle time, ACLKR/X
12
tw(ACLKRX)
Pulse duration, ACLKR/X high or low
13
td(ACLKRX-AFSRX)
Delay time, ACLKR/X transmit edge
to AFSX/R output valid (6)
14
td(ACLKX-AXRV)
15
(1)
1.3V, 1.2V
PARAMETER
tdis(ACLKX-AXRHZ)
Delay time, ACLKX transmit edge to
AXR output valid
Disable time, ACLKR/X transmit
edge to AXR high impedance
following last data bit
MIN
1.1V
MAX
MIN
MAX
UNIT
25
28
ns
AH – 2.5 (2)
AH – 2.5 (2)
ns
ACLKR/X int
25 (3) (4)
28 (3) (4)
ns
ACLKR/X int
A – 2.5 (5)
A – 2.5 (5)
ns
ACLKR/X int
-1
6
-1
8
ns
ACLKR/X ext input
2
13.5
2
14.5
ns
ACLKR/X ext output
2
13.5
2
14.5
ns
ACLKR/X int
-1
6
-1
8
ns
ACLKR/X ext input
2
13.5
2
15
ns
ACLKR/X ext output
2
13.5
2
15
ns
ACLKR/X int
0
6
0
8
ns
ACLKR/X ext
2
13.5
2
15
ns
McASP0 ACLKX0 internal – ACLKXCTL.CLKXM = 1, PDIR.ACLKX = 1
ACLKX0 external input – McASP0 ACLKXCTL.CLKXM = 0, PDIR.ACLKX = 0
ACLKX0 external output – McASP0ACLKXCTL.CLKXM = 0, PDIR.ACLKX = 1
ACLKR0 internal – McASP0 ACLKR0CTL.CLKRM = 1, PDIR.ACLKR =1
ACLKR0 external input – McASP0 ACLKRCTL.CLKRM = 0, PDIR.ACLKR = 0
ACLKR0 external output – McASP0 ACLKRCTL.CLKRM = 0, PDIR.ACLKR = 1
AH = (AHCLKR/X period)/2 in ns. For example, when AHCLKR/X period is 25 ns, use AH = 12.5 ns.
P = SYSCLK2 period
This timing is limited by the timing shown or 2P, whichever is greater.
A = (ACLKR/X period)/2 in ns. For example, when AHCLKR/X period is 25 ns, use AH = 12.5 ns.
McASP0 ACLKXCTL.ASYNC=1: Receiver is clocked by its own ACLKR0
(2)
(3)
(4)
(5)
(6)
Table 6-57. Switching Characteristics for McASP0 (1.0V) (1)
NO.
1.0V
PARAMETER
9
tc(AHCLKRX)
Cycle time, AHCLKR/X
10
tw(AHCLKRX)
Pulse duration, AHCLKR/X high or low
MIN
MAX
UNIT
35
ns
AH – 2.5 (2)
ns
11
tc(ACLKRX)
Cycle time, ACLKR/X
ACLKR/X int
12
tw(ACLKRX)
Pulse duration, ACLKR/X high or low
ACLKR/X int
A – 2.5 (5)
ACLKR/X int
-0.5
10
ns
ACLKR/X ext input
2
19
ns
ACLKR/X ext output
2
19
ns
-0.5
10
ns
ACLKR/X ext input
2
19
ns
ACLKR/X ext output
2
19
ns
ACLKR/X int
0
10
ns
ACLKR/X ext
2
19
ns
13
td(ACLKRX-AFSRX)
Delay time, ACLKR/X transmit edge to AFSX/R output
valid (6)
ACLKR/X int
14
15
(1)
(2)
(3)
(4)
(5)
(6)
td(ACLKX-AXRV)
tdis(ACLKX-AXRHZ)
Delay time, ACLKX transmit edge to AXR output valid
Disable time, ACLKR/X transmit edge to AXR high
impedance following last data bit
35
(3) (4)
ns
ns
McASP0 ACLKX0 internal – ACLKXCTL.CLKXM = 1, PDIR.ACLKX = 1
ACLKX0 external input – McASP0 ACLKXCTL.CLKXM = 0, PDIR.ACLKX = 0
ACLKX0 external output – McASP0ACLKXCTL.CLKXM = 0, PDIR.ACLKX = 1
ACLKR0 internal – McASP0 ACLKR0CTL.CLKRM = 1, PDIR.ACLKR =1
ACLKR0 external input – McASP0 ACLKRCTL.CLKRM = 0, PDIR.ACLKR = 0
ACLKR0 external output – McASP0 ACLKRCTL.CLKRM = 0, PDIR.ACLKR = 1
AH = (AHCLKR/X period)/2 in ns. For example, when AHCLKR/X period is 25 ns, use AH = 12.5 ns.
P = SYSCLK2 period
This timing is limited by the timing shown or 2P, whichever is greater.
A = (ACLKR/X period)/2 in ns. For example, when AHCLKR/X period is 25 ns, use AH = 12.5 ns.
McASP0 ACLKXCTL.ASYNC=1: Receiver is clocked by its own ACLKR0
Copyright © 2009–2017, Texas Instruments Incorporated
Peripheral Information and Electrical Specifications
Submit Documentation Feedback
Product Folder Links: OMAP-L138
157
OMAP-L138
SPRS586J – JUNE 2009 – REVISED JANUARY 2017
www.ti.com
2
1
2
AHCLKR/X (Falling Edge Polarity)
AHCLKR/X (Rising Edge Polarity)
4
3
4
ACLKR/X (CLKRP = CLKXP = 0)(A)
ACLKR/X (CLKRP = CLKXP = 1)(B)
6
5
AFSR/X (Bit Width, 0 Bit Delay)
AFSR/X (Bit Width, 1 Bit Delay)
AFSR/X (Bit Width, 2 Bit Delay)
AFSR/X (Slot Width, 0 Bit Delay)
AFSR/X (Slot Width, 1 Bit Delay)
AFSR/X (Slot Width, 2 Bit Delay)
8
7
AXR[n] (Data In/Receive)
A.
B.
For CLKRP = CLKXP =
receiver is configured for
For CLKRP = CLKXP =
receiver is configured for
A0 A1
A30 A31 B0 B1
B30 B31 C0 C1 C2 C3
C31
0, the McASP transmitter is configured for rising edge (to shift data out) and the McASP
falling edge (to shift data in).
1, the McASP transmitter is configured for falling edge (to shift data out) and the McASP
rising edge (to shift data in).
Figure 6-32. McASP Input Timings
158
Peripheral Information and Electrical Specifications
Submit Documentation Feedback
Product Folder Links: OMAP-L138
Copyright © 2009–2017, Texas Instruments Incorporated
OMAP-L138
www.ti.com
SPRS586J – JUNE 2009 – REVISED JANUARY 2017
10
10
9
AHCLKR/X (Falling Edge Polarity)
AHCLKR/X (Rising Edge Polarity)
12
11
12
ACLKR/X (CLKRP = CLKXP = 1)(A)
ACLKR/X (CLKRP = CLKXP = 0)(B)
13
13
13
13
AFSR/X (Bit Width, 0 Bit Delay)
AFSR/X (Bit Width, 1 Bit Delay)
AFSR/X (Bit Width, 2 Bit Delay)
13
13
13
AFSR/X (Slot Width, 0 Bit Delay)
AFSR/X (Slot Width, 1 Bit Delay)
AFSR/X (Slot Width, 2 Bit Delay)
14
15
AXR[n] (Data Out/Transmit)
A0
A.
B.
For CLKRP = CLKXP =
receiver is configured for
For CLKRP = CLKXP =
receiver is configured for
A1
A30 A31 B0 B1
B30 B31 C0
C1 C2 C3
C31
1, the McASP transmitter is configured for falling edge (to shift data out) and the McASP
rising edge (to shift data in).
0, the McASP transmitter is configured for rising edge (to shift data out) and the McASP
falling edge (to shift data in).
Figure 6-33. McASP Output Timings
Copyright © 2009–2017, Texas Instruments Incorporated
Peripheral Information and Electrical Specifications
Submit Documentation Feedback
Product Folder Links: OMAP-L138
159
OMAP-L138
SPRS586J – JUNE 2009 – REVISED JANUARY 2017
www.ti.com
6.16 Multichannel Buffered Serial Port (McBSP)
The McBSP provides these functions:
• Full-duplex communication
• Double-buffered data registers, which allow a continuous data stream
• Independent framing and clocking for receive and transmit
• Direct interface to industry-standard codecs, analog interface chips (AICs), and other serially
connected analog-to-digital (A/D) and digital-to-analog (D/A) devices
• External shift clock or an internal, programmable frequency shift clock for data transfer
• Transmit & Receive FIFO Buffers allow the McBSP to operate at a higher sample rate by making it
more tolerant to DMA latency
If internal clock source is used, the CLKGDV field of the Sample Rate Generator Register (SRGR) must
always be set to a value of 1 or greater.
6.16.1 McBSP Peripheral Register Description(s)
Table 6-58. McBSP/FIFO Registers
McBSP0
BYTE ADDRESS
McBSP1
BYTE ADDRESS
ACRONYM
0x01D1 0000
0x01D1 1000
DRR
McBSP Data Receive Register (read-only)
0x01D1 0004
0x01D1 1004
DXR
McBSP Data Transmit Register
0x01D1 0008
0x01D1 1008
SPCR
0x01D1 000C
0x01D1 100C
RCR
McBSP Receive Control Register
0x01D1 0010
0x01D1 1010
XCR
McBSP Transmit Control Register
0x01D1 0014
0x01D1 1014
SRGR
0x01D1 0018
0x01D1 1018
MCR
0x01D1 001C
0x01D1 101C
RCERE0
McBSP Enhanced Receive Channel Enable Register 0 Partition A/B
0x01D1 0020
0x01D1 1020
XCERE0
McBSP Enhanced Transmit Channel Enable Register 0 Partition A/B
0x01D1 0024
0x01D1 1024
PCR
0x01D1 0028
0x01D1 1028
RCERE1
McBSP Enhanced Receive Channel Enable Register 1 Partition C/D
0x01D1 002C
0x01D1 102C
XCERE1
McBSP Enhanced Transmit Channel Enable Register 1 Partition C/D
0x01D1 0030
0x01D1 1030
RCERE2
McBSP Enhanced Receive Channel Enable Register 2 Partition E/F
0x01D1 0034
0x01D1 1034
XCERE2
McBSP Enhanced Transmit Channel Enable Register 2 Partition E/F
0x01D1 0038
0x01D1 1038
RCERE3
McBSP Enhanced Receive Channel Enable Register 3 Partition G/H
0x01D1 003C
0x01D1 103C
XCERE3
McBSP Enhanced Transmit Channel Enable Register 3 Partition G/H
REGISTER DESCRIPTION
McBSP Registers
McBSP Serial Port Control Register
McBSP Sample Rate Generator register
McBSP Multichannel Control Register
McBSP Pin Control Register
McBSP FIFO Control and Status Registers
0x01D1 0800
0x01D1 1800
BFIFOREV
BFIFO Revision Identification Register
0x01D1 0810
0x01D1 1810
WFIFOCTL
Write FIFO Control Register
0x01D1 0814
0x01D1 1814
WFIFOSTS
Write FIFO Status Register
0x01D1 0818
0x01D1 1818
RFIFOCTL
Read FIFO Control Register
0x01D1 081C
0x01D1 181C
RFIFOSTS
Read FIFO Status Register
McBSP FIFO Data Registers
160
0x01F1 0000
0x01F1 1000
RBUF
McBSP FIFO Receive Buffer
0x01F1 0000
0x01F1 1000
XBUF
McBSP FIFO Transmit Buffer
Peripheral Information and Electrical Specifications
Submit Documentation Feedback
Product Folder Links: OMAP-L138
Copyright © 2009–2017, Texas Instruments Incorporated
OMAP-L138
www.ti.com
SPRS586J – JUNE 2009 – REVISED JANUARY 2017
6.16.2 McBSP Electrical Data/Timing
The following assume testing over recommended operating conditions.
6.16.2.1
Multichannel Buffered Serial Port (McBSP) Timing
Table 6-59. Timing Requirements for McBSP0 [1.3V, 1.2V, 1.1V] (1) (see Figure 6-34)
1.3V, 1.2V
NO.
MIN
1.1V
MAX
MIN
MAX
UNIT
2
tc(CKRX)
Cycle time, CLKR/X
CLKR/X ext
2P or 20 (2) (3)
2P or 25 (2) (3)
ns
3
tw(CKRX)
Pulse duration, CLKR/X high or CLKR/X low
CLKR/X ext
P - 1 (4)
P - 1 (4)
ns
5
tsu(FRH-CKRL)
Setup time, external FSR high before CLKR
low
CLKR int
14
15.5
CLKR ext
4
5
6
th(CKRL-FRH)
Hold time, external FSR high after CLKR low
CLKR int
6
6
CLKR ext
3
3
7
tsu(DRV-CKRL) Setup time, DR valid before CLKR low
CLKR int
14
15.5
CLKR ext
4
5
8
th(CKRL-DRV)
Hold time, DR valid after CLKR low
CLKR int
3
3
CLKR ext
3
3
10
tsu(FXH-CKXL)
Setup time, external FSX high before CLKX
low
CLKX int
14
15.5
CLKX ext
4
5
11
th(CKXL-FXH)
Hold time, external FSX high after CLKX low
CLKX int
6
6
CLKX ext
3
3
(1)
(2)
(3)
(4)
ns
ns
ns
ns
ns
ns
CLKRP = CLKXP = FSRP = FSXP = 0. If polarity of any of the signals is inverted, then the timing references of that signal are also
inverted.
P = ASYNC3 period in ns. For example, when the ASYNC clock domain is running at 100 MHz, use 10 ns.
Use whichever value is greater. Minimum CLKR/X cycle times must be met, even when CLKR/X is generated by an internal clock
source. The minimum CLKR/X cycle times are based on internal logic speed; the maximum usable speed may be lower due to EDMA
limitations and AC timing requirements.
This parameter applies to the maximum McBSP frequency. Operate serial clocks (CLKR/X) in the reasonable range of 40/60 duty cycle.
Copyright © 2009–2017, Texas Instruments Incorporated
Peripheral Information and Electrical Specifications
Submit Documentation Feedback
Product Folder Links: OMAP-L138
161
OMAP-L138
SPRS586J – JUNE 2009 – REVISED JANUARY 2017
www.ti.com
Table 6-60. Timing Requirements for McBSP0 [1.0V] (1) (see Figure 6-34)
1.0V
NO.
MIN
MAX
UNIT
2
tc(CKRX)
Cycle time, CLKR/X
CLKR/X ext
2P or 26.6 (2) (3)
ns
3
tw(CKRX)
Pulse duration, CLKR/X high or CLKR/X low
CLKR/X ext
P - 1 (4)
ns
5
tsu(FRH-CKRL) Setup time, external FSR high before CLKR low
6
th(CKRL-FRH)
7
tsu(DRV-CKRL) Setup time, DR valid before CLKR low
8
th(CKRL-DRV)
Hold time, DR valid after CLKR low
10
tsu(FXH-CKXL)
Setup time, external FSX high before CLKX low
11
th(CKXL-FXH)
Hold time, external FSX high after CLKX low
(1)
(2)
(3)
(4)
162
Hold time, external FSR high after CLKR low
CLKR int
20
CLKR ext
5
CLKR int
6
CLKR ext
3
CLKR int
20
CLKR ext
5
CLKR int
3
CLKR ext
3
CLKX int
20
CLKX ext
5
CLKX int
6
CLKX ext
3
ns
ns
ns
ns
ns
ns
CLKRP = CLKXP = FSRP = FSXP = 0. If polarity of any of the signals is inverted, then the timing references of that signal are also
inverted.
P = ASYNC3 period in ns. For example, when the ASYNC clock domain is running at 100 MHz, use 10 ns.
Use whichever value is greater. Minimum CLKR/X cycle times must be met, even when CLKR/X is generated by an internal clock
source. The minimum CLKR/X cycle times are based on internal logic speed; the maximum usable speed may be lower due to EDMA
limitations and AC timing requirements.
This parameter applies to the maximum McBSP frequency. Operate serial clocks (CLKR/X) in the reasonable range of 40/60 duty cycle.
Peripheral Information and Electrical Specifications
Submit Documentation Feedback
Product Folder Links: OMAP-L138
Copyright © 2009–2017, Texas Instruments Incorporated
OMAP-L138
www.ti.com
SPRS586J – JUNE 2009 – REVISED JANUARY 2017
Table 6-61. Switching Characteristics for McBSP0 [1.3V, 1.2V, 1.1V] (1) (2)
(see Figure 6-34)
NO.
1.3V, 1.2V
PARAMETER
MIN
MAX
2
14.5
2
16
Delay time, CLKS high to CLKR/X high for internal
CLKR/X generated from CLKS input
tc(CKRX)
Cycle time, CLKR/X
CLKR/X int
2P or 20 (3) (4) (5)
3
tw(CKRX)
Pulse duration, CLKR/X high or
CLKR/X low
CLKR/X int
C - 2 (6)
4
td(CKRH-FRV)
Delay time, CLKR high to internal FSR
valid
CLKR int
CLKR ext
9
td(CKXH-FXV)
Delay time, CLKX high to internal FSX
valid
CLKX int
CLKX ext
12
tdis(CKXHDXHZ)
Disable time, DX high impedance
following last data bit from CLKX high
13
td(CKXH-DXV)
Delay time, CLKX high to DX valid
14
td(FXH-DXV)
2
(1)
(2)
(3)
(4)
(5)
(6)
(7)
(8)
td(CKSH-
MAX
CKRXH)
1
1.1V
MIN
2P or 25 (3) (4) (5)
C - 2 (6)
C + 2 (6)
-4
5.5
-4
5.5
2
14.5
2
16
-4
5.5
-4
5.5
2
14.5
2
16
CLKX int
-4
7.5
-5.5
7.5
CLKX ext
-2
16
-22
16
CLKX int
-4 + D1 (7)
CLKX ext
2 + D1
5.5 + D2 (7)
14.5 + D2
(7)
-4 + D1 (7)
5.5 + D2 (7)
(7)
16 + D2 (7)
2 + D1
ns
ns
C + 2 (6)
(7)
UNIT
Delay time, FSX high to DX valid
FSX int
-4 (8)
5 (8)
-4 (8)
5 (8)
ONLY applies when in data
delay 0 (XDATDLY = 00b) mode
FSX ext
-2 (8)
14.5 (8)
-2 (8)
16 (8)
ns
ns
ns
ns
ns
ns
CLKRP = CLKXP = FSRP = FSXP = 0. If polarity of any of the signals is inverted, then the timing references of that signal are also
inverted.
Minimum delay times also represent minimum output hold times.
Minimum CLKR/X cycle times must be met, even when CLKR/X is generated by an internal clock source. Minimum CLKR/X cycle times
are based on internal logic speed; the maximum usable speed may be lower due to EDMA limitations and AC timing requirements.
P = ASYNC3 period in ns. For example, when the ASYNC clock domain is running at 100 MHz, use 10 ns.
Use whichever value is greater.
C = H or L
S = sample rate generator input clock = P if CLKSM = 1 (P = ASYNC period)
S = sample rate generator input clock = P_clks if CLKSM = 0 (P_clks = CLKS period)
H = CLKX high pulse width = (CLKGDV/2 + 1) * S if CLKGDV is even
H = (CLKGDV + 1)/2 * S if CLKGDV is odd
L = CLKX low pulse width = (CLKGDV/2) * S if CLKGDV is even
L = (CLKGDV + 1)/2 * S if CLKGDV is odd
CLKGDV should be set appropriately to ensure the McBSP bit rate does not exceed the maximum limit (see (4) above).
Extra delay from CLKX high to DX valid applies only to the first data bit of a device, if and only if DXENA = 1 in SPCR.
if DXENA = 0, then D1 = D2 = 0
if DXENA = 1, then D1 = 6P, D2 = 12P
Extra delay from FSX high to DX valid applies only to the first data bit of a device, if and only if DXENA = 1 in SPCR.
if DXENA = 0, then D1 = D2 = 0
if DXENA = 1, then D1 = 6P, D2 = 12P
Copyright © 2009–2017, Texas Instruments Incorporated
Peripheral Information and Electrical Specifications
Submit Documentation Feedback
Product Folder Links: OMAP-L138
163
OMAP-L138
SPRS586J – JUNE 2009 – REVISED JANUARY 2017
www.ti.com
Table 6-62. Switching Characteristics for McBSP0 [1.0V] (1)
(see Figure 6-34)
NO.
(2)
1.0V
PARAMETER
MIN
MAX
3
21.5
1
td(CKSH-CKRXH)
Delay time, CLKS high to CLKR/X high for internal CLKR/X
generated from CLKS input
2
tc(CKRX)
Cycle time, CLKR/X
CLKR/X int
2P or 26.6 (3) (4) (5)
3
tw(CKRX)
Pulse duration, CLKR/X high or CLKR/X low
CLKR/X int
C - 2 (6)
C + 2 (6)
CLKR int
-4
10
CLKR ext
2.5
21.5
4
td(CKRH-FRV)
Delay time, CLKR high to internal FSR valid
9
td(CKXH-FXV)
Delay time, CLKX high to internal FSX valid
12
tdis(CKXH-DXHZ)
Disable time, DX high impedance following last data
bit from CLKX high
13
td(CKXH-DXV)
Delay time, CLKX high to DX valid
14
td(FXH-DXV)
(1)
(2)
(3)
(4)
(5)
(6)
(7)
(8)
164
-4
10
CLKX ext
2.5
21.5
CLKX int
-4
10
CLKX ext
-2
21.5
CLKX int
-4 + D1 (7)
CLKX ext
2.5 + D1
ns
ns
CLKX int
(7)
UNIT
10 + D2 (7)
21.5 + D2 (7)
Delay time, FSX high to DX valid
FSX int
-4 (8)
5 (8)
ONLY applies when in data
delay 0 (XDATDLY = 00b) mode
FSX ext
-2 (8)
21.5 (8)
ns
ns
ns
ns
ns
ns
CLKRP = CLKXP = FSRP = FSXP = 0. If polarity of any of the signals is inverted, then the timing references of that signal are also
inverted.
Minimum delay times also represent minimum output hold times.
Minimum CLKR/X cycle times must be met, even when CLKR/X is generated by an internal clock source. Minimum CLKR/X cycle times
are based on internal logic speed; the maximum usable speed may be lower due to EDMA limitations and AC timing requirements.
P = ASYNC3 period in ns. For example, when the ASYNC clock domain is running at 100 MHz, use 10 ns.
Use whichever value is greater.
C = H or L
S = sample rate generator input clock = P if CLKSM = 1 (P = ASYNC period)
S = sample rate generator input clock = P_clks if CLKSM = 0 (P_clks = CLKS period)
H = CLKX high pulse width = (CLKGDV/2 + 1) * S if CLKGDV is even
H = (CLKGDV + 1)/2 * S if CLKGDV is odd
L = CLKX low pulse width = (CLKGDV/2) * S if CLKGDV is even
L = (CLKGDV + 1)/2 * S if CLKGDV is odd
CLKGDV should be set appropriately to ensure the McBSP bit rate does not exceed the maximum limit (see (4) above).
Extra delay from CLKX high to DX valid applies only to the first data bit of a device, if and only if DXENA = 1 in SPCR.
if DXENA = 0, then D1 = D2 = 0
if DXENA = 1, then D1 = 6P, D2 = 12P
Extra delay from FSX high to DX valid applies only to the first data bit of a device, if and only if DXENA = 1 in SPCR.
if DXENA = 0, then D1 = D2 = 0
if DXENA = 1, then D1 = 6P, D2 = 12P
Peripheral Information and Electrical Specifications
Submit Documentation Feedback
Product Folder Links: OMAP-L138
Copyright © 2009–2017, Texas Instruments Incorporated
OMAP-L138
www.ti.com
SPRS586J – JUNE 2009 – REVISED JANUARY 2017
Table 6-63. Timing Requirements for McBSP1 [1.3V, 1.2V, 1.1V] (1) (see Figure 6-34)
1.3V, 1.2V
NO.
2
MIN
2P or 20 (2) (3)
MIN
2P or 25 (2)
tc(CKRX)
Cycle time, CLKR/X
3
tw(CKRX)
Pulse duration, CLKR/X high or
CLKR/X low
5
tsu(FRH-CKRL)
Setup time, external FSR high before
CLKR low
CLKR int
15
18
CLKR ext
5
5
6
th(CKRL-FRH)
Hold time, external FSR high after
CLKR low
CLKR int
6
6
CLKR ext
3
3
7
tsu(DRV-CKRL)
Setup time, DR valid before CLKR low
CLKR int
15
18
CLKR ext
5
5
8
th(CKRL-DRV)
Hold time, DR valid after CLKR low
CLKR int
3
3
CLKR ext
3
3
10
tsu(FXH-CKXL)
Setup time, external FSX high before
CLKX low
CLKX int
15
18
CLKX ext
5
5
11
th(CKXL-FXH)
Hold time, external FSX high after
CLKX low
CLKX int
6
6
CLKX ext
3
3
(1)
CLKR/X ext
1.1V
MAX
CLKR/X ext
P-1
(5)
P-1
MAX
(4)
UNIT
ns
(6)
ns
ns
ns
ns
ns
ns
ns
CLKRP = CLKXP = FSRP = FSXP = 0. If polarity of any of the signals is inverted, then the timing references of that signal are also
inverted.
P = ASYNC3 period in ns. For example, when the ASYNC clock domain is running at 100 MHz, use 10 ns.
Use whichever value is greater. Minimum CLKR/X cycle times must be met, even when CLKR/X is generated by an internal clock
source. The minimum CLKR/X cycle times are based on internal logic speed; the maximum usable speed may be lower due to EDMA
limitations and AC timing requirements.
Use whichever value is greater. Minimum CLKR/X cycle times must be met, even when CLKR/X is generated by an internal clock
source. The minimum CLKR/X cycle times are based on internal logic speed; the maximum usable speed may be lower due to EDMA
limitations and AC timing requirements.
This parameter applies to the maximum McBSP frequency. Operate serial clocks (CLKR/X) in the reasonable range of 40/60 duty cycle.
This parameter applies to the maximum McBSP frequency. Operate serial clocks (CLKR/X) in the reasonable range of 40/60 duty cycle.
(2)
(3)
(4)
(5)
(6)
Table 6-64. Timing Requirements for McBSP1 [1.0V] (1) (see Figure 6-34)
1.0V
NO.
MIN
tc(CKRX)
Cycle time, CLKR/X
CLKR/X ext
2P or 26.6 (2) (3)
ns
3
tw(CKRX)
Pulse duration, CLKR/X high or CLKR/X low
CLKR/X ext
P - 1 (4)
ns
tsu(FRH-CKRL)
Setup time, external FSR high before CLKR low
6
th(CKRL-FRH)
Hold time, external FSR high after CLKR low
7
tsu(DRV-CKRL)
Setup time, DR valid before CLKR low
8
th(CKRL-DRV)
Hold time, DR valid after CLKR low
10
tsu(FXH-CKXL)
Setup time, external FSX high before CLKX low
11
th(CKXL-FXH)
Hold time, external FSX high after CLKX low
(2)
(3)
(4)
UNIT
2
5
(1)
MAX
CLKR int
21
CLKR ext
10
CLKR int
6
CLKR ext
3
CLKR int
21
CLKR ext
10
CLKR int
3
CLKR ext
3
CLKX int
21
CLKX ext
10
CLKX int
6
CLKX ext
3
ns
ns
ns
ns
ns
ns
CLKRP = CLKXP = FSRP = FSXP = 0. If polarity of any of the signals is inverted, then the timing references of that signal are also
inverted.
P = ASYNC3 period in ns. For example, when the ASYNC clock domain is running at 100 MHz, use 10 ns.
Use whichever value is greater. Minimum CLKR/X cycle times must be met, even when CLKR/X is generated by an internal clock
source. The minimum CLKR/X cycle times are based on internal logic speed; the maximum usable speed may be lower due to EDMA
limitations and AC timing requirements.
This parameter applies to the maximum McBSP frequency. Operate serial clocks (CLKR/X) in the reasonable range of 40/60 duty cycle.
Copyright © 2009–2017, Texas Instruments Incorporated
Peripheral Information and Electrical Specifications
Submit Documentation Feedback
Product Folder Links: OMAP-L138
165
OMAP-L138
SPRS586J – JUNE 2009 – REVISED JANUARY 2017
www.ti.com
Table 6-65. Switching Characteristics for McBSP1 [1.3V, 1.2V, 1.1V] (1)
(see Figure 6-34)
NO.
1.3V, 1.2V
PARAMETER
MAX
MIN
MAX
0.5
16.5
1.5
18
td(CKSH-CKRXH)
Delay time, CLKS high to CLKR/X high for internal
CLKR/X generated from CLKS input
2
tc(CKRX)
Cycle time, CLKR/X
CLKR/X int
2P or 20 (3) (4) (5)
3
tw(CKRX)
Pulse duration, CLKR/X high or
CLKR/X low
CLKR/X int
C - 2 (6)
4
td(CKRH-FRV)
Delay time, CLKR high to internal
FSR valid
CLKR int
CLKR ext
9
td(CKXH-FXV)
Delay time, CLKX high to internal
FSX valid
CLKX int
CLKX ext
tdis(CKXH-DXHZ)
Disable time, DX high impedance
following last data bit from CLKX
high
CLKX int
12
CLKX ext
13
td(CKXH-DXV)
Delay time, CLKX high to DX valid
CLKX int
-4 + D1 (7)
14
td(FXH-DXV)
(1)
(2)
(3)
(4)
(5)
(6)
(7)
(8)
(9)
166
1.1V
MIN
1
CLKX ext
(2)
2P or 25 (3) (4)
(5)
C - 2 (6)
C + 2 (6)
-4
6.5
-4
13
1
16.5
1
18
-4
6.5
-4
13
1
16.5
1
18
-4
6.5
-4
13
-2
16.5
-2
18
1 + D1
6.5 + D2 (7)
16.5 + D2
(7)
-4 + D1 (7)
13 + D2 (7)
(7)
18 + D2 (7)
1 + D1
ns
ns
C + 2 (6)
(7)
UNIT
Delay time, FSX high to DX valid
FSX int
-4 (8)
6.5 (8)
-4 (8)
13 (8)
ONLY applies when in data
delay 0 (XDATDLY = 00b) mode
FSX ext
-2 (8)
16.5 (8)
-2 (8)
18 (9)
ns
ns
ns
ns
ns
ns
CLKRP = CLKXP = FSRP = FSXP = 0. If polarity of any of the signals is inverted, then the timing references of that signal are also
inverted.
Minimum delay times also represent minimum output hold times.
Minimum CLKR/X cycle times must be met, even when CLKR/X is generated by an internal clock source. Minimum CLKR/X cycle times
are based on internal logic speed; the maximum usable speed may be lower due to EDMA limitations and AC timing requirements.
P = ASYNC3 period in ns. For example, when the ASYNC clock domain is running at 100 MHz, use 10 ns.
Use whichever value is greater.
C = H or L
S = sample rate generator input clock = P if CLKSM = 1 (P = ASYNC period)
S = sample rate generator input clock = P_clks if CLKSM = 0 (P_clks = CLKS period)
H = CLKX high pulse width = (CLKGDV/2 + 1) * S if CLKGDV is even
H = (CLKGDV + 1)/2 * S if CLKGDV is odd
L = CLKX low pulse width = (CLKGDV/2) * S if CLKGDV is even
L = (CLKGDV + 1)/2 * S if CLKGDV is odd
CLKGDV should be set appropriately to ensure the McBSP bit rate does not exceed the maximum limit (see (4) above).
Extra delay from CLKX high to DX valid applies only to the first data bit of a device, if and only if DXENA = 1 in SPCR.
if DXENA = 0, then D1 = D2 = 0
if DXENA = 1, then D1 = 6P, D2 = 12P
Extra delay from FSX high to DX valid applies only to the first data bit of a device, if and only if DXENA = 1 in SPCR.
if DXENA = 0, then D1 = D2 = 0
if DXENA = 1, then D1 = 6P, D2 = 12P
Extra delay from FSX high to DX valid applies only to the first data bit of a device, if and only if DXENA = 1 in SPCR.
if DXENA = 0, then D1 = D2 = 0
if DXENA = 1, then D1 = 6P, D2 = 12P
Peripheral Information and Electrical Specifications
Submit Documentation Feedback
Product Folder Links: OMAP-L138
Copyright © 2009–2017, Texas Instruments Incorporated
OMAP-L138
www.ti.com
SPRS586J – JUNE 2009 – REVISED JANUARY 2017
Table 6-66. Switching Characteristics for McBSP1 [1.0V] (1)
(see Figure 6-34)
NO.
tc(CKRX)
Cycle time, CLKR/X
CLKR/X int
2P or 26.6 (3) (4) (5)
3
tw(CKRX)
Pulse duration, CLKR/X high or CLKR/X low
CLKR/X int
C - 2 (6)
C + 2 (6)
CLKR int
-4
13
CLKR ext
2.5
23
CLKX int
-4
13
CLKX ext
1
23
CLKX int
-4
13
CLKX ext
-2
23
CLKX int
-4 + D1 (7)
13 + D2 (8)
(8)
23 + D2 (8)
Delay time, CLKX high to internal FSX valid
12
tdis(CKXH-DXHZ)
Disable time, DX high impedance following last data
bit from CLKX high
13
td(CKXH-DXV)
Delay time, CLKX high to DX valid
14
td(FXH-DXV)
(9)
23
2
td(CKXH-FXV)
(8)
1.5
Delay time, CLKS high to CLKR/X high for internal CLKR/X
generated from CLKS input
9
(7)
MAX
td(CKSH-CKRXH)
Delay time, CLKR high to internal FSR valid
(4)
(5)
(6)
MIN
1
td(CKRH-FRV)
(2)
(3)
1.0V
PARAMETER
4
(1)
(2)
CLKX ext
1 + D1
UNIT
ns
ns
Delay time, FSX high to DX valid
FSX int
-4 (9)
13 (9)
ONLY applies when in data
delay 0 (XDATDLY = 00b) mode
FSX ext
-2 (9)
23 (9)
ns
ns
ns
ns
ns
ns
CLKRP = CLKXP = FSRP = FSXP = 0. If polarity of any of the signals is inverted, then the timing references of that signal are also
inverted.
Minimum delay times also represent minimum output hold times.
Minimum CLKR/X cycle times must be met, even when CLKR/X is generated by an internal clock source. Minimum CLKR/X cycle times
are based on internal logic speed; the maximum usable speed may be lower due to EDMA limitations and AC timing requirements.
P = ASYNC3 period in ns. For example, when the ASYNC clock domain is running at 100 MHz, use 10 ns.
Use whichever value is greater.
C = H or L
S = sample rate generator input clock = P if CLKSM = 1 (P = ASYNC period)
S = sample rate generator input clock = P_clks if CLKSM = 0 (P_clks = CLKS period)
H = CLKX high pulse width = (CLKGDV/2 + 1) * S if CLKGDV is even
H = (CLKGDV + 1)/2 * S if CLKGDV is odd
L = CLKX low pulse width = (CLKGDV/2) * S if CLKGDV is even
L = (CLKGDV + 1)/2 * S if CLKGDV is odd
CLKGDV should be set appropriately to ensure the McBSP bit rate does not exceed the maximum limit (see (4) above).
Extra delay from CLKX high to DX valid applies only to the first data bit of a device, if and only if DXENA = 1 in SPCR.
if DXENA = 0, then D1 = D2 = 0
if DXENA = 1, then D1 = 6P, D2 = 12P
Extra delay from CLKX high to DX valid applies only to the first data bit of a device, if and only if DXENA = 1 in SPCR.
if DXENA = 0, then D1 = D2 = 0
if DXENA = 1, then D1 = 6P, D2 = 12P
Extra delay from FSX high to DX valid applies only to the first data bit of a device, if and only if DXENA = 1 in SPCR.
if DXENA = 0, then D1 = D2 = 0
if DXENA = 1, then D1 = 6P, D2 = 12P
Copyright © 2009–2017, Texas Instruments Incorporated
Peripheral Information and Electrical Specifications
Submit Documentation Feedback
Product Folder Links: OMAP-L138
167
OMAP-L138
SPRS586J – JUNE 2009 – REVISED JANUARY 2017
www.ti.com
CLKS
1
2
3
3
CLKR
4
4
FSR (int)
5
6
FSR (ext)
7
8
DR
Bit(n1)
(n2)
(n3)
2
3
3
CLKX
9
FSX (int)
11
10
FSX (ext)
FSX (XDATDLY=00b)
DX
A.
13 (A)
14
13 (A)
Bit(n1)
12
Bit 0
(n2)
(n3)
No. 13 applies to the first data bit only when XDATDLY ≠ 0.
Figure 6-34. McBSP Timing
Table 6-67. Timing Requirements for McBSP0 FSR When GSYNC = 1 (see Figure 6-35)
1.3V, 1.2V
NO.
MIN
1.1V
MAX
MIN
1.0V
MAX
MIN
MAX
UNIT
1
tsu(FRH-CKSH)
Setup time, FSR high before CLKS high
4
4.5
5
ns
2
th(CKSH-FRH)
Hold time, FSR high after CLKS high
4
4
4
ns
Table 6-68. Timing Requirements for McBSP1 FSR When GSYNC = 1 (see Figure 6-35)
1.3V, 1.2V
NO.
MIN
1.1V
MAX
MIN
1.0V
MAX
MIN
MAX
UNIT
1
tsu(FRH-CKSH)
Setup time, FSR high before CLKS high
5
5
10
ns
2
th(CKSH-FRH)
Hold time, FSR high after CLKS high
4
4
4
ns
CLKS
1
2
FSR external
CLKR/X (no need to resync)
CLKR/X (needs resync)
Figure 6-35. FSR Timing When GSYNC = 1
168
Peripheral Information and Electrical Specifications
Submit Documentation Feedback
Product Folder Links: OMAP-L138
Copyright © 2009–2017, Texas Instruments Incorporated
OMAP-L138
www.ti.com
SPRS586J – JUNE 2009 – REVISED JANUARY 2017
6.17 Serial Peripheral Interface Ports (SPI0, SPI1)
Figure 6-36 is a block diagram of the SPI module, which is a simple shift register and buffer plus control
logic. Data is written to the shift register before transmission occurs and is read from the buffer at the end
of transmission. The SPI can operate either as a master, in which case, it initiates a transfer and drives
the SPIx_CLK pin, or as a slave. Four clock phase and polarity options are supported as well as many
data formatting options.
SPIx_SIMO
SPIx_SOMI
Peripheral
Configuration Bus
Interrupt and
DMA Requests
16-Bit Shift Register
16-Bit Buffer
SPIx_ENA
GPIO
Control
(all pins)
State
Machine
SPIx_SCS
Clock
Control
SPIx_CLK
Figure 6-36. Block Diagram of SPI Module
The SPI supports 3-, 4-, and 5-pin operation with three basic pins (SPIx_CLK, SPIx_SIMO, and
SPIx_SOMI) and two optional pins (SPIx_SCS, SPIx_ENA).
The optional SPIx_SCS (Slave Chip Select) pin is most useful to enable in slave mode when there are
other slave devices on the same SPI port. The device will only shift data and drive the SPIx_SOMI pin
when SPIx_SCS is held low.
In slave mode, SPIx_ENA is an optional output. The SPIx_ENA output provides the status of the internal
transmit buffer (SPIDAT0/1 registers). In four-pin mode with the enable option, SPIx_ENA is asserted only
when the transmit buffer is full, indicating that the slave is ready to begin another transfer. In five-pin
mode, the SPIx_ENA is additionally qualified by SPIx_SCS being asserted. This allows a single
handshake line to be shared by multiple slaves on the same SPI bus.
In master mode, the SPIx_ENA pin is an optional input and the master can be configured to delay the start
of the next transfer until the slave asserts SPIx_ENA. The addition of this handshake signal simplifies SPI
communications and, on average, increases SPI bus throughput since the master does not need to delay
each transfer long enough to allow for the worst-case latency of the slave device. Instead, each transfer
can begin as soon as both the master and slave have actually serviced the previous SPI transfer.
Copyright © 2009–2017, Texas Instruments Incorporated
Peripheral Information and Electrical Specifications
Submit Documentation Feedback
Product Folder Links: OMAP-L138
169
OMAP-L138
SPRS586J – JUNE 2009 – REVISED JANUARY 2017
www.ti.com
Optional − Slave Chip Select
SPIx_SCS
SPIx_SCS
Optional Enable (Ready)
SPIx_ENA
SPIx_ENA
SPIx_CLK
SPIx_CLK
SPIx_SOMI
SPIx_SOMI
SPIx_SIMO
SPIx_SIMO
MASTER SPI
SLAVE SPI
Figure 6-37. Illustration of SPI Master-to-SPI Slave Connection
170
Peripheral Information and Electrical Specifications
Submit Documentation Feedback
Product Folder Links: OMAP-L138
Copyright © 2009–2017, Texas Instruments Incorporated
OMAP-L138
www.ti.com
SPRS586J – JUNE 2009 – REVISED JANUARY 2017
6.17.1 SPI Peripheral Registers Description(s)
Table 6-69 is a list of the SPI registers.
Table 6-69. SPIx Configuration Registers
SPI0
BYTE ADDRESS
SPI1
BYTE ADDRESS
ACRONYM
0x01C4 1000
0x01F0 E000
SPIGCR0
Global Control Register 0
0x01C4 1004
0x01F0 E004
SPIGCR1
Global Control Register 1
0x01C4 1008
0x01F0 E008
SPIINT0
Interrupt Register
0x01C4 100C
0x01F0 E00C
SPILVL
Interrupt Level Register
0x01C4 1010
0x01F0 E010
SPIFLG
Flag Register
0x01C4 1014
0x01F0 E014
SPIPC0
Pin Control Register 0 (Pin Function)
0x01C4 1018
0x01F0 E018
SPIPC1
Pin Control Register 1 (Pin Direction)
0x01C4 101C
0x01F0 E01C
SPIPC2
Pin Control Register 2 (Pin Data In)
0x01C4 1020
0x01F0 E020
SPIPC3
Pin Control Register 3 (Pin Data Out)
0x01C4 1024
0x01F0 E024
SPIPC4
Pin Control Register 4 (Pin Data Set)
0x01C4 1028
0x01F0 E028
SPIPC5
Pin Control Register 5 (Pin Data Clear)
0x01C4 102C
0x01F0 E02C
Reserved
Reserved - Do not write to this register
0x01C4 1030
0x01F0 E030
Reserved
Reserved - Do not write to this register
0x01C4 1034
0x01F0 E034
Reserved
Reserved - Do not write to this register
DESCRIPTION
0x01C4 1038
0x01F0 E038
SPIDAT0
Shift Register 0 (without format select)
0x01C4 103C
0x01F0 E03C
SPIDAT1
Shift Register 1 (with format select)
0x01C4 1040
0x01F0 E040
SPIBUF
Buffer Register
0x01C4 1044
0x01F0 E044
SPIEMU
Emulation Register
0x01C4 1048
0x01F0 E048
SPIDELAY
0x01C4 104C
0x01F0 E04C
SPIDEF
Default Chip Select Register
0x01C4 1050
0x01F0 E050
SPIFMT0
Format Register 0
0x01C4 1054
0x01F0 E054
SPIFMT1
Format Register 1
0x01C4 1058
0x01F0 E058
SPIFMT2
Format Register 2
0x01C4 105C
0x01F0 E05C
SPIFMT3
Format Register 3
0x01C4 1060
0x01F0 E060
INTVEC0
Interrupt Vector for SPI INT0
0x01C4 1064
0x01F0 E064
INTVEC1
Interrupt Vector for SPI INT1
Copyright © 2009–2017, Texas Instruments Incorporated
Delay Register
Peripheral Information and Electrical Specifications
Submit Documentation Feedback
Product Folder Links: OMAP-L138
171
OMAP-L138
SPRS586J – JUNE 2009 – REVISED JANUARY 2017
www.ti.com
6.17.2 SPI Electrical Data/Timing
6.17.2.1 Serial Peripheral Interface (SPI) Timing
Table 6-70 through Table 6-85 assume testing over recommended operating conditions (see Figure 6-38
through Figure 6-41).
Table 6-70. General Timing Requirements for SPI0 Master Modes (1)
1.3V, 1.2V
NO.
1.1V
1.0V
MIN
MAX
MIN
MAX
MIN
MAX
20 (2)
256P
30 (2)
256P
40 (2)
256P
UNIT
1
tc(SPC)M
Cycle Time, SPI0_CLK, All Master Modes
2
tw(SPCH)M
Pulse Width High, SPI0_CLK, All Master Modes
0.5M-1
0.5M-1
0.5M-1
ns
3
tw(SPCL)M
Pulse Width Low, SPI0_CLK, All Master Modes
0.5M-1
0.5M-1
0.5M-1
ns
4
5
6
7
8
(1)
(2)
(3)
172
td(SIMO_SPC)M
td(SPC_SIMO)M
toh(SPC_SIMO)M
tsu(SOMI_SPC)M
tih(SPC_SOMI)M
Delay, initial data bit valid on
SPI0_SIMO after initial edge
on SPI0_CLK (3)
Delay, subsequent bits valid
on SPI0_SIMO after transmit
edge of SPI0_CLK
Output hold time, SPI0_SIMO
valid after receive edge of
SPI0_CLK
Input Setup Time, SPI0_SOMI
valid before receive edge of
SPI0_CLK
Input Hold Time, SPI0_SOMI
valid after receive edge of
SPI0_CLK
Polarity = 0, Phase = 0,
to SPI0_CLK rising
5
5
6
Polarity = 0, Phase = 1,
to SPI0_CLK rising
-0.5M+5
-0.5M+5
-0.5M+6
Polarity = 1, Phase = 0,
to SPI0_CLK falling
5
5
6
Polarity = 1, Phase = 1,
to SPI0_CLK falling
-0.5M+5
-0.5M+5
-0.5M+6
Polarity = 0, Phase = 0,
from SPI0_CLK rising
5
5
6
Polarity = 0, Phase = 1,
from SPI0_CLK falling
5
5
6
Polarity = 1, Phase = 0,
from SPI0_CLK falling
5
5
6
Polarity = 1, Phase = 1,
from SPI0_CLK rising
5
5
6
ns
ns
ns
Polarity = 0, Phase = 0,
from SPI0_CLK falling
0.5M-3
0.5M-3
0.5M-3
Polarity = 0, Phase = 1,
from SPI0_CLK rising
0.5M-3
0.5M-3
0.5M-3
Polarity = 1, Phase = 0,
from SPI0_CLK rising
0.5M-3
0.5M-3
0.5M-3
Polarity = 1, Phase = 1,
from SPI0_CLK falling
0.5M-3
0.5M-3
0.5M-3
Polarity = 0, Phase = 0,
to SPI0_CLK falling
1.5
1.5
1.5
Polarity = 0, Phase = 1,
to SPI0_CLK rising
1.5
1.5
1.5
Polarity = 1, Phase = 0,
to SPI0_CLK rising
1.5
1.5
1.5
Polarity = 1, Phase = 1,
to SPI0_CLK falling
1.5
1.5
1.5
Polarity = 0, Phase = 0,
from SPI0_CLK falling
4
4
5
Polarity = 0, Phase = 1,
from SPI0_CLK rising
4
4
5
Polarity = 1, Phase = 0,
from SPI0_CLK rising
4
4
5
Polarity = 1, Phase = 1,
from SPI0_CLK falling
4
4
5
ns
ns
ns
P = SYSCLK2 period; M = tc(SPC)M (SPI master bit clock period)
This timing is limited by the timing shown or 3P, whichever is greater.
First bit may be MSB or LSB depending upon SPI configuration. MO(0) refers to first bit and MO(n) refers to last bit output on
SPI0_SIMO. MI(0) refers to the first bit input and MI(n) refers to the last bit input on SPI0_SOMI.
Peripheral Information and Electrical Specifications
Submit Documentation Feedback
Product Folder Links: OMAP-L138
Copyright © 2009–2017, Texas Instruments Incorporated
OMAP-L138
www.ti.com
SPRS586J – JUNE 2009 – REVISED JANUARY 2017
Table 6-71. General Timing Requirements for SPI0 Slave Modes (1)
1.3V, 1.2V
NO.
MIN
ns
22
27
ns
Pulse Width Low, SPI0_CLK, All Slave Modes
18
22
27
ns
Polarity = 0, Phase = 0,
to SPI0_CLK rising
2P
2P
2P
Polarity = 0, Phase = 1,
to SPI0_CLK rising
2P
2P
2P
Polarity = 1, Phase = 0,
to SPI0_CLK falling
2P
2P
2P
Polarity = 1, Phase = 1,
to SPI0_CLK falling
2P
2P
2P
11
tw(SPCL)S
Setup time, transmit data
written to SPI before initial
clock edge from
master. (3) (4)
ns
Polarity = 0, Phase = 0,
from SPI0_CLK rising
Polarity = 0, Phase = 1,
Delay, subsequent bits valid from SPI0_CLK falling
on SPI0_SOMI after
transmit edge of SPI0_CLK Polarity = 1, Phase = 0,
from SPI0_CLK falling
15
16
(1)
(2)
(3)
(4)
tsu(SIMO_SPC)S
tih(SPC_SIMO)S
Output hold time,
SPI0_SOMI valid after
receive edge of SPI0_CLK
Input Setup Time,
SPI0_SIMO valid before
receive edge of SPI0_CLK
Input Hold Time,
SPI0_SIMO valid after
receive edge of SPI0_CLK
17
20
27
17
20
27
17
20
27
17
20
27
ns
Polarity = 1, Phase = 1,
from SPI0_CLK rising
toh(SPC_SOMI)S
UNIT
18
tw(SPCH)S
14
MAX
Pulse Width High, SPI0_CLK, All Slave Modes
10
td(SPC_SOMI)S
MIN
60 (2)
Cycle Time, SPI0_CLK, All Slave Modes
13
1.0V
MAX
50 (2)
tc(SPC)S
tsu(SOMI_SPC)S
1.1V
MIN
40 (2)
9
12
MAX
Polarity = 0, Phase = 0,
from SPI0_CLK falling
0.5S-6
0.5S-16
0.5S-20
Polarity = 0, Phase = 1,
from SPI0_CLK rising
0.5S-6
0.5S-16
0.5S-20
Polarity = 1, Phase = 0,
from SPI0_CLK rising
0.5S-6
0.5S-16
0.5S-20
Polarity = 1, Phase = 1,
from SPI0_CLK falling
0.5S-6
0.5S-16
0.5S-20
Polarity = 0, Phase = 0,
to SPI0_CLK falling
1.5
1.5
1.5
Polarity = 0, Phase = 1,
to SPI0_CLK rising
1.5
1.5
1.5
Polarity = 1, Phase = 0,
to SPI0_CLK rising
1.5
1.5
1.5
Polarity = 1, Phase = 1,
to SPI0_CLK falling
1.5
1.5
1.5
Polarity = 0, Phase = 0,
from SPI0_CLK falling
4
4
5
Polarity = 0, Phase = 1,
from SPI0_CLK rising
4
4
5
Polarity = 1, Phase = 0,
from SPI0_CLK rising
4
4
5
Polarity = 1, Phase = 1,
from SPI0_CLK falling
4
4
5
ns
ns
ns
P = SYSCLK2 period; S = tc(SPC)S (SPI slave bit clock period)
This timing is limited by the timing shown or 3P, whichever is greater.
First bit may be MSB or LSB depending upon SPI configuration. SO(0) refers to first bit and SO(n) refers to last bit output on
SPI0_SOMI. SI(0) refers to the first bit input and SI(n) refers to the last bit input on SPI0_SIMO.
Measured from the termination of the write of new data to the SPI module, In analyzing throughput requirements, additional internal bus
cycles must be accounted for to allow data to be written to the SPI module by the CPU.
Copyright © 2009–2017, Texas Instruments Incorporated
Peripheral Information and Electrical Specifications
Submit Documentation Feedback
Product Folder Links: OMAP-L138
173
OMAP-L138
SPRS586J – JUNE 2009 – REVISED JANUARY 2017
www.ti.com
Table 6-72. Additional SPI0 Master Timings, 4-Pin Enable Option
NO.
17
td(ENA_SPC)M
18
(1)
(2)
(3)
(4)
(5)
1.3V, 1.2V
PARAMETER
td(SPC_ENA)M
Delay from slave assertion of SPI0_ENA
active to first SPI0_CLK from master. (4)
Max delay for slave to deassert SPI0_ENA
after final SPI0_CLK edge to ensure
master does not begin the next transfer. (5)
(1) (2) (3)
MIN
1.1V
MAX
MIN
174
MAX
3P+5
3P+5
3P+6
Polarity = 0, Phase = 1,
to SPI0_CLK rising
0.5M+3P+5
0.5M+3P+5
0.5M+3P+6
Polarity = 1, Phase = 0,
to SPI0_CLK falling
3P+5
3P+5
3P+6
Polarity = 1, Phase = 1,
to SPI0_CLK falling
0.5M+3P+5
0.5M+3P+5
0.5M+3P+6
Polarity = 0, Phase = 0,
from SPI0_CLK falling
0.5M+P+5
0.5M+P+5
0.5M+P+6
Polarity = 0, Phase = 1,
from SPI0_CLK falling
P+5
P+5
P+6
Polarity = 1, Phase = 0,
from SPI0_CLK rising
0.5M+P+5
0.5M+P+5
0.5M+P+6
Polarity = 1, Phase = 1,
from SPI0_CLK rising
P+5
P+5
P+6
UNIT
ns
ns
These parameters are in addition to the general timings for SPI master modes (Table 6-70).
P = SYSCLK2 period; M = tc(SPC)M (SPI master bit clock period)
Figure shows only Polarity = 0, Phase = 0 as an example. Table gives parameters for all four master clocking modes.
In the case where the master SPI is ready with new data before SPI0_ENA assertion.
In the case where the master SPI is ready with new data before SPI0_EN A deassertion.
NO.
(1)
(2)
(3)
(4)
(5)
MIN
Polarity = 0, Phase = 0,
to SPI0_CLK rising
Table 6-73. Additional SPI0 Master Timings, 4-Pin Chip Select Option
19
1.0V
MAX
1.3V, 1.2V
PARAMETER
td(SCS_SPC)M
Delay from SPI0_SCS active to first
SPI0_CLK (4) (5)
MIN
(1) (2) (3)
1.1V
MAX
MIN
1.0V
MAX
MIN
Polarity = 0, Phase = 0,
to SPI0_CLK rising
2P-1
2P-2
2P-3
Polarity = 0, Phase = 1,
to SPI0_CLK rising
0.5M+2P-1
0.5M+2P-2
0.5M+2P-3
Polarity = 1, Phase = 0,
to SPI0_CLK falling
2P-1
2P-2
2P-3
Polarity = 1, Phase = 1,
to SPI0_CLK falling
0.5M+2P-1
0.5M+2P-2
0.5M+2P-3
MAX
UNIT
ns
These parameters are in addition to the general timings for SPI master modes (Table 6-70).
P = SYSCLK2 period; M = tc(SPC)M (SPI master bit clock period)
Figure shows only Polarity = 0, Phase = 0 as an example. Table gives parameters for all four master clocking modes.
In the case where the master SPI is ready with new data before SPI0_SCS assertion.
This delay can be increased under software control by the register bit field SPIDELAY.C2TDELAY[4:0].
Peripheral Information and Electrical Specifications
Copyright © 2009–2017, Texas Instruments Incorporated
Submit Documentation Feedback
Product Folder Links: OMAP-L138
OMAP-L138
www.ti.com
SPRS586J – JUNE 2009 – REVISED JANUARY 2017
Table 6-73. Additional SPI0 Master Timings, 4-Pin Chip Select Option
NO.
20
(6)
(7)
1.3V, 1.2V
PARAMETER
td(SPC_SCS)M
MIN
Delay from final SPI0_CLK edge to master
deasserting SPI0_SCS (6) (7)
(continued)
1.1V
MAX
MIN
1.0V
MAX
MIN
MAX
Polarity = 0, Phase = 0,
from SPI0_CLK falling
0.5M+P-1
0.5M+P-2
0.5M+P-3
Polarity = 0, Phase = 1,
from SPI0_CLK falling
P-1
P-2
P-3
Polarity = 1, Phase = 0,
from SPI0_CLK rising
0.5M+P-1
0.5M+P-2
0.5M+P-3
Polarity = 1, Phase = 1,
from SPI0_CLK rising
P-1
P-2
P-3
UNIT
ns
Except for modes when SPIDAT1.CSHOLD is enabled and there is additional data to transmit. In this case, SPI0_SCS will remain asserted.
This delay can be increased under software control by the register bit field SPIDELAY.T2CDELAY[4:0].
Table 6-74. Additional SPI0 Master Timings, 5-Pin Option
NO.
18
td(SPC_ENA)M
Max delay for slave to deassert
SPI0_ENA after final SPI0_CLK
edge to ensure master does not
begin the next transfer. (4)
20
td(SPC_SCS)M
MIN
td(SCSL_ENAL)M
MAX
1.1V
MIN
1.0V
MAX
MIN
MAX
Polarity = 0, Phase = 0,
from SPI0_CLK falling
0.5M+P+5
0.5M+P+5
0.5M+P+6
Polarity = 0, Phase = 1,
from SPI0_CLK falling
P+5
P+5
P+6
Polarity = 1, Phase = 0,
from SPI0_CLK rising
0.5M+P+5
0.5M+P+5
0.5M+P+6
Polarity = 1, Phase = 1,
from SPI0_CLK rising
P+5
P+5
P+6
Polarity = 0, Phase = 1,
Delay from final SPI0_CLK edge to from SPI0_CLK falling
(5)
master deasserting SPI0_SCS
(6)
Polarity = 1, Phase = 0,
from SPI0_CLK rising
Polarity = 1, Phase = 1,
from SPI0_CLK rising
21
(1) (2) (3)
1.3V, 1.2V
PARAMETER
Polarity = 0, Phase = 0,
from SPI0_CLK falling
(1)
(2)
(3)
(4)
(5)
(6)
(1)(2)(3)
Max delay for slave SPI to drive SPI0_ENA valid after master
asserts SPI0_SCS to delay the master from beginning the
next transfer,
UNIT
ns
0.5M+P-2
0.5M+P-2
0.5M+P-3
P-2
P-2
P-3
0.5M+P-2
0.5M+P-2
0.5M+P-3
P-2
P-2
P-3
ns
C2TDELAY+P
C2TDELAY+P
C2TDELAY+P
ns
These parameters are in addition to the general timings for SPI master modes (Table 6-71).
P = SYSCLK2 period; M = tc(SPC)M (SPI master bit clock period)
Figure shows only Polarity = 0, Phase = 0 as an example. Table gives parameters for all four master clocking modes.
In the case where the master SPI is ready with new data before SPI0_ENA deassertion.
Except for modes when SPIDAT1.CSHOLD is enabled and there is additional data to transmit. In this case, SPI0_SCS will remain asserted.
This delay can be increased under software control by the register bit field SPIDELAY.T2CDELAY[4:0].
Peripheral Information and Electrical Specifications
Copyright © 2009–2017, Texas Instruments Incorporated
Submit Documentation Feedback
Product Folder Links: OMAP-L138
175
OMAP-L138
SPRS586J – JUNE 2009 – REVISED JANUARY 2017
www.ti.com
Table 6-74. Additional SPI0 Master Timings, 5-Pin Option
NO.
22
Delay from SPI0_SCS active to
first SPI0_CLK (7) (8) (9)
MIN
td(ENA_SPC)M
MIN
MAX
2P-2
2P-3
Polarity = 0, Phase = 1,
to SPI0_CLK rising
0.5M+2P-2
0.5M+2P-2
0.5M+2P-3
Polarity = 1, Phase = 0,
to SPI0_CLK falling
2P-2
2P-2
2P-3
Polarity = 1, Phase = 1,
to SPI0_CLK falling
0.5M+2P-2
0.5M+2P-2
0.5M+2P-3
176
MAX
UNIT
ns
Polarity = 0, Phase = 1,
Delay from assertion of SPI0_ENA to SPI0_CLK rising
low to first SPI0_CLK edge. (10)
Polarity = 1, Phase = 0,
to SPI0_CLK falling
3P+5
3P+5
3P+6
0.5M+3P+5
0.5M+3P+5
0.5M+3P+6
3P+5
3P+5
3P+6
0.5M+3P+5
0.5M+3P+5
0.5M+3P+6
ns
If SPI0_ENA is asserted immediately such that the transmission is not delayed by SPI0_ENA.
In the case where the master SPI is ready with new data before SPI0_SCS assertion.
This delay can be increased under software control by the register bit field SPIDELAY.C2TDELAY[4:0].
If SPI0_ENA was initially deasserted high and SPI0_CLK is delayed.
NO.
(1)
(2)
(3)
MIN
2P-2
Table 6-75. Additional SPI0 Slave Timings, 4-Pin Enable Option
24
1.0V
Polarity = 0, Phase = 0,
to SPI0_CLK rising
Polarity = 1, Phase = 1,
to SPI0_CLK falling
(7)
(8)
(9)
(10)
1.1V
MAX
Polarity = 0, Phase = 0,
to SPI0_CLK rising
23
(continued)
1.3V, 1.2V
PARAMETER
td(SCS_SPC)M
(1)(2)(3)
1.3V, 1.2V
PARAMETER
td(SPC_ENAH)S
Delay from final SPI0_CLK edge
to slave deasserting SPI0_ENA.
(1) (2) (3)
1.1V
1.0V
MIN
MAX
MIN
MAX
MIN
MAX
Polarity = 0, Phase = 0,
from SPI0_CLK falling
1.5P-3
2.5P+17.5
1.5P-3
2.5P+20
1.5P-3
2.5P+27
Polarity = 0, Phase = 1,
from SPI0_CLK falling
– 0.5M+1.5P-3
– 0.5M+2.5P+17.5
– 0.5M+1.5P-3
– 0.5M+2.5P+20
– 0.5M+1.5P-3
– 0.5M+2.5P+27
Polarity = 1, Phase = 0,
from SPI0_CLK rising
1.5P-3
2.5P+17.5
1.5P-3
2.5P+20
1.5P-3
2.5P+27
Polarity = 1, Phase = 1,
from SPI0_CLK rising
– 0.5M+1.5P-3
– 0.5+2.5P+17.5
– 0.5M+1.5P-3
– 0.5+2.5P+20
– 0.5M+1.5P-3
– 0.5+2.5P+27
UNIT
ns
These parameters are in addition to the general timings for SPI slave modes (Table 6-71).
P = SYSCLK2 period; M = tc(SPC)M (SPI master bit clock period)
Figure shows only Polarity = 0, Phase = 0 as an example. Table gives parameters for all four slave clocking modes.
Peripheral Information and Electrical Specifications
Copyright © 2009–2017, Texas Instruments Incorporated
Submit Documentation Feedback
Product Folder Links: OMAP-L138
OMAP-L138
www.ti.com
SPRS586J – JUNE 2009 – REVISED JANUARY 2017
Table 6-76. Additional SPI0 Slave Timings, 4-Pin Chip Select Option
NO.
25
26
1.3V, 1.2V
PARAMETER
td(SCSL_SPC)S
td(SPC_SCSH)S
(1) (2) (3)
MIN
Required delay from SPI0_SCS asserted at slave to first SPI0_CLK edge
at slave.
Required delay from final SPI0_CLK edge
before SPI0_SCS is deasserted.
1.1V
MAX
MIN
1.0V
MAX
MIN
MAX
P + 1.5
P + 1.5
P + 1.5
Polarity = 0, Phase = 0,
from SPI0_CLK falling
0.5M+P+4
0.5M+P+4
0.5M+P+5
Polarity = 0, Phase = 1,
from SPI0_CLK falling
P+4
P+4
P+5
Polarity = 1, Phase = 0,
from SPI0_CLK rising
0.5M+P+4
0.5M+P+4
0.5M+P+5
Polarity = 1, Phase = 1,
from SPI0_CLK rising
P+4
P+4
P+5
UNIT
ns
ns
27
tena(SCSL_SOMI)S Delay from master asserting SPI0_SCS to slave driving SPI0_SOMI valid
P+17.5
P+20
P+27
ns
28
tdis(SCSH_SOMI)S
P+17.5
P+20
P+27
ns
(1)
(2)
(3)
Delay from master deasserting SPI0_SCS to slave 3-stating SPI0_SOMI
These parameters are in addition to the general timings for SPI slave modes (Table 6-71).
P = SYSCLK2 period; M = tc(SPC)M (SPI master bit clock period)
Figure shows only Polarity = 0, Phase = 0 as an example. Table gives parameters for all four slave clocking modes.
Table 6-77. Additional SPI0 Slave Timings, 5-Pin Option
NO.
25
1.3V, 1.2V
PARAMETER
td(SCSL_SPC)S
MIN
Required delay from SPI0_SCS asserted at slave to first
SPI0_CLK edge at slave.
Polarity = 0, Phase = 0,
from SPI0_CLK falling
26
td(SPC_SCSH)S
(1) (2) (3)
Polarity = 0, Phase = 1,
Required delay from final
from SPI0_CLK falling
SPI0_CLK edge before SPI0_SCS
Polarity = 1, Phase = 0,
is deasserted.
from SPI0_CLK rising
Polarity = 1, Phase = 1,
from SPI0_CLK rising
1.1V
MAX
MIN
1.0V
MAX
MIN
P + 1.5
P + 1.5
P + 1.5
0.5M+P+4
0.5M+P+4
0.5M+P+5
P+4
P+4
P+5
0.5M+P+4
0.5M+P+4
0.5M+P+5
P+4
P+4
P+5
MAX
UNIT
ns
ns
27
tena(SCSL_SOMI)S
Delay from master asserting SPI0_SCS to slave driving
SPI0_SOMI valid
P+17.5
P+20
P+27
ns
28
tdis(SCSH_SOMI)S
Delay from master deasserting SPI0_SCS to slave 3-stating
SPI0_SOMI
P+17.5
P+20
P+27
ns
29
tena(SCSL_ENA)S
Delay from master deasserting SPI0_SCS to slave driving
SPI0_ENA valid
17.5
20
27
ns
(1)
(2)
(3)
These parameters are in addition to the general timings for SPI slave modes (Table 6-71).
P = SYSCLK2 period; M = tc(SPC)M (SPI master bit clock period)
Figure shows only Polarity = 0, Phase = 0 as an example. Table gives parameters for all four slave clocking modes.
Peripheral Information and Electrical Specifications
Copyright © 2009–2017, Texas Instruments Incorporated
Submit Documentation Feedback
Product Folder Links: OMAP-L138
177
OMAP-L138
SPRS586J – JUNE 2009 – REVISED JANUARY 2017
www.ti.com
Table 6-77. Additional SPI0 Slave Timings, 5-Pin Option
NO.
30
(4)
178
Delay from final clock receive
edge on SPI0_CLK to slave 3stating or driving high
SPI0_ENA. (4)
(continued)
1.3V, 1.2V
PARAMETER
tdis(SPC_ENA)S
(1)(2)(3)
MIN
MAX
1.1V
MIN
1.0V
MAX
MIN
MAX
Polarity = 0, Phase = 0,
from SPI0_CLK falling
2.5P+17.5
2.5P+20
2.5P+27
Polarity = 0, Phase = 1,
from SPI0_CLK rising
2.5P+17.5
2.5P+20
2.5P+27
Polarity = 1, Phase = 0,
from SPI0_CLK rising
2.5P+17.5
2.5P+20
2.5P+27
Polarity = 1, Phase = 1,
from SPI0_CLK falling
2.5P+17.5
2.5P+20
2.5P+27
UNIT
ns
SPI0_ENA is driven low after the transmission completes if the SPIINT0.ENABLE_HIGHZ bit is programmed to 0. Otherwise it is tri-stated. If tri-stated, an external pullup resistor should
be used to provide a valid level to the master. This option is useful when tying several SPI slave devices to a single master.
Peripheral Information and Electrical Specifications
Copyright © 2009–2017, Texas Instruments Incorporated
Submit Documentation Feedback
Product Folder Links: OMAP-L138
OMAP-L138
www.ti.com
SPRS586J – JUNE 2009 – REVISED JANUARY 2017
Table 6-78. General Timing Requirements for SPI1 Master Modes (1)
1.3V, 1.2V
NO.
1.1V
1.0V
MIN
MAX
MIN
MAX
MIN
MAX
20 (2)
256P
30 (2)
256P
40 (2)
256P
UNIT
1
tc(SPC)M
Cycle Time, SPI1_CLK, All Master Modes
2
tw(SPCH)M
Pulse Width High, SPI1_CLK, All Master Modes
0.5M-1
0.5M-1
0.5M-1
ns
3
tw(SPCL)M
Pulse Width Low, SPI1_CLK, All Master Modes
0.5M-1
0.5M-1
0.5M-1
ns
4
5
td(SIMO_SPC)M
td(SPC_SIMO)M
Delay, initial data bit valid on
SPI1_SIMO to initial edge on
SPI1_CLK (3)
Polarity = 0, Phase = 0,
to SPI1_CLK rising
5
5
6
Polarity = 0, Phase = 1,
to SPI1_CLK rising
-0.5M+5
-0.5M+5
-0.5M+6
Polarity = 1, Phase = 0,
to SPI1_CLK falling
5
5
6
Polarity = 1, Phase = 1,
to SPI1_CLK falling
-0.5M+5
-0.5M+5
-0.5M+6
Polarity = 0, Phase = 0,
from SPI1_CLK rising
5
5
6
5
5
6
5
5
6
5
5
6
ns
Polarity = 0, Phase = 1,
Delay, subsequent bits valid on from SPI1_CLK falling
SPI1_SIMO after transmit edge
Polarity = 1, Phase = 0,
of SPI1_CLK
from SPI1_CLK falling
ns
Polarity = 1, Phase = 1,
from SPI1_CLK rising
6
7
8
(1)
(2)
(3)
toh(SPC_SIMO)M
tsu(SOMI_SPC)M
tih(SPC_SOMI)M
Output hold time, SPI1_SIMO
valid after receive edge of
SPI1_CLK
Input Setup Time, SPI1_SOMI
valid before receive edge of
SPI1_CLK
Input Hold Time, SPI1_SOMI
valid after receive edge of
SPI1_CLK
ns
Polarity = 0, Phase = 0,
from SPI1_CLK falling
0.5M-3
0.5M-3
0.5M-3
Polarity = 0, Phase = 1,
from SPI1_CLK rising
0.5M-3
0.5M-3
0.5M-3
Polarity = 1, Phase = 0,
from SPI1_CLK rising
0.5M-3
0.5M-3
0.5M-3
Polarity = 1, Phase = 1,
from SPI1_CLK falling
0.5M-3
0.5M-3
0.5M-3
Polarity = 0, Phase = 0,
to SPI1_CLK falling
1.5
1.5
1.5
Polarity = 0, Phase = 1,
to SPI1_CLK rising
1.5
1.5
1.5
Polarity = 1, Phase = 0,
to SPI1_CLK rising
1.5
1.5
1.5
Polarity = 1, Phase = 1,
to SPI1_CLK falling
1.5
1.5
1.5
Polarity = 0, Phase = 0,
from SPI1_CLK falling
4
5
6
Polarity = 0, Phase = 1,
from SPI1_CLK rising
4
5
6
Polarity = 1, Phase = 0,
from SPI1_CLK rising
4
5
6
Polarity = 1, Phase = 1,
from SPI1_CLK falling
4
5
6
ns
ns
ns
P = SYSCLK2 period; M = tc(SPC)M (SPI master bit clock period)
This timing is limited by the timing shown or 3P, whichever is greater.
First bit may be MSB or LSB depending upon SPI configuration. MO(0) refers to first bit and MO(n) refers to last bit output on
SPI1_SIMO. MI(0) refers to the first bit input and MI(n) refers to the last bit input on SPI1_SOMI.
Copyright © 2009–2017, Texas Instruments Incorporated
Peripheral Information and Electrical Specifications
Submit Documentation Feedback
Product Folder Links: OMAP-L138
179
OMAP-L138
SPRS586J – JUNE 2009 – REVISED JANUARY 2017
www.ti.com
Table 6-79. General Timing Requirements for SPI1 Slave Modes (1)
1.3V, 1.2V
NO.
MIN
ns
22
27
ns
Pulse Width Low, SPI1_CLK, All Slave Modes
18
22
27
ns
Polarity = 0, Phase = 0,
to SPI1_CLK rising
2P
2P
2P
Polarity = 0, Phase = 1,
to SPI1_CLK rising
2P
2P
2P
Polarity = 1, Phase = 0,
to SPI1_CLK falling
2P
2P
2P
Polarity = 1, Phase = 1,
to SPI1_CLK falling
2P
2P
2P
11
tw(SPCL)S
15
16
(1)
(2)
(3)
(4)
180
toh(SPC_SOMI)S
tsu(SIMO_SPC)S
tih(SPC_SIMO)S
UNIT
18
tw(SPCH)S
14
MAX
Pulse Width High, SPI1_CLK, All Slave Modes
10
td(SPC_SOMI)S
MIN
60 (2)
Cycle Time, SPI1_CLK, All Slave Modes
13
1.0V
MAX
50 (2)
tc(SPC)S
tsu(SOMI_SPC)S
1.1V
MIN
40 (2)
9
12
MAX
Setup time, transmit data
written to SPI before initial
clock edge from
master. (3) (4)
Delay, subsequent bits valid
on SPI1_SOMI after transmit
edge of SPI1_CLK
Output hold time, SPI1_SOMI
valid after receive edge of
SPI1_CLK
Polarity = 0, Phase = 0,
from SPI1_CLK rising
15
17
19
Polarity = 0, Phase = 1,
from SPI1_CLK falling
15
17
19
Polarity = 1, Phase = 0,
from SPI1_CLK falling
15
17
19
Polarity = 1, Phase = 1,
from SPI1_CLK rising
15
17
19
ns
Polarity = 0, Phase = 0,
from SPI1_CLK falling
0.5S-4
0.5S-10
0.5S-12
Polarity = 0, Phase = 1,
from SPI1_CLK rising
0.5S-4
0.5S-10
0.5S-12
Polarity = 1, Phase = 0,
from SPI1_CLK rising
0.5S-4
0.5S-10
0.5S-12
Polarity = 1, Phase = 1,
from SPI1_CLK falling
0.5S-4
0.5S-10
0.5S-12
Polarity = 0, Phase = 0,
to SPI1_CLK falling
1.5
1.5
1.5
1.5
1.5
1.5
1.5
1.5
1.5
Polarity = 1, Phase = 1,
to SPI1_CLK falling
1.5
1.5
1.5
Polarity = 0, Phase = 0,
from SPI1_CLK falling
4
5
6
Polarity = 0, Phase = 1,
from SPI1_CLK rising
4
5
6
Polarity = 1, Phase = 0,
from SPI1_CLK rising
4
5
6
Polarity = 1, Phase = 1,
from SPI1_CLK falling
4
5
6
Polarity = 0, Phase = 1,
Input Setup Time, SPI1_SIMO to SPI1_CLK rising
valid before receive edge of
Polarity = 1, Phase = 0,
SPI1_CLK
to SPI1_CLK rising
Input Hold Time, SPI1_SIMO
valid after receive edge of
SPI1_CLK
ns
ns
ns
ns
P = SYSCLK2 period; S = tc(SPC)S (SPI slave bit clock period)
This timing is limited by the timing shown or 3P, whichever is greater.
First bit may be MSB or LSB depending upon SPI configuration. SO(0) refers to first bit and SO(n) refers to last bit output on
SPI1_SOMI. SI(0) refers to the first bit input and SI(n) refers to the last bit input on SPI1_SIMO.
Measured from the termination of the write of new data to the SPI module, In analyzing throughput requirements, additional internal bus
cycles must be accounted for to allow data to be written to the SPI module by the CPU.
Peripheral Information and Electrical Specifications
Submit Documentation Feedback
Product Folder Links: OMAP-L138
Copyright © 2009–2017, Texas Instruments Incorporated
OMAP-L138
www.ti.com
SPRS586J – JUNE 2009 – REVISED JANUARY 2017
Table 6-80. Additional (1) SPI1 Master Timings, 4-Pin Enable Option (2) (3)
NO.
17
td(EN A_SPC)M
18
(1)
(2)
(3)
(4)
(5)
1.3V, 1.2V
PARAMETER
td(SPC_ENA)M
Delay from slave
assertion of
SPI1_ENA active to
first SPI1_CLK from
master. (4)
Max delay for slave to
deassert SPI1_ENA
after final SPI1_CLK
edge to ensure
master does not begin
the next transfer. (5)
MIN
1.1V
MAX
MIN
MAX
1.0V
MIN
Polarity = 0, Phase = 0,
to SPI1_CLK rising
3P+5
3P+5
3P+6
Polarity = 0, Phase = 1,
to SPI1_CLK rising
0.5M+3P+5
0.5M+3P+5
0.5M+3P+6
Polarity = 1, Phase = 0,
to SPI1_CLK falling
3P+5
3P+5
3P+6
Polarity = 1, Phase = 1,
to SPI1_CLK falling
0.5M+3P+5
0.5M+3P+5
0.5M+3P+6
Polarity = 0, Phase = 0,
from SPI1_CLK falling
0.5M+P+5
0.5M+P+5
0.5M+P+6
Polarity = 0, Phase = 1,
from SPI1_CLK falling
P+5
P+5
P+6
Polarity = 1, Phase = 0,
from SPI1_CLK rising
0.5M+P+5
0.5M+P+5
0.5M+P+6
Polarity = 1, Phase = 1,
from SPI1_CLK rising
P+5
P+5
P+6
ns
These parameters are in addition to the general timings for SPI master modes (Table 6-78).
P = SYSCLK2 period; M = tc(SPC)M (SPI master bit clock period)
Figure shows only Polarity = 0, Phase = 0 as an example. Table gives parameters for all four master clocking modes.
In the case where the master SPI is ready with new data before SPI1_ENA assertion.
In the case where the master SPI is ready with new data before SPI1_ENA deassertion.
NO.
20
(1)
(2)
(3)
(4)
(5)
(6)
(7)
UNIT
ns
Table 6-81. Additional (1) SPI1 Master Timings, 4-Pin Chip Select Option (2)
19
MAX
1.3V, 1.2V
PARAMETER
td(SCS_SPC)M
td(SPC_SCS)M
Delay from
SPI1_SCS active
to first
SPI1_CLK (4) (5)
Delay from final
SPI1_CLK edge to
master
deasserting
SPI1_SCS (6) (7)
MIN
MAX
1.1V
MIN
(3)
1.0V
MAX
MIN
Polarity = 0, Phase = 0,
to SPI1_CLK rising
2P-1
2P-5
2P-6
Polarity = 0, Phase = 1,
to SPI1_CLK rising
0.5M+2P-1
0.5M+2P-5
0.5M+2P-6
Polarity = 1, Phase = 0,
to SPI1_CLK falling
2P-1
2P-5
2P-6
Polarity = 1, Phase = 1,
to SPI1_CLK falling
0.5M+2P-1
0.5M+2P-5
0.5M+2P-6
Polarity = 0, Phase = 0,
from SPI1_CLK falling
0.5M+P-1
0.5M+P-5
0.5M+P-6
Polarity = 0, Phase = 1,
from SPI1_CLK falling
P-1
P-5
P-6
Polarity = 1, Phase = 0,
from SPI1_CLK rising
0.5M+P-1
0.5M+P-5
0.5M+P-6
Polarity = 1, Phase = 1,
from SPI1_CLK rising
P-1
P-5
P-6
MAX
UNIT
ns
ns
These parameters are in addition to the general timings for SPI master modes (Table 6-78).
P = SYSCLK2 period; M = tc(SPC)M (SPI master bit clock period)
Figure shows only Polarity = 0, Phase = 0 as an example. Table gives parameters for all four master clocking modes.
In the case where the master SPI is ready with new data before SPI1_SCS assertion.
This delay can be increased under software control by the register bit field SPIDELAY.C2TDELAY[4:0].
Except for modes when SPIDAT1.CSHOLD is enabled and there is additional data to transmit. In this case, SPI1_SCS will remain
asserted.
This delay can be increased under software control by the register bit field SPIDELAY.T2CDELAY[4:0].
Copyright © 2009–2017, Texas Instruments Incorporated
Peripheral Information and Electrical Specifications
Submit Documentation Feedback
Product Folder Links: OMAP-L138
181
OMAP-L138
SPRS586J – JUNE 2009 – REVISED JANUARY 2017
www.ti.com
Table 6-82. Additional (1) SPI1 Master Timings, 5-Pin Option (2) (3)
NO.
18
1.3V, 1.2V
PARAMETER
td(SPC_ENA)M
Max delay for slave to deassert
SPI1_ENA after final SPI1_CLK
edge to ensure master does not
begin the next transfer. (4)
MIN
td(SPC_SCS)M
td(SCSL_ENAL)M
td(SCS_SPC)M
182
MAX
0.5M+P+6
Polarity = 0, Phase = 1,
from SPI1_CLK falling
P+5
P+5
P+6
Polarity = 1, Phase = 0,
from SPI1_CLK rising
0.5M+P+5
0.5M+P+5
0.5M+P+6
Polarity = 1, Phase = 1,
from SPI1_CLK rising
P+5
P+5
P+6
Polarity = 0, Phase = 1,
Delay from final SPI1_CLK edge to from SPI1_CLK falling
master deasserting SPI1_SCS (5) (6) Polarity = 1, Phase = 0,
from SPI1_CLK rising
Polarity = 0, Phase = 1,
Delay from SPI1_SCS active to first to SPI1_CLK rising
SPI1_CLK (7) (8) (9)
Polarity = 1, Phase = 0,
to SPI1_CLK falling
UNIT
ns
0.5M+P-1
0.5M+P-5
0.5M+P-6
P-1
P-5
P-6
0.5M+P-1
0.5M+P-5
0.5M+P-6
P-1
P-5
P-6
ns
Max delay for slave SPI to drive SPI1_ENA valid after master
asserts SPI1_SCS to delay the
master from beginning the next transfer,
Polarity = 1, Phase = 1,
to SPI1_CLK falling
(1)
(2)
(3)
(4)
(5)
(6)
(7)
(8)
(9)
MIN
0.5M+P+5
Polarity = 0, Phase = 0,
to SPI1_CLK rising
22
1.0V
MAX
0.5M+P+5
Polarity = 1, Phase = 1,
from SPI1_CLK rising
21
MIN
Polarity = 0, Phase = 0,
from SPI1_CLK falling
Polarity = 0, Phase = 0,
from SPI1_CLK falling
20
1.1V
MAX
C2TDELAY+P
2P-1
0.5M+2P-1
C2TDELAY+P
2P-5
C2TDELAY+P
ns
2P-6
0.5M+2P-5
0.5M+2P-6
ns
2P-1
0.5M+2P-1
2P-5
2P-6
0.5M+2P-5
0.5M+2P-6
These parameters are in addition to the general timings for SPI master modes (Table 6-79).
P = SYSCLK2 period; M = tc(SPC)M (SPI master bit clock period)
Figure shows only Polarity = 0, Phase = 0 as an example. Table gives parameters for all four master clocking modes.
In the case where the master SPI is ready with new data before SPI1_ENA deassertion.
Except for modes when SPIDAT1.CSHOLD is enabled and there is additional data to transmit. In this case, SPI1_SCS will remain asserted.
This delay can be increased under software control by the register bit field SPIDELAY.T2CDELAY[4:0].
If SPI1_ENA is asserted immediately such that the transmission is not delayed by SPI1_ENA.
In the case where the master SPI is ready with new data before SPI1_SCS assertion.
This delay can be increased under software control by the register bit field SPIDELAY.C2TDELAY[4:0].
Peripheral Information and Electrical Specifications
Copyright © 2009–2017, Texas Instruments Incorporated
Submit Documentation Feedback
Product Folder Links: OMAP-L138
OMAP-L138
www.ti.com
SPRS586J – JUNE 2009 – REVISED JANUARY 2017
Table 6-82. Additional(1) SPI1 Master Timings, 5-Pin Option(2)(3) (continued)
NO.
1.3V, 1.2V
PARAMETER
MIN
MAX
Polarity = 0, Phase = 0,
to SPI1_CLK rising
23
td(ENA_SPC)M
Delay from assertion of SPI1_ENA
low to first SPI1_CLK edge. (10)
1.1V
1.0V
MIN
MAX
3P+5
Polarity = 0, Phase = 1,
to SPI1_CLK rising
MIN
MAX
3P+5
0.5M+3P+5
UNIT
3P+6
0.5M+3P+5
0.5M+3P+6
ns
Polarity = 1, Phase = 0,
to SPI1_CLK falling
3P+5
Polarity = 1, Phase = 1,
to SPI1_CLK falling
3P+5
0.5M+3P+5
3P+6
0.5M+3P+5
0.5M+3P+6
(10) If SPI1_ENA was initially deasserted high and SPI1_CLK is delayed.
Table 6-83. Additional (1) SPI1 Slave Timings, 4-Pin Enable Option (2) (3)
NO.
24
(1)
(2)
(3)
1.3V, 1.2V
PARAMETER
td(SPC_ENAH)S
Delay from final SPI1_CLK edge to
slave deasserting SPI1_ENA.
1.1V
1.0V
MIN
MAX
MIN
MAX
MIN
MAX
Polarity = 0, Phase = 0,
from SPI1_CLK falling
1.5P-3
2.5P+15
1.5P-10
2.5P+17
1.5P-12
2.5P+19
Polarity = 0, Phase = 1,
from SPI1_CLK falling
–0.5M+1.5P-3
–0.5M+2.5P+15
–0.5M+1.5P-10
–0.5M+2.5P+17
–0.5M+1.5P-12
–0.5M+2.5P+19
Polarity = 1, Phase = 0,
from SPI1_CLK rising
1.5P-3
2.5P+15
1.5P-10
2.5P+17
1.5P-12
2.5P+19
Polarity = 1, Phase = 1,
from SPI1_CLK rising
–0.5M+1.5P-3
–0.5M+2.5P+15
–0.5M+1.5P-10
–0.5M+2.5P+17
–0.5M+1.5P-12
–0.5M+2.5P+19
UNIT
ns
These parameters are in addition to the general timings for SPI slave modes (Table 6-79).
P = SYSCLK2 period; M = tc(SPC)M (SPI master bit clock period)
Figure shows only Polarity = 0, Phase = 0 as an example. Table gives parameters for all four slave clocking modes.
Peripheral Information and Electrical Specifications
Copyright © 2009–2017, Texas Instruments Incorporated
Submit Documentation Feedback
Product Folder Links: OMAP-L138
183
OMAP-L138
SPRS586J – JUNE 2009 – REVISED JANUARY 2017
www.ti.com
Table 6-84. Additional (1) SPI1 Slave Timings, 4-Pin Chip Select Option (2) (3)
NO.
25
1.3V, 1.2V
PARAMETER
td(SCSL_SPC)S
Required delay from SPI1_SCS asserted at slave to first SPI1_CLK edge at
slave.
Polarity = 0, Phase = 0,
from SPI1_CLK falling
26
td(SPC_SCSH)S
1.1V
MIN
Polarity = 0, Phase = 1,
Required delay from final SPI1_CLK edge from SPI1_CLK falling
before SPI1_SCS is deasserted.
Polarity = 1, Phase = 0,
from SPI1_CLK rising
MAX
1.0V
MIN
MAX
MIN
MAX
P+1.5
P+1.5
P+1.5
0.5M+P+4
0.5M+P+5
0.5M+P+6
P+4
P+5
P+6
0.5M+P+4
0.5M+P+5
0.5M+P+6
P+4
P+5
P+6
UNIT
ns
ns
Polarity = 1, Phase = 1,
from SPI1_CLK rising
27
tena(SCSL_SOMI)S
Delay from master asserting SPI1_SCS to slave driving SPI1_SOMI valid
P+15
P+17
P+19
ns
28
tdis(SCSH_SOMI)S
Delay from master deasserting SPI1_SCS to slave 3-stating SPI1_SOMI
P+15
P+17
P+19
ns
(1)
(2)
(3)
These parameters are in addition to the general timings for SPI slave modes (Table 6-79).
P = SYSCLK2 period; M = tc(SPC)M (SPI master bit clock period)
Figure shows only Polarity = 0, Phase = 0 as an example. Table gives parameters for all four slave clocking modes.
Table 6-85. Additional (1) SPI1 Slave Timings, 5-Pin Option (2) (3)
NO.
25
26
1.3V, 1.2V
PARAMETER
td(SCSL_SPC)S
td(SPC_SCSH)S
MIN
Required delay from SPI1_SCS asserted at slave to first
SPI1_CLK edge at slave.
Required delay from final
SPI1_CLK edge before SPI1_SCS
is deasserted.
1.1V
MAX
MIN
1.0V
MAX
MIN
P+1.5
P+1.5
P+1.5
Polarity = 0, Phase = 0,
from SPI1_CLK falling
0.5M+P+4
0.5M+P+5
0.5M+P+6
Polarity = 0, Phase = 1,
from SPI1_CLK falling
P+4
P+5
P+6
Polarity = 1, Phase = 0,
from SPI1_CLK rising
0.5M+P+4
0.5M+P+5
0.5M+P+6
Polarity = 1, Phase = 1,
from SPI1_CLK rising
P+4
P+5
P+6
MAX
UNIT
ns
ns
27
tena(SCSL_SOMI)S
Delay from master asserting SPI1_SCS to slave driving
SPI1_SOMI valid
P+15
P+17
P+19
ns
28
tdis(SCSH_SOMI)S
Delay from master deasserting SPI1_SCS to slave 3-stating
SPI1_SOMI
P+15
P+17
P+19
ns
29
tena(SCSL_ENA)S
Delay from master deasserting SPI1_SCS to slave driving
SPI1_ENA valid
15
17
19
ns
(1)
(2)
(3)
184
These parameters are in addition to the general timings for SPI slave modes (Table 6-79).
P = SYSCLK2 period; M = tc(SPC)M (SPI master bit clock period)
Figure shows only Polarity = 0, Phase = 0 as an example. Table gives parameters for all four slave clocking modes.
Peripheral Information and Electrical Specifications
Copyright © 2009–2017, Texas Instruments Incorporated
Submit Documentation Feedback
Product Folder Links: OMAP-L138
OMAP-L138
www.ti.com
SPRS586J – JUNE 2009 – REVISED JANUARY 2017
Table 6-85. Additional(1) SPI1 Slave Timings, 5-Pin Option(2)(3) (continued)
NO.
30
(4)
1.3V, 1.2V
PARAMETER
tdis(SPC_ENA)S
Delay from final clock receive edge
on SPI1_CLK to slave 3-stating or
driving high SPI1_ENA. (4)
MIN
MAX
1.1V
MIN
1.0V
MAX
MIN
MAX
Polarity = 0, Phase = 0,
from SPI1_CLK falling
2.5P+15
2.5P+17
2.5P+19
Polarity = 0, Phase = 1,
from SPI1_CLK rising
2.5P+15
2.5P+17
2.5P+19
Polarity = 1, Phase = 0,
from SPI1_CLK rising
2.5P+15
2.5P+17
2.5P+19
Polarity = 1, Phase = 1,
from SPI1_CLK falling
2.5P+15
2.5P+17
2.5P+19
UNIT
ns
SPI1_ENA is driven low after the transmission completes if the SPIINT0.ENABLE_HIGHZ bit is programmed to 0. Otherwise it is tri-stated. If tri-stated, an external pullup resistor should
be used to provide a valid level to the master. This option is useful when tying several SPI slave devices to a single master.
Peripheral Information and Electrical Specifications
Copyright © 2009–2017, Texas Instruments Incorporated
Submit Documentation Feedback
Product Folder Links: OMAP-L138
185
OMAP-L138
SPRS586J – JUNE 2009 – REVISED JANUARY 2017
www.ti.com
1
2
MASTER MODE
POLARITY = 0 PHASE = 0
3
SPIx_CLK
5
4
SPIx_SIMO
MO(0)
7
SPIx_SOMI
6
MO(1)
MO(n−1)
MO(n)
8
MI(0)
MI(1)
MI(n−1)
MI(n)
MASTER MODE
POLARITY = 0 PHASE = 1
4
SPIx_CLK
6
5
SPIx_SIMO
MO(0)
7
SPIx_SOMI
MO(1)
MO(n−1)
MI(1)
MI(n−1)
MO(n)
8
MI(0)
MI(n)
4
MASTER MODE
POLARITY = 1 PHASE = 0
SPIx_CLK
5
SPIx_SIMO
6
MO(0)
7
SPIx_SOMI
MO(1)
MO(n−1)
MO(n)
8
MI(0)
MI(1)
MI(n−1)
MI(n)
MASTER MODE
POLARITY = 1 PHASE = 1
SPIx_CLK
5
4
SPIx_SIMO
MO(0)
7
SPIx_SOMI
MI(0)
6
MO(1)
MO(n−1)
MI(1)
MI(n−1)
MO(n)
8
MI(n)
Figure 6-38. SPI Timings—Master Mode
186
Peripheral Information and Electrical Specifications
Submit Documentation Feedback
Product Folder Links: OMAP-L138
Copyright © 2009–2017, Texas Instruments Incorporated
OMAP-L138
www.ti.com
SPRS586J – JUNE 2009 – REVISED JANUARY 2017
9
12
10
SLAVE MODE
POLARITY = 0 PHASE = 0
11
SPIx_CLK
15
SPIx_SIMO
16
SI(0)
SI(1)
SI(n−1)
13
SPIx_SOMI
SO(0)
SI(n)
14
SO(1)
SO(n−1)
12
SO(n)
SLAVE MODE
POLARITY = 0 PHASE = 1
SPIx_CLK
15
SPIx_SIMO
16
SI(0)
SI(1)
13
SPIx_SOMI
SO(0)
SI(n−1)
SI(n)
SO(n−1)
SO(n)
14
SO(1)
SLAVE MODE
POLARITY = 1 PHASE = 0
12
SPIx_CLK
15
SPIx_SIMO
16
SI(0)
SI(1)
SI(n−1)
13
SPIx_SOMI
SO(0)
SO(1)
SI(n)
14
SO(n−1)
SO(n)
SLAVE MODE
POLARITY = 1 PHASE = 1
12
SPIx_CLK
15
SPIx_SIMO
16
SI(0)
SI(1)
13
SPIx_SOMI
SO(0)
SO(1)
SI(n−1)
SI(n)
14
SO(n−1)
SO(n)
Figure 6-39. SPI Timings—Slave Mode
Copyright © 2009–2017, Texas Instruments Incorporated
Peripheral Information and Electrical Specifications
Submit Documentation Feedback
Product Folder Links: OMAP-L138
187
OMAP-L138
SPRS586J – JUNE 2009 – REVISED JANUARY 2017
www.ti.com
MASTER MODE 4 PIN WITH ENABLE
17
18
SPIx_CLK
SPIx_SIMO
MO(0)
SPIx_SOMI
MI(0)
MO(1)
MO(n−1)
MI(1)
MI(n−1)
MO(n)
MI(n)
SPIx_ENA
MASTER MODE 4 PIN WITH CHIP SELECT
19
20
SPIx_CLK
SPIx_SIMO
MO(0)
SPIx_SOMI
MI(0)
MO(1)
MO(n−1)
MO(n)
MI(1)
MI(n−1)
MI(n)
SPIx_SCS
MASTER MODE 5 PIN
22
20
MO(1)
23
18
SPIx_CLK
SPIx_SIMO
MO(0)
MO(n−1)
MO(n)
SPIx_SOMI
21
SPIx_ENA
MI(0)
MI(1)
MI(n−1)
MI(n)
DESEL(A)
DESEL(A)
SPIx_SCS
A. DESELECTED IS PROGRAMMABLE EITHER HIGH OR
3−STATE (REQUIRES EXTERNAL PULLUP)
Figure 6-40. SPI Timings—Master Mode (4-Pin and 5-Pin)
188
Peripheral Information and Electrical Specifications
Submit Documentation Feedback
Product Folder Links: OMAP-L138
Copyright © 2009–2017, Texas Instruments Incorporated
OMAP-L138
www.ti.com
SPRS586J – JUNE 2009 – REVISED JANUARY 2017
SLAVE MODE 4 PIN WITH ENABLE
24
SPIx_CLK
SPIx_SOMI
SO(0)
SO(1)
SO(n−1)
SO(n)
SPIx_SIMO
SI(0)
SPIx_ENA
SI(1)
SI(n−1) SI(n)
SLAVE MODE 4 PIN WITH CHIP SELECT
26
25
SPIx_CLK
27
SPIx_SOMI
28
SO(n−1)
SO(0)
SO(1)
SO(n)
SPIx_SIMO
SI(0)
SPIx_SCS
SI(1)
SI(n−1)
SI(n)
SLAVE MODE 5 PIN
26
30
25
SPIx_CLK
27
SPIx_SOMI
28
SO(1)
SO(0)
SO(n−1)
SO(n)
SPIx_SIMO
29
SPIx_ENA
DESEL(A)
SI(0)
SI(1)
SI(n−1)
SI(n)
DESEL(A)
SPIx_SCS
A. DESELECTED IS PROGRAMMABLE EITHER HIGH OR
3−STATE (REQUIRES EXTERNAL PULLUP)
Figure 6-41. SPI Timings—Slave Mode (4-Pin and 5-Pin)
Copyright © 2009–2017, Texas Instruments Incorporated
Peripheral Information and Electrical Specifications
Submit Documentation Feedback
Product Folder Links: OMAP-L138
189
OMAP-L138
SPRS586J – JUNE 2009 – REVISED JANUARY 2017
www.ti.com
6.18 Inter-Integrated Circuit Serial Ports (I2C)
6.18.1 I2C Device-Specific Information
Each I2C port supports:
• Compatible with Philips® I2C Specification Revision 2.1 (January 2000)
• Fast Mode up to 400 Kbps (no fail-safe I/O buffers)
• Noise Filter to Remove Noise 50 ns or less
• Seven- and Ten-Bit Device Addressing Modes
• Master (Transmit/Receive) and Slave (Transmit/Receive) Functionality
• Events: DMA, Interrupt, or Polling
• General-Purpose I/O Capability if not used as I2C
Figure 6-42 is block diagram of the device I2C Module.
Clock Prescaler
I2CPSCx
Control
Prescaler
Register
I2CCOARx
Own Address
Register
I2CSARx
Slave Address
Register
Bit Clock Generator
I2Cx_SCL
Noise
Filter
I2CCLKHx
Clock Divide
High Register
I2CCMDRx
Mode Register
I2CCLKLx
Clock Divide
Low Register
I2CEMDRx
Extended Mode
Register
I2CCNTx
Data Count
Register
I2CPID1
Peripheral ID
Register 1
I2CPID2
Peripheral ID
Register 2
Transmit
I2Cx_SDA
Noise
Filter
I2CXSRx
Transmit Shift
Register
I2CDXRx
Transmit Buffer
Interrupt/DMA
Receive
Interrupt Enable
Register
I2CIERx
I2CDRRx
Receive Buffer
I2CSTRx
I2CRSRx
Receive Shift
Register
I2CSRCx
I2CPFUNC
Pin Function
Register
I2CPDOUT
Interrupt Status
Register
Interrupt Source
Register
Peripheral
Configuration
Bus
Interrupt DMA
Requests
Control
I2CPDIR
I2CPDIN
Pin Direction
Register
Pin Data In
Register
I2CPDSET
I2CPDCLR
Pin Data Out
Register
Pin Data Set
Register
Pin Data Clear
Register
Figure 6-42. I2C Module Block Diagram
190
Peripheral Information and Electrical Specifications
Submit Documentation Feedback
Product Folder Links: OMAP-L138
Copyright © 2009–2017, Texas Instruments Incorporated
OMAP-L138
www.ti.com
SPRS586J – JUNE 2009 – REVISED JANUARY 2017
6.18.2 I2C Peripheral Registers Description(s)
Table 6-86 is the list of the I2C registers.
Table 6-86. Inter-Integrated Circuit (I2C) Registers
I2C0
BYTE ADDRESS
I2C1
BYTE ADDRESS
ACRONYM
0x01C2 2000
0x01E2 8000
ICOAR
I2C Own Address Register
0x01C2 2004
0x01E2 8004
ICIMR
I2C Interrupt Mask Register
0x01C2 2008
0x01E2 8008
ICSTR
I2C Interrupt Status Register
0x01C2 200C
0x01E2 800C
ICCLKL
I2C Clock Low-Time Divider Register
0x01C2 2010
0x01E2 8010
ICCLKH
I2C Clock High-Time Divider Register
0x01C2 2014
0x01E2 8014
ICCNT
I2C Data Count Register
0x01C2 2018
0x01E2 8018
ICDRR
I2C Data Receive Register
0x01C2 201C
0x01E2 801C
ICSAR
I2C Slave Address Register
0x01C2 2020
0x01E2 8020
ICDXR
I2C Data Transmit Register
0x01C2 2024
0x01E2 8024
ICMDR
I2C Mode Register
0x01C2 2028
0x01E2 8028
ICIVR
I2C Interrupt Vector Register
0x01C2 202C
0x01E2 802C
ICEMDR
I2C Extended Mode Register
0x01C2 2030
0x01E2 8030
ICPSC
I2C Prescaler Register
0x01C2 2034
0x01E2 8034
REVID1
I2C Revision Identification Register 1
0x01C2 2038
0x01E2 8038
REVID2
I2C Revision Identification Register 2
0x01C2 2048
0x01E2 8048
ICPFUNC
I2C Pin Function Register
0x01C2 204C
0x01E2 804C
ICPDIR
I2C Pin Direction Register
0x01C2 2050
0x01E2 8050
ICPDIN
I2C Pin Data In Register
0x01C2 2054
0x01E2 8054
ICPDOUT
I2C Pin Data Out Register
0x01C2 2058
0x01E2 8058
ICPDSET
I2C Pin Data Set Register
0x01C2 205C
0x01E2 805C
ICPDCLR
I2C Pin Data Clear Register
Copyright © 2009–2017, Texas Instruments Incorporated
REGISTER DESCRIPTION
Peripheral Information and Electrical Specifications
Submit Documentation Feedback
Product Folder Links: OMAP-L138
191
OMAP-L138
SPRS586J – JUNE 2009 – REVISED JANUARY 2017
www.ti.com
6.18.3 I2C Electrical Data/Timing
6.18.3.1 Inter-Integrated Circuit (I2C) Timing
Table 6-87 and Table 6-88 assume testing over recommended operating conditions (see Figure 6-43 and
Figure 6-44).
Table 6-87. Timing Requirements for I2C Input
1.3V, 1.2V, 1.1V, 1.0V
NO.
Standard Mode
MIN
MAX
Fast Mode
MIN
UNIT
MAX
1
tc(SCL)
Cycle time, I2Cx_SCL
10
2.5
μs
2
tsu(SCLH-SDAL)
Setup time, I2Cx_SCL high before I2Cx_SDA low
4.7
0.6
μs
3
th(SCLL-SDAL)
Hold time, I2Cx_SCL low after I2Cx_SDA low
4
0.6
μs
4
tw(SCLL)
Pulse duration, I2Cx_SCL low
4.7
1.3
μs
5
tw(SCLH)
Pulse duration, I2Cx_SCL high
6
tsu(SDA-SCLH)
Setup time, I2Cx_SDA before I2Cx_SCL high
7
th(SDA-SCLL)
Hold time, I2Cx_SDA after I2Cx_SCL low
8
tw(SDAH)
Pulse duration, I2Cx_SDA high
9
tr(SDA)
Rise time, I2Cx_SDA
1000
10
tr(SCL)
Rise time, I2Cx_SCL
11
tf(SDA)
12
tf(SCL)
13
tsu(SCLH-SDAH)
Setup time, I2Cx_SCL high before I2Cx_SDA high
14
tw(SP)
Pulse duration, spike (must be suppressed)
15
Cb
Capacitive load for each bus line
4
0.6
μs
250
100
ns
0
0
0.9
μs
20 + 0.1Cb
300
ns
1000
20 + 0.1Cb
300
ns
Fall time, I2Cx_SDA
300
20 + 0.1Cb
300
ns
Fall time, I2Cx_SCL
300
20 + 0.1Cb
300
ns
50
ns
400
pF
4.7
1.3
4
0.6
N/A
0
μs
μs
400
Table 6-88. Switching Characteristics for I2C
(1)
1.3V, 1.2V, 1.1V, 1.0V
NO.
PARAMETER
Standard Mode
MIN
MAX
Fast Mode
MIN
UNIT
MAX
16
tc(SCL)
Cycle time, I2Cx_SCL
10
2.5
μs
17
tsu(SCLH-SDAL)
Setup time, I2Cx_SCL high before I2Cx_SDA low
4.7
0.6
μs
18
th(SDAL-SCLL)
Hold time, I2Cx_SCL low after I2Cx_SDA low
4
0.6
μs
19
tw(SCLL)
Pulse duration, I2Cx_SCL low
4.7
1.3
μs
20
tw(SCLH)
Pulse duration, I2Cx_SCL high
4
0.6
μs
21
tsu(SDAV-SCLH)
Setup time, I2Cx_SDA valid before I2Cx_SCL high
250
100
ns
22
th(SCLL-SDAV)
Hold time, I2Cx_SDA valid after I2Cx_SCL low
23
tw(SDAH)
Pulse duration, I2Cx_SDA high
28
tsu(SCLH-SDAH)
Setup time, I2Cx_SCL high before I2Cx_SDA high
(1)
192
0
0
4.7
1.3
0.9
μs
4
0.6
μs
μs
I2C must be configured correctly to meet the timings in Table 6-88.
Peripheral Information and Electrical Specifications
Submit Documentation Feedback
Product Folder Links: OMAP-L138
Copyright © 2009–2017, Texas Instruments Incorporated
OMAP-L138
www.ti.com
SPRS586J – JUNE 2009 – REVISED JANUARY 2017
11
9
I2Cx_SDA
6
8
14
4
13
5
10
I2Cx_SCL
1
12
3
2
7
3
Stop
Start
Repeated
Start
Stop
Figure 6-43. I2C Receive Timings
26
24
I2Cx_SDA
21
23
19
28
20
25
I2Cx_SCL
16
27
18
17
22
18
Stop
Start
Repeated
Start
Stop
Figure 6-44. I2C Transmit Timings
Copyright © 2009–2017, Texas Instruments Incorporated
Peripheral Information and Electrical Specifications
Submit Documentation Feedback
Product Folder Links: OMAP-L138
193
OMAP-L138
SPRS586J – JUNE 2009 – REVISED JANUARY 2017
6.19
www.ti.com
Universal Asynchronous Receiver/Transmitter (UART)
Each UART has the following features:
• 16-byte storage space for both the transmitter and receiver FIFOs
• 1, 4, 8, or 14 byte selectable receiver FIFO trigger level for autoflow control and DMA
• DMA signaling capability for both received and transmitted data
• Programmable auto-rts and auto-cts for autoflow control
• Programmable Baud Rate up to 12 MBaud
• Programmable Oversampling Options of x13 and x16
• Frequency pre-scale values from 1 to 65,535 to generate appropriate baud rates
• Prioritized interrupts
• Programmable serial data formats
– 5, 6, 7, or 8-bit characters
– Even, odd, or no parity bit generation and detection
– 1, 1.5, or 2 stop bit generation
• False start bit detection
• Line break generation and detection
• Internal diagnostic capabilities
– Loopback controls for communications link fault isolation
– Break, parity, overrun, and framing error simulation
• Modem control functions (CTS, RTS)
The UART registers are listed in Section 6.19.1
6.19.1 UART Peripheral Registers Description(s)
Table 6-89 is the list of UART registers.
Table 6-89. UART Registers
UART0
BYTE ADDRESS
UART1
BYTE ADDRESS
UART2
BYTE ADDRESS
ACRONYM
0x01C4 2000
0x01D0 C000
0x01D0 D000
RBR
Receiver Buffer Register (read only)
0x01C4 2000
0x01D0 C000
0x01D0 D000
THR
Transmitter Holding Register (write only)
0x01C4 2004
0x01D0 C004
0x01D0 D004
IER
Interrupt Enable Register
0x01C4 2008
0x01D0 C008
0x01D0 D008
IIR
Interrupt Identification Register (read only)
0x01C4 2008
0x01D0 C008
0x01D0 D008
FCR
FIFO Control Register (write only)
0x01C4 200C
0x01D0 C00C
0x01D0 D00C
LCR
Line Control Register
0x01C4 2010
0x01D0 C010
0x01D0 D010
MCR
Modem Control Register
0x01C4 2014
0x01D0 C014
0x01D0 D014
LSR
Line Status Register
0x01C4 2018
0x01D0 C018
0x01D0 D018
MSR
Modem Status Register
0x01C4 201C
0x01D0 C01C
0x01D0 D01C
SCR
Scratchpad Register
0x01C4 2020
0x01D0 C020
0x01D0 D020
DLL
Divisor LSB Latch
0x01C4 2024
0x01D0 C024
0x01D0 D024
DLH
Divisor MSB Latch
0x01C4 2028
0x01D0 C028
0x01D0 D028
REVID1
0x01C4 2030
0x01D0 C030
0x01D0 D030
PWREMU_MGMT
0x01C4 2034
0x01D0 C034
0x01D0 D034
MDR
194
REGISTER DESCRIPTION
Revision Identification Register 1
Power and Emulation Management Register
Mode Definition Register
Peripheral Information and Electrical Specifications
Submit Documentation Feedback
Product Folder Links: OMAP-L138
Copyright © 2009–2017, Texas Instruments Incorporated
OMAP-L138
www.ti.com
SPRS586J – JUNE 2009 – REVISED JANUARY 2017
6.19.2 UART Electrical Data/Timing
Table 6-90. Timing Requirements for UART Receive (1) (see Figure 6-45)
1.3V, 1.2V, 1.1V, 1.0V
NO.
MIN
MAX
UNIT
4
tw(URXDB)
Pulse duration, receive data bit (RXDn)
0.96U
1.05U
ns
5
tw(URXSB)
Pulse duration, receive start bit
0.96U
1.05U
ns
(1)
U = UART baud time = 1/programmed baud rate.
Table 6-91. Switching Characteristics Over Recommended Operating Conditions for UARTx Transmit (1)
(see Figure 6-45)
NO.
(1)
(2)
(3)
(4)
1.3V, 1.2V, 1.1V, 1.0V
PARAMETER
MIN
MAX
D/E
(2) (3)
UNIT
1
f(baud)
Maximum programmable baud rate
MBaud
2
tw(UTXDB)
Pulse duration, transmit data bit (TXDn)
U-2
U+2
ns
3
tw(UTXSB)
Pulse duration, transmit start bit
U-2
U+2
ns
(4)
U = UART baud time = 1/programmed baud rate.
D = UART input clock in MHz.
For UART0, the UART input clock is SYSCLK2.
For UART1 or UART2, the UART input clock is ASYNC3 (either PLL0_SYCLK2 or PLL1_SYSCLK2).
E = UART divisor x UART sampling rate. The UART divisor is set through the UART divisor latch registers (DLL and DLH). The UART
sampling rate is set through the over-sampling mode select bit (OSM_SEL) of the UART mode definition register (MDR).
Baud rate is not indicative of data rate. Actual data rate will be limited by system factors such as EDMA loading, EMIF/DDR loading,
system frequency, etc.
3
2
UART_TXDn
Start
Bit
Data Bits
5
4
UART_RXDn
Start
Bit
Data Bits
Figure 6-45. UART Transmit/Receive Timing
Copyright © 2009–2017, Texas Instruments Incorporated
Peripheral Information and Electrical Specifications
Submit Documentation Feedback
Product Folder Links: OMAP-L138
195
OMAP-L138
SPRS586J – JUNE 2009 – REVISED JANUARY 2017
www.ti.com
6.20 Universal Serial Bus OTG Controller (USB0) [USB2.0 OTG]
The USB2.0 peripheral supports the following features:
• USB 2.0 peripheral at speeds high speed (HS: 480 Mb/s) and full speed (FS: 12 Mb/s)
• USB 2.0 host at speeds HS, FS, and low speed (LS: 1.5 Mb/s)
• All transfer modes (control, bulk, interrupt, and isochronous)
• 4 Transmit (TX) and 4 Receive (RX) endpoints in addition to endpoint 0
• FIFO RAM
– 4K endpoint
– Programmable size
• Integrated USB 2.0 High Speed PHY
• Connects to a standard Charge Pump for VBUS 5 V generation
• RNDIS mode for accelerating RNDIS type protocols using short packet termination over USB
Important Notice: The USB0 controller module clock (PLL0_SYSCLK2) must be greater than 30 MHz for
proper operation of the USB controller. A clock rate of 60 MHz or greater is recommended to avoid data
throughput reduction.
Table 6-92 is the list of USB OTG registers.
Table 6-92. Universal Serial Bus OTG (USB0) Registers
BYTE ADDRESS
196
ACRONYM
REGISTER DESCRIPTION
0x01E0 0000
REVID
Revision Register
0x01E0 0004
CTRLR
Control Register
0x01E0 0008
STATR
Status Register
0x01E0 000C
EMUR
Emulation Register
0x01E0 0010
MODE
Mode Register
0x01E0 0014
AUTOREQ
Autorequest Register
0x01E0 0018
SRPFIXTIME
SRP Fix Time Register
0x01E0 001C
TEARDOWN
Teardown Register
0x01E0 0020
INTSRCR
USB Interrupt Source Register
0x01E0 0024
INTSETR
USB Interrupt Source Set Register
0x01E0 0028
INTCLRR
USB Interrupt Source Clear Register
0x01E0 002C
INTMSKR
USB Interrupt Mask Register
0x01E0 0030
INTMSKSETR
USB Interrupt Mask Set Register
0x01E0 0034
INTMSKCLRR
USB Interrupt Mask Clear Register
0x01E0 0038
INTMASKEDR
USB Interrupt Source Masked Register
0x01E0 003C
EOIR
USB End of Interrupt Register
0x01E0 0040
-
0x01E0 0050
GENRNDISSZ1
Reserved
Generic RNDIS Size EP1
0x01E0 0054
GENRNDISSZ2
Generic RNDIS Size EP2
0x01E0 0058
GENRNDISSZ3
Generic RNDIS Size EP3
0x01E0 005C
GENRNDISSZ4
Generic RNDIS Size EP4
0x01E0 0400
FADDR
Function Address Register
0x01E0 0401
POWER
Power Management Register
0x01E0 0402
INTRTX
Interrupt Register for Endpoint 0 plus Transmit Endpoints 1 to 4
0x01E0 0404
INTRRX
Interrupt Register for Receive Endpoints 1 to 4
0x01E0 0406
INTRTXE
Interrupt enable register for INTRTX
0x01E0 0408
INTRRXE
Interrupt Enable Register for INTRRX
0x01E0 040A
INTRUSB
Interrupt Register for Common USB Interrupts
0x01E0 040B
INTRUSBE
Interrupt Enable Register for INTRUSB
Peripheral Information and Electrical Specifications
Submit Documentation Feedback
Product Folder Links: OMAP-L138
Copyright © 2009–2017, Texas Instruments Incorporated
OMAP-L138
www.ti.com
SPRS586J – JUNE 2009 – REVISED JANUARY 2017
Table 6-92. Universal Serial Bus OTG (USB0) Registers (continued)
BYTE ADDRESS
ACRONYM
0x01E0 040C
FRAME
REGISTER DESCRIPTION
Frame Number Register
0x01E0 040E
INDEX
Index Register for Selecting the Endpoint Status and Control Registers
0x01E0 040F
TESTMODE
Register to Enable the USB 2.0 Test Modes
Indexed Registers
These registers operate on the endpoint selected by the INDEX register
0x01E0 0410
TXMAXP
Maximum Packet Size for Peripheral/Host Transmit Endpoint
(Index register set to select Endpoints 1-4 only)
0x01E0 0412
PERI_CSR0
Control Status Register for Endpoint 0 in Peripheral Mode.
(Index register set to select Endpoint 0)
HOST_CSR0
Control Status Register for Endpoint 0 in Host Mode.
(Index register set to select Endpoint 0)
PERI_TXCSR
Control Status Register for Peripheral Transmit Endpoint.
(Index register set to select Endpoints 1-4)
HOST_TXCSR
Control Status Register for Host Transmit Endpoint.
(Index register set to select Endpoints 1-4)
0x01E0 0414
RXMAXP
0x01E0 0416
PERI_RXCSR
Control Status Register for Peripheral Receive Endpoint.
(Index register set to select Endpoints 1-4)
HOST_RXCSR
Control Status Register for Host Receive Endpoint.
(Index register set to select Endpoints 1-4)
0x01E0 0418
COUNT0
RXCOUNT
0x01E0 041A
HOST_TYPE0
HOST_TXTYPE
0x01E0 041B
HOST_NAKLIMIT0
HOST_TXINTERVAL
Maximum Packet Size for Peripheral/Host Receive Endpoint
(Index register set to select Endpoints 1-4 only)
Number of Received Bytes in Endpoint 0 FIFO.
(Index register set to select Endpoint 0)
Number of Bytes in Host Receive Endpoint FIFO.
(Index register set to select Endpoints 1- 4)
Defines the speed of Endpoint 0
Sets the operating speed, transaction protocol and peripheral endpoint number for
the host Transmit endpoint. (Index register set to select Endpoints 1-4 only)
Sets the NAK response timeout on Endpoint 0.
(Index register set to select Endpoint 0)
Sets the polling interval for Interrupt/ISOC transactions or the NAK response
timeout on Bulk transactions for host Transmit endpoint. (Index register set to
select Endpoints 1-4 only)
0x01E0 041C
HOST_RXTYPE
Sets the operating speed, transaction protocol and peripheral endpoint number for
the host Receive endpoint. (Index register set to select Endpoints 1-4 only)
0x01E0 041D
HOST_RXINTERVAL
Sets the polling interval for Interrupt/ISOC transactions or the NAK response
timeout on Bulk transactions for host Receive endpoint. (Index register set to select
Endpoints 1-4 only)
0x01E0 041F
CONFIGDATA
Returns details of core configuration. (Index register set to select Endpoint 0)
FIFO
0x01E0 0420
FIFO0
Transmit and Receive FIFO Register for Endpoint 0
0x01E0 0424
FIFO1
Transmit and Receive FIFO Register for Endpoint 1
0x01E0 0428
FIFO2
Transmit and Receive FIFO Register for Endpoint 2
0x01E0 042C
FIFO3
Transmit and Receive FIFO Register for Endpoint 3
0x01E0 0430
FIFO4
Transmit and Receive FIFO Register for Endpoint 4
0x01E0 0460
DEVCTL
0x01E0 0462
TXFIFOSZ
Transmit Endpoint FIFO Size
(Index register set to select Endpoints 1-4 only)
0x01E0 0463
RXFIFOSZ
Receive Endpoint FIFO Size
(Index register set to select Endpoints 1-4 only)
0x01E0 0464
TXFIFOADDR
Transmit Endpoint FIFO Address
(Index register set to select Endpoints 1-4 only)
OTG Device Control
Device Control Register
Dynamic FIFO Control
Copyright © 2009–2017, Texas Instruments Incorporated
Peripheral Information and Electrical Specifications
Submit Documentation Feedback
Product Folder Links: OMAP-L138
197
OMAP-L138
SPRS586J – JUNE 2009 – REVISED JANUARY 2017
www.ti.com
Table 6-92. Universal Serial Bus OTG (USB0) Registers (continued)
BYTE ADDRESS
ACRONYM
0x01E0 0466
RXFIFOADDR
0x01E0 046C
HWVERS
REGISTER DESCRIPTION
Receive Endpoint FIFO Address
(Index register set to select Endpoints 1-4 only)
Hardware Version Register
Target Endpoint 0 Control Registers, Valid Only in Host Mode
0x01E0 0480
TXFUNCADDR
Address of the target function that has to be accessed through the associated
Transmit Endpoint.
0x01E0 0482
TXHUBADDR
Address of the hub that has to be accessed through the associated Transmit
Endpoint. This is used only when full speed or low speed device is connected via a
USB2.0 high-speed hub.
0x01E0 0483
TXHUBPORT
Port of the hub that has to be accessed through the associated Transmit Endpoint.
This is used only when full speed or low speed device is connected via a USB2.0
high-speed hub.
0x01E0 0484
RXFUNCADDR
0x01E0 0486
RXHUBADDR
Address of the hub that has to be accessed through the associated Receive
Endpoint. This is used only when full speed or low speed device is connected via a
USB2.0 high-speed hub.
0x01E0 0487
RXHUBPORT
Port of the hub that has to be accessed through the associated Receive Endpoint.
This is used only when full speed or low speed device is connected via a USB2.0
high-speed hub.
0x01E0 0488
TXFUNCADDR
0x01E0 048A
TXHUBADDR
Address of the hub that has to be accessed through the associated Transmit
Endpoint. This is used only when full speed or low speed device is connected via a
USB2.0 high-speed hub.
0x01E0 048B
TXHUBPORT
Port of the hub that has to be accessed through the associated Transmit Endpoint.
This is used only when full speed or low speed device is connected via a USB2.0
high-speed hub.
0x01E0 048C
RXFUNCADDR
0x01E0 048E
RXHUBADDR
Address of the hub that has to be accessed through the associated Receive
Endpoint. This is used only when full speed or low speed device is connected via a
USB2.0 high-speed hub.
0x01E0 048F
RXHUBPORT
Port of the hub that has to be accessed through the associated Receive Endpoint.
This is used only when full speed or low speed device is connected via a USB2.0
high-speed hub.
Address of the target function that has to be accessed through the associated
Receive Endpoint.
Target Endpoint 1 Control Registers, Valid Only in Host Mode
Address of the target function that has to be accessed through the associated
Transmit Endpoint.
Address of the target function that has to be accessed through the associated
Receive Endpoint.
Target Endpoint 2 Control Registers, Valid Only in Host Mode
0x01E0 0490
TXFUNCADDR
Address of the target function that has to be accessed through the associated
Transmit Endpoint.
0x01E0 0492
TXHUBADDR
Address of the hub that has to be accessed through the associated Transmit
Endpoint. This is used only when full speed or low speed device is connected via a
USB2.0 high-speed hub.
0x01E0 0493
TXHUBPORT
Port of the hub that has to be accessed through the associated Transmit Endpoint.
This is used only when full speed or low speed device is connected via a USB2.0
high-speed hub.
0x01E0 0494
RXFUNCADDR
0x01E0 0496
RXHUBADDR
Address of the hub that has to be accessed through the associated Receive
Endpoint. This is used only when full speed or low speed device is connected via a
USB2.0 high-speed hub.
0x01E0 0497
RXHUBPORT
Port of the hub that has to be accessed through the associated Receive Endpoint.
This is used only when full speed or low speed device is connected via a USB2.0
high-speed hub.
0x01E0 0498
TXFUNCADDR
Address of the target function that has to be accessed through the associated
Receive Endpoint.
Target Endpoint 3 Control Registers, Valid Only in Host Mode
198
Address of the target function that has to be accessed through the associated
Transmit Endpoint.
Peripheral Information and Electrical Specifications
Submit Documentation Feedback
Product Folder Links: OMAP-L138
Copyright © 2009–2017, Texas Instruments Incorporated
OMAP-L138
www.ti.com
SPRS586J – JUNE 2009 – REVISED JANUARY 2017
Table 6-92. Universal Serial Bus OTG (USB0) Registers (continued)
BYTE ADDRESS
ACRONYM
0x01E0 049A
TXHUBADDR
REGISTER DESCRIPTION
Address of the hub that has to be accessed through the associated Transmit
Endpoint. This is used only when full speed or low speed device is connected via a
USB2.0 high-speed hub.
0x01E0 049B
TXHUBPORT
Port of the hub that has to be accessed through the associated Transmit Endpoint.
This is used only when full speed or low speed device is connected via a USB2.0
high-speed hub.
0x01E0 049C
RXFUNCADDR
0x01E0 049E
RXHUBADDR
Address of the hub that has to be accessed through the associated Receive
Endpoint. This is used only when full speed or low speed device is connected via a
USB2.0 high-speed hub.
0x01E0 049F
RXHUBPORT
Port of the hub that has to be accessed through the associated Receive Endpoint.
This is used only when full speed or low speed device is connected via a USB2.0
high-speed hub.
0x01E0 04A0
TXFUNCADDR
0x01E0 04A2
TXHUBADDR
Address of the hub that has to be accessed through the associated Transmit
Endpoint. This is used only when full speed or low speed device is connected via a
USB2.0 high-speed hub.
0x01E0 04A3
TXHUBPORT
Port of the hub that has to be accessed through the associated Transmit Endpoint.
This is used only when full speed or low speed device is connected via a USB2.0
high-speed hub.
0x01E0 04A4
RXFUNCADDR
0x01E0 04A6
RXHUBADDR
Address of the hub that has to be accessed through the associated Receive
Endpoint. This is used only when full speed or low speed device is connected via a
USB2.0 high-speed hub.
0x01E0 04A7
RXHUBPORT
Port of the hub that has to be accessed through the associated Receive Endpoint.
This is used only when full speed or low speed device is connected via a USB2.0
high-speed hub.
0x01E0 0502
PERI_CSR0
Control Status Register for Endpoint 0 in Peripheral Mode
HOST_CSR0
Control Status Register for Endpoint 0 in Host Mode
Address of the target function that has to be accessed through the associated
Receive Endpoint.
Target Endpoint 4 Control Registers, Valid Only in Host Mode
Address of the target function that has to be accessed through the associated
Transmit Endpoint.
Address of the target function that has to be accessed through the associated
Receive Endpoint.
Control and Status Register for Endpoint 0
0x01E0 0508
COUNT0
0x01E0 050A
HOST_TYPE0
Number of Received Bytes in Endpoint 0 FIFO
0x01E0 050B
HOST_NAKLIMIT0
0x01E0 050F
CONFIGDATA
Defines the Speed of Endpoint 0
Sets the NAK Response Timeout on Endpoint 0
Returns details of core configuration.
Control and Status Register for Endpoint 1
0x01E0 0510
TXMAXP
0x01E0 0512
PERI_TXCSR
Maximum Packet Size for Peripheral/Host Transmit Endpoint
Control Status Register for Peripheral Transmit Endpoint (peripheral mode)
HOST_TXCSR
Control Status Register for Host Transmit Endpoint (host mode)
0x01E0 0514
RXMAXP
0x01E0 0516
PERI_RXCSR
Maximum Packet Size for Peripheral/Host Receive Endpoint
Control Status Register for Peripheral Receive Endpoint (peripheral mode)
HOST_RXCSR
Control Status Register for Host Receive Endpoint (host mode)
0x01E0 0518
RXCOUNT
0x01E0 051A
HOST_TXTYPE
0x01E0 051B
HOST_TXINTERVAL
0x01E0 051C
HOST_RXTYPE
0x01E0 051D
HOST_RXINTERVAL
Number of Bytes in Host Receive endpoint FIFO
Sets the operating speed, transaction protocol and peripheral endpoint number for
the host Transmit endpoint.
Sets the polling interval for Interrupt/ISOC transactions or the NAK response
timeout on Bulk transactions for host Transmit endpoint.
Sets the operating speed, transaction protocol and peripheral endpoint number for
the host Receive endpoint.
Sets the polling interval for Interrupt/ISOC transactions or the NAK response
timeout on Bulk transactions for host Receive endpoint.
Control and Status Register for Endpoint 2
Copyright © 2009–2017, Texas Instruments Incorporated
Peripheral Information and Electrical Specifications
Submit Documentation Feedback
Product Folder Links: OMAP-L138
199
OMAP-L138
SPRS586J – JUNE 2009 – REVISED JANUARY 2017
www.ti.com
Table 6-92. Universal Serial Bus OTG (USB0) Registers (continued)
BYTE ADDRESS
ACRONYM
0x01E0 0520
TXMAXP
0x01E0 0522
0x01E0 0524
0x01E0 0526
REGISTER DESCRIPTION
Maximum Packet Size for Peripheral/Host Transmit Endpoint
PERI_TXCSR
Control Status Register for Peripheral Transmit Endpoint (peripheral mode)
HOST_TXCSR
Control Status Register for Host Transmit Endpoint (host mode)
RXMAXP
Maximum Packet Size for Peripheral/Host Receive Endpoint
PERI_RXCSR
Control Status Register for Peripheral Receive Endpoint (peripheral mode)
HOST_RXCSR
Control Status Register for Host Receive Endpoint (host mode)
0x01E0 0528
RXCOUNT
Number of Bytes in Host Receive endpoint FIFO
0x01E0 052A
HOST_TXTYPE
0x01E0 052B
HOST_TXINTERVAL
0x01E0 052C
HOST_RXTYPE
0x01E0 052D
HOST_RXINTERVAL
0x01E0 0530
TXMAXP
0x01E0 0532
PERI_TXCSR
Control Status Register for Peripheral Transmit Endpoint (peripheral mode)
HOST_TXCSR
Control Status Register for Host Transmit Endpoint (host mode)
Sets the operating speed, transaction protocol and peripheral endpoint number for
the host Transmit endpoint.
Sets the polling interval for Interrupt/ISOC transactions or the NAK response
timeout on Bulk transactions for host Transmit endpoint.
Sets the operating speed, transaction protocol and peripheral endpoint number for
the host Receive endpoint.
Sets the polling interval for Interrupt/ISOC transactions or the NAK response
timeout on Bulk transactions for host Receive endpoint.
Control and Status Register for Endpoint 3
Maximum Packet Size for Peripheral/Host Transmit Endpoint
0x01E0 0534
RXMAXP
0x01E0 0536
PERI_RXCSR
Maximum Packet Size for Peripheral/Host Receive Endpoint
Control Status Register for Peripheral Receive Endpoint (peripheral mode)
HOST_RXCSR
Control Status Register for Host Receive Endpoint (host mode)
0x01E0 0538
RXCOUNT
0x01E0 053A
HOST_TXTYPE
0x01E0 053B
HOST_TXINTERVAL
0x01E0 053C
HOST_RXTYPE
0x01E0 053D
HOST_RXINTERVAL
Number of Bytes in Host Receive endpoint FIFO
Sets the operating speed, transaction protocol and peripheral endpoint number for
the host Transmit endpoint.
Sets the polling interval for Interrupt/ISOC transactions or the NAK response
timeout on Bulk transactions for host Transmit endpoint.
Sets the operating speed, transaction protocol and peripheral endpoint number for
the host Receive endpoint.
Sets the polling interval for Interrupt/ISOC transactions or the NAK response
timeout on Bulk transactions for host Receive endpoint.
Control and Status Register for Endpoint 4
0x01E0 0540
TXMAXP
0x01E0 0542
PERI_TXCSR
Maximum Packet Size for Peripheral/Host Transmit Endpoint
Control Status Register for Peripheral Transmit Endpoint (peripheral mode)
HOST_TXCSR
Control Status Register for Host Transmit Endpoint (host mode)
0x01E0 0544
RXMAXP
0x01E0 0546
PERI_RXCSR
Control Status Register for Peripheral Receive Endpoint (peripheral mode)
HOST_RXCSR
Control Status Register for Host Receive Endpoint (host mode)
0x01E0 0548
RXCOUNT
0x01E0 054A
HOST_TXTYPE
0x01E0 054B
HOST_TXINTERVAL
0x01E0 054C
HOST_RXTYPE
0x01E0 054D
HOST_RXINTERVAL
0x01E0 1000
DMAREVID
Maximum Packet Size for Peripheral/Host Receive Endpoint
Number of Bytes in Host Receive endpoint FIFO
Sets the operating speed, transaction protocol and peripheral endpoint number for
the host Transmit endpoint.
Sets the polling interval for Interrupt/ISOC transactions or the NAK response
timeout on Bulk transactions for host Transmit endpoint.
Sets the operating speed, transaction protocol and peripheral endpoint number for
the host Receive endpoint.
Sets the polling interval for Interrupt/ISOC transactions or the NAK response
timeout on Bulk transactions for host Receive endpoint.
DMA Registers
200
0x01E0 1004
TDFDQ
0x01E0 1008
DMAEMU
DMA Revision Register
DMA Teardown Free Descriptor Queue Control Register
DMA Emulation Control Register
Peripheral Information and Electrical Specifications
Submit Documentation Feedback
Product Folder Links: OMAP-L138
Copyright © 2009–2017, Texas Instruments Incorporated
OMAP-L138
www.ti.com
SPRS586J – JUNE 2009 – REVISED JANUARY 2017
Table 6-92. Universal Serial Bus OTG (USB0) Registers (continued)
BYTE ADDRESS
ACRONYM
REGISTER DESCRIPTION
0x01E0 1800
TXGCR[0]
Transmit Channel 0 Global Configuration Register
Receive Channel 0 Global Configuration Register
0x01E0 1808
RXGCR[0]
0x01E0 180C
RXHPCRA[0]
Receive Channel 0 Host Packet Configuration Register A
0x01E0 1810
RXHPCRB[0]
Receive Channel 0 Host Packet Configuration Register B
0x01E0 1820
TXGCR[1]
Transmit Channel 1 Global Configuration Register
0x01E0 1828
RXGCR[1]
Receive Channel 1 Global Configuration Register
0x01E0 182C
RXHPCRA[1]
Receive Channel 1 Host Packet Configuration Register A
0x01E0 1830
RXHPCRB[1]
Receive Channel 1 Host Packet Configuration Register B
0x01E0 1840
TXGCR[2]
Transmit Channel 2 Global Configuration Register
0x01E0 1848
RXGCR[2]
Receive Channel 2 Global Configuration Register
0x01E0 184C
RXHPCRA[2]
Receive Channel 2 Host Packet Configuration Register A
0x01E0 1850
RXHPCRB[2]
Receive Channel 2 Host Packet Configuration Register B
0x01E0 1860
TXGCR[3]
Transmit Channel 3 Global Configuration Register
0x01E0 1868
RXGCR[3]
Receive Channel 3 Global Configuration Register
0x01E0 186C
RXHPCRA[3]
Receive Channel 3 Host Packet Configuration Register A
0x01E0 1870
RXHPCRB[3]
Receive Channel 3 Host Packet Configuration Register B
0x01E0 2000
DMA_SCHED_CTRL
0x01E0 2800
WORD[0]
DMA Scheduler Table Word 0
0x01E0 2804
WORD[1]
DMA Scheduler Table Word 1
...
...
0x01E0 28FC
WORD[63]
0x01E0 4000
QMGRREVID
0x01E0 4008
DIVERSION
0x01E0 4020
FDBSC0
Free Descriptor/Buffer Starvation Count Register 0
0x01E0 4024
FDBSC1
Free Descriptor/Buffer Starvation Count Register 1
0x01E0 4028
FDBSC2
Free Descriptor/Buffer Starvation Count Register 2
0x01E0 402C
FDBSC3
Free Descriptor/Buffer Starvation Count Register 3
0x01E0 4080
LRAM0BASE
Linking RAM Region 0 Base Address Register
0x01E0 4084
LRAM0SIZE
Linking RAM Region 0 Size Register
0x01E0 4088
LRAM1BASE
Linking RAM Region 1 Base Address Register
0x01E0 4090
PEND0
Queue Pending Register 0
0x01E0 4094
PEND1
Queue Pending Register 1
0x01E0 5000
QMEMRBASE[0]
Memory Region 0 Base Address Register
0x01E0 5004
QMEMRCTRL[0]
Memory Region 0 Control Register
0x01E0 5010
QMEMRBASE[1]
Memory Region 1 Base Address Register
0x01E0 5014
QMEMRCTRL[1]
Memory Region 1 Control Register
DMA Scheduler Control Register
...
DMA Scheduler Table Word 63
Queue Manager Registers
Queue Manager Revision Register
Queue Diversion Register
...
...
0x01E0 50F0
QMEMRBASE[15]
Memory Region 15 Base Address Register
0x01E0 50F4
QMEMRCTRL[15]
Memory Region 15 Control Register
0x01E0 600C
CTRLD[0]
Queue Manager Queue 0 Control Register D
0x01E0 601C
CTRLD[1]
Queue Manager Queue 1 Control Register D
...
...
0x01E0 63FC
CTRLD[63]
Queue Manager Queue 63 Status Register D
0x01E0 6800
QSTATA[0]
Queue Manager Queue 0 Status Register A
0x01E0 6804
QSTATB[0]
Queue Manager Queue 0 Status Register B
0x01E0 6808
QSTATC[0]
Queue Manager Queue 0 Status Register C
Copyright © 2009–2017, Texas Instruments Incorporated
...
...
Peripheral Information and Electrical Specifications
Submit Documentation Feedback
Product Folder Links: OMAP-L138
201
OMAP-L138
SPRS586J – JUNE 2009 – REVISED JANUARY 2017
www.ti.com
Table 6-92. Universal Serial Bus OTG (USB0) Registers (continued)
BYTE ADDRESS
ACRONYM
REGISTER DESCRIPTION
0x01E0 6810
QSTATA[1]
Queue Manager Queue 1 Status Register A
0x01E0 6814
QSTATB[1]
Queue Manager Queue 1 Status Register B
0x01E0 6818
QSTATC[1]
Queue Manager Queue 1 Status Register C
...
...
0x01E0 6BF0
QSTATA[63]
Queue Manager Queue 63 Status Register A
0x01E0 6BF4
QSTATB[63]
Queue Manager Queue 63 Status Register B
0x01E0 6BF8
QSTATC[63]
Queue Manager Queue 63 Status Register C
...
6.20.1 USB0 [USB2.0] Electrical Data/Timing
The USB PHY PLL can support input clock of the following frequencies: 12.0 MHz, 13.0 MHz, 19.2 MHz,
20.0 MHz, 24.0 MHz, 26.0 MHz, 38.4 MHz, 40.0 MHz or 48.0 MHz. USB_REFCLKIN jitter tolerance is 50
ppm (maximum).
Table 6-93. Switching Characteristics Over Recommended Operating Conditions for USB0 [USB2.0] (see
Figure 6-46)
1.3V, 1.2V, 1.1V, 1.0V
NO.
1
LOW SPEED
1.5 Mbps
PARAMETER
tr(D)
Rise time, USB_DP and USB_DM signals (1)
(1)
FULL SPEED
12 Mbps
HIGH SPEED
480 Mbps
MIN
MAX
MIN
MAX
MIN
75
300
4
20
0.5
UNIT
MAX
ns
2
tf(D)
Fall time, USB_DP and USB_DM signals
75
300
4
20
0.5
3
trfM
Rise/Fall time, matching (2)
80
120
90
111
–
–
4
VCRS
Output signal cross-over voltage (1)
1.3
2
1.3
2
–
–
5
tjr(source)NT
Source (Host) Driver jitter, next transition
tjr(FUNC)NT
Function Driver jitter, next transition
tjr(source)PT
Source (Host) Driver jitter, paired transition (4)
tjr(FUNC)PT
Function Driver jitter, paired transition
7
tw(EOPT)
Pulse duration, EOP transmitter
8
tw(EOPR)
Pulse duration, EOP receiver
9
t(DRATE)
Data Rate
10
ZDRV
Driver Output Resistance
11
ZINP
Receiver Input Impedance
6
(1)
(2)
(3)
(4)
1250
V
(3)
2
2
2
(3)
ns
1
1
(3)
ns
10
1
(3)
ns
–
ns
1500
160
175
82
–
ns
–
–
1.5
–
%
25
670
100k
ns
12
40.5
49.5
100k
ns
480 Mb/s
40.5
49.5
Ω
-
-
Ω
Low Speed: CL = 200 pF, Full Speed: CL = 50 pF, High Speed: CL = 50 pF
tRFM = (tr/tf) x 100. [Excluding the first transaction from the Idle state.]
For more detailed information, see the Universal Serial Bus Specification Revision 2.0, Chapter 7. Electrical.
tjr = tpx(1) - tpx(0)
USB_DM
VCRS
USB_DP
tper − tjr
90% VOH
10% VOL
tr
tf
Figure 6-46. USB2.0 Integrated Transceiver Interface Timing
202
Peripheral Information and Electrical Specifications
Submit Documentation Feedback
Product Folder Links: OMAP-L138
Copyright © 2009–2017, Texas Instruments Incorporated
OMAP-L138
www.ti.com
SPRS586J – JUNE 2009 – REVISED JANUARY 2017
6.21 Universal Serial Bus Host Controller (USB1) [USB1.1 OHCI]
All the USB interfaces for this device are compliant with Universal Serial Bus Specifications, Revision 1.1.
Table 6-94 is the list of USB Host Controller registers.
Table 6-94. USB Host Controller Registers
USB1
BYTE ADDRESS
(1)
(2)
(3)
ACRONYM
REGISTER DESCRIPTION
0x01E2 5000
HCREVISION
OHCI Revision Number Register
0x01E2 5004
HCCONTROL
HC Operating Mode Register
0x01E2 5008
HCCOMMANDSTATUS
HC Command and Status Register
0x01E2 500C
HCINTERRUPTSTATUS
HC Interrupt and Status Register
0x01E2 5010
HCINTERRUPTENABLE
HC Interrupt Enable Register
0x01E2 5014
HCINTERRUPTDISABLE
HC Interrupt Disable Register
0x01E2 5018
HCHCCA
HC HCAA Address Register (1)
0x01E2 501C
HCPERIODCURRENTED
HC Current Periodic Register (1)
0x01E2 5020
HCCONTROLHEADED
0x01E2 5024
HCCONTROLCURRENTED
0x01E2 5028
HCBULKHEADED
0x01E2 502C
HCBULKCURRENTED
HC Current Bulk Register (1)
0x01E2 5030
HCDONEHEAD
HC Head Done Register (1)
0x01E2 5034
HCFMINTERVAL
HC Frame Interval Register
0x01E2 5038
HCFMREMAINING
0x01E2 503C
HCFMNUMBER
0x01E2 5040
HCPERIODICSTART
0x01E2 5044
HCLSTHRESHOLD
0x01E2 5048
HCRHDESCRIPTORA
HC Root Hub A Register
0x01E2 504C
HCRHDESCRIPTORB
HC Root Hub B Register
0x01E2 5050
HCRHSTATUS
0x01E2 5054
HCRHPORTSTATUS1
HC Port 1 Status and Control Register (2)
0x01E2 5058
HCRHPORTSTATUS2
HC Port 2 Status and Control Register (3)
HC Head Control Register (1)
HC Current Control Register (1)
HC Head Bulk Register (1)
HC Frame Remaining Register
HC Frame Number Register
HC Periodic Start Register
HC Low-Speed Threshold Register
HC Root Hub Status Register
Restrictions apply to the physical addresses used in these registers.
Connected to the integrated USB1.1 phy pins (USB1_DM, USB1_DP).
Although the controller implements two ports, the second port cannot be used.
Table 6-95. Switching Characteristics Over Recommended Operating Conditions for USB1 [USB1.1]
1.3V, 1.2V, 1.1V, 1.0V
NO.
U1
PARAMETER
tr
LOW SPEED
Rise time, USB.DP and USB.DM signals (1)
U2
tf
Fall time, USB.DP and USB.DM signals
U3
tRFM
Rise/Fall time matching (2)
VCRS
Output signal cross-over voltage
U5
tj
Differential propagation jitter (3)
U6
fop
Operating frequency (4)
(1)
UNIT
MIN
MAX
MAX
MAX
75 (1)
300 (1)
4 (1)
20 (1)
ns
(1)
(1)
(1)
20 (1)
ns
110 (2)
%
75
80 (2)
U4
(1)
(2)
(3)
(4)
(1)
FULL SPEED
1.3
(1)
-25 (3)
300
120 (2)
2
(1)
25 (3)
1.5
4
90 (2)
1.3
(1)
-2 (3)
(1)
V
2 (3)
ns
12
MHz
2
Low Speed: CL = 200 pF. High Speed: CL = 50pF
tRFM =( tr/tf ) x 100
t jr = t px(1) - tpx(0)
fop = 1/tper
Copyright © 2009–2017, Texas Instruments Incorporated
Peripheral Information and Electrical Specifications
Submit Documentation Feedback
Product Folder Links: OMAP-L138
203
OMAP-L138
SPRS586J – JUNE 2009 – REVISED JANUARY 2017
www.ti.com
6.22 Ethernet Media Access Controller (EMAC)
The Ethernet Media Access Controller (EMAC) provides an efficient interface between device and the
network. The EMAC supports both 10Base-T and 100Base-TX, or 10 Mbits/second (Mbps) and 100 Mbps
in either half- or full-duplex mode, with hardware flow control and quality of service (QOS) support.
The EMAC controls the flow of packet data from the device to the PHY. The MDIO module controls PHY
configuration and status monitoring.
Both the EMAC and the MDIO modules interface to the device through a custom interface that allows
efficient data transmission and reception. This custom interface is referred to as the EMAC control
module, and is considered integral to the EMAC/MDIO peripheral. The control module is also used to
multiplex and control interrupts.
6.22.1
EMAC Peripheral Register Description(s)
Table 6-96. Ethernet Media Access Controller (EMAC) Registers
BYTE ADDRESS
0x01E2 3000
TXREV
0x01E2 3004
TXCONTROL
0x01E2 3008
TXTEARDOWN
REGISTER DESCRIPTION
Transmit Revision Register
Transmit Control Register
Transmit Teardown Register
0x01E2 3010
RXREV
0x01E2 3014
RXCONTROL
0x01E2 3018
RXTEARDOWN
Receive Teardown Register
0x01E2 3080
TXINTSTATRAW
Transmit Interrupt Status (Unmasked) Register
0x01E2 3084
TXINTSTATMASKED
0x01E2 3088
TXINTMASKSET
0x01E2 308C
TXINTMASKCLEAR
Receive Revision Register
Receive Control Register
Transmit Interrupt Status (Masked) Register
Transmit Interrupt Mask Set Register
Transmit Interrupt Clear Register
0x01E2 3090
MACINVECTOR
0x01E2 3094
MACEOIVECTOR
MAC End Of Interrupt Vector Register
0x01E2 30A0
RXINTSTATRAW
Receive Interrupt Status (Unmasked) Register
0x01E2 30A4
RXINTSTATMASKED
0x01E2 30A8
RXINTMASKSET
0x01E2 30AC
RXINTMASKCLEAR
Receive Interrupt Mask Clear Register
0x01E2 30B0
MACINTSTATRAW
MAC Interrupt Status (Unmasked) Register
0x01E2 30B4
MACINTSTATMASKED
0x01E2 30B8
MACINTMASKSET
0x01E2 30BC
MACINTMASKCLEAR
MAC Input Vector Register
Receive Interrupt Status (Masked) Register
Receive Interrupt Mask Set Register
MAC Interrupt Status (Masked) Register
MAC Interrupt Mask Set Register
MAC Interrupt Mask Clear Register
0x01E2 3100
RXMBPENABLE
Receive Multicast/Broadcast/Promiscuous Channel Enable Register
0x01E2 3104
RXUNICASTSET
Receive Unicast Enable Set Register
0x01E2 3108
RXUNICASTCLEAR
0x01E2 310C
RXMAXLEN
0x01E2 3110
RXBUFFEROFFSET
0x01E2 3114
204
ACRONYM
Receive Unicast Clear Register
Receive Maximum Length Register
Receive Buffer Offset Register
RXFILTERLOWTHRESH Receive Filter Low Priority Frame Threshold Register
0x01E2 3120
RX0FLOWTHRESH
Receive Channel 0 Flow Control Threshold Register
0x01E2 3124
RX1FLOWTHRESH
Receive Channel 1 Flow Control Threshold Register
0x01E2 3128
RX2FLOWTHRESH
Receive Channel 2 Flow Control Threshold Register
0x01E2 312C
RX3FLOWTHRESH
Receive Channel 3 Flow Control Threshold Register
0x01E2 3130
RX4FLOWTHRESH
Receive Channel 4 Flow Control Threshold Register
0x01E2 3134
RX5FLOWTHRESH
Receive Channel 5 Flow Control Threshold Register
0x01E2 3138
RX6FLOWTHRESH
Receive Channel 6 Flow Control Threshold Register
0x01E2 313C
RX7FLOWTHRESH
Receive Channel 7 Flow Control Threshold Register
Peripheral Information and Electrical Specifications
Submit Documentation Feedback
Product Folder Links: OMAP-L138
Copyright © 2009–2017, Texas Instruments Incorporated
OMAP-L138
www.ti.com
SPRS586J – JUNE 2009 – REVISED JANUARY 2017
Table 6-96. Ethernet Media Access Controller (EMAC) Registers (continued)
BYTE ADDRESS
ACRONYM
0x01E2 3140
RX0FREEBUFFER
Receive Channel 0 Free Buffer Count Register
REGISTER DESCRIPTION
0x01E2 3144
RX1FREEBUFFER
Receive Channel 1 Free Buffer Count Register
0x01E2 3148
RX2FREEBUFFER
Receive Channel 2 Free Buffer Count Register
0x01E2 314C
RX3FREEBUFFER
Receive Channel 3 Free Buffer Count Register
0x01E2 3150
RX4FREEBUFFER
Receive Channel 4 Free Buffer Count Register
0x01E2 3154
RX5FREEBUFFER
Receive Channel 5 Free Buffer Count Register
0x01E2 3158
RX6FREEBUFFER
Receive Channel 6 Free Buffer Count Register
0x01E2 315C
RX7FREEBUFFER
Receive Channel 7 Free Buffer Count Register
0x01E2 3160
MACCONTROL
MAC Control Register
0x01E2 3164
MACSTATUS
MAC Status Register
0x01E2 3168
EMCONTROL
Emulation Control Register
0x01E2 316C
FIFOCONTROL
0x01E2 3170
MACCONFIG
MAC Configuration Register
0x01E2 3174
SOFTRESET
Soft Reset Register
0x01E2 31D0
MACSRCADDRLO
MAC Source Address Low Bytes Register
0x01E2 31D4
MACSRCADDRHI
MAC Source Address High Bytes Register
0x01E2 31D8
MACHASH1
MAC Hash Address Register 1
0x01E2 31DC
MACHASH2
MAC Hash Address Register 2
0x01E2 31E0
BOFFTEST
Back Off Test Register
0x01E2 31E4
TPACETEST
0x01E2 31E8
RXPAUSE
Receive Pause Timer Register
Transmit Pause Timer Register
FIFO Control Register
Transmit Pacing Algorithm Test Register
0x01E2 31EC
TXPAUSE
0x01E2 3200 - 0x01E2 32FC
(see Table 6-97)
0x01E2 3500
MACADDRLO
MAC Address Low Bytes Register, Used in Receive Address Matching
0x01E2 3504
MACADDRHI
MAC Address High Bytes Register, Used in Receive Address Matching
0x01E2 3508
MACINDEX
0x01E2 3600
TX0HDP
Transmit Channel 0 DMA Head Descriptor Pointer Register
0x01E2 3604
TX1HDP
Transmit Channel 1 DMA Head Descriptor Pointer Register
0x01E2 3608
TX2HDP
Transmit Channel 2 DMA Head Descriptor Pointer Register
0x01E2 360C
TX3HDP
Transmit Channel 3 DMA Head Descriptor Pointer Register
0x01E2 3610
TX4HDP
Transmit Channel 4 DMA Head Descriptor Pointer Register
0x01E2 3614
TX5HDP
Transmit Channel 5 DMA Head Descriptor Pointer Register
0x01E2 3618
TX6HDP
Transmit Channel 6 DMA Head Descriptor Pointer Register
0x01E2 361C
TX7HDP
Transmit Channel 7 DMA Head Descriptor Pointer Register
0x01E2 3620
RX0HDP
Receive Channel 0 DMA Head Descriptor Pointer Register
0x01E2 3624
RX1HDP
Receive Channel 1 DMA Head Descriptor Pointer Register
0x01E2 3628
RX2HDP
Receive Channel 2 DMA Head Descriptor Pointer Register
0x01E2 362C
RX3HDP
Receive Channel 3 DMA Head Descriptor Pointer Register
0x01E2 3630
RX4HDP
Receive Channel 4 DMA Head Descriptor Pointer Register
0x01E2 3634
RX5HDP
Receive Channel 5 DMA Head Descriptor Pointer Register
0x01E2 3638
RX6HDP
Receive Channel 6 DMA Head Descriptor Pointer Register
0x01E2 363C
RX7HDP
Receive Channel 7 DMA Head Descriptor Pointer Register
0x01E2 3640
TX0CP
Transmit Channel 0 Completion Pointer Register
0x01E2 3644
TX1CP
Transmit Channel 1 Completion Pointer Register
EMAC Statistics Registers
MAC Index Register
0x01E2 3648
TX2CP
Transmit Channel 2 Completion Pointer Register
0x01E2 364C
TX3CP
Transmit Channel 3 Completion Pointer Register
0x01E2 3650
TX4CP
Transmit Channel 4 Completion Pointer Register
Copyright © 2009–2017, Texas Instruments Incorporated
Peripheral Information and Electrical Specifications
Submit Documentation Feedback
Product Folder Links: OMAP-L138
205
OMAP-L138
SPRS586J – JUNE 2009 – REVISED JANUARY 2017
www.ti.com
Table 6-96. Ethernet Media Access Controller (EMAC) Registers (continued)
BYTE ADDRESS
ACRONYM
0x01E2 3654
TX5CP
Transmit Channel 5 Completion Pointer Register
REGISTER DESCRIPTION
0x01E2 3658
TX6CP
Transmit Channel 6 Completion Pointer Register
0x01E2 365C
TX7CP
Transmit Channel 7 Completion Pointer Register
0x01E2 3660
RX0CP
Receive Channel 0 Completion Pointer Register
0x01E2 3664
RX1CP
Receive Channel 1 Completion Pointer Register
0x01E2 3668
RX2CP
Receive Channel 2 Completion Pointer Register
0x01E2 366C
RX3CP
Receive Channel 3 Completion Pointer Register
0x01E2 3670
RX4CP
Receive Channel 4 Completion Pointer Register
0x01E2 3674
RX5CP
Receive Channel 5 Completion Pointer Register
0x01E2 3678
RX6CP
Receive Channel 6 Completion Pointer Register
0x01E2 367C
RX7CP
Receive Channel 7 Completion Pointer Register
Table 6-97. EMAC Statistics Registers
206
BYTE ADDRESS
ACRONYM
REGISTER DESCRIPTION
0x01E2 3200
RXGOODFRAMES
Good Receive Frames Register
0x01E2 3204
RXBCASTFRAMES
Broadcast Receive Frames Register
(Total number of good broadcast frames received)
0x01E2 3208
RXMCASTFRAMES
Multicast Receive Frames Register
(Total number of good multicast frames received)
0x01E2 320C
RXPAUSEFRAMES
Pause Receive Frames Register
0x01E2 3210
RXCRCERRORS
0x01E2 3214
RXALIGNCODEERRORS
0x01E2 3218
RXOVERSIZED
0x01E2 321C
RXJABBER
0x01E2 3220
RXUNDERSIZED
Receive Undersized Frames Register
(Total number of undersized frames received)
0x01E2 3224
RXFRAGMENTS
Receive Frame Fragments Register
0x01E2 3228
RXFILTERED
0x01E2 322C
RXQOSFILTERED
0x01E2 3230
RXOCTETS
0x01E2 3234
TXGOODFRAMES
Good Transmit Frames Register
(Total number of good frames transmitted)
Receive CRC Errors Register
(Total number of frames received with CRC errors)
Receive Alignment/Code Errors Register
(Total number of frames received with alignment/code errors)
Receive Oversized Frames Register
(Total number of oversized frames received)
Receive Jabber Frames Register
(Total number of jabber frames received)
Filtered Receive Frames Register
Received QOS Filtered Frames Register
Receive Octet Frames Register
(Total number of received bytes in good frames)
0x01E2 3238
TXBCASTFRAMES
Broadcast Transmit Frames Register
0x01E2 323C
TXMCASTFRAMES
Multicast Transmit Frames Register
0x01E2 3240
TXPAUSEFRAMES
Pause Transmit Frames Register
0x01E2 3244
TXDEFERRED
Deferred Transmit Frames Register
0x01E2 3248
TXCOLLISION
Transmit Collision Frames Register
0x01E2 324C
TXSINGLECOLL
0x01E2 3250
TXMULTICOLL
0x01E2 3254
TXEXCESSIVECOLL
0x01E2 3258
TXLATECOLL
Transmit Late Collision Frames Register
0x01E2 325C
TXUNDERRUN
Transmit Underrun Error Register
0x01E2 3260
TXCARRIERSENSE
0x01E2 3264
TXOCTETS
0x01E2 3268
FRAME64
Transmit Single Collision Frames Register
Transmit Multiple Collision Frames Register
Transmit Excessive Collision Frames Register
Transmit Carrier Sense Errors Register
Transmit Octet Frames Register
Transmit and Receive 64 Octet Frames Register
Peripheral Information and Electrical Specifications
Submit Documentation Feedback
Product Folder Links: OMAP-L138
Copyright © 2009–2017, Texas Instruments Incorporated
OMAP-L138
www.ti.com
SPRS586J – JUNE 2009 – REVISED JANUARY 2017
Table 6-97. EMAC Statistics Registers (continued)
BYTE ADDRESS
ACRONYM
0x01E2 326C
FRAME65T127
Transmit and Receive 65 to 127 Octet Frames Register
REGISTER DESCRIPTION
0x01E2 3270
FRAME128T255
Transmit and Receive 128 to 255 Octet Frames Register
0x01E2 3274
FRAME256T511
Transmit and Receive 256 to 511 Octet Frames Register
0x01E2 3278
FRAME512T1023
Transmit and Receive 512 to 1023 Octet Frames Register
0x01E2 327C
FRAME1024TUP
Transmit and Receive 1024 to 1518 Octet Frames Register
0x01E2 3280
NETOCTETS
0x01E2 3284
RXSOFOVERRUNS
Receive FIFO or DMA Start of Frame Overruns Register
0x01E2 3288
RXMOFOVERRUNS
Receive FIFO or DMA Middle of Frame Overruns Register
0x01E2 328C
RXDMAOVERRUNS
Receive DMA Start of Frame and Middle of Frame Overruns Register
Network Octet Frames Register
Table 6-98. EMAC Control Module Registers
BYTE ADDRESS
ACRONYM
0x01E2 2000
REV
REGISTER DESCRIPTION
0x01E2 2004
SOFTRESET
EMAC Control Module Software Reset Register
0x01E2 200C
INTCONTROL
EMAC Control Module Interrupt Control Register
0x01E2 2010
C0RXTHRESHEN
0x01E2 2014
C0RXEN
EMAC Control Module Interrupt Core 0 Receive Interrupt Enable Register
EMAC Control Module Interrupt Core 0 Transmit Interrupt Enable Register
EMAC Control Module Revision Register
EMAC Control Module Interrupt Core 0 Receive Threshold Interrupt Enable Register
0x01E2 2018
C0TXEN
0x01E2 201C
C0MISCEN
0x01E2 2020
C1RXTHRESHEN
0x01E2 2024
C1RXEN
EMAC Control Module Interrupt Core 1 Receive Interrupt Enable Register
EMAC Control Module Interrupt Core 1 Transmit Interrupt Enable Register
EMAC Control Module Interrupt Core 0 Miscellaneous Interrupt Enable Register
EMAC Control Module Interrupt Core 1 Receive Threshold Interrupt Enable Register
0x01E2 2028
C1TXEN
0x01E2 202C
C1MISCEN
0x01E2 2030
C2RXTHRESHEN
0x01E2 2034
C2RXEN
EMAC Control Module Interrupt Core 2 Receive Interrupt Enable Register
0x01E2 2038
C2TXEN
EMAC Control Module Interrupt Core 2 Transmit Interrupt Enable Register
0x01E2 203C
C2MISCEN
0x01E2 2040
C0RXTHRESHSTAT
0x01E2 2044
C0RXSTAT
EMAC Control Module Interrupt Core 0 Receive Interrupt Status Register
0x01E2 2048
C0TXSTAT
EMAC Control Module Interrupt Core 0 Transmit Interrupt Status Register
0x01E2 204C
C0MISCSTAT
0x01E2 2050
C1RXTHRESHSTAT
0x01E2 2054
C1RXSTAT
EMAC Control Module Interrupt Core 1 Receive Interrupt Status Register
0x01E2 2058
C1TXSTAT
EMAC Control Module Interrupt Core 1 Transmit Interrupt Status Register
EMAC Control Module Interrupt Core 1 Miscellaneous Interrupt Enable Register
EMAC Control Module Interrupt Core 2 Receive Threshold Interrupt Enable Register
EMAC Control Module Interrupt Core 2 Miscellaneous Interrupt Enable Register
EMAC Control Module Interrupt Core 0 Receive Threshold Interrupt Status Register
EMAC Control Module Interrupt Core 0 Miscellaneous Interrupt Status Register
EMAC Control Module Interrupt Core 1 Receive Threshold Interrupt Status Register
0x01E2 205C
C1MISCSTAT
0x01E2 2060
C2RXTHRESHSTAT
EMAC Control Module Interrupt Core 1 Miscellaneous Interrupt Status Register
0x01E2 2064
C2RXSTAT
EMAC Control Module Interrupt Core 2 Receive Interrupt Status Register
EMAC Control Module Interrupt Core 2 Transmit Interrupt Status Register
EMAC Control Module Interrupt Core 2 Receive Threshold Interrupt Status Register
0x01E2 2068
C2TXSTAT
0x01E2 206C
C2MISCSTAT
0x01E2 2070
C0RXIMAX
EMAC Control Module Interrupt Core 0 Receive Interrupts Per Millisecond Register
0x01E2 2074
C0TXIMAX
EMAC Control Module Interrupt Core 0 Transmit Interrupts Per Millisecond Register
EMAC Control Module Interrupt Core 2 Miscellaneous Interrupt Status Register
0x01E2 2078
C1RXIMAX
EMAC Control Module Interrupt Core 1 Receive Interrupts Per Millisecond Register
0x01E2 207C
C1TXIMAX
EMAC Control Module Interrupt Core 1 Transmit Interrupts Per Millisecond Register
0x01E2 2080
C2RXIMAX
EMAC Control Module Interrupt Core 2 Receive Interrupts Per Millisecond Register
0x01E2 2084
C2TXIMAX
EMAC Control Module Interrupt Core 2 Transmit Interrupts Per Millisecond Register
Copyright © 2009–2017, Texas Instruments Incorporated
Peripheral Information and Electrical Specifications
Submit Documentation Feedback
Product Folder Links: OMAP-L138
207
OMAP-L138
SPRS586J – JUNE 2009 – REVISED JANUARY 2017
www.ti.com
Table 6-99. EMAC Control Module RAM
BYTE ADDRESS
DESCRIPTION
0x01E2 0000 - 0x01E2 1FFF
6.22.1.1
EMAC Local Buffer Descriptor Memory
EMAC Electrical Data/Timing
Table 6-100. Timing Requirements for MII_RXCLK (see Figure 6-47)
1.3V, 1.2V, 1.1V
NO.
10 Mbps
MIN
MAX
1.0V
100 Mbps
MIN
MAX
10 Mbps
MIN
UNIT
MAX
1
tc(MII_RXCLK)
Cycle time, MII_RXCLK
400
40
400
ns
2
tw(MII_RXCLKH)
Pulse duration, MII_RXCLK high
140
14
140
ns
3
tw(MII_RXCLKL)
Pulse duration, MII_RXCLK low
140
14
140
ns
1
3
2
MII_RXCLK
Figure 6-47. MII_RXCLK Timing (EMAC - Receive)
Table 6-101. Timing Requirements for MII_TXCLK (see Figure 6-48)
1.3V, 1.2V, 1.1V
NO.
10 Mbps
MIN
MAX
1.0V
100 Mbps
MIN
MAX
10 Mbps
MIN
UNIT
MAX
1
tc(MII_TXCLK)
Cycle time, MII_TXCLK
400
40
400
ns
2
tw(MII_TXCLKH)
Pulse duration, MII_TXCLK high
140
14
140
ns
3
tw(MII_TXCLKL)
Pulse duration, MII_TXCLK low
140
14
140
ns
1
3
2
MII_TXCLK
Figure 6-48. MII_TXCLK Timing (EMAC - Transmit)
208
Peripheral Information and Electrical Specifications
Submit Documentation Feedback
Product Folder Links: OMAP-L138
Copyright © 2009–2017, Texas Instruments Incorporated
OMAP-L138
www.ti.com
SPRS586J – JUNE 2009 – REVISED JANUARY 2017
Table 6-102. Timing Requirements for EMAC MII Receive 10/100 Mbit/s (1) (see Figure 6-49)
1.3V, 1.2V, 1.1V,
1.0V
NO.
MIN
UNIT
MAX
1
tsu(MRXD-MII_RXCLKH)
Setup time, receive selected signals valid before MII_RXCLK high
8
ns
2
th(MII_RXCLKH-MRXD)
Hold time, receive selected signals valid after MII_RXCLK high
8
ns
(1)
Receive selected signals include: MII_RXD[3]-MII_RXD[0], MII_RXDV, and MII_RXER.
1
2
MII_RXCLK (Input)
MII_RXD[3]-MII_RXD[0],
MII_RXDV, MII_RXER (Inputs)
Figure 6-49. EMAC Receive Interface Timing
Table 6-103. Switching Characteristics Over Recommended Operating Conditions for EMAC MII Transmit
10/100 Mbit/s (1) (see Figure 6-50)
NO.
1
1.3V, 1.2V,
1.1V
PARAMETER
td(MII_TXCLKH-
Delay time, MII_TXCLK high to transmit selected signals valid
1.0V
UNIT
MIN
MAX
MIN
MAX
2
25
2
32
ns
MTXD)
(1)
Transmit selected signals include: MTXD3-MTXD0, and MII_TXEN.
1
MII_TCLK (Input)
MII_TXD[3]-MII_TXD[0],
MII_TXEN (Outputs)
Figure 6-50. EMAC Transmit Interface Timing
Copyright © 2009–2017, Texas Instruments Incorporated
Peripheral Information and Electrical Specifications
Submit Documentation Feedback
Product Folder Links: OMAP-L138
209
OMAP-L138
SPRS586J – JUNE 2009 – REVISED JANUARY 2017
www.ti.com
Table 6-104. Timing Requirements for EMAC RMII
1.3V, 1.2V, 1.1V (1)
NO.
MIN
TYP
MAX
UNIT
1
tc(REFCLK)
Cycle Time, RMII_MHZ_50_CLK
2
tw(REFCLKH)
Pulse Width, RMII_MHZ_50_CLK High
7
13
ns
3
tw(REFCLKL)
Pulse Width, RMII_MHZ_50_CLK Low
7
13
ns
6
tsu(RXD-REFCLK)
Input Setup Time, RXD Valid before RMII_MHZ_50_CLK High
4
ns
7
th(REFCLK-RXD)
Input Hold Time, RXD Valid after RMII_MHZ_50_CLK High
2
ns
8
tsu(CRSDV-REFCLK)
Input Setup Time, CRSDV Valid before RMII_MHZ_50_CLK High
4
ns
9
th(REFCLK-CRSDV)
Input Hold Time, CRSDV Valid after RMII_MHZ_50_CLK High
2
ns
10
tsu(RXER-REFCLK)
Input Setup Time, RXER Valid before RMII_MHZ_50_CLK High
4
ns
11
th(REFCLKR-RXER)
Input Hold Time, RXER Valid after RMII_MHZ_50_CLK High
2
ns
(1)
20
ns
RMII is not supported at operating points below 1.1V nominal
Note: Per the RMII industry specification, the RMII reference clock (RMII_MHZ_50_CLK) must have jitter
tolerance of 50 ppm or less.
Table 6-105. Switching Characteristics Over Recommended Operating Conditions for EMAC RMII
NO.
4
5
(1)
1.3V, 1.2V, 1.1V (1)
PARAMETER
MIN
TYP
MAX
UNIT
td(REFCLK-TXD)
Output Delay Time, RMII_MHZ_50_CLK High to TXD Valid
2.5
13
ns
td(REFCLK-TXEN)
Output Delay Time, RMII_MHZ_50_CLK High to TXEN Valid
2.5
13
ns
RMII is not supported at operating points below 1.1V nominal.
1
2
3
RMII_MHz_50_CLK
5
5
RMII_TXEN
4
RMII_TXD[1:0]
6
7
RMII_RXD[1:0]
8
9
RMII_CRS_DV
10
11
RMII_RXER
Figure 6-51. RMII Timing Diagram
210
Peripheral Information and Electrical Specifications
Submit Documentation Feedback
Product Folder Links: OMAP-L138
Copyright © 2009–2017, Texas Instruments Incorporated
OMAP-L138
www.ti.com
SPRS586J – JUNE 2009 – REVISED JANUARY 2017
6.23 Management Data Input/Output (MDIO)
The Management Data Input/Output (MDIO) module continuously polls all 32 MDIO addresses in order to
enumerate all PHY devices in the system.
The Management Data Input/Output (MDIO) module implements the 802.3 serial management interface to
interrogate and control Ethernet PHY(s) using a shared two-wire bus. Host software uses the MDIO
module to configure the auto-negotiation parameters of each PHY attached to the EMAC, retrieve the
negotiation results, and configure required parameters in the EMAC module for correct operation. The
module is designed to allow almost transparent operation of the MDIO interface, with very little
maintenance from the core processor. Only one PHY may be connected at any given time.
6.23.1 MDIO Register Description(s)
Table 6-106. MDIO Register Memory Map
BYTE ADDRESS
ACRONYM
0x01E2 4000
REV
REGISTER NAME
0x01E2 4004
CONTROL
0x01E2 4008
ALIVE
MDIO PHY Alive Status Register
0x01E2 400C
LINK
MDIO PHY Link Status Register
0x01E2 4010
LINKINTRAW
0x01E2 4014
LINKINTMASKED
0x01E2 4018
–
0x01E2 4020
USERINTRAW
Revision Identification Register
MDIO Control Register
MDIO Link Status Change Interrupt (Unmasked) Register
MDIO Link Status Change Interrupt (Masked) Register
Reserved
MDIO User Command Complete Interrupt (Unmasked) Register
0x01E2 4024
USERINTMASKED
MDIO User Command Complete Interrupt (Masked) Register
0x01E2 4028
USERINTMASKSET
MDIO User Command Complete Interrupt Mask Set Register
0x01E2 402C
USERINTMASKCLEAR
MDIO User Command Complete Interrupt Mask Clear Register
0x01E2 4030 - 0x01E2 407C
–
0x01E2 4080
USERACCESS0
MDIO User Access Register 0
0x01E2 4084
USERPHYSEL0
MDIO User PHY Select Register 0
0x01E2 4088
USERACCESS1
MDIO User Access Register 1
0x01E2 408C
USERPHYSEL1
MDIO User PHY Select Register 1
0x01E2 4090 - 0x01E2 47FF
–
Copyright © 2009–2017, Texas Instruments Incorporated
Reserved
Reserved
Peripheral Information and Electrical Specifications
Submit Documentation Feedback
Product Folder Links: OMAP-L138
211
OMAP-L138
SPRS586J – JUNE 2009 – REVISED JANUARY 2017
www.ti.com
6.23.2 Management Data Input/Output (MDIO) Electrical Data/Timing
Table 6-107. Timing Requirements for MDIO Input (see Figure 6-52 and Figure 6-53)
1.3V, 1.2V, 1.1V
NO.
MIN
MAX
1.0V
MIN
MAX
UNIT
1
tc(MDCLK)
Cycle time, MDCLK
400
400
ns
2
tw(MDCLK)
Pulse duration, MDCLK high/low
180
180
ns
3
tt(MDCLK)
Transition time, MDCLK
4
tsu(MDIO-MDCLKH)
Setup time, MDIO data input valid before MDCLK high
16
21
ns
5
th(MDCLKH-MDIO)
Hold time, MDIO data input valid after MDCLK high
0
0
ns
5
5
ns
1
3
3
MDCLK
4
5
MDIO
(input)
Figure 6-52. MDIO Input Timing
Table 6-108. Switching Characteristics Over Recommended Operating Conditions for MDIO Output
(see Figure 6-53)
NO.
7
1.3V, 1.2V, 1.1V,
1.0V
PARAMETER
td(MDCLKL-MDIO)
Delay time, MDCLK low to MDIO data output valid
MIN
MAX
0
100
UNIT
ns
1
MDCLK
7
MDIO
(output)
Figure 6-53. MDIO Output Timing
212
Peripheral Information and Electrical Specifications
Submit Documentation Feedback
Product Folder Links: OMAP-L138
Copyright © 2009–2017, Texas Instruments Incorporated
OMAP-L138
www.ti.com
SPRS586J – JUNE 2009 – REVISED JANUARY 2017
6.24 LCD Controller (LCDC)
The LCD controller consists of two independent controllers, the Raster Controller and the LCD Interface
Display Driver (LIDD) controller. Each controller operates independently from the other and only one of
them is active at any given time.
• The Raster Controller handles the synchronous LCD interface. It provides timing and data for constant
graphics refresh to a passive display. It supports a wide variety of monochrome and full-color display
types and sizes by use of programmable timing controls, a built-in palette, and a gray-scale/serializer.
Graphics data is processed and stored in frame buffers. A frame buffer is a contiguous memory block
in the system. A built-in DMA engine supplies the graphics data to the Raster engine which, in turn,
outputs to the external LCD device.
• The LIDD Controller supports the asynchronous LCD interface. It provides full-timing programmability
of control signals (CS, WE, OE, ALE) and output data.
The maximum resolution for the LCD controller is 1024 x 1024 pixels. The maximum frame rate is
determined by the image size in combination with the pixel clock rate. For details, see SPRAB93.
Table 6-109 lists the LCD Controller registers.
Table 6-109. LCD Controller Registers
BYTE ADDRESS
ACRONYM
0x01E1 3000
REVID
0x01E1 3004
LCD_CTRL
LCD Control Register
0x01E1 3008
LCD_STAT
LCD Status Register
0x01E1 300C
LIDD_CTRL
LCD LIDD Control Register
0x01E1 3010
LIDD_CS0_CONF
LCD LIDD CS0 Configuration Register
0x01E1 3014
LIDD_CS0_ADDR
LCD LIDD CS0 Address Read/Write Register
0x01E1 3018
LIDD_CS0_DATA
LCD LIDD CS0 Data Read/Write Register
0x01E1 301C
LIDD_CS1_CONF
LCD LIDD CS1 Configuration Register
0x01E1 3020
LIDD_CS1_ADDR
LCD LIDD CS1 Address Read/Write Register
0x01E1 3024
LIDD_CS1_DATA
LCD LIDD CS1 Data Read/Write Register
0x01E1 3028
RASTER_CTRL
0x01E1 302C
RASTER_TIMING_0
LCD Raster Timing 0 Register
0x01E1 3030
RASTER_TIMING_1
LCD Raster Timing 1 Register
0x01E1 3034
RASTER_TIMING_2
LCD Raster Timing 2 Register
0x01E1 3038
RASTER_SUBPANEL
0x01E1 3040
LCDDMA_CTRL
0x01E1 3044
LCDDMA_FB0_BASE
0x01E1 3048
LCDDMA_FB0_CEILING
0x01E1 304C
LCDDMA_FB1_BASE
0x01E1 3050
LCDDMA_FB1_CEILING
Copyright © 2009–2017, Texas Instruments Incorporated
REGISTER DESCRIPTION
LCD Revision Identification Register
LCD Raster Control Register
LCD Raster Subpanel Display Register
LCD DMA Control Register
LCD DMA Frame Buffer 0 Base Address Register
LCD DMA Frame Buffer 0 Ceiling Address Register
LCD DMA Frame Buffer 1 Base Address Register
LCD DMA Frame Buffer 1 Ceiling Address Register
Peripheral Information and Electrical Specifications
Submit Documentation Feedback
Product Folder Links: OMAP-L138
213
OMAP-L138
SPRS586J – JUNE 2009 – REVISED JANUARY 2017
www.ti.com
6.24.1 LCD Interface Display Driver (LIDD Mode)
Table 6-110. Timing Requirements for LCD LIDD Mode
1.3V, 1.2V,
1.1V
NO.
MIN
MAX
1.0V
MIN
UNIT
MAX
16
tsu(LCD_D)
Setup time, LCD_D[15:0] valid before LCD_MCLK high
7
8
ns
17
th(LCD_D)
Hold time, LCD_D[15:0] valid after LCD_MCLK high
0
0
ns
Table 6-111. Switching Characteristics Over Recommended Operating Conditions for LCD LIDD Mode
NO.
1.3V, 1.2V,
1.1V
PARAMETER
1.0V
UNIT
MIN
MAX
MIN
MAX
4
td(LCD_D_V)
Delay time, LCD_MCLK high to LCD_D[15:0] valid (write)
0
7
0
9
ns
5
td(LCD_D_I)
Delay time, LCD_MCLK high to LCD_D[15:0] invalid (write)
0
7
0
9
ns
6
td(LCD_E_A)
Delay time, LCD_MCLK high to LCD_AC_ENB_CS low
0
7
0
9
ns
7
td(LCD_E_I)
Delay time, LCD_MCLK high to LCD_AC_ENB_CS high
0
7
0
9
ns
8
td(LCD_A_A)
Delay time, LCD_MCLK high to LCD_VSYNC low
0
7
0
9
ns
9
td(LCD_A_I)
Delay time, LCD_MCLK high to LCD_VSYNC high
0
7
0
9
ns
10
td(LCD_W_A)
Delay time, LCD_MCLK high to LCD_HSYNC low
0
7
0
9
ns
11
td(LCD_W_I)
Delay time, LCD_MCLK high to LCD_HSYNC high
0
7
0
9
ns
12
td(LCD_STRB_A)
Delay time, LCD_MCLK high to LCD_PCLK active
0
7
0
9
ns
13
td(LCD_STRB_I)
Delay time, LCD_MCLK high to LCD_PCLK inactive
0
7
0
9
ns
14
td(LCD_D_Z)
Delay time, LCD_MCLK high to LCD_D[15:0] in 3-state
0
7
0
9
ns
15
td(Z_LCD_D)
Delay time, LCD_MCLK high to LCD_D[15:0] (valid from 3-state)
0
7
0
9
ns
CS_DELA Y
1
W_SU
(0 to 31)
2
3
W_STROBE
(1 to 63)
R_SU
(0 to 31)
R_HOLD
(1 to 15)
R_STROBE
(1 to 63)
W_HOLD
(1 to 15)
CS_DELA Y
LCD_MCLK
4
5
14
17
16
LCD_D[15:0]
15
Data[7:0]
Write Data
Read Status
LCD_PCLK
Not Used
8
9
LCD_VSYNC
RS
10
11
LCD_HSYNC
R/W
12
12
13
13
E0
E1
LCD_AC_ENB_CS
Figure 6-54. Character Display HD44780 Write
214
Peripheral Information and Electrical Specifications
Submit Documentation Feedback
Product Folder Links: OMAP-L138
Copyright © 2009–2017, Texas Instruments Incorporated
OMAP-L138
www.ti.com
SPRS586J – JUNE 2009 – REVISED JANUARY 2017
W_HOLD
(1–15)
R_SU
(0–31)
1
2
R_STROBE
R_HOLD
(1–63)
(1–5)
CS_DELAY
W_SU
W_STROBE
(0–31)
CS_DELAY
(1–63)
Not
Used
3
LCD_MCLK
14
16
17
15
4
LCD_D[7:0]
5
Data[7:0]
Write Instruction
Read
Data
LCD_PCLK
Not
Used
8
9
RS
LCD_VSYNC
10
11
LCD_HSYNC
R/W
12
13
12
13
LCD_AC_ENB_CS
E0
E1
Figure 6-55. Character Display HD44780 Read
Copyright © 2009–2017, Texas Instruments Incorporated
Peripheral Information and Electrical Specifications
Submit Documentation Feedback
Product Folder Links: OMAP-L138
215
OMAP-L138
SPRS586J – JUNE 2009 – REVISED JANUARY 2017
www.ti.com
W_HOLD
(1−15)
W_HOLD
(1−15)
1
2
W_SU
W_STROBE
(0−31)
(1−63)
CS_DELAY
W_SU
W_STROBE
(0−31)
(1−63)
CS_DELAY
3
Clock
LCD_MCLK
4
LCD_D[15:0]
LCD_AC_ENB_CS
(async mode)
5
5
4
Write Address
Write Data
7
6
Data[15:0]
6
7
CS0
CS1
9
8
A0
LCD_VSYNC
10
11
11
10
R/W
LCD_HSYNC
12
13
12
13
E
LCD_PCLK
Figure 6-56. Micro-Interface Graphic Display 6800 Write
216
Peripheral Information and Electrical Specifications
Submit Documentation Feedback
Product Folder Links: OMAP-L138
Copyright © 2009–2017, Texas Instruments Incorporated
OMAP-L138
www.ti.com
SPRS586J – JUNE 2009 – REVISED JANUARY 2017
W_HOLD
(1−15)
1
2
W_SU
W_STROBE
(0−31)
(1−63)
R_SU
(0−31)
CS_DELAY
R_STROBE
R_HOLD
(1−63
CS_DELAY
(1−15)
3
Clock
LCD_MCLK
4
LCD_D[15:0]
5
14
16
17
15
Write Address
Data[15:0]
6
7
Read
Data
6
7
LCD_AC_ENB_CS
(async mode)
CS0
CS1
9
8
LCD_VSYNC
A0
11
10
LCD_HSYNC
R/W
12
13
12
13
LCD_PCLK
E
Figure 6-57. Micro-Interface Graphic Display 6800 Read
Copyright © 2009–2017, Texas Instruments Incorporated
Peripheral Information and Electrical Specifications
Submit Documentation Feedback
Product Folder Links: OMAP-L138
217
OMAP-L138
SPRS586J – JUNE 2009 – REVISED JANUARY 2017
www.ti.com
R_SU
(0−31)
R_SU
(0−31)
R_STROBE R_HOLD CS_DELAY
R_STROBE
R_HOLD CS_DELAY
1
2
(1−63)
3
(1−15)
(1−63)
(1−15)
Clock
LCD_MCLK
14
16
17
15
14
17
16
15
LCD_D[15:0]
Data[15:0]
Read
Data
6
LCD_AC_ENB_CS
(async mode)
7
Read
Status
6
7
CS0
CS1
8
9
LCD_VSYNC
A0
R/W
LCD_HSYNC
12
13
12
13
E
LCD_PCLK
Figure 6-58. Micro-Interface Graphic Display 6800 Status
218
Peripheral Information and Electrical Specifications
Submit Documentation Feedback
Product Folder Links: OMAP-L138
Copyright © 2009–2017, Texas Instruments Incorporated
OMAP-L138
www.ti.com
SPRS586J – JUNE 2009 – REVISED JANUARY 2017
W_HOLD
(1−15)
W_HOLD
(1−15)
1
2
W_SU
W_STROBE
(0−31)
3
(1−63)
CS_DELAY
W_SU
W_STROBE
(0−31)
(1−63)
CS_DELAY
Clock
LCD_MCLK
4
LCD_D[15:0]
LCD_AC_ENB_CS
(async mode)
5
4
Write Address
5
DATA[15:0]
Write Data
7
6
6
7
CS0
CS1
8
9
LCD_VSYNC
A0
10
11
10
11
LCD_HSYNC
WR
RD
LCD_PCLK
Figure 6-59. Micro-Interface Graphic Display 8080 Write
Copyright © 2009–2017, Texas Instruments Incorporated
Peripheral Information and Electrical Specifications
Submit Documentation Feedback
Product Folder Links: OMAP-L138
219
OMAP-L138
SPRS586J – JUNE 2009 – REVISED JANUARY 2017
www.ti.com
W_HOLD
(1−15)
W_SU
W_STROBE
R_SU
(0−31)
CS_DELAY
R_STROBE
R_HOLD
CS_DELAY
1
2
3
(0−31)
(1−63)
(1−63)
(1−15)
16
17
Clock
LCD_MCLK
4
LCD_D[15:0]
5
14
15
Data[15:0]
Write Address
6
7
LCD_AC_ENB_CS
(async mode)
6
Read
Data
7
CS0
CS1
9
8
LCD_VSYNC
A0
10
11
WR
LCD_HSYNC
12
13
RD
LCD_PCLK
Figure 6-60. Micro-Interface Graphic Display 8080 Read
220
Peripheral Information and Electrical Specifications
Submit Documentation Feedback
Product Folder Links: OMAP-L138
Copyright © 2009–2017, Texas Instruments Incorporated
OMAP-L138
www.ti.com
SPRS586J – JUNE 2009 – REVISED JANUARY 2017
R_SU
(0−31)
R_SU
(0−31)
R_STROBE
1
2
(1−63)
R_HOLD
CS_DELAY
R_STROBE R_HOLD
(1−15)
(1−63)
CS_DELAY
(1−15)
3
Clock
LCD_MCLK
14
16
17
15
14
16
17
15
Data[15:0]
LCD_D[15:0]
Read Data
Read Status
7
6
6
7
LCD_AC_ENB_CS
CS0
CS1
8
9
A0
LCD_VSYNC
WR
LCD_HSYNC
12
13
12
13
RD
LCD_PCLK
Figure 6-61. Micro-Interface Graphic Display 8080 Status
Copyright © 2009–2017, Texas Instruments Incorporated
Peripheral Information and Electrical Specifications
Submit Documentation Feedback
Product Folder Links: OMAP-L138
221
OMAP-L138
SPRS586J – JUNE 2009 – REVISED JANUARY 2017
www.ti.com
6.24.2 LCD Raster Mode
Table 6-112. Switching Characteristics Over Recommended Operating Conditions for LCD Raster Mode
See Figure 6-62 through Figure 6-66
NO.
PARAMETER
1
tc(PIXEL_CLK)
Cycle time, pixel clock
2
tw(PIXEL_CLK_H)
3
tw(PIXEL_CLK_L)
4
1.3V, 1.2V, 1.1V
MIN
MAX
1.0V
MIN
MAX
UNIT
26.66
33.33
ns
Pulse duration, pixel clock high
10
10
ns
Pulse duration, pixel clock low
10
10
td(LCD_D_V)
Delay time, LCD_PCLK high to LCD_D[15:0] valid (write)
0
7
0
9
ns
5
td(LCD_D_IV)
Delay time, LCD_PCLK high to LCD_D[15:0] invalid
(write)
0
7
0
9
ns
6
td(LCD_AC_ENB_CS_A)
Delay time, LCD_PCLK low to LCD_AC_ENB_CS high
0
7
0
9
ns
7
td(LCD_AC_ENB_CS_I)
Delay time, LCD_PCLK low to LCD_AC_ENB_CS low
0
7
0
9
ns
8
td(LCD_VSYNC_A)
Delay time, LCD_PCLK low to LCD_VSYNC high
0
7
0
9
ns
9
td(LCD_VSYNC_I)
Delay time, LCD_PCLK low to LCD_VSYNC low
0
7
0
9
ns
10
td(LCD_HSYNC_A)
Delay time, LCD_PCLK high to LCD_HSYNC high
0
7
0
9
ns
11
td(LCD_HSYNC_I)
Delay time, LCD_PCLK high to LCD_HSYNC low
0
7
0
9
ns
ns
Frame-to-frame timing is derived through the following parameters in the LCD (RASTER_TIMING_1)
register:
• Vertical front porch (VFP)
• Vertical sync pulse width (VSW)
• Vertical back porch (VBP)
• Lines per panel (LPP)
Line-to-line timing is derived through the following parameters in the LCD (RASTER_TIMING_0) register:
• Horizontal front porch (HFP)
• Horizontal sync pulse width (HSW)
• Horizontal back porch (HBP)
• Pixels per panel (PPL)
LCD_AC_ENB_CS timing is derived through the following parameter in the LCD (RASTER_TIMING_2)
register:
• AC bias frequency (ACB)
The display format produced in raster mode is shown in Figure 6-62. An entire frame is delivered one line
at a time. The first line delivered starts at data pixel (1, 1) and ends at data pixel (P, 1). The last line
delivered starts at data pixel (1, L) and ends at data pixel (P, L). The beginning of each new frame is
denoted by the activation of I/O signal LCD_VSYNC. The beginning of each new line is denoted by the
activation of I/O signal LCD_HSYNC.
222
Peripheral Information and Electrical Specifications
Submit Documentation Feedback
Product Folder Links: OMAP-L138
Copyright © 2009–2017, Texas Instruments Incorporated
OMAP-L138
www.ti.com
SPRS586J – JUNE 2009 – REVISED JANUARY 2017
Data Pixels (From 1 to P)
1, 1
2, 1
1, 2
2, 2
P−2,
1
3, 1
P−1,
1
P, 1
P−1,
2
P, 2
P, 3
Data Lines (From 1 to L)
1, 3
LCD
P,
L−2
1,
L−2
1,
L−1
2,
L−1
1, L
2, L
P−1,
L−1
P−2,
L
3, L
P−1,
L
P,
L−1
P, L
Figure 6-62. LCD Raster-Mode Display Format
Copyright © 2009–2017, Texas Instruments Incorporated
Peripheral Information and Electrical Specifications
Submit Documentation Feedback
Product Folder Links: OMAP-L138
223
OMAP-L138
SPRS586J – JUNE 2009 – REVISED JANUARY 2017
www.ti.com
Frame Time ~ 70 Hz
Active TFT
VBP
(0 to 255)
VSW
(1 to 64)
Line
Time
LPP
VFP
(1 to 1024)
(0 to 255)
VSW
(1 to 64)
Hsync
LCD_HSYNC
LCD_VSYNC
Vsync
Data
LCD_D[15:0]
1, 1
P, 1
1, L-1
P, L-1
1, 2
P, 2
1, L
P, L
LCD_AC_ENB_CS
10
11
Hsync
LCD_HSYNC
CLK
LCD_PCLK
Data
LCD_D[15:0]
1, 1
2, 1
1, 2
P, 1
2, 2
P, 2
Enable
LCD_AC_ENB_CS
PLL
HFP
HSW
HBP
PLL
16 × (1 to 1024)
(1 to 256)
(1 to 64)
(1 to 256)
16 × (1 to 1024)
Line 1
Line 2
Figure 6-63. LCD Raster-Mode Active
224
Peripheral Information and Electrical Specifications
Submit Documentation Feedback
Product Folder Links: OMAP-L138
Copyright © 2009–2017, Texas Instruments Incorporated
OMAP-L138
www.ti.com
SPRS586J – JUNE 2009 – REVISED JANUARY 2017
Figure 6-64. LCD Raster-Mode Passive
Copyright © 2009–2017, Texas Instruments Incorporated
Peripheral Information and Electrical Specifications
Submit Documentation Feedback
Product Folder Links: OMAP-L138
225
OMAP-L138
SPRS586J – JUNE 2009 – REVISED JANUARY 2017
www.ti.com
6
LCD_AC_ENB_CS
8
LCD_VSYNC
10
11
LCD_HSYNC
1
2
3
LCD_PCLK
(passive mode)
5
4
LCD_D[7:0]
(passive mode)
1, L
2, L
P, L
1, 1
2, 1
P, 1
1
2
3
LCD_PCLK
(active mode)
4
LCD_D[15:0]
(active mode)
VBP = 0
VFP = 0
VSW = 1
1, L
2, L
PPL
16 × (1 to 1024)
5
P, L
HFP
(1 to 256
HSW
(1 to 64)
Line L
HBP
(1 to 256)
PPL
16 ×(1 to 1024)
Line 1 (Passive Only)
Figure 6-65. LCD Raster-Mode Control Signal Activation
226
Peripheral Information and Electrical Specifications
Submit Documentation Feedback
Product Folder Links: OMAP-L138
Copyright © 2009–2017, Texas Instruments Incorporated
OMAP-L138
www.ti.com
SPRS586J – JUNE 2009 – REVISED JANUARY 2017
7
LCD_AC_ENB_CS
9
LCD_VSYNC
10
11
LCD_HSYNC
1
3
4
LCD_PCLK
(passive mode)
5
4
LCD_D[7:0]
(passive mode)
1, 1
2, 1
P, 1
1, 2
2, 2
P, 2
1
2
3
LCD_PCLK
(active mode)
4
LCD_D[15:0]
(active mode)
VBP = 0
VFP = 0
VSW = 1
5
1, 1
PPL
16 × (1 to 1024)
HFP
(1 to 256
HSW
(1 to 64)
HBP
(1 to 256)
Line 1 for passive
2, 1
P, 1
PPL
16 ×(1 to 1024)
Line 1 for active
Line 2 for passive
Figure 6-66. LCD Raster-Mode Control Signal Deactivation
Copyright © 2009–2017, Texas Instruments Incorporated
Peripheral Information and Electrical Specifications
Submit Documentation Feedback
Product Folder Links: OMAP-L138
227
OMAP-L138
SPRS586J – JUNE 2009 – REVISED JANUARY 2017
www.ti.com
6.25 Host-Port Interface (UHPI)
6.25.1 HPI Device-Specific Information
The device includes a user-configurable 16-bit Host-port interface (HPI16).
The host port interface (UHPI) provides a parallel port interface through which an external host processor
can directly access the processor's resources (configuration and program/data memories). The external
host device is asynchronous to the CPU clock and functions as a master to the HPI interface. The UHPI
enables a host device and the processor to exchange information via internal or external memory.
Dedicated address (HPIA) and data (HPID) registers within the UHPI provide the data path between the
external host interface and the processor resources. A UHPI control register (HPIC) is available to the
host and the CPU for various configuration and interrupt functions.
6.25.2 HPI Peripheral Register Description(s)
Table 6-113. HPI Control Registers
BYTE ADDRESS
ACRONYM
0x01E1 0000
PID
0x01E1 0004
PWREMU_MGMT
REGISTER DESCRIPTION
HPI power and emulation management register
0x01E1 0008
-
0x01E1 000C
GPIO_EN
0x01E1 0010
GPIO_DIR1
General Purpose IO Direction Register 1
0x01E1 0014
GPIO_DAT1
General Purpose IO Data Register 1
0x01E1 0018
GPIO_DIR2
General Purpose IO Direction Register 2
0x01E1 001C
GPIO_DAT2
General Purpose IO Data Register 2
0x01E1 0020
GPIO_DIR3
General Purpose IO Direction Register 3
0x01E1 0024
GPIO_DAT3
General Purpose IO Data Register 3
01E1 0028
-
Reserved
01E1 002C
-
Reserved
01E1 0030
HPIC
01E1 0034
HPIA
(HPIAW) (1)
HPI address register (Write)
01E1 0038
HPIA
(HPIAR) (1)
HPI address register (Read)
01E1 000C - 01E1 07FF
-
(1)
228
COMMENTS
Peripheral Identification Register
The CPU has read/write access to
the PWREMU_MGMT register.
Reserved
General Purpose IO Enable Register
HPI control register
The Host and the CPU both have
read/write access to the HPIC
register.
The Host has read/write access to
the HPIA registers. The CPU has
only read access to the HPIA
registers.
Reserved
There are two 32-bit HPIA registers: HPIAR for read operations and HPIAW for write operations. The HPI can be configured such that
HPIAR and HPIAW act as a single 32-bit HPIA (single-HPIA mode) or as two separate 32-bit HPIAs (dual-HPIA mode) from the
perspective of the Host. The CPU can access HPIAW and HPIAR independently.
Peripheral Information and Electrical Specifications
Submit Documentation Feedback
Product Folder Links: OMAP-L138
Copyright © 2009–2017, Texas Instruments Incorporated
OMAP-L138
www.ti.com
SPRS586J – JUNE 2009 – REVISED JANUARY 2017
6.25.3 HPI Electrical Data/Timing
Table 6-114. Timing Requirements for Host-Port Interface [1.2V, 1.1V] (1)
(2)
1.3V, 1.2V, 1.1V,
1.0V
NO.
MIN
UNIT
MAX
1
tsu(SELV-HSTBL)
Setup time, select signals (3) valid before UHPI_HSTROBE low
5
ns
2
th(HSTBL-SELV)
Hold time, select signals (3) valid after UHPI_HSTROBE low
2
ns
3
tw(HSTBL)
Pulse duration, UHPI_HSTROBE active low
15
ns
4
tw(HSTBH)
Pulse duration, UHPI_HSTROBE inactive high between consecutive accesses
2M
ns
9
tsu(SELV-HASL)
Setup time, selects signals valid before UHPI_HAS low
5
ns
10
th(HASL-SELV)
Hold time, select signals valid after UHPI_HAS low
2
ns
11
tsu(HDV-HSTBH)
Setup time, host data valid before UHPI_HSTROBE high
5
ns
12
th(HSTBH-HDV)
Hold time, host data valid after UHPI_HSTROBE high
2
ns
13
th(HRDYL-HSTBH)
Hold time, UHPI_HSTROBE high after UHPI_HRDY low. UHPI_HSTROBE
should not be inactivated until UHPI_HRDY is active (low); otherwise, HPI writes
will not complete properly.
2
ns
16
tsu(HASL-HSTBL)
Setup time, UHPI_HAS low before UHPI_HSTROBE low
5
ns
th(HSTBL-HASH)
Hold time, UHPI_HAS low after UHPI_HSTROBE low
2
ns
17
(1)
(2)
(3)
UHPI_HSTROBE refers to the following logical operation on UHPI_HCS, UHPI_HDS1, and UHPI_HDS2: [NOT(UHPI_HDS1 XOR
UHPI_HDS2)] OR UHPI_HCS.
M=SYSCLK2 period in ns.
Select signals include: HCNTL[1:0], HR/W and HHWIL.
Copyright © 2009–2017, Texas Instruments Incorporated
Peripheral Information and Electrical Specifications
Submit Documentation Feedback
Product Folder Links: OMAP-L138
229
OMAP-L138
SPRS586J – JUNE 2009 – REVISED JANUARY 2017
www.ti.com
Table 6-115. Switching Characteristics Over Recommended Operating Conditions for Host-Port Interface
[1.3V, 1.2V, 1.1V] (1) (2) (3)
NO.
1.3V, 1.2V
PARAMETER
MIN
MAX
1.1V
MIN
MAX
UNIT
For HPI Write, HRDY can go high (not
ready) for these HPI Write conditions;
otherwise, HRDY stays low (ready):
Case 1: Back-to-back HPIA writes (can
be either first or second half-word)
Case 2: HPIA write following a
PREFETCH command (can be either
first or second half-word)
Case 3: HPID write when FIFO is full or
flushing (can be either first or second
half-word)
Case 4: HPIA write and Write FIFO not
empty
For HPI Read, HRDY can go high (not
ready) for these HPI Read conditions:
Case 1: HPID read (with autoincrement) and data not in Read FIFO
(can only happen to first half-word of
HPID access)
Case 2: First half-word access of HPID
Read without auto-increment
For HPI Read, HRDY stays low (ready)
for these HPI Read conditions:
Case 1: HPID read with auto-increment
and data is already in Read FIFO
(applies to either half-word of HPID
access)
Case 2: HPID read without autoincrement and data is already in Read
FIFO (always applies to second halfword of HPID access)
Case 3: HPIC or HPIA read (applies to
either half-word access)
5
td(HSTBL-HRDYV)
Delay time, HSTROBE low to
HRDY valid
5a
td(HASL-HRDYV)
Delay time, HAS low to HRDY valid
6
ten(HSTBL-HDLZ)
Enable time, HD driven from HSTROBE low
7
td(HRDYL-HDV)
Delay time, HRDY low to HD valid
8
toh(HSTBH-HDV)
Output hold time, HD valid after HSTROBE high
14
tdis(HSTBH-HDHZ)
Disable time, HD high-impedance from HSTROBE high
15
18
(1)
(2)
(3)
230
td(HSTBL-HDV)
td(HSTBH-HRDYV)
15
15
1.5
17
ns
17
ns
1.5
0
1.5
ns
0
1.5
ns
ns
15
17
ns
Delay time, HSTROBE low to
HD valid
For HPI Read. Applies to conditions
where data is already residing in
HPID/FIFO:
Case 1: HPIC or HPIA read
Case 2: First half-word of HPID read
with auto-increment and data is already
in Read FIFO
Case 3: Second half-word of HPID
read with or without auto-increment
15
17
ns
Delay time, HSTROBE high to
HRDY valid
For HPI Write, HRDY can go high (not
ready) for these HPI Write conditions;
otherwise, HRDY stays low (ready):
Case 1: HPID write when Write FIFO is
full (can happen to either half-word)
Case 2: HPIA write (can happen to
either half-word)
Case 3: HPID write without autoincrement (only happens to second
half-word)
15
17
ns
M=SYSCLK2 period in ns.
HSTROBE refers to the following logical operation on HCS, HDS1, and HDS2: [NOT(HDS1 XOR HDS2)] OR HCS.
By design, whenever HCS is driven inactive (high), HPI will drive HRDY active (low).
Peripheral Information and Electrical Specifications
Submit Documentation Feedback
Product Folder Links: OMAP-L138
Copyright © 2009–2017, Texas Instruments Incorporated
OMAP-L138
www.ti.com
SPRS586J – JUNE 2009 – REVISED JANUARY 2017
Table 6-116. Switching Characteristics Over Recommended Operating Conditions for Host-Port Interface
[1.0V] (1) (2) (3)
NO.
PARAMETER
1.0V
MIN
MAX
UNIT
For HPI Write, HRDY can go high (not ready) for
these HPI Write conditions; otherwise, HRDY
stays low (ready):
Case 1: Back-to-back HPIA writes (can be either
first or second half-word)
Case 2: HPIA write following a PREFETCH
command (can be either first or second halfword)
Case 3: HPID write when FIFO is full or flushing
(can be either first or second half-word)
Case 4: HPIA write and Write FIFO not empty
For HPI Read, HRDY can go high (not ready)
for these HPI Read conditions:
Case 1: HPID read (with auto-increment) and
data not in Read FIFO (can only happen to first
half-word of HPID access)
Case 2: First half-word access of HPID Read
without auto-increment
For HPI Read, HRDY stays low (ready) for
these HPI Read conditions:
Case 1: HPID read with auto-increment and
data is already in Read FIFO (applies to either
half-word of HPID access)
Case 2: HPID read without auto-increment and
data is already in Read FIFO (always applies to
second half-word of HPID access)
Case 3: HPIC or HPIA read (applies to either
half-word access)
5
td(HSTBL-HRDYV)
Delay time, HSTROBE low to HRDY
valid
5a
td(HASL-HRDYV)
Delay time, HAS low to HRDY valid
6
ten(HSTBL-HDLZ)
Enable time, HD driven from HSTROBE low
7
td(HRDYL-HDV)
Delay time, HRDY low to HD valid
8
toh(HSTBH-HDV)
Output hold time, HD valid after HSTROBE high
14
tdis(HSTBH-HDHZ)
Disable time, HD high-impedance from HSTROBE high
15
18
(1)
(2)
(3)
td(HSTBL-HDV)
td(HSTBH-HRDYV)
22
ns
22
ns
1.5
ns
0
1.5
ns
ns
22
ns
Delay time, HSTROBE low to HD
valid
For HPI Read. Applies to conditions where data
is already residing in HPID/FIFO:
Case 1: HPIC or HPIA read
Case 2: First half-word of HPID read with autoincrement and data is already in Read FIFO
Case 3: Second half-word of HPID read with or
without auto-increment
22
ns
Delay time, HSTROBE high to HRDY
valid
For HPI Write, HRDY can go high (not ready) for
these HPI Write conditions; otherwise, HRDY
stays low (ready):
Case 1: HPID write when Write FIFO is full (can
happen to either half-word)
Case 2: HPIA write (can happen to either halfword)
Case 3: HPID write without auto-increment (only
happens to second half-word)
22
ns
M=SYSCLK2 period in ns.
HSTROBE refers to the following logical operation on HCS, HDS1, and HDS2: [NOT(HDS1 XOR HDS2)] OR HCS.
By design, whenever HCS is driven inactive (high), HPI will drive HRDY active (low).
Copyright © 2009–2017, Texas Instruments Incorporated
Peripheral Information and Electrical Specifications
Submit Documentation Feedback
Product Folder Links: OMAP-L138
231
OMAP-L138
SPRS586J – JUNE 2009 – REVISED JANUARY 2017
www.ti.com
UHPI_HCS
UHPI_HAS(D)
2
2
1
1
UHPI_HCNTL[1:0]
2
1
2
1
UHPI_HR/W
2
2
1
1
UHPI_HHWIL
4
3
3
UHPI_HSTROBE(A)(C)
15
15
14
14
6
8
6
8
UHPI_HD[15:0]
(output)
5
13
7
1st Half-Word
2nd Half-Word
UHPI_HRDY(B)
A. UHPI_HSTROBE refers to the following logical operation on UHPI_HCS, UHPI_HDS1, and UHPI_HDS2: [NOT(HDS1
XOR HDS2)] OR UHPI_HCS.
B. Depending on the type of write or read operation (HPID without auto-incrementing; HPIA, HPIC, or HPID with
auto-incrementing) and the state of the FIFO, transitions on UHPI_HRDY may or may not occur.
C. UHPI_HCS reflects typical UHPI_HCS behavior when UHPI_HSTROBE assertion is caused by UHPI_HDS1 or
UHPI_HDS2. UHPI_HCS timing requirements are reflected by parameters for UHPI_HSTROBE.
D The diagram above assumes UHPI_HAS has been pulled high.
Figure 6-67. UHPI Read Timing (HAS Not Used, Tied High)
232
Peripheral Information and Electrical Specifications
Submit Documentation Feedback
Product Folder Links: OMAP-L138
Copyright © 2009–2017, Texas Instruments Incorporated
OMAP-L138
www.ti.com
SPRS586J – JUNE 2009 – REVISED JANUARY 2017
UHPI_HAS(A)
17
10
17
9
10
9
UHPI_HCNTL[1:0]
10
10
9
9
UHPI_HR/W
10
10
9
9
UHPI_HHWIL
4
3
UHPI_HSTROBE(B)
16
16
UHPI_HCS
14
UHPI_HD[15:0]
6
(output)
5a
8
1st half-word
14
15
7
8
2nd half-word
UHPI_HRDY
A.
B.
For correct operation, strobe the UHPI_HAS signal only once per UHPI_HSTROBE active cycle.
UHPI_HSTROBE refers to the following logical operation on UHPI_HCS, UHPI_HDS1, and UHPI_HDS2:
[NOT(UHPI_HDS1 XOR UHPI_HDS2)] OR UHPI_HCS.
Figure 6-68. UHPI Read Timing (HAS Used)
Copyright © 2009–2017, Texas Instruments Incorporated
Peripheral Information and Electrical Specifications
Submit Documentation Feedback
Product Folder Links: OMAP-L138
233
OMAP-L138
SPRS586J – JUNE 2009 – REVISED JANUARY 2017
www.ti.com
UHPI_HCS
UHPI_HAS(D)
1
1
2
2
UHPI_HCNTL[1:0]
1
1
2
2
UHPI_HR/W
1
1
2
2
UHPI_HHWIL
3
3
4
UHPI_HSTROBE(A)(C)
11
UHPI_HD[15:0]
(input)
11
12
12
1st Half-Word
5
13
2nd Half-Word
18
13
18
5
UHPI_HRDY(B)
A. UHPI_HSTROBE refers to the following logical operation on UHPI_HCS, UHPI_HDS1, and UHPI_HDS2: [NOT(HDS1 XOR HDS2)] OR
UHPI_HCS.
B. Depending on the type of write or read operation (HPID without auto-incrementing; HPIA, HPIC, or HPID with auto-incrementing) and the
state of the FIFO, transitions on UHPI_HRDY may or may not occur.
C. UHPI_HCS reflects typical UHPI_HCS behavior when UHPI_HSTROBE assertion is caused by UHPI_HDS1 or UHPI_HDS2. UHPI_HCS
timing requirements are reflected by parameters for UHPI_HSTROBE.
D The diagram above assumes UHPI_HAS has been pulled high.
Figure 6-69. UHPI Write Timing (HAS Not Used, Tied High)
234
Peripheral Information and Electrical Specifications
Submit Documentation Feedback
Product Folder Links: OMAP-L138
Copyright © 2009–2017, Texas Instruments Incorporated
OMAP-L138
www.ti.com
SPRS586J – JUNE 2009 – REVISED JANUARY 2017
17
UHPI_HAS†
17
10
10
9
9
UHPI_HCNTL[1:0]
10
10
9
9
UHPI_HR/W
10
10
9
9
UHPI_HHWIL
3
4
UHPI_HSTROBE‡
16
16
UHPI_HCS
11
12
UHPI_HD[15:0]
(input)
1st half-word
5a
11
12
2nd half-word
13
UHPI_HRDY
A.
B.
For correct operation, strobe the UHPI_HAS signal only once per UHPI_HSTROBE active cycle.
UHPI_HSTROBE refers to the following logical operation on UHPI_HCS, UHPI_HDS1, and UHPI_HDS2:
[NOT(UHPI_HDS1 XOR UHPI_HDS2)] OR UHPI_HCS.
Figure 6-70. UHPI Write Timing (HAS Used)
Copyright © 2009–2017, Texas Instruments Incorporated
Peripheral Information and Electrical Specifications
Submit Documentation Feedback
Product Folder Links: OMAP-L138
235
OMAP-L138
SPRS586J – JUNE 2009 – REVISED JANUARY 2017
www.ti.com
6.26 Universal Parallel Port (uPP)
The Universal Parallel Port (uPP) peripheral is a multichannel, high-speed parallel interface with dedicated
data lines and minimal control signals. It is designed to interface cleanly with high-speed analog-to-digital
converters (ADCs) or digital-to-analog converters (DACs) with up to 16-bit data width (per channel). It may
also be interconnected with field-programmable gate arrays (FPGAs) or other uPP devices to achieve
high-speed digital data transfer. It can operate in receive mode, transmit mode, or duplex mode, in which
its individual channels operate in opposite directions.
The uPP peripheral includes an internal DMA controller to maximize throughput and minimize CPU
overhead during high-speed data transmission. All uPP transactions use the internal DMA to provide data
to or retrieve data from the I/O channels. The DMA controller includes two DMA channels, which typically
service separate I/O channels. The uPP peripheral also supports data interleave mode, in which all DMA
resources service a single I/O channel. In this mode, only one I/O channel may be used.
The features of the uPP include:
• Programmable data width per channel (from 8 to 16 bits inclusive)
• Programmable data justification
– Right-justify with zero extend
– Right-justify with sign extend
– Left-justify with zero fill
• Supports multiplexing of interleaved data during SDR transmit
• Optional frame START signal with programmable polarity
• Optional data ENABLE signal with programmable polarity
• Optional synchronization WAIT signal with programmable polarity
• Single Data Rate (SDR) or Double data Rate (DDR, interleaved) interface
– Supports multiplexing of interleaved data during SDR transmit
– Supports demultiplexing and multiplexing of interleaved data during DDR transfers
236
Peripheral Information and Electrical Specifications
Submit Documentation Feedback
Product Folder Links: OMAP-L138
Copyright © 2009–2017, Texas Instruments Incorporated
OMAP-L138
www.ti.com
SPRS586J – JUNE 2009 – REVISED JANUARY 2017
6.26.1 uPP Register Descriptions
Table 6-117. Universal Parallel Port (uPP) Registers
BYTE ADDRESS
ACRONYM
0x01E1 6000
UPPID
uPP Peripheral Identification Register
REGISTER DESCRIPTION
0x01E1 6004
UPPCR
uPP Peripheral Control Register
0x01E1 6008
UPDLB
uPP Digital Loopback Register
0x01E1 6010
UPCTL
uPP Channel Control Register
0x01E1 6014
UPICR
uPP Interface Configuration Register
0x01E1 6018
UPIVR
uPP Interface Idle Value Register
0x01E1 601C
UPTCR
uPP Threshold Configuration Register
0x01E1 6020
UPISR
uPP Interrupt Raw Status Register
0x01E1 6024
UPIER
uPP Interrupt Enabled Status Register
0x01E1 6028
UPIES
uPP Interrupt Enable Set Register
0x01E1 602C
UPIEC
uPP Interrupt Enable Clear Register
0x01E1 6030
UPEOI
uPP End-of-Interrupt Register
0x01E1 6040
UPID0
uPP DMA Channel I Descriptor 0 Register
0x01E1 6044
UPID1
uPP DMA Channel I Descriptor 1 Register
0x01E1 6048
UPID2
uPP DMA Channel I Descriptor 2 Register
0x01E1 6050
UPIS0
uPP DMA Channel I Status 0 Register
0x01E1 6054
UPIS1
uPP DMA Channel I Status 1 Register
0x01E1 6058
UPIS2
uPP DMA Channel I Status 2 Register
0x01E1 6060
UPQD0
uPP DMA Channel Q Descriptor 0 Register
0x01E1 6064
UPQD1
uPP DMA Channel Q Descriptor 1 Register
0x01E1 6068
UPQD2
uPP DMA Channel Q Descriptor 2 Register
0x01E1 6070
UPQS0
uPP DMA Channel Q Status 0 Register
0x01E1 6074
UPQS1
uPP DMA Channel Q Status 1 Register
0x01E1 6078
UPQS2
uPP DMA Channel Q Status 2 Register
Copyright © 2009–2017, Texas Instruments Incorporated
Peripheral Information and Electrical Specifications
Submit Documentation Feedback
Product Folder Links: OMAP-L138
237
OMAP-L138
SPRS586J – JUNE 2009 – REVISED JANUARY 2017
www.ti.com
6.26.2 uPP Electrical Data/Timing
Table 6-118. Timing Requirements for uPP (see Figure 6-71, Figure 6-72, Figure 6-73, Figure 6-74)
1.3V, 1.2V
NO.
MIN
1.1V
MIN
1.0V
MAX
MIN
SDR mode
13.33
20
26.66
DDR mode
26.66
40
53.33
1
tc(INCLK)
Cycle time, CHn_CLK
2
tw(INCLKH)
Pulse width, CHn_CLK high
3
tw(INCLKL)
Pulse width, CHn_CLK low
4
tsu(STV-INCLKH)
Setup time, CHn_START valid before CHn_CLK high
5
th(INCLKH-STV)
Hold time, CHn_START valid after CHn_CLK high
6
tsu(ENV-INCLKH)
Setup time, CHn_ENABLE valid before CHn_CLK high
7
th(INCLKH-ENV)
Hold time, CHn_ENABLE valid after CHn_CLK high
8
tsu(DV-INCLKH)
Setup time,
CHn_DATA/XDATA valid before CHn_CLK high
9
th(INCLKH-DV)
Hold time, CHn_DATA/XDATA valid after CHn_CLK high
10
tsu(DV-INCLKL)
Setup time, CHn_DATA/XDATA valid before CHn_CLK
low
11
th(INCLKL-DV)
19
tsu(WTV-INCLKL)
20
21
(1)
MAX
SDR mode
5
8
10
DDR mode
10
16
20
SDR mode
5
8
10
DDR mode
10
16
20
MAX
UNIT
ns
ns
ns
4
5.5
6.5
ns
0.8
0.8
0.8
ns
4
5.5
6.5
ns
0.8
0.8
0.8
ns
4
5.5
6.5
ns
0.8
0.8
0.8
ns
4
5.5
6.5
ns
Hold time, CHn_DATA/XDATA valid after CHn_CLK low
0.8
0.8
0.8
ns
Setup time, CHn_WAIT valid before CHn_CLK high
10
12
14
ns
th(INCLKL-WTV)
Hold time, CHn_WAIT valid after CHn_CLK high
0.8
0.8
0.8
ns
tc(2xTXCLK)
Cycle time, 2xTXCLK input clock (1)
6.66
10
13.33
ns
2xTXCLK is an alternate transmit clock source that must be at least 2 times the required uPP transmit clock rate (as it is is divided down
by 2 inside the uPP). 2xTXCLK has no specified skew relationship to the CHn_CLOCK and therefore is not shown in the timing diagram.
Table 6-119. Switching Characteristics Over Recommended Operating Conditions for uPP
NO.
1.3V, 1.2V
PARAMETER
MIN
MAX
1.1V
MIN
1.0V
MAX
MIN
SDR mode
13.33
20
26.66
DDR mode
26.66
40
53.33
SDR mode
5
8
10
DDR mode
10
16
20
MAX
UNIT
12
tc(OUTCLK)
Cycle time, CHn_CLK
13
tw(OUTCLKH)
Pulse width, CHn_CLK high
14
tw(OUTCLKL)
Pulse width, CHn_CLK low
15
td(OUTCLKH-STV)
Delay time, CHn_START valid after CHn_CLK high
2
11
2
15
2
21
ns
16
td(OUTCLKH-ENV)
Delay time, CHn_ENABLE valid after CHn_CLK high
2
11
2
15
2
21
ns
17
td(OUTCLKH-DV)
Delay time, CHn_DATA/XDATA valid after CHn_CLK high
2
11
2
15
2
21
ns
18
td(OUTCLKL-DV)
Delay time, CHn_DATA/XDATA valid after CHn_CLK low
2
11
2
15
2
21
ns
238
SDR mode
5
8
10
DDR mode
10
16
20
Peripheral Information and Electrical Specifications
Submit Documentation Feedback
Product Folder Links: OMAP-L138
ns
ns
ns
Copyright © 2009–2017, Texas Instruments Incorporated
OMAP-L138
www.ti.com
SPRS586J – JUNE 2009 – REVISED JANUARY 2017
1
2
3
CHx_CLK
4
5
CHx_START
6
7
CHx_ENABLE
CHx_WAIT
8
9
CHx_DATA[n:0]
CHx_XDATA[n:0]
Data1
Data2
Data3
Data4
Data5
Data7
Data6
Data8
Data9
Figure 6-71. uPP Single Data Rate (SDR) Receive Timing
1
2
3
CHx_CLK
4
5
CHx_START
6
7
CHx_ENABLE
CHx_WAIT
8
CHx_DATA[n:0]
CHx_XDATA[n:0]
I1
Q1
I2
Q2
I3
Q3
10
9
I4
Q4
I5
Q5
I6
Q6
I7
11
Q7
I8
Q8
I9
Q9
Figure 6-72. uPP Double Data Rate (DDR) Receive Timing
Copyright © 2009–2017, Texas Instruments Incorporated
Peripheral Information and Electrical Specifications
Submit Documentation Feedback
Product Folder Links: OMAP-L138
239
OMAP-L138
SPRS586J – JUNE 2009 – REVISED JANUARY 2017
www.ti.com
12
13
14
CHx_CLK
15
CHx_START
16
CHx_ENABLE
19
20
CHx_WAIT
17
CHx_DATA[n:0]
CHx_XDATA[n:0]
Data1
Data2
Data3
Data4
Data5
Data6
Data7
Data8
Data9
Figure 6-73. uPP Single Data Rate (SDR) Transmit Timing
12
13
14
CHx_CLK
15
CHx_START
16
CHx_ENABLE
19
20
CHx_WAIT
17
CHx_DATA[n:0]
CHx_XDATA[n:0]
I1
Q1
18
I2
Q2
I3
Q3
I4
Q4
I5
Q5
I6
Q6
I7
Q7
I8
Q8
I9
Q9
Figure 6-74. uPP Double Data Rate (DDR) Transmit Timing
240
Peripheral Information and Electrical Specifications
Submit Documentation Feedback
Product Folder Links: OMAP-L138
Copyright © 2009–2017, Texas Instruments Incorporated
OMAP-L138
www.ti.com
SPRS586J – JUNE 2009 – REVISED JANUARY 2017
6.27 Video Port Interface (VPIF)
The Video Port Interface (VPIF) allows the capture and display of digital video streams. Features include:
• Up to 2 Video Capture Channels (Channel 0 and Channel 1)
– Two 8-bit Standard-Definition (SD) Video with embedded timing codes (BT.656)
– Single 16-bit High-Definition (HD) Video with embedded timing codes (BT.1120)
– Single Raw Video (8-/10-/12-bit)
• Up to 2 Video Display Channels (Channel 2 and Channel 3)
– Two 8-bit SD Video Display with embedded timing codes (BT.656)
– Single 16-bit HD Video Display with embedded timing codes (BT.1120)
The VPIF capture channel input data format is selectable based on the settings of the specific Channel
Control Register (Channels 0–3). The VPIF Raw Video data-bus width is selectable based on the settings
of the Channel 0 Control Register.
Copyright © 2009–2017, Texas Instruments Incorporated
Peripheral Information and Electrical Specifications
Submit Documentation Feedback
Product Folder Links: OMAP-L138
241
OMAP-L138
SPRS586J – JUNE 2009 – REVISED JANUARY 2017
www.ti.com
6.27.1 VPIF Register Descriptions
Table 6-120 shows the VPIF registers.
Table 6-120. Video Port Interface (VPIF) Registers
BYTE ADDRESS
ACRONYM
0x01E1 7000
PID
REGISTER DESCRIPTION
0x01E1 7004
CH0_CTRL
Channel 0 control register
0x01E1 7008
CH1_CTRL
Channel 1 control register
0x01E1 700C
CH2_CTRL
Channel 2 control register
Channel 3 control register
Peripheral identification register
0x01E1 7010
CH3_CTRL
0x01E1 7014 - 0x01E1 701F
-
0x01E1 7020
INTEN
Reserved
Interrupt enable
0x01E1 7024
INTENSET
Interrupt enable set
0x01E1 7028
INTENCLR
Interrupt enable clear
0x01E1 702C
INTSTAT
0x01E1 7030
INTSTATCLR
0x01E1 7034
EMU_CTRL
Emulation control
0x01E1 7038
DMA_SIZE
DMA size control
0x01E1 703C - 0x01E1 703F
-
0x01E1 7040
CH0_TY_STRTADR
Channel 0 Top Field luma buffer start address
0x01E1 7044
CH0_BY_STRTADR
Channel 0 Bottom Field luma buffer start address
Interrupt status
Interrupt status clear
Reserved
CAPTURE CHANNEL 0 REGISTERS
0x01E1 7048
CH0_TC_STRTADR
Channel 0 Top Field chroma buffer start address
0x01E1 704C
CH0_BC_STRTADR
Channel 0 Bottom Field chroma buffer start address
0x01E1 7050
CH0_THA_STRTADR
Channel 0 Top Field horizontal ancillary data buffer start address
0x01E1 7054
CH0_BHA_STRTADR
Channel 0 Bottom Field horizontal ancillary data buffer start address
0x01E1 7058
CH0_TVA_STRTADR
Channel 0 Top Field vertical ancillary data buffer start address
0x01E1 705C
CH0_BVA_STRTADR
Channel 0 Bottom Field vertical ancillary data buffer start address
0x01E1 7060
CH0_SUBPIC_CFG
0x01E1 7064
CH0_IMG_ADD_OFST
Channel 0 image data address offset
0x01E1 7068
CH0_HA_ADD_OFST
Channel 0 horizontal ancillary data address offset
0x01E1 706C
CH0_HSIZE_CFG
Channel 0 horizontal data size configuration
0x01E1 7070
CH0_VSIZE_CFG0
Channel 0 vertical data size configuration (0)
0x01E1 7074
CH0_VSIZE_CFG1
Channel 0 vertical data size configuration (1)
0x01E1 7078
CH0_VSIZE_CFG2
Channel 0 vertical data size configuration (2)
0x01E1 707C
CH0_VSIZE
0x01E1 7080
CH1_TY_STRTADR
Channel 1 Top Field luma buffer start address
0x01E1 7084
CH1_BY_STRTADR
Channel 1 Bottom Field luma buffer start address
Channel 0 sub-picture configuration
Channel 0 vertical image size
CAPTURE CHANNEL 1 REGISTERS
242
0x01E1 7088
CH1_TC_STRTADR
Channel 1 Top Field chroma buffer start address
0x01E1 708C
CH1_BC_STRTADR
Channel 1 Bottom Field chroma buffer start address
0x01E1 7090
CH1_THA_STRTADR
Channel 1 Top Field horizontal ancillary data buffer start address
0x01E1 7094
CH1_BHA_STRTADR
Channel 1 Bottom Field horizontal ancillary data buffer start address
0x01E1 7098
CH1_TVA_STRTADR
Channel 1 Top Field vertical ancillary data buffer start address
0x01E1 709C
CH1_BVA_STRTADR
Channel 1 Bottom Field vertical ancillary data buffer start address
0x01E1 70A0
CH1_SUBPIC_CFG
0x01E1 70A4
CH1_IMG_ADD_OFST
Channel 1 image data address offset
0x01E1 70A8
CH1_HA_ADD_OFST
Channel 1 horizontal ancillary data address offset
0x01E1 70AC
CH1_HSIZE_CFG
Channel 1 sub-picture configuration
Channel 1 horizontal data size configuration
Peripheral Information and Electrical Specifications
Submit Documentation Feedback
Product Folder Links: OMAP-L138
Copyright © 2009–2017, Texas Instruments Incorporated
OMAP-L138
www.ti.com
SPRS586J – JUNE 2009 – REVISED JANUARY 2017
Table 6-120. Video Port Interface (VPIF) Registers (continued)
BYTE ADDRESS
ACRONYM
0x01E1 70B0
CH1_VSIZE_CFG0
Channel 1 vertical data size configuration (0)
REGISTER DESCRIPTION
0x01E1 70B4
CH1_VSIZE_CFG1
Channel 1 vertical data size configuration (1)
0x01E1 70B8
CH1_VSIZE_CFG2
Channel 1 vertical data size configuration (2)
0x01E1 70BC
CH1_VSIZE
0x01E1 70C0
CH2_TY_STRTADR
Channel 2 Top Field luma buffer start address
0x01E1 70C4
CH2_BY_STRTADR
Channel 2 Bottom Field luma buffer start address
Channel 1 vertical image size
DISPLAY CHANNEL 2 REGISTERS
0x01E1 70C8
CH2_TC_STRTADR
Channel 2 Top Field chroma buffer start address
0x01E1 70CC
CH2_BC_STRTADR
Channel 2 Bottom Field chroma buffer start address
0x01E1 70D0
CH2_THA_STRTADR
Channel 2 Top Field horizontal ancillary data buffer start address
0x01E1 70D4
CH2_BHA_STRTADR
Channel 2 Bottom Field horizontal ancillary data buffer start address
0x01E1 70D8
CH2_TVA_STRTADR
Channel 2 Top Field vertical ancillary data buffer start address
0x01E1 70DC
CH2_BVA_STRTADR
Channel 2 Bottom Field vertical ancillary data buffer start address
0x01E1 70E0
CH2_SUBPIC_CFG
0x01E1 70E4
CH2_IMG_ADD_OFST
Channel 2 image data address offset
0x01E1 70E8
CH2_HA_ADD_OFST
Channel 2 horizontal ancillary data address offset
0x01E1 70EC
CH2_HSIZE_CFG
Channel 2 horizontal data size configuration
0x01E1 70F0
CH2_VSIZE_CFG0
Channel 2 vertical data size configuration (0)
0x01E1 70F4
CH2_VSIZE_CFG1
Channel 2 vertical data size configuration (1)
0x01E1 70F8
CH2_VSIZE_CFG2
Channel 2 vertical data size configuration (2)
0x01E1 70FC
CH2_VSIZE
0x01E1 7100
CH2_THA_STRTPOS
0x01E1 7104
CH2_THA_SIZE
0x01E1 7108
CH2_BHA_STRTPOS
0x01E1 710C
CH2_BHA_SIZE
0x01E1 7110
CH2_TVA_STRTPOS
0x01E1 7114
CH2_TVA_SIZE
0x01E1 7118
CH2_BVA_STRTPOS
0x01E1 711C
CH2_BVA_SIZE
0x01E1 7120 - 0x01E1 713F
-
Channel 2 sub-picture configuration
Channel 2 vertical image size
Channel 2 Top Field horizontal ancillary data insertion start position
Channel 2 Top Field horizontal ancillary data size
Channel 2 Bottom Field horizontal ancillary data insertion start position
Channel 2 Bottom Field horizontal ancillary data size
Channel 2 Top Field vertical ancillary data insertion start position
Channel 2 Top Field vertical ancillary data size
Channel 2 Bottom Field vertical ancillary data insertion start position
Channel 2 Bottom Field vertical ancillary data size
Reserved
DISPLAY CHANNEL 3 REGISTERS
0x01E1 7140
CH3_TY_STRTADR
Channel 3 Field 0 luma buffer start address
0x01E1 7144
CH3_BY_STRTADR
Channel 3 Field 1 luma buffer start address
0x01E1 7148
CH3_TC_STRTADR
Channel 3 Field 0 chroma buffer start address
0x01E1 714C
CH3_BC_STRTADR
Channel 3 Field 1 chroma buffer start address
0x01E1 7150
CH3_THA_STRTADR
Channel 3 Field 0 horizontal ancillary data buffer start address
0x01E1 7154
CH3_BHA_STRTADR
Channel 3 Field 1 horizontal ancillary data buffer start address
0x01E1 7158
CH3_TVA_STRTADR
Channel 3 Field 0 vertical ancillary data buffer start address
0x01E1 715C
CH3_BVA_STRTADR
Channel 3 Field 1 vertical ancillary data buffer start address
0x01E1 7160
CH3_SUBPIC_CFG
0x01E1 7164
CH3_IMG_ADD_OFST
Channel 3 image data address offset
Channel 3 horizontal ancillary data address offset
Channel 3 sub-picture configuration
0x01E1 7168
CH3_HA_ADD_OFST
0x01E1 716C
CH3_HSIZE_CFG
Channel 3 horizontal data size configuration
0x01E1 7170
CH3_VSIZE_CFG0
Channel 3 vertical data size configuration (0)
0x01E1 7174
CH3_VSIZE_CFG1
Channel 3 vertical data size configuration (1)
0x01E1 7178
CH3_VSIZE_CFG2
Channel 3 vertical data size configuration (2)
0x01E1 717C
CH3_VSIZE
Copyright © 2009–2017, Texas Instruments Incorporated
Channel 3 vertical image size
Peripheral Information and Electrical Specifications
Submit Documentation Feedback
Product Folder Links: OMAP-L138
243
OMAP-L138
SPRS586J – JUNE 2009 – REVISED JANUARY 2017
www.ti.com
Table 6-120. Video Port Interface (VPIF) Registers (continued)
BYTE ADDRESS
ACRONYM
0x01E1 7180
CH3_THA_STRTPOS
0x01E1 7184
CH3_THA_SIZE
0x01E1 7188
CH3_BHA_STRTPOS
0x01E1 718C
CH3_BHA_SIZE
0x01E1 7190
CH3_TVA_STRTPOS
0x01E1 7194
CH3_TVA_SIZE
0x01E1 7198
CH3_BVA_STRTPOS
0x01E1 719C
CH3_BVA_SIZE
0x01E1 71A0 - 0x01E1 71FF
-
244
REGISTER DESCRIPTION
Channel 3 Top Field horizontal ancillary data insertion start position
Channel 3 Top Field horizontal ancillary data size
Channel 3 Bottom Field horizontal ancillary data insertion start position
Channel 3 Bottom Field horizontal ancillary data size
Channel 3 Top Field vertical ancillary data insertion start position
Channel 3 Top Field vertical ancillary data size
Channel 3 Bottom Field vertical ancillary data insertion start position
Channel 3 Bottom Field vertical ancillary data size
Reserved
Peripheral Information and Electrical Specifications
Submit Documentation Feedback
Product Folder Links: OMAP-L138
Copyright © 2009–2017, Texas Instruments Incorporated
OMAP-L138
www.ti.com
SPRS586J – JUNE 2009 – REVISED JANUARY 2017
6.27.2 VPIF Electrical Data/Timing
Table 6-121. Timing Requirements for VPIF VP_CLKINx Inputs (1) (see Figure 6-75)
1.3V, 1.2V
NO.
(1)
MIN
1.1V
MAX
MIN
1.0V
MAX
MIN
MAX
UNIT
Cycle time, VP_CLKIN0
13.3
20
37
ns
Cycle time, VP_CLKIN1/2/3
13.3
20
37
ns
tw(VKIH)
Pulse duration, VP_CLKINx high
0.4C
0.4C
0.4C
ns
tw(VKIL)
Pulse duration, VP_CLKINx low
0.4C
0.4C
0.4C
tt(VKI)
Transition time, VP_CLKINx
1
tc(VKI)
2
3
4
5
5
ns
5
ns
C = VP_CLKINx period in ns.
1
2
4
3
VP_CLKINx
4
Figure 6-75. Video Port Capture VP_CLKINx Timing
Copyright © 2009–2017, Texas Instruments Incorporated
Peripheral Information and Electrical Specifications
Submit Documentation Feedback
Product Folder Links: OMAP-L138
245
OMAP-L138
SPRS586J – JUNE 2009 – REVISED JANUARY 2017
www.ti.com
Table 6-122. Timing Requirements for VPIF Channels 0/1 Video Capture Data and Control Inputs
(see Figure 6-76)
1.3V
NO.
MIN
tsu(VDINV-
1
Setup time, VP_DINx valid before VP_OSCIN0/1 high
1.2V
MAX
MIN
1.1V
MAX
MIN
1.0V
MAX
MIN
MAX
UNIT
4
4
6
7
ns
0.5
0
0
0
ns
VKIH)
2
th(VKIH-VDINV) Hold time, VP_DINx valid after VP_CLKIN0/1 high
VP_CLKIN0/1
1
2
VP_DINx/FIELD/
HSYNC/VSYNC
Figure 6-76. VPIF Channels 0/1 Video Capture Data and Control Input Timing
Table 6-123. Switching Characteristics Over Recommended Operating Conditions for Video Data Shown
With Respect to VP_CLKOUT2/3 (1)
(see Figure 6-77)
NO.
1.3V, 1.2V
PARAMETER
MIN
1.1V
MAX
MIN
1.0V
MAX
MIN
MAX
UNIT
1
tc(VKO)
Cycle time, VP_CLKOUT2/3
13.3
20
37
ns
2
tw(VKOH)
Pulse duration, VP_CLKOUT2/3 high
0.4C
0.4C
0.4C
ns
3
tw(VKOL)
Pulse duration, VP_CLKOUT2/3 low
0.4C
0.4C
0.4C
ns
4
tt(VKO)
Transition time, VP_CLKOUT2/3
11
td(VKOH-VPDOUTV)
Delay time,
VP_CLKOUT2/3 high to VP_DOUTx valid
12
td(VCLKOH-VPDOUTIV)
Delay time,
VP_CLKOUT2/3 high to VP_DOUTx invalid
(1)
5
5
5
ns
8.5
12
17
ns
1.5
1.5
1.5
ns
C = VP_CLKO2/3 period in ns.
2
1
VP_CLKOUTx
(Positive Edge
Clocking)
3
4
VP_CLKOUTx
(Negative Edge
Clocking)
4
11
12
VP_DOUTx
Figure 6-77. VPIF Channels 2/3 Video Display Data Output Timing With Respect to VP_CLKOUT2/3
246
Peripheral Information and Electrical Specifications
Submit Documentation Feedback
Product Folder Links: OMAP-L138
Copyright © 2009–2017, Texas Instruments Incorporated
OMAP-L138
www.ti.com
SPRS586J – JUNE 2009 – REVISED JANUARY 2017
6.28 Enhanced Capture (eCAP) Peripheral
The device contains up to three enhanced capture (eCAP) modules. Figure 6-78 shows a functional block
diagram of a module.
Uses for ECAP include:
• Speed measurements of rotating machinery (e.g. toothed sprockets sensed via Hall sensors)
• Elapsed time measurements between position sensor triggers
• Period and duty cycle measurements of pulse train signals
• Decoding current or voltage amplitude derived from duty cycle encoded current/voltage sensors
The ECAP module described in this specification includes the following features:
• 32 bit time base
• 4 event time-stamp registers (each 32 bits)
• Edge polarity selection for up to 4 sequenced time-stamp capture events
• Interrupt on either of the 4 events
• Single shot capture of up to 4 event time-stamps
• Continuous mode capture of time-stamps in a 4 deep circular buffer
• Absolute time-stamp capture
• Difference mode time-stamp capture
• All the above resources are dedicated to a single input pin
The eCAP modules are clocked at the ASYNC3 clock domain rate.
Copyright © 2009–2017, Texas Instruments Incorporated
Peripheral Information and Electrical Specifications
Submit Documentation Feedback
Product Folder Links: OMAP-L138
247
OMAP-L138
SYNC
SPRS586J – JUNE 2009 – REVISED JANUARY 2017
SYNCIn
SYNCOut
www.ti.com
CTRPHS
(phase register−32 bit)
TSCTR
(counter−32 bit)
APWM mode
OVF
RST
CTR_OVF
Delta−mode
CTR [0−31]
PWM
compare
logic
PRD [0−31]
CMP [0−31]
32
CTR=PRD
CTR [0−31]
CTR=CMP
32
32
LD1
CAP1
(APRD active)
APRD
shadow
32
32
MODE SELECT
PRD [0−31]
Polarity
select
LD
32
CMP [0−31]
CAP2
(ACMP active)
32
LD
LD2
Polarity
select
Event
qualifier
ACMP
shadow
32
CAP3
(APRD shadow)
LD
32
CAP4
(ACMP shadow)
LD
eCAPx
Event
Pre-scale
Polarity
select
LD3
LD4
Polarity
select
4
Capture events
4
CEVT[1:4]
to Interrupt
Controller
Interrupt
Trigger
and
Flag
control
CTR_OVF
Continuous /
Oneshot
Capture Control
CTR=PRD
CTR=CMP
Figure 6-78. eCAP Functional Block Diagram
248
Peripheral Information and Electrical Specifications
Submit Documentation Feedback
Product Folder Links: OMAP-L138
Copyright © 2009–2017, Texas Instruments Incorporated
OMAP-L138
www.ti.com
SPRS586J – JUNE 2009 – REVISED JANUARY 2017
Table 6-124 is the list of the ECAP registers.
Table 6-124. ECAPx Configuration Registers
ECAP0
BYTE ADDRESS
ECAP1
BYTE ADDRESS
ECAP2
BYTE ADDRESS
0x01F0 6000
0x01F0 7000
0x01F0 8000
TSCTR
0x01F0 6004
0x01F0 7004
0x01F0 8004
CTRPHS
ACRONYM
DESCRIPTION
Time-Stamp Counter
Counter Phase Offset Value Register
0x01F0 6008
0x01F0 7008
0x01F0 8008
CAP1
Capture 1 Register
0x01F0 600C
0x01F0 700C
0x01F0 800C
CAP2
Capture 2 Register
0x01F0 6010
0x01F0 7010
0x01F0 8010
CAP3
Capture 3 Register
0x01F0 6014
0x01F0 7014
0x01F0 8014
CAP4
Capture 4 Register
0x01F0 6028
0x01F0 7028
0x01F0 8028
ECCTL1
Capture Control Register 1
0x01F0 602A
0x01F0 702A
0x01F0 802A
ECCTL2
Capture Control Register 2
0x01F0 602C
0x01F0 702C
0x01F0 802C
ECEINT
Capture Interrupt Enable Register
0x01F0 602E
0x01F0 702E
0x01F0 802E
ECFLG
Capture Interrupt Flag Register
0x01F0 6030
0x01F0 7030
0x01F0 8030
ECCLR
Capture Interrupt Clear Register
0x01F0 6032
0x01F0 7032
0x01F0 8032
ECFRC
Capture Interrupt Force Register
0x01F0 605C
0x01F0 705C
0x01F0 805C
REVID
Revision ID
Table 6-125 shows the eCAP timing requirement and Table 6-126 shows the eCAP switching
characteristics.
Table 6-125. Timing Requirements for Enhanced Capture (eCAP)
TEST CONDITIONS
tw(CAP)
Capture input pulse width
1.3V, 1.2V, 1.1V, 1.0V
MIN
MAX
UNIT
Asynchronous
2tc(SCO)
cycles
Synchronous
2tc(SCO)
cycles
Table 6-126. Switching Characteristics Over Recommended Operating Conditions for eCAP
PARAMETER
tw(APWM)
Pulse duration, APWMx
output high/low
1.3V, 1.2V
MIN
20
Copyright © 2009–2017, Texas Instruments Incorporated
1.1V
MAX
MIN
20
1.0V
MAX
MIN
MAX
20
Peripheral Information and Electrical Specifications
Submit Documentation Feedback
Product Folder Links: OMAP-L138
UNIT
ns
249
OMAP-L138
SPRS586J – JUNE 2009 – REVISED JANUARY 2017
www.ti.com
6.29 Enhanced High-Resolution Pulse-Width Modulator (eHRPWM)
The device contains two enhanced PWM Modules (eHRPWM). Figure 6-79 shows a block diagram of
multiple eHRPWM modules. Figure 6-79 shows the signal interconnections with the eHRPWM.
EPWMSYNCI
EPWM0INT
EPWM0SYNCI
EPWM0A
ePWM0 module
EPWM0B
TZ
Interrupt
Controllers
EPWM0SYNCO
GPIO
MUX
EPWM1SYNCI
EPWM1INT
EPWM1A
ePWM1 module
EPWM1SYNCO
To eCAP0
module
(sync in)
EPWM1B
TZ
EPWMSYNCO
Peripheral Bus
Figure 6-79. Multiple PWM Modules in a OMAP-L138 System
250
Peripheral Information and Electrical Specifications
Submit Documentation Feedback
Product Folder Links: OMAP-L138
Copyright © 2009–2017, Texas Instruments Incorporated
OMAP-L138
www.ti.com
SPRS586J – JUNE 2009 – REVISED JANUARY 2017
Time−base (TB)
Sync
in/out
select
Mux
CTR=ZERO
CTR=CMPB
Disabled
TBPRD shadow (16)
TBPRD active (16)
CTR=PRD
EPWMSYNCO
TBCTL[SYNCOSEL]
TBCTL[CNTLDE]
EPWMSYNCI
Counter
up/down
(16 bit)
CTR=ZERO
CTR_Dir
TBCNT
active (16)
TBPHSHR (8)
16
8
TBPHS active (24)
Phase
control
Counter compare (CC)
CTR=CMPA
CMPAHR (8)
16
TBCTL[SWFSYNC]
(software forced sync)
Action
qualifier
(AQ)
CTR = PRD
CTR = ZERO
CTR = CMPA
CTR = CMPB
CTR_Dir
8
Event
trigger
and
interrupt
(ET)
EPWMxINT
HiRes PWM (HRPWM)
CMPA active (24)
EPWMxA
EPWMA
CMPA shadow (24)
CTR=CMPB
Dead
band
(DB)
16
PWM
chopper
(PC)
EPWMxB
EPWMB
CMPB active (16)
CMPB shadow (16)
Trip
zone
(TZ)
EPWMxTZINT
CTR = ZERO
TZ
Figure 6-80. eHRPWM Sub-Modules Showing Critical Internal Signal Interconnections
Copyright © 2009–2017, Texas Instruments Incorporated
Peripheral Information and Electrical Specifications
Submit Documentation Feedback
Product Folder Links: OMAP-L138
251
OMAP-L138
SPRS586J – JUNE 2009 – REVISED JANUARY 2017
www.ti.com
Table 6-127. eHRPWM Module Control and Status Registers Grouped by Submodule
eHRPWM0
BYTE ADDRESS
eHRPWM1
BYTE ADDRESS
ACRONYM
SHADOW
REGISTER DESCRIPTION
Time-Base Submodule Registers
0x01F0 0000
0x01F0 2000
0x01F0 0002
0x01F0 2002
0x01F0 0004
0x01F0 2004
0x01F0 0006
0x01F0 2006
TBCTL
No
Time-Base Control Register
TBSTS
No
Time-Base Status Register
No
Extension for HRPWM Phase Register (1)
No
Time-Base Phase Register
TBPHSHR
TBPHS
0x01F0 0008
0x01F0 2008
TBCNT
No
Time-Base Counter Register
0x01F0 000A
0x01F0 200A
TBPRD
Yes
Time-Base Period Register
Counter-Compare Submodule Registers
0x01F0 000E
0x01F0 200E
CMPCTL
No
Counter-Compare Control Register
0x01F0 0010
0x01F0 2010
CMPAHR
No
Extension for HRPWM Counter-Compare A Register (1)
0x01F0 0012
0x01F0 2012
CMPA
Yes
Counter-Compare A Register
0x01F0 0014
0x01F0 2014
CMPB
Yes
Counter-Compare B Register
0x01F0 0016
0x01F0 2016
AQCTLA
No
Action-Qualifier Control Register for Output A (eHRPWMxA)
0x01F0 0018
0x01F0 2018
AQCTLB
No
Action-Qualifier Control Register for Output B (eHRPWMxB)
Action-Qualifier Submodule Registers
0x01F0 001A
0x01F0 201A
AQSFRC
No
Action-Qualifier Software Force Register
0x01F0 001C
0x01F0 201C
AQCSFRC
Yes
Action-Qualifier Continuous S/W Force Register Set
Dead-Band Generator Submodule Registers
0x01F0 001E
0x01F0 201E
DBCTL
No
Dead-Band Generator Control Register
0x01F0 0020
0x01F0 2020
DBRED
No
Dead-Band Generator Rising Edge Delay Count Register
0x01F0 0022
0x01F0 2022
DBFED
No
Dead-Band Generator Falling Edge Delay Count Register
PWM-Chopper Submodule Registers
0x01F0 003C
0x01F0 203C
PCCTL
No
PWM-Chopper Control Register
Trip-Zone Submodule Registers
0x01F0 0024
0x01F0 2024
TZSEL
No
Trip-Zone Select Register
0x01F0 0028
0x01F0 2028
TZCTL
No
Trip-Zone Control Register
0x01F0 002A
0x01F0 202A
TZEINT
No
Trip-Zone Enable Interrupt Register
0x01F0 002C
0x01F0 202C
TZFLG
No
Trip-Zone Flag Register
0x01F0 002E
0x01F0 202E
TZCLR
No
Trip-Zone Clear Register
0x01F0 0030
0x01F0 2030
TZFRC
No
Trip-Zone Force Register
Event-Trigger Submodule Registers
0x01F0 0032
0x01F0 2032
ETSEL
No
Event-Trigger Selection Register
0x01F0 0034
0x01F0 0036
0x01F0 2034
ETPS
No
Event-Trigger Pre-Scale Register
0x01F0 2036
ETFLG
No
Event-Trigger Flag Register
0x01F0 0038
0x01F0 2038
ETCLR
No
Event-Trigger Clear Register
0x01F0 003A
0x01F0 203A
ETFRC
No
Event-Trigger Force Register
High-Resolution PWM (HRPWM) Submodule Registers
0x01F0 1040
(1)
252
0x01F0 3040
HRCNFG
No
HRPWM Configuration Register
(1)
These registers are only available on eHRPWM instances that include the high-resolution PWM (HRPWM) extension; otherwise, these
locations are reserved.
Peripheral Information and Electrical Specifications
Submit Documentation Feedback
Product Folder Links: OMAP-L138
Copyright © 2009–2017, Texas Instruments Incorporated
OMAP-L138
www.ti.com
SPRS586J – JUNE 2009 – REVISED JANUARY 2017
6.29.1 Enhanced Pulse Width Modulator (eHRPWM) Timing
PWM refers to PWM outputs on eHRPWM1-6. Table 6-128 shows the PWM timing requirements and
Table 6-129, switching characteristics.
Table 6-128. Timing Requirements for eHRPWM
TEST CONDITIONS
1.3V, 1.2V, 1.1V, 1.0V
MIN
tw(SYNCIN)
Sync input pulse width
UNIT
MAX
Asynchronous
2tc(SCO)
cycles
Synchronous
2tc(SCO)
cycles
Table 6-129. Switching Characteristics Over Recommended Operating Conditions for eHRPWM
PARAMETER
TEST
CONDITIONS
1.3V, 1.2V
MIN
MAX
1.1V
MIN
1.0V
MAX
MIN
MAX
tw(PWM)
Pulse duration, PWMx output
high/low
tw(SYNCOUT)
Sync output pulse width
td(PWM)TZA
Delay time, trip input active to
PWM forced high
Delay time, trip input active to
PWM forced low
no pin load; no
additional
programmable
delay
25
25
25
Delay time, trip input active to
PWM Hi-Z
no additional
programmable
delay
20
20
20
td(TZ-PWM)HZ
Copyright © 2009–2017, Texas Instruments Incorporated
20
20
26.6
8tc(SCO)
8tc(SCO)
8tc(SCO)
UNIT
ns
cycles
ns
ns
Peripheral Information and Electrical Specifications
Submit Documentation Feedback
Product Folder Links: OMAP-L138
253
OMAP-L138
SPRS586J – JUNE 2009 – REVISED JANUARY 2017
www.ti.com
6.29.2 Trip-Zone Input Timing
tw(TZ)
TZ
td(TZ-PWM)HZ
PWM(A)
A.
PWM refers to all the PWM pins in the device. The state of the PWM pins after TZ is taken high depends on the PWM
recovery software.
Figure 6-81. PWM Hi-Z Characteristics
Table 6-130. Trip-Zone input Timing Requirements
TEST CONDITIONS
1.3V, 1.2V, 1.1V, 1.0V
MIN
tw(TZ)
254
Pulse duration, TZx input low
MAX
UNIT
Asynchronous
1tc(SCO)
cycles
Synchronous
2tc(SCO)
cycles
Peripheral Information and Electrical Specifications
Submit Documentation Feedback
Product Folder Links: OMAP-L138
Copyright © 2009–2017, Texas Instruments Incorporated
OMAP-L138
www.ti.com
SPRS586J – JUNE 2009 – REVISED JANUARY 2017
6.30 Timers
The timers support the following features:
• Configurable as single 64-bit timer or two 32-bit timers
• Period timeouts generate interrupts, DMA events or external pin events
• 8 32-bit compare registers
• Compare matches generate interrupt events
• Capture capability
• 64-bit Watchdog capability (Timer64P1 only)
Table 6-131 lists the timer registers.
Table 6-131. Timer Registers
TIMER64P 0
BYTE
ADDRESS
TIMER64P 1
BYTE
ADDRESS
TIMER64P 2
BYTE
ADDRESS
TIMER64P 3
BYTE
ADDRESS
0x01C2 0000
0x01C2 1000
0x01F0 C000
0x01F0 D000
REV
0x01C2 0004
0x01C2 1004
0x01F0 C004
0x01F0 D004
EMUMGT
0x01C2 0008
0x01C2 1008
0x01F0 C008
0x01F0 D008
0x01C2 000C
0x01C2 100C
0x01F0 C00C
0x01F0 D00C
0x01C2 0010
0x01C2 1010
0x01F0 C010
0x01F0 D010
0x01C2 0014
0x01C2 1014
0x01F0 C014
0x01C2 0018
0x01C2 1018
0x01F0 C018
0x01C2 001C
0x01C2 101C
0x01C2 0020
0x01C2 0024
ACRONYM
GPINTGPEN
REGISTER DESCRIPTION
Revision Register
Emulation Management Register
GPIO Interrupt and GPIO Enable Register
GPDATGPDIR GPIO Data and GPIO Direction Register
TIM12
Timer Counter Register 12
0x01F0 D014
TIM34
Timer Counter Register 34
0x01F0 D018
PRD12
Timer Period Register 12
0x01F0 C01C
0x01F0 D01C
PRD34
Timer Period Register 34
0x01C2 1020
0x01F0 C020
0x01F0 D020
TCR
0x01C2 1024
0x01F0 C024
0x01F0 D024
TGCR
0x01C2 0028
0x01C2 1028
0x01F0 C028
0x01F0 D028
WDTCR
0x01C2 0034
0x01C2 1034
0x01F0 C034
0x01F0 D034
REL12
Timer Reload Register 12
Timer Control Register
Timer Global Control Register
Watchdog Timer Control Register
0x01C2 0038
0x01C2 1038
0x01F0 C038
0x01F0 D038
REL34
Timer Reload Register 34
0x01C2 003C
0x01C2 103C
0x01F0 C03C
0x01F0 D03C
CAP12
Timer Capture Register 12
0x01C2 0040
0x01C2 1040
0x01F0 C040
0x01F0 D040
CAP34
Timer Capture Register 34
0x01C2 0044
0x01C2 1044
0x01F0 C044
0x01F0 D044
INTCTLSTAT
0x01C2 0060
0x01C2 1060
0x01F0 C060
0x01F0 D060
CMP0
Compare Register 0
0x01C2 0064
0x01C2 1064
0x01F0 C064
0x01F0 D064
CMP1
Compare Register 1
Timer Interrupt Control and Status Register
0x01C2 0068
0x01C2 1068
0x01F0 C068
0x01F0 D068
CMP2
Compare Register 2
0x01C2 006C
0x01C2 106C
0x01F0 C06C
0x01F0 D06C
CMP3
Compare Register 3
0x01C2 0070
0x01C2 1070
0x01F0 C070
0x01F0 D070
CMP4
Compare Register 4
0x01C2 0074
0x01C2 1074
0x01F0 C074
0x01F0 D074
CMP5
Compare Register 5
0x01C2 0078
0x01C2 1078
0x01F0 C078
0x01F0 D078
CMP6
Compare Register 6
0x01C2 007C
0x01C2 107C
0x01F0 C07C
0x01F0 D07C
CMP7
Compare Register 7
Copyright © 2009–2017, Texas Instruments Incorporated
Peripheral Information and Electrical Specifications
Submit Documentation Feedback
Product Folder Links: OMAP-L138
255
OMAP-L138
SPRS586J – JUNE 2009 – REVISED JANUARY 2017
6.30.1
www.ti.com
Timer Electrical Data/Timing
Table 6-132. Timing Requirements for Timer Input (1)
(2)
(see Figure 6-82)
1.3V, 1.2V, 1.1V, 1.0V
NO.
MIN
1
tc(TM64Px_IN12)
Cycle time, TM64Px_IN12
2
tw(TINPH)
Pulse duration, TM64Px_IN12 high
0.45C
3
tw(TINPL)
Pulse duration, TM64Px_IN12 low
0.45C
4
(1)
(2)
(3)
tt(TM64Px_IN12)
MAX
UNIT
4P
ns
0.55C
ns
0.55C
ns
0.25P or 10
Transition time, TM64Px_IN12
ns
(3)
P = OSCIN cycle time in ns.
C = TM64P0_IN12 cycle time in ns.
Whichever is smaller. P = the period of the applied signal. Maintaining transition times as fast as possible is recommended to improve
noise immunity on input signals.
1
2
4
3
4
TM64P0_IN12
Figure 6-82. Timer Timing
Table 6-133. Switching Characteristics Over Recommended Operating Conditions for Timer Output
NO.
1.3V, 1.2V, 1.1V, 1.0V
PARAMETER
MIN
MAX
(1)
UNIT
5
tw(TOUTH)
Pulse duration, TM64P0_OUT12 high
4P
ns
6
tw(TOUTL)
Pulse duration, TM64P0_OUT12 low
4P
ns
(1)
P = OSCIN cycle time in ns. For example, when OSCIN frequency is 27 MHz, use P = 37.037 ns.
5
6
TM64P0_OUT12
Figure 6-83. Timer Timing
256
Peripheral Information and Electrical Specifications
Submit Documentation Feedback
Product Folder Links: OMAP-L138
Copyright © 2009–2017, Texas Instruments Incorporated
OMAP-L138
www.ti.com
SPRS586J – JUNE 2009 – REVISED JANUARY 2017
6.31 Real Time Clock (RTC)
The RTC provides a time reference to an application running on the device. The current date and time is
tracked in a set of counter registers that update once per second. The time can be represented in 12-hour
or 24-hour mode. The calendar and time registers are buffered during reads and writes so that updates do
not interfere with the accuracy of the time and date.
Alarms are available to interrupt the CPU at a particular time, or at periodic time intervals, such as once
per minute or once per day. In addition, the RTC can interrupt the CPU every time the calendar and time
registers are updated, or at programmable periodic intervals.
The real-time clock (RTC) provides the following features:
• 100-year calendar (xx00 to xx99)
• Counts seconds, minutes, hours, day of the week, date, month, and year with leap year compensation
• Binary-coded-decimal (BCD) representation of time, calendar, and alarm
• 12-hour clock mode (with AM and PM) or 24-hour clock mode
• Alarm interrupt
• Periodic interrupt
• Single interrupt to the CPU
• Supports external 32.768-kHz crystal or external clock source of the same frequency
• Separate isolated power supply
Figure 6-84 shows a block diagram of the RTC.
RTC_XI
Counter
32 kHz
Oscillator
Compensation
Seconds
Minutes
Week
Days
XTAL
RTC_XO
Hours
Days
Months
Years
Oscillator
Alarm
Alarm
Interrupts
Timer
Periodic
Interrupts
Figure 6-84. Real-Time Clock Block Diagram
Copyright © 2009–2017, Texas Instruments Incorporated
Peripheral Information and Electrical Specifications
Submit Documentation Feedback
Product Folder Links: OMAP-L138
257
OMAP-L138
SPRS586J – JUNE 2009 – REVISED JANUARY 2017
www.ti.com
6.31.1 Clock Source
The clock reference for the RTC is an external 32.768-kHz crystal or an external clock source of the same
frequency. The RTC also has a separate power supply that is isolated from the rest of the system. When
the CPU and other peripherals are without power, the RTC can remain powered to preserve the current
time and calendar information. Even if the RTC is not used, it must remain powered when the rest of the
device is powered.
The source for the RTC reference clock may be provided by a crystal or by an external clock source. The
RTC has an internal oscillator buffer to support direct operation with a crystal. The crystal is connected
between pins RTC_XI and RTC_XO. RTC_XI is the input to the on-chip oscillator and RTC_XO is the
output from the oscillator back to the crystal.
An external 32.768-kHz clock source may be used instead of a crystal. In such a case, the clock source is
connected to RTC_XI, and RTC_XO is left unconnected.
If the RTC is not used, the RTC_XI pin should be held either low or high, RTC_XO should be left
unconnected, RTC_CVDD should be connected to the device CVDD, and RTC_VSS should remain
grounded.
CVDD
RTC
Power
Source
RTC_CVDD
C2
XTAL
32.768
kHz
RTC_XI
RTC_XO
32K
OSC
C1
RealTime
Clock
(RTC)
Module
RTC_VSS
Isolated RTC
Power Domain
Figure 6-85. Clock Source
258
Peripheral Information and Electrical Specifications
Submit Documentation Feedback
Product Folder Links: OMAP-L138
Copyright © 2009–2017, Texas Instruments Incorporated
OMAP-L138
www.ti.com
SPRS586J – JUNE 2009 – REVISED JANUARY 2017
6.31.2 Real-Time Clock Register Descriptions
Table 6-134. Real-Time Clock (RTC) Registers
BYTE ADDRESS
ACRONYM
0x01C2 3000
SECOND
Seconds Register
0x01C2 3004
MINUTE
Minutes Register
0x01C2 3008
HOUR
0x01C2 300C
DAY
0x01C2 3010
MONTH
0x01C2 3014
YEAR
Year Register
0x01C2 3018
DOTW
Day of the Week Register
0x01C2 3020
ALARMSECOND
Alarm Seconds Register
0x01C2 3024
ALARMMINUTE
Alarm Minutes Register
0x01C2 3028
ALARMHOUR
Alarm Hours Register
0x01C2 302C
ALARMDAY
Alarm Days Register
0x01C2 3030
ALARMMONTH
0x01C2 3034
ALARMYEAR
0x01C2 3040
CTRL
Control Register
0x01C2 3044
STATUS
Status Register
0x01C2 3048
INTERRUPT
0x01C2 304C
COMPLSB
Compensation (LSB) Register
0x01C2 3050
COMPMSB
Compensation (MSB) Register
0x01C2 3054
OSC
0x01C2 3060
SCRATCH0
Scratch 0 (General-Purpose) Register
0x01C2 3064
SCRATCH1
Scratch 1 (General-Purpose) Register
0x01C2 3068
SCRATCH2
Scratch 2 (General-Purpose) Register
0x01C2 306C
KICK0
Kick 0 (Write Protect) Register
0x01C2 3070
KICK1
Kick 1 (Write Protect) Register
Copyright © 2009–2017, Texas Instruments Incorporated
REGISTER DESCRIPTION
Hours Register
Day of the Month Register
Month Register
Alarm Months Register
Alarm Years Register
Interrupt Enable Register
Oscillator Register
Peripheral Information and Electrical Specifications
Submit Documentation Feedback
Product Folder Links: OMAP-L138
259
OMAP-L138
SPRS586J – JUNE 2009 – REVISED JANUARY 2017
www.ti.com
6.32 General-Purpose Input/Output (GPIO)
The GPIO peripheral provides general-purpose pins that can be configured as either inputs or outputs.
When configured as an output, a write to an internal register can control the state driven on the output pin.
When configured as an input, the state of the input is detectable by reading the state of an internal
register. In addition, the GPIO peripheral can produce CPU interrupts and EDMA events in different
interrupt/event generation modes. The GPIO peripheral provides generic connections to external devices.
The GPIO pins are grouped into banks of 16 pins per bank (i.e., bank 0 consists of GPIO [0:15]).
The device GPIO peripheral supports the following:
• Up to 144 Pins configurable as GPIO
• External Interrupt and DMA request Capability
– Every GPIO pin may be configured to generate an interrupt request on detection of rising and/or
falling edges on the pin.
– The interrupt requests within each bank are combined (logical or) to create eight unique bank level
interrupt requests.
– The bank level interrupt service routine may poll the INTSTATx register for its bank to determine
which pin(s) have triggered the interrupt.
– GPIO Banks 0, 1, 2, 3, 4, 5, 6, 7, and 8 Interrupts assigned to ARM INTC Interrupt Requests 42,
43, 44, 45, 46, 47, 48, 49, and 50 respectively
– GPIO Banks 0, 1, 2, 3, 4, 5, 6, 7, and 8 Interrupts assigned to DSP Events 65, 41, 49, 52, 54, 59,
62, 72, and 75 respectively
– GPIO Banks 0, 1, 2, 3, 4, and 5 are assigned to EDMA events 6, 7, 22, 23, 28, 29, and 29
respectively on Channel Controller 0 and GPIO Banks 6, 7, and 8 are assigned to EDMA events
16, 17, and 18 respectively on Channel Controller 1.
• Set/clear functionality: Firmware writes 1 to corresponding bit position(s) to set or to clear GPIO
signal(s). This allows multiple firmware processes to toggle GPIO output signals without critical section
protection (disable interrupts, program GPIO, re-enable interrupts, to prevent context switching to
anther process during GPIO programming).
• Separate Input/Output registers
• Output register in addition to set/clear so that, if preferred by firmware, some GPIO output signals can
be toggled by direct write to the output register(s).
• Output register, when read, reflects output drive status. This, in addition to the input register reflecting
pin status and open-drain I/O cell, allows wired logic be implemented.
The memory map for the GPIO registers is shown in Table 6-135.
260
Peripheral Information and Electrical Specifications
Submit Documentation Feedback
Product Folder Links: OMAP-L138
Copyright © 2009–2017, Texas Instruments Incorporated
OMAP-L138
www.ti.com
SPRS586J – JUNE 2009 – REVISED JANUARY 2017
6.32.1 GPIO Register Description(s)
Table 6-135. GPIO Registers
BYTE ADDRESS
ACRONYM
0x01E2 6000
REV
0x01E2 6004
RESERVED
0x01E2 6008
BINTEN
REGISTER DESCRIPTION
Peripheral Revision Register
Reserved
GPIO Interrupt Per-Bank Enable Register
GPIO Banks 0 and 1
0x01E2 6010
DIR01
0x01E2 6014
OUT_DATA01
GPIO Banks 0 and 1 Direction Register
GPIO Banks 0 and 1 Output Data Register
0x01E2 6018
SET_DATA01
GPIO Banks 0 and 1 Set Data Register
0x01E2 601C
CLR_DATA01
GPIO Banks 0 and 1 Clear Data Register
0x01E2 6020
IN_DATA01
GPIO Banks 0 and 1 Input Data Register
0x01E2 6024
SET_RIS_TRIG01
GPIO Banks 0 and 1 Set Rising Edge Interrupt Register
0x01E2 6028
CLR_RIS_TRIG01
GPIO Banks 0 and 1 Clear Rising Edge Interrupt Register
0x01E2 602C
SET_FAL_TRIG01
GPIO Banks 0 and 1 Set Falling Edge Interrupt Register
0x01E2 6030
CLR_FAL_TRIG01
GPIO Banks 0 and 1 Clear Falling Edge Interrupt Register
0x01E2 6034
INTSTAT01
0x01E2 6038
DIR23
0x01E2 603C
OUT_DATA23
GPIO Banks 2 and 3 Output Data Register
0x01E2 6040
SET_DATA23
GPIO Banks 2 and 3 Set Data Register
0x01E2 6044
CLR_DATA23
GPIO Banks 2 and 3 Clear Data Register
0x01E2 6048
IN_DATA23
GPIO Banks 2 and 3 Input Data Register
GPIO Banks 0 and 1 Interrupt Status Register
GPIO Banks 2 and 3
GPIO Banks 2 and 3 Direction Register
0x01E2 604C
SET_RIS_TRIG23
GPIO Banks 2 and 3 Set Rising Edge Interrupt Register
0x01E2 6050
CLR_RIS_TRIG23
GPIO Banks 2 and 3 Clear Rising Edge Interrupt Register
0x01E2 6054
SET_FAL_TRIG23
GPIO Banks 2 and 3 Set Falling Edge Interrupt Register
0x01E2 6058
CLR_FAL_TRIG23
GPIO Banks 2 and 3 Clear Falling Edge Interrupt Register
0x01E2 605C
INTSTAT23
0x01E2 6060
DIR45
0x01E2 6064
OUT_DATA45
GPIO Banks 4 and 5 Output Data Register
0x01E2 6068
SET_DATA45
GPIO Banks 4 and 5 Set Data Register
0x01E2 606C
CLR_DATA45
GPIO Banks 4 and 5 Clear Data Register
0x01E2 6070
IN_DATA45
GPIO Banks 4 and 5 Input Data Register
0x01E2 6074
SET_RIS_TRIG45
GPIO Banks 4 and 5 Set Rising Edge Interrupt Register
0x01E2 6078
CLR_RIS_TRIG45
GPIO Banks 4 and 5 Clear Rising Edge Interrupt Register
0x01E2 607C
SET_FAL_TRIG45
GPIO Banks 4 and 5 Set Falling Edge Interrupt Register
0x01E2 6080
CLR_FAL_TRIG45
GPIO Banks 4 and 5 Clear Falling Edge Interrupt Register
0x01E2 6084
INTSTAT45
GPIO Banks 2 and 3 Interrupt Status Register
GPIO Banks 4 and 5
Copyright © 2009–2017, Texas Instruments Incorporated
GPIO Banks 4 and 5 Direction Register
GPIO Banks 4 and 5 Interrupt Status Register
Peripheral Information and Electrical Specifications
Submit Documentation Feedback
Product Folder Links: OMAP-L138
261
OMAP-L138
SPRS586J – JUNE 2009 – REVISED JANUARY 2017
www.ti.com
Table 6-135. GPIO Registers (continued)
BYTE ADDRESS
ACRONYM
REGISTER DESCRIPTION
GPIO Banks 6 and 7
0x01E2 6088
DIR67
0x01E2 608C
OUT_DATA67
GPIO Banks 6 and 7 Direction Register
GPIO Banks 6 and 7 Output Data Register
0x01E2 6090
SET_DATA67
GPIO Banks 6 and 7 Set Data Register
0x01E2 6094
CLR_DATA67
GPIO Banks 6 and 7 Clear Data Register
0x01E2 6098
IN_DATA67
GPIO Banks 6 and 7 Input Data Register
0x01E2 609C
SET_RIS_TRIG67
GPIO Banks 6 and 7 Set Rising Edge Interrupt Register
0x01E2 60A0
CLR_RIS_TRIG67
GPIO Banks 6 and 7 Clear Rising Edge Interrupt Register
0x01E2 60A4
SET_FAL_TRIG67
GPIO Banks 6 and 7 Set Falling Edge Interrupt Register
0x01E2 60A8
CLR_FAL_TRIG67
GPIO Banks 6 and 7 Clear Falling Edge Interrupt Register
0x01E2 60AC
INTSTAT67
0x01E2 60B0
DIR8
0x01E2 60B4
OUT_DATA8
GPIO Bank 8 Output Data Register
GPIO Banks 6 and 7 Interrupt Status Register
GPIO Bank 8
262
GPIO Bank 8 Direction Register
0x01E2 60B8
SET_DATA8
GPIO Bank 8 Set Data Register
0x01E2 60BC
CLR_DATA8
GPIO Bank 8 Clear Data Register
0x01E2 60C0
IN_DATA8
GPIO Bank 8 Input Data Register
0x01E2 60C4
SET_RIS_TRIG8
GPIO Bank 8 Set Rising Edge Interrupt Register
0x01E2 60C8
CLR_RIS_TRIG8
GPIO Bank 8 Clear Rising Edge Interrupt Register
0x01E2 60CC
SET_FAL_TRIG8
GPIO Bank 8 Set Falling Edge Interrupt Register
0x01E2 60D0
CLR_FAL_TRIG8
GPIO Bank 8 Clear Falling Edge Interrupt Register
0x01E2 60D4
INTSTAT8
GPIO Bank 8 Interrupt Status Register
Peripheral Information and Electrical Specifications
Submit Documentation Feedback
Product Folder Links: OMAP-L138
Copyright © 2009–2017, Texas Instruments Incorporated
OMAP-L138
www.ti.com
6.32.2
SPRS586J – JUNE 2009 – REVISED JANUARY 2017
GPIO Peripheral Input/Output Electrical Data/Timing
Table 6-136. Timing Requirements for GPIO Inputs (1) (see Figure 6-86)
1.3V, 1.2V, 1.1V, 1.0V
NO.
MIN
MAX
UNIT
1
tw(GPIH)
Pulse duration, GPn[m] as input high
2C (1)
(2)
ns
2
tw(GPIL)
Pulse duration, GPn[m] as input low
2C (1)
(2)
ns
(1)
The pulse width given is sufficient to generate a CPU interrupt or an EDMA event. However, if a user wants to have the device
recognize the GPIx changes through software polling of the GPIO register, the GPIx duration must be extended to allow the device
enough time to access the GPIO register through the internal bus.
C=SYSCLK4 period in ns.
(2)
Table 6-137. Switching Characteristics Over Recommended Operating Conditions for GPIO Outputs
(see Figure 6-86)
NO.
3
tw(GPOH)
4
(1)
1.3V, 1.2V, 1.1V, 1.0V
PARAMETER
tw(GPOL)
MIN
2C (1)
Pulse duration, GPn[m] as output high
Pulse duration, GPn[m] as output low
2C
MAX
UNIT
(2)
ns
(1) (2)
ns
This parameter value should not be used as a maximum performance specification. Actual performance of back-to-back accesses of the
GPIO is dependent upon internal bus activity.
C=SYSCLK4 period in ns.
(2)
2
1
GPn[m]
as input
4
3
GPn[m]
as output
Figure 6-86. GPIO Port Timing
6.32.3
GPIO Peripheral External Interrupts Electrical Data/Timing
Table 6-138. Timing Requirements for External Interrupts (1) (see Figure 6-87)
1.3V, 1.2V, 1.1V, 1.0V
NO.
1
2
(1)
(2)
MIN
tw(ILOW)
tw(IHIGH)
2C (1)
Width of the external interrupt pulse low
Width of the external interrupt pulse high
2C
MAX
UNIT
(2)
ns
(1) (2)
ns
The pulse width given is sufficient to generate an interrupt or an EDMA event. However, if a user wants to have the device recognize the
GPIO changes through software polling of the GPIO register, the GPIO duration must be extended to allow the device enough time to
access the GPIO register through the internal bus.
C=SYSCLK4 period in ns.
2
1
GPn[m]
as input
Figure 6-87. GPIO External Interrupt Timing
Copyright © 2009–2017, Texas Instruments Incorporated
Peripheral Information and Electrical Specifications
Submit Documentation Feedback
Product Folder Links: OMAP-L138
263
OMAP-L138
SPRS586J – JUNE 2009 – REVISED JANUARY 2017
www.ti.com
6.33 Programmable Real-Time Unit Subsystem (PRUSS)
The Programmable Real-Time Unit Subsystem (PRUSS) consists of
• Two Programmable Real-Time Units (PRU0 and PRU1) and their associated memories
• An Interrupt Controller (INTC) for handling system interrupt events. The INTC also supports posting
events back to the device level host CPU.
• A Switched Central Resource (SCR) for connecting the various internal and external masters to the
resources inside the PRUSS.
The two PRUs can operate completely independently or in coordination with each other. The PRUs can
also work in coordination with the device level host CPU. This is determined by the nature of the program
which is loaded into the PRUs instruction memory. Several different signaling mechanisms are available
between the two PRUs and the device level host CPU.
The PRUs are optimized for performing embedded tasks that require manipulation of packed memory
mapped data structures, handling of system events that have tight realtime constraints and interfacing with
systems external to the device.
The PRUSS comprises various distinct addressable regions. Externally the subsystem presents a single
64Kbyte range of addresses. The internal interconnect bus (also called switched central resource, or SCR)
of the PRUSS decodes accesses for each of the individual regions. The PRUSS memory map is
documented in Table 6-139 and in Table 6-140. Note that these two memory maps are implemented
inside the PRUSS and are local to the components of the PRUSS.
Table 6-139. Programmable Real-Time Unit Subsystem (PRUSS) Local Instruction Space Memory Map
BYTE ADDRESS
PRU0
PRU1
0x0000 0000 - 0x0000 0FFF
PRU0 Instruction RAM
PRU1 Instruction RAM
Table 6-140. Programmable Real-Time Unit Subsystem (PRUSS) Local Data Space Memory Map
BYTE ADDRESS
PRU1
(1)
Data RAM 1 (1)
0x0000 0200 - 0x0000 1FFF
Reserved
Reserved
0x0000 2000 - 0x0000 21FF
Data RAM 1 (1)
Data RAM 0 (1)
0x0000 2200 - 0x0000 3FFF
Reserved
Reserved
0x0000 0000 - 0x0000 01FF
(1)
PRU0
Data RAM 0
0x0000 4000 - 0x0000 6FFF
INTC Registers
INTC Registers
0x0000 7000 - 0x0000 73FF
PRU0 Control Registers
PRU0 Control Registers
0x0000 7400 - 0x0000 77FF
Reserved
Reserved
0x0000 7800 - 0x0000 7BFF
PRU1 Control Registers
PRU1 Control Registers
0x0000 7C00 - 0xFFFF FFFF
Reserved
Reserved
Note that PRU0 accesses Data RAM0 at address 0x0000 0000, also PRU1 accesses Data RAM1 at address 0x0000 0000. Data RAM0
is intended to be the primary data memory for PRU0 and Data RAM1 is intended to be the primary data memory for PRU1. However for
passing information between PRUs, each PRU can access the data ram of the ‘other’ PRU through address 0x0000 2000.
The global view of the PRUSS internal memories and control ports is documented in Table 6-141. The
offset addresses of each region are implemented inside the PRUSS but the global device memory
mapping places the PRUSS slave port in the address range 0x01C3 0000-0x01C3 FFFF. The PRU0 and
PRU1 can use either the local or global addresses to access their internal memories, but using the local
addresses will provide access time several cycles faster than using the global addresses. This is because
when accessing via the global address the access needs to be routed through the switch fabric outside
PRUSS and back in through the PRUSS slave port.
264
Peripheral Information and Electrical Specifications
Submit Documentation Feedback
Product Folder Links: OMAP-L138
Copyright © 2009–2017, Texas Instruments Incorporated
OMAP-L138
www.ti.com
SPRS586J – JUNE 2009 – REVISED JANUARY 2017
Table 6-141. Programmable Real-Time Unit Subsystem (PRUSS) Global Memory Map
BYTE ADDRESS
REGION
0x01C3 0000 - 0x01C3 01FF
Data RAM 0
0x01C3 0200 - 0x01C3 1FFF
Reserved
0x01C3 2000 - 0x01C3 21FF
Data RAM 1
0x01C3 2200 - 0x01C3 3FFF
Reserved
0x01C3 4000 - 0x01C3 6FFF
INTC Registers
0x01C3 7000 - 0x01C3 73FF
PRU0 Control Registers
0x01C3 7400 - 0x01C3 77FF
PRU0 Debug Registers
0x01C3 7800 - 0x01C3 7BFF
PRU1 Control Registers
0x01C3 7C00 - 0x01C3 7FFF
PRU1 Debug Registers
0x01C3 8000 - 0x01C3 8FFF
PRU0 Instruction RAM
0x01C3 9000 - 0x01C3 BFFF
Reserved
0x01C3 C000 - 0x01C3 CFFF
PRU1 Instruction RAM
0x01C3 D000 - 0x01C3 FFFF
Reserved
Each of the PRUs can access the rest of the device memory (including memory mapped peripheral and
configuration registers) using the global memory space addresses
6.33.1 PRUSS Register Descriptions
Table 6-142. Programmable Real-Time Unit Subsystem (PRUSS) Control / Status Registers
PRU0 BYTE ADDRESS
PRU1 BYTE ADDRESS
ACRONYM
0x01C3 7000
0x01C3 7800
CONTROL
PRU Control Register
REGISTER DESCRIPTION
0x01C3 7004
0x01C3 7804
STATUS
PRU Status Register
0x01C3 7008
0x01C3 7808
WAKEUP
PRU Wakeup Enable Register
0x01C3 700C
0x01C3 780C
CYCLCNT
PRU Cycle Count
0x01C3 7010
0x01C3 7810
STALLCNT
PRU Stall Count
0x01C3 7020
0x01C3 7820
CONTABBLKIDX0
PRU Constant Table Block Index Register 0
0x01C3 7028
0x01C3 7828
CONTABPROPTR0
PRU Constant Table Programmable Pointer Register 0
0x01C3 702C
0x01C3 782C
CONTABPROPTR1
PRU Constant Table Programmable Pointer Register 1
0x01C37400 0x01C3747C
0x01C3 7C00 0x01C3 7C7C
INTGPR0 – INTGPR31
PRU Internal General Purpose Register 0 (for Debug)
0x01C37480 0x01C374FC
0x01C3 7C80 0x01C3 7CFC
INTCTER0 – INTCTER31 PRU Internal General Purpose Register 0 (for Debug)
Table 6-143. Programmable Real-Time Unit Subsystem Interrupt Controller (PRUSS INTC) Registers
BYTE ADDRESS
ACRONYM
0x01C3 4000
REVID
REGISTER DESCRIPTION
0x01C3 4004
CONTROL
0x01C3 4010
GLBLEN
0x01C3 401C
GLBLNSTLVL
Global Nesting Level Register
0x01C3 4020
STATIDXSET
System Interrupt Status Indexed Set Register
0x01C3 4024
STATIDXCLR
System Interrupt Status Indexed Clear Register
0x01C3 4028
ENIDXSET
System Interrupt Enable Indexed Set Register
0x01C3 402C
ENIDXCLR
System Interrupt Enable Indexed Clear Register
Revision ID Register
Control Register
Global Enable Register
0x01C3 4034
HSTINTENIDXSET
Host Interrupt Enable Indexed Set Register
0x01C3 4038
HSTINTENIDXCLR
Host Interrupt Enable Indexed Clear Register
0x01C3 4080
GLBLPRIIDX
0x01C3 4200
STATSETINT0
Copyright © 2009–2017, Texas Instruments Incorporated
Global Prioritized Index Register
System Interrupt Status Raw/Set Register 0
Peripheral Information and Electrical Specifications
Submit Documentation Feedback
Product Folder Links: OMAP-L138
265
OMAP-L138
SPRS586J – JUNE 2009 – REVISED JANUARY 2017
www.ti.com
Table 6-143. Programmable Real-Time Unit Subsystem Interrupt Controller (PRUSS INTC)
Registers (continued)
266
BYTE ADDRESS
ACRONYM
0x01C3 4204
STATSETINT1
System Interrupt Status Raw/Set Register 1
REGISTER DESCRIPTION
0x01C3 4280
STATCLRINT0
System Interrupt Status Enabled/Clear Register 0
0x01C3 4284
STATCLRINT1
System Interrupt Status Enabled/Clear Register 1
0x01C3 4300
ENABLESET0
System Interrupt Enable Set Register 0
0x01C3 4304
ENABLESET1
System Interrupt Enable Set Register 1
0x01C3 4380
ENABLECLR0
System Interrupt Enable Clear Register 0
0x01C3 4384
ENABLECLR1
System Interrupt Enable Clear Register 1
0x01C3 4400 - 0x01C3 4440
CHANMAP0 - CHANMAP15
0x01C3 4800 - 0x01C3 4808
HOSTMAP0 - HOSTMAP2
0x01C3 4900 - 0x01C3 4928
HOSTINTPRIIDX0 HOSTINTPRIIDX9
0x01C3 4D00
POLARITY0
System Interrupt Polarity Register 0
0x01C3 4D04
POLARITY1
System Interrupt Polarity Register 1
0x01C3 4D80
TYPE0
System Interrupt Type Register 0
0x01C3 4D84
TYPE1
System Interrupt Type Register 1
0x01C3 5100 - 0x01C3 5128
HOSTINTNSTLVL0HOSTINTNSTLVL9
0x01C3 5500
HOSTINTEN
Channel Map Registers 0-15
Host Map Register 0-2
Host Interrupt Prioritized Index Registers 0-9
Host Interrupt Nesting Level Registers 0-9
Host Interrupt Enable Register
Peripheral Information and Electrical Specifications
Submit Documentation Feedback
Product Folder Links: OMAP-L138
Copyright © 2009–2017, Texas Instruments Incorporated
OMAP-L138
www.ti.com
SPRS586J – JUNE 2009 – REVISED JANUARY 2017
6.34 Emulation Logic
This section describes the steps to use a third party debugger on the ARM926EJ-S within the device. The
debug capabilities and features for DSP and ARM are as shown below.
DSP:
• Basic Debug
– Execution Control
– System Visibility
• Real-Time Debug
– Interrupts serviced while halted
– Low/non-intrusive system visibility while running
• Advanced Debug
– Global Start
– Global Stop
– Specify targeted memory level(s) during memory accesses
– HSRTDX (High Speed Real Time Data eXchange)
• Advanced System Control
– Subsystem reset via debug
– Peripheral notification of debug events
– Cache-coherent debug accesses
• Analysis Actions
– Stop program execution
– Generate debug interrupt
– Benchmarking with counters
– External trigger generation
– Debug state machine state transition
– Combinational and Sequential event generation
• Analysis Events
– Program event detection
– Data event detection
– External trigger Detection
– System event detection (i.e. cache miss)
– Debug state machine state detection
• Analysis Configuration
– Application access
– Debugger access
Table 6-144. DSP Debug Features
Category
Hardware Feature
Availability
Software breakpoint
Unlimited
Up to 10 HWBPs, including:
Basic Debug
Hardware breakpoint
4 precise (1) HWBPs inside DSP core and one of them is associated with a counter.
2 imprecise (1) HWBPs from AET.
4 imprecise
(1)
(1)
HWBPs from AET which are shared for watch point.
Precise hardware breakpoints will halt the processor immediately prior to the execution of the selected instruction. Imprecise breakpoints
will halt the processor some number of cycles after the selected instruction depending on device conditions.
Copyright © 2009–2017, Texas Instruments Incorporated
Peripheral Information and Electrical Specifications
Submit Documentation Feedback
Product Folder Links: OMAP-L138
267
OMAP-L138
SPRS586J – JUNE 2009 – REVISED JANUARY 2017
www.ti.com
Table 6-144. DSP Debug Features (continued)
Category
Analysis
Hardware Feature
Availability
Watch point
Up to 4 watch points, which are shared with HWBPs, and can also be used as 2 watch
points with data (32 bits)
Watch point with Data
Up to 2, Which can also be used as 4 watch points.
Counters/timers
1x64-bits (cycle only) + 2x32-bits (water mark counters)
External Event Trigger In
1
External Event Trigger Out
1
ARM:
• Basic Debug
– Execution Control
– System Visibility
• Advanced Debug
– Global Start
– Global Stop
• Advanced System Control
– Subsystem reset via debug
– Peripheral notification of debug events
– Cache-coherent debug accesses
• Program Trace
– Program flow corruption
– Code coverage
– Path coverage
– Thread/interrupt synchronization problems
• Data Trace
– Memory corruption
• Timing Trace
– Profiling
• Analysis Actions
– Stop program execution
– Control trace streams
– Generate debug interrupt
– Benchmarking with counters
– External trigger generation
– Debug state machine state transition
– Combinational and Sequential event generation
• Analysis Events
– Program event detection
– Data event detection
– External trigger Detection
– System event detection (i.e. cache miss)
– Debug state machine state detection
• Analysis Configuration
– Application access
– Debugger access
268
Peripheral Information and Electrical Specifications
Submit Documentation Feedback
Product Folder Links: OMAP-L138
Copyright © 2009–2017, Texas Instruments Incorporated
OMAP-L138
www.ti.com
SPRS586J – JUNE 2009 – REVISED JANUARY 2017
Table 6-145. ARM Debug Features
Category
Hardware Feature
Availability
Software breakpoint
Unlimited
Up to 14 HWBPs, including:
2 precise (1) HWBP inside ARM core which are shared with watch points.
Basic Debug
Hardware breakpoint
8 imprecise (1) HWBPs from ETM’s address comparators, which are shared with trace
function, and can be used as watch points.
4 imprecise (1) HWBPs from ICECrusher.
Up to 6 watch points, including:
2 from ARM core which is shared with HWBPs and can be associated with a data.
Watch point
8 from ETM’s address comparators, which are shared with trace function, and
HWBPs.
2 from ARM core which is shared with HWBPs.
Analysis
Trace Control
8 watch points from ETM can be associated with a data comparator, and ETM has
total 4 data comparators.
Counters/timers
3x32-bit (1 cycle ; 2 event)
External Event Trigger In
1
External Event Trigger Out
1
Internal Cross-Triggering Signals
One between ARM and DSP
Address range for trace
4
Data qualification for trace
2
System events for trace control
20
Counters/Timers for trace control
2x16-bit
State Machines/Sequencers
1x3-State State Machine
Context/Thread ID Comparator
1
Independent trigger control units
12
Capture depth PC
4k bytes ETB
Capture depth PC + Timing
4k bytes ETB
Application accessible
Y
On-chip Trace
Capture
(1)
Watch point with Data
Precise hardware breakpoints will halt the processor immediately prior to the execution of the selected instruction. Imprecise breakpoints
will halt the processor some number of cycles after the selected instruction depending on device conditions.
6.34.1 JTAG Port Description
The device target debug interface uses the five standard IEEE 1149.1(JTAG) signals (TRST, TCK, TMS,
TDI, and TDO), a return clock (RTCK) due to the clocking requirements of the ARM926EJ-S and
emulation signals EMU0 and EMU1.
TRST holds the debug and boundary scan logic in reset (normal DSP operation) when pulled low (its
default state). Since TRST has an internal pull-down resistor, this ensures that at power up the device
functions in its normal (non-test) operation mode if TRST is not connected. Otherwise, TRST should be
driven inactive by the emulator or boundary scan controller. Boundary scan test cannot be performed
while the TRST pin is pulled low.
Table 6-146. JTAG Port Description
PIN
TYPE
NAME
DESCRIPTION
TRST
I
Test Logic Reset
When asserted (active low) causes all test and debug logic in the device to be reset
along with the IEEE 1149.1 interface
TCK
I
Test Clock
This is the test clock used to drive an IEEE 1149.1 TAP state machine and
logic.Depending on the emulator attached to , this is a free running clock or a gated
clock depending on RTCK monitoring.
RTCK
O
Returned Test Clock
TMS
I
Test Mode Select
Copyright © 2009–2017, Texas Instruments Incorporated
Synchronized TCK. Depending on the emulator attached to, the JTAG signals are
clocked from RTCK or RTCK is monitored by the emulator to gate TCK.
Directs the next state of the IEEE 1149.1 test access port state machine
Peripheral Information and Electrical Specifications
Submit Documentation Feedback
Product Folder Links: OMAP-L138
269
OMAP-L138
SPRS586J – JUNE 2009 – REVISED JANUARY 2017
www.ti.com
Table 6-146. JTAG Port Description (continued)
PIN
TYPE
NAME
TDI
I
Test Data Input
DESCRIPTION
Scan data input to the device
TDO
O
Test Data Output
EMU0
I/O
Emulation 0
Scan data output of the device
Channel 0 trigger + HSRTDX
EMU1
I/O
Emulation 1
Channel 1 trigger + HSRTDX
6.34.2 Scan Chain Configuration Parameters
Table 6-147 shows the TAP configuration details required to configure the router/emulator for this device.
Table 6-147. JTAG Port Description
Router Port ID
Default TAP
TAP Name
Tap IR Length
17
18
No
C674x
38
No
ARM926
19
4
No
ETB
4
The router is revision C and has a 6-bit IR length.
6.34.3 Initial Scan Chain Configuration
The first level of debug interface that sees the scan controller is the TAP router module. The debugger
can configure the TAP router for serially linking up to 16 TAP controllers or individually scanning one of
the TAP controllers without disrupting the IR state of the other TAPs.
6.34.3.1 Adding TAPS to the Scan Chain
The TAP router must be programmed to add additional TAPs to the scan chain. The following JTAG scans
must be completed to add the ARM926EJ-S to the scan chain.
A Power-On Reset (POR) or the JTAG Test-Logic Reset state configures the TAP router to contain only
the router’s TAP.
Router
TDO
TDI
CLK
Steps
TMS
Router
ARM926EJ-S/ETM
Figure 6-88. Adding ARM926EJ-S to the scan chain
Pre-amble: The device whose data reaches the emulator first is listed first in the board configuration file.
This device is a pre-amble for all the other devices. This device has the lowest device ID.
Post-amble: The device whose data reaches the emulator last is listed last in the board configuration file.
This device is a post-amble for all the other devices. This device has the highest device ID.
270
Peripheral Information and Electrical Specifications
Submit Documentation Feedback
Product Folder Links: OMAP-L138
Copyright © 2009–2017, Texas Instruments Incorporated
OMAP-L138
www.ti.com
•
•
•
•
•
•
•
•
SPRS586J – JUNE 2009 – REVISED JANUARY 2017
Function : Update the JTAG preamble and post-amble counts.
– Parameter : The IR pre-amble count is '0'.
– Parameter : The IR post-amble count is '0'.
– Parameter : The DR pre-amble count is '0'.
– Parameter : The DR post-amble count is '0'.
– Parameter : The IR main count is '6'.
– Parameter : The DR main count is '1'.
Function : Do a send-only JTAG IR/DR scan.
– Parameter : The route to JTAG shift state is 'shortest transition'.
– Parameter : The JTAG shift state is 'shift-ir'.
– Parameter : The JTAG destination state is 'pause-ir'.
– Parameter : The bit length of the command is '6'.
– Parameter : The send data value is '0x00000007'.
– Parameter : The actual receive data is 'discarded'.
Function : Do a send-only JTAG IR/DR scan.
– Parameter : The route to JTAG shift state is 'shortest transition'.
– Parameter : The JTAG shift state is 'shift-dr'.
– Parameter : The JTAG destination state is 'pause-dr'.
– Parameter : The bit length of the command is '8'.
– Parameter : The send data value is '0x00000089'.
– Parameter : The actual receive data is 'discarded'.
Function : Do a send-only JTAG IR/DR scan.
– Parameter : The route to JTAG shift state is 'shortest transition'.
– Parameter : The JTAG shift state is 'shift-ir'.
– Parameter : The JTAG destination state is 'pause-ir'.
– Parameter : The bit length of the command is '6'.
– Parameter : The send data value is '0x00000002'.
– Parameter : The actual receive data is 'discarded'.
Function : Embed the port address in next command.
– Parameter : The port address field is '0x0f000000'.
– Parameter : The port address value is '3'.
Function : Do a send-only JTAG IR/DR scan.
– Parameter : The route to JTAG shift state is 'shortest transition'.
– Parameter : The JTAG shift state is 'shift-dr'.
– Parameter : The JTAG destination state is 'pause-dr'.
– Parameter : The bit length of the command is '32'.
– Parameter : The send data value is '0xa2002108'.
– Parameter : The actual receive data is 'discarded'.
Function : Do a send-only all-ones JTAG IR/DR scan.
– Parameter : The JTAG shift state is 'shift-ir'.
– Parameter : The JTAG destination state is 'run-test/idle'.
– Parameter : The bit length of the command is '6'.
– Parameter : The send data value is 'all-ones'.
– Parameter : The actual receive data is 'discarded'.
Function : Wait for a minimum number of TCLK pulses.
– Parameter : The count of TCLK pulses is '10'.
Copyright © 2009–2017, Texas Instruments Incorporated
Peripheral Information and Electrical Specifications
Submit Documentation Feedback
Product Folder Links: OMAP-L138
271
OMAP-L138
SPRS586J – JUNE 2009 – REVISED JANUARY 2017
•
www.ti.com
Function : Update the JTAG preamble and post-amble counts.
– Parameter : The IR pre-amble count is '0'.
– Parameter : The IR post-amble count is '6'.
– Parameter : The DR pre-amble count is '0'.
– Parameter : The DR post-amble count is '1'.
– Parameter : The IR main count is '4'.
– Parameter : The DR main count is '1'.
The initial scan chain contains only the TAP router module. The following steps must be completed in
order to add ETB TAP to the scan chain.
Router
TDI
ARM926EJ-S/ETM
TDO
CLK
Steps
TMS
Router
•
•
•
•
272
ARM926EJ-S/ETM
ETB
Figure 6-89. Adding ETB to the scan chain
Function : Do a send-only JTAG IR/DR scan.
– Parameter : The route to JTAG shift state is 'shortest transition'.
– Parameter : The JTAG shift state is 'shift-ir'.
– Parameter : The JTAG destination state is 'pause-ir'.
– Parameter : The bit length of the command is '6'.
– Parameter : The send data value is '0x00000007'.
– Parameter : The actual receive data is 'discarded'.
Function : Do a send-only JTAG IR/DR scan.
– Parameter : The route to JTAG shift state is 'shortest transition'.
– Parameter : The JTAG shift state is 'shift-dr'.
– Parameter : The JTAG destination state is 'pause-dr'.
– Parameter : The bit length of the command is '8'.
– Parameter : The send data value is '0x00000089'.
– Parameter : The actual receive data is 'discarded'.
Function : Do a send-only JTAG IR/DR scan.
– Parameter : The route to JTAG shift state is 'shortest transition'.
– Parameter : The JTAG shift state is 'shift-ir'.
– Parameter : The JTAG destination state is 'pause-ir'.
– Parameter : The bit length of the command is '6'.
– Parameter : The send data value is '0x00000002'.
– Parameter : The actual receive data is 'discarded'.
Function : Embed the port address in next command.
– Parameter : The port address field is '0x0f000000'.
– Parameter : The port address value is '3'.
Peripheral Information and Electrical Specifications
Submit Documentation Feedback
Product Folder Links: OMAP-L138
Copyright © 2009–2017, Texas Instruments Incorporated
OMAP-L138
www.ti.com
•
•
•
•
SPRS586J – JUNE 2009 – REVISED JANUARY 2017
Function : Do a send-only JTAG IR/DR scan.
– Parameter : The route to JTAG shift state is 'shortest transition'.
– Parameter : The JTAG shift state is 'shift-dr'.
– Parameter : The JTAG destination state is 'pause-dr'.
– Parameter : The bit length of the command is '32'.
– Parameter : The send data value is '0xa3302108'.
– Parameter : The actual receive data is 'discarded'.
Function : Do a send-only all-ones JTAG IR/DR scan.
– Parameter : The JTAG shift state is 'shift-ir'.
– Parameter : The JTAG destination state is 'run-test/idle'.
– Parameter : The bit length of the command is '6'.
– Parameter : The send data value is 'all-ones'.
– Parameter : The actual receive data is 'discarded'.
Function : Wait for a minimum number of TCLK pulses.
– Parameter : The count of TCLK pulses is '10'.
Function : Update the JTAG preamble and post-amble counts.
– Parameter : The IR pre-amble count is '0'.
– Parameter : The IR post-amble count is '6 + 4'.
– Parameter : The DR pre-amble count is '0'.
– Parameter : The DR post-amble count is '1 + 1'.
– Parameter : The IR main count is '4'.
– Parameter : The DR main count is '1'.
6.34.4 IEEE 1149.1 JTAG
The JTAG
(1)
interface is used for BSDL testing and emulation of the device.
The device requires that both TRST and RESET be asserted upon power up to be properly initialized.
While RESET initializes the device, TRST initializes the device's emulation logic. Both resets are required
for proper operation.
While both TRST and RESET need to be asserted upon power up, only RESET needs to be released for
the device to boot properly. TRST may be asserted indefinitely for normal operation, keeping the JTAG
port interface and device's emulation logic in the reset state.
TRST only needs to be released when it is necessary to use a JTAG controller to debug the device or
exercise the device's boundary scan functionality. Note: TRST is synchronous and must be clocked by
TCK; otherwise, the boundary scan logic may not respond as expected after TRST is asserted.
RESET must be released only in order for boundary-scan JTAG to read the variant field of IDCODE
correctly. Other boundary-scan instructions work correctly independent of current state of RESET.
For maximum reliability, the device includes an internal pulldown (IPD) on the TRST pin to ensure that
TRST will always be asserted upon power up and the device's internal emulation logic will always be
properly initialized.
JTAG controllers from Texas Instruments actively drive TRST high. However, some third-party JTAG
controllers may not drive TRST high but expect the use of a pullup resistor on TRST.
When using this type of JTAG controller, assert TRST to initialize the device after powerup and externally
drive TRST high before attempting any emulation or boundary scan operations.
(1)
IEEE Standard 1149.1-1990 Standard-Test-Access Port and Boundary Scan Architecture.
Copyright © 2009–2017, Texas Instruments Incorporated
Peripheral Information and Electrical Specifications
Submit Documentation Feedback
Product Folder Links: OMAP-L138
273
OMAP-L138
SPRS586J – JUNE 2009 – REVISED JANUARY 2017
6.34.4.1
www.ti.com
JTAG Peripheral Register Description(s) – JTAG ID Register (DEVIDR0)
Table 6-148. DEVIDR0 Register
BYTE ADDRESS
ACRONYM
0x01C1 4018
DEVIDR0
REGISTER DESCRIPTION
COMMENTS
Read-only. Provides 32-bit
JTAG ID of the device.
JTAG Identification Register
The JTAG ID register is a read-only register that identifies the JTAG/Device ID. For the device, the JTAG
ID register resides at address location 0x01C1 4018. The register hex value for each silicon revision is:
• 0x0B7D 102F for silicon revision 1.x
• 0x1B7D 102F for silicon revision 2.x
For the actual register bit names and their associated bit field descriptions, see Figure 6-90 and Table 6149.
Figure 6-90. JTAG ID (DEVIDR0) Register Description - Register Value
31-28
VARIANT (4-Bit)
R-xxxx
27-12
PART NUMBER (16-Bit)
R-1011 0111 1101 0001
11-1
MANUFACTURER (11-Bit)
R-0000 0010 111
0
LSB
R-1
LEGEND: R = Read, W = Write, n = value at reset
Table 6-149. JTAG ID Register Selection Bit Descriptions
BIT
274
NAME
DESCRIPTION
31:28
VARIANT
27:12
PART NUMBER
Variant (4-Bit) value
Part Number (16-Bit) value
11-1
MANUFACTURER
Manufacturer (11-Bit) value
0
LSB
LSB. This bit is read as a "1".
Peripheral Information and Electrical Specifications
Submit Documentation Feedback
Product Folder Links: OMAP-L138
Copyright © 2009–2017, Texas Instruments Incorporated
OMAP-L138
www.ti.com
6.34.4.2
SPRS586J – JUNE 2009 – REVISED JANUARY 2017
JTAG Test-Port Electrical Data/Timing
Table 6-150. Timing Requirements for JTAG Test Port (see Figure 6-91)
1.3V, 1.2V
No.
MIN
MAX
1.1V
MIN
1.0V
MAX
MIN
MAX
UNIT
1
tc(TCK)
Cycle time, TCK
40
50
66.6
ns
2
tw(TCKH)
Pulse duration, TCK high
16
20
26.6
ns
3
tw(TCKL)
Pulse duration, TCK low
16
20
26.6
ns
4
tc(RTCK)
Cycle time, RTCK
40
50
66.6
ns
5
tw(RTCKH)
Pulse duration, RTCK high
16
20
26.6
ns
6
tw(RTCKL)
Pulse duration, RTCK low
16
20
26.6
ns
7
tsu(TDIV-RTCKH) Setup time, TDI/TMS/TRST valid before RTCK high
4
4
4
ns
8
th(RTCKH-TDIV)
4
6
8
ns
Hold time, TDI/TMS/TRST valid after RTCK high
Table 6-151. Switching Characteristics Over Recommended Operating Conditions for JTAG Test Port
(see Figure 6-91)
No.
9
1.3V, 1.2V
PARAMETER
td(RTCKL-TDOV)
MIN
Delay time, RTCK low to TDO valid
MAX
18
1.1V
MIN
1.0V
MAX
23
MIN
MAX
31
UNIT
ns
1
2
3
TCK
4
5
6
RTCK
9
TDO
8
7
TDI/TMS/TRST
Figure 6-91. JTAG Test-Port Timing
6.34.5 JTAG 1149.1 Boundary Scan Considerations
To use boundary scan, the following sequence should be followed:
• Execute a valid reset sequence and exit reset
• Wait at least 6000 OSCIN clock cycles
• Enter boundary scan mode using the JTAG pins
No specific value is required on the EMU0 and EMU1 pins for boundary scan testing. If TRST is not driven
by the boundary scan tool or tester, TRST should be externally pulled high during boundary scan testing.
Copyright © 2009–2017, Texas Instruments Incorporated
Peripheral Information and Electrical Specifications
Submit Documentation Feedback
Product Folder Links: OMAP-L138
275
OMAP-L138
SPRS586J – JUNE 2009 – REVISED JANUARY 2017
www.ti.com
7 Device and Documentation Support
TI offers an extensive line of development tools for the device platform, including tools to evaluate the
performance of the processors, generate code, develop algorithm implementations, and fully integrate and
debug software and hardware modules. The tool's support documentation is electronically available within
the Code Composer Studio™ Integrated Development Environment (IDE).
The following products support development of the device applications:
7.1
Device Nomenclature
To designate the stages in the product development cycle, TI assigns prefixes to the part numbers of all
DSP devices and support tools. Each DSP commercial family member has one of three prefixes: X, P or
NULL (e.g., OMAP-L138). Texas Instruments recommends two of three possible prefix designators for its
support tools: TMDX and TMDS. These prefixes represent evolutionary stages of product development
from engineering prototypes (TMX/TMDX) through fully qualified production devices/tools (TMS/TMDS).
Device development evolutionary flow:
X
Experimental device that is not necessarily representative of the final device's electrical
specifications.
P
Final silicon die that conforms to the device's electrical specifications but has not completed
quality and reliability verification.
NULL
Fully-qualified production device.
Support tool development evolutionary flow:
TMDX
Development-support product that has not yet completed Texas Instruments internal
qualification testing.
TMDS
Fully qualified development-support product.
X and P devices and TMDX development-support tools are shipped against the following disclaimer:
"Developmental product is intended for internal evaluation purposes."
Null devices and TMDS development-support tools have been characterized fully, and the quality and
reliability of the device have been demonstrated fully. TI's standard warranty applies.
Predictions show that prototype devices (X or P) have a greater failure rate than the standard production
devices. Texas Instruments recommends that these devices not be used in any production system
because their expected end-use failure rate still is undefined. Only qualified production devices are to be
used.
TI device nomenclature also includes a suffix with the device family name. This suffix indicates the
package type (for example, ZWT), the temperature range (for example, "Blank" is the commercial
temperature range), and the device speed range in megahertz (for example, "Blank" is the default).
Figure 7-1 provides a legend for reading the complete device.
276
Device and Documentation Support
Copyright © 2009–2017, Texas Instruments Incorporated
Submit Documentation Feedback
Product Folder Links: OMAP-L138
OMAP-L138
www.ti.com
SPRS586J – JUNE 2009 – REVISED JANUARY 2017
X
OMAPL138
( )
ZWT
( )
3
E
Basic Secure Boot Enabled
PREFIX
X = Experimental Device
P = Prototype Device
Blank = Production Device
(B)
DEVICE SPEED RANGE
3 = 300 MHz (Revision 1.x)
3 = 375 MHz (Revision 2.x)
4 = 456 MHz (Revision 2.x)
DEVICE
OMAPL138
SILICON REVISION (C)
Blank = Silicon Revision 1.0
A = Silicon Revision 1.1
B = Silicon Revision 2.0 or 2.1
E = Silicon Revision 2.3
A.
B.
C.
TEMPERATURE RANGE (JUNCTION)
Blank = 0°C to 90°C (Commercial Grade)
D = –40°C to 90°C (Industrial Grade)
A = –40°C to 105°C (Extended Grade)
PACKAGE TYPE (A)
ZCE = 361-Pin Plastic BGA, with Pb-free
Soldered Balls [Green], 0.65-mm Ball Pitch
ZWT = 361-Pin Plastic BGA, with Pb-free
Soldered Balls [Green], 0.8-mm Ball Pitch
BGA = Ball Grid Array
The device speed range symbolization indicates the maximum CPU frequency. See the Recommended Operating
Conditions table for the CVDD needed for the Operating Frequency.
Parts marked revision B are silicon revision 2.1 if '21' is marked on the package, and silicon revision 2.0 if there is no
'21' marking.
Figure 7-1. Device Nomenclature
7.2
Tools and Software
Software
Code Composer Studio™ Integrated Development Environment (IDE): including Editor
C/C++/Assembly Code Generation, and Debug plus additional development tools
Scalable, Real-Time Foundation Software (DSP/BIOS™) provides the basic run-time target software
needed to support any application.
Development Tools
Extended Development System (XDS™) Emulator For a complete listing of development-support tools
for the device, visit the Texas Instruments web site on the Worldwide Web at
http://www.ti.com uniform resource locator (URL). For information on pricing and availability,
contact the nearest TI field sales office or authorized distributor.
7.3
Documentation Support
To receive notification of documentation updates, navigate to the device product folder on ti.com. In the
upper right corner, click on Alert me to register and receive a weekly digest of any product information that
has changed. For change details, review the revision history included in any revised document.
The current documentation that describes the DSP, related peripherals, and other technical collateral is
listed below.
User's Guides
SPRUG82
TMS320C674x DSP Cache User's Guide. Explains the fundamentals of memory caches
and describes how the two-level cache-based internal memory architecture in the
TMS320C674x digital signal processor (DSP) can be efficiently used in DSP applications.
Shows how to maintain coherence with external memory, how to use DMA to reduce
memory latencies, and how to optimize your code to improve cache efficiency. The internal
memory architecture in the C674x DSP is organized in a two-level hierarchy consisting of a
dedicated program cache (L1P) and a dedicated data cache (L1D) on the first level.
Accesses by the CPU to the these first level caches can complete without CPU pipeline
stalls. If the data requested by the CPU is not contained in cache, it is fetched from the next
lower memory level, L2 or external memory.
SPRUFE8
TMS320C674x DSP CPU and Instruction Set Reference Guide. Describes the CPU
architecture, pipeline, instruction set, and interrupts for the TMS320C674x digital signal
processors (DSPs). The C674x DSP is an enhancement of the C64x+ and C67x+ DSPs with
Device and Documentation Support
Copyright © 2009–2017, Texas Instruments Incorporated
Submit Documentation Feedback
Product Folder Links: OMAP-L138
277
OMAP-L138
SPRS586J – JUNE 2009 – REVISED JANUARY 2017
www.ti.com
added functionality and an expanded instruction set.
SPRUFK5
TMS320C674x DSP Megamodule Reference Guide. Describes the TMS320C674x digital
signal processor (DSP) megamodule. Included is a discussion on the internal direct memory
access (IDMA) controller, the interrupt controller, the power-down controller, memory
protection, bandwidth management, and the memory and cache.
SPRUFK9
TMS320C674x/OMAP-L1x Processor Peripherals Overview Reference Guide. Provides
an overview and briefly describes the peripherals available on the device.
SPRUGQ9
TMS320C674x/OMAP-L1x Processor Security User's Guide. Provides an overview of the
security concepts implemented on TI Basic Secure Boot devices.
Technical Reference Manuals
SPRUH77
7.4
OMAP-L138 C6000 DSP+ARM Technical Reference Manual. Describes the System-onChip (SoC) system. The SoC system includes TI’s standard TMS320C674x Megamodule
and several blocks of internal memory (L1P, L1D, and L2).
Community Resources
The following links connect to TI community resources. Linked contents are provided "AS IS" by the
respective contributors. They do not constitute TI specifications and do not necessarily reflect TI's views;
see TI's Terms of Use.
TI E2E™ Online Community The TI engineer-to-engineer (E2E) community was created to foster
collaboration among engineers. At e2e.ti.com, you can ask questions, share knowledge,
explore ideas and help solve problems with fellow engineers.
TI Embedded Processors Wiki Established to help developers get started with Embedded Processors
from Texas Instruments and to foster innovation and growth of general knowledge about the
hardware and software surrounding these devices.
7.5
Trademarks
C6000, BIOS, E2E are trademarks of Texas Instruments.
ARM926EJ-S, ICE-RT, ARM9 are trademarks of ARM Ltd.
ARM, Jazelle are registered trademarks of ARM Ltd.
Windows is a registered trademark of Microsoft.
All other trademarks are the property of their respective owners.
7.6
Electrostatic Discharge Caution
This integrated circuit can be damaged by ESD. Texas Instruments recommends that all integrated circuits be handled with
appropriate precautions. Failure to observe proper handling and installation procedures can cause damage.
ESD damage can range from subtle performance degradation to complete device failure. Precision integrated circuits may be more
susceptible to damage because very small parametric changes could cause the device not to meet its published specifications.
7.7
Export Control Notice
Recipient agrees to not knowingly export or re-export, directly or indirectly, any product or technical data
(as defined by the U.S., EU, and other Export Administration Regulations) including software, or any
controlled product restricted by other applicable national regulations, received from disclosing party under
nondisclosure obligations (if any), or any direct product of such technology, to any destination to which
such export or re-export is restricted or prohibited by U.S. or other applicable laws, without obtaining prior
authorization from U.S. Department of Commerce and other competent Government authorities to the
extent required by those laws.
7.8
Glossary
TI Glossary This glossary lists and explains terms, acronyms, and definitions.
278
Device and Documentation Support
Copyright © 2009–2017, Texas Instruments Incorporated
Submit Documentation Feedback
Product Folder Links: OMAP-L138
OMAP-L138
www.ti.com
SPRS586J – JUNE 2009 – REVISED JANUARY 2017
8 Mechanical Packaging and Orderable Information
This section describes the orderable part numbers, packaging options, materials, thermal and mechanical
parameters.
8.1
Thermal Data for ZCE Package
The following table shows the thermal resistance characteristics for the PBGA–ZCE mechanical package.
Table 8-1. Thermal Resistance Characteristics (PBGA Package) [ZCE]
NO.
RΘJC
Junction-to-case
7.6
N/A
2
RΘJB
Junction-to-board
11.3
N /A
3
RΘJA
Junction-to-free air
23.9
0.00
4
21.2
0.50
5
20.3
1.00
RΘJMA
Junction-to-moving air
19.5
2.00
7
18.6
4.00
8
0.2
0.00
0.3
0.50
0.3
1.00
0.4
2.00
12
0.5
4.00
13
11.2
0.00
14
11.1
0.50
11.1
1.00
16
11.0
2.00
17
10.9
4.00
9
10
PsiJT
Junction-to-package top
11
15
(2)
AIR FLOW (m/s) (2)
1
6
(1)
°C/W (1)
PsiJB
Junction-to-board
These measurements were conducted in a JEDEC defined 2S2P system and will change based on environment as well as application.
For more information, see these EIA/JEDEC standards – EIA/JESD51-2, Integrated Circuits Thermal Test Method Environment
Conditions - Natural Convection (Still Air) and JESD51-7, High Effective Thermal Conductivity Test Board for Leaded Surface Mount
Packages. Power dissipation of 500 mW and ambient temp of 70C assumed. PCB with 2oz (70um) top and bottom copper thickness
and 1.5oz (50um) inner copper thickness
m/s = meters per second
Copyright © 2009–2017, Texas Instruments Incorporated
Mechanical Packaging and Orderable Information
Submit Documentation Feedback
Product Folder Links: OMAP-L138
279
OMAP-L138
SPRS586J – JUNE 2009 – REVISED JANUARY 2017
8.2
www.ti.com
Thermal Data for ZWT Package
The following table shows the thermal resistance characteristics for the PBGA–ZWT mechanical package.
Table 8-2. Thermal Resistance Characteristics (PBGA Package) [ZWT]
°C/W (1)
NO.
AIR FLOW (m/s) (2)
1
RΘJC
Junction-to-case
7.3
N/A
2
RΘJB
Junction-to-board
12.4
N /A
3
RΘJA
Junction-to-free air
23.7
0.00
4
21.0
0.50
5
20.1
1.00
6
RΘJMA
Junction-to-moving air
19.3
2.00
7
18.4
4.00
8
0.2
0.00
9
0.3
0.50
10
0.3
1.00
11
0.4
2.00
12
0.5
4.00
13
12.3
0.00
14
12.2
0.50
12.1
1.00
16
12.0
2.00
17
11.9
4.00
15
(1)
(2)
8.3
PsiJT
PsiJB
Junction-to-package top
Junction-to-board
These measurements were conducted in a JEDEC defined 2S2P system and will change based on environment as well as application.
For more information, see these EIA/JEDEC standards – EIA/JESD51-2, Integrated Circuits Thermal Test Method Environment
Conditions - Natural Convection (Still Air) and JESD51-7, High Effective Thermal Conductivity Test Board for Leaded Surface Mount
Packages. Power dissipation of 1W and ambient temp of 70C assumed. PCB with 2oz (70um) top and bottom copper thickness and
1.5oz (50um) inner copper thickness
m/s = meters per second
Packaging Information
The following packaging information and addendum reflect the most current data available for the
designated device(s). This data is subject to change without notice and without revision of this document.
280
Mechanical Packaging and Orderable Information
Submit Documentation Feedback
Product Folder Links: OMAP-L138
Copyright © 2009–2017, Texas Instruments Incorporated
PACKAGE OPTION ADDENDUM
www.ti.com
10-Dec-2020
PACKAGING INFORMATION
Orderable Device
Status
(1)
Package Type Package Pins Package
Drawing
Qty
Eco Plan
(2)
Lead finish/
Ball material
MSL Peak Temp
Op Temp (°C)
(3)
Device Marking
(4/5)
(6)
OMAPL138EZCE3
ACTIVE
NFBGA
ZCE
361
160
RoHS & Green
SNAGCU
Level-3-260C-168 HR
0 to 90
OMAPL138E
ZCE
375
OMAPL138EZCE4
ACTIVE
NFBGA
ZCE
361
160
RoHS & Green
SNAGCU
Level-3-260C-168 HR
0 to 90
OMAPL138E
ZCE
450
OMAPL138EZCEA3
ACTIVE
NFBGA
ZCE
361
160
RoHS & Green
SNAGCU
Level-3-260C-168 HR
-40 to 105
OMAPL138E
ZCE
A375
OMAPL138EZCEA3R
ACTIVE
NFBGA
ZCE
361
1000
RoHS & Green
SNAGCU
Level-3-260C-168 HR
-40 to 105
OMAPL138E
ZCE
A375
OMAPL138EZCED4
ACTIVE
NFBGA
ZCE
361
160
RoHS & Green
SNAGCU
Level-3-260C-168 HR
-40 to 90
OMAPL138E
ZCE
D450
OMAPL138EZCED4E
ACTIVE
NFBGA
ZCE
361
160
RoHS & Green
SNAGCU
Level-3-260C-168 HR
-40 to 90
OMAPL138E
ZCE E
D450
OMAPL138EZWT3
ACTIVE
NFBGA
ZWT
361
90
RoHS & Green
SNAGCU
Level-3-260C-168 HR
0 to 90
OMAPL138E
ZWT
375
OMAPL138EZWT4
ACTIVE
NFBGA
ZWT
361
90
RoHS & Green
SNAGCU
Level-3-260C-168 HR
0 to 90
OMAPL138E
ZWT
450
OMAPL138EZWTA3
ACTIVE
NFBGA
ZWT
361
90
RoHS & Green
SNAGCU
Level-3-260C-168 HR
-40 to 105
OMAPL138E
ZWT
A375
OMAPL138EZWTA3E
ACTIVE
NFBGA
ZWT
361
90
RoHS & Green
SNAGCU
Level-3-260C-168 HR
-40 to 105
OMAPL138E
ZWT E
A375
OMAPL138EZWTA3R
ACTIVE
NFBGA
ZWT
361
1000
RoHS & Green
SNAGCU
Level-3-260C-168 HR
-40 to 105
OMAPL138E
ZWT
A375
OMAPL138EZWTD4
ACTIVE
NFBGA
ZWT
361
90
RoHS & Green
SNAGCU
Level-3-260C-168 HR
-40 to 90
OMAPL138E
ZWT
Addendum-Page 1
Samples
PACKAGE OPTION ADDENDUM
www.ti.com
Orderable Device
10-Dec-2020
Status
(1)
Package Type Package Pins Package
Drawing
Qty
Eco Plan
(2)
Lead finish/
Ball material
MSL Peak Temp
Op Temp (°C)
Device Marking
(3)
(4/5)
(6)
D450
OMAPL138EZWTD4E
ACTIVE
NFBGA
ZWT
361
90
RoHS & Green
SNAGCU
Level-3-260C-168 HR
-40 to 90
OMAPL138E
ZWT E
D450
(1)
The marketing status values are defined as follows:
ACTIVE: Product device recommended for new designs.
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.
OBSOLETE: TI has discontinued the production of the device.
(2)
RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance
do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may
reference these types of products as "Pb-Free".
RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.
Green: TI defines "Green" to mean the content of Chlorine (Cl) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of