0
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
会员中心
创作中心
发布
  • 发文章

  • 发资料

  • 发帖

  • 提问

  • 发视频

创作活动
TMDSLCDK138

TMDSLCDK138

  • 厂商:

    BURR-BROWN(德州仪器)

  • 封装:

    -

  • 描述:

    KIT DEV OMAP-L138

  • 数据手册
  • 价格&库存
TMDSLCDK138 数据手册
Product Folder Order Now Technical Documents Tools & Software Support & Community OMAP-L138 SPRS586J – JUNE 2009 – REVISED JANUARY 2017 OMAP-L138 C6000™ DSP+ ARM® Processor 1 Device Overview 1.1 Features 1 • Dual-Core SoC – 375- and 456-MHz ARM926EJ-S™ RISC MPU – 375- and 456-MHz C674x Fixed- and FloatingPoint VLIW DSP • ARM926EJ-S Core – 32- and 16-Bit (Thumb®) Instructions – DSP Instruction Extensions – Single-Cycle MAC – ARM Jazelle® Technology – Embedded ICE-RT™ for Real-Time Debug • ARM9™ Memory Architecture – 16KB of Instruction Cache – 16KB of Data Cache – 8KB of RAM (Vector Table) – 64KB of ROM • C674x Instruction Set Features – Superset of the C67x+ and C64x+ ISAs – Up to 3648 MIPS and 2746 MFLOPS – Byte-Addressable (8-, 16-, 32-, and 64-Bit Data) – 8-Bit Overflow Protection – Bit-Field Extract, Set, Clear – Normalization, Saturation, Bit-Counting – Compact 16-Bit Instructions • C674x Two-Level Cache Memory Architecture – 32KB of L1P Program RAM/Cache – 32KB of L1D Data RAM/Cache – 256KB of L2 Unified Mapped RAM/Cache – Flexible RAM/Cache Partition (L1 and L2) • Enhanced Direct Memory Access Controller 3 (EDMA3): – 2 Channel Controllers – 3 Transfer Controllers – 64 Independent DMA Channels – 16 Quick DMA Channels – Programmable Transfer Burst Size • TMS320C674x Floating-Point VLIW DSP Core – Load-Store Architecture With Nonaligned Support – 64 General-Purpose Registers (32-Bit) – Six ALU (32- and 40-Bit) Functional Units • • • • – Supports 32-Bit Integer, SP (IEEE Single Precision/32-Bit) and DP (IEEE Double Precision/64-Bit) Floating Point – Supports up to Four SP Additions Per Clock, Four DP Additions Every Two Clocks – Supports up to Two Floating-Point (SP or DP) Reciprocal Approximation (RCPxP) and Square-Root Reciprocal Approximation (RSQRxP) Operations Per Cycle – Two Multiply Functional Units: – Mixed-Precision IEEE Floating-Point Multiply Supported up to: – 2 SP × SP → SP Per Clock – 2 SP × SP → DP Every Two Clocks – 2 SP × DP → DP Every Three Clocks – 2 DP × DP → DP Every Four Clocks – Fixed-Point Multiply Supports Two 32 × 32Bit Multiplies, Four 16 × 16-Bit Multiplies, or Eight 8 × 8-Bit Multiplies per Clock Cycle, and Complex Multiples – Instruction Packing Reduces Code Size – All Instructions Conditional – Hardware Support for Modulo Loop Operation – Protected Mode Operation – Exceptions Support for Error Detection and Program Redirection Software Support – TI DSP BIOS™ – Chip Support Library and DSP Library 128KB of RAM Shared Memory 1.8-V or 3.3-V LVCMOS I/Os (Except for USB and DDR2 Interfaces) Two External Memory Interfaces: – EMIFA – NOR (8- or 16-Bit-Wide Data) – NAND (8- or 16-Bit-Wide Data) – 16-Bit SDRAM With 128-MB Address Space – DDR2/Mobile DDR Memory Controller With one of the Following: – 16-Bit DDR2 SDRAM With 256-MB Address Space 1 An IMPORTANT NOTICE at the end of this data sheet addresses availability, warranty, changes, use in safety-critical applications, intellectual property matters and other important disclaimers. PRODUCTION DATA. OMAP-L138 SPRS586J – JUNE 2009 – REVISED JANUARY 2017 • • • • • • • • • • • • 2 www.ti.com – 16-Bit mDDR SDRAM With 256-MB Address Space Three Configurable 16550-Type UART Modules: – With Modem Control Signals – 16-Byte FIFO – 16x or 13x Oversampling Option LCD Controller Two Serial Peripheral Interfaces (SPIs) Each With Multiple Chip Selects Two Multimedia Card (MMC)/Secure Digital (SD) Card Interfaces With Secure Data I/O (SDIO) Interfaces Two Master and Slave Inter-Integrated Circuits (I2C Bus™) One Host-Port Interface (HPI) With 16-Bit-Wide Muxed Address and Data Bus For High Bandwidth Programmable Real-Time Unit Subsystem (PRUSS) – Two Independent Programmable Real-Time Unit (PRU) Cores – 32-Bit Load-Store RISC Architecture – 4KB of Instruction RAM Per Core – 512 Bytes of Data RAM Per Core – PRUSS can be Disabled Through Software to Save Power – Register 30 of Each PRU is Exported From the Subsystem in Addition to the Normal R31 Output of the PRU Cores. – Standard Power-Management Mechanism – Clock Gating – Entire Subsystem Under a Single PSC Clock Gating Domain – Dedicated Interrupt Controller – Dedicated Switched Central Resource USB 1.1 OHCI (Host) With Integrated PHY (USB1) USB 2.0 OTG Port With Integrated PHY (USB0) – USB 2.0 High- and Full-Speed Client – USB 2.0 High-, Full-, and Low-Speed Host – End Point 0 (Control) – End Points 1, 2, 3, and 4 (Control, Bulk, Interrupt, or ISOC) RX and TX One Multichannel Audio Serial Port (McASP): – Two Clock Zones and 16 Serial Data Pins – Supports TDM, I2S, and Similar Formats – DIT-Capable – FIFO Buffers for Transmit and Receive Two Multichannel Buffered Serial Ports (McBSPs): – Supports TDM, I2S, and Similar Formats – AC97 Audio Codec Interface – Telecom Interfaces (ST-Bus, H100) – 128-Channel TDM – FIFO Buffers for Transmit and Receive 10/100 Mbps Ethernet MAC (EMAC): • • • • • • • • • • – IEEE 802.3 Compliant – MII Media-Independent Interface – RMII Reduced Media-Independent Interface – Management Data I/O (MDIO) Module Video Port Interface (VPIF): – Two 8-Bit SD (BT.656), Single 16-Bit or Single Raw (8-, 10-, and 12-Bit) Video Capture Channels – Two 8-Bit SD (BT.656), Single 16-Bit Video Display Channels Universal Parallel Port (uPP): – High-Speed Parallel Interface to FPGAs and Data Converters – Data Width on Both Channels is 8- to 16-Bit Inclusive – Single-Data Rate or Dual-Data Rate Transfers – Supports Multiple Interfaces With START, ENABLE, and WAIT Controls Serial ATA (SATA) Controller: – Supports SATA I (1.5 Gbps) and SATA II (3.0 Gbps) – Supports All SATA Power-Management Features – Hardware-Assisted Native Command Queueing (NCQ) for up to 32 Entries – Supports Port Multiplier and Command-Based Switching Real-Time Clock (RTC) With 32-kHz Oscillator and Separate Power Rail Three 64-Bit General-Purpose Timers (Each Configurable as Two 32-Bit Timers) One 64-Bit General-Purpose or Watchdog Timer (Configurable as Two 32-Bit General-Purpose Timers) Two Enhanced High-Resolution Pulse Width Modulators (eHRPWMs): – Dedicated 16-Bit Time-Base Counter With Period and Frequency Control – 6 Single-Edge Outputs, 6 Dual-Edge Symmetric Outputs, or 3 Dual-Edge Asymmetric Outputs – Dead-Band Generation – PWM Chopping by High-Frequency Carrier – Trip Zone Input Three 32-Bit Enhanced Capture (eCAP) Modules: – Configurable as 3 Capture Inputs or 3 Auxiliary Pulse Width Modulator (APWM) Outputs – Single-Shot Capture of up to Four Event Timestamps Packages: – 361-Ball Pb-Free Plastic Ball Grid Array (PBGA) [ZCE Suffix], 0.65-mm Ball Pitch – 361-Ball Pb-Free PBGA [ZWT Suffix], 0.80-mm Ball Pitch Commercial, Extended, or Industrial Temperature Device Overview Copyright © 2009–2017, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: OMAP-L138 OMAP-L138 www.ti.com 1.2 • • • • • SPRS586J – JUNE 2009 – REVISED JANUARY 2017 Applications Professional or Private Mobile Radio (PMR) Remote Radio Unit (RRU) Remote Radio Head (RRH) Industrial Automation Currency Inspection 1.3 • • • • Biometric Identification Machine Vision (Low-End) Smart Grid Substation Protection Industrial Portable Navigation Devices Description The OMAP-L138 C6000 DSP+ARM processor is a low-power applications processor based on an ARM926EJ-S and a C674x DSP core. This processor provides significantly lower power than other members of the TMS320C6000™ platform of DSPs. The device enables original-equipment manufacturers (OEMs) and original-design manufacturers (ODMs) to quickly bring to market devices with robust operating systems, rich user interfaces, and high processor performance through the maximum flexibility of a fully integrated, mixed processor solution. The dual-core architecture of the device provides benefits of both DSP and reduced instruction set computer (RISC) technologies, incorporating a high-performance TMS320C674x DSP core and an ARM926EJ-S core. The ARM926EJ-S is a 32-bit RISC processor core that performs 32-bit or 16-bit instructions and processes 32-, 16-, or 8-bit data. The core uses pipelining so that all parts of the processor and memory system can operate continuously. The ARM9 core has a coprocessor 15 (CP15), protection module, and data and program memory management units (MMUs) with table look-aside buffers. The ARM9 core has separate 16-KB instruction and 16-KB data caches. Both caches are 4-way associative with virtual index virtual tag (VIVT). The ARM9 core also has 8KB of RAM (Vector Table) and 64KB of ROM. The device DSP core uses a 2-level cache-based architecture. The level 1 program cache (L1P) is a 32KB direct mapped cache, and the level 1 data cache (L1D) is a 32-KB 2-way, set-associative cache. The level 2 program cache (L2P) consists of a 256-KB memory space that is shared between program and data space. L2 memory can be configured as mapped memory, cache, or combinations of the two. Although the DSP L2 is accessible by the ARM9 and other hosts in the system, an additional 128KB of RAM shared memory is available for use by other hosts without affecting DSP performance. For security-enabled devices, TI’s Basic Secure Boot lets users protect proprietary intellectual property and prevents external entities from modifying user-developed algorithms. By starting from a hardwarebased “root-of-trust,” the secure boot flow ensures a known good starting point for code execution. By default, the JTAG port is locked down to prevent emulation and debug attacks; however, the JTAG port can be enabled during the secure boot process during application development. The boot modules are encrypted while sitting in external nonvolatile memory, such as flash or EEPROM, and are decrypted and authenticated when loaded during secure boot. Encryption and decryption protects the users’ IP and lets them securely set up the system and begin device operation with known, trusted code. Basic Secure Boot uses either SHA-1 or SHA-256, and AES-128 for boot image validation. Basic Secure Boot also uses AES-128 for boot image encryption. The secure boot flow employs a multilayer encryption scheme which not only protects the boot process but also offers the ability to securely upgrade boot and application software code. A 128-bit device-specific cipher key, known only to the device and generated using a NIST-800-22 certified random number generator, is used to protect user encryption keys. When an update is needed, the customer uses the encryption keys to create a new encrypted image. Then the device can acquire the image through an external interface, such as Ethernet, and overwrite the existing code. For more details on the supported security features or TI’s Basic Secure Boot, see the TMS320C674x/OMAP-L1x Processor Security User’s Guide. Device Overview Copyright © 2009–2017, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: OMAP-L138 3 OMAP-L138 SPRS586J – JUNE 2009 – REVISED JANUARY 2017 www.ti.com The peripheral set includes: a 10/100 Mbps Ethernet media access controller (EMAC) with a management data input/output (MDIO) module; one USB2.0 OTG interface; one USB1.1 OHCI interface; two I2C Bus interfaces; one multichannel audio serial port (McASP) with 16 serializers and FIFO buffers; two multichannel buffered serial ports (McBSPs) with FIFO buffers; two serial peripheral interfaces (SPIs) with multiple chip selects; a configurable 16-bit host-port interface (HPI); up to 9 banks of general-purpose input/output (GPIO) pins, with each bank containing 16 pins with programmable interrupt and event generation modes, multiplexed with other peripherals; three UART interfaces (each with RTS and CTS); two enhanced high-resolution pulse width modulator (eHRPWM) peripherals; three 32-bit enhanced capture (eCAP) module peripherals which can be configured as 3 capture inputs or 3 APWM outputs; two external memory interfaces: an asynchronous and SDRAM external memory interface (EMIFA) for slower memories or peripherals; and a higher speed DDR2/Mobile DDR controller. The EMAC provides an efficient interface between the device and a network. The EMAC supports both 10Base-T and 100Base-TX, or 10 Mbps and 100 Mbps in either half- or full-duplex mode. Additionally, an MDIO interface is available for PHY configuration. The EMAC supports both MII and RMII interfaces. The Serial ATA (SATA) controller provides a high-speed interface to mass data storage devices. The SATA controller supports both SATA I (1.5 Gbps) and SATA II (3.0 Gbps). The Universal Parallel Port (uPP) provides a high-speed interface to many types of data converters, FPGAs, or other parallel devices. The uPP supports programmable data widths between 8- to 16-bits on both channels. Single-data rate and double-data rate transfers are supported as well as START, ENABLE, and WAIT signals to provide control for a variety of data converters. A video port interface (VPIF) provides a flexible video I/O port. The rich peripheral set provides the ability to control external peripheral devices and communicate with external processors. For details on each peripheral, see the related sections in this document and the associated peripheral reference guides. The device has a complete set of development tools for the ARM9 and DSP. These tools include C compilers, a DSP assembly optimizer to simplify programming and scheduling, and a Windows® debugger interface for visibility into source code execution. Device Information (1) PACKAGE BODY SIZE OMAPL138ZCE PART NUMBER NFBGA (361) 13,00 mm x 13,00 mm OMAPL138ZWT NFBGA (361) 16,00 mm x 16,00 mm (1) 4 For more information on these devices, see Section 8. Device Overview Copyright © 2009–2017, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: OMAP-L138 OMAP-L138 www.ti.com 1.4 SPRS586J – JUNE 2009 – REVISED JANUARY 2017 Functional Block Diagram Figure 1-1 shows the functional block diagram of the device. ARM Subsystem DSP Subsystem ARM926EJ-S CPU With MMU C674x™ DSP CPU 4KB ETB AET JTAG Interface System Control PLL/Clock Generator w/OSC Input Clock(s) Memory Protection GeneralPurpose Timer (x4) 16KB 16KB I-Cache D-Cache Power/Sleep Controller RTC/ 32-kHz OSC Pin Multiplexing 32KB L1 Pgm 32KB L1 RAM 8KB RAM (Vector Table) 256KB L2 RAM 64KB ROM BOOT ROM Switched Central Resource (SCR) Peripherals DMA Audio Ports EDMA3 (x2) McASP w/FIFO Serial Interfaces McBSP (x2) I2C (x2) (1) eCAP (x3) Video LCD Ctlr VPIF UART (x3) Parallel Port Internal Memory Customizable Interface Connectivity Control Timers ePWM (x2) SPI (x2) Display USB2.0 OTG Ctlr PHY USB1.1 OHCI Ctlr PHY EMAC 10/100 MDIO (MII/RMII) uPP 128KB RAM PRU Subsystem External Memory Interfaces HPI MMC/SD (8b) (x2) SATA EMIFA(8b/16B) NAND/Flash 16b SDRAM DDR2/MDDR Controller Note: Not all peripherals are available at the same time due to multiplexing. Figure 1-1. Functional Block Diagram Device Overview Copyright © 2009–2017, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: OMAP-L138 5 OMAP-L138 SPRS586J – JUNE 2009 – REVISED JANUARY 2017 www.ti.com Table of Contents 1 2 3 1 6.11 DDR2/mDDR Memory Controller .................. 127 1.1 Features .............................................. 1 6.12 Memory Protection Units 1.2 Applications ........................................... 3 6.13 MMC / SD / SDIO (MMCSD0, MMCSD1) 1.3 Description ............................................ 3 6.14 1.4 Device Overview Functional Block Diagram ............................ 5 6.15 Revision History ......................................... 7 Device Comparison ..................................... 8 6.16 3.1 Device Characteristics ................................ 8 3.2 Device Compatibility .................................. 9 6.18 6.19 3.3 ARM Subsystem ...................................... 9 3.4 DSP Subsystem ..................................... 11 3.5 Memory Map Summary ............................. 22 .................................... 3.7 Pin Multiplexing Control ............................. 3.8 Terminal Functions .................................. 3.9 Unused Pin Configurations.......................... Device Configuration .................................. 4.1 Boot Modes ......................................... 4.2 SYSCFG Module .................................... 4.3 Pullup/Pulldown Resistors .......................... Specifications ........................................... 3.6 4 5 ........................................ Pin Assignments 6.17 6.20 6.21 25 143 146 151 160 169 190 Universal Asynchronous Receiver/Transmitter (UART) ............................................. 194 Universal Serial Bus OTG Controller (USB0) [USB2.0 OTG] ..................................... 196 Universal Serial Bus Host Controller (USB1) [USB1.1 OHCI]..................................... 203 28 6.22 Ethernet Media Access Controller (EMAC) ........ 204 6.23 Management Data Input/Output (MDIO) ........... 211 71 6.24 LCD Controller (LCDC) 73 6.25 Host-Port Interface (UHPI) ......................... 228 73 6.26 Universal Parallel Port (uPP) 73 6.27 Video Port Interface (VPIF) ........................ 241 76 6.28 6.29 Enhanced Capture (eCAP) Peripheral............. 247 Enhanced High-Resolution Pulse-Width Modulator (eHRPWM) ......................................... 250 6.30 Timers .............................................. 255 6.31 Real Time Clock (RTC) ............................ 257 6.32 6.33 General-Purpose Input/Output (GPIO)............. 260 Programmable Real-Time Unit Subsystem (PRUSS) ........................................... 264 6.34 Emulation Logic .................................... 267 77 Absolute Maximum Ratings Over Operating Junction Temperature Range (Unless Otherwise Noted) ................................. 77 5.2 Handling Ratings .................................... 77 5.3 Recommended Operating Conditions ............... 78 5.4 5.5 Notes on Recommended Power-On Hours (POH) . 80 Electrical Characteristics Over Recommended Ranges of Supply Voltage and Operating Junction Temperature (Unless Otherwise Noted) ............ 81 7 ............................ ...................... 213 236 Device and Documentation Support .............. 276 Peripheral Information and Electrical Specifications ........................................... 82 7.1 Device Nomenclature .............................. 276 7.2 Tools and Software ................................ 277 Parameter Information .............................. 82 Recommended Clock and Control Signal Transition Behavior ............................................. 83 7.3 Documentation Support ............................ 277 7.4 Community Resources............................. 278 7.5 Trademarks ........................................ 278 7.6 Electrostatic Discharge Caution 7.7 Export Control Notice .............................. 278 7.8 Glossary............................................ 278 6.1 6.2 6.3 Power Supplies ...................................... 83 6.4 Reset ................................................ 84 6.5 Crystal Oscillator or External Clock Input ........... 88 6.6 Clock PLLs .......................................... 89 6.7 Interrupts 6.8 6.9 Power and Sleep Controller (PSC) ................ 104 Enhanced Direct Memory Access Controller (EDMA3) ........................................... 109 6.10 6 140 29 5.1 6 .......................... ......... Serial ATA Controller (SATA) ...................... Multichannel Audio Serial Port (McASP) .......... Multichannel Buffered Serial Port (McBSP)........ Serial Peripheral Interface Ports (SPI0, SPI1) ..... Inter-Integrated Circuit Serial Ports (I2C) .......... ............................................ 94 External Memory Interface A (EMIFA) ............. 115 8 ................... 278 Mechanical Packaging and Orderable Information ............................................. 279 8.1 Thermal Data for ZCE Package ................... 279 8.2 Thermal Data for ZWT Package ................... 280 8.3 Packaging Information ............................. 280 Table of Contents Copyright © 2009–2017, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: OMAP-L138 OMAP-L138 www.ti.com SPRS586J – JUNE 2009 – REVISED JANUARY 2017 2 Revision History NOTE: Page numbers for previous revisions may differ from page numbers in the current version. Changes from September 30, 2014 to January 31, 2017 • • • Page Removed internal pullup designation from RESET in Table 3-5 .............................................................. 29 Added footnote to CLKOUT Description in Table 3-6 .......................................................................... 30 Added new column to Table 3-32 called "Configuration (When USB1 is used and USB0 is not used)" ................ 71 Revision History Copyright © 2009–2017, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: OMAP-L138 7 OMAP-L138 SPRS586J – JUNE 2009 – REVISED JANUARY 2017 www.ti.com 3 Device Comparison 3.1 Device Characteristics Table 3-1 provides an overview of the device. The table shows significant features of the device, including the capacity of on-chip RAM, peripherals, and the package type with pin count. Table 3-1. Characteristics of OMAP-L138 HARDWARE FEATURES OMAP-L138 DDR2/mDDR Memory Controller DDR2, 16-bit bus width, up to 156 MHz Mobile DDR, 16-bit bus width, up to 150 MHz Asynchronous (8/16-bit bus width) RAM, Flash, 16-bit SDRAM, NOR, NAND EMIFA Flash Card Interface 2 MMC and SD cards supported EDMA3 64 independent channels, 16 QDMA channels, 2 channel controllers, 3 transfer controllers Timers 4 64-Bit General Purpose (each configurable as 2 separate 32-bit timers, one configurable as Watch Dog) UART 3 (each with RTS and CTS flow control) SPI 2 (Each with one hardware chip select) I2C Peripherals Not all peripherals pins are available at the same time (for more detail, see the Device Configurations section). 2 (both Master/Slave) Multichannel Audio Serial Port [McASP] Multichannel Buffered Serial Port [McBSP] 1 (each with transmit/receive, FIFO buffer, 16 serializers) 2 (each with transmit/receive, FIFO buffer, 16) 10/100 Ethernet MAC with Management Data I/O 1 (MII or RMII Interface) 4 Single Edge, 4 Dual Edge Symmetric, or 2 Dual Edge Asymmetric Outputs eHRPWM eCAP 3 32-bit capture inputs or 3 32-bit auxiliary PWM outputs UHPI 1 (16-bit multiplexed address/data) USB 2.0 (USB0) High-Speed OTG Controller with on-chip OTG PHY USB 1.1 (USB1) Full-Speed OHCI (as host) with on-chip PHY General-Purpose Input/Output Port 9 banks of 16-bit LCD Controller 1 SATA Controller 1 (Supports both SATA I and SATAII) Universal Parallel Port (uPP) 1 Video Port Interface (VPIF) 1 (video in and video out) PRU Subsystem (PRUSS) 2 Programmable PRU Cores Size (Bytes) 488KB RAM Organization DSP 32KB L1 Program (L1P)/Cache (up to 32KB) 32KB L1 Data (L1D)/Cache (up to 32KB) 256KB Unified Mapped RAM/Cache (L2) DSP Memories can be made accessible to ARM, EDMA3, and other peripherals. ARM 16KB I-Cache 16KB D-Cache 8KB RAM (Vector Table) 64KB ROM ADDITIONAL SHARED MEMORY 128KB RAM Security Secure Boot TI Basic Secure Boot C674x CPU ID + CPU Rev ID Control Status Register (CSR.[31:16]) 0x1400 C674x Megamodule Revision Revision ID Register (MM_REVID[15:0]) 0x0000 JTAG BSDL_ID DEVIDR0 Register On-Chip Memory 8 see Section 6.34.4.1, JTAG Peripheral Register Description Device Comparison Copyright © 2009–2017, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: OMAP-L138 OMAP-L138 www.ti.com SPRS586J – JUNE 2009 – REVISED JANUARY 2017 Table 3-1. Characteristics of OMAP-L138 (continued) HARDWARE FEATURES CPU Frequency MHz OMAP-L138 674x DSP 375 MHz (1.2V) or 456 MHz (1.3V) ARM926 375 MHz (1.2V) or 456 MHz (1.3V) Variable (1.2V-1.0V) for 375 MHz version Variable (1.3V-1.0V) for 456 MHz version Core (V) Voltage I/O (V) Packages Product Status (1) (1) 1.8V or 3.3 V 13 mm x 13 mm, 361-Ball 0.65 mm pitch, PBGA (ZCE) 16 mm x 16 mm, 361-Ball 0.80 mm pitch, PBGA (ZWT) Product Preview (PP), Advance Information (AI), or Production Data (PD) 375 MHz versions - PD 456 MHz versions - PD ADVANCE INFORMATION concerns new products in the sampling or preproduction phase of development. Characteristic data and other specifications are subject to change without notice. PRODUCTION DATA information is current as of publication date. Products conform to specifications per the terms of the Texas Instruments standard warranty. Production processing does not necessarily include testing of all parameters. 3.2 Device Compatibility The ARM926EJ-S RISC CPU is compatible with other ARM9 CPUs from ARM Holdings plc. The C674x DSP core is code-compatible with the C6000™ DSP platform and supports features of both the C64x+ and C67x+ DSP families. 3.3 ARM Subsystem The ARM Subsystem includes the following features: • ARM926EJ-S RISC processor • ARMv5TEJ (32/16-bit) instruction set • Little endian • System Control Co-Processor 15 (CP15) • MMU • 16KB Instruction cache • 16KB Data cache • Write Buffer • Embedded Trace Module and Embedded Trace Buffer (ETM/ETB) • ARM Interrupt controller 3.3.1 ARM926EJ-S RISC CPU The ARM Subsystem integrates the ARM926EJ-S processor. The ARM926EJ-S processor is a member of ARM9 family of general-purpose microprocessors. This processor is targeted at multi-tasking applications where full memory management, high performance, low die size, and low power are all important. The ARM926EJ-S processor supports the 32-bit ARM and 16 bit THUMB instruction sets, enabling the user to trade off between high performance and high code density. Specifically, the ARM926EJ-S processor supports the ARMv5TEJ instruction set, which includes features for efficient execution of Java byte codes, providing Java performance similar to Just in Time (JIT) Java interpreter, but without associated code overhead. The ARM926EJ-S processor supports the ARM debug architecture and includes logic to assist in both hardware and software debug. The ARM926EJ-S processor has a Harvard architecture and provides a complete high performance subsystem, including: • ARM926EJ -S integer core • CP15 system control coprocessor • Memory Management Unit (MMU) Device Comparison Copyright © 2009–2017, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: OMAP-L138 9 OMAP-L138 SPRS586J – JUNE 2009 – REVISED JANUARY 2017 • • • • • www.ti.com Separate instruction and data caches Write buffer Separate instruction and data (internal RAM) interfaces Separate instruction and data AHB bus interfaces Embedded Trace Module and Embedded Trace Buffer (ETM/ETB) For more complete details on the ARM9, refer to the ARM926EJ-S Technical Reference Manual, available at http://www.arm.com 3.3.2 CP15 The ARM926EJ-S system control coprocessor (CP15) is used to configure and control instruction and data caches, Memory Management Unit (MMU), and other ARM subsystem functions. The CP15 registers are programmed using the MRC and MCR ARM instructions, when the ARM in a privileged mode such as supervisor or system mode. 3.3.3 MMU A single set of two level page tables stored in main memory is used to control the address translation, permission checks and memory region attributes for both data and instruction accesses. The MMU uses a single unified Translation Lookaside Buffer (TLB) to cache the information held in the page tables. The MMU features are: • Standard ARM architecture v4 and v5 MMU mapping sizes, domains and access protection scheme. • Mapping sizes are: – 1MB (sections) – 64KB (large pages) – 4KB (small pages) – 1KB (tiny pages) • Access permissions for large pages and small pages can be specified separately for each quarter of the page (subpage permissions) • Hardware page table walks • Invalidate entire TLB, using CP15 register 8 • Invalidate TLB entry, selected by MVA, using CP15 register 8 • Lockdown of TLB entries, using CP15 register 10 3.3.4 Caches and Write Buffer The size of the Instruction cache is 16KB, Data cache is 16KB. Additionally, the caches have the following features: • Virtual index, virtual tag, and addressed using the Modified Virtual Address (MVA) • Four-way set associative, with a cache line length of eight words per line (32-bytes per line) and with two dirty bits in the Dcache • Dcache supports write-through and write-back (or copy back) cache operation, selected by memory region using the C and B bits in the MMU translation tables • Critical-word first cache refilling • Cache lockdown registers enable control over which cache ways are used for allocation on a line fill, providing a mechanism for both lockdown, and controlling cache corruption • Dcache stores the Physical Address TAG (PA TAG) corresponding to each Dcache entry in the TAG RAM for use during the cache line write-backs, in addition to the Virtual Address TAG stored in the TAG RAM. This means that the MMU is not involved in Dcache write-back operations, removing the possibility of TLB misses related to the write-back address. • Cache maintenance operations provide efficient invalidation of, the entire Dcache or Icache, regions of the Dcache or Icache, and regions of virtual memory. 10 Device Comparison Copyright © 2009–2017, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: OMAP-L138 OMAP-L138 www.ti.com SPRS586J – JUNE 2009 – REVISED JANUARY 2017 The write buffer is used for all writes to a noncachable bufferable region, write-through region and write misses to a write-back region. A separate buffer is incorporated in the Dcache for holding write-back for cache line evictions or cleaning of dirty cache lines. The main write buffer has 16-word data buffer and a four-address buffer. The Dcache write-back has eight data word entries and a single address entry. 3.3.5 Advanced High-Performance Bus (AHB) The ARM Subsystem uses the AHB port of the ARM926EJ-S to connect the ARM to the Config bus and the external memories. Arbiters are employed to arbitrate access to the separate D-AHB and I-AHB by the Config Bus and the external memories bus. 3.3.6 Embedded Trace Macrocell (ETM) and Embedded Trace Buffer (ETB) To support real-time trace, the ARM926EJ-S processor provides an interface to enable connection of an Embedded Trace Macrocell (ETM). The ARM926ES-J Subsystem in the device also includes the Embedded Trace Buffer (ETB). The ETM consists of two parts: • Trace Port provides real-time trace capability for the ARM9. • Triggering facilities provide trigger resources, which include address and data comparators, counter, and sequencers. The device trace port is not pinned out and is instead only connected to the Embedded Trace Buffer. The ETB has a 4KB buffer memory. ETB enabled debug tools are required to read/interpret the captured trace data. 3.3.7 ARM Memory Mapping By default the ARM has access to most on and off chip memory areas, including the DSP Internal memories, EMIFA, DDR2, and the additional 128K byte on chip shared SRAM. Likewise almost all of the on chip peripherals are accessible to the ARM by default. To improve security and/or robustness, the device has extensive memory and peripheral protection units which can be configured to limit access rights to the various on/off chip resources to specific hosts; including the ARM as well as other master peripherals. This allows the system tasks to be partitioned between the ARM and DSP as best suites the particular application; while enhancing the overall robustness of the solution See Table 3-4 for a detailed top level device memory map that includes the ARM memory space. 3.4 DSP Subsystem The DSP Subsystem includes the following features: • C674x DSP CPU • 32KB L1 Program (L1P)/Cache (up to 32KB) • 32KB L1 Data (L1D)/Cache (up to 32KB) • 256KB Unified Mapped RAM/Cache (L2) • Boot ROM (cannot be used for application code) • Little endian Device Comparison Copyright © 2009–2017, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: OMAP-L138 11 OMAP-L138 SPRS586J – JUNE 2009 – REVISED JANUARY 2017 www.ti.com 32K Bytes L1P RAM/ Cache 256K Bytes L2 RAM 256 256 256 Cache Control Memory Protect BOOT ROM 256 Cache Control Memory Protect L1P Bandwidth Mgmt L2 Bandwidth Mgmt 256 256 256 Instruction Fetch 256 Power Down Interrupt Controller C674x Fixed/Floating Point CPU IDMA Register File A Register File B 64 64 256 CFG Bandwidth Mgmt Memory Protect EMC L1D Cache Control 32 MDMA 8 x 32 64 Configuration Peripherals Bus SDMA 64 64 64 High Performance Switch Fabric 32K Bytes L1D RAM/ Cache Figure 3-1. C674x Megamodule Block Diagram 3.4.1 C674x DSP CPU Description The C674x Central Processing Unit (CPU) consists of eight functional units, two register files, and two data paths as shown in Figure 3-2. The two general-purpose register files (A and B) each contain 32 32bit registers for a total of 64 registers. The general-purpose registers can be used for data or can be data address pointers. The data types supported include packed 8-bit data, packed 16-bit data, 32-bit data, 40bit data, and 64-bit data. Values larger than 32 bits, such as 40-bit-long or 64-bit-long values are stored in register pairs, with the 32 LSBs of data placed in an even register and the remaining 8 or 32 MSBs in the next upper register (which is always an odd-numbered register). The eight functional units (.M1, .L1, .D1, .S1, .M2, .L2, .D2, and .S2) are each capable of executing one instruction every clock cycle. The .M functional units perform all multiply operations. The .S and .L units perform a general set of arithmetic, logical, and branch functions. The .D units primarily load data from memory to the register file and store results from the register file into memory. The C674x CPU combines the performance of the C64x+ core with the floating-point capabilities of the C67x+ core. 12 Device Comparison Copyright © 2009–2017, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: OMAP-L138 OMAP-L138 www.ti.com SPRS586J – JUNE 2009 – REVISED JANUARY 2017 Each C674x .M unit can perform one of the following each clock cycle: one 32 x 32 bit multiply, one 16 x 32 bit multiply, two 16 x 16 bit multiplies, two 16 x 32 bit multiplies, two 16 x 16 bit multiplies with add/subtract capabilities, four 8 x 8 bit multiplies, four 8 x 8 bit multiplies with add operations, and four 16 x 16 multiplies with add/subtract capabilities (including a complex multiply). There is also support for Galois field multiplication for 8-bit and 32-bit data. Many communications algorithms such as FFTs and modems require complex multiplication. The complex multiply (CMPY) instruction takes for 16-bit inputs and produces a 32-bit real and a 32-bit imaginary output. There are also complex multiplies with rounding capability that produces one 32-bit packed output that contain 16-bit real and 16-bit imaginary values. The 32 x 32 bit multiply instructions provide the extended precision necessary for high-precision algorithms on a variety of signed and unsigned 32-bit data types. The .L or (Arithmetic Logic Unit) now incorporates the ability to do parallel add/subtract operations on a pair of common inputs. Versions of this instruction exist to work on 32-bit data or on pairs of 16-bit data performing dual 16-bit add and subtracts in parallel. There are also saturated forms of these instructions. The C674x core enhances the .S unit in several ways. On the previous cores, dual 16-bit MIN2 and MAX2 comparisons were only available on the .L units. On the C674x core they are also available on the .S unit which increases the performance of algorithms that do searching and sorting. Finally, to increase data packing and unpacking throughput, the .S unit allows sustained high performance for the quad 8-bit/16-bit and dual 16-bit instructions. Unpack instructions prepare 8-bit data for parallel 16-bit operations. Pack instructions return parallel results to output precision including saturation support. Other new features include: • SPLOOP - A small instruction buffer in the CPU that aids in creation of software pipelining loops where multiple iterations of a loop are executed in parallel. The SPLOOP buffer reduces the code size associated with software pipelining. Furthermore, loops in the SPLOOP buffer are fully interruptible. • Compact Instructions - The native instruction size for the C6000 devices is 32 bits. Many common instructions such as MPY, AND, OR, ADD, and SUB can be expressed as 16 bits if the C674x compiler can restrict the code to use certain registers in the register file. This compression is performed by the code generation tools. • Instruction Set Enhancement - As noted above, there are new instructions such as 32-bit multiplications, complex multiplications, packing, sorting, bit manipulation, and 32-bit Galois field multiplication. • Exceptions Handling - Intended to aid the programmer in isolating bugs. The C674x CPU is able to detect and respond to exceptions, both from internally detected sources (such as illegal op-codes) and from system events (such as a watchdog time expiration). • Privilege - Defines user and supervisor modes of operation, allowing the operating system to give a basic level of protection to sensitive resources. Local memory is divided into multiple pages, each with read, write, and execute permissions. • Time-Stamp Counter - Primarily targeted for Real-Time Operating System (RTOS) robustness, a freerunning time-stamp counter is implemented in the CPU which is not sensitive to system stalls. For more details on the C674x CPU and its enhancements over the C64x architecture, see the following documents: • TMS320C64x/C64x+ DSP CPU and Instruction Set Reference Guide (literature number SPRUFE8) • TMS320C64x Technical Overview (literature number SPRU395) Device Comparison Copyright © 2009–2017, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: OMAP-L138 13 OMAP-L138 SPRS586J – JUNE 2009 – REVISED JANUARY 2017 ÁÁ ÁÁ Á Á ÁÁ Á ÁÁ Á Á Á Á Á Á Á Á Á Á Á Á Á Á Á Á Á Á Á Á Á Á Á Á Á Á Á Á Á Á Á Á Á Á www.ti.com src1 Odd register file A (A1, A3, A5...A31) src2 .L1 odd dst Even register file A (A0, A2, A4...A30) (D) even dst long src ST1b ST1a 32 MSB 32 LSB long src 8 8 even dst odd dst .S1 src1 Data path A (D) src2 LD1b LD1a 32 LSB DA2 32 32 src2 32 MSB DA1 LD2a LD2b Á Á Á Á Á Á .M1 dst2 dst1 src1 (A) (B) (C) dst .D1 src1 src2 2x 1x Odd register file B (B1, B3, B5...B31) src2 .D2 32 LSB 32 MSB src1 dst src2 .M2 Even register file B (B0, B2, B4...B30) (C) src1 dst2 32 (B) dst1 32 (A) src2 src1 .S2 odd dst even dst long src Data path B ST2a ST2b 32 MSB 32 LSB long src even dst .L2 (D) 8 8 (D) odd dst src2 src1 Control Register A. B. C. D. On .M unit, dst2 is 32 MSB. On .M unit, dst1 is 32 LSB. On C64x CPU .M unit, src2 is 32 bits; on C64x+ CPU .M unit, src2 is 64 bits. On .L and .S units, odd dst connects to odd register files and even dst connects to even register files. Figure 3-2. TMS320C674x CPU (DSP Core) Data Paths 14 Device Comparison Copyright © 2009–2017, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: OMAP-L138 OMAP-L138 www.ti.com 3.4.2 SPRS586J – JUNE 2009 – REVISED JANUARY 2017 DSP Memory Mapping The DSP memory map is shown in Section 3.5. By default the DSP also has access to most on and off chip memory areas, with the exception of the ARM RAM, ROM, and AINTC interrupt controller. Additionally, the DSP megamodule includes the capability to limit access to its internal memories through its SDMA port; without needing an external MPU unit. 3.4.2.1 ARM Internal Memories The DSP does not have access to the ARM internal memory. 3.4.2.2 External Memories The DSP has access to the following External memories: • Asynchronous EMIF / SDRAM / NAND / NOR Flash (EMIFA) • SDRAM (DDR2) 3.4.2.3 DSP Internal Memories The DSP has access to the following DSP memories: • L2 RAM • L1P RAM • L1D RAM 3.4.2.4 C674x CPU The C674x core uses a two-level cache-based architecture. The Level 1 Program cache (L1P) is 32 KB direct mapped cache and the Level 1 Data cache (L1D) is 32 KB 2-way set associated cache. The Level 2 memory/cache (L2) consists of a 256 KB memory space that is shared between program and data space. L2 memory can be configured as mapped memory, cache, or a combination of both. Table 3-2 shows a memory map of the C674x CPU cache registers for the device. Table 3-2. C674x Cache Registers Byte Address Register Name 0x0184 0000 L2CFG 0x0184 0020 L1PCFG 0x0184 0024 L1PCC 0x0184 0040 L1DCFG Register Description L2 Cache configuration register L1P Size Cache configuration register L1P Freeze Mode Cache configuration register L1D Size Cache configuration register 0x0184 0044 L1DCC 0x0184 0048 - 0x0184 0FFC - L1D Freeze Mode Cache configuration register 0x0184 1000 EDMAWEIGHT Reserved L2 EDMA access control register 0x0184 1004 - 0x0184 1FFC - 0x0184 2000 L2ALLOC0 Reserved L2 allocation register 0 0x0184 2004 L2ALLOC1 L2 allocation register 1 0x0184 2008 L2ALLOC2 L2 allocation register 2 0x0184 200C L2ALLOC3 L2 allocation register 3 0x0184 2010 - 0x0184 3FFF - 0x0184 4000 L2WBAR L2 writeback base address register 0x0184 4004 L2WWC L2 writeback word count register 0x0184 4010 L2WIBAR L2 writeback invalidate base address register 0x0184 4014 L2WIWC L2 writeback invalidate word count register 0x0184 4018 L2IBAR L2 invalidate base address register Reserved Device Comparison Copyright © 2009–2017, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: OMAP-L138 15 OMAP-L138 SPRS586J – JUNE 2009 – REVISED JANUARY 2017 www.ti.com Table 3-2. C674x Cache Registers (continued) Byte Address Register Name 0x0184 401C L2IWC Register Description 0x0184 4020 L1PIBAR L1P invalidate base address register 0x0184 4024 L1PIWC L1P invalidate word count register 0x0184 4030 L1DWIBAR L1D writeback invalidate base address register 0x0184 4034 L1DWIWC L1D writeback invalidate word count register 0x0184 4038 - 0x0184 4040 L1DWBAR L1D Block Writeback 0x0184 4044 L1DWWC L1D Block Writeback 0x0184 4048 L1DIBAR L1D invalidate base address register 0x0184 404C L1DIWC L1D invalidate word count register 0x0184 4050 - 0x0184 4FFF - L2 invalidate word count register Reserved Reserved 0x0184 5000 L2WB 0x0184 5004 L2WBINV 0x0184 5008 L2INV 0x0184 500C - 0x0184 5027 - 0x0184 5028 L1PINV 0x0184 502C - 0x0184 5039 - L2 writeback all register L2 writeback invalidate all register L2 Global Invalidate without writeback Reserved L1P Global Invalidate Reserved 0x0184 5040 L1DWB 0x0184 5044 L1DWBINV L1D Global Writeback 0x0184 5048 L1DINV L1D Global Invalidate without writeback 0x0184 8000 – 0x0184 80FF MAR0 - MAR63 Reserved 0x0000 0000 – 0x3FFF FFFF 0x0184 8100 – 0x0184 817F MAR64 – MAR95 Memory Attribute Registers for EMIFA SDRAM Data (CS0) External memory addresses 0x4000 0000 – 0x5FFF FFFF 0x0184 8180 – 0x0184 8187 MAR96 - MAR97 Memory Attribute Registers for EMIFA Async Data (CS2) External memory addresses 0x6000 0000 – 0x61FF FFFF 0x0184 8188 – 0x0184 818F MAR98 – MAR99 Memory Attribute Registers for EMIFA Async Data (CS3) External memory addresses 0x6200 0000 – 0x63FF FFFF 0x0184 8190 – 0x0184 8197 MAR100 – MAR101 Memory Attribute Registers for EMIFA Async Data (CS4) External memory addresses 0x6400 0000 – 0x65FF FFFF 0x0184 8198 – 0x0184 819F MAR102 – MAR103 Memory Attribute Registers for EMIFA Async Data (CS5) External memory addresses 0x6600 0000 – 0x67FF FFFF 0x0184 81A0 – 0x0184 81FF MAR104 – MAR127 Reserved 0x6800 0000 – 0x7FFF FFFF 0x0184 8200 MAR128 L1D Global Writeback with Invalidate Memory Attribute Register for Shared RAM External memory addresses 0x8000 0000 – 0x8001 FFFF Reserved 0x8002 0000 – 0x81FF FFFF 0x0184 8204 – 0x0184 82FF MAR129 – MAR191 Reserved 0x8200 0000 – 0xBFFF FFFF 0x0184 8300 – 0x0184 837F MAR192 – MAR223 Memory Attribute Registers for DDR2 Data (CS2) External memory addresses 0xC000 0000 – 0xDFFF FFFF 0x0184 8380 – 0x0184 83FF MAR224 – MAR255 Reserved 0xE000 0000 – 0xFFFF FFFF Table 3-3. C674x L1/L2 Memory Protection Registers HEX ADDRESS RANGE REGISTER ACRONYM DESCRIPTION 0x0184 A000 L2MPFAR L2 memory protection fault address register 0x0184 A004 L2MPFSR L2 memory protection fault status register 0x0184 A008 L2MPFCR L2 memory protection fault command register 0x0184 A00C - 0x0184 A0FF - 0x0184 A100 L2MPLK0 L2 memory protection lock key bits [31:0] 0x0184 A104 L2MPLK1 L2 memory protection lock key bits [63:32] 0x0184 A108 L2MPLK2 L2 memory protection lock key bits [95:64] 16 Reserved Device Comparison Copyright © 2009–2017, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: OMAP-L138 OMAP-L138 www.ti.com SPRS586J – JUNE 2009 – REVISED JANUARY 2017 Table 3-3. C674x L1/L2 Memory Protection Registers (continued) HEX ADDRESS RANGE REGISTER ACRONYM 0x0184 A10C L2MPLK3 DESCRIPTION L2 memory protection lock key bits [127:96] 0x0184 A110 L2MPLKCMD L2 memory protection lock key command register 0x0184 A114 L2MPLKSTAT L2 memory protection lock key status register 0x0184 A118 - 0x0184 A1FF - 0x0184 A200 L2MPPA0 L2 memory protection page attribute register 0 (controls memory address 0x0080 0000 - 0x0080 1FFF) 0x0184 A204 L2MPPA1 L2 memory protection page attribute register 1 (controls memory address 0x0080 2000 - 0x0080 3FFF) 0x0184 A208 L2MPPA2 L2 memory protection page attribute register 2 (controls memory address 0x0080 4000 - 0x0080 5FFF) 0x0184 A20C L2MPPA3 L2 memory protection page attribute register 3 (controls memory address 0x0080 6000 - 0x0080 7FFF) 0x0184 A210 L2MPPA4 L2 memory protection page attribute register 4 (controls memory address 0x0080 8000 - 0x0080 9FFF) 0x0184 A214 L2MPPA5 L2 memory protection page attribute register 5 (controls memory address 0x0080 A000 - 0x0080 BFFF) 0x0184 A218 L2MPPA6 L2 memory protection page attribute register 6 (controls memory address 0x0080 C000 - 0x0080 DFFF) 0x0184 A21C L2MPPA7 L2 memory protection page attribute register 7 (controls memory address 0x0080 E000 - 0x0080 FFFF) 0x0184 A220 L2MPPA8 L2 memory protection page attribute register 8 (controls memory address 0x0081 0000 - 0x0081 1FFF) 0x0184 A224 L2MPPA9 L2 memory protection page attribute register 9 (controls memory address 0x0081 2000 - 0x0081 3FFF) 0x0184 A228 L2MPPA10 L2 memory protection page attribute register 10 (controls memory address 0x0081 4000 - 0x0081 5FFF) 0x0184 A22C L2MPPA11 L2 memory protection page attribute register 11 (controls memory address 0x0081 6000 - 0x0081 7FFF) 0x0184 A230 L2MPPA12 L2 memory protection page attribute register 12 (controls memory address 0x0081 8000 - 0x0081 9FFF) 0x0184 A234 L2MPPA13 L2 memory protection page attribute register 13 (controls memory address 0x0081 A000 - 0x0081 BFFF) 0x0184 A238 L2MPPA14 L2 memory protection page attribute register 14 (controls memory address 0x0081 C000 - 0x0081 DFFF) 0x0184 A23C L2MPPA15 L2 memory protection page attribute register 15 (controls memory address 0x0081 E000 - 0x0081 FFFF) 0x0184 A240 L2MPPA16 L2 memory protection page attribute register 16 (controls memory address 0x0082 0000 - 0x0082 1FFF) 0x0184 A244 L2MPPA17 L2 memory protection page attribute register 17 (controls memory address 0x0082 2000 - 0x0082 3FFF) 0x0184 A248 L2MPPA18 L2 memory protection page attribute register 18 (controls memory address 0x0082 4000 - 0x0082 5FFF) 0x0184 A24C L2MPPA19 L2 memory protection page attribute register 19 (controls memory address 0x0082 6000 - 0x0082 7FFF) 0x0184 A250 L2MPPA20 L2 memory protection page attribute register 20 (controls memory address 0x0082 8000 - 0x0082 9FFF) 0x0184 A254 L2MPPA21 L2 memory protection page attribute register 21 (controls memory address 0x0082 A000 - 0x0082 BFFF) 0x0184 A258 L2MPPA22 L2 memory protection page attribute register 22 (controls memory address 0x0082 C000 - 0x0082 DFFF) 0x0184 A25C L2MPPA23 L2 memory protection page attribute register 23 (controls memory address 0x0082 E000 - 0x0082 FFFF) 0x0184 A260 L2MPPA24 L2 memory protection page attribute register 24 (controls memory address 0x0083 0000 - 0x0083 1FFF) Reserved Device Comparison Copyright © 2009–2017, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: OMAP-L138 17 OMAP-L138 SPRS586J – JUNE 2009 – REVISED JANUARY 2017 www.ti.com Table 3-3. C674x L1/L2 Memory Protection Registers (continued) HEX ADDRESS RANGE 18 REGISTER ACRONYM DESCRIPTION 0x0184 A264 L2MPPA25 L2 memory protection page attribute register 25 (controls memory address 0x0083 2000 - 0x0083 3FFF) 0x0184 A268 L2MPPA26 L2 memory protection page attribute register 26 (controls memory address 0x0083 4000 - 0x0083 5FFF) 0x0184 A26C L2MPPA27 L2 memory protection page attribute register 27 (controls memory address 0x0083 6000 - 0x0083 7FFF) 0x0184 A270 L2MPPA28 L2 memory protection page attribute register 28 (controls memory address 0x0083 8000 - 0x0083 9FFF) 0x0184 A274 L2MPPA29 L2 memory protection page attribute register 29 (controls memory address 0x0083 A000 - 0x0083 BFFF) 0x0184 A278 L2MPPA30 L2 memory protection page attribute register 30 (controls memory address 0x0083 C000 - 0x0083 DFFF) 0x0184 A27C L2MPPA31 L2 memory protection page attribute register 31 (controls memory address 0x0083 E000 - 0x0083 FFFF) 0x0184 A280 L2MPPA32 L2 memory protection page attribute register 32 (controls memory address 0x0070 0000 - 0x0070 7FFF) 0x0184 A284 L2MPPA33 L2 memory protection page attribute register 33 (controls memory address 0x0070 8000 - 0x0070 FFFF) 0x0184 A288 L2MPPA34 L2 memory protection page attribute register 34 (controls memory address 0x0071 0000 - 0x0071 7FFF) 0x0184 A28C L2MPPA35 L2 memory protection page attribute register 35 (controls memory address 0x0071 8000 - 0x0071 FFFF) 0x0184 A290 L2MPPA36 L2 memory protection page attribute register 36 (controls memory address 0x0072 0000 - 0x0072 7FFF) 0x0184 A294 L2MPPA37 L2 memory protection page attribute register 37 (controls memory address 0x0072 8000 - 0x0072 FFFF) 0x0184 A298 L2MPPA38 L2 memory protection page attribute register 38 (controls memory address 0x0073 0000 - 0x0073 7FFF) 0x0184 A29C L2MPPA39 L2 memory protection page attribute register 39 (controls memory address 0x0073 8000 - 0x0073 FFFF) 0x0184 A2A0 L2MPPA40 L2 memory protection page attribute register 40 (controls memory address 0x0074 0000 - 0x0074 7FFF) 0x0184 A2A4 L2MPPA41 L2 memory protection page attribute register 41 (controls memory address 0x0074 8000 - 0x0074 FFFF) 0x0184 A2A8 L2MPPA42 L2 memory protection page attribute register 42 (controls memory address 0x0075 0000 - 0x0075 7FFF) 0x0184 A2AC L2MPPA43 L2 memory protection page attribute register 43 (controls memory address 0x0075 8000 - 0x0075 FFFF) 0x0184 A2B0 L2MPPA44 L2 memory protection page attribute register 44 (controls memory address 0x0076 0000 - 0x0076 7FFF) 0x0184 A2B4 L2MPPA45 L2 memory protection page attribute register 45 (controls memory address 0x0076 8000 - 0x0076 FFFF) 0x0184 A2B8 L2MPPA46 L2 memory protection page attribute register 46 (controls memory address 0x0077 0000 - 0x0077 7FFF) 0x0184 A2BC L2MPPA47 L2 memory protection page attribute register 47 (controls memory address 0x0077 8000 - 0x0077 FFFF) 0x0184 A2C0 L2MPPA48 L2 memory protection page attribute register 48 (controls memory address 0x0078 0000 - 0x0078 7FFF) 0x0184 A2C4 L2MPPA49 L2 memory protection page attribute register 49 (controls memory address 0x0078 8000 - 0x0078 FFFF) 0x0184 A2C8 L2MPPA50 L2 memory protection page attribute register 50 (controls memory address 0x0079 0000 - 0x0079 7FFF) 0x0184 A2CC L2MPPA51 L2 memory protection page attribute register 51 (controls memory address 0x0079 8000 - 0x0079 FFFF) 0x0184 A2D0 L2MPPA52 L2 memory protection page attribute register 52 (controls memory address 0x007A 0000 - 0x007A 7FFF) Device Comparison Copyright © 2009–2017, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: OMAP-L138 OMAP-L138 www.ti.com SPRS586J – JUNE 2009 – REVISED JANUARY 2017 Table 3-3. C674x L1/L2 Memory Protection Registers (continued) HEX ADDRESS RANGE REGISTER ACRONYM DESCRIPTION 0x0184 A2D4 L2MPPA53 L2 memory protection page attribute register 53 (controls memory address 0x007A 8000 - 0x007A FFFF) 0x0184 A2D8 L2MPPA54 L2 memory protection page attribute register 54 (controls memory address 0x007B 0000 - 0x007B 7FFF) 0x0184 A2DC L2MPPA55 L2 memory protection page attribute register 55 (controls memory address 0x007B 8000 - 0x007B FFFF) 0x0184 A2E0 L2MPPA56 L2 memory protection page attribute register 56 (controls memory address 0x007C 0000 - 0x007C 7FFF) 0x0184 A2E4 L2MPPA57 L2 memory protection page attribute register 57 (controls memory address 0x007C 8000 - 0x007C FFFF) 0x0184 A2E8 L2MPPA58 L2 memory protection page attribute register 58 (controls memory address 0x007D 0000 - 0x007D 7FFF) 0x0184 A2EC L2MPPA59 L2 memory protection page attribute register 59 (controls memory address 0x007D 8000 - 0x007D FFFF) 0x0184 A2F0 L2MPPA60 L2 memory protection page attribute register 60 (controls memory address 0x007E 0000 - 0x007E 7FFF) 0x0184 A2F4 L2MPPA61 L2 memory protection page attribute register 61 (controls memory address 0x007E 8000 - 0x007E FFFF) 0x0184 A2F8 L2MPPA62 L2 memory protection page attribute register 62 (controls memory address 0x007F 0000 - 0x007F 7FFF) 0x0184 A2FC L2MPPA63 L2 memory protection page attribute register 63 (controls memory address 0x007F 8000 - 0x007F FFFF) 0x0184 A300 - 0x0184 A3FF - 0x0184 A400 L1PMPFAR L1P memory protection fault address register 0x0184 A404 L1PMPFSR L1P memory protection fault status register 0x0184 A408 L1PMPFCR L1P memory protection fault command register Reserved 0x0184 A40C - 0x0184 A4FF - 0x0184 A500 L1PMPLK0 Reserved L1P memory protection lock key bits [31:0] 0x0184 A504 L1PMPLK1 L1P memory protection lock key bits [63:32] 0x0184 A508 L1PMPLK2 L1P memory protection lock key bits [95:64] 0x0184 A50C L1PMPLK3 L1P memory protection lock key bits [127:96] 0x0184 A510 L1PMPLKCMD L1P memory protection lock key command register 0x0184 A514 L1PMPLKSTAT L1P memory protection lock key status register 0x0184 A518 - 0x0184 A5FF - Reserved 0x0184 A600 - 0x0184 A63F - Reserved 0x0184 A640 L1PMPPA16 L1P memory protection page attribute register 16 (controls memory address 0x00E0 0000 - 0x00E0 07FF) 0x0184 A644 L1PMPPA17 L1P memory protection page attribute register 17 (controls memory address 0x00E0 0800 - 0x00E0 0FFF) 0x0184 A648 L1PMPPA18 L1P memory protection page attribute register 18 (controls memory address 0x00E0 1000 - 0x00E0 17FF) 0x0184 A64C L1PMPPA19 L1P memory protection page attribute register 19 (controls memory address 0x00E0 1800 - 0x00E0 1FFF) 0x0184 A650 L1PMPPA20 L1P memory protection page attribute register 20 (controls memory address 0x00E0 2000 - 0x00E0 27FF) 0x0184 A654 L1PMPPA21 L1P memory protection page attribute register 21 (controls memory address 0x00E0 2800 - 0x00E0 2FFF) 0x0184 A658 L1PMPPA22 L1P memory protection page attribute register 22 (controls memory address 0x00E0 3000 - 0x00E0 37FF) 0x0184 A65C L1PMPPA23 L1P memory protection page attribute register 23 (controls memory address 0x00E0 3800 - 0x00E0 3FFF) (1) (1) These addresses correspond to the L1P memory protection page attribute registers 0-15 (L1PMPPA0-L1PMPPA15) of the C674x megamaodule. These registers are not supported for this device. Device Comparison Copyright © 2009–2017, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: OMAP-L138 19 OMAP-L138 SPRS586J – JUNE 2009 – REVISED JANUARY 2017 www.ti.com Table 3-3. C674x L1/L2 Memory Protection Registers (continued) HEX ADDRESS RANGE REGISTER ACRONYM DESCRIPTION 0x0184 A660 L1PMPPA24 L1P memory protection page attribute register 24 (controls memory address 0x00E0 4000 - 0x00E0 47FF) 0x0184 A664 L1PMPPA25 L1P memory protection page attribute register 25 (controls memory address 0x00E0 4800 - 0x00E0 4FFF) 0x0184 A668 L1PMPPA26 L1P memory protection page attribute register 26 (controls memory address 0x00E0 5000 - 0x00E0 57FF) 0x0184 A66C L1PMPPA27 L1P memory protection page attribute register 27 (controls memory address 0x00E0 5800 - 0x00E0 5FFF) 0x0184 A670 L1PMPPA28 L1P memory protection page attribute register 28 (controls memory address 0x00E0 6000 - 0x00E0 67FF) 0x0184 A674 L1PMPPA29 L1P memory protection page attribute register 29 (controls memory address 0x00E0 6800 - 0x00E0 6FFF) 0x0184 A678 L1PMPPA30 L1P memory protection page attribute register 30 (controls memory address 0x00E0 7000 - 0x00E0 77FF) 0x0184 A67C L1PMPPA31 L1P memory protection page attribute register 31 (controls memory address 0x00E0 7800 - 0x00E0 7FFF) 0x0184 A67F – 0x0184 ABFF - 0x0184 AC00 L1DMPFAR Reserved L1D memory protection fault address register 0x0184 AC04 L1DMPFSR L1D memory protection fault status register L1D memory protection fault command register 0x0184 AC08 L1DMPFCR 0x0184 AC0C - 0x0184 ACFF - 0x0184 AD00 L1DMPLK0 L1D memory protection lock key bits [31:0] 0x0184 AD04 L1DMPLK1 L1D memory protection lock key bits [63:32] 0x0184 AD08 L1DMPLK2 L1D memory protection lock key bits [95:64] 0x0184 AD0C L1DMPLK3 L1D memory protection lock key bits [127:96] Reserved 0x0184 AD10 L1DMPLKCMD L1D memory protection lock key command register 0x0184 AD14 L1DMPLKSTAT L1D memory protection lock key status register 0x0184 AD18 - 0x0184 ADFF - Reserved 0x0184 AE00 - 0x0184 AE3F - Reserved 0x0184 AE40 L1DMPPA16 L1D memory protection page attribute register 16 (controls memory address 0x00F0 0000 - 0x00F0 07FF) 0x0184 AE44 L1DMPPA17 L1D memory protection page attribute register 17 (controls memory address 0x00F0 0800 - 0x00F0 0FFF) 0x0184 AE48 L1DMPPA18 L1D memory protection page attribute register 18 (controls memory address 0x00F0 1000 - 0x00F0 17FF) 0x0184 AE4C L1DMPPA19 L1D memory protection page attribute register 19 (controls memory address 0x00F0 1800 - 0x00F0 1FFF) 0x0184 AE50 L1DMPPA20 L1D memory protection page attribute register 20 (controls memory address 0x00F0 2000 - 0x00F0 27FF) 0x0184 AE54 L1DMPPA21 L1D memory protection page attribute register 21 (controls memory address 0x00F0 2800 - 0x00F0 2FFF) 0x0184 AE58 L1DMPPA22 L1D memory protection page attribute register 22 (controls memory address 0x00F0 3000 - 0x00F0 37FF) 0x0184 AE5C L1DMPPA23 L1D memory protection page attribute register 23 (controls memory address 0x00F0 3800 - 0x00F0 3FFF) 0x0184 AE60 L1DMPPA24 L1D memory protection page attribute register 24 (controls memory address 0x00F0 4000 - 0x00F0 47FF) 0x0184 AE64 L1DMPPA25 L1D memory protection page attribute register 25 (controls memory address 0x00F0 4800 - 0x00F0 4FFF) 0x0184 AE68 L1DMPPA26 L1D memory protection page attribute register 26 (controls memory address 0x00F0 5000 - 0x00F0 57FF) (2) 20 (2) These addresses correspond to the L1D memory protection page attribute registers 0-15 (L1DMPPA0-L1DMPPA15) of the C674x megamaodule. These registers are not supported for this device. Device Comparison Copyright © 2009–2017, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: OMAP-L138 OMAP-L138 www.ti.com SPRS586J – JUNE 2009 – REVISED JANUARY 2017 Table 3-3. C674x L1/L2 Memory Protection Registers (continued) HEX ADDRESS RANGE REGISTER ACRONYM DESCRIPTION 0x0184 AE6C L1DMPPA27 L1D memory protection page attribute register 27 (controls memory address 0x00F0 5800 - 0x00F0 5FFF) 0x0184 AE70 L1DMPPA28 L1D memory protection page attribute register 28 (controls memory address 0x00F0 6000 - 0x00F0 67FF) 0x0184 AE74 L1DMPPA29 L1D memory protection page attribute register 29 (controls memory address 0x00F0 6800 - 0x00F0 6FFF) 0x0184 AE78 L1DMPPA30 L1D memory protection page attribute register 30 (controls memory address 0x00F0 7000 - 0x00F0 77FF) 0x0184 AE7C L1DMPPA31 L1D memory protection page attribute register 31 (controls memory address 0x00F0 7800 - 0x00F0 7FFF) 0x0184 AE80 – 0x0185 FFFF - Reserved Device Comparison Copyright © 2009–2017, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: OMAP-L138 21 OMAP-L138 SPRS586J – JUNE 2009 – REVISED JANUARY 2017 3.5 www.ti.com Memory Map Summary Note: Read/Write accesses to illegal or reserved addresses in the memory map may cause undefined behavior. Table 3-4. Top Level Memory Map Start Address End Address Size ARM Mem Map DSP Mem Map 0x0000 0000 0x0000 0FFF 4K 0x0000 1000 0x006F FFFF 0x0070 0000 0x007F FFFF 1024K 0x0080 0000 0x0083 FFFF 256K DSP L2 RAM 0x0084 0000 0x00DF FFFF 32K DSP L1P RAM 32K DSP L1D RAM EDMA Mem Map DSP L2 ROM LCDC Mem Map (1) 0x00E0 7FFF 0x00E0 8000 0x00EF FFFF 0x00F0 0000 0x00F0 7FFF 0x00F0 8000 0x017F FFFF 0x0180 0000 0x0180 FFFF 64K DSP Interrupt Controller 0x0181 0000 0x0181 0FFF 4K DSP Powerdown Controller 0x0181 1000 0x0181 1FFF 4K DSP Security ID 0x0181 2000 0x0181 2FFF 4K DSP Revision ID 0x0181 3000 0x0181 FFFF 52K - 0x0182 0000 0x0182 FFFF 64K DSP EMC 0x0183 0000 0x0183 FFFF 64K DSP Internal Reserved 0x0184 0000 0x0184 FFFF 64K DSP Memory System 0x0185 0000 0x01BB FFFF 0x01BC 0000 0x01BC 0FFF 0x01BC 1000 0x01BC 1800 0x01BC 1900 0x01BF FFFF 0x01C0 0000 0x01C0 7FFF 32K EDMA3 CC 0x01C0 8000 0x01C0 83FF 1K EDMA3 TC0 0x01C0 8400 0x01C0 87FF 1K EDMA3 TC1 0x01C0 8800 0x01C0 FFFF 0x01C1 0000 0x01C1 0FFF 4K PSC 0 0x01C1 1000 0x01C1 1FFF 4K PLL Controller 0 0x01C1 2000 0x01C1 3FFF 0x01C1 4000 0x01C1 4FFF 4K SYSCFG0 0x01C1 5000 0x01C1 FFFF 0x01C2 0000 0x01C2 0FFF 4K Timer0 0x01C2 1000 0x01C2 1FFF 4K Timer1 0x01C2 2000 0x01C2 2FFF 4K I2C 0 0x01C2 3000 0x01C2 3FFF 4K RTC 0x01C2 4000 0x01C3 FFFF 22 Master Peripheral Mem Map PRUSS Local Address Space 0x00E0 0000 (1) PRUSS Mem Map 4K ARM ETB memory 0x01BC 17FF 2K ARM ETB reg 0x01BC 18FF 256 ARM Ice Crusher The DSP L2 ROM is used for boot purposes and cannot be programmed with application code Device Comparison Copyright © 2009–2017, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: OMAP-L138 OMAP-L138 www.ti.com SPRS586J – JUNE 2009 – REVISED JANUARY 2017 Table 3-4. Top Level Memory Map (continued) Start Address End Address Size ARM Mem Map DSP Mem Map EDMA Mem Map 0x01C4 0000 0x01C4 0FFF 4K MMC/SD 0 0x01C4 1000 0x01C4 1FFF 4K SPI 0 0x01C4 2000 0x01C4 2FFF 4K UART 0 0x01C4 3000 0x01CF FFFF 0x01D0 0000 0x01D0 0FFF 4K McASP 0 Control 0x01D0 1000 0x01D0 1FFF 4K McASP 0 AFIFO Ctrl 0x01D0 2000 0x01D0 2FFF 4K McASP 0 Data 0x01D0 3000 0x01D0 BFFF 0x01D0 C000 0x01D0 CFFF 4K UART 1 0x01D0 D000 0x01D0 DFFF 4K UART 2 0x01D0 E000 0x01D0 FFFF 0x01D1 0000 0x01D1 07FF 2K McBSP0 0x01D1 0800 0x01D1 0FFF 2K McBSP0 FIFO Ctrl 0x01D1 1000 0x01D1 17FF 2K McBSP1 0x01D1 1800 0x01D1 1FFF 2K McBSP1 FIFO Ctrl 0x01D1 2000 0x01DF FFFF 0x01E0 0000 0x01E0 FFFF 64K USB0 0x01E1 0000 0x01E1 0FFF 4K UHPI 0x01E1 1000 0x01E1 2FFF 0x01E1 3000 0x01E1 3FFF 4K LCD Controller 0x01E1 4000 0x01E1 4FFF 4K Memory Protection Unit 1 (MPU 1) 0x01E1 5000 0x01E1 5FFF 4K Memory Protection Unit 2 (MPU 2) 0x01E1 6000 0x01E1 6FFF 4K UPP 0x01E1 7000 0x01E1 7FFF 4K VPIF 0x01E1 8000 0x01E1 9FFF 8K SATA 0x01E1 A000 0x01E1 AFFF 4K PLL Controller 1 4K MMCSD1 PRUSS Mem Map 0x01E1 B000 0x01E1 BFFF 0x01E1 C000 0x01E1 FFFF 0x01E2 0000 0x01E2 1FFF 8K EMAC Control Module RAM 0x01E2 2000 0x01E2 2FFF 4K EMAC Control Module Registers 0x01E2 3000 0x01E2 3FFF 4K EMAC Control Registers 0x01E2 4000 0x01E2 4FFF 4K EMAC MDIO port 0x01E2 5000 0x01E2 5FFF 4K USB1 0x01E2 6000 0x01E2 6FFF 4K GPIO 0x01E2 7000 0x01E2 7FFF 4K PSC 1 0x01E2 8000 0x01E2 8FFF 4K I2C 1 4K SYSCFG1 0x01E2 9000 0x01E2 BFFF 0x01E2 C000 0x01E2 CFFF 0x01E2 D000 0x01E2 FFFF 0x01E3 0000 0x01E3 7FFF 32K EDMA3 CC1 0x01E3 8000 0x01E3 83FF 1K EDMA3 TC2 0x01E3 8400 0x01EF FFFF 0x01F0 0000 0x01F0 0FFF 4K eHRPWM 0 0x01F0 1000 0x01F0 1FFF 4K HRPWM 0 0x01F0 2000 0x01F0 2FFF 4K eHRPWM 1 0x01F0 3000 0x01F0 3FFF 4K HRPWM 1 Master Peripheral Mem Map Device Comparison Copyright © 2009–2017, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: OMAP-L138 LCDC Mem Map 23 OMAP-L138 SPRS586J – JUNE 2009 – REVISED JANUARY 2017 www.ti.com Table 3-4. Top Level Memory Map (continued) Start Address End Address Size ARM Mem Map DSP Mem Map EDMA Mem Map 0x01F0 4000 0x01F0 5FFF 0x01F0 6000 0x01F0 6FFF 4K ECAP 0 0x01F0 7000 0x01F0 7FFF 4K ECAP 1 0x01F0 8000 0x01F0 8FFF 4K ECAP 2 0x01F0 9000 0x01F0 BFFF 0x01F0 C000 0x01F0 CFFF 4K Timer2 0x01F0 D000 0x01F0 DFFF 4K Timer3 0x01F0 E000 0x01F0 EFFF 4K SPI1 0x01F0 F000 0x01F0 FFFF 0x01F1 0000 0x01F1 0FFF 4K McBSP0 FIFO Data 0x01F1 1000 0x01F1 1FFF 4K McBSP1 FIFO Data 0x01F1 2000 0x116F FFFF 0x1170 0000 0x117F FFFF 1024K DSP L2 ROM (1) 0x1180 0000 0x1183 FFFF 256K DSP L2 RAM 0x1184 0000 0x11DF FFFF 0x11E0 0000 0x11E0 7FFF 32K DSP L1P RAM 0x11E0 8000 0x11EF FFFF 32K DSP L1D RAM 0x11F0 0000 0x11F0 7FFF 0x11F0 8000 0x3FFF FFFF 0x4000 0000 0x5FFF FFFF 512M EMIFA SDRAM data (CS0) 0x6000 0000 0x61FF FFFF 32M EMIFA async data (CS2) 0x6200 0000 0x63FF FFFF 32M EMIFA async data (CS3) 0x6400 0000 0x65FF FFFF 32M EMIFA async data (CS4) 0x6600 0000 0x67FF FFFF 32M EMIFA async data (CS5) 0x6800 0000 0x6800 7FFF 32K EMIFA Control Regs 0x6800 8000 0x7FFF FFFF 0x8000 0000 0x8001 FFFF 0x8002 0000 0xAFFF FFFF 0xB000 0000 0xB000 7FFF 0xB000 8000 0xBFFF FFFF 0xC000 0000 0xCFFF FFFF 0xD000 0000 0xFFFC FFFF 0xFFFD 0000 0xFFFD FFFF 128K Shared RAM 32K DDR2/mDDR Control Regs 256M DDR2/mDDR Data 64K ARM local ROM 0xFFFE 0000 0xFFFE DFFF 0xFFFE E000 0xFFFE FFFF 8K ARM Interrupt Controller 0xFFFF 0000 0xFFFF 1FFF 8K ARM local RAM 0xFFFF 2000 0xFFFF FFFF 24 PRUSS Mem Map Device Comparison Master Peripheral Mem Map LCDC Mem Map ARM Local RAM (PRU0 only) Copyright © 2009–2017, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: OMAP-L138 OMAP-L138 www.ti.com 3.6 SPRS586J – JUNE 2009 – REVISED JANUARY 2017 Pin Assignments Extensive use of pin multiplexing is used to accommodate the largest number of peripheral functions in the smallest possible package. Pin multiplexing is controlled using a combination of hardware configuration at device reset and software programmable register settings. 3.6.1 Pin Map (Bottom View) The following graphics show the bottom view of the ZCE and ZWT packages pin assignments in four quadrants (A, B, C, and D). The pin assignments for both packages are identical. 1 2 3 4 5 6 7 8 9 10 W VP_DOUT[0]/ LCD_D[0]/ UPP_XD[8]/ GP7[8]/ PRU1_R31[8] VP_DOUT[1]/ LCD_D[1]/ UPP_XD[9]/ GP7[9]/ PRU1_R31[9] VP_DOUT[2]/ LCD_D[2]/ UPP_XD[10]/ GP7[10]/ PRU1_R31[10] DDR_A[10] DDR_A[6] DDR_A[2] DDR_CLKN DDR_CLKP DDR_RAS DDR_D[15] W V VP_DOUT[3]/ LCD_D[3]/ UPP_XD[11]/ GP7[11]/ PRU1_R31[11] VP_DOUT[4]/ LCD_D[4]/ UPP_XD[12]/ GP7[12]/ PRU1_R31[12] VP_DOUT[5]/ LCD_D[5]/ UPP_XD[13]/ GP7[13]/ PRU1_R31[13] DDR_A[12] DDR_A[5] DDR_A[3] DDR_CKE DDR_BA[0] DDR_CS DDR_D[13] V U VP_DOUT[6]/ LCD_D[6]/ UPP_XD[14]/ GP7[14]/ PRU1_R31[14] VP_DOUT[7]/ LCD_D[7]/ UPP_XD[15]/ GP7[15]/ PRU1_R31[15] VP_DOUT[8]/ LCD_D[8]/ UPP_XD[0]/ GP7[0]/ BOOT[0] DDR_A[8] DDR_A[4] DDR_A[7] DDR_A[0] DDR_BA[2] DDR_CAS DDR_D[12] U T VP_DOUT[9]/ LCD_D[9]/ UPP_XD[1]/ GP7[1]/ BOOT[1] VP_DOUT[10]/ LCD_D[10]/ UPP_XD[2]/ GP7[2]/ BOOT[2] VP_DOUT[11]/ LCD_D[11]/ UPP_XD[3]/ GP7[3]/ BOOT[3] DDR_A[11] DDR_A[13] DDR_A[9] DDR_A[1] DDR_WE DDR_BA[1] DDR_D[10] T R VP_DOUT[12]/ LCD_D[12]/ UPP_XD[4]/ GP7[4]/ BOOT[4] VP_DOUT[13]/ LCD_D[13]/ UPP_XD[5]/ GP7[5]/ BOOT[5] VP_DOUT[14]/ LCD_D[14]/ UPP_XD[6]/ GP7[6]/ BOOT[6] DVDD3318_C LCD_AC_ENB_CS/ GP6[0]/ PRU1_R31[28] DDR_VREF DDR_DVDD18 DDR_DVDD18 DDR_DVDD18 DDR_DQM[1] R P SATA_VDD SATA_VDD SATA_VDDR VP_DOUT[15]/ LCD_D[15]/ UPP_XD[7]/ GP7[7]/ BOOT[7] DVDD3318_C DVDD3318_C DDR_DVDD18 DDR_DVDD18 DDR_DVDD18 DDR_DVDD18 P N SATA_REFCLKN SATA_REFCLKP SATA_REG SATA_VDD VSS DDR_DVDD18 RVDD CVDD DDR_DVDD18 DDR_DVDD18 N M SATA_VSS SATA_VDD VSS VSS VSS VSS CVDD CVDD VSS M L SATA_RXP SATA_RXN SATA_VSS DVDD3318_C VSS DVDD18 VSS VSS VSS VSS L K SATA_VSS SATA_VSS VP_CLKOUT2/ MMCSD1_DAT[2]/ PRU1_R30[2]/ GP6[3]/ PRU1_R31[3] VP_CLKOUT3/ PRU1_R30[0]/ GP6[1]/ PRU1_R31[1] DVDD18 CVDD VSS VSS VSS VSS K 1 2 3 4 5 6 7 8 9 10 NC Figure 3-3. Pin Map (Quad A) Device Comparison Copyright © 2009–2017, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: OMAP-L138 25 OMAP-L138 SPRS586J – JUNE 2009 – REVISED JANUARY 2017 www.ti.com 11 12 13 14 15 16 17 18 19 W DDR_D[7] DDR_D[6] DDR_DQM[0] VP_CLKIN0/ UHPI_HCS/ PRU1_R30[10]/ GP6[7]/ UPP_2xTXCLK PRU0_R30[28]/ UHPI_HCNTL1/ UPP_CHA_START/ GP6[10] VP_DIN[4]/ UHPI_HD[12]/ UPP_D[12]/ RMII_RXD[1]/ PRU0_R31[26] VP_DIN[2]/ UHPI_HD[10]/ UPP_D[10]/ RMII_RXER / PRU0_R31[24] VP_DIN[1]/ UHPI_HD[9]/ UPP_D[9]/ RMII_MHZ_50 _CLK / PRU0_R31[23] VP_DIN[0]/ UHPI_HD[8]/ UPP_D[8]/ RMII_CRS_DV/ PRU1_R31[29] W V DDR_DQS[1] DDR_D[5] DDR_D[4] DDR_D[2] VP_CLKIN1/ UHPI_HDS1/ PRU1_R30[9]/ GP6[6]/ PRU1_R31[16] VP_DIN[6]/ UHPI_HD[14]/ UPP_D[14]/ RMII_TXD[0]/ PRU0_R31[28] VP_DIN[3]/ UHPI_HD[11]/ UPP_D[11]/ RMII_RXD[0]/ PRU0_R31[25] VP_DIN[15]_ VSYNC/ UHPI_HD[7]/ UPP_D[7]/ PRU0_R30[15]/ PRU0_R31[15] VP_DIN[14]_ HSYNC/ UHPI_HD[6]/ UPP_D[6]/ PRU0_R30[14]/ PRU0_R31[14] V U DDR_D[14] DDR_ZP DDR_D[3] DDR_D[1] DDR_D[0] PRU0_R30[27]/ UHPI_HHWIL/ UPP_CHA _ENABLE/ GP6[9] PRU0_R30[29]/ UHPI_HCNTL0/ UPP_CHA_CLOCK/ GP6[11] VP_DIN[7]/ UHPI_HD[15]/ UPP_D[15]/ RMII_TXD[1]/ PRU0_R31[29] VP_DIN[13]_ FIELD/ UHPI_HD[5]/ UPP_D[5]/ PRU0_R30[13]/ PRU0_R31[13] U T DDR_D[9] DDR_D[11] DDR_D[8] DDR_DQS[0] PRU0_R30[26]/ UHPI_HRW/ UPP_CHA_WAIT/ GP6[8]/ PRU1_R31[17] VP_DIN[12]/ UHPI_HD[4]/ UPP_D[4]/ PRU0_R30[12]/ PRU0_R31[12] RESETOUT/ UHPI_HAS/ PRU1_R30[14]/ GP6[15] CLKOUT/ UHPI_HDS2/ PRU1_R30[13]/ GP6[14] RSV2 T R DDR_DQGATE0 DDR_DQGATE1 DVDD18 VP_DIN[5]/ UHPI_HD[13]/ UPP_D[13]/ RMII_TXEN/ PRU0_R31[27] VP_DIN[9]/ UHPI_HD[1]/ UPP_D[1]/ PRU0_R30[9]/ PRU0_R31[9] PRU0_R30[30] / UHPI_HINT/ PRU1_R30[11]/ GP6[12] PRU0_R30[31]/ UHPI_HRDY/ PRU1_R30[12] GP6[13] VP_DIN[11]/ UHPI_HD[3]/ UPP_D[3]/ PRU0_R30[11]/ PRU0_R31[11] VP_DIN[10]/ UHPI_HD[2]/ UPP_D[2]/ PRU0_R30[10]/ PRU0_R31[10] R P VSS DVDD3318_C DVDD18 USB1_VDDA18 USB1_VDDA33 USB0_ID USB1_DM USB1_DP P N VSS VSS DVDD3318_C USB0_VDDA18 PLL1_VDDA NC USB0_VDDA12 USB0_VDDA33 USB0_VBUS N M VSS USB_CVDD DVDD3318_C NC PLL1_VSSA TDI PLL0_VSSA USB0_DM USB0_DP M L VSS CVDD DVDD3318_C PLL0_VDDA TMS TRST OSCVSS OSCIN L K VSS CVDD DVDD3318_C RESET DVDD3318_B EMU1 RTCK/ GP8[0] USB0_DRVVBUS OSCOUT K 11 12 13 14 15 16 17 18 19 RTC_CVDD VP_DIN[8]/ UHPI_HD[0]/ UPP_D[0]/ GP6[5]/ PRU1_R31[0] Figure 3-4. Pin Map (Quad B) 26 Device Comparison Copyright © 2009–2017, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: OMAP-L138 OMAP-L138 www.ti.com SPRS586J – JUNE 2009 – REVISED JANUARY 2017 11 12 13 14 15 16 17 18 19 J VSS CVDD DVDD18 DVDD3318_B TCK EMU0 NMI TDO RTC_XI J H CVDD CVDD CVDD RVDD VSS SPI1_ENA/ GP2[12] SPI1_SOMI/ GP2[11] RTC_VSS RTC_XO H G DVDD18 DVDD18 CVDD DVDD3318_A DVDD3318_A SPI1_SCS[7]/ I2C0_SCL/ TM64P2_OUT12/ GP1[5] SPI1_SIMO/ GP2[10] SPI1_SCS[6]/ I2C0_SDA/ TM64P3_OUT12/ GP1[4] SPI1_CLK/ GP2[13] G F DVDD3318_B DVDD3318_B DVDD3318_B DVDD18 DVDD3318_A SPI1_SCS[4]/ UART2_TXD/ I2C1_SDA/ GP1[2] SPI1_SCS[5]/ UART2_RXD/ I2C1_SCL/ GP1[3] SPI1_SCS[1]/ EPWM1A/ PRU0_R30[8]/ GP2[15]/ TM64P2_IN12 SPI1_SCS[2]/ UART1_TXD/ SATA_CP_POD/ GP1[0] F E EMA_A[18]/ MMCSD0_DAT[3]/ PRU1_R30[26]/ GP4[2] EMA_A[16]/ MMCSD0_DAT[5]/ PRU1_R30[24]/ GP4[0] EMA_A[6]/ GP5[6] DVDD3318_B CVDD SPI0_SCS[1]/ TM64P0_OUT12/ GP1[7]/ MDCLK/ TM64P0_IN12 SPI0_SCS[3]/ UART0_CTS/ GP8[2]/ MII_RXD[1]/ SATA_MP_SWITCH SPI1_SCS[3]/ UART1_RXD/ SATA_LED/ GP1[1] SPI1_SCS[0]/ EPWM1B/ PRU0_R30[7]/ GP2[14]/ TM64P3_IN12 E D EMA_A[13]/ PRU0_R30[21]/ PRU1_R30[21] / GP5[13]/ PRU1_R31[21] EMA_A[9]/ PRU1_R30[17]/ GP5[9] EMA_A[12]/ PRU1_R30[20]/ GP5[12]/ PRU1_R31[20] EMA_A[3]/ GP5[3] EMA_A[1]/ GP5[1] SPI0_SCS[2]/ UART0_RTS/ GP8[1]/ MII_RXD[0]/ SATA_CP_DET SPI0_SCS[0]/ TM64P1_OUT12/ GP1[6]/ MDIO/ TM64P1_IN12 SPI0_SCS[4]/ UART0_TXD/ GP8[3]/ MII_RXD[2] SPI0_CLK/ EPWM0A/ GP1[8]/ MII_RXCLK D C EMA_A[15]/ MMCSD0_DAT[6]/ PRU1_R30[23]/ GP5[15]/ PRU1_R31[23] EMA_A[10]/ PRU1_R30[18]/ GP5[10]/ PRU1_R31[18] EMA_A[5]/ GP5[5] EMA_A[0]/ GP5[0] EMA_BA[0]/ GP2[8] SPI0_SOMI/ EPWMSYNCI/ GP8[6]/ MII_RXER SPI0_ENA/ EPWM0B/ PRU0_R30[6]/ MII_RXDV SPI0_SIMO/ EPWMSYNCO/ GP8[5]/ MII_CRS SPI0_SCS[5]/ UART0_RXD/ GP8[4]/ MII_RXD[3] C B EMA_A[17]/ MMCSD0_DAT[4]/ PRU1_R30[25] GP4[1] EMA_A[11]/ PRU1_R30[19]/ GP5[11]/ PRU1_R31[19] EMA_A[7]/ PRU1_R30[15]/ GP5[7] EMA_A[2]/ GP5[2] EMA_OE/ GP3[10] EMA_CS[5]/ GP3[12] EMA_CS[2]/ GP3[15] EMA_WAIT[0]/ PRU0_R30[0]/ GP3[8]/ PRU0_R31[0] EMA_WAIT[1]/ PRU0_R30[1]/ GP2[1]/ PRU0_R31[1] B A EMA_A[20]/ MMCSD0_DAT[1]/ PRU1_R30[28]/ GP4[4] EMA_A[14]/ MMCSD0_DAT[7]/ PRU1_R30[22]/ GP5[14]/ PRU1_R31[22] EMA_A[8]/ PRU1_R30[16]/ GP5[8] EMA_A[4]/ GP5[4] EMA_BA[1]/ GP2[9] EMA_RAS/ PRU0_R30[3]/ GP2[5]/ PRU0_R31[3] EMA_CS[3]/ GP3[14] EMA_CS[0]/ GP2[0] VSS A 11 12 13 14 15 16 17 18 19 Figure 3-5. Pin Map (Quad C) Device Comparison Copyright © 2009–2017, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: OMAP-L138 27 OMAP-L138 SPRS586J – JUNE 2009 – REVISED JANUARY 2017 www.ti.com 1 2 3 4 5 6 7 8 9 10 J SATA_TXP SATA_TXN VP_CLKIN3/ MMCSD1_DAT[1]/ PRU1_R30[1]/ GP6[2]/ PRU1_R31[2] PRU0_R30[23]/ MMCSD1_CMD/ UPP_CHB_ENABLE/ GP8[13]/ PRU1_R31[25] DVDD3318_C CVDD VSS VSS VSS VSS J H SATA_VSS SATA_VSS VP_CLKIN2/ MMCSD1_DAT[3]/ PRU1_R30[3]/ GP6[4]/ PRU1_R31[4] MMCSD1_DAT[5]/ LCD_HSYNC/ PRU1_R30[5]/ GP8[9]/ PRU1_R31[6] DVDD3318_A CVDD CVDD VSS VSS CVDD H G PRU0_R30[25]/ MMCSD1_DAT[0]/ UPP_CHB_CLOCK/ GP8[15]/ PRU1_R31[27] PRU0_R30[24]/ MMCSD1_CLK/ UPP_CHB_START/ GP8[14]/ PRU1_R31[26] PRU0_R30[22]/ PRU1_R30[8]/ UPP_CHB_WAIT/ GP8[12]/ PRU1_R31[24] MMCSD1_DAT[4]/ LCD_VSYNC/ PRU1_R30[4]/ GP8[8]/ PRU1_R31[5] DVDD3318_A DVDD18 CVDD CVDD DVDD3318_B DVDD18 G F MMCSD1_DAT[7]/ LCD_PCLK/ PRU1_R30[7]/ GP8[11] MMCSD1_DAT[6]/ LCD_MCLK/ PRU1_R30[6]/ GP8[10]/ PRU1_R31[7] AXR0/ ECAP0_APWM0/ GP8[7]/ MII_TXD[0]/ CLKS0 RTC_ALARM/ UART2_CTS/ GP0[8]/ DEEPSLEEP DVDD3318_A DVDD3318_B DVDD3318_B DVDD3318_B EMA_CS[4]/ GP3[13] DVDD3318_B F E AXR1/ DX0/ GP1[9]/ MII_TXD[1] AXR2/ DR0/ GP1[10]/ MII_TXD[2] AXR3/ FSX0/ GP1[11]/ MII_TXD[3] AXR8/ CLKS1/ ECAP1_APWM1/ GP0[0]/ PRU0_R31[8] RVDD EMA_D[15]/ GP3[7] EMA_D[5]/ GP4[13] EMA_D[3]/ GP4[11] MMCSD0_CLK/ PRU1_R30[31]/ GP4[7] EMA_D[8]/ GP3[0] E D AXR4/ FSR0/ GP1[12]/ MII_COL AXR7/ EPWM1TZ[0]/ PRU0_R30[17] GP1[15]/ PRU0_R31[7] AXR5/ CLKX0/ GP1[13]/ MII_TXCLK AXR10/ DR1/ GP0[2] AMUTE/ PRU0_R30[16]/ UART2_RTS/ GP0[9]/ PRU0_R31[16] EMA_D[11]/ GP3[3] EMA_D[7]/ GP4[15] EMA_SDCKE/ PRU0_R30[4]/ GP2[6]/ PRU0_R31[4] EMA_D[9]/ GP3[1] EMA_A_RW/ GP3[9] D C AXR6/ CLKR0/ GP1[14]/ MII_TXEN/ PRU0_R31[6] AFSR/ GP0[13]/ PRU0_R31[20] AXR9/ DX1/ GP0[1] AXR12/ FSR1/ GP0[4] AXR11/ FSX1/ GP0[3] EMA_D[6]/ GP4[14] EMA_D[14]/ GP3[6] EMA_WEN_DQM[0]/ GP2[3] EMA_D[0]/ GP4[8] EMA_A[19]/ MMCSD0_DAT[2]/ PRU1_R30[27]/ GP4[3] C B ACLKX/ PRU0_R30[19]/ GP0[14]/ PRU0_R31[21] AFSX/ GP0[12]/ PRU0_R31[19] AXR13/ CLKX1/ GP0[5] AXR14/ CLKR1/ GP0[6] EMA_D[4]/ GP4[12] EMA_D[13]/ GP3[5] EMA_CLK/ PRU0_R30[5]/ GP2[7]/ PRU0_R31[5] EMA_D[2]/ GP4[10] EMA_WE/ GP3[11] EMA_A[21]/ MMCSD0_DAT[0]/ PRU1_R30[29]/ GP4[5] B A ACLKR/ PRU0_R30[20]/ GP0[15]/ PRU0_R31[22] AHCLKR/ PRU0_R30[18]/ UART1_RTS/ GP0[11]/ PRU0_R31[18] AHCLKX/ USB_REFCLKIN/ UART1_CTS/ GP0[10]/ PRU0_R31[17] AXR15/ EPWM0TZ[0]/ ECAP2_APWM2/ GP0[7] EMA_WEN_DQM[1]/ GP2[2] EMA_D[12]/ GP3[4] EMA_D[10]/ GP3[2] EMA_D[1]/ GP4[9] EMA_CAS/ PRU0_R30[2]/ GP2[4]/ PRU0_R31[2] EMA_A[22]/ MMCSD0_CMD/ PRU1_R30[30]/ GP4[6] A 1 2 3 4 5 6 7 8 9 10 Figure 3-6. Pin Map (Quad D) 3.7 Pin Multiplexing Control Device level pin multiplexing is controlled by registers PINMUX0 - PINMUX19 in the SYSCFG module. For the device family, pin multiplexing can be controlled on a pin-by-pin basis. Each pin that is multiplexed with several different functions has a corresponding 4-bit field in one of the PINMUX registers. Pin multiplexing selects which of several peripheral pin functions controls the pin's IO buffer output data and output enable values only. The default pin multiplexing control for almost every pin is to select 'none' of the peripheral functions in which case the pin's IO buffer is held tri-stated. Note that the input from each pin is always routed to all of the peripherals that share the pin; the PINMUX registers have no effect on input from a pin. 28 Device Comparison Copyright © 2009–2017, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: OMAP-L138 OMAP-L138 www.ti.com 3.8 SPRS586J – JUNE 2009 – REVISED JANUARY 2017 Terminal Functions Table 3-5 to Table 3-31 identify the external signal names, the associated pin/ball numbers along with the mechanical package designator, the pin type (I, O, IO, OZ, or PWR), whether the pin/ball has any internal pullup/pulldown resistors, whether the pin/ball is configurable as an IO in GPIO mode, and a functional pin description. 3.8.1 Device Reset, NMI and JTAG Table 3-5. Reset, NMI and JTAG Terminal Functions SIGNAL NAME NO. TYPE (1) PULL (2) POWER GROUP (3) DESCRIPTION RESET RESET K14 I — B Device reset input NMI IPU B Non-Maskable Interrupt CP[21] C Reset output J17 I RESETOUT / UHPI_HAS / PRU1_R30[14] / GP6[15] T17 O (4) TMS L16 I IPU B JTAG test mode select TDI M16 I IPU B JTAG test data input TDO J18 O IPU B JTAG test data output TCK J15 I IPU B JTAG test clock TRST L17 I IPD B JTAG test reset EMU0 J16 I/O IPU B Emulation pin EMU1 K16 I/O IPU B Emulation pin RTCK/ GP8[0] (5) K17 I/O IPD B General-purpose input/output JTAG (1) (2) (3) (4) (5) I = Input, O = Output, I/O = Bidirectional, Z = High impedance, PWR = Supply voltage, GND = Ground, A = Analog signal. Note: For multiplexed pins where functions have different types (ie., input versus output), the table reflects the pin function direction for that particular peripheral. IPD = Internal Pulldown resistor, IPU = Internal Pullup resistor. CP[n] = configurable pull-up/pull-down (where n is the pin group) using the PUPDENA and PUPDSEL registers in the System Module. For more detailed information on pullup/pulldown resistors and situations where external pullup/pulldown resistors are required, see the Device Configuration section. For electrical specifications on pullup and internal pulldown circuits, see the Device Operating Conditions section. This signal is part of a dual-voltage IO group (A, B or C). These groups can be operated at 3.3V or 1.8V nominal. The three groups can be operated at independent voltages but all pins withina group will operate at the same voltage. Group A operates at the voltage of power supply DVDD3318_A. Group B operates at the voltage of power supply DVDD3318_B. Group C operates at the voltage of power supply DVDD3318_C. Open drain mode for RESETOUT function. GP8[0] is initially configured as a reserved function after reset and will not be in a predictable state. This signal will only be stable after the GPIO configuration for this pin has been completed. Users should carefully consider the system implications of this pin being in an unknown state after reset. Device Comparison Copyright © 2009–2017, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: OMAP-L138 29 OMAP-L138 SPRS586J – JUNE 2009 – REVISED JANUARY 2017 3.8.2 www.ti.com High-Frequency Oscillator and PLL Table 3-6. High-Frequency Oscillator and PLL Terminal Functions SIGNAL NAME CLKOUT / UHPI_HDS2 / PRU1_R30[13] / GP6[14] NO. T18 TYPE (1) PULL (2) POWER GROUP (3) O CP[22] C DESCRIPTION PLL Observation Clock (4) 1.2-V OSCILLATOR OSCIN L19 I — — Oscillator input OSCOUT K19 O — — Oscillator output OSCVSS L18 GND — — Oscillator ground PLL0_VDDA L15 PWR — — PLL analog VDD (1.2-V filtered supply) PLL0_VSSA M17 GND — — PLL analog VSS (for filter) PLL1_VDDA N15 PWR — — PLL analog VDD (1.2-V filtered supply) PLL1_VSSA M15 GND — — PLL analog VSS (for filter) 1.2-V PLL0 1.2-V PLL1 (1) (2) (3) (4) 30 I = Input, O = Output, I/O = Bidirectional, Z = High impedance, PWR = Supply voltage, GND = Ground, A = Analog signal. Note: For multiplexed pins where functions have different types (ie., input versus output), the table reflects the pin function direction for that particular peripheral. IPD = Internal Pulldown resistor; IPU = Internal Pullup resistor; CP[n] = configurable pull-up/pull-down (where n is the pin group) using the PUPDENA and PUPDSEL registers in the System Module. For more detailed information on pullup/pulldown resistors and situations where external pullup/pulldown resistors are required, see the Device Configuration section. For electrical specifications on pullup and internal pulldown circuits, see the Device Operating Conditions section. This signal is part of a dual-voltage IO group (A, B or C). These groups can be operated at 3.3V or 1.8V nominal. The three groups can be operated at independent voltages but all pins withina group will operate at the same voltage. Group A operates at the voltage of power supply DVDD3318_A. Group B operates at the voltage of power supply DVDD3318_B. Group C operates at the voltage of power supply DVDD3318_C. Note: The CLKOUT clock output is provided as PLL observation clock, and is provided for debug purposes only. It may be routed to a test point, but should never be connected to a load. Device Comparison Copyright © 2009–2017, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: OMAP-L138 OMAP-L138 www.ti.com 3.8.3 SPRS586J – JUNE 2009 – REVISED JANUARY 2017 Real-Time Clock and 32-kHz Oscillator Table 3-7. Real-Time Clock (RTC) and 1.2-V, 32-kHz Oscillator Terminal Functions SIGNAL NAME NO. TYPE (1) PULL (2) POWER GROUP (3) DESCRIPTION RTC_XI J19 I — — RTC 32-kHz oscillator input RTC_XO H19 O — — RTC 32-kHz oscillator output RTC_ALARM / UART2_CTS / GP0[8] / DEEPSLEEP F4 O CP[0] A RTC Alarm RTC_CVDD L14 PWR — — RTC module core power (isolated from chip CVDD) RTC_Vss H18 GND — — Oscillator ground (1) (2) (3) I = Input, O = Output, I/O = Bidirectional, Z = High impedance, PWR = Supply voltage, GND = Ground, A = Analog signal. Note: For multiplexed pins where functions have different types (ie., input versus output), the table reflects the pin function direction for that particular peripheral. IPD = Internal Pulldown resistor; IPU = Internal Pullup resistor; CP[n] = configurable pull-up/pull-down (where n is the pin group) using the PUPDENA and PUPDSEL registers in the System Module. The pull-up and pull-down control of these pins is not active until the device is out of reset. During reset, all of the pins associated with these registers are pulled down. If the application requires a pull-up, an external pull-up can be used. For more detailed information on pullup/pulldown resistors and situations where external pullup/pulldown resistors are required, see the Device Configuration section. For electrical specifications on pullup and internal pulldown circuits, see the Device Operating Conditions section. This signal is part of a dual-voltage IO group (A, B or C). These groups can be operated at 3.3V or 1.8V nominal. The three groups can be operated at independent voltages but all pins withina group will operate at the same voltage. Group A operates at the voltage of power supply DVDD3318_A. Group B operates at the voltage of power supply DVDD3318_B. Group C operates at the voltage of power supply DVDD3318_C. 3.8.4 DEEPSLEEP Power Control Table 3-8. DEEPSLEEP Power Control Terminal Functions SIGNAL NAME NO. RTC_ALARM / UART2_CTS / GP0[8] / DEEPSLEEP (1) (2) (3) F4 TYPE (1) PULL (2) POWER GROUP (3) I CP[0] A DESCRIPTION DEEPSLEEP power control output I = Input, O = Output, I/O = Bidirectional, Z = High impedance, PWR = Supply voltage, GND = Ground, A = Analog signal. Note: For multiplexed pins where functions have different types (ie., input versus output), the table reflects the pin function direction for that particular peripheral. IPD = Internal Pulldown resistor; IPU = Internal Pullup resistor; CP[n] = configurable pull-up/pull-down (where n is the pin group) using the PUPDENA and PUPDSEL registers in the System Module. The pull-up and pull-down control of these pins is not active until the device is out of reset. During reset, all of the pins associated with these registers are pulled down. If the application requires a pull-up, an external pull-up can be used. For more detailed information on pullup/pulldown resistors and situations where external pullup/pulldown resistors are required, see the Device Configuration section. For electrical specifications on pullup and internal pulldown circuits, see the Device Operating Conditions section. This signal is part of a dual-voltage IO group (A, B or C). These groups can be operated at 3.3V or 1.8V nominal. The three groups can be operated at independent voltages but all pins withina group will operate at the same voltage. Group A operates at the voltage of power supply DVDD3318_A. Group B operates at the voltage of power supply DVDD3318_B. Group C operates at the voltage of power supply DVDD3318_C. Device Comparison Copyright © 2009–2017, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: OMAP-L138 31 OMAP-L138 SPRS586J – JUNE 2009 – REVISED JANUARY 2017 3.8.5 www.ti.com External Memory Interface A (EMIFA) Table 3-9. External Memory Interface A (EMIFA) Terminal Functions SIGNAL NAME NO. TYPE (1) PULL (2) POWER GROUP (3) EMA_D[15] / GP3[7] E6 I/O CP[17] B EMA_D[14] / GP3[6] C7 I/O CP[17] B EMA_D[13] / GP3[5] B6 I/O CP[17] B EMA_D[12] / GP3[4] A6 I/O CP[17] B EMA_D[11] / GP3[3] D6 I/O CP[17] B EMA_D[10] / GP3[2] A7 I/O CP[17] B EMA_D[9] / GP3[1] D9 I/O CP[17] B EMA_D[8] / GP3[0] E10 I/O CP[17] B EMA_D[7] / GP4[15] D7 I/O CP[17] B EMA_D[6] / GP4[14] C6 I/O CP[17] B EMA_D[5] / GP4[13] E7 I/O CP[17] B EMA_D[4] / GP4[12] B5 I/O CP[17] B EMA_D[3] / GP4[11] E8 I/O CP[17] B EMA_D[2] / GP4[10] B8 I/O CP[17] B EMA_D[1] / GP4[9] A8 I/O CP[17] B EMA_D[0] / GP4[8] C9 I/O CP[17] B (1) (2) (3) 32 DESCRIPTION EMIFA data bus I = Input, O = Output, I/O = Bidirectional, Z = High impedance, PWR = Supply voltage, GND = Ground, A = Analog signal. Note: The pin type shown refers to the input, output or high-impedance state of the pin function when configured as the signal name highlighted in bold. All multiplexed signals may enter a high-impedance state when the configured function is input-only or the configured function supports high-Z operation. All GPIO signals can be used as input or output. For multiplexed pins where functions have different types (ie., input versus output), the table reflects the pin function direction for that particular peripheral. IPD = Internal Pulldown resistor; IPU = Internal Pullup resistor; CP[n] = configurable pull-up/pull-down (where n is the pin group) using the PUPDENA and PUPDSEL registers in the System Module. The pull-up and pull-down control of these pins is not active until the device is out of reset. During reset, all of the pins associated with these registers are pulled down. If the application requires a pull-up, an external pull-up can be used. For more detailed information on pullup/pulldown resistors and situations where external pullup/pulldown resistors are required, see the Device Configuration section. For electrical specifications on pullup and internal pulldown circuits, see the Device Operating Conditions section. This signal is part of a dual-voltage IO group (A, B or C). These groups can be operated at 3.3V or 1.8V nominal. The three groups can be operated at independent voltages but all pins withina group will operate at the same voltage. Group A operates at the voltage of power supply DVDD3318_A. Group B operates at the voltage of power supply DVDD3318_B. Group C operates at the voltage of power supply DVDD3318_C. Device Comparison Copyright © 2009–2017, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: OMAP-L138 OMAP-L138 www.ti.com SPRS586J – JUNE 2009 – REVISED JANUARY 2017 Table 3-9. External Memory Interface A (EMIFA) Terminal Functions (continued) SIGNAL NAME NO. TYPE (1) PULL (2) POWER GROUP (3) DESCRIPTION EMA_A[22] / MMCSD0_CMD / PRU1_R30[30] / GP4[6] A10 O CP[18] B EMA_A[21] / MMCSD0_DAT[0] / PRU1_R30[29] / GP4[5] B10 O CP[18] B EMA_A[20] / MMCSD0_DAT[1] / PRU1_R30[28] / GP4[4] A11 O CP[18] B EMA_A[19] / MMCSD0_DAT[2] / PRU1_R30[27] / GP4[3] C10 O CP[18] B EMA_A[18] / MMCSD0_DAT[3] / PRU1_R30[26] / GP4[2] E11 O CP[18] B EMA_A[17] / MMCSD0_DAT[4] / PRU1_R30[25] / GP4[1] B11 O CP[18] B EMA_A[16] / MMCSD0_DAT[5] / PRU1_R30[24] / GP4[0] E12 O CP[18] B EMA_A[15] / MMCSD0_DAT[6] / PRU1_R30[23] / GP5[15] / PRU1_R31[23] C11 O CP[19] B EMA_A[14] / MMCSD0_DAT[7] / PRU1_R30[22] / GP5[14] / PRU1_R31[22] A12 O CP[19] B EMA_A[13] / PRU0_R30[21] / PRU1_R30[21] D11 / GP5[13] / PRU1_R31[21] O CP[19] B EMA_A[12] / PRU1_R30[20] / GP5[12] / PRU1_R31[20] D13 O CP[19] B EMA_A[11] / PRU1_R30[19] / GP5[11] / PRU1_R31[19] B12 O CP[19] B EMA_A[10] / PRU1_R30[18] / GP5[10] / PRU1_R31[18] C12 O CP[19] B EMA_A[9] / PRU1_R30[17] / GP5[9] D12 O CP[19] B EMA_A[8] / PRU1_R30[16] / GP5[8] A13 O CP[19] B EMA_A[7] / PRU1_R30[15] / GP5[7] B13 O CP[20] B EMA_A[6] / GP5[6] E13 O CP[20] B EMA_A[5] / GP5[5] C13 O CP[20] B EMA_A[4] / GP5[4] A14 O CP[20] B EMA_A[3] / GP5[3] D14 O CP[20] B EMA_A[2] / GP5[2] B14 O CP[20] B EMA_A[1] / GP5[1] D15 O CP[20] B EMA_A[0] / GP5[0] C14 O CP[20] B EMA_BA[0] / GP2[8] C15 O CP[16] B EMA_BA[1] / GP2[9] A15 O CP[16] B EMA_CLK / PRU0_R30[5] / GP2[7] / PRU0_R31[5] B7 O CP[16] B EMIFA clock EMA_SDCKE / PRU0_R30[4] / GP2[6] / PRU0_R31[4] D8 O CP[16] B EMIFA SDRAM clock enable EMA_RAS / PRU0_R30[3] / GP2[5] / PRU0_R31[3] A16 O CP[16] B EMIFA SDRAM row address strobe EMA_CAS / PRU0_R30[2] / GP2[4] / PRU0_R31[2] A9 O CP[16] B EMIFA SDRAM column address strobe EMA_CS[0] / GP2[0] A18 O CP[16] B EMIFA SDRAM Chip Select EMA_CS[2] / GP3[15] B17 O CP[16] B EMA_CS[3] / GP3[14] A17 O CP[16] B EMA_CS[4] / GP3[13] F9 O CP[16] B EMA_CS[5] / GP3[12] B16 O CP[16] B EMA_A_RW / GP3[9] D10 O CP[16] B EMIFA address bus EMIFA address bus EMIFA bank address EMIFA Async chip select EMIFA Async Read/Write control Device Comparison Copyright © 2009–2017, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: OMAP-L138 33 OMAP-L138 SPRS586J – JUNE 2009 – REVISED JANUARY 2017 www.ti.com Table 3-9. External Memory Interface A (EMIFA) Terminal Functions (continued) SIGNAL NAME NO. TYPE (1) PULL (2) POWER GROUP (3) DESCRIPTION EMA_WE / GP3[11] B9 O CP[16] B EMIFA SDRAM write enable EMA_WEN_DQM[1] / GP2[2] A5 O CP[16] B EMIFA write enable/data mask for EMA_D[15:8] EMA_WEN_DQM[0] / GP2[3] C8 O CP[16] B EMIFA write enable/data mask for EMA_D[7:0] EMA_OE / GP3[10] B15 O CP[16] B EMIFA output enable EMA_WAIT[0] / PRU0_R30[0] / GP3[8] / PRU0_R31[0] B18 I CP[16] B EMA_WAIT[1] / PRU0_R30[1] / GP2[1] / PRU0_R31[1] B19 I CP[16] B 34 EMIFA wait input/interrupt Device Comparison Copyright © 2009–2017, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: OMAP-L138 OMAP-L138 www.ti.com 3.8.6 SPRS586J – JUNE 2009 – REVISED JANUARY 2017 DDR2/mDDR Controller Table 3-10. DDR2/mDDR Terminal Functions SIGNAL NAME NO. TYPE (1) PULL (2) DESCRIPTION DDR_D[15] W10 I/O IPD DDR_D[14] U11 I/O IPD DDR_D[13] V10 I/O IPD DDR_D[12] U10 I/O IPD DDR_D[11] T12 I/O IPD DDR_D[10] T10 I/O IPD DDR_D[9] T11 I/O IPD DDR_D[8] T13 I/O IPD DDR_D[7] W11 I/O IPD DDR_D[6] W12 I/O IPD DDR_D[5] V12 I/O IPD DDR_D[4] V13 I/O IPD DDR_D[3] U13 I/O IPD DDR_D[2] V14 I/O IPD DDR_D[1] U14 I/O IPD DDR_D[0] U15 I/O IPD DDR_A[13] T5 O IPD DDR_A[12] V4 O IPD DDR_A[11] T4 O IPD DDR_A[10] W4 O IPD DDR_A[9] T6 O IPD DDR_A[8] U4 O IPD DDR_A[7] U6 O IPD DDR_A[6] W5 O IPD DDR_A[5] V5 O IPD DDR_A[4] U5 O IPD DDR_A[3] V6 O IPD DDR_A[2] W6 O IPD DDR_A[1] T7 O IPD DDR_A[0] U7 O IPD DDR_CLKP W8 O IPD DDR2 clock (positive) DDR_CLKN W7 O IPD DDR2 clock (negative) DDR_CKE V7 O IPD DDR2 clock enable DDR_WE T8 O IPD DDR2 write enable DDR_RAS W9 O IPD DDR2 row address strobe DDR_CAS U9 O IPD DDR2 column address strobe DDR_CS V9 O IPD DDR2 chip select (1) (2) DDR2 SDRAM data bus DDR2 row/column address I = Input, O = Output, I/O = Bidirectional, Z = High impedance, PWR = Supply voltage, GND = Ground, A = Analog signal. Note: The pin type shown refers to the input, output or high-impedance state of the pin function when configured as the signal name highlighted in bold. All multiplexed signals may enter a high-impedance state when the configured function is input-only or the configured function supports high-Z operation. All GPIO signals can be used as input or output. For multiplexed pins where functions have different types (ie., input versus output), the table reflects the pin function direction for that particular peripheral. IPD = Internal Pulldown resistor; IPU = Internal Pullup resistor; CP[n] = configurable pull-up/pull-down (where n is the pin group) using the PUPDENA and PUPDSEL registers in the System Module. For more detailed information on pullup/pulldown resistors and situations where external pullup/pulldown resistors are required, see the Device Configuration section. For electrical specifications on pullup and internal pulldown circuits, see the Device Operating Conditions section. Device Comparison Copyright © 2009–2017, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: OMAP-L138 35 OMAP-L138 SPRS586J – JUNE 2009 – REVISED JANUARY 2017 www.ti.com Table 3-10. DDR2/mDDR Terminal Functions (continued) SIGNAL NAME NO. TYPE (1) PULL (2) DESCRIPTION DDR_DQM[0] W13 O IPD DDR_DQM[1] R10 O IPD DDR_DQS[0] T14 I/O IPD DDR_DQS[1] V11 I/O IPD DDR_BA[2] U8 O IPD DDR_BA[1] T9 O IPD DDR_BA[0] V8 O IPD DDR_DQGATE0 R11 O IPD DDR2 loopback signal for external DQS gating. Route to DDR and back to DDR_DQGATE1 with same constraints as used for DDR clock and data. DDR_DQGATE1 R12 I IPD DDR2 loopback signal for external DQS gating. Route to DDR and back to DDR_DQGATE0 with same constraints as used for DDR clock and data. DDR_ZP U12 O — DDR2 reference output for drive strength calibration of N and P channel outputs. Tie to ground via 50 ohm resistor @ 5% tolerance. DDR_VREF R6 I — DDR voltage input for the DDR2/mDDR I/O buffers. Note even in the case of mDDR an external resistor divider connected to this pin is necessary. N6, N9, N10, P7, P8, P9, P10, R7, R8, R9 PWR — DDR PHY 1.8V power supply pins DDR_DVDD18 36 Device Comparison DDR2 data mask outputs DDR2 data strobe inputs/outputs DDR2 SDRAM bank address Copyright © 2009–2017, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: OMAP-L138 OMAP-L138 www.ti.com 3.8.7 SPRS586J – JUNE 2009 – REVISED JANUARY 2017 Serial Peripheral Interface Modules (SPI) Table 3-11. Serial Peripheral Interface (SPI) Terminal Functions SIGNAL NAME NO. TYPE (1) PULL (2) POWER GROUP (3) DESCRIPTION SPI0 SPI0_CLK / EPWM0A / GP1[8] / MII_RXCLK D19 I/O CP[7] A SPI0 clock SPI0_ENA / EPWM0B / PRU0_R30[6] / MII_RXDV C17 I/O CP[7] A SPI0 enable SPI0_SCS[0] / TM64P1_OUT12 / GP1[6] / MDIO / TM64P1_IN12 D17 I/O CP[10] A SPI0_SCS[1] / TM64P0_OUT12 / GP1[7] / MDCLK / TM64P0_IN12 E16 I/O CP[10] A SPI0_SCS[2] / UART0_RTS / GP8[1] / MII_RXD[0] /SATA_CP_DET D16 I/O CP[9] A SPI0_SCS[3] / UART0_CTS / GP8[2] / MII_RXD[1] / SATA_MP_SWITCH E17 I/O CP[9] A SPI0_SCS[4] / UART0_TXD / GP8[3] / MII_RXD[2] D18 I/O CP[8] A SPI0_SCS[5] / UART0_RXD / GP8[4] / MII_RXD[3] C19 I/O CP[8] A SPI0_SIMO / EPWMSYNCO / GP8[5] / MII_CRS C18 I/O CP[7] A SPI0 data slave-inmaster-out SPI0_SOMI / EPWMSYNCI / GP8[6] / MII_RXER C16 I/O CP[7] A SPI0 data slave-outmaster-in SPI0 chip selects SPI1 SPI1_CLK / GP2[13] G19 I/O CP[15] A SPI1 clock SPI1_ENA / GP2[12] H16 I/O CP[15] A SPI1 enable SPI1_SCS[0] / EPWM1B / PRU0_R30[7] / GP2[14] / TM64P3_IN12 E19 I/O CP[14] A SPI1_SCS[1] / EPWM1A / PRU0_R30[8] / GP2[15] / TM64P2_IN12 F18 I/O CP[14] A SPI1_SCS[2] / UART1_TXD / SATA_CP_POD / GP1[0] F19 I/O CP[13] A SPI1_SCS[3] / UART1_RXD / SATA_LED / GP1[1] E18 I/O CP[13] A SPI1_SCS[4] / UART2_TXD / I2C1_SDA / GP1[2] F16 I/O CP[12] A SPI1_SCS[5] / UART2_RXD / I2C1_SCL / GP1[3] F17 I/O CP[12] A SPI1_SCS[6] / I2C0_SDA / TM64P3_OUT12 / GP1[4] G18 I/O CP[11] A SPI1_SCS[7] / I2C0_SCL / TM64P2_OUT12 / GP1[5] G16 I/O CP[11] A SPI1_SIMO / GP2[10] G17 I/O CP[15] A SPI1 data slave-inmaster-out SPI1_SOMI / GP2[11] H17 I/O CP[15] A SPI1 data slave-outmaster-in (1) (2) (3) SPI1 chip selects I = Input, O = Output, I/O = Bidirectional, Z = High impedance, PWR = Supply voltage, GND = Ground, A = Analog signal. Note: The pin type shown refers to the input, output or high-impedance state of the pin function when configured as the signal name highlighted in bold. All multiplexed signals may enter a high-impedance state when the configured function is input-only or the configured function supports high-Z operation. All GPIO signals can be used as input or output. For multiplexed pins where functions have different types (ie., input versus output), the table reflects the pin function direction for that particular peripheral. IPD = Internal Pulldown resistor; IPU = Internal Pullup resistor; CP[n] = configurable pull-up/pull-down (where n is the pin group) using the PUPDENA and PUPDSEL registers in the System Module. The pull-up and pull-down control of these pins is not active until the device is out of reset. During reset, all of the pins associated with these registers are pulled down. If the application requires a pull-up, an external pull-up can be used. For more detailed information on pullup/pulldown resistors and situations where external pullup/pulldown resistors are required, see the Device Configuration section. For electrical specifications on pullup and internal pulldown circuits, see the Device Operating Conditions section. This signal is part of a dual-voltage IO group (A, B or C). These groups can be operated at 3.3V or 1.8V nominal. The three groups can be operated at independent voltages but all pins withina group will operate at the same voltage. Group A operates at the voltage of power supply DVDD3318_A. Group B operates at the voltage of power supply DVDD3318_B. Group C operates at the voltage of power supply DVDD3318_C. Device Comparison Copyright © 2009–2017, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: OMAP-L138 37 OMAP-L138 SPRS586J – JUNE 2009 – REVISED JANUARY 2017 3.8.8 www.ti.com Programmable Real-Time Unit (PRU) Table 3-12. Programmable Real-Time Unit (PRU) Terminal Functions SIGNAL NAME NO. TYPE (1) PULL (2) POWER GROUP (3) PRU0_R30[31] / UHPI_HRDY / PRU1_R30[12] / GP6[13] R17 O CP[23] C PRU0_R30[30] / UHPI_HINT / PRU1_R30[11] / GP6[12] R16 O CP[23] C PRU0_R30[29]/ UHPI_HCNTL0 / UPP_CHA_CLOCK / GP6[11] U17 O CP[24] C PRU0_R30[28] / UHPI_HCNTL1 / UPP_CHA_START / GP6[10] W15 O CP[24] C PRU0_R30[27] / UHPI_HHWIL / UPP_CHA_ENABLE / GP6[9] U16 O CP[24] C PRU0_R30[26] / UHPI_HRW / UPP_CHA_WAIT / GP6[8] / PRU1_R31[17] T15 O CP[24] C PRU0_R30[25] / MMCSD1_DAT[0] / UPP_CHB_CLOCK / GP8[15] / PRU1_R31[27] G1 O CP30] C PRU0_R30[24] / MMCSD1_CLK / UPP_CHB_START / GP8[14] / PRU1_R31[26] G2 O CP[30] C PRU0_R30[23] / MMCSD1_CMD / UPP_CHB_ENABLE / GP8[13] / PRU1_R31[25] J4 O CP[30] C PRU0_R30[22] / PRU1_R30[8] / UPP_CHB_WAIT / GP8[12] / PRU1_R31[24] G3 O CP[30] C EMA_A[13] / PRU0_R30[21] / PRU1_R30[21] / GP5[13] / PRU1_R31[21] D11 O CP[19] B ACLKR / PRU0_R30[20] / GP0[15] / PRU0_R31[22] A1 O CP[0] A ACLKX / PRU0_R30[19] / GP0[14] / PRU0_R31[21] B1 O CP[0] A AHCLKR / PRU0_R30[18] / UART1_RTS / GP0[11] / PRU0_R31[18] A2 O CP[0] A AXR7 / EPWM1TZ[0] / PRU0_R30[17] / GP1[15] / PRU0_R31[7] D2 O CP[4] A (1) (2) (3) 38 DESCRIPTION PRU0 Output Signals I = Input, O = Output, I/O = Bidirectional, Z = High impedance, PWR = Supply voltage, GND = Ground, A = Analog signal. Note: The pin type shown refers to the input, output or high-impedance state of the pin function when configured as the signal name highlighted in bold. All multiplexed signals may enter a high-impedance state when the configured function is input-only or the configured function supports high-Z operation. All GPIO signals can be used as input or output. For multiplexed pins where functions have different types (ie., input versus output), the table reflects the pin function direction for that particular peripheral. IPD = Internal Pulldown resistor; IPU = Internal Pullup resistor; CP[n] = configurable pull-up/pull-down (where n is the pin group) using the PUPDENA and PUPDSEL registers in the System Module. The pull-up and pull-down control of these pins is not active until the device is out of reset. During reset, all of the pins associated with these registers are pulled down. If the application requires a pull-up, an external pull-up can be used. For more detailed information on pullup/pulldown resistors and situations where external pullup/pulldown resistors are required, see the Device Configuration section. For electrical specifications on pullup and internal pulldown circuits, see the Device Operating Conditions section. This signal is part of a dual-voltage IO group (A, B or C). These groups can be operated at 3.3V or 1.8V nominal. The three groups can be operated at independent voltages but all pins withina group will operate at the same voltage. Group A operates at the voltage of power supply DVDD3318_A. Group B operates at the voltage of power supply DVDD3318_B. Group C operates at the voltage of power supply DVDD3318_C. Device Comparison Copyright © 2009–2017, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: OMAP-L138 OMAP-L138 www.ti.com SPRS586J – JUNE 2009 – REVISED JANUARY 2017 Table 3-12. Programmable Real-Time Unit (PRU) Terminal Functions (continued) SIGNAL NAME NO. TYPE (1) PULL (2) POWER GROUP (3) AMUTE / PRU0_R30[16] / UART2_RTS / GP0[9] / PRU0_R31[16] D5 O CP[0] A VP_DIN[15]_VSYNC / UHPI_HD[7] / UPP_D[7] / PRU0_R30[15] / PRU0_R31[15] V18 O CP[27] C VP_DIN[14]_HSYNC / UHPI_HD[6] / UPP_D[6] / PRU0_R30[14] / PRU0_R31[14] V19 O CP[27] C VP_DIN[13]_FIELD / UHPI_HD[5] / UPP_D[5] / PRU0_R30[13] / PRU0_R31[13] U19 O CP[27] C VP_DIN[12] / UHPI_HD[4] / UPP_D[4] / PRU0_R30[12] / PRU0_R31[12] T16 O CP[27] C VP_DIN[11] / UHPI_HD[3] / UPP_D[3] / PRU0_R30[11] / PRU0_R31[11] R18 O CP[27] C VP_DIN[10] / UHPI_HD[2] / UPP_D[2] / PRU0_R30[10] / PRU0_R31[10] R19 O CP[27] C VP_DIN[9] / UHPI_HD[1] / UPP_D[1] / PRU0_R30[9] / PRU0_R31[9] R15 O CP[27] C SPI1_SCS[1] / EPWM1A / PRU0_R30[8] / GP2[15] / TM64P2_IN12 F18 O CP[14] A SPI1_SCS[0] / EPWM1B / PRU0_R30[7] / GP2[14] / TM64P3_IN12 E19 O CP[14] A SPI0_ENA / EPWM0B / PRU0_R30[6] / MII_RXDV C17 O CP[7] A EMA_CLK / PRU0_R30[5] / GP2[7] / PRU0_R31[5] B7 O CP[16] B EMA_SDCKE / PRU0_R30[4] / GP2[6] / PRU0_R31[4] D8 O CP[16] B EMA_RAS / PRU0_R30[3] / GP2[5] / PRU0_R31[3] A16 O CP[16] B EMA_CAS / PRU0_R30[2] / GP2[4] / PRU0_R31[2] A9 O CP[16] B EMA_WAIT[1] / PRU0_R30[1] / GP2[1] / PRU0_R31[1] B19 O CP[16] B EMA_WAIT[0] / PRU0_R30[0] / GP3[8] / PRU0_R31[0] B18 O CP[16] B DESCRIPTION PRU0 Output Signals Device Comparison Copyright © 2009–2017, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: OMAP-L138 39 OMAP-L138 SPRS586J – JUNE 2009 – REVISED JANUARY 2017 www.ti.com Table 3-12. Programmable Real-Time Unit (PRU) Terminal Functions (continued) SIGNAL NAME NO. TYPE (1) PULL (2) POWER GROUP (3) VP_DIN[7] / UHPI_HD[15] / UPP_D[15] / RMII_TXD[1] / PRU0_R31[29] U18 I CP[26] C VP_DIN[6] / UHPI_HD[14] / UPP_D[14] / RMII_TXD[0] / PRU0_R31[28] V16 I CP[26] C VP_DIN[5] / UHPI_HD[13] / UPP_D[13] / RMII_TXEN / PRU0_R31[27] R14 I CP[26] C VP_DIN[4] / UHPI_HD[11] / UPP_D[12] / RMII_RXD[1] / PRU0_R31[26] W16 I CP[26] C VP_DIN[3] / UHPI_HD[11] / UPP_D[11] / RMII_RXD[0] / PRU0_R31[25] V17 I CP[26] C VP_DIN[2] / UHPI_HD[10] / UPP_D[10] / RMII_RXER / PRU0_R31[24] W17 I CP[26] C VP_DIN[1] / UHPI_HD[9] / UPP_D[9] / RMII_MHZ_50_CLK / PRU0_R31[23] W18 I CP[26] C ACLKR / PRU0_R30[20] / GP0[15] / PRU0_R31[22] A1 I CP[0] A ACLKX / PRU0_R30[19] / GP0[14] / PRU0_R31[21] B1 I CP[0] A AFSR / GP0[13] / PRU0_R31[20] C2 I CP[0] A AFSX / GP0[12] / PRU0_R31[19] B2 I CP[0] A AHCLKR / PRU0_R30[18] / UART1_RTS / GP0[11] / PRU0_R31[18] A2 I CP[0] A AHCLKX / USB_REFCLKIN / UART1_CTS / GP0[10] / PRU0_R31[17] A3 I CP[0] A AMUTE / PRU0_R30[16] / UART2_RTS / GP0[9] / PRU0_R31[16] D5 I CP[0] A VP_DIN[15]_VSYNC / UHPI_HD[7] / UPP_D[7] / PRU0_R30[15] / PRU0_R31[15] V18 I CP[27] C VP_DIN[14]_HSYNC / UHPI_HD[6] / UPP_D[6] / PRU0_R30[14] / PRU0_R31[14] V19 I CP[27] C VP_DIN[13]_FIELD / UHPI_HD[5] / UPP_D[5] / PRU0_R30[13] / PRU0_R31[13] U19 I CP[27] C VP_DIN[12] / UHPI_HD[4] / UPP_D[4] / PRU0_R30[12] / PRU0_R31[12] T16 I CP[27] C VP_DIN[11] / UHPI_HD[3] / UPP_D[3] / PRU0_R30[11] / PRU0_R31[11] R18 I CP[27] C VP_DIN[10] / UHPI_HD[2] / UPP_D[2] / PRU0_R30[10] / PRU0_R31[10] R19 I CP[27] C VP_DIN[9] / UHPI_HD[1] / UPP_D[1] / PRU0_R30[9] / PRU0_R31[9] R15 I CP[27] C AXR8 / CLKS1 / ECAP1_APWM1 / GP0[0] / PRU0_R31[8] E4 I CP[3] A AXR7 / EPWM1TZ[0] / PRU0_R30[17] / GP1[15] / PRU0_R31[7] D2 I CP[4] A AXR6 / CLKR0 / GP1[14] / MII_TXEN / PRU0_R31[6] C1 I CP[5] A EMA_CLK / PRU0_R30[5] / GP2[7] / PRU0_R31[5] B7 I CP[16] B EMA_SDCKE / PRU0_R30[4] / GP2[6] / PRU0_R31[4] D8 I CP[16] B EMA_RAS / PRU0_R30[3] / GP2[5] / PRU0_R31[3] A16 I CP[16] B EMA_CAS / PRU0_R30[2] / GP2[4] / PRU0_R31[2] A9 I CP[16] B EMA_WAIT[1] / PRU0_R30[1] / GP2[1] / PRU0_R31[1] B19 I CP[16] B EMA_WAIT[0] / PRU0_R30[0] / GP3[8] / PRU0_R31[0] B18 I CP[16] B 40 Device Comparison DESCRIPTION PRU0 Input Signals Copyright © 2009–2017, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: OMAP-L138 OMAP-L138 www.ti.com SPRS586J – JUNE 2009 – REVISED JANUARY 2017 Table 3-12. Programmable Real-Time Unit (PRU) Terminal Functions (continued) SIGNAL NAME NO. TYPE (1) PULL (2) POWER GROUP (3) MMCSD0_CLK / PRU1_R30[31] /GP4[7] E9 O CP[18] B EMA_A[22] / MMCSD0_CMD / PRU1_R30[30] / GP4[6] A10 O CP[18] B EMA_A[21] / MMCSD0_DAT[0] / PRU1_R30[29] / GP4[5] B10 O CP[18] B EMA_A[20] / MMCSD0_DAT[1] / PRU1_R30[28] / GP4[4] A11 O CP[18] B EMA_A[19] / MMCSD0_DAT[2] / PRU1_R30[27] / GP4[3] C10 O CP[18] B EMA_A[18] / MMCSD0_DAT[3] / PRU1_R30[26] / GP4[2] E11 O CP[18] B EMA_A[17] / MMCSD0_DAT[4] / PRU1_R30[25] / GP4[1] B11 O CP[18] B EMA_A[16] / MMCSD0_DAT[5] / PRU1_R30[24] / GP4[0] E12 O CP[18] B EMA_A[15] / MMCSD0_DAT[6] / PRU1_R30[23] / GP5[15] / PRU1_R31[23] C11 O CP[19] B EMA_A[14] / MMCSD0_DAT[7] / PRU1_R30[22] / GP5[14] / PRU1_R31[22] A12 O CP[19] B EMA_A[13] / PRU0_R30[21] / PRU1_R30[21] / GP5[13] / PRU1_R31[21] D11 O CP[19] B EMA_A[12] / PRU1_R30[20] / GP5[12] / PRU1_R31[20] D13 O CP[19] B EMA_A[11] / PRU1_R30[19] / GP5[11] / PRU1_R31[19] B12 O CP[19] B EMA_A[10] / PRU1_R30[18] / GP5[10] / PRU1_R31[18] C12 O CP[19] B EMA_A[9] / PRU1_R30[17] / GP5[9] D12 O CP[19] B EMA_A[8] / PRU1_R30[16] / GP5[8] A13 O CP[19] B EMA_A[7] / PRU1_R30[15] / GP5[7] B13 O CP[20] B RESETOUT / UHPI_HAS / PRU1_R30[14] / GP6[15] T17 O CP[21] C CLKOUT / UHPI_HDS2 / PRU1_R30[13] / GP6[14] T18 O CP[22] C PRU0_R30[31] / UHPI_HRDY / PRU1_R30[12] / GP6[13] R17 O CP[23] C PRU0_R30[30] / UHPI_HINT / PRU1_R30[11] / GP6[12] R16 O CP[23] C VP_CLKIN0 / UHPI_HCS / PRU1_R30[10] / GP6[7] / UPP_2xTXCLK W14 O CP[25] C VP_CLKIN1 / UHPI_HDS1 / PRU1_R30[9] / GP6[6] / PRU1_R31[16] V15 O CP[25] C PRU0_R30[22] / PRU1_R30[8] / UPP_CHB_WAIT / GP8[12] / PRU1_R31[24] G3 O CP[30] C MMCSD1_DAT[7] / LCD_PCLK / PRU1_R30[7] / GP8[11] F1 O CP[31] C MMCSD1_DAT[6] / LCD_MCLK / PRU1_R30[6] / GP8[10] / PRU1_R31[7] F2 O CP[31] C MMCSD1_DAT[5] / LCD_HSYNC / PRU1_R30[5] / GP8[9] / PRU1_R31[6] H4 O CP[31] C MMCSD1_DAT[4] / LCD_VSYNC / PRU1_R30[4] / GP8[8] / PRU1_R31[5] G4 O CP[31] C VP_CLKIN2 / MMCSD1_DAT[3] / PRU1_R30[3] / GP6[4] / PRU1_R31[4] H3 O CP[30] C VP_CLKOUT2 / MMCSD1_DAT[2] / PRU1_R30[2] / GP6[3] / PRU1_R31[3] K3 O CP[30] C VP_CLKIN3 / MMCSD1_DAT[1] / PRU1_R30[1] / GP6[2] / PRU1_R31[2] J3 O CP[30] C VP_CLKOUT3 / PRU1_R30[0] / GP6[1] / PRU1_R31[1] K4 O CP[30] C DESCRIPTION PRU1 Output Signals Device Comparison Copyright © 2009–2017, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: OMAP-L138 41 OMAP-L138 SPRS586J – JUNE 2009 – REVISED JANUARY 2017 www.ti.com Table 3-12. Programmable Real-Time Unit (PRU) Terminal Functions (continued) SIGNAL NAME NO. VP_DIN[0] / UHPI_HD[8] / UPP_D[8] / RMII_CRS_DV / PRU1_R31[29] TYPE (1) PULL (2) POWER GROUP (3) W19 I CP[26] C LCD_AC_ENB_CS / GP6[0] / PRU1_R31[28] R5 I CP[31] C PRU0_R30[25] / MMCSD1_DAT[0] / UPP_CHB_CLOCK / GP8[15] / PRU1_R31[27] G1 I CP[30] C PRU0_R30[24] / MMCSD1_CLK / UPP_CHB_START / GP8[14] / PRU1_R31[26] G2 I CP[30] C PRU0_R30[23] / MMCSD1_CMD / UPP_CHB_ENABLE / GP8[13] / PRU1_R31[25] J4 I CP[30] C PRU0_R30[22] / PRU1_R30[8] / UPP_CHB_WAIT / GP8[12] / PRU1_R31[24] G3 I CP[30] C EMA_A[15]/MMCSD0_DAT[6]/PRU1_R30[23]/GP5[15]/PRU1_R31[23] C11 I CP[19] B EMA_A[14]/MMCSD0_DAT[7]/PRU1_R30[22]/GP5[14]/PRU1_R31[22] A12 I CP[19] B EMA_A[13]/PRU0_R30[21]/PRU1_R30[21]/GP5[13]/PRU1_R31[21] D11 I CP[19] B EMA_A[12]/PRU1_R30[20]/GP5[12]/PRU1_R31[20] D13 I CP[19] B EMA_A[11]/PRU1_R30[19]/GP5[11]/PRU1_R31[19] B12 I CP[19] B EMA_A[10]/PRU1_R30[18]/GP5[10]/PRU1_R31[18] C12 I CP[19] B PRU0_R30[26] / UHPI_HRW / UPP_CHA_WAIT / GP6[8] / PRU1_R31[17] T15 I CP[24] C VP_CLKIN1 / UHPI_HDS1 / PRU1_R30[9] / GP6[6] / PRU1_R31[16] V15 I CP[25] C VP_DOUT[7] / LCD_D[7] / UPP_XD[15] / GP7[15] / PRU1_R31[15] U2 I CP[28] C VP_DOUT[6] / LCD_D[6] / UPP_XD[14] / GP7[14] / PRU1_R31[14] U1 I CP[28] C VP_DOUT[5] / LCD_D[5] / UPP_XD[13] / GP7[13] / PRU1_R31[13] V3 I CP[28] C VP_DOUT[4] / LCD_D[4] / UPP_XD[12] / GP7[12] / PRU1_R31[12] V2 I CP[28] C VP_DOUT[3] / LCD_D[3] / UPP_XD[11] / GP7[11] / PRU1_R31[11] V1 I CP[28] C VP_DOUT[2] / LCD_D[2] / UPP_XD[10] / GP7[10] / PRU1_R31[10] W3 I CP[28] C VP_DOUT[1] / LCD_D[1] / UPP_XD[9] / GP7[9] / PRU1_R31[9] W2 I CP[28] C VP_DOUT[0] / LCD_D[0] / UPP_XD[8] / GP7[8] / PRU1_R31[8] W1 I CP[28] C MMCSD1_DAT[6] / LCD_MCLK / PRU1_R30[6] / GP8[10] / PRU1_R31[7] F2 I CP[31] C MMCSD1_DAT[5] / LCD_HSYNC / PRU1_R30[5] / GP8[9] / PRU1_R31[6] H4 I CP[31] C MMCSD1_DAT[4] / LCD_VSYNC / PRU1_R30[4] / GP8[8] / PRU1_R31[5] G4 I CP[31] C VP_CLKIN2 / MMCSD1_DAT[3] / PRU1_R30[3] / GP6[4] / PRU1_R31[4] H3 I CP[30] C VP_CLKOUT2 / MMCSD1_DAT[2] / PRU1_R30[2] / GP6[3] / PRU1_R31[3] K3 I CP[30] C VP_CLKIN3 / MMCSD1_DAT[1] / PRU1_R30[1] / GP6[2] / PRU1_R31[2] J3 I CP[30] C VP_CLKOUT3 / PRU1_R30[0] / GP6[1] / PRU1_R31[1] K4 I CP[30] C VP_DIN[8] / UHPI_HD[0] / UPP_D[0] / GP6[5] / PRU1_R31[0] P17 I CP[27] C 42 Device Comparison DESCRIPTION PRU1 Input Signals Copyright © 2009–2017, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: OMAP-L138 OMAP-L138 www.ti.com 3.8.9 SPRS586J – JUNE 2009 – REVISED JANUARY 2017 Enhanced Capture/Auxiliary PWM Modules (eCAP0) The eCAP Module pins function as either input captures or auxiliary PWM 32-bit outputs, depending upon how the eCAP module is programmed. Table 3-13. Enhanced Capture Module (eCAP) Terminal Functions SIGNAL NAME NO. TYPE (1) PULL (2) POWER GROUP (3) CP[6] A enhanced capture 0 input or auxiliary PWM 0 output CP[3] A enhanced capture 1 input or auxiliary PWM 1 output CP[1] A enhanced capture 2 input or auxiliary PWM 2 output DESCRIPTION eCAP0 AXR0 / ECAP0_APWM0 / GP8[7] / MII_TXD[0] / CLKS0 F3 I/O eCAP1 AXR8 / CLKS1 / ECAP1_APWM1 / GP0[0] / PRU0_R31[8] E4 I/O eCAP2 AXR15 / EPWM0TZ[0] / ECAP2_APWM2 / GP0[7] (1) (2) (3) A4 I/O I = Input, O = Output, I/O = Bidirectional, Z = High impedance, PWR = Supply voltage, GND = Ground, A = Analog signal. Note: The pin type shown refers to the input, output or high-impedance state of the pin function when configured as the signal name highlighted in bold. All multiplexed signals may enter a high-impedance state when the configured function is input-only or the configured function supports high-Z operation. All GPIO signals can be used as input or output. For multiplexed pins where functions have different types (ie., input versus output), the table reflects the pin function direction for that particular peripheral. IPD = Internal Pulldown resistor; IPU = Internal Pullup resistor; CP[n] = configurable pull-up/pull-down (where n is the pin group) using the PUPDENA and PUPDSEL registers in the System Module. The pull-up and pull-down control of these pins is not active until the device is out of reset. During reset, all of the pins associated with these registers are pulled down. If the application requires a pull-up, an external pull-up can be used. For more detailed information on pullup/pulldown resistors and situations where external pullup/pulldown resistors are required, see the Device Configuration section. For electrical specifications on pullup and internal pulldown circuits, see the Device Operating Conditions section. This signal is part of a dual-voltage IO group (A, B or C). These groups can be operated at 3.3V or 1.8V nominal. The three groups can be operated at independent voltages but all pins withina group will operate at the same voltage. Group A operates at the voltage of power supply DVDD3318_A. Group B operates at the voltage of power supply DVDD3318_B. Group C operates at the voltage of power supply DVDD3318_C. Device Comparison Copyright © 2009–2017, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: OMAP-L138 43 OMAP-L138 SPRS586J – JUNE 2009 – REVISED JANUARY 2017 3.8.10 www.ti.com Enhanced Pulse Width Modulators (eHRPWM) Table 3-14. Enhanced Pulse Width Modulator (eHRPWM) Terminal Functions SIGNAL NAME NO. TYPE (1) PULL (2) POWER GROUP (3) DESCRIPTION eHRPWM0 SPI0_CLK / EPWM0A / GP1[8] / MII_RXCLK D19 I/O CP[7] A eHRPWM0 A output (with high-resolution) SPI0_ENA / EPWM0B / PRU0_R30[6] / MII_RXDV C17 I/O CP[7] A eHRPWM0 B output AXR15 / EPWM0TZ[0] / ECAP2_APWM2 / GP0[7] A4 I CP[1] A eHRPWM0 trip zone input SPI0_SOMI / EPWMSYNCI / GP8[6] / MII_RXER C16 I CP[7] A eHRPWM0 sync input SPI0_SIMO / EPWMSYNCO / GP8[5] / MII_CRS C18 I/O CP[7] A eHRPWM0 sync output eHRPWM1 SPI1_SCS[1] / EPWM1A / PRU0_R30[8] / GP2[15] / TM64P2_IN12 F18 I/O CP[14] A eHRPWM1 A output (with high-resolution) SPI1_SCS[0] / EPWM1B / PRU0_R30[7] / GP2[14] / TM64P3_IN12 E19 I/O CP[14] A eHRPWM1 B output AXR7 / EPWM1TZ[0] / PRU0_R30[17] / GP1[15] / PRU0_R31[7] D2 I CP[4] A eHRPWM1 trip zone input (1) (2) (3) 44 I = Input, O = Output, I/O = Bidirectional, Z = High impedance, PWR = Supply voltage, GND = Ground, A = Analog signal. Note: The pin type shown refers to the input, output or high-impedance state of the pin function when configured as the signal name highlighted in bold. All multiplexed signals may enter a high-impedance state when the configured function is input-only or the configured function supports high-Z operation. All GPIO signals can be used as input or output. For multiplexed pins where functions have different types (ie., input versus output), the table reflects the pin function direction for that particular peripheral. IPD = Internal Pulldown resistor; IPU = Internal Pullup resistor; CP[n] = configurable pull-up/pull-down (where n is the pin group) using the PUPDENA and PUPDSEL registers in the System Module. The pull-up and pull-down control of these pins is not active until the device is out of reset. During reset, all of the pins associated with these registers are pulled down. If the application requires a pull-up, an external pull-up can be used. For more detailed information on pullup/pulldown resistors and situations where external pullup/pulldown resistors are required, see the Device Configuration section. For electrical specifications on pullup and internal pulldown circuits, see the Device Operating Conditions section. This signal is part of a dual-voltage IO group (A, B or C). These groups can be operated at 3.3V or 1.8V nominal. The three groups can be operated at independent voltages but all pins withina group will operate at the same voltage. Group A operates at the voltage of power supply DVDD3318_A. Group B operates at the voltage of power supply DVDD3318_B. Group C operates at the voltage of power supply DVDD3318_C. Device Comparison Copyright © 2009–2017, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: OMAP-L138 OMAP-L138 www.ti.com 3.8.11 SPRS586J – JUNE 2009 – REVISED JANUARY 2017 Boot Table 3-15. Boot Mode Selection Terminal Functions (1) SIGNAL NAME NO. TYPE (2) PULL (3) POWER GROUP (4) VP_DOUT[15] / LCD_D[15] / UPP_XD[7] / GP7[7] / BOOT[7] P4 I CP[29] C VP_DOUT[14] / LCD_D[14] / UPP_XD[6] / GP7[6] / BOOT[6] R3 I CP[29] C VP_DOUT[13] / LCD_D[13] / UPP_XD[5] / GP7[5] / BOOT[5] R2 I CP[29] C VP_DOUT[12] / LCD_D[12] / UPP_XD[4] / GP7[4] / BOOT[4] R1 I CP[29] C VP_DOUT[11] / LCD_D[11] / UPP_XD[3] / GP7[3] / BOOT[3] T3 I CP[29] C VP_DOUT[10] / LCD_D[10] / UPP_XD[2] / GP7[2] / BOOT[2] T2 I CP[29] C VP_DOUT[9] / LCD_D[9] / UPP_XD[1] / GP7[1] / BOOT[1] T1 I CP[29] C VP_DOUT[8] / LCD_D[8] / UPP_XD[0] / GP7[0] / BOOT[0] U3 I CP[29] C (1) (2) (3) (4) DESCRIPTION Boot Mode Selection Pins Boot decoding is defined in the bootloader application report. I = Input, O = Output, I/O = Bidirectional, Z = High impedance, PWR = Supply voltage, GND = Ground, A = Analog signal. Note: The pin type shown refers to the input, output or high-impedance state of the pin function when configured as the signal name highlighted in bold. All multiplexed signals may enter a high-impedance state when the configured function is input-only or the configured function supports high-Z operation. All GPIO signals can be used as input or output. For multiplexed pins where functions have different types (ie., input versus output), the table reflects the pin function direction for that particular peripheral. IPD = Internal Pulldown resistor; IPU = Internal Pullup resistor; CP[n] = configurable pull-up/pull-down (where n is the pin group) using the PUPDENA and PUPDSEL registers in the System Module. The pull-up and pull-down control of these pins is not active until the device is out of reset. During reset, all of the pins associated with these registers are pulled down. If the application requires a pull-up, an external pull-up can be used. For more detailed information on pullup/pulldown resistors and situations where external pullup/pulldown resistors are required, see the Device Configuration section. For electrical specifications on pullup and internal pulldown circuits, see the Device Operating Conditions section. This signal is part of a dual-voltage IO group (A, B or C). These groups can be operated at 3.3V or 1.8V nominal. The three groups can be operated at independent voltages but all pins withina group will operate at the same voltage. Group A operates at the voltage of power supply DVDD3318_A. Group B operates at the voltage of power supply DVDD3318_B. Group C operates at the voltage of power supply DVDD3318_C. Device Comparison Copyright © 2009–2017, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: OMAP-L138 45 OMAP-L138 SPRS586J – JUNE 2009 – REVISED JANUARY 2017 www.ti.com 3.8.12 Universal Asynchronous Receiver/Transmitters (UART0, UART1, UART2) Table 3-16. Universal Asynchronous Receiver/Transmitter (UART) Terminal Functions SIGNAL NAME NO. TYPE (1) PULL (2) POWER GROUP (3) DESCRIPTION UART0 SPI0_SCS[5] / UART0_RXD / GP8[4] / MII_RXD[3] C19 I CP[8] A UART0 receive data SPI0_SCS[4] / UART0_TXD / GP8[3] / MII_RXD[2] D18 O CP[8] A UART0 transmit data SPI0_SCS[2] / UART0_RTS / GP8[1] / MII_RXD[0] / SATA_CP_DET D16 O CP[9] A UART0 ready-to-send output SPI0_SCS[3] / UART0_CTS / GP8[2] / MII_RXD[1] / SATA_MP_SWITCH E17 I CP[9] A UART0 clear-to-send input SPI1_SCS[3] / UART1_RXD / SATA_LED / GP1[1] E18 I CP[13] A UART1 receive data SPI1_SCS[2] / UART1_TXD / SATA_CP_POD / GP1[0] F19 O CP[13] A UART1 transmit data AHCLKR / PRU0_R30[18] / UART1_RTS /GP0[11] / PRU0_R31[18] A2 O CP[0] A UART1 ready-to-send output AHCLKX / USB_REFCLKIN / UART1_CTS / GP0[10] / PRU0_R31[17] A3 I CP[0] A UART1 clear-to-send input SPI1_SCS[5] / UART2_RXD / I2C1_SCL /GP1[3] F17 I CP[12] A UART2 receive data SPI1_SCS[4] / UART2_TXD / I2C1_SDA /GP1[2] F16 O CP[12] A UART2 transmit data AMUTE / PRU0_R30[16] / UART2_RTS / GP0[9] / PRU0_R31[16] D5 O CP[0] A UART2 ready-to-send output RTC_ALARM / UART2_CTS / GP0[8] / DEEPSLEEP F4 I CP[0] A UART2 clear-to-send input UART1 UART2 (1) (2) (3) 46 I = Input, O = Output, I/O = Bidirectional, Z = High impedance, PWR = Supply voltage, GND = Ground, A = Analog signal. Note: The pin type shown refers to the input, output or high-impedance state of the pin function when configured as the signal name highlighted in bold. All multiplexed signals may enter a high-impedance state when the configured function is input-only or the configured function supports high-Z operation. All GPIO signals can be used as input or output. For multiplexed pins where functions have different types (ie., input versus output), the table reflects the pin function direction for that particular peripheral. IPD = Internal Pulldown resistor; IPU = Internal Pullup resistor; CP[n] = configurable pull-up/pull-down (where n is the pin group) using the PUPDENA and PUPDSEL registers in the System Module.The pull-up and pull-down control of these pins is not active until the device is out of reset. During reset, all of the pins associated with these registers are pulled down. If the application requires a pull-up, an external pull-up can be used. For more detailed information on pullup/pulldown resistors and situations where external pullup/pulldown resistors are required, see the Device Configuration section. For electrical specifications on pullup and internal pulldown circuits, see the Device Operating Conditions section. This signal is part of a dual-voltage IO group (A, B or C). These groups can be operated at 3.3V or 1.8V nominal. The three groups can be operated at independent voltages but all pins withina group will operate at the same voltage. Group A operates at the voltage of power supply DVDD3318_A. Group B operates at the voltage of power supply DVDD3318_B. Group C operates at the voltage of power supply DVDD3318_C. Device Comparison Copyright © 2009–2017, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: OMAP-L138 OMAP-L138 www.ti.com SPRS586J – JUNE 2009 – REVISED JANUARY 2017 3.8.13 Inter-Integrated Circuit Modules(I2C0, I2C1) Table 3-17. Inter-Integrated Circuit (I2C) Terminal Functions SIGNAL NAME NO. TYPE (1) PULL (2) POWER GROUP (3) DESCRIPTION I2C0 SPI1_SCS[6] / I2C0_SDA / TM64P3_OUT12 / GP1[4] G18 I/O CP[11] A I2C0 serial data SPI1_SCS[7] / I2C0_SCL / TM64P2_OUT12 / GP1[5] G16 I/O CP[11] A I2C0 serial clock I2C1 SPI1_SCS[4] / UART2_TXD / I2C1_SDA / GP1[2] F16 I/O CP[12] A I2C1 serial data SPI1_SCS[5] / UART2_RXD / I2C1_SCL / GP1[3] F17 I/O CP[12] A I2C1 serial clock (1) (2) (3) I = Input, O = Output, I/O = Bidirectional, Z = High impedance, PWR = Supply voltage, GND = Ground, A = Analog signal. Note: The pin type shown refers to the input, output or high-impedance state of the pin function when configured as the signal name highlighted in bold. All multiplexed signals may enter a high-impedance state when the configured function is input-only or the configured function supports high-Z operation. All GPIO signals can be used as input or output. For multiplexed pins where functions have different types (ie., input versus output), the table reflects the pin function direction for that particular peripheral. IPD = Internal Pulldown resistor; IPU = Internal Pullup resistor; CP[n] = configurable pull-up/pull-down (where n is the pin group) using the PUPDENA and PUPDSEL registers in the System Module.The pull-up and pull-down control of these pins is not active until the device is out of reset. During reset, all of the pins associated with these registers are pulled down. If the application requires a pull-up, an external pull-up can be used. For more detailed information on pullup/pulldown resistors and situations where external pullup/pulldown resistors are required, see the Device Configuration section. For electrical specifications on pullup and internal pulldown circuits, see the Device Operating Conditions section. This signal is part of a dual-voltage IO group (A, B or C). These groups can be operated at 3.3V or 1.8V nominal. The three groups can be operated at independent voltages but all pins withina group will operate at the same voltage. Group A operates at the voltage of power supply DVDD3318_A. Group B operates at the voltage of power supply DVDD3318_B. Group C operates at the voltage of power supply DVDD3318_C. Device Comparison Copyright © 2009–2017, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: OMAP-L138 47 OMAP-L138 SPRS586J – JUNE 2009 – REVISED JANUARY 2017 www.ti.com 3.8.14 Timers Table 3-18. Timers Terminal Functions SIGNAL NAME NO. TYPE (1) PULL (2) POWER GROUP (3) DESCRIPTION TIMER0 SPI0_SCS[1] / TM64P0_OUT12 / GP1[7] / MDCLK /TM64P0_IN12 E16 I CP[10] A Timer0 lower input SPI0_SCS[1] / TM64P0_OUT12 / GP1[7] / MDCLK / TM64P0_IN12 E16 O CP[10] A Timer0 lower output TIMER1 (Watchdog) SPI0_SCS[0] / TM64P1_OUT12 / GP1[6] / MDIO / TM64P1_IN12 D17 I CP[10] A Timer1 lower input SPI0_SCS[0] / TM64P1_OUT12 / GP1[6] / MDIO / TM64P1_IN12 D17 O CP[10] A Timer1 lower output SPI1_SCS[1] / EPWM1A / PRU0_R30[8] / GP2[15] / TM64P2_IN12 F18 I CP[14] A Timer2 lower input SPI1_SCS[7] / I2C0_SCL / TM64P2_OUT12 / GP1[5] G16 O CP[11] A Timer2 lower output SPI1_SCS[0] / EPWM1B / PRU0_R30[7] / GP2[14] / TM64P3_IN12 E19 I CP[14] A Timer3 lower input SPI1_SCS[6] / I2C0_SDA / TM64P3_OUT12 / GP1[4] G18 O CP[11] A Timer3 lower output TIMER2 TIMER3 (1) (2) (3) 48 I = Input, O = Output, I/O = Bidirectional, Z = High impedance, PWR = Supply voltage, GND = Ground, A = Analog signal. Note: The pin type shown refers to the input, output or high-impedance state of the pin function when configured as the signal name highlighted in bold. All multiplexed signals may enter a high-impedance state when the configured function is input-only or the configured function supports high-Z operation. All GPIO signals can be used as input or output. For multiplexed pins where functions have different types (ie., input versus output), the table reflects the pin function direction for that particular peripheral. IPD = Internal Pulldown resistor; IPU = Internal Pullup resistor; CP[n] = configurable pull-up/pull-down (where n is the pin group) using the PUPDENA and PUPDSEL registers in the System Module. The pull-up and pull-down control of these pins is not active until the device is out of reset. During reset, all of the pins associated with these registers are pulled down. If the application requires a pull-up, an external pull-up can be used. For more detailed information on pullup/pulldown resistors and situations where external pullup/pulldown resistors are required, see the Device Configuration section. For electrical specifications on pullup and internal pulldown circuits, see the Device Operating Conditions section. This signal is part of a dual-voltage IO group (A, B or C). These groups can be operated at 3.3V or 1.8V nominal. The three groups can be operated at independent voltages but all pins withina group will operate at the same voltage. Group A operates at the voltage of power supply DVDD3318_A. Group B operates at the voltage of power supply DVDD3318_B. Group C operates at the voltage of power supply DVDD3318_C. Device Comparison Copyright © 2009–2017, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: OMAP-L138 OMAP-L138 www.ti.com SPRS586J – JUNE 2009 – REVISED JANUARY 2017 3.8.15 Multichannel Audio Serial Ports (McASP) Table 3-19. Multichannel Audio Serial Ports Terminal Functions SIGNAL NAME NO. TYPE (1) PULL (2) POWER GROUP (3) DESCRIPTION McASP0 AXR15 / EPWM0TZ[0] / ECAP2_APWM2 / GP0[7] A4 I/O CP[1] A AXR14 / CLKR1 / GP0[6] B4 I/O CP[2] A AXR13 / CLKX1 / GP0[5] B3 I/O CP[2] A AXR12 / FSR1 / GP0[4] C4 I/O CP[2] A AXR11 / FSX1 / GP0[3] C5 I/O CP[2] A AXR10 / DR1 / GP0[2] D4 I/O CP[2] A AXR9 / DX1 / GP0[1] C3 I/O CP[2] A AXR8 / CLKS1 / ECAP1_APWM1 / GP0[0] / PRU0_R31[8] E4 I/O CP[3] A AXR7 / EPWM1TZ[0] / PRU0_R30[17] / GP1[15] / PRU0_R31[7] D2 I/O CP[4] A AXR6 / CLKR0 / GP1[14] / MII_TXEN / PRU0_R31[6] C1 I/O CP[5] A AXR5 / CLKX0 / GP1[13] / MII_TXCLK D3 I/O CP[5] A AXR4 / FSR0 / GP1[12] / MII_COL D1 I/O CP[5] A AXR3 / FSX0 / GP1[11] / MII_TXD[3] E3 I/O CP[5] A AXR2 / DR0 / GP1[10] / MII_TXD[2] E2 I/O CP[5] A AXR1 / DX0 / GP1[9] / MII_TXD[1] E1 I/O CP[5] A AXR0 / ECAP0_APWM0 / GP8[7]/ MII_TXD[0] / CLKS0 F3 I/O CP[6] A AHCLKX / USB_REFCLKIN / UART1_CTS / GP0[10] / PRU0_R31[17] A3 I/O CP[0] A McASP0 transmit master clock ACLKX / PRU0_R30[19] / GP0[14] / PRU0_R31[21] B1 I/O CP[0] A McASP0 transmit bit clock AFSX / GP0[12] / PRU0_R31[19] B2 I/O CP[0] A McASP0 transmit frame sync AHCLKR / PRU0_R30[18] / UART1_RTS / GP0[11] / PRU0_R31[18] A2 I/O CP[0] A McASP0 receive master clock ACLKR / PRU0_R30[20] / GP0[15] / PRU0_R31[22] A1 I/O CP[0] A McASP0 receive bit clock AFSR / GP0[13] / PRU0_R31[20] C2 I/O CP[0] A McASP0 receive frame sync AMUTE / PRU0_R30[16] / UART2_RTS / GP0[9] / PRU0_R31[16] D5 I/O CP[0] A McASP0 mute output (1) (2) (3) McASP0 serial data I = Input, O = Output, I/O = Bidirectional, Z = High impedance, PWR = Supply voltage, GND = Ground, A = Analog signal. Note: The pin type shown refers to the input, output or high-impedance state of the pin function when configured as the signal name highlighted in bold. All multiplexed signals may enter a high-impedance state when the configured function is input-only or the configured function supports high-Z operation. All GPIO signals can be used as input or output. For multiplexed pins where functions have different types (ie., input versus output), the table reflects the pin function direction for that particular peripheral. IPD = Internal Pulldown resistor; IPU = Internal Pullup resistor; CP[n] = configurable pull-up/pull-down (where n is the pin group) using the PUPDENA and PUPDSEL registers in the System Module. The pull-up and pull-down control of these pins is not active until the device is out of reset. During reset, all of the pins associated with these registers are pulled down. If the application requires a pull-up, an external pull-up can be used. For more detailed information on pullup/pulldown resistors and situations where external pullup/pulldown resistors are required, see the Device Configuration section. For electrical specifications on pullup and internal pulldown circuits, see the Device Operating Conditions section. This signal is part of a dual-voltage IO group (A, B or C). These groups can be operated at 3.3V or 1.8V nominal. The three groups can be operated at independent voltages but all pins withina group will operate at the same voltage. Group A operates at the voltage of power supply DVDD3318_A. Group B operates at the voltage of power supply DVDD3318_B. Group C operates at the voltage of power supply DVDD3318_C. Device Comparison Copyright © 2009–2017, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: OMAP-L138 49 OMAP-L138 SPRS586J – JUNE 2009 – REVISED JANUARY 2017 www.ti.com 3.8.16 Multichannel Buffered Serial Ports (McBSP) Table 3-20. Multichannel Buffered Serial Ports (McBSPs) Terminal Functions SIGNAL NAME NO. TYPE (1) PULL (2) POWER GROUP (3) DESCRIPTION McBSP0 AXR0 / ECAP0_APWM0 / GP8[7] / MII_TXD[0] / CLKS0 F3 I CP[6] A McBSP0 sample rate generator clock input AXR6 / CLKR0 / GP1[14] / MII_TXEN / PRU0_R31[6] C1 I/O CP[5] A McBSP0 receive clock AXR4 / FSR0 / GP1[12] / MII_COL D1 I/O CP[5] A McBSP0 receive frame sync AXR2 / DR0 / GP1[10] / MII_TXD[2] E2 I CP[5] A McBSP0 receive data AXR5 / CLKX0 / GP1[13] / MII_TXCLK D3 I/O CP[5] A McBSP0 transmit clock AXR3 / FSX0 / GP1[11] / MII_TXD[3] E3 I/O CP[5] A McBSP0 transmit frame sync AXR1 / DX0 / GP1[9] / MII_TXD[1] E1 O CP[5] A McBSP0 transmit data McBSP1 AXR8 / CLKS1 / ECAP1_APWM1 / GP0[0] / PRU0_R31[8] E4 I CP[3] A McBSP1 sample rate generator clock input AXR14 / CLKR1 / GP0[6] B4 I/O CP[2] A McBSP1 receive clock AXR12 / FSR1 / GP0[4] C4 I/O CP[2] A McBSP1 receive frame sync AXR10 / DR1 / GP0[2] D4 I CP[2] A McBSP1 receive data AXR13 / CLKX1 / GP0[5] B3 I/O CP[2] A McBSP1 transmit clock AXR11 / FSX1 / GP0[3] C5 I/O CP[2] A McBSP1 transmit frame sync AXR9 / DX1 / GP0[1] C3 O CP[2] A McBSP1 transmit data (1) (2) (3) 50 I = Input, O = Output, I/O = Bidirectional, Z = High impedance, PWR = Supply voltage, GND = Ground, A = Analog signal. Note: The pin type shown refers to the input, output or high-impedance state of the pin function when configured as the signal name highlighted in bold. All multiplexed signals may enter a high-impedance state when the configured function is input-only or the configured function supports high-Z operation. All GPIO signals can be used as input or output. For multiplexed pins where functions have different types (ie., input versus output), the table reflects the pin function direction for that particular peripheral. IPD = Internal Pulldown resistor; IPU = Internal Pullup resistor; CP[n] = configurable pull-up/pull-down (where n is the pin group) using the PUPDENA and PUPDSEL registers in the System Module. The pull-up and pull-down control of these pins is not active until the device is out of reset. During reset, all of the pins associated with these registers are pulled down. If the application requires a pull-up, an external pull-up can be used. For more detailed information on pullup/pulldown resistors and situations where external pullup/pulldown resistors are required, see the Device Configuration section. For electrical specifications on pullup and internal pulldown circuits, see the Device Operating Conditions section. This signal is part of a dual-voltage IO group (A, B or C). These groups can be operated at 3.3V or 1.8V nominal. The three groups can be operated at independent voltages but all pins withina group will operate at the same voltage. Group A operates at the voltage of power supply DVDD3318_A. Group B operates at the voltage of power supply DVDD3318_B. Group C operates at the voltage of power supply DVDD3318_C. Device Comparison Copyright © 2009–2017, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: OMAP-L138 OMAP-L138 www.ti.com SPRS586J – JUNE 2009 – REVISED JANUARY 2017 3.8.17 Universal Serial Bus Modules (USB0, USB1) Table 3-21. Universal Serial Bus (USB) Terminal Functions SIGNAL NAME NO. TYPE (1) PULL (2) POWER GROUP (3) DESCRIPTION USB0 2.0 OTG (USB0) USB0_DM M18 A IPD — USB0 PHY data minus USB0_DP M19 A IPD — USB0 PHY data plus USB0_VDDA33 N18 PWR — — USB0 PHY 3.3-V supply USB0_ID P16 A — — USB0 PHY identification (mini-A or mini-B plug) USB0_VBUS N19 A — — USB0 bus voltage USB0_DRVVBUS K18 0 IPD B USB0 controller VBUS control output. AHCLKX / USB_REFCLKIN / UART1_CTS / GP0[10] / PRU0_R31[17] A3 I CP[0] A USB_REFCLKIN. Optional clock input N14 PWR — — USB0 PHY 1.8-V supply input USB0_VDDA18 USB0_VDDA12 N17 A — — USB0 PHY 1.2-V LDO output for bypass cap For proper device operation, this pin must always be connected via a 0.22-μF capacitor to VSS (GND), even if USB0 is not being used. USB_CVDD M12 PWR — — USB0 and USB1 core logic 1.2-V supply input USB1_DM l P18 A — — USB1 PHY data minus USB1_DP P19 A — — USB1 PHY data plus AHCLKX / USB_REFCLKIN / UART1_CTS / GP0[10] / PRU0_R31[17] A3 I CP[0] A USB_REFCLKIN. Optional clock input USB1_VDDA33 P15 PWR — — USB1 PHY 3.3-V supply USB1_VDDA18 P14 PWR — — USB1 PHY 1.8-V supply USB_CVDD M12 PWR — — USB0 and USB1 core logic 1.2-V supply input USB1 1.1 OHCI (USB1) (1) (2) (3) I = Input, O = Output, I/O = Bidirectional, Z = High impedance, PWR = Supply voltage, GND = Ground, A = Analog signal. Note: The pin type shown refers to the input, output or high-impedance state of the pin function when configured as the signal name highlighted in bold. All multiplexed signals may enter a high-impedance state when the configured function is input-only or the configured function supports high-Z operation. All GPIO signals can be used as input or output. For multiplexed pins where functions have different types (ie., input versus output), the table reflects the pin function direction for that particular peripheral. IPD = Internal Pulldown resistor; IPU = Internal Pullup resistor; CP[n] = configurable pull-up/pull-down (where n is the pin group) using the PUPDENA and PUPDSEL registers in the System Module. The pull-up and pull-down control of these pins is not active until the device is out of reset. During reset, all of the pins associated with these registers are pulled down. If the application requires a pull-up, an external pull-up can be used. For more detailed information on pullup/pulldown resistors and situations where external pullup/pulldown resistors are required, see the Device Configuration section. For electrical specifications on pullup and internal pulldown circuits, see the Device Operating Conditions section. This signal is part of a dual-voltage IO group (A, B or C). These groups can be operated at 3.3V or 1.8V nominal. The three groups can be operated at independent voltages but all pins withina group will operate at the same voltage. Group A operates at the voltage of power supply DVDD3318_A. Group B operates at the voltage of power supply DVDD3318_B. Group C operates at the voltage of power supply DVDD3318_C. Device Comparison Copyright © 2009–2017, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: OMAP-L138 51 OMAP-L138 SPRS586J – JUNE 2009 – REVISED JANUARY 2017 www.ti.com 3.8.18 Ethernet Media Access Controller (EMAC) Table 3-22. Ethernet Media Access Controller (EMAC) Terminal Functions SIGNAL NAME NO. TYPE (1) PULL (2) POWER GROUP (3) DESCRIPTION MII AXR6 / CLKR0 / GP1[14] / MII_TXEN / PRU0_R31[6] C1 O CP[5] A EMAC MII Transmit enable output AXR5 / CLKX0 / GP1[13] / MII_TXCLK D3 I CP[5] A EMAC MII Transmit clock input AXR4 / FSR0 / GP1[12] / MII_COL D1 I CP[5] A EMAC MII Collision detect input AXR3 / FSX0 / GP1[11] / MII_TXD[3] E3 O CP[5] A AXR2 / DR0 / GP1[10] / MII_TXD[2] E2 O CP[5] A AXR1 / DX0 / GP1[9] / MII_TXD[1] E1 O CP[5] A AXR0 / ECAP0_APWM0 / GP8[7] / MII_TXD[0] / CLKS0 F3 O CP[6] A SPI0_SOMI / EPWMSYNCI / GP8[6] / MII_RXER C16 I CP[7] A EMAC MII receive error input SPI0_SIMO / EPWMSYNCO / GP8[5] / MII_CRS C18 I CP[7] A EMAC MII carrier sense input SPI0_CLK / EPWM0A / GP1[8] / MII_RXCLK D19 I CP[7] A EMAC MII receive clock input SPI0_ENA / EPWM0B / PRU0_R30[6] / MII_RXDV C17 I CP[7] A EMAC MII receive data valid input SPI0_SCS[5] /UART0_RXD / GP8[4] / MII_RXD[3] C19 I CP[8] A SPI0_SCS[4] /UART0_TXD / GP8[3] / MII_RXD[2] D18 I CP[8] A SPI0_SCS[3] / UART0_CTS / GP8[2] / MII_RXD[1] / SATA_MP_SWITCH E17 I CP[9] A SPI0_SCS[2] / UART0_RTS / GP8[1] / MII_RXD[0] / SATA_CP_DET D16 I CP[9] A (1) (2) (3) 52 EMAC MII transmit data EMAC MII receive data I = Input, O = Output, I/O = Bidirectional, Z = High impedance, PWR = Supply voltage, GND = Ground, A = Analog signal. Note: The pin type shown refers to the input, output or high-impedance state of the pin function when configured as the signal name highlighted in bold. All multiplexed signals may enter a high-impedance state when the configured function is input-only or the configured function supports high-Z operation. All GPIO signals can be used as input or output. For multiplexed pins where functions have different types (ie., input versus output), the table reflects the pin function direction for that particular peripheral. IPD = Internal Pulldown resistor; IPU = Internal Pullup resistor; CP[n] = configurable pull-up/pull-down (where n is the pin group) using the PUPDENA and PUPDSEL registers in the System Module. The pull-up and pull-down control of these pins is not active until the device is out of reset. During reset, all of the pins associated with these registers are pulled down. If the application requires a pull-up, an external pull-up can be used. For more detailed information on pullup/pulldown resistors and situations where external pullup/pulldown resistors are required, see the Device Configuration section. For electrical specifications on pullup and internal pulldown circuits, see the Device Operating Conditions section. This signal is part of a dual-voltage IO group (A, B or C). These groups can be operated at 3.3V or 1.8V nominal. The three groups can be operated at independent voltages but all pins withina group will operate at the same voltage. Group A operates at the voltage of power supply DVDD3318_A. Group B operates at the voltage of power supply DVDD3318_B. Group C operates at the voltage of power supply DVDD3318_C. Device Comparison Copyright © 2009–2017, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: OMAP-L138 OMAP-L138 www.ti.com SPRS586J – JUNE 2009 – REVISED JANUARY 2017 Table 3-22. Ethernet Media Access Controller (EMAC) Terminal Functions (continued) SIGNAL NAME NO. TYPE (1) PULL (2) POWER GROUP (3) DESCRIPTION RMII VP_DIN[1] / UHPI_HD[9] / UPP_D[9] / RMII_MHZ_50_CLK / PRU0_R31[23] W18 I/O CP[26] C EMAC 50-MHz clock input or output VP_DIN[2] / UHPI_HD[10] / UPP_D[10] / RMII_RXER / PRU0_R31[24] W17 I CP[26] C EMAC RMII receiver error VP_DIN[3] / UHPI_HD[11] / UPP_D[11] / RMII_RXD[0] / PRU0_R31[25] V17 I CP[26] C VP_DIN[4] / UHPI_HD[12] / UPP_D[12] / RMII_RXD[1] /PRU0_R31[26] W16 I CP[26] C VP_DIN[0] / UHPI_HD[8] / UPP_D[8] / RMII_CRS_DV / W19 PRU1_R31[29] I CP[26] C EMAC RMII carrier sense data valid VP_DIN[5] / UHPI_HD[13] / UPP_D[13] / RMII_TXEN / PRU0_R31[27] R14 O CP[26] C EMAC RMII transmit enable VP_DIN[6] / UHPI_HD[14] / UPP_D[14] / RMII_TXD[0] / PRU0_R31[28] V16 O CP[26] C VP_DIN[7] / UHPI_HD[15] / UPP_D[15] / RMII_TXD[1] / PRU0_R31[29] U18 O CP[26] C EMAC RMII receive data EMAC RMII transmit data MDIO SPI0_SCS[0] / TM64P1_OUT12 / GP1[6] / MDIO / TM64P1_IN12 D17 I/O CP[10] A MDIO serial data SPI0_SCS[1] / TM64P0_OUT12 / GP1[7] / MDCLK / TM64P0_IN12 E16 O CP[10] A MDIO clock Device Comparison Copyright © 2009–2017, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: OMAP-L138 53 OMAP-L138 SPRS586J – JUNE 2009 – REVISED JANUARY 2017 www.ti.com 3.8.19 Multimedia Card/Secure Digital (MMC/SD) Table 3-23. Multimedia Card/Secure Digital (MMC/SD) Terminal Functions SIGNAL NAME NO. TYPE (1) PULL (2) POWER GROUP (3) DESCRIPTION MMCSD0 MMCSD0_CLK / PRU1_R30[31] /GP4[7] E9 O CP[18] B MMCSD0 Clock EMA_A[22] / MMCSD0_CMD / PRU1_R30[30] / GP4[6] A10 I/O CP[18] B MMCSD0 Command EMA_A[14] / MMCSD0_DAT[7] / PRU1_R30[22] / GP5[14] / PRU1_R31[22] A12 I/O CP[19] B EMA_A[15] / MMCSD0_DAT[6] / PRU1_R30[23] / GP5[15] / PRU1_R31[23] C11 I/O CP[19] B EMA_A[16] / MMCSD0_DAT[5] / PRU1_R30[24] / GP4[0] E12 I/O CP[18] B EMA_A[17] / MMCSD0_DAT[4] / PRU1_R30[25] / GP4[1] B11 I/O CP[18] B EMA_A[18] / MMCSD0_DAT[3] / PRU1_R30[26] / GP4[2] E11 I/O CP[18] B EMA_A[19] / MMCSD0_DAT[2] / PRU1_R30[27] / GP4[3] C10 I/O CP[18] B EMA_A[20] / MMCSD0_DAT[1] / PRU1_R30[28] / GP4[4] A11 I/O CP[18] B EMA_A[21] / MMCSD0_DAT[0] / PRU1_R30[29] / GP4[5] B10 I/O CP[18] B MMC/SD0 data MMCSD1 PRU0_R30[24] / MMCSD1_CLK / UPP_CHB_START / GP8[14] / PRU1_R31[26]/ G2 O CP[30] C MMCSD1 Clock PRU0_R30[23] / MMCSD1_CMD / UPP_CHB_ENABLE / GP8[13] / PRU1_R31[25] J4 I/O CP[30] C MMCSD1 Command MMCSD1_DAT[7] / LCD_PCLK / PRU1_R30[7] / GP8[11] F1 I/O CP[31] C MMCSD1_DAT[6] / LCD_MCLK / PRU1_R30[6] / GP8[10] / PRU1_R31[7] F2 I/O CP[31] C MMCSD1_DAT[5] / LCD_HSYNC / PRU1_R30[5] / GP8[9] / PRU1_R31[6] H4 I/O CP[31] C MMCSD1_DAT[4] / LCD_VSYNC / PRU1_R30[4] / GP8[8] / PRU1_R31[5] G4 I/O CP[31] C VP_CLKIN2 / MMCSD1_DAT[3] / PRU1_R30[3] / GP6[4] / PRU1_R31[4] H3 I/O CP[30] C VP_CLKOUT2 / MMCSD1_DAT[2] / PRU1_R30[2] / GP6[3] / PRU1_R31[3] K3 I/O CP[30] C VP_CLKIN3 / MMCSD1_DAT[1]/ PRU1_R30[1] / GP6[2] / PRU1_R31[2] J3 I/O CP[30] C PRU0_R30[25] / MMCSD1_DAT[0] / UPP_CHB_CLOCK / GP8[15]/ PRU1_R31[27] G1 I/O CP[30] C (1) (2) (3) 54 MMC/SD1 data I = Input, O = Output, I/O = Bidirectional, Z = High impedance, PWR = Supply voltage, GND = Ground, A = Analog signal. Note: The pin type shown refers to the input, output or high-impedance state of the pin function when configured as the signal name highlighted in bold. All multiplexed signals may enter a high-impedance state when the configured function is input-only or the configured function supports high-Z operation. All GPIO signals can be used as input or output. For multiplexed pins where functions have different types (ie., input versus output), the table reflects the pin function direction for that particular peripheral. IPD = Internal Pulldown resistor; IPU = Internal Pullup resistor; CP[n] = configurable pull-up/pull-down (where n is the pin group) using the PUPDENA and PUPDSEL registers in the System Module. The pull-up and pull-down control of these pins is not active until the device is out of reset. During reset, all of the pins associated with these registers are pulled down. If the application requires a pull-up, an external pull-up can be used. For more detailed information on pullup/pulldown resistors and situations where external pullup/pulldown resistors are required, see the Device Configuration section. For electrical specifications on pullup and internal pulldown circuits, see the Device Operating Conditions section. This signal is part of a dual-voltage IO group (A, B or C). These groups can be operated at 3.3V or 1.8V nominal. The three groups can be operated at independent voltages but all pins withina group will operate at the same voltage. Group A operates at the voltage of power supply DVDD3318_A. Group B operates at the voltage of power supply DVDD3318_B. Group C operates at the voltage of power supply DVDD3318_C. Device Comparison Copyright © 2009–2017, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: OMAP-L138 OMAP-L138 www.ti.com 3.8.20 SPRS586J – JUNE 2009 – REVISED JANUARY 2017 Liquid Crystal Display Controller(LCD) Table 3-24. Liquid Crystal Display Controller (LCD) Terminal Functions SIGNAL NAME NO. TYPE (1) PULL (2) POWER GROUP (3) DESCRIPTION VP_DOUT[15] / LCD_D[15] / UPP_XD[7] / GP7[7] / BOOT[7] P4 I/O CP[29] C VP_DOUT[14] / LCD_D[14] / UPP_XD[6] / GP7[6] / BOOT[6] R3 I/O CP[29] C VP_DOUT[13] / LCD_D[13] / UPP_XD[5] / GP7[5] / BOOT[5] R2 I/O CP[29] C VP_DOUT[12] / LCD_D[12] / UPP_XD[4] / GP7[4] / BOOT[4] R1 I/O CP[29] C VP_DOUT[11] / LCD_D[11] / UPP_XD[3] / GP7[3] / BOOT[3] T3 I/O CP[29] C VP_DOUT[10] / LCD_D[10] / UPP_XD[2] / GP7[2] / BOOT[2] T2 I/O CP[29] C VP_DOUT[9] / LCD_D[9] / UPP_XD[1] / GP7[1] / BOOT[1] T1 I/O CP[29] C VP_DOUT[8] / LCD_D[8] / UPP_XD[0] / GP7[0] / BOOT[0] U3 I/O CP[29] C VP_DOUT[7] / LCD_D[7] / UPP_XD[15] / GP7[15] / PRU1_R31[15] U2 I/O CP[28] C VP_DOUT[6] / LCD_D[6] / UPP_XD[14] / GP7[14] / PRU1_R31[14] U1 I/O CP[28] C VP_DOUT[5] / LCD_D[5] / UPP_XD[13] / GP7[13] / PRU1_R31[13] V3 I/O CP[28] C VP_DOUT[4] / LCD_D[4] / UPP_XD[12] / GP7[12] / PRU1_R31[12] V2 I/O CP[28] C VP_DOUT[3] / LCD_D[3] / UPP_XD[11] / GP7[11] / PRU1_R31[11] V1 I/O CP[28] C VP_DOUT[2] / LCD_D[2] / UPP_XD[10] / GP7[10] / PRU1_R31[10] W3 I/O CP[28] C VP_DOUT[1] / LCD_D[1] / UPP_XD[9] / GP7[9] / PRU1_R31[9] W2 I/O CP[28] C VP_DOUT[0] / LCD_D[0] / UPP_XD[8] / GP7[8] / PRU1_R31[8] W1 I/O CP[28] C MMCSD1_DAT[7] / LCD_PCLK / PRU1_R30[7] / GP8[11] F1 O CP[31] C LCD pixel clock MMCSD1_DAT[5] / LCD_HSYNC / PRU1_R30[5] / GP8[9] / PRU1_R31[6] H4 O CP[31] C LCD horizontal sync MMCSD1_DAT[4] / LCD_VSYNC / PRU1_R30[4] / GP8[8] / PRU1_R31[5] G4 O CP[31] C LCD vertical sync LCD_AC_ENB_CS / GP6[0] / PRU1_R31[28] R5 O CP[31] C LCD AC bias enable chip select MMCSD1_DAT[6] / LCD_MCLK / PRU1_R30[6] / GP8[10] / PRU1_R31[7] F2 O CP[31] C LCD memory clock (1) (2) (3) LCD data bus I = Input, O = Output, I/O = Bidirectional, Z = High impedance, PWR = Supply voltage, GND = Ground, A = Analog signal. Note: The pin type shown refers to the input, output or high-impedance state of the pin function when configured as the signal name highlighted in bold. All multiplexed signals may enter a high-impedance state when the configured function is input-only or the configured function supports high-Z operation. All GPIO signals can be used as input or output. For multiplexed pins where functions have different types (ie., input versus output), the table reflects the pin function direction for that particular peripheral. IPD = Internal Pulldown resistor; IPU = Internal Pullup resistor; CP[n] = configurable pull-up/pull-down (where n is the pin group) using the PUPDENA and PUPDSEL registers in the System Module. The pull-up and pull-down control of these pins is not active until the device is out of reset. During reset, all of the pins associated with these registers are pulled down. If the application requires a pull-up, an external pull-up can be used. For more detailed information on pullup/pulldown resistors and situations where external pullup/pulldown resistors are required, see the Device Configuration section. For electrical specifications on pullup and internal pulldown circuits, see the Device Operating Conditions section. This signal is part of a dual-voltage IO group (A, B or C). These groups can be operated at 3.3V or 1.8V nominal. The three groups can be operated at independent voltages but all pins withina group will operate at the same voltage. Group A operates at the voltage of power supply DVDD3318_A. Group B operates at the voltage of power supply DVDD3318_B. Group C operates at the voltage of power supply DVDD3318_C. Device Comparison Copyright © 2009–2017, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: OMAP-L138 55 OMAP-L138 SPRS586J – JUNE 2009 – REVISED JANUARY 2017 3.8.21 www.ti.com Serial ATA Controller (SATA) Table 3-25. Serial ATA Controller (SATA) Terminal Functions SIGNAL NAME NO. TYPE (1) PULL (2) POWER GROUP (3) DESCRIPTION SATA_RXP L1 I — — SATA receive data (positive) SATA_RXN L2 I — — SATA receive data (negative) SATA_TXP J1 O — — SATA transmit data (positive) SATA_TXN J2 O — — SATA transmit data (negative) SATA_REFCLKP N2 I — — SATA PHY reference clock (positive) SATA_REFCLKN N1 I — — SATA PHY reference clock (negative) SPI0_SCS[3] / UART0_CTS / GP8[2] / MII_RXD[1] / SATA_MP_SWITCH E17 I CP[9] A SATA mechanical presence switch input SPI0_SCS[2] / UART0_RTS / GP8[1] / MII_RXD[0] / SATA_CP_DET D16 I CP[9] A SATA cold presence detect input SPI1_SCS[2] / UART1_TXD / SATA_CP_POD / GP1[0] F19 O CP[13] A SATA cold presence power-on output SPI1_SCS[3] / UART1_RXD / SATA_LED / GP1[1] E18 O CP[13] A SATA LED control output SATA_REG N3 A — — SATA PHY PLL regulator output. Requires an external 0.1uF filter capacitor. SATA_VDDR P3 PWR — — SATA PHY 1.8V internal regulator supply SATA_VDD M2, P1, P2, N4 PWR — — SATA PHY 1.2V logic supply SATA_VSS H1, H2, K1, K2, L3, M1 GND — — SATA PHY ground reference (1) (2) (3) 56 I = Input, O = Output, I/O = Bidirectional, Z = High impedance, PWR = Supply voltage, GND = Ground, A = Analog signal. Note: The pin type shown refers to the input, output or high-impedance state of the pin function when configured as the signal name highlighted in bold. All multiplexed signals may enter a high-impedance state when the configured function is input-only or the configured function supports high-Z operation. All GPIO signals can be used as input or output. For multiplexed pins where functions have different types (ie., input versus output), the table reflects the pin function direction for that particular peripheral. IPD = Internal Pulldown resistor; IPU = Internal Pullup resistor; CP[n] = configurable pull-up/pull-down (where n is the pin group) using the PUPDENA and PUPDSEL registers in the System Module. The pull-up and pull-down control of these pins is not active until the device is out of reset. During reset, all of the pins associated with these registers are pulled down. If the application requires a pull-up, an external pull-up can be used. For more detailed information on pullup/pulldown resistors and situations where external pullup/pulldown resistors are required, see the Device Configuration section. For electrical specifications on pullup and internal pulldown circuits, see the Device Operating Conditions section. This signal is part of a dual-voltage IO group (A, B or C). These groups can be operated at 3.3V or 1.8V nominal. The three groups can be operated at independent voltages but all pins withina group will operate at the same voltage. Group A operates at the voltage of power supply DVDD3318_A. Group B operates at the voltage of power supply DVDD3318_B. Group C operates at the voltage of power supply DVDD3318_C. Device Comparison Copyright © 2009–2017, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: OMAP-L138 OMAP-L138 www.ti.com 3.8.22 SPRS586J – JUNE 2009 – REVISED JANUARY 2017 Universal Host-Port Interface (UHPI) Table 3-26. Universal Host-Port Interface (UHPI) Terminal Functions SIGNAL NAME NO. TYPE (1) PULL (2) POWER GROUP (3) DESCRIPTION VP_DIN[7] / UHPI_HD[15] / UPP_D[15] / RMII_TXD[1] / PRU0_R31[29] U18 I/O CP[26] C VP_DIN[6] / UHPI_HD[14] / UPP_D[14] / RMII_TXD[0] / PRU0_R31[28] V16 I/O CP[26] C VP_DIN[5] / UHPI_HD[13] / UPP_D[13] / RMII_TXEN / PRU0_R31[27] R14 I/O CP[26] C VP_DIN[4] / UHPI_HD[12] / UPP_D[12] / RMII_RXD[1] / PRU0_R31[26] W16 I/O CP[26] C VP_DIN[3] / UHPI_HD[11] / UPP_D[11] / RMII_RXD[0] / PRU0_R31[25] V17 I/O CP[26] C VP_DIN[2] / UHPI_HD[10] / UPP_D[10] / RMII_RXER / PRU0_R31[24] W17 I/O CP[26] C VP_DIN[1] / UHPI_HD[9] / UPP_D[9] / RMII_MHZ_50_CLK / PRU0_R31[23] W18 I/O CP[26] C VP_DIN[0] / UHPI_HD[8] / UPP_D[8] / RMII_CRS_DV / PRU1_R31[29] W19 I/O CP[26] C VP_DIN[15]_VSYNC / UHPI_HD[7] / UPP_D[7] / PRU0_R30[15] / PRU0_R31[15] V18 I/O CP[27] C VP_DIN[14]_HSYNC / UHPI_HD[6] / UPP_D[6] / PRU0_R30[14] / PRU0_R31[14] V19 I/O CP[27] C VP_DIN[13]_FIELD / UHPI_HD[5] / UPP_D[5] / PRU0_R30[13] / PRU0_R31[13] U19 I/O CP[27] C VP_DIN[12] / UHPI_HD[4] / UPP_D[4] / PRU0_R30[12] / PRU0_R31[12] T16 I/O CP[27] C VP_DIN[11] / UHPI_HD[3] / UPP_D[3] / PRU0_R30[11] / PRU0_R31[11] R18 I/O CP[27] C VP_DIN[10] / UHPI_HD[2] / UPP_D[2] / PRU0_R30[10] / PRU0_R31[10] R19 I/O CP[27] C VP_DIN[9] / UHPI_HD[1] / UPP_D[1] / PRU0_R30[9] / PRU0_R31[9] R15 I/O CP[27] C VP_DIN[8] / UHPI_HD[0] / UPP_D[0] / GP6[5] / PRU1_R31[0] P17 I/O CP[27] C PRU0_R30[29] / UHPI_HCNTL0 / UPP_CHA_CLOCK / GP6[11] U17 I CP[24] C PRU0_R30[28] / UHPI_HCNTL1 / UPP_CHA_START / GP6[10] W15 I CP[24] C PRU0_R30[27] / UHPI_HHWIL / UPP_CHA_ENABLE / GP6[9] U16 I CP[24] C UHPI half-word identification control PRU0_R30[26] / UHPI_HRW / UPP_CHA_WAIT / GP6[8]/PRU1_R31[17] T15 I CP[24] C UHPI read/write VP_CLKIN0 / UHPI_HCS / PRU1_R30[10] / GP6[7] / UPP_2xTXCLK W14 I CP[25] C UHPI chip select VP_CLKIN1 / UHPI_HDS1 / PRU1_R30[9] / GP6[6] / PRU1_R31[16] V15 I CP[25] C CLKOUT / UHPI_HDS2 / PRU1_R30[13] / GP6[14] T18 I CP[22] C (1) (2) (3) UHPI data bus UHPI access control UHPI data strobe I = Input, O = Output, I/O = Bidirectional, Z = High impedance, PWR = Supply voltage, GND = Ground, A = Analog signal. Note: The pin type shown refers to the input, output or high-impedance state of the pin function when configured as the signal name highlighted in bold. All multiplexed signals may enter a high-impedance state when the configured function is input-only or the configured function supports high-Z operation. All GPIO signals can be used as input or output. For multiplexed pins where functions have different types (ie., input versus output), the table reflects the pin function direction for that particular peripheral. IPD = Internal Pulldown resistor; IPU = Internal Pullup resistor; CP[n] = configurable pull-up/pull-down (where n is the pin group) using the PUPDENA and PUPDSEL registers in the System Module. The pull-up and pull-down control of these pins is not active until the device is out of reset. During reset, all of the pins associated with these registers are pulled down. If the application requires a pull-up, an external pull-up can be used. For more detailed information on pullup/pulldown resistors and situations where external pullup/pulldown resistors are required, see the Device Configuration section. For electrical specifications on pullup and internal pulldown circuits, see the Device Operating Conditions section. This signal is part of a dual-voltage IO group (A, B or C). These groups can be operated at 3.3V or 1.8V nominal. The three groups can be operated at independent voltages but all pins withina group will operate at the same voltage. Group A operates at the voltage of power supply DVDD3318_A. Group B operates at the voltage of power supply DVDD3318_B. Group C operates at the voltage of power supply DVDD3318_C. Device Comparison Copyright © 2009–2017, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: OMAP-L138 57 OMAP-L138 SPRS586J – JUNE 2009 – REVISED JANUARY 2017 www.ti.com Table 3-26. Universal Host-Port Interface (UHPI) Terminal Functions (continued) SIGNAL NAME NO. TYPE (1) PULL (2) POWER GROUP (3) DESCRIPTION PRU0_R30[30] / UHPI_HINT / PRU1_R30[11] / GP6[12] R16 O CP[23] C UHPI host interrupt PRU0_R30[31] / UHPI_HRDY / PRU1_R30[12] /GP6[13] R17 O CP[23] C UHPI ready RESETOUT / UHPI_HAS / PRU1_R30[14] / GP6[15] T17 I CP[21] C UHPI address strobe 58 Device Comparison Copyright © 2009–2017, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: OMAP-L138 OMAP-L138 www.ti.com 3.8.23 SPRS586J – JUNE 2009 – REVISED JANUARY 2017 Universal Parallel Port (uPP) Table 3-27. Universal Parallel Port (uPP) Terminal Functions SIGNAL TYPE (1) PULL (2) POWER GROUP (3) DESCRIPTION W14 I CP[25] C uPP 2x transmit clock input PRU0_R30[25] /MMCSD1_DAT[0] / UPP_CHB_CLOCK / GP8[15]/PRU1_R31[27] G1 I/O CP[30] C uPP channel B clock PRU0_R30[24]/ MMCSD1_CLK / UPP_CHB_START / GP8[14] / PRU1_R31[26] G2 I/O CP[30] C uPP channel B start PRU0_R30[23] / MMCSD1_CMD / UPP_CHB_ENABLE / GP8[13]/PRU1_R31[25] J4 I/O CP[30] C uPP channel B enable PRU0_R30[22] / PRU1_R30[8] / UPP_CHB_WAIT / GP8[12]/ PRU1_R31[24] G3 I/O CP[30] C uPP channel B wait PRU0_R30[29] /UHPI_HCNTL0 / UPP_CHA_CLOCK / GP6[11] U17 I/O CP[24] C uPP channel A clock PRU0_R30[28] / UHPI_HCNTL1 / UPP_CHA_START / GP6[10] W15 I/O CP[24] C uPP channel A start PRU0_R30[27] / UHPI_HHWIL / UPP_CHA_ENABLE / GP6[9] U16 I/O CP[24] C uPP channel A enable PRU0_R30[26] /UHPI_HRW / UPP_CHA_WAIT / GP6[8] / PRU1_R31[17] T15 I/O CP[24] C uPP channel A wait NAME NO. VP_CLKIN0 / UHPI_HCS /PRU1_R30[10] / GP6[7] / UPP_2xTXCLK (1) (2) (3) I = Input, O = Output, I/O = Bidirectional, Z = High impedance, PWR = Supply voltage, GND = Ground, A = Analog signal. Note: The pin type shown refers to the input, output or high-impedance state of the pin function when configured as the signal name highlighted in bold. All multiplexed signals may enter a high-impedance state when the configured function is input-only or the configured function supports high-Z operation. All GPIO signals can be used as input or output. For multiplexed pins where functions have different types (ie., input versus output), the table reflects the pin function direction for that particular peripheral. IPD = Internal Pulldown resistor; IPU = Internal Pullup resistor; CP[n] = configurable pull-up/pull-down (where n is the pin group) using the PUPDENA and PUPDSEL registers in the System Module. The pull-up and pull-down control of these pins is not active until the device is out of reset. During reset, all of the pins associated with these registers are pulled down. If the application requires a pull-up, an external pull-up can be used. For more detailed information on pullup/pulldown resistors and situations where external pullup/pulldown resistors are required, see the Device Configuration section. For electrical specifications on pullup and internal pulldown circuits, see the Device Operating Conditions section. This signal is part of a dual-voltage IO group (A, B or C). These groups can be operated at 3.3V or 1.8V nominal. The three groups can be operated at independent voltages but all pins withina group will operate at the same voltage. Group A operates at the voltage of power supply DVDD3318_A. Group B operates at the voltage of power supply DVDD3318_B. Group C operates at the voltage of power supply DVDD3318_C. Device Comparison Copyright © 2009–2017, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: OMAP-L138 59 OMAP-L138 SPRS586J – JUNE 2009 – REVISED JANUARY 2017 www.ti.com Table 3-27. Universal Parallel Port (uPP) Terminal Functions (continued) SIGNAL NAME NO. TYPE (1) PULL (2) POWER GROUP (3) VP_DOUT[7] / LCD_D[7] / UPP_XD[15] / GP7[15] / PRU1_R31[15] U2 I/O CP[28] C VP_DOUT[6] / LCD_D[6] / UPP_XD[14] / GP7[14] / PRU1_R31[14] U1 I/O CP[28] C VP_DOUT[5] / LCD_D[5] / UPP_XD[13] / GP7[13] / PRU1_R31[13] V3 I/O CP[28] C VP_DOUT[4] / LCD_D[4] / UPP_XD[12] / GP7[12] / PRU1_R31[12] V2 I/O CP[28] C VP_DOUT[3] / LCD_D[3] / UPP_XD[11] / GP7[11] / PRU1_R31[11] V1 I/O CP[28] C VP_DOUT[2] / LCD_D[2] / UPP_XD[10] / GP7[10] / PRU1_R31[10] W3 I/O CP[28] C VP_DOUT[1] / LCD_D[1] / UPP_XD[9] / GP7[9] / PRU1_R31[9] W2 I/O CP[28] C VP_DOUT[0] / LCD_D[0] / UPP_XD[8] / GP7[8] / PRU1_R31[8] W1 I/O CP[28] C VP_DOUT[15] / LCD_D[15] / UPP_XD[7] / GP7[7] / BOOT[7] P4 I/O CP[29] C VP_DOUT[14] / LCD_D[14] / UPP_XD[6] / GP7[6] / BOOT[6] R3 I/O CP[29] C VP_DOUT[13] / LCD_D[13] / UPP_XD[5] / GP7[5] / BOOT[5] R2 I/O CP[29] C VP_DOUT[12] / LCD_D[12] / UPP_XD[4] / GP7[4] / BOOT[4] R1 I/O CP[29] C VP_DOUT[11] / LCD_D[11] / UPP_XD[3] / GP7[3] / BOOT[3] T3 I/O CP[29] C VP_DOUT[10] / LCD_D[10] / UPP_XD[2] / GP7[2] / BOOT[2] T2 I/O CP[29] C VP_DOUT[9] / LCD_D[9] / UPP_XD[1] / GP7[1] / BOOT[1] T1 I/O CP[29] C VP_DOUT[8] / LCD_D[8] / UPP_XD[0] / GP7[0] / BOOT[0] U3 I/O CP[29] C VP_DIN[7] / UHPI_HD[15] / UPP_D[15] / RMII_TXD[1] / PRU0_R31[29] U18 I/O CP[26] C VP_DIN[6] / UHPI_HD[14] / UPP_D[14] / RMII_TXD[0] / PRU0_R31[28] V16 I/O CP[26] C VP_DIN[5] / UHPI_HD[13] / UPP_D[13] / RMII_TXEN / PRU0_R31[27] R14 I/O CP[26] C VP_DIN[4] / UHPI_HD[12] / UPP_D[12] / RMII_RXD[1] / PRU0_R31[26] W16 I/O CP[26] C VP_DIN[3] / UHPI_HD[11] / UPP_D[11] / RMII_RXD[0] / PRU0_R31[25] V17 I/O CP[26] C VP_DIN[2] / UHPI_HD[10] / UPP_D[10] / RMII_RXER / PRU0_R31[24] W17 I/O CP[26] C VP_DIN[1] / UHPI_HD[9] / UPP_D[9] / RMII_MHZ_50_CLK / PRU0_R31[23] W18 I/O CP[26] C VP_DIN[0] / UHPI_HD[8] / UPP_D[8] / RMII_CRS_DV / PRU1_R31[29] W19 I/O CP[26] C VP_DIN[15]_VSYNC / UHPI_HD[7] / UPP_D[7]/PRU0_R30[15] / PRU0_R31[15] V18 I/O CP[27] C VP_DIN[14]_HSYNC / UHPI_HD[6] / UPP_D[6]/ PRU0_R30[14] / PRU0_R31[14] V19 I/O CP[27] C VP_DIN[13]_FIELD / UHPI_HD[5] / UPP_D[5] /PRU0_R30[13] / PRU0_R31[13] U19 I/O CP[27] C VP_DIN[12] / UHPI_HD[4] / UPP_D[4]/ PRU0_R30[12] / PRU0_R31[12] T16 I/O CP[27] C VP_DIN[11] / UHPI_HD[3] / UPP_D[3]/ PRU0_R30[11] / PRU0_R31[11] R18 I/O CP[27] C VP_DIN[10] / UHPI_HD[2] / UPP_D[2]/ PRU0_R30[10] / PRU0_R31[10] R19 I/O CP[27] C VP_DIN[9] / UHPI_HD[1] / UPP_D[1]/ PRU0_R30[9] / PRU0_R31[9] R15 I/O CP[27] C VP_DIN[8] / UHPI_HD[0] / UPP_D[0] / GP6[5] / PRU1_R31[0] P17 I/O CP[27] C 60 Device Comparison DESCRIPTION uPP data bus Copyright © 2009–2017, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: OMAP-L138 OMAP-L138 www.ti.com 3.8.24 SPRS586J – JUNE 2009 – REVISED JANUARY 2017 Video Port Interface (VPIF) Table 3-28. Video Port Interface (VPIF) Terminal Functions SIGNAL NAME NO. TYPE (1) PULL (2) POWER GROUP (3) DESCRIPTION VIDEO INPUT VP_CLKIN0 / UHPI_HCS / PRU1_R30[10] / GP6[7] / UPP_2xTXCLK W14 I CP[25] C VPIF capture channel 0 input clock VP_CLKIN1 / UHPI_HDS1/PRU1_R30[9] / GP6[6] / PRU1_R31[16] V15 I CP[25] C VPIF capture channel 1 input clock VP_DIN[15]_VSYNC / UHPI_HD[7] / UPP_D[7] / PRU0_R30[15] / PRU0_R31[15] V18 I CP[27] C VP_DIN[14]_HSYNC / UHPI_HD[6] / UPP_D[6] / RU0_R30[14] / PRU0_R31[14] V19 I CP[27] C VP_DIN[13]_FIELD / UHPI_HD[5] / UPP_D[5] / PRU0_R30[13] / PRU0_R31[13] U19 I CP[27] C VP_DIN[12] / UHPI_HD[4] / UPP_D[4] / PRU0_R30[12] / PRU0_R31[12] T16 I CP[27] C VP_DIN[11] / UHPI_HD[3] / UPP_D[3] / PRU0_R30[11] / PRU0_R31[11] R18 I CP[27] C VP_DIN[10] / UHPI_HD[2] / UPP_D[2] / PRU0_R30[10] / PRU0_R31[10] R19 I CP[27] C VP_DIN[9] / UHPI_HD[1] / UPP_D[1] / PRU0_R30[9] / PRU0_R31[9] R15 I CP[27] C VP_DIN[8] / UHPI_HD[0] / UPP_D[0] / GP6[5] / PRU1_R31[0] P17 I CP[27] C VP_DIN[7] / UHPI_HD[15] / UPP_D[15] / RMII_TXD[1] / PRU0_R31[29] U18 I CP[26] C VP_DIN[6] / UHPI_HD[14] / UPP_D[14] / RMII_TXD[0] / PRU0_R31[28] V16 I CP[26] C VP_DIN[5] / UHPI_HD[13] / UPP_D[13] / RMII_TXEN / PRU0_R31[27] R14 I CP[26] C VP_DIN[4] / UHPI_HD[12] / UPP_D[12] / RMII_RXD[1] / PRU0_R31[26] W16 I CP[26] C VP_DIN[3] / UHPI_HD[11] / UPP_D[11] / MII_RXD[0] / PRU0_R31[25] V17 I CP[26] C VP_DIN[2] / UHPI_HD[10] / UPP_D[10] / RMII_RXER / PRU0_R31[24] W17 I CP[26] C VP_DIN[1] / UHPI_HD[9] / UPP_D[9] / RMII_MHZ_50_CLK / PRU0_R31[23] W18 I CP[26] C VP_DIN[0] / UHPI_HD[8] / UPP_D[8] / RMII_CRS_DV / PRU1_R31[29] W19 I CP[26] C (1) (2) (3) VPIF capture data bus I = Input, O = Output, I/O = Bidirectional, Z = High impedance, PWR = Supply voltage, GND = Ground, A = Analog signal. Note: The pin type shown refers to the input, output or high-impedance state of the pin function when configured as the signal name highlighted in bold. All multiplexed signals may enter a high-impedance state when the configured function is input-only or the configured function supports high-Z operation. All GPIO signals can be used as input or output. For multiplexed pins where functions have different types (ie., input versus output), the table reflects the pin function direction for that particular peripheral. IPD = Internal Pulldown resistor; IPU = Internal Pullup resistor; CP[n] = configurable pull-up/pull-down (where n is the pin group) using the PUPDENA and PUPDSEL registers in the System Module. The pull-up and pull-down control of these pins is not active until the device is out of reset. During reset, all of the pins associated with these registers are pulled down. If the application requires a pull-up, an external pull-up can be used. or more detailed information on pullup/pulldown resistors and situations where external pullup/pulldown resistors are required, see the Device Configuration section. For electrical specifications on pullup and internal pulldown circuits, see the Device Operating Conditions section. This signal is part of a dual-voltage IO group (A, B or C). These groups can be operated at 3.3V or 1.8V nominal. The three groups can be operated at independent voltages but all pins withina group will operate at the same voltage. Group A operates at the voltage of power supply DVDD3318_A. Group B operates at the voltage of power supply DVDD3318_B. Group C operates at the voltage of power supply DVDD3318_C. Device Comparison Copyright © 2009–2017, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: OMAP-L138 61 OMAP-L138 SPRS586J – JUNE 2009 – REVISED JANUARY 2017 www.ti.com Table 3-28. Video Port Interface (VPIF) Terminal Functions (continued) SIGNAL NAME NO. TYPE (1) PULL (2) POWER GROUP (3) DESCRIPTION VIDEO OUTPUT VP_CLKIN2 / MMCSD1_DAT[3] / PRU1_R30[3] / GP6[4] / PRU1_R31[4] H3 I CP[30] C VPIF display channel 2 input clock VP_CLKOUT2 / MMCSD1_DAT[2] / PRU1_R30[2] / GP6[3] / PRU1_R31[3] K3 O CP[30] C VPIF display channel 2 output clock VP_CLKIN3 / MMCSD1_DAT[1] / PRU1_R30[1] / GP6[2] / PRU1_R31[2] J3 I CP[30] C VPIF display channel 3 input clock VP_CLKOUT3 / PRU1_R30[0] / GP6[1] / PRU1_R31[1] K4 O CP[30] C VPIF display channel 3 output clock VP_DOUT[15] / LCD_D[15] / UPP_XD[7] / GP7[7] / BOOT[7] P4 O CP[29] C VP_DOUT[14] / LCD_D[14] / UPP_XD[6] / GP7[6] / BOOT[6] R3 O CP[29] C VP_DOUT[13] / LCD_D[13] / UPP_XD[5] / GP7[5] / BOOT[5] R2 O CP[29] C VP_DOUT[12] / LCD_D[12] / UPP_XD[4] / GP7[4] / BOOT[4] R1 O CP[29] C VP_DOUT[11] / LCD_D[11] / UPP_XD[3] / GP7[3] / BOOT[3] T3 O CP[29] C VP_DOUT[10] / LCD_D[10] / UPP_XD[2] / GP7[2] / BOOT[2] T2 O CP[29] C VP_DOUT[9] / LCD_D[9] / UPP_XD[1] / GP7[1] / BOOT[1] T1 O CP[29] C VP_DOUT[8] / LCD_D[8] / UPP_XD[0] / GP7[0] / BOOT[0] U3 O CP[29] C VP_DOUT[7] / LCD_D[7] / UPP_XD[15] / GP7[15] / PRU1_R31[15] U2 O CP[28] C VP_DOUT[6] / LCD_D[6] / UPP_XD[14] / GP7[14] / PRU1_R31[14] U1 O CP[28] C VP_DOUT[5] / LCD_D[5] / UPP_XD[13] / GP7[13] / PRU1_R31[13] V3 O CP[28] C VP_DOUT[4] / LCD_D[4] / UPP_XD[12] / GP7[12] / PRU1_R31[12] V2 O CP[28] C VP_DOUT[3] / LCD_D[3] / UPP_XD[11] / GP7[11] / PRU1_R31[11] V1 O CP[28] C VP_DOUT[2] / LCD_D[2] / UPP_XD[10] / GP7[10] / PRU1_R31[10] W3 O CP[28] C VP_DOUT[1] / LCD_D[1] / UPP_XD[9] / GP7[9] / PRU1_R31[9] W2 O CP[28] C VP_DOUT[0] / LCD_D[0] / UPP_XD[8] / GP7[8] / PRU1_R31[8] W1 O CP[28] C 62 Device Comparison VPIF display data bus Copyright © 2009–2017, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: OMAP-L138 OMAP-L138 www.ti.com SPRS586J – JUNE 2009 – REVISED JANUARY 2017 3.8.25 General Purpose Input Output Table 3-29. General Purpose Input Output Terminal Functions SIGNAL NAME NO. TYPE (1) PULL (2) POWER GROUP (3) DESCRIPTION GP0 ACLKR / PRU0_R30[20] / GP0[15] / PRU0_R31[22] A1 I/O CP[0] A ACLKX / PRU0_R30[19] / GP0[14] / PRU0_R31[21] B1 I/O CP[0] A AFSR / GP0[13] / PRU0_R31[20] C2 I/O CP[0] A AFSX / GP0[12] / PRU0_R31[19] B2 I/O CP[0] A AHCLKR / PRU0_R30[18] / UART1_RTS / GP0[11] / PRU0_R31[18] A2 I/O CP[0] A AHCLKX / USB_REFCLKIN / UART1_CTS / GP0[10] / PRU0_R31[17] A3 I/O CP[0] A AMUTE / PRU0_R30[16] / UART2_RTS / GP0[9] / PRU0_R31[16] D5 I/O CP[0] A RTC_ALARM / UART2_CTS / GP0[8] / DEEPSLEEP F4 I/O CP[0] A AXR15 / EPWM0TZ[0] / ECAP2_APWM2 / GP0[7] A4 I/O CP[1] A AXR14 / CLKR1 / GP0[6] B4 I/O CP[2] A AXR13 / CLKX1 / GP0[5] B3 I/O CP[2] A AXR12 / FSR1 / GP0[4] C4 I/O CP[2] A AXR11 / FSX1 / GP0[3] C5 I/O CP[2] A AXR10 / DR1 / GP0[2] D4 I/O CP[2] A AXR9 / DX1 / GP0[1] C3 I/O CP[2] A AXR8 / CLKS1 / ECAP1_APWM1 /GP0[0] / PRU0_R31[8] E4 I/O CP[3] A (1) (2) (3) GPIO Bank 0 I = Input, O = Output, I/O = Bidirectional, Z = High impedance, PWR = Supply voltage, GND = Ground, A = Analog signal. Note: The pin type shown refers to the input, output or high-impedance state of the pin function when configured as the signal name highlighted in bold. All multiplexed signals may enter a high-impedance state when the configured function is input-only or the configured function supports high-Z operation. All GPIO signals can be used as input or output. For multiplexed pins where functions have different types (ie., input versus output), the table reflects the pin function direction for that particular peripheral. IPD = Internal Pulldown resistor; IPU = Internal Pullup resistor; CP[n] = configurable pull-up/pull-down (where n is the pin group) using the PUPDENA and PUPDSEL registers in the System Module. The pull-up and pull-down control of these pins is not active until the device is out of reset. During reset, all of the pins associated with these registers are pulled down. If the application requires a pull-up, an external pull-up can be used. For more detailed information on pullup/pulldown resistors and situations where external pullup/pulldown resistors are required, see the Device Configuration section. For electrical specifications on pullup and internal pulldown circuits, see the Device Operating Conditions section. This signal is part of a dual-voltage IO group (A, B or C). These groups can be operated at 3.3V or 1.8V nominal. The three groups can be operated at independent voltages but all pins withina group will operate at the same voltage. Group A operates at the voltage of power supply DVDD3318_A. Group B operates at the voltage of power supply DVDD3318_B. Group C operates at the voltage of power supply DVDD3318_C. Device Comparison Copyright © 2009–2017, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: OMAP-L138 63 OMAP-L138 SPRS586J – JUNE 2009 – REVISED JANUARY 2017 www.ti.com Table 3-29. General Purpose Input Output Terminal Functions (continued) SIGNAL NAME NO. TYPE (1) PULL (2) POWER GROUP (3) DESCRIPTION GP1 AXR7 / EPWM1TZ[0] / PRU0_R30[17] / GP1[15] / PRU0_R31[7] D2 I/O CP[4] A AXR6 / CLKR0 / GP1[14] / MII_TXEN / PRU0_R31[6] C1 I/O CP[5] A AXR5 / CLKX0 / GP1[13] / MII_TXCLK D3 I/O CP[5] A AXR4 / FSR0 / GP1[12] / MII_COL D1 I/O CP[5] A AXR3 / FSX0 / GP1[11] / MII_TXD[3] E3 I/O CP[5] A AXR2 / DR0 / GP1[10] / MII_TXD[2] E2 I/O CP[5] A AXR1 / DX0 / GP1[9] / MII_TXD[1] E1 I/O CP[5] A SPI0_CLK / EPWM0A / GP1[8] / MII_RXCLK D19 I/O CP[7] A SPI0_SCS[1] / TM64P0_OUT12 / GP1[7] / MDCLK / TM64P0_IN12 E16 I/O CP[10] A SPI0_SCS[0] / TM64P1_OUT12 / GP1[6] / MDIO / TM64P1_IN12 D17 I/O CP[10] A SPI1_SCS[7] / I2C0_SCL / TM64P2_OUT12 / GP1[5] G16 I/O CP[11] A SPI1_SCS[6] / I2C0_SDA / TM64P3_OUT12 / GP1[4] G18 I/O CP[11] A SPI1_SCS[5] / UART2_RXD / I2C1_SCL / GP1[3] F17 I/O CP[12] A SPI1_SCS[4] / UART2_TXD / I2C1_SDA / GP1[2] F16 I/O CP[12] A SPI1_SCS[3] / UART1_RXD / SATA_LED / GP1[1] E18 I/O CP[13] A SPI1_SCS[2] / UART1_TXD / SATA_CP_POD / GP1[0] F19 I/O CP[13] A 64 Device Comparison GPIO Bank 1 Copyright © 2009–2017, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: OMAP-L138 OMAP-L138 www.ti.com SPRS586J – JUNE 2009 – REVISED JANUARY 2017 Table 3-29. General Purpose Input Output Terminal Functions (continued) SIGNAL NAME NO. TYPE (1) PULL (2) POWER GROUP (3) DESCRIPTION GP2 SPI1_SCS[1] / EPWM1A / PRU0_R30[8] / GP2[15] / TM64P2_IN12 F18 I/O CP[14] A SPI1_SCS[0] / EPWM1B / PRU0_R30[7] / GP2[14] / TM64P3_IN12 E19 I/O CP[14] A SPI1_CLK / GP2[13] G19 I/O CP[15] A SPI1_ENA / GP2[12] H16 I/O CP[15] A SPI1_SOMI / GP2[11] H17 I/O CP[15] A SPI1_SIMO / GP2[10] G17 I/O CP[15] A EMA_BA[1] / GP2[9] A15 I/O CP[16] B EMA_BA[0] / GP2[8] C15 I/O CP[16] B B7 I/O CP[16] B EMA_SDCKE / PRU0_R30[4] / GP2[6] / PRU0_R31[4] D8 I/O CP[16] B EMA_RAS / PRU0_R30[3] / GP2[5] / PRU0_R31[3] A16 I/O CP[16] B EMA_CAS / PRU0_R30[2] / GP2[4] / PRU0_R31[2] A9 I/O CP[16] B EMA_WEN_DQM[0] / GP2[3] C8 I/O CP[16] B EMA_WEN_DQM[1] / GP2[2] A5 I/O CP[16] B EMA_WAIT[1] / PRU0_R30[1] / GP2[1] / PRU0_R31[1] B19 I/O CP[16] B A18 I/O CP[16] B EMA_CLK / PRU0_R30[5] / GP2[7] / PRU0_R31[5] EMA_CS[0] / GP2[0] GPIO Bank 2 GP3 EMA_CS[2] / GP3[15] B17 I/O CP[16] B EMA_CS[3] / GP3[14] A17 I/O CP[16] B EMA_CS[4] / GP3[13] F9 I/O CP[16] B EMA_CS[5] / GP3[12] B16 I/O CP[16] B EMA_WE / GP3[11] B9 I/O CP[16] B EMA_OE / GP3[10] B15 I/O CP[16] B EMA_A_RW / GP3[9] D10 I/O CP[16] B EMA_WAIT[0] / PRU0_R30[0] / GP3[8] / PRU0_R31[0] B18 I/O CP[16] B EMA_D[15] / GP3[7] E6 I/O CP[17] B EMA_D[14] / GP3[6] C7 I/O CP[17] B EMA_D[13] / GP3[5] B6 I/O CP[17] B EMA_D[12] / GP3[4] A6 I/O CP[17] B EMA_D[11] / GP3[3] D6 I/O CP[17] B EMA_D[10] / GP3[2] A7 I/O CP[17] B EMA_D[9] / GP3[1] D9 I/O CP[17] B EMA_D[8] / GP3[0] E10 I/O CP[17] B GPIO Bank 3 Device Comparison Copyright © 2009–2017, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: OMAP-L138 65 OMAP-L138 SPRS586J – JUNE 2009 – REVISED JANUARY 2017 www.ti.com Table 3-29. General Purpose Input Output Terminal Functions (continued) SIGNAL NAME NO. TYPE (1) PULL (2) POWER GROUP (3) DESCRIPTION GP4 EMA_D[7] / GP4[15] D7 I/O CP[17] B EMA_D[6] / GP4[14] C6 I/O CP[17] B EMA_D[5] / GP4[13] E7 I/O CP[17] B EMA_D[4] / GP4[12] B5 I/O CP[17] B EMA_D[3] / GP4[11] E8 I/O CP[17] B EMA_D[2] / GP4[10] B8 I/O CP[17] B EMA_D[1] / GP4[9] A8 I/O CP[17] B EMA_D[0] / GP4[8] C9 I/O CP[17] B MMCSD0_CLK / PRU1_R30[31] / GP4[7] E9 I/O CP[18] B EMA_A[22] / MMCSD0_CMD / PRU1_R30[30] / GP4[6] A10 I/O CP[18] B EMA_A[21] / MMCSD0_DAT[0] / PRU1_R30[29] / GP4[5] B10 I/O CP[18] B EMA_A[20] / MMCSD0_DAT[1] / PRU1_R30[28] / GP4[4] A11 I/O CP[18] B EMA_A[19] / MMCSD0_DAT[2] / PRU1_R30[27] / GP4[3] C10 I/O CP[18] B EMA_A[18] / MMCSD0_DAT[3] / PRU1_R30[26] / GP4[2] E11 I/O CP[18] B EMA_A[17] / MMCSD0_DAT[4] / PRU1_R30[25] / GP4[1] B11 I/O CP[18] B E12 I/O CP[18] B EMA_A[16] / MMCSD0_DAT[5] / PRU1_R30[24] / GP4[0] GPIO Bank 4 GP5 EMA_A[15] / MMCSD0_DAT[6] / PRU1_R30[23] / GP5[15] / PRU1_R31[23] C11 I/O CP[19] B EMA_A[14] / MMCSD0_DAT[7] / PRU1_R30[22] / GP5[14] / PRU1_R31[22] A12 I/O CP[19] B EMA_A[13] / PRU0_R30[21] / PRU1_R30[21] / GP5[13] / PRU1_R31[21] D11 I/O CP[19] B EMA_A[12] / PRU1_R30[20] / GP5[12] / PRU1_R31[20] D13 I/O CP[19] B EMA_A[11] / PRU1_R30[19] / GP5[11] / PRU1_R31[19] B12 I/O CP[19] B EMA_A[10] / PRU1_R30[18] / GP5[10] / PRU1_R31[18] C12 I/O CP[19] B EMA_A[9] / PRU1_R30[17] / GP5[9] D12 I/O CP[19] B EMA_A[8] / PRU1_R30[16] / GP5[8] A13 I/O CP[19] B EMA_A[7] / PRU1_R30[15] / GP5[7] B13 I/O CP[20] B EMA_A[6] / GP5[6] E13 I/O CP[20] B EMA_A[5] / GP5[5] C13 I/O CP[20] B EMA_A[4] / GP5[4] A14 I/O CP[20] B EMA_A[3] / GP5[3] D14 I/O CP[20] B EMA_A[2] / GP5[2] B14 I/O CP[20] B EMA_A[1] / GP5[1] D15 I/O CP[20] B EMA_A[0] / GP5[0] C14 I/O CP[20] B 66 Device Comparison GPIO Bank 5 Copyright © 2009–2017, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: OMAP-L138 OMAP-L138 www.ti.com SPRS586J – JUNE 2009 – REVISED JANUARY 2017 Table 3-29. General Purpose Input Output Terminal Functions (continued) SIGNAL NAME NO. TYPE (1) PULL (2) POWER GROUP (3) DESCRIPTION GP6 RESETOUT / UHPI_HAS / PRU1_R30[14] / GP6[15] T17 I/O CP[21] C CLKOUT / UHPI_HDS2 / PRU1_R30[13] / GP6[14] T18 I/O CP[22] C PRU0_R30[31] / UHPI_HRDY / PRU1_R30[12] / GP6[13] R17 I/O CP[23] C PRU0_R30[30] / UHPI_HINT / PRU1_R30[11] / GP6[12] R16 I/O CP[23] C PRU0_R30[29] / UHPI_HCNTL0 / UPP_CHA_CLOCK / GP6[11] U17 I/O CP[24] C PRU0_R30[28] / UHPI_HCNTL1 / UPP_CHA_START / GP6[10] W15 I/O CP[24] C PRU0_R30[27] / UHPI_HHWIL / UPP_CHA_ENABLE / GP6[9] U16 I/O CP[24] C PRU0_R30[26] / UHPI_HRW / UPP_CHA_WAIT/GP6[8] / PRU1_R31[17] T15 I/O CP[24] C VP_CLKIN0 / UHPI_HCS / PRU1_R30[10] GP6[7] / UPP_2xTXCLK W14 I/O CP[25] C VP_CLKIN1 / UHPI_HDS1 / PRU1_R30[9] / GP6[6] / PRU1_R31[16] V15 I/O CP[25] C VP_DIN[8] / UHPI_HD[0] / UPP_D[0] / GP6[5] / PRU1_R31[0] P17 I/O CP[27] C VP_CLKIN2 / MMCSD1_DAT[3] / PRU1_R30[3] / GP6[4] / PRU1_R31[4] H3 I/O CP[30] C VP_CLKOUT2 / MMCSD1_DAT[2] / PRU1_R30[2] / GP6[3] / PRU1_R31[3] K3 I/O CP[30] C VP_CLKIN3 / MMCSD1_DAT[1] / PRU1_R30[1] / GP6[2] / PRU1_R31[2] J3 I/O CP[30] C VP_CLKOUT3 / PRU1_R30[0] / GP6[1] / PRU1_R31[1] K4 I/O CP[30] C R5 I/O CP[31] C LCD_AC_ENB_CS / GP6[0] / PRU1_R31[28] GPIO Bank 6 GP7 VP_DOUT[7] / LCD_D[7] / UPP_XD[15] / GP7[15] / PRU1_R31[15] U2 I/O CP[28] C VP_DOUT[6] / LCD_D[6] / UPP_XD[14] / GP7[14] / PRU1_R31[14] U1 I/O CP[28] C VP_DOUT[5] / LCD_D[5] / UPP_XD[13] / GP7[13] / PRU1_R31[13] V3 I/O CP[28] C VP_DOUT[4] / LCD_D[4] / UPP_XD[12] / GP7[12] / PRU1_R31[12] V2 I/O CP[28] C VP_DOUT[3] / LCD_D[3] / UPP_XD[11] / GP7[11] / PRU1_R31[11] V1 I/O CP[28] C VP_DOUT[2] / LCD_D[2] / UPP_XD[10] / GP7[10] / PRU1_R31[10] W3 I/O CP[28] C VP_DOUT[1] / LCD_D[1] / UPP_XD[9] / GP7[9] / PRU1_R31[9] W2 I/O CP[28] C VP_DOUT[0] / LCD_D[0] / UPP_XD[8] / GP7[8] / PRU1_R31[8] W1 I/O CP[28] C VP_DOUT[15] / LCD_D[15] / UPP_XD[7] / GP7[7] / BOOT[7] P4 I/O CP[29] C VP_DOUT[14] / LCD_D[14] / UPP_XD[6] / GP7[6] / BOOT[6] R3 I/O CP[29] C VP_DOUT[13] / LCD_D[13] / UPP_XD[5] / GP7[5]/ BOOT[5] R2 I/O CP[29] C VP_DOUT[12] / LCD_D[12] / UPP_XD[4] / GP7[4] / BOOT[4] R1 I/O CP[29] C VP_DOUT[11] / LCD_D[11] / UPP_XD[3] / GP7[3] / BOOT[3] T3 I/O CP[29] C VP_DOUT[10] / LCD_D[10] / UPP_XD[2] / GP7[2] / BOOT[2] T2 I/O CP[29] C VP_DOUT[9] / LCD_D[9] / UPP_XD[1] / GP7[1] / BOOT[1] T1 I/O CP[29] C VP_DOUT[8] / LCD_D[8] / UPP_XD[0] / GP7[0] / BOOT[0] U3 I/O CP[29] C GPIO Bank 7 Device Comparison Copyright © 2009–2017, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: OMAP-L138 67 OMAP-L138 SPRS586J – JUNE 2009 – REVISED JANUARY 2017 www.ti.com Table 3-29. General Purpose Input Output Terminal Functions (continued) SIGNAL NAME NO. TYPE (1) PULL (2) POWER GROUP (3) DESCRIPTION GP8 PRU0_R30[25] / MMCSD1_DAT[0] / UPP_CHB_CLOCK / GP8[15] / PRU1_R31[27] G1 I/O CP30] C PRU0_R30[24] / MMCSD1_CLK / UPP_CHB_START / GP8[14] / PRU1_R31[26] G2 I/O CP[30] C PRU0_R30[23] / MMCSD1_CMD / UPP_CHB_ENABLE / GP8[13] / PRU1_R31[25] J4 I/O CP[30] C PRU0_R30[22] / PRU1_R30[8] / UPP_CHB_WAIT / GP8[12] / PRU1_R31[24] G3 I/O CP[30] C MMCSD1_DAT[7] / LCD_PCLK / PRU1_R30[7] / GP8[11] F1 I/O CP[31] C MMCSD1_DAT[6] / LCD_MCLK / PRU1_R30[6] / GP8[10] / PRU1_R31[7] F2 I/O CP[31] C MMCSD1_DAT[5] / LCD_HSYNC / PRU1_R30[5] / GP8[9] / PRU1_R31[6] H4 I/O CP[31] C MMCSD1_DAT[4] / LCD_VSYNC / PRU1_R30[4] / GP8[8] / PRU1_R31[5] G4 I/O CP[31] C AXR0 / ECAP0_APWM0 / GP8[7] / MII_TXD[0] / CLKS0 GPIO Bank 8 F3 I/O CP[6] A SPI0_SOMI / EPWMSYNCI / GP8[6] / MII_RXER C16 I/O CP[7] A SPI0_SIMO / EPWMSYNCO / GP8[5] / MII_CRS C18 I/O CP[7] A SPI0_SCS[5] / UART0_RXD / GP8[4] / MII_RXD[3] C19 I/O CP[8] A SPI0_SCS[4] / UART0_TXD / GP8[3] / MII_RXD[2] D18 I/O CP[8] A SPI0_SCS[3] / UART0_CTS / GP8[2] / MII_RXD[1] / SATA_MP_SWITCH E17 I/O CP[9] A SPI0_SCS[2] / UART0_RTS / GP8[1] / MII_RXD[0] / SATA_CP_DET D16 I/O CP[9] A RTCK / GP8[0] (4) K17 I/O IPD B (4) 68 GP8[0] is initially configured as a reserved function after reset and will not be in a predictable state. This signal will only be stable after the GPIO configuration for this pin has been completed. Users should carefully consider the system implications of this pin being in an unknown state after reset. Device Comparison Copyright © 2009–2017, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: OMAP-L138 OMAP-L138 www.ti.com SPRS586J – JUNE 2009 – REVISED JANUARY 2017 3.8.26 Reserved and No Connect Table 3-30. Reserved and No Connect Terminal Functions SIGNAL NAME RSV2 NC (1) NO. T19 M3, M14, N16 TYPE (1) PWR DESCRIPTION Reserved. For proper device operation, this pin must be tied either directly to CVDD or left unconnected (do not connect to ground). Pin M3 should be left unconnected (do not connect to power or ground) Pins M14 and N16 may be left unconnected or connected to ground (VSS) PWR = Supply voltage. Device Comparison Copyright © 2009–2017, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: OMAP-L138 69 OMAP-L138 SPRS586J – JUNE 2009 – REVISED JANUARY 2017 www.ti.com 3.8.27 Supply and Ground Table 3-31. Supply and Ground Terminal Functions SIGNAL NAME TYPE (1) NO. DESCRIPTION CVDD (Core supply) E15, G7, G8, G13, H6, H7, H10, H11, H12, H13, J6, J12, K6, K12, L12, M8, M9, N8 PWR Variable (1.3V - 1.0V) core supply voltage pins RVDD (Internal RAM supply) E5, H14, N7 PWR 1.3V internal ram supply voltage pins (for 456 MHz versions) 1.2V internal ram supply voltage pins (for 375 MHz versions) DVDD18 (I/O supply) F14, G6, G10, G11, G12, J13, K5, L6, P13, R13 PWR 1.8V I/O supply voltage pins. DVDD18 must be powered even if all of the DVDD3318_x supplies are operated at 3.3V. DVDD3318_A (I/O supply) F5, F15, G5, G14, G15, H5 PWR 1.8V or 3.3-V dual-voltage LVCMOS I/O supply voltage pins, Group A DVDD3318_B (I/O supply) E14, F6, F7, F8, F10, F11, F12, F13, G9, J14, K15 PWR 1.8V or 3.3-V dual-voltage LVCMOS I/O supply voltage pins, Group B DVDD3318_C (I/O supply) J5, K13, L4, L13, M13, N13, P5, P6, P12, R4 PWR 1.8V or 3.3-V dual-voltage LVCMOS I/O supply voltage pins, Group C VSS (Ground) A19, H8, H9, H15, J7, J8, J9, J10, J11, K7, K8, K9, K10, K11, L5, L7, L8, L9, L10, L11, M4, M5, M6, M7, M10, M11, N5, N11, N12, P11 GND Ground pins. USB0_VDDA33 N18 PWR USB0 PHY 3.3-V supply USB0_VDDA18 N14 PWR USB0 PHY 1.8-V supply input USB0_VDDA12 N17 A USB_CVDD M12 PWR USB0 core logic 1.2-V supply input USB1_VDDA33 P15 PWR USB1 PHY 3.3-V supply USB1_VDDA18 P14 PWR USB1 PHY 1.8-V supply SATA_VDD M2, N4, P1, P2 PWR SATA PHY 1.2V logic supply SATA_VSS H1, H2, K1, K2, L3, M1 GND SATA PHY ground reference DDR_DVDD18 N6, N9, N10, P7, P8, P9, P10, R7, R8, R9 PWR DDR PHY 1.8V power supply pins (1) 70 USB0 PHY 1.2-V LDO output for bypass cap PWR = Supply voltage, GND - Ground. Device Comparison Copyright © 2009–2017, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: OMAP-L138 OMAP-L138 www.ti.com 3.9 SPRS586J – JUNE 2009 – REVISED JANUARY 2017 Unused Pin Configurations All signals multiplexed with multiple functions may be used as an alternate function if a given peripheral is not used. Unused non-multiplexed signals and some other specific signals should be handled as specified in the tables below. If NMI is unused, it should be pulled-high externally through a 10k-ohm resistor to supply DVDD3318_B. Table 3-32. Unused USB0 and USB1 Signal Configurations SIGNAL NAME Configuration (When USB0 and USB1 are not used) Configuration (When only USB1 is not used) Configuration (When USB1 is used and USB0 is not used) USB0_DM No Connect Use as USB0 function VSS or No Connect USB0_DP No Connect Use as USB0 function VSS or No Connect USB0_ID No Connect Use as USB0 function No Connect USB0_VBUS No Connect Use as USB0 function No Connect USB0_DRVVBU S No Connect Use as USB0 function No Connect USB0_VDDA33 No Connect 3.3V 3.3V USB0_VDDA18 No Connect 1.8V 1.8V USB0_VDDA12 Internal USB PHY output connected to an external 0.22-μF filter capacitor USB1_DM No Connect VSS or No Connect Use as USB1 function USB1_DP No Connect VSS or No Connect Use as USB1 function USB1_VDDA33 No Connect No Connect Use as USB1 function USB1_VDDA18 No Connect No Connect Use as USB1 function USB_REFCLKIN No Connect or other peripheral function Use for USB0 or other peripheral function Ext Ref Clk / USB0 PHY PLL output (see SPRUH77 Device Clocking) USB_CVDD 1.2V 1.2V 1.2V Table 3-33. Unused SATA Signal Configuration SIGNAL NAME Configuration SATA_RXP No Connect SATA_RXN No Connect SATA_TXP No Connect SATA_TXN No Connect SATA_REFCLKP No Connect SATA_REFCLKN No Connect SATA_MP_SWITCH May be used as GPIO or other peripheral function SATA_CP_DET May be used as GPIO or other peripheral function SATA_CP_POD May be used as GPIO or other peripheral function SATA_LED May be used as GPIO or other peripheral function SATA_REG No Connect SATA_VDDR No Connect SATA_VDD Prior to silicon revision 2.0, this supply must be connected to a static 1.2V nominal supply. For silicon revision 2.0 and later, this supply may be left unconnected for additional power conservation. SATA_VSS VSS Table 3-34. Unused RTC Signal Configuration SIGNAL NAME Configuration RTC_XI May be held high (CVDD) or low RTC_XO No Connect RTC_ALARM May be used as GPIO or other peripheral function Device Comparison Copyright © 2009–2017, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: OMAP-L138 71 OMAP-L138 SPRS586J – JUNE 2009 – REVISED JANUARY 2017 www.ti.com Table 3-34. Unused RTC Signal Configuration (continued) SIGNAL NAME Configuration RTC_CVDD Connect to CVDD RTC_VSS VSS Table 3-35. Unused DDR2/mDDR Memory Controller Signal Configuration SIGNAL NAME (1) 72 Configuration DDR_D[15:0] No Connect DDR_A[13:0] No Connect DDR_CLKP No Connect DDR_CLKN No Connect DDR_CKE No Connect DDR_WE No Connect DDR_RAS No Connect DDR_CAS No Connect DDS_CS No Connect DDR_DQM[1:0] No Connect DDR_DQS[1:0] No Connect DDR_BA[2:0] No Connect DDR_DQGATE0 No Connect DDR_DQGATE1 No Connect DDR_ZP No Connect DDR_VREF No Connect DDR_DVDD18 No Connect (1) The DDR2/mDDR input buffers are enabled by default on device power up and a maximum current draw of 25mA can result on the 1.8V supply. To minimize power consumption, the DDR2/mDDR controller input receivers should be placed in power-down mode by setting VTPIO[14] = 1. Device Comparison Copyright © 2009–2017, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: OMAP-L138 OMAP-L138 www.ti.com SPRS586J – JUNE 2009 – REVISED JANUARY 2017 4 Device Configuration 4.1 Boot Modes This device supports a variety of boot modes through an internal ARM ROM bootloader. This device does not support dedicated hardware boot modes; therefore, all boot modes utilize the internal ARM ROM. The input states of the BOOT pins are sampled and latched into the BOOTCFG register, which is part of the system configuration (SYSCFG) module, when device reset is deasserted. Boot mode selection is determined by the values of the BOOT pins. See Using the OMAP-L132/L138 Bootloader Application Report (SPRAB41) for more details on the ROM Boot Loader. The following boot modes are supported: • NAND Flash boot – 8-bit NAND – 16-bit NAND (supported on ROM revisions after d800k002 -- see the bootloader documents mentioned above to determine the ROM revision) • NOR Flash boot – NOR Direct boot (8-bit or 16-bit) – NOR Legacy boot (8-bit or 16-bit) – NOR AIS boot (8-bit or 16-bit) • HPI Boot • I2C0/I2C1 Boot – EEPROM (Master Mode) – External Host (Slave Mode) • SPI0/SPI1 Boot – Serial Flash (Master Mode) – SERIAL EEPROM (Master Mode) – External Host (Slave Mode) • UART0/UART1/UART2 Boot – External Host • MMC/SD0 Boot 4.2 SYSCFG Module The following system level features of the chip are controlled by the SYSCFG peripheral: • Readable Device, Die, and Chip Revision ID • Control of Pin Multiplexing • Priority of bus accesses different bus masters in the system • Capture at power on reset the chip BOOT pin values and make them available to software • Control of the DeepSleep power management function • Enable and selection of the programmable pin pullups and pulldowns Device Configuration Copyright © 2009–2017, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: OMAP-L138 73 OMAP-L138 SPRS586J – JUNE 2009 – REVISED JANUARY 2017 • • • www.ti.com Special case settings for peripherals: – Locking of PLL controller settings – Default burst sizes for EDMA3 transfer controllers – Selection of the source for the eCAP module input capture (including on chip sources) – McASP AMUTEIN selection and clearing of AMUTE status for the McASP – Control of the reference clock source and other side-band signals for both of the integrated USB PHYs – Clock source selection for EMIFA – DDR2 Controller PHY settings – SATA PHY power management controls Selects the source of emulation suspend signal (from either ARM or DSP) of peripherals supporting this function. Control of on-chip inter-processor interrupts for signaling between ARM and DSP Many registers are accessible only by a host (ARM or DSP) when it is operating in its privileged mode. (ex. from the kernel, but not from user space code). Table 4-1. System Configuration (SYSCFG) Module Register Access 74 BYTE ADDRESS ACRONYM 0x01C1 4000 REVID Revision Identification Register REGISTER DESCRIPTION REGISTER ACCESS — 0x01C1 4008 DIEIDR0 Device Identification Register 0 — 0x01C1 400C DIEIDR1 Device Identification Register 1 — 0x01C1 4010 DIEIDR2 Device Identification Register 2 — 0x01C1 4014 DIEIDR3 Device Identification Register 3 — 0x01C1 4020 BOOTCFG Boot Configuration Register Privileged mode 0x01C1 4038 KICK0R Kick 0 Register Privileged mode 0x01C1 403C KICK1R Kick 1 Register Privileged mode 0x01C1 4040 HOST0CFG Host 0 Configuration Register 0x01C1 4044 HOST1CFG Host 1 Configuration Register 0x01C1 40E0 IRAWSTAT Interrupt Raw Status/Set Register Privileged mode 0x01C1 40E4 IENSTAT Interrupt Enable Status/Clear Register Privileged mode — — 0x01C1 40E8 IENSET Interrupt Enable Register Privileged mode 0x01C1 40EC IENCLR Interrupt Enable Clear Register Privileged mode 0x01C1 40F0 EOI End of Interrupt Register Privileged mode 0x01C1 40F4 FLTADDRR Fault Address Register Privileged mode 0x01C1 40F8 FLTSTAT Fault Status Register 0x01C1 4110 MSTPRI0 Master Priority 0 Registers Privileged mode 0x01C1 4114 MSTPRI1 Master Priority 1 Registers Privileged mode 0x01C1 4118 MSTPRI2 Master Priority 2 Registers Privileged mode 0x01C1 4120 PINMUX0 Pin Multiplexing Control 0 Register Privileged mode 0x01C1 4124 PINMUX1 Pin Multiplexing Control 1 Register Privileged mode — 0x01C1 4128 PINMUX2 Pin Multiplexing Control 2 Register Privileged mode 0x01C1 412C PINMUX3 Pin Multiplexing Control 3 Register Privileged mode 0x01C1 4130 PINMUX4 Pin Multiplexing Control 4 Register Privileged mode 0x01C1 4134 PINMUX5 Pin Multiplexing Control 5 Register Privileged mode 0x01C1 4138 PINMUX6 Pin Multiplexing Control 6 Register Privileged mode 0x01C1 413C PINMUX7 Pin Multiplexing Control 7 Register Privileged mode 0x01C1 4140 PINMUX8 Pin Multiplexing Control 8 Register Privileged mode 0x01C1 4144 PINMUX9 Pin Multiplexing Control 9 Register Privileged mode 0x01C1 4148 PINMUX10 Pin Multiplexing Control 10 Register Privileged mode Device Configuration Copyright © 2009–2017, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: OMAP-L138 OMAP-L138 www.ti.com SPRS586J – JUNE 2009 – REVISED JANUARY 2017 Table 4-1. System Configuration (SYSCFG) Module Register Access (continued) BYTE ADDRESS ACRONYM 0x01C1 414C PINMUX11 Pin Multiplexing Control 11 Register REGISTER DESCRIPTION REGISTER ACCESS Privileged mode 0x01C1 4150 PINMUX12 Pin Multiplexing Control 12 Register Privileged mode 0x01C1 4154 PINMUX13 Pin Multiplexing Control 13 Register Privileged mode 0x01C1 4158 PINMUX14 Pin Multiplexing Control 14 Register Privileged mode 0x01C1 415C PINMUX15 Pin Multiplexing Control 15 Register Privileged mode 0x01C1 4160 PINMUX16 Pin Multiplexing Control 16 Register Privileged mode 0x01C1 4164 PINMUX17 Pin Multiplexing Control 17 Register Privileged mode 0x01C1 4168 PINMUX18 Pin Multiplexing Control 18 Register Privileged mode 0x01C1 416C PINMUX19 Pin Multiplexing Control 19 Register Privileged mode 0x01C1 4170 SUSPSRC Suspend Source Register Privileged mode 0x01C1 4174 CHIPSIG Chip Signal Register 0x01C1 4178 CHIPSIG_CLR 0x01C1 417C CFGCHIP0 Chip Configuration 0 Register Privileged mode 0x01C1 4180 CFGCHIP1 Chip Configuration 1 Register Privileged mode 0x01C1 4184 CFGCHIP2 Chip Configuration 2 Register Privileged mode 0x01C1 4188 CFGCHIP3 Chip Configuration 3 Register Privileged mode 0x01C1 418C CFGCHIP4 Chip Configuration 4 Register Privileged mode 0x01E2 C000 Chip Signal Clear Register — — VTPIO_CTL VTPIO COntrol Register Privileged mode DDR_SLEW DDR Slew Register Privileged mode 0x01E2 C008 DeepSleep DeepSleep Register Privileged mode 0x01E2 C00C PUPD_ENA Pullup / Pulldown Enable Register Privileged mode 0x01E2 C010 PUPD_SEL Pullup / Pulldown Selection Register Privileged mode 0x01E2 C014 RXACTIVE RXACTIVE Control Register Privileged mode 0x01E2 C018 PWRDN PWRDN Control Register Privileged mode 0x01E2 C004 Device Configuration Copyright © 2009–2017, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: OMAP-L138 75 OMAP-L138 SPRS586J – JUNE 2009 – REVISED JANUARY 2017 4.3 www.ti.com Pullup/Pulldown Resistors Proper board design should ensure that input pins to the device always be at a valid logic level and not floating. This may be achieved via pullup/pulldown resistors. The device features internal pullup (IPU) and internal pulldown (IPD) resistors on most pins to eliminate the need, unless otherwise noted, for external pullup/pulldown resistors. An external pullup/pulldown resistor needs to be used in the following situations: • Boot and Configuration Pins: If the pin is both routed out and 3-stated (not driven), an external pullup/pulldown resistor is strongly recommended, even if the IPU/IPD matches the desired value/state. • Other Input Pins: If the IPU/IPD does not match the desired value/state, use an external pullup/pulldown resistor to pull the signal to the opposite rail. For the boot and configuration pins, if they are both routed out and 3-stated (not driven), it is strongly recommended that an external pullup/pulldown resistor be implemented. Although, internal pullup/pulldown resistors exist on these pins and they may match the desired configuration value, providing external connectivity can help ensure that valid logic levels are latched on these device boot and configuration pins. In addition, applying external pullup/pulldown resistors on the boot and configuration pins adds convenience to the user in debugging and flexibility in switching operating modes. Tips for choosing an external pullup/pulldown resistor: • Consider the total amount of current that may pass through the pullup or pulldown resistor. Make sure to include the leakage currents of all the devices connected to the net, as well as any internal pullup or pulldown resistors. • Decide a target value for the net. For a pulldown resistor, this should be below the lowest VIL level of all inputs connected to the net. For a pullup resistor, this should be above the highest VIH level of all inputs on the net. A reasonable choice would be to target the VOL or VOH levels for the logic family of the limiting device; which, by definition, have margin to the VIL and VIH levels. • Select a pullup/pulldown resistor with the largest possible value; but, which can still ensure that the net will reach the target pulled value when maximum current from all devices on the net is flowing through the resistor. The current to be considered includes leakage current plus, any other internal and external pullup/pulldown resistors on the net. • For bidirectional nets, there is an additional consideration which sets a lower limit on the resistance value of the external resistor. Verify that the resistance is small enough that the weakest output buffer can drive the net to the opposite logic level (including margin). • Remember to include tolerances when selecting the resistor value. • For pullup resistors, also remember to include tolerances on the IO supply rail. • For most systems, a 1-kΩ resistor can be used to oppose the IPU/IPD while meeting the above criteria. Users should confirm this resistor value is correct for their specific application. • For most systems, a 20-kΩ resistor can be used to compliment the IPU/IPD on the boot and configuration pins while meeting the above criteria. Users should confirm this resistor value is correct for their specific application. • For more detailed information on input current (II), and the low-/high-level input voltages (VIL and VIH) for the device, see Section 5.3, Recommended Operating Conditions. • For the internal pullup/pulldown resistors for all device pins, see the peripheral/system-specific terminal functions table. 76 Specifications Copyright © 2009–2017, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: OMAP-L138 OMAP-L138 www.ti.com SPRS586J – JUNE 2009 – REVISED JANUARY 2017 5 Specifications 5.1 Absolute Maximum Ratings Over Operating Junction Temperature Range (Unless Otherwise Noted) (1) Core Logic, Variable and Fixed (CVDD, RVDD, RTC_CVDD, PLL0_VDDA , PLL1_VDDA , SATA_VDD, USB_CVDD) (2) -0.5 V to 1.4 V I/O, 1.8V (USB0_VDDA18, USB1_VDDA18, SATA_VDDR, DDR_DVDD18) (2) Supply voltage ranges -0.5 V to 2 V I/O, 3.3V (DVDD3318_A, DVDD3318_B, DVDD3318_C, USB0_VDDA33, USB1_VDDA33) (2) Input voltage (VI) ranges Oscillator inputs (OSCIN, RTC_XI), 1.2V -0.3 V to CVDD + 0.3V Dual-voltage LVCMOS inputs, 3.3V or 1.8V (Steady State) -0.3V to DVDD + 0.3V Dual-voltage LVCMOS inputs, operated at 3.3V (Transient Overshoot/Undershoot) DVDD + 20% up to 20% of Signal Period Dual-voltage LVCMOS inputs, operated at 1.8V (Transient Overshoot/Undershoot) DVDD + 30% up to 30% of Signal Period USB 5V Tolerant IOs: (USB0_DM, USB0_DP, USB0_ID, USB1_DM, USB1_DP) 5.25V (3) USB0 VBUS Pin 5.50V (3) Dual-voltage LVCMOS outputs, 3.3V or 1.8V (Steady State) Output voltage (VO) ranges -0.5 V to 3.8V -0.3 V to DVDD + 0.3V Dual-voltage LVCMOS outputs, operated at 3.3V (Transient Overshoot/Undershoot) DVDD + 20% up to 20% of Signal Period Dual-voltage LVCMOS outputs, operated at 1.8V (Transient Overshoot/Undershoot) DVDD + 30% up to 30% of Signal Period Input or Output Voltages 0.3V above or below their respective power rails. Limit clamp current that flows through the I/O's internal diode protection cells. Clamp Current ±20mA Commercial (default) Operating Junction Temperature ranges, TJ (1) (2) (3) 5.2 Extended (A suffix) -40°C to 105°C Handling Ratings ESD Stress Voltage, VESD (3) -40°C to 90°C Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability. All voltage values are with respect to VSS, USB0_VSSA33, USB0_VSSA, PLL0_VSSA, OSCVSS, RTC_VSS Up to a maximum of 24 hours. Storage temperature range, Tstg (1) (2) 0°C to 90°C Industrial (D suffix) (1) (default) Human Body Model (HBM) (2) Charged Device Model (CDM) (3) MIN MAX -55 150 UNIT °C >1 >1 kV >500 >500 V Electrostatic discharge (ESD) to measure device sensitivity/immunity to damage caused by electrostatic discharges into the device. Level listed above is the passing level per ANSI/ESDA/JEDEC JS-001-2010. JEDEC document JEP 155 states that 500V HBM allows safe manufacturing with a standard ESD control process, and manufacturing with less than 500V HBM is possible if necessary precautions are taken. Pins listed as 1000V may actually have higher performance. Level listed above is the passing level per EIA-JEDEC JESD22-C101E. JEDEC document JEP 157 states that 250V CDM allows safe manufacturing with a standard ESD control process. Pins listed as 250V may actually have higher performance. Specifications Copyright © 2009–2017, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: OMAP-L138 77 OMAP-L138 SPRS586J – JUNE 2009 – REVISED JANUARY 2017 5.3 www.ti.com Recommended Operating Conditions NAME DESCRIPTION CVDD Core Logic Supply Voltage (variable) RVDD RTC_CVDD Supply Voltage Internal RAM Supply Voltage (1) MIN NOM MAX 1.25 1.3 1.35 1.2V operating point 1.14 1.2 1.32 1.1V operating point 1.05 1.1 1.16 1.0V operating point 0.95 1.0 1.05 456 MHz versions 1.25 1.3 1.35 375 MHz versions 1.14 1.2 1.32 UNIT V V RTC Core Logic Supply Voltage 0.9 1.2 1.32 V PLL0_VDDA PLL0 Supply Voltage 1.14 1.2 1.32 V PLL1_VDDA PLL1 Supply Voltage 1.14 1.2 1.32 V SATA_VDD SATA Core Logic Supply Voltage 1.14 1.2 1.32 V USB_CVDD USB0, USB1 Core Logic Supply Voltage 1.14 1.2 1.32 V USB0_VDDA18 USB0 PHY Supply Voltage 1.71 1.8 1.89 V USB0_VDDA33 USB0 PHY Supply Voltage 3.15 3.3 3.45 V USB1_VDDA18 USB1 PHY Supply Voltage 1.71 1.8 1.89 V USB1_VDDA33 USB1 PHY Supply Voltage 3.15 3.3 3.45 V DVDD18 (2) 1.8V Logic Supply 1.71 1.8 1.89 V SATA_VDDR SATA PHY Internal Regulator Supply Voltage 1.71 1.8 1.89 V 2) DDR2 PHY Supply Voltage 1.71 1.8 1.89 V DDR_VREF DDR2/mDDR reference voltage 0.49* DDR_DVDD18 0.5* DDR_DVDD18 0.51* DDR_DVDD18 V DDR_ZP DDR2/mDDR impedance control, connected via 50Ω resistor to Vss DVDD3318_A Power Group A Dual-voltage IO Supply Voltage 1.8V operating point 1.71 1.8 1.89 V 3.3V operating point 3.15 3.3 3.45 V Power Group B Dual-voltage IO Supply Voltage 1.8V operating point 1.71 1.8 1.89 V 3.3V operating point 3.15 3.3 3.45 V DVDD3318_C Power Group C Dual-voltage IO Supply Voltage 1.8V operating point 1.71 1.8 1.89 V 3.3V operating point 3.15 3.3 3.45 V VSS Core Logic Digital Ground PLL0_VSSA PLL0 Ground PLL1_VSSA PLL1 Ground SATA_VSS SATA PHY Ground OSCVSS (3) Oscillator Ground 0 0 0 V RTC_VSS (3) RTC Oscillator Ground USB0_VSSA USB0 PHY Ground DDR_DVDD18 ( DVDD3318_B Supply Ground CONDITION 1.3V operating point Vss V USB0_VSSA33 USB0 PHY Ground High-level input voltage, Dual-voltage I/O, 3.3V (4) Voltage Input High VIH 2 V 0.65*DVDD V High-level input voltage, RTC_XI 0.8*RTC_CVDD V High-level input voltage, OSCIN 0.8*CVDD High-level input voltage, Dual-voltage I/O, 1.8V (4) Low-level input voltage, Dual-voltage I/O, 3.3V (4) Voltage Input Low (1) (2) (3) (4) 78 VIL V 0.8 V 0.35*DVDD V Low-level input voltage, RTC_XI 0.2*RTC_CVDD V Low-level input voltage, OSCIN 0.2*CVDD V Low-level input voltage, Dual-voltage I/O, 1.8V (4) The RTC provides an option for isolating the RTC_CVDD from the CVDD to reduce current leakage when the RTC is powered independently. If these power supplies are not isolated (CTRL.SPLITPOWER=0), RTC_CVDD must be equal to or greater than CVDD. If these power supplies are isolated (CTRL.SPLITPOWER=1), RTC_CVDD may be lower than CVDD. DVDD18 must be powered even if all of the DVDD3318_x supplies are operated at 3.3V. When an external crystal is used oscillator (OSC_VSS, RTC_VSS) ground must be kept separate from other grounds and connected directly to the crystal load capacitor ground. These pins are shorted to VSS on the device itself and should not be connected to VSS on the circuit board. If a crystal is not used and the clock input is driven directly, then the oscillator VSS may be connected to board ground. These IO specifications apply to the dual-voltage IOs only and do not apply to DDR2/mDDR or SATA interfaces. DDR2/mDDR IOs are 1.8V IOs and adhere to the JESD79-2A standard. Specifications Copyright © 2009–2017, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: OMAP-L138 OMAP-L138 www.ti.com SPRS586J – JUNE 2009 – REVISED JANUARY 2017 Recommended Operating Conditions (continued) NAME USB USB0_VBUS Differential Clock Input Voltage Transition Time DESCRIPTION CONDITION USB external charge pump input Differential input voltage, SATA_REFCLKP and SATA_REFCLKN tt FPLL0_SYSCLK1,6 Industrial temperature grade (D suffix) Extended temperature grade (A suffix) (5) (6) (7) MAX UNIT 0 5.25 V 250 2000 mV Transition time, 10%-90%, All Inputs (unless otherwise specified in the electrical data sections) Commercial temperature grade (default) Operating Frequency MIN NOM 0.25P or 10 CVDD = 1.3V operating point 0 456 (6) CVDD = 1.2V operating point 0 375 (7) CVDD = 1.1V operating point 0 200 (6) CVDD = 1.0V operating point 0 100 (6) CVDD = 1.3V operating point 0 456 (6) CVDD = 1.2V operating point 0 375 (7) CVDD = 1.1V operating point 0 200 (6) CVDD = 1.0V operating point 0 100 (6) CVDD = 1.2V operating point 0 375 (7) CVDD = 1.1V operating point 0 200 (6) CVDD = 1.0V operating point 0 100 (6) (5) ns MHz MHz MHz Whichever is smaller. P = the period of the applied signal. Maintaining transition times as fast as possible is recommended to improve noise immunity on input signals. This operating point is not supported on revision 1.x silicon. This operating point is 300 MHz on revision 1.x silicon. Specifications Copyright © 2009–2017, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: OMAP-L138 79 OMAP-L138 SPRS586J – JUNE 2009 – REVISED JANUARY 2017 5.4 www.ti.com Notes on Recommended Power-On Hours (POH) The information in the section below is provided solely for your convenience and does not extend or modify the warranty provided under TI’s standard terms and conditions for TI semiconductor products. To avoid significant degradation, the device power-on hours (POH) must be limited to the following: Table 5-1. Recommended Power-On Hours Silicon Revision Speed Grade Operating Junction Temperature (Tj) Nominal CVDD Voltage (V) Power-On Hours [POH] (hours) 100,000 (1) A 300 MHz 0 to 90 °C 1.2V B/E 375 MHz 0 to 90 °C 1.2V B/E 375 MHz -40 to 105 °C 1.2V B/E 456 MHz 0 to 90 °C 1.3V 100,000 B/E 456 MHz -40 to 90 °C 1.3V 100,000 100,000 75,000 (1) 100,000 POH can be achieved at this temperature condition if the device operation is limited to 345 MHz Note: Logic functions and parameter values are not assured out of the range specified in the recommended operating conditions. The above notations cannot be deemed a warranty or deemed to extend or modify the warranty under TI’s standard terms and conditions for TI semiconductor products. 80 Specifications Copyright © 2009–2017, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: OMAP-L138 OMAP-L138 www.ti.com 5.5 SPRS586J – JUNE 2009 – REVISED JANUARY 2017 Electrical Characteristics Over Recommended Ranges of Supply Voltage and Operating Junction Temperature (Unless Otherwise Noted) PARAMETER TEST CONDITIONS High-level output voltage (dual-voltage LVCMOS IOs at 3.3V) (1) VOH High-level output voltage (dual-voltage LVCMOS IOs at 1.8V) (1) Low-level output voltage (dual-voltage LVCMOS I/Os at 3.3V) VOL Low-level output voltage (dual-voltage LVCMOS I/Os at 1.8V) Input current (1) (dual-voltage LVCMOS I/Os) II (2) Input current (DDR2/mDDR I/Os) MIN TYP MAX UNIT DVDD= 3.15V, IOH = -4 mA 2.4 V DVDD= 3.15V, IOH = -100 μA 2.95 V DVDD-0.45 V DVDD= 1.71V, IOH = -2 mA DVDD= 3.15V, IOL = 4mA 0.4 V DVDD= 3.15V, IOL = 100 μA 0.2 V DVDD= 1.71V, IOL = 2mA 0.45 V VI = VSS to DVDD without opposing internal resistor ±9 μA VI = VSS to DVDD with opposing internal pullup resistor (3) 70 310 μA VI = VSS to DVDD with opposing internal pulldown resistor (3) -75 -270 μA VI = VSS to DVDD with opposing internal pulldown resistor (3) -77 -286 μA IOH High-level output current (1) (dual-voltage LVCMOS I/Os) -6 mA IOL Low-level output current (1) (dual-voltage LVCMOS I/Os) 6 mA Capacitance (1) (2) (3) Input capacitance (dual-voltage LVCMOS) 3 pF Output capacitance (dual-voltage LVCMOS) 3 pF These IO specifications apply to the dual-voltage IOs only and do not apply to DDR2/mDDR or SATA interfaces. DDR2/mDDR IOs are 1.8V IOs and adhere to the JESD79-2A standard. USB0 I/Os adhere to the USB2.0 standard. USB1 I/Os adhere to the USB1.1 standard. SATA I/Os adhere to the SATA-I and SATA-II standards. II applies to input-only pins and bi-directional pins. For input-only pins, II indicates the input leakage current. For bi-directional pins, II indicates the input leakage current and off-state (Hi-Z) output leakage current. Applies only to pins with an internal pullup (IPU) or pulldown (IPD) resistor. The pull-up and pull-down strengths shown represent the minimum and maximum strength across process variation. Specifications Copyright © 2009–2017, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: OMAP-L138 81 OMAP-L138 SPRS586J – JUNE 2009 – REVISED JANUARY 2017 www.ti.com 6 Peripheral Information and Electrical Specifications 6.1 Parameter Information 6.1.1 Parameter Information Device-Specific Information Tester Pin Electronics 42 Ω 3.5 nH Transmission Line Z0 = 50 Ω (see note) 4.0 pF A. 1.85 pF Data Sheet Timing Reference Point Output Under Test Device Pin (see note) The data sheet provides timing at the device pin. For output timing analysis, the tester pin electronics and its transmission line effects must be taken into account. A transmission line with a delay of 2 ns or longer can be used to produce the desired transmission line effect. The transmission line is intended as a load only. It is not necessary to add or subtract the transmission line delay (2 ns or longer) from the data sheet timings. Input requirements in this data sheet are tested with an input slew rate of < 4 Volts per nanosecond (4 V/ns) at the device pin and the input signals are driven between 0V and the appropriate IO supply rail for the signal. Figure 6-1. Test Load Circuit for AC Timing Measurements The load capacitance value stated is only for characterization and measurement of AC timing signals. This load capacitance value does not indicate the maximum load the device is capable of driving. 6.1.1.1 Signal Transition Levels All input and output timing parameters are referenced to Vref for both "0" and "1" logic levels. For 3.3 V I/O, Vref = 1.65 V. For 1.8 V I/O, Vref = 0.9 V. For 1.2 V I/O, Vref = 0.6 V. Vref Figure 6-2. Input and Output Voltage Reference Levels for AC Timing Measurements All rise and fall transition timing parameters are referenced to VIL MAX and VIH MIN for input clocks, VOLMAX and VOH MIN for output clocks Vref = VIH MIN (or VOH MIN) Vref = VIL MAX (or VOL MAX) Figure 6-3. Rise and Fall Transition Time Voltage Reference Levels 82 Peripheral Information and Electrical Specifications Submit Documentation Feedback Product Folder Links: OMAP-L138 Copyright © 2009–2017, Texas Instruments Incorporated OMAP-L138 www.ti.com 6.2 SPRS586J – JUNE 2009 – REVISED JANUARY 2017 Recommended Clock and Control Signal Transition Behavior All clocks and control signals must transition between VIH and VIL (or between VIL and VIH) in a monotonic manner. 6.3 6.3.1 Power Supplies Power-On Sequence The device should be powered-on in the following order: 1. RTC (RTC_CVDD) may be powered from an external device (such as a battery) prior to all other supplies being applied or powered-up at the same time as CVDD. If the RTC is not used, RTC_CVDD should be connected to CVDD. RTC_CVDD should not be left unpowered while CVDD is powered. 2. Core logic supplies: (a) All variable 1.3V - 1.0V core logic supplies (CVDD) (b) All static core logic supplies (RVDD, PLL0_VDDA, PLL1_VDDA, USB_CVDD, SATA_VDD). If voltage scaling is not used on the device, groups 2a) and 2b) can be controlled from the same power supply and powered up together. 3. All static 1.8V IO supplies (DVDD18, DDR_DVDD18, USB0_VDDA18, USB1_VDDA18 and SATA_VDDR) and any of the LVCMOS IO supply groups used at 1.8V nominal (DVDD3318_A, DVDD3318_B, or DVDD3318_C). 4. All analog 3.3V PHY supplies (USB0_VDDA33 and USB1_VDDA33; these are not required if both USB0 and USB1 are not used) and any of the LVCMOS IO supply groups used at 3.3V nominal (DVDD3318_A, DVDD3318_B, or DVDD3318_C). There is no specific required voltage ramp rate for any of the supplies as long as the LVCMOS supplies operated at 3.3V (DVDD3318_A, DVDD3318_B, or DVDD3318_C) never exceed the STATIC 1.8V supplies by more than 2 volts. RESET must be maintained active until all power supplies have reached their nominal values. 6.3.2 Power-Off Sequence The power supplies can be powered-off in any order as long as LVCMOS supplies operated at 3.3V (DVDD3318_A, DVDD3318_B, or DVDD3318_C) never exceed static 1.8V supplies by more than 2 volts. There is no specific required voltage ramp down rate for any of the supplies (except as required to meet the above mentioned voltage condition). Copyright © 2009–2017, Texas Instruments Incorporated Peripheral Information and Electrical Specifications Submit Documentation Feedback Product Folder Links: OMAP-L138 83 OMAP-L138 SPRS586J – JUNE 2009 – REVISED JANUARY 2017 6.4 6.4.1 www.ti.com Reset Power-On Reset (POR) A power-on reset (POR) is required to place the device in a known good state after power-up. Power-On Reset is initiated by bringing RESET and TRST low at the same time. POR sets all of the device internal logic to its default state. All pins are tri-stated with the exception of RESETOUT which remains active through the reset sequence, and RTCK/GP8[0]. If an emulator is driving TCK into the device during reset, then RTCK/GP8[0] will drive out RTCK. If TCK is not being driven into the device during reset, then RTCK/GP8[0] will drive low. RESETOUT in an output for use by other controllers in the system that indicates the device is currently in reset. While both TRST and RESET need to be asserted upon power up, only RESET needs to be released for the device to boot properly. TRST may be asserted indefinitely for normal operation, keeping the JTAG port interface and device's emulation logic in the reset state. TRST only needs to be released when it is necessary to use a JTAG controller to debug the device or exercise the device's boundary scan functionality. Note: TRST is synchronous and must be clocked by TCK; otherwise, the boundary scan logic may not respond as expected after TRST is asserted. RESET must be released only in order for boundary-scan JTAG to read the variant field of IDCODE correctly. Other boundary-scan instructions work correctly independent of current state of RESET. For maximum reliability, the device includes an internal pulldown on the TRST pin to ensure that TRST will always be asserted upon power up and the device's internal emulation logic will always be properly initialized. JTAG controllers from Texas Instruments actively drive TRST high. However, some third-party JTAG controllers may not drive TRST high but expect the use of a pullup resistor on TRST. When using this type of JTAG controller, assert TRST to intialize the device after powerup and externally drive TRST high before attempting any emulation or boundary scan operations. RTCK/GP8[0] is maintained active through a POR. A • • • • • summary of the effects of Power-On Reset is given below: All internal logic (including emulation logic and the PLL logic) is reset to its default state Internal memory is not maintained through a POR RESETOUT goes active All device pins go to a high-impedance state The RTC peripheral is not reset during a POR. A software sequence is required to reset the RTC CAUTION: A watchdog reset triggers a POR. 6.4.2 Warm Reset A warm reset provides a limited reset to the device. Warm Reset is initiated by bringing only RESET low (TRST is maintained high through a warm reset). Warm reset sets certain portions of the device to their default state while leaving others unaltered. All pins are tri-stated with the exception of RESETOUT which remains active through the reset sequence, and RTCK/GP8[0]. If an emulator is driving TCK into the device during reset, then RTCK/GP8[0] will drive out RTCK. If TCK is not being driven into the device during reset, then RTCK/GP8[0] will drive low. RESETOUT is an output for use by other controllers in the system that indicates the device is currently in reset. During an emulation, the emulator will maintain TRST high and hence only warm reset (not POR) is available during emulation debug and development. RTCK/GP8[0] is maintained active through a warm reset. A summary of the effects of Warm Reset is given below: • All internal logic (except for the emulation logic and the PLL logic) is reset to its default state 84 Peripheral Information and Electrical Specifications Submit Documentation Feedback Product Folder Links: OMAP-L138 Copyright © 2009–2017, Texas Instruments Incorporated OMAP-L138 www.ti.com • • • • SPRS586J – JUNE 2009 – REVISED JANUARY 2017 Internal memory is maintained through a warm reset RESETOUT goes active All device pins go to a high-impedance state The RTC peripheral is not reset during a warm reset. A software sequence is required to reset the RTC Copyright © 2009–2017, Texas Instruments Incorporated Peripheral Information and Electrical Specifications Submit Documentation Feedback Product Folder Links: OMAP-L138 85 OMAP-L138 SPRS586J – JUNE 2009 – REVISED JANUARY 2017 6.4.3 www.ti.com Reset Electrical Data Timings Table 6-1 assumes testing over the recommended operating conditions. Table 6-1. Reset Timing Requirements ( (1), (2) ) 1.3V, 1.2V NO. MIN MAX 1.1V MIN 1.0V MAX MIN MAX UNIT 1 tw(RSTL) Pulse width, RESET/TRST low 100 100 100 ns 2 tsu(BPV-RSTH) Setup time, boot pins valid before RESET/TRST high 20 20 20 ns 3 th(RSTH-BPV) Hold time, boot pins valid after RESET/TRST high 20 20 20 ns td(RSTH- RESET high to RESETOUT high; Warm reset 4096 4096 4096 cycles (3) RESETOUTH) RESET high to RESETOUT high; Power-on Reset 6169 4 5 (1) (2) (3) td(RSTL-RESETOUTL) Delay time, RESET/TRST low to RESETOUT low 6169 14 6169 16 20 ns RESETOUT is multiplexed with other pin functions. See the Terminal Functions table, Table 3-5 for details. For power-on reset (POR), the reset timings in this table refer to RESET and TRST together. For warm reset, the reset timings in this table refer to RESET only (TRST is held high). OSCIN cycles. Power Supplies Ramping Power Supplies Stable Clock Source Stable OSCIN 1 RESET TRST 4 RESETOUT 3 2 Boot Pins Config Figure 6-4. Power-On Reset (RESET and TRST active) Timing 86 Peripheral Information and Electrical Specifications Submit Documentation Feedback Product Folder Links: OMAP-L138 Copyright © 2009–2017, Texas Instruments Incorporated OMAP-L138 www.ti.com SPRS586J – JUNE 2009 – REVISED JANUARY 2017 Power Supplies Stable OSCIN TRST 1 RESET 5 4 RESETOUT 3 2 Boot Pins Driven or Hi-Z Config Figure 6-5. Warm Reset (RESET active, TRST high) Timing Copyright © 2009–2017, Texas Instruments Incorporated Peripheral Information and Electrical Specifications Submit Documentation Feedback Product Folder Links: OMAP-L138 87 OMAP-L138 SPRS586J – JUNE 2009 – REVISED JANUARY 2017 6.5 www.ti.com Crystal Oscillator or External Clock Input The device includes two choices to provide an external clock input, which is fed to the on-chip PLLs to generate high-frequency system clocks. These options are illustrated in Figure 6-6 and Figure 6-7. For input clock frequencies between 12 and 20 MHz, a crystal with 80 ohm max ESR is recommended. For input clock frequencies between 20 and 30 MHz, a crystal with 60 ohm max ESR is recommended. Typical load capacitance values are 10-20 pF, where the load capacitance is the series combination of C1 and C2. The CLKMODE bit in the PLLCTL register must be 0 to use the on-chip oscillator. If CLKMODE is set to 1, the internal oscillator is disabled. Figure 6-6 illustrates the option that uses on-chip 1.2V oscillator with external crystal circuit. Figure 6-7 illustrates the option that uses an external 1.2V clock input. C2 OSCIN Clock Input to PLL X1 OSCOUT C1 OSCVSS Figure 6-6. On-Chip Oscillator Table 6-2. Oscillator Timing Requirements PARAMETER fosc 88 Oscillator frequency range (OSCIN/OSCOUT) Peripheral Information and Electrical Specifications Submit Documentation Feedback Product Folder Links: OMAP-L138 MIN MAX UNIT 12 30 MHz Copyright © 2009–2017, Texas Instruments Incorporated OMAP-L138 www.ti.com SPRS586J – JUNE 2009 – REVISED JANUARY 2017 OSCIN NC Clock Input to PLL OSCOUT OSCVSS Figure 6-7. External 1.2V Clock Source Table 6-3. OSCIN Timing Requirements for an Externally Driven Clock MIN MAX UNIT fOSCIN OSCIN frequency range PARAMETER 12 50 MHz tc(OSCIN) Cycle time, external clock driven on OSCIN 20 ns tw(OSCINH) Pulse width high, external clock on OSCIN 0.4 tc(OSCIN) ns tw(OSCINL) Pulse width low, external clock on OSCIN 0.4 tc(OSCIN) tt(OSCIN) Transition time, OSCIN tj(OSCIN) Period jitter, OSCIN (1) 6.6 ns 0.25P or 10 (1) 0.02P ns ns Whichever is smaller. P = the period of the applied signal. Maintaining transition times as fast as possible is recommended to improve noise immunity on input signals. Clock PLLs The device has two PLL controllers that provide clocks to different parts of the system. PLL0 provides clocks (though various dividers) to most of the components of the device. PLL1 provides clocks to the DDR2/mDDR Controller and provides an alternate clock source for the ASYNC3 clock domain. This allows the peripherals on the ASYNC3 clock domain to be immune to frequency scaling operation on PLL0. The PLL controller provides the following: • Glitch-Free Transitions (on changing clock settings) • Domain Clocks Alignment • Clock Gating • PLL power down The various clock outputs given by the controller are as follows: • Domain Clocks: SYSCLK [1:n] • Auxiliary Clock from reference clock source: AUXCLK Various dividers that can be used are as follows: • Post-PLL Divider: POSTDIV • SYSCLK Divider: D1, ¼, Dn Various other controls supported are as follows: • PLL Multiplier Control: PLLM • Software programmable PLL Bypass: PLLEN Copyright © 2009–2017, Texas Instruments Incorporated Peripheral Information and Electrical Specifications Submit Documentation Feedback Product Folder Links: OMAP-L138 89 OMAP-L138 SPRS586J – JUNE 2009 – REVISED JANUARY 2017 6.6.1 www.ti.com PLL Device-Specific Information The device DSP generates the high-frequency internal clocks it requires through an on-chip PLL. The PLL requires some external filtering components to reduce power supply noise as shown in Figure 68. 1.14V - 1.32V PLL0_VDDA 50R 0.1 µF 0.01 µF VSS 50R PLL0_VSSA 1.14V - 1.32V 50R PLL1_VDDA 0.1 µF VSS 0.01 µF 50R PLL1_VSSA Ferrite Bead: Murata BLM31PG500SN1L or Equivalent Figure 6-8. PLL External Filtering Components The external filtering components shown above provide noise immunity for the PLLs. PLL0_VDDA and PLL1_VDDA should not be connected together to provide noise immunity between the two PLLs. Likewise, PLL0_VSSA and PLL1_VSSA should not be connected together. The input to the PLL is either from the on-chip oscillator or from an external clock on the OSCIN pin. PLL0 outputs seven clocks that have programmable divider options. PLL1 outputs three clocks that have programmable divider options. Figure 6-9 illustrates the high-level view of the PLL Topology. The PLLs are disabled by default after a device reset. They must be configured by software according to the allowable operating conditions listed in Table 6-4 before enabling the device to run from the PLL by setting PLLEN = 1. 90 Peripheral Information and Electrical Specifications Submit Documentation Feedback Product Folder Links: OMAP-L138 Copyright © 2009–2017, Texas Instruments Incorporated OMAP-L138 www.ti.com SPRS586J – JUNE 2009 – REVISED JANUARY 2017 PLL Controller 0 PLLCTL[EXTCLKSRC] PLL1_SYSCLK3 1 PLLCTL[PLLEN] PLLCTL[CLKMODE] OSCIN 0 0 Square Wave 1 Crystal 0 PREDIV POSTDIV PLL 1 PLLM PLLDIV1 (/1) SYSCLK1 PLLDIV2 (/2) SYSCLK2 PLLDIV4 (/4) SYSCLK4 PLLDIV5 (/3) SYSCLK5 PLLDIV6 (/1) SYSCLK6 PLLDIV7 (/6) SYSCLK7 PLLDIV3 (/3) SYSCLK3 EMIFA Internal Clock Source 0 1 DIV4.5 CFGCHIP3[EMA_CLKSRC] AUXCLK PLLC0 OBSCLK (CLKOUT Pin) DIV4.5 OSCDIV 14h 17h 18h 19h 1Ah 1Bh 1Ch 1Dh 1Eh SYSCLK1 SYSCLK2 SYSCLK3 SYSCLK4 SYSCLK5 SYSCLK6 SYSCLK7 PLLC1 OBSCLK OCSEL[OCSRC] PLLCTL[PLLEN] 0 POSTDIV PLL 1 PLLM SYSCLK1 SYSCLK2 SYSCLK3 PLL Controller 1 PLLDIV2 (/2) SYSCLK2 PLLDIV3 (/3) SYSCLK3 PLLDIV1 (/1) SYSCLK1 DDR2/mDDR Internal Clock Source 14h 17h 18h 19h OSCDIV PLLC1 OBSCLK OCSEL[OCSRC] Figure 6-9. PLL Topology Copyright © 2009–2017, Texas Instruments Incorporated Peripheral Information and Electrical Specifications Submit Documentation Feedback Product Folder Links: OMAP-L138 91 OMAP-L138 SPRS586J – JUNE 2009 – REVISED JANUARY 2017 www.ti.com Table 6-4. Allowed PLL Operating Conditions (PLL0 and PLL1) NO. 1 PARAMETER PLLRST: Assertion time during initialization Lock time: The time that the application has to wait for the PLL to acquire lock before setting PLLEN, after changing PREDIV, PLLM, or OSCIN 2 Default Value MIN MAX UNIT N/A 1000 N/A ns N/A 2000 N Max PLL Lock Time = m where N = Pre-Divider Ratio N/A M = PLL Multiplier OSCIN cycles (1) 3 (1) PREDIV: Pre-divider value /1 /1 /32 - 12 30 (if internal oscillator is used) 50 (if external clock is used) MHz 4 PLLREF: PLL input frequency 5 PLLM: PLL multiplier values x20 x4 x32 6 PLLOUT: PLL output frequency N/A 300 600 MHz 7 POSTDIV: Post-divider value /1 /1 /32 - The multiplier values must be chosen such that the PLL output frequency (at PLLOUT) is between300 and 600 MHz, but the frequency going into the SYSCLK dividers (after the post divider) cannot exceed the maximum clock frequency defined for the device at a given voltage operating point. 6.6.2 Device Clock Generation PLL0 is controlled by PLL Controller 0 and PLL1 is controlled by PLL Controller 1. PLLC0 and PLLC1 manage the clock ratios, alignment, and gating for the system clocks to the chip. The PLLCs are responsible for controlling all modes of the PLL through software, in terms of pre-division of the clock inputs (PLLC0 only), multiply factors within the PLLs, and post-division for each of the chip-level clocks from the PLLs outputs. PLLC0 also controls reset propagation through the chip, clock alignment, and test points. PLLC0 provides clocks for the majority of the system but PLLC1 provides clocks to the DDR2/mDDR Controller and the ASYNC3 clock domain to provide frequency scaling immunity to a defined set or peripherals. The ASYNC3 clock domain can either derive its clock from PLL1_SYSCLK2 (for frequency scaling immunity from PLL0) or from PLL0_SYSCLK2 (for synchronous timing with PLL0) depending on the application requirements. In addition, some peripherals have specific clock options independent of the ASYNC clock domain. 6.6.3 Dynamic Voltage and Frequency Scaling (DVFS) The processor supports multiple operating points by scaling voltage and frequency to minimize power consumption for a given level of processor performance. Frequency scaling is achieved by modifying the setting of the PLL controllers’ multipliers, post-dividers (POSTDIV), and system clock dividers (SYSCLKn). Modification of the POSTDIV and SYSCLK values does not require relocking the PLL and provides lower latency to switch between operating points, but at the expense of the frequencies being limited by the integer divide values (only the divide values are altered the PLL multiplier is left unmodified). Non integer divide frequency values can be achieved by changing both the multiplier and the divide values, but when the PLL multiplier is changed the PLL must relock, incurring additional latency to change between operating points. Detailed information on modifying the PLL Controller settings can be found in the OMAP-L138 C6-Integra DSP+ARM Technical Reference Manual (SPRUH77). 92 Peripheral Information and Electrical Specifications Submit Documentation Feedback Product Folder Links: OMAP-L138 Copyright © 2009–2017, Texas Instruments Incorporated OMAP-L138 www.ti.com SPRS586J – JUNE 2009 – REVISED JANUARY 2017 Voltage scaling is enabled from outside the device by controlling an external voltage regulator. The processor may communicate with the regulator using GPIOs, I2C or some other interface. When switching between voltage-frequency operating points, the voltage must always support the desired frequency. When moving from a high-performance operating point to a lower performance operating point, the frequency should be lowered first followed by the voltage. When moving from a low-performance operating point to a higher performance operating point, the voltage should be raised first followed by the frequency. Voltage operating points refer to the CVdd voltage at that point. Other static supplies must be maintained at their nominal voltages at all operating points. The maximum voltage slew rate for CVdd supply changes is 1 mV/us. For additional information on power management solutions from TI for this processor, follow the Power Management link in the Product Folder on www.ti.com for this processor. The processor supports multiple clock domains some of which have clock ratio requirements to each other. SYSCLK1:SYSCLK2:SYSCLK4:SYSCLK6 are synchronous to each other and the SYSCLKn dividers must always be configured such that the ratio between these domains is 1:2:4:1. The ASYNC and ASYNC3 clock domains are asynchronous to the other clock domains and have no specific ratio requirement. Table 6-5 summarizes the maximum internal clock frequencies at each of the voltage operating points. Table 6-5. Maximum Internal Clock Frequencies at Each Voltage Operating Point CLOCK SOURCE CLOCK DOMAIN 1.3V NOM 1.2V NOM 1.1V NOM 1.0V NOM PLL0_SYSCLK1 DSP subsystem 456 MHz 375 MHz 200 MHz 100 MHz PLL0_SYSCLK2 SYSCLK2 clock domain peripherals and optional clock source for ASYNC3 clock domain peripherals 228 MHz 187.5 MHz 100 MHz 50 MHz PLL0_SYSCLK3 Optional clock for ASYNC1 clock domain (See ASYNC1 row) PLL0_SYSCLK4 SYSCLK4 domain peripherals 114 MHz 93.75 MHz 50 MHz 25 MHz PLL0_SYSCLK5 Not used on this processor - - - - PLL0_SYSCLK6 ARM subsystem 456 MHz 375 MHz 200 MHz 100 MHz PLL0_SYSCLK7 Optional 50 MHz clock source for EMAC RMII interface 50 MHz 50 MHz - - PLL1_SYSCLK1 DDR2/mDDR Interface clock source (memory interface clock is one-half of the value shown) 312 MHz 312 MHz 300 MHz 266 MHz PLL1_SYSCLK2 Optional clock source for ASYNC3 clock domain peripherals 152 MHz 150 MHz 100 MHz 75 MHz PLL1_SYSCLK3 Alternate clock source input to PLL Controller 0 75 MHz 75 MHz 75 MHz 75 MHz 50 MHz 50 MHz 50 MHz 50 MHz 48 MHz 48 MHz 48 MHz 48 MHz Async Mode 148 MHz 148 MHz 75 MHz 50 MHz SDRAM Mode 100 MHz 100 MHz 66.6 MHz 50 MHz 50 MHz 50 MHz 50 MHz 50 MHz McASP AUXCLK Bypass clock source for the McASP PLL0_AUXCLK Bypass clock source for the USB0 and USB1 ASYNC1 ASYNC Clock Domain (EMIFA) ASYNC2 ASYNC2 Clock Domain (multiple peripherals) Some interfaces have specific limitations on supported modes/speeds at each operating point. See the corresponding peripheral sections of this document for more information. TI provides software components (called the Power Manager) to perform DVFS and abstract the task from the user. The Power Manager controls changing operating points (both frequency and voltage) and handles the related tasks involved such as informing/controlling peripherals to provide graceful transitions between operating points. The Power Manager is bundled as a component of DSP/BIOS. Copyright © 2009–2017, Texas Instruments Incorporated Peripheral Information and Electrical Specifications Submit Documentation Feedback Product Folder Links: OMAP-L138 93 OMAP-L138 SPRS586J – JUNE 2009 – REVISED JANUARY 2017 6.7 www.ti.com Interrupts The device has a large number of interrupts to service the needs of its many peripherals and subsystems. Both the ARM and C674x CPUs are capable of servicing these interrupts equally. The interrupts can be selectively enabled or disabled in either of the controllers. Also, the ARM and DSP can communicate with each other through interrupts controlled by registers in the SYSCFG module. 6.7.1 ARM CPU Interrupts The ARM9 CPU core supports two direct interrupts: FIQ and IRQ. The ARM Interrupt Controller (AINTC) extends the number of interrupts to 100, and provides features like programmable masking, priority, hardware nesting support, and interrupt vector generation. 6.7.1.1 ARM Interrupt Controller (AINTC) Interrupt Signal Hierarchy The ARM Interrupt controller organizes interrupts into the following hierarchy: • Peripheral Interrupt Requests – Individual Interrupt Sources from Peripherals • 101 System Interrupts – One or more Peripheral Interrupt Requests are combined (fixed configuration) to generate a System Interrupt. – After prioritization, the AINTC will provide an interrupt vector based unique to each System Interrupt • 32 Interrupt Channels – Each System Interrupt is mapped to one of the 32 Interrupt Channels – Channel Number determines the first level of prioritization, Channel 0 is highest priority and 31 lowest. – If more than one system interrupt is mapped to a channel, priority within the channel is determined by system interrupt number (0 highest priority) • Host Interrupts (FIQ and IRQ) – Interrupt Channels 0 and 1 generate the ARM FIQ interrupt – Interrupt Channels 2 through 31 Generate the ARM IRQ interrupt • Debug Interrupts – Two Debug Interrupts are supported and can be used to trigger events in the debug subsystem – Sources can be selected from any of the System Interrupts or Host Interrupts 6.7.1.2 AINTC Hardware Vector Generation The AINTC also generates an interrupt vector in hardware for both IRQ and FIQ host interrupts. This may be used to accelerate interrupt dispatch. A unique vector is generated for each of the 100 system interrupts. The vector is computed in hardware as: VECTOR = BASE + (SYSTEM INTERRUPT NUMBER × SIZE) Where BASE and SIZE are programmable. The computed vector is a 32-bit address which may dispatched to using a single instruction of type LDR PC, [PC, #-] at the FIQ and IRQ vector locations (0xFFFF0018 and 0xFFFF001C respectively). 94 Peripheral Information and Electrical Specifications Submit Documentation Feedback Product Folder Links: OMAP-L138 Copyright © 2009–2017, Texas Instruments Incorporated OMAP-L138 www.ti.com 6.7.1.3 SPRS586J – JUNE 2009 – REVISED JANUARY 2017 AINTC Hardware Interrupt Nesting Support Interrupt nesting occurs when an interrupt service routine re-enables interrupts, to allow the CPU to interrupt the ISR if a higher priority event occurs. The AINTC provides hardware support to facilitate interrupt nesting. It supports both global and per host interrupt (FIQ and IRQ in this case) automatic nesting. If enabled, the AINTC will automatically update an internal nesting register that temporarily masks interrupts at and below the priority of the current interrupt channel. Then if the ISR re-enables interrupts; only higher priority channels will be able to interrupt it. The nesting level is restored by the ISR by writing to the nesting level register on completion. Support for nesting can be enabled/disabled by software, with the option of automatic nesting on a global or per host interrupt basis; or manual nesting. 6.7.1.4 AINTC System Interrupt Assignments Table 6-6. AINTC System Interrupt Assignments System Interrupt Interrupt Name Source 0 COMMTX ARM 1 COMMRX ARM 2 NINT ARM 3 PRU_EVTOUT0 PRUSS Interrupt 4 PRU_EVTOUT1 PRUSS Interrupt 5 PRU_EVTOUT2 PRUSS Interrupt 6 PRU_EVTOUT3 PRUSS Interrupt 7 PRU_EVTOUT4 PRUSS Interrupt 8 PRU_EVTOUT5 PRUSS Interrupt 9 PRU_EVTOUT6 PRUSS Interrupt 10 PRU_EVTOUT7 PRUSS Interrupt 11 EDMA3_0_CC0_INT0 EDMA3_0 Channel Controller 0 Shadow Region 0 Transfer Completion Interrupt 12 EDMA3_0_CC0_ERRINT EDMA3_0 Channel Controller 0 Error Interrupt 13 EDMA3_0_TC0_ERRINT EDMA3_0 Transfer Controller 0 Error Interrupt 14 EMIFA_INT EMIFA 15 IIC0_INT I2C0 16 MMCSD0_INT0 MMCSD0 MMC/SD Interrupt 17 MMCSD0_INT1 MMCSD0 SDIO Interrupt 18 PSC0_ALLINT PSC0 19 RTC_IRQS[1:0] RTC 20 SPI0_INT SPI0 21 T64P0_TINT12 Timer64P0 Interrupt 12 22 T64P0_TINT34 Timer64P0 Interrupt 34 23 T64P1_TINT12 Timer64P1 Interrupt 12 24 T64P1_TINT34 Timer64P1 Interrupt 34 25 UART0_INT UART0 26 - Reserved 27 MPU_BOOTCFG_ERR Shared MPU and SYSCFG Address/Protection Error Interrupt 28 SYSCFG_CHIPINT0 SYSCFG CHIPSIG Register 29 SYSCFG_CHIPINT1 SYSCFG CHIPSIG Register 30 SYSCFG_CHIPINT2 SYSCFG CHIPSIG Register 31 SYSCFG_CHIPINT3 SYSCFG CHIPSIG Register 32 EDMA3_0_TC1_ERRINT EDMA3_0 Transfer Controller 1 Error Interrupt 33 EMAC_C0RXTHRESH EMAC - Core 0 Receive Threshold Interrupt 34 EMAC_C0RX EMAC - Core 0 Receive Interrupt Copyright © 2009–2017, Texas Instruments Incorporated Peripheral Information and Electrical Specifications Submit Documentation Feedback Product Folder Links: OMAP-L138 95 OMAP-L138 SPRS586J – JUNE 2009 – REVISED JANUARY 2017 www.ti.com Table 6-6. AINTC System Interrupt Assignments (continued) System Interrupt 96 Interrupt Name Source 35 EMAC_C0TX EMAC - Core 0 Transmit Interrupt 36 EMAC_C0MISC EMAC - Core 0 Miscellaneous Interrupt 37 EMAC_C1RXTHRESH EMAC - Core 1 Receive Threshold Interrupt 38 EMAC_C1RX EMAC - Core 1 Receive Interrupt 39 EMAC_C1TX EMAC - Core 1 Transmit Interrupt 40 EMAC_C1MISC EMAC - Core 1 Miscellaneous Interrupt 41 DDR2_MEMERR DDR2 Controller 42 GPIO_B0INT GPIO Bank 0 Interrupt 43 GPIO_B1INT GPIO Bank 1 Interrupt 44 GPIO_B2INT GPIO Bank 2 Interrupt 45 GPIO_B3INT GPIO Bank 3 Interrupt 46 GPIO_B4INT GPIO Bank 4 Interrupt 47 GPIO_B5INT GPIO Bank 5 Interrupt 48 GPIO_B6INT GPIO Bank 6 Interrupt 49 GPIO_B7INT GPIO Bank 7 Interrupt 50 GPIO_B8INT GPIO Bank 8 Interrupt 51 IIC1_INT I2C1 52 LCDC_INT LCD Controller 53 UART_INT1 UART1 54 MCASP_INT McASP0 Combined RX / TX Interrupts 55 PSC1_ALLINT PSC1 56 SPI1_INT SPI1 57 UHPI_ARMINT UHPI ARM Interrupt 58 USB0_INT USB0 Interrupt 59 USB1_HCINT USB1 OHCI Host Controller Interrupt 60 USB1_RWAKEUP USB1 Remote Wakeup Interrupt 61 UART2_INT UART2 62 - Reserved 63 EHRPWM0 HiResTimer / PWM0 Interrupt 64 EHRPWM0TZ HiResTimer / PWM0 Trip Zone Interrupt 65 EHRPWM1 HiResTimer / PWM1 Interrupt 66 EHRPWM1TZ HiResTimer / PWM1 Trip Zone Interrupt 67 SATA_INT SATA Controller 68 T64P2_ALL Timer64P2 - Combined TINT12 and TINT34 69 ECAP0 ECAP0 70 ECAP1 ECAP1 71 ECAP2 ECAP2 72 MMCSD1_INT0 MMCSD1 MMC/SD Interrupt 73 MMCSD1_INT1 MMCSD1 SDIO Interrupt 74 T64P2_CMPINT0 Timer64P2 - Compare 0 75 T64P2_CMPINT1 Timer64P2 - Compare 1 76 T64P2_CMPINT2 Timer64P2 - Compare 2 77 T64P2_CMPINT3 Timer64P2 - Compare 3 78 T64P2_CMPINT4 Timer64P2 - Compare 4 79 T64P2_CMPINT5 Timer64P2 - Compare 5 80 T64P2_CMPINT6 Timer64P2 - Compare 6 81 T64P2_CMPINT7 Timer64P2 - Compare 7 Peripheral Information and Electrical Specifications Submit Documentation Feedback Product Folder Links: OMAP-L138 Copyright © 2009–2017, Texas Instruments Incorporated OMAP-L138 www.ti.com SPRS586J – JUNE 2009 – REVISED JANUARY 2017 Table 6-6. AINTC System Interrupt Assignments (continued) System Interrupt Interrupt Name Source 82 T64P3_CMPINT0 Timer64P3 - Compare 0 83 T64P3_CMPINT1 Timer64P3 - Compare 1 84 T64P3_CMPINT2 Timer64P3 - Compare 2 85 T64P3_CMPINT3 Timer64P3 - Compare 3 86 T64P3_CMPINT4 Timer64P3 - Compare 4 87 T64P3_CMPINT5 Timer64P3 - Compare 5 88 T64P3_CMPINT6 Timer64P3 - Compare 6 89 T64P3_CMPINT7 Timer64P3 - Compare 7 90 ARMCLKSTOPREQ PSC0 91 uPP_ALLINT uPP Combined Interrupt • Channel I End-of-Line Interrupt • Channel I End-of-Window Interrupt • Channel I DMA Access Interrupt • Channel I Overflow-Underrun Interrupt • Channel I DMA Programming Error Interrupt • Channel Q End-of-Line Interrupt • Channel Q End-of-Window Interrupt • Channel Q DMA Access Interrupt • Channel Q Overflow-Underrun Interrupt • Channel Q DMA Programming Error Interrupt 92 VPIF_ALLINT VPIF Combined Interrupt • Channel 0 Frame Interrupt • Channel 1 Frame Interrupt • Channel 2 Frame Interrupt • Channel 3 Frame Interrupt • Error Interrupt 93 EDMA3_1_CC0_INT0 EDMA3_1 Channel Controller 0 Shadow Region 0 Transfer Completion Interrupt 94 EDMA3_1_CC0_ERRINT EDMA3_1Channel Controller 0 Error Interrupt 95 EDMA3_1_TC0_ERRINT EDMA3_1 Transfer Controller 0 Error Interrupt 96 T64P3_ALL Timer64P 3 - Combined TINT12 and TINT34 97 MCBSP0_RINT McBSP0 Receive Interrupt 98 MCBSP0_XINT McBSP0 Transmit Interrupt 99 MCBSP1_RINT McBSP1 Receive Interrupt 100 MCBSP1_XINT McBSP1 Transmit Interrupt Copyright © 2009–2017, Texas Instruments Incorporated Peripheral Information and Electrical Specifications Submit Documentation Feedback Product Folder Links: OMAP-L138 97 OMAP-L138 SPRS586J – JUNE 2009 – REVISED JANUARY 2017 6.7.1.5 www.ti.com AINTC Memory Map Table 6-7. AINTC Memory Map BYTE ADDRESS ACRONYM 0xFFFE E000 REV 0xFFFE E004 CR 0xFFFE E008 - 0xFFFE E00F - 0xFFFE E010 GER Control Register Reserved Global Enable Register 0xFFFE E014 - 0xFFFE E01B - 0xFFFE E01C GNLR Global Nesting Level Register 0xFFFE E020 SISR System Interrupt Status Indexed Set Register 0xFFFE E024 SICR System Interrupt Status Indexed Clear Register Reserved 0xFFFE E028 EISR System Interrupt Enable Indexed Set Register 0xFFFE E02C EICR System Interrupt Enable Indexed Clear Register 0xFFFE E030 - Reserved 0xFFFE E034 HIEISR Host Interrupt Enable Indexed Set Register 0xFFFE E038 HIEICR Host Interrupt Enable Indexed Clear Register 0xFFFE E03C - 0xFFFE E04F - 0xFFFE E050 VBR Vector Base Register 0xFFFE E054 VSR Vector Size Register 0xFFFE E058 VNR Vector Null Register 0xFFFE E05C - 0xFFFE E07F - Reserved Reserved 0xFFFE E080 GPIR Global Prioritized Index Register 0xFFFE E084 GPVR Global Prioritized Vector Register 0xFFFE E088 - 0xFFFE E1FF - 0xFFFE E200 SRSR[1] 0xFFFE E204 SRSR[2] 0xFFFE E208 SRSR[3] 0xFFFE E20C SRSR[4] 0xFFFE E210- 0xFFFE E27F - 0xFFFE E280 SECR[1] 0xFFFE E284 SECR[2] 0xFFFE E288 SECR[3] 0xFFFE E28C SECR[4] 0xFFFE E290 - 0xFFFE E2FF - 0xFFFE E300 98 DESCRIPTION Revision Register ESR[1] 0xFFFE E304 ESR[2] 0xFFFE E308 ESR[3] 0xFFFE E30C ESR[4] 0xFFFE E310 - 0xFFFE E37F - 0xFFFE E380 ECR[1] 0xFFFE E384 ECR[2] 0xFFFE E388 ECR[3] 0xFFFE E38C ECR[4] 0xFFFE E390 - 0xFFFE E3FF - Reserved System Interrupt Status Raw / Set Registers Reserved System Interrupt Status Enabled / Clear Registers Reserved System Interrupt Enable Set Registers Reserved System Interrupt Enable Clear Registers Reserved Peripheral Information and Electrical Specifications Submit Documentation Feedback Product Folder Links: OMAP-L138 Copyright © 2009–2017, Texas Instruments Incorporated OMAP-L138 www.ti.com SPRS586J – JUNE 2009 – REVISED JANUARY 2017 Table 6-7. AINTC Memory Map (continued) BYTE ADDRESS ACRONYM 0xFFFE E400 - 0xFFFE E45B CMR[0] 0xFFFE E404 CMR[1] 0xFFFE E408 CMR[2] 0xFFFE E40C CMR[3] 0xFFFE E410 CMR[4] 0xFFFE E414 CMR[5] 0xFFFE E418 CMR[6] 0xFFFE E41C CMR[7] 0xFFFE E420 CMR[8] 0xFFFE E424 CMR[9] 0xFFFE E428 CMR[10] 0xFFFE E42C CMR[11] 0xFFFE E430 CMR[12] 0xFFFE E434 CMR[13] 0xFFFE E438 CMR[14] 0xFFFE E43C CMR[15] 0xFFFE E440 CMR[16] 0xFFFE E444 CMR[17] 0xFFFE E448 CMR[18] 0xFFFE E44C CMR[19] 0xFFFE E450 CMR[20] 0xFFFE E454 CMR[21] 0xFFFE E458 CMR[22] 0xFFFE E45C CMR[23] 0xFFFE E460 CMR[24] 0xFFFE E464 CMR[25] 0xFFFE E468 - 0xFFFE E8FF - 0xFFFE E900 HIPIR[1] 0xFFFE E904 HIPIR[2] 0xFFFE E908 - 0xFFFE F0FF - 0xFFFE F100 HINLR[1] 0xFFFE F104 HINLR[2] 0xFFFE F108 - 0xFFFE F4FF - 0xFFFE F500 HIER 0xFFFE F504 - 0xFFFE F5FF - 0xFFFE F600 HIPVR[1] 0xFFFE F604 HIPVR[2] 0xFFFE F608 - 0xFFFE FFFF - Copyright © 2009–2017, Texas Instruments Incorporated DESCRIPTION Channel Map Registers Reserved Host Interrupt Prioritized Index Registers Reserved Host Interrupt Nesting Level Registers Reserved Host Interrupt Enable Register Reserved Host Interrupt Prioritized Vector Registers Reserved Peripheral Information and Electrical Specifications Submit Documentation Feedback Product Folder Links: OMAP-L138 99 OMAP-L138 SPRS586J – JUNE 2009 – REVISED JANUARY 2017 6.7.2 www.ti.com DSP Interrupts The C674x DSP interrupt controller combines device events into 12 prioritized interrupts. The source for each of the 12 CPU interrupts is user programmable and is listed in Table 6-8. Also, the interrupt controller controls the generation of the CPU exceptions, NMI, and emulation interrupts. Table 6-9 summarizes the C674x interrupt controller registers and memory locations. Refer to the C674x DSP MegaModule Reference Guide (SPRUFK5) and the TMS320C674x DSP CPU and Instruction Set Reference Guide (SPRUFE8) for details of the C674x interrupts. Table 6-8. OMAP-L138 DSP Interrupts 100 EVT# Interrupt Name 0 EVT0 C674x Int Ctl 0 1 EVT1 C674x Int Ctl 1 2 EVT2 C674x Int Ctl 2 3 EVT3 C674x Int Ctl 3 4 T64P0_TINT12 5 SYSCFG_CHIPINT2 6 PRU_EVTOUT0 7 EHRPWM0 8 EDMA3_0_CC0_INT1 Source Timer64P0 - TINT12 SYSCFG CHIPSIG Register PRUSS Interrupt HiResTimer/PWM0 Interrupt EDMA3_0 Channel Controller 0 Shadow Region 1 Transfer Completion Interrupt 9 EMU_DTDMA C674x-ECM 10 EHRPWM0TZ HiResTimer/PWM0 Trip Zone Interrupt 11 EMU_RTDXRX C674x-RTDX 12 EMU_RTDXTX C674x-RTDX 13 IDMAINT0 C674x-EMC 14 IDMAINT1 C674x-EMC 15 MMCSD0_INT0 MMCSD0 MMC/SD Interrupt 16 MMCSD0_INT1 MMCSD0 SDIO Interrupt 17 PRU_EVTOUT1 PRUSS Interrupt 18 EHRPWM1 HiResTimer/PWM1 Interrupt 19 USB0_INT USB0 Interrupt 20 USB1_HCINT 21 USB1_RWAKEUP 22 PRU_EVTOUT2 23 EHRPWM1TZ 24 SATA_INT 25 T64P2_TINTALL 26 EMAC_C0RXTHRESH 27 EMAC_C0RX EMAC - Core 0 Receive Interrupt 28 EMAC_C0TX EMAC - Core 0 Transmit Interrupt USB1 OHCI Host Controller Interrupt USB1 Remote Wakeup Interrupt PRUSS Interrupt HiResTimer/PWM1 Trip Zone Interrupt SATA Controller Timer64P2 Combined TINT12 and TINT 34 Interrupt EMAC - Core 0 Receive Threshold Interrupt 29 EMAC_C0MISC 30 EMAC_C1RXTHRESH EMAC - Core 0 Miscellaneous Interrupt 31 EMAC_C1RX EMAC - Core 1 Receive Interrupt 32 EMAC_C1TX EMAC - Core 1 Transmit Interrupt 33 EMAC_C1MISC 34 UHPI_DSPINT 35 PRU_EVTOUT3 EMAC - Core 1 Receive Threshold Interrupt EMAC - Core 1 Miscellaneous Interrupt UHPI DSP Interrupt PRUSS Interrupt 36 IIC0_INT I2C0 37 SP0_INT SPI0 Peripheral Information and Electrical Specifications Submit Documentation Feedback Product Folder Links: OMAP-L138 Copyright © 2009–2017, Texas Instruments Incorporated OMAP-L138 www.ti.com SPRS586J – JUNE 2009 – REVISED JANUARY 2017 Table 6-8. OMAP-L138 DSP Interrupts (continued) EVT# Interrupt Name Source 38 UART0_INT UART0 39 PRU_EVTOUT5 PRUSS Interrupt 40 T64P1_TINT12 Timer64P1 Interrupt 12 41 GPIO_B1INT GPIO Bank 1 Interrupt 42 IIC1_INT I2C1 43 SPI1_INT SPI1 44 PRU_EVTOUT6 PRUSS Interrupt 45 ECAP0 ECAP0 46 UART_INT1 UART1 47 ECAP1 ECAP1 48 T64P1_TINT34 Timer64P1 Interrupt 34 49 GPIO_B2INT GPIO Bank 2 Interrupt 50 PRU_EVTOUT7 51 ECAP2 52 GPIO_B3INT 53 MMCSD1_INT1 54 GPIO_B4INT PRUSS Interrupt ECAP2 GPIO Bank 3 Interrupt MMCSD1 SDIO Interrupt GPIO Bank 4 Interrupt 55 EMIFA_INT 56 EDMA3_0_CC0_ERRINT EMIFA EDMA3_0 Channel Controller 0 Error Interrupt 57 EDMA3_0_TC0_ERRINT EDMA3_0 Transfer Controller 0 Error Interrupt 58 EDMA3_0_TC1_ERRINT EDMA3_0 Transfer Controller 1 Error Interrupt 59 GPIO_B5INT 60 DDR2_MEMERR GPIO Bank 5 Interrupt 61 MCASP0_INT McASP0 Combined RX/TX Interrupts 62 GPIO_B6INT GPIO Bank 6 Interrupt 63 RTC_IRQS 64 T64P0_TINT34 Timer64P0 Interrupt 34 65 GPIO_B0INT GPIO Bank 0 Interrupt 66 PRU_EVTOUT4 67 SYSCFG_CHIPINT3 SYSCFG_CHIPSIG Register 68 MMCSD1_INT0 MMCSD1 MMC/SD Interrupt DDR2 Memory Error Interrupt RTC Combined PRUSS Interrupt 69 UART2_INT 70 PSC0_ALLINT UART2 PSC0 71 PSC1_ALLINT PSC1 72 GPIO_B7INT 73 LCDC_INT LDC Controller 74 PROTERR SYSCFG Protection Shared Interrupt GPIO Bank 7 Interrupt 75 GPIO_B8INT 76 - 77 - 78 T64P2_CMPINT0 Timer64P2 - Compare Interrupt 0 79 T64P2_CMPINT1 Timer64P2 - Compare Interrupt 1 80 T64P2_CMPINT2 Timer64P2 - Compare Interrupt 2 81 T64P2_CMPINT3 Timer64P2 - Compare Interrupt 3 82 T64P2_CMPINT4 Timer64P2 - Compare Interrupt 4 83 T64P2_CMPINT5 Timer64P2 - Compare Interrupt 5 84 T64P2_CMPINT6 Timer64P2 - Compare Interrupt 6 85 T64P2_CMPINT7 Timer64P2 - Compare Interrupt 7 Copyright © 2009–2017, Texas Instruments Incorporated GPIO Bank 8 Interrupt Reserved Peripheral Information and Electrical Specifications Submit Documentation Feedback Product Folder Links: OMAP-L138 101 OMAP-L138 SPRS586J – JUNE 2009 – REVISED JANUARY 2017 www.ti.com Table 6-8. OMAP-L138 DSP Interrupts (continued) 102 EVT# Interrupt Name Source 86 T64P3_TINTALL Timer64P3 Combined TINT12 and TINT 34 Interrupt 87 MCBSP0_RINT McBSP0 Receive Interrupt 88 MCBSP0_XINT McBSP0 Transmit Interrupt 89 MCBSP1_RINT McBSP1 Receive Interrupt 90 MCBSP1_XINT McBSP1 Transmit Interrupt 91 EDMA3_1_CC0_INT1 92 EDMA3_1_CC0_ERRINT EDMA3_1 Channel Controller 0 Error Interrupt 93 EDMA3_1_TC0_ERRINT EDMA3_1 Transfer Controller 0 Error Interrupt 94 UPP_INT uPP Combined Interrupt 95 VPIF_INT VPIF Combined Interrupt EDMA3_1 Channel Controller 0 Shadow Region 1 Transfer Completion Interrupt 96 INTERR C674x-Int Ctl 97 EMC_IDMAERR C674x-EMC 98 - 112 - Reserved 113 PMC_ED 114 - 115 - C674x-PMC 116 UMC_ED1 C674x-UMC 117 UMC_ED2 C674x-UMC 118 PDC_INT C674x-PDC 119 SYS_CMPA C674x-SYS 120 PMC_CMPA C674x-PMC 121 PMC_CMPA C674x-PMC 122 DMC_CMPA C674x-DMC 123 DMC_CMPA C674x-DMC 124 UMC_CMPA C674x-UMC 125 UMC_CMPA C674x-UMC 126 EMC_CMPA C674x-EMC 127 EMC_BUSERR C674x-EMC Reserved Peripheral Information and Electrical Specifications Submit Documentation Feedback Product Folder Links: OMAP-L138 Copyright © 2009–2017, Texas Instruments Incorporated OMAP-L138 www.ti.com SPRS586J – JUNE 2009 – REVISED JANUARY 2017 Table 6-9. C674x DSP Interrupt Controller Registers BYTE ADDRESS ACRONYM DESCRIPTION 0x0180 0000 EVTFLAG0 Event flag register 0 0x0180 0004 EVTFLAG1 Event flag register 1 0x0180 0008 EVTFLAG2 Event flag register 2 0x0180 000C EVTFLAG3 Event flag register 3 0x0180 0020 EVTSET0 Event set register 0 0x0180 0024 EVTSET1 Event set register 1 0x0180 0028 EVTSET2 Event set register 2 0x0180 002C EVTSET3 Event set register 3 0x0180 0040 EVTCLR0 Event clear register 0 0x0180 0044 EVTCLR1 Event clear register 1 0x0180 0048 EVTCLR2 Event clear register 2 0x0180 004C EVTCLR3 Event clear register 3 0x0180 0080 EVTMASK0 Event mask register 0 0x0180 0084 EVTMASK1 Event mask register 1 0x0180 0088 EVTMASK2 Event mask register 2 0x0180 008C EVTMASK3 Event mask register 3 0x0180 00A0 MEVTFLAG0 Masked event flag register 0 0x0180 00A4 MEVTFLAG1 Masked event flag register 1 0x0180 00A8 MEVTFLAG2 Masked event flag register 2 0x0180 00AC MEVTFLAG3 Masked event flag register 3 0x0180 00C0 EXPMASK0 Exception mask register 0 0x0180 00C4 EXPMASK1 Exception mask register 1 0x0180 00C8 EXPMASK2 Exception mask register 2 0x0180 00CC EXPMASK3 Exception mask register 3 0x0180 00E0 MEXPFLAG0 Masked exception flag register 0 0x0180 00E4 MEXPFLAG1 Masked exception flag register 1 0x0180 00E8 MEXPFLAG2 Masked exception flag register 2 0x0180 00EC MEXPFLAG3 Masked exception flag register 3 0x0180 0104 INTMUX1 Interrupt mux register 1 0x0180 0108 INTMUX2 Interrupt mux register 2 0x0180 010C INTMUX3 Interrupt mux register 3 0x0180 0140 - 0x0180 0144 - 0x0180 0180 INTXSTAT Interrupt exception status 0x0180 0184 INTXCLR Interrupt exception clear 0x0180 0188 INTDMASK Dropped interrupt mask register 0x0180 01C0 EVTASRT Event assert register Copyright © 2009–2017, Texas Instruments Incorporated Reserved Peripheral Information and Electrical Specifications Submit Documentation Feedback Product Folder Links: OMAP-L138 103 OMAP-L138 SPRS586J – JUNE 2009 – REVISED JANUARY 2017 6.8 www.ti.com Power and Sleep Controller (PSC) The Power and Sleep Controllers (PSC) are responsible for managing transitions of system power on/off, clock on/off, resets (device level and module level). It is used primarily to provide granular power control for on chip modules (peripherals and CPU). A PSC module consists of a Global PSC (GPSC) and a set of Local PSCs (LPSCs). The GPSC contains memory mapped registers, PSC interrupts, a state machine for each peripheral/module it controls. An LPSC is associated with every module that is controlled by the PSC and provides clock and reset control. The PSC includes the following features: • Provides a software interface to: – Control module clock enable/disable – Control module reset – Control CPU local reset • Supports IcePick emulation features: power, clock and reset PSC0 controls 16 local PSCs. PSC1 controls 32 local PSCs. Table 6-10. Power and Sleep Controller (PSC) Registers PSC0 BYTE ADDRESS PSC1 BYTE ADDRESS 0x01C1 0000 0x01E2 7000 REVID 0x01C1 0018 0x01E2 7018 INTEVAL 0x01C1 0040 0x01E2 7040 MERRPR0 ACRONYM REGISTER DESCRIPTION Peripheral Revision and Class Information Register Interrupt Evaluation Register Module Error Pending Register 0 (module 0-15) (PSC0) Module Error Pending Register 0 (module 0-31) (PSC1) 0x01C1 0050 0x01E2 7050 MERRCR0 Module Error Clear Register 0 (module 0-15) (PSC0) 0x01C1 0060 0x01E2 7060 PERRPR Power Error Pending Register 0x01C1 0068 0x01E2 7068 PERRCR Power Error Clear Register 0x01C1 0120 0x01E2 7120 PTCMD Power Domain Transition Command Register 0x01C1 0128 0x01E2 7128 PTSTAT Power Domain Transition Status Register 0x01C1 0200 0x01E2 7200 PDSTAT0 Power Domain 0 Status Register 0x01C1 0204 0x01E2 7204 PDSTAT1 Power Domain 1 Status Register 0x01C1 0300 0x01E2 7300 PDCTL0 Power Domain 0 Control Register 0x01C1 0304 0x01E2 7304 PDCTL1 Power Domain 1 Control Register 0x01C1 0400 0x01E2 7400 PDCFG0 Power Domain 0 Configuration Register 0x01C1 0404 0x01E2 7404 PDCFG1 Power Domain 1 Configuration Register 0x01C1 0800 0x01E2 7800 MDSTAT0 Module 0 Status Register 0x01C1 0804 0x01E2 7804 MDSTAT1 Module 1 Status Register 0x01C1 0808 0x01E2 7808 MDSTAT2 Module 2 Status Register 0x01C1 080C 0x01E2 780C MDSTAT3 Module 3 Status Register 0x01C1 0810 0x01E2 7810 MDSTAT4 Module 4 Status Register 0x01C1 0814 0x01E2 7814 MDSTAT5 Module 5 Status Register 0x01C1 0818 0x01E2 7818 MDSTAT6 Module 6 Status Register 0x01C1 081C 0x01E2 781C MDSTAT7 Module 7 Status Register 0x01C1 0820 0x01E2 7820 MDSTAT8 Module 8 Status Register 0x01C1 0824 0x01E2 7824 MDSTAT9 Module 9 Status Register 0x01C1 0828 0x01E2 7828 MDSTAT10 Module 10 Status Register 0x01C1 082C 0x01E2 782C MDSTAT11 Module 11 Status Register 0x01C1 0830 0x01E2 7830 MDSTAT12 Module 12 Status Register 0x01C1 0834 0x01E2 7834 MDSTAT13 Module 13 Status Register Module Error Clear Register 0 (module 0-31) (PSC1) 104 Peripheral Information and Electrical Specifications Submit Documentation Feedback Product Folder Links: OMAP-L138 Copyright © 2009–2017, Texas Instruments Incorporated OMAP-L138 www.ti.com SPRS586J – JUNE 2009 – REVISED JANUARY 2017 Table 6-10. Power and Sleep Controller (PSC) Registers (continued) PSC0 BYTE ADDRESS PSC1 BYTE ADDRESS ACRONYM REGISTER DESCRIPTION 0x01C1 0838 0x01E2 7838 MDSTAT14 Module 14 Status Register 0x01C1 083C 0x01E2 783C MDSTAT15 Module 15 Status Register - 0x01E2 7840 MDSTAT16 Module 16 Status Register - 0x01E2 7844 MDSTAT17 Module 17 Status Register - 0x01E2 7848 MDSTAT18 Module 18 Status Register - 0x01E2 784C MDSTAT19 Module 19 Status Register - 0x01E2 7850 MDSTAT20 Module 20 Status Register - 0x01E2 7854 MDSTAT21 Module 21 Status Register - 0x01E2 7858 MDSTAT22 Module 22 Status Register - 0x01E2 785C MDSTAT23 Module 23 Status Register - 0x01E2 7860 MDSTAT24 Module 24 Status Register - 0x01E2 7864 MDSTAT25 Module 25 Status Register - 0x01E2 7868 MDSTAT26 Module 26 Status Register - 0x01E2 786C MDSTAT27 Module 27 Status Register - 0x01E2 7870 MDSTAT28 Module 28 Status Register - 0x01E2 7874 MDSTAT29 Module 29 Status Register - 0x01E2 7878 MDSTAT30 Module 30 Status Register - 0x01E2 787C MDSTAT31 Module 31 Status Register 0x01C1 0A00 0x01E2 7A00 MDCTL0 Module 0 Control Register 0x01C1 0A04 0x01E2 7A04 MDCTL1 Module 1 Control Register 0x01C1 0A08 0x01E2 7A08 MDCTL2 Module 2 Control Register 0x01C1 0A0C 0x01E2 7A0C MDCTL3 Module 3 Control Register 0x01C1 0A10 0x01E2 7A10 MDCTL4 Module 4 Control Register 0x01C1 0A14 0x01E2 7A14 MDCTL5 Module 5 Control Register 0x01C1 0A18 0x01E2 7A18 MDCTL6 Module 6 Control Register 0x01C1 0A1C 0x01E2 7A1C MDCTL7 Module 7 Control Register 0x01C1 0A20 0x01E2 7A20 MDCTL8 Module 8 Control Register 0x01C1 0A24 0x01E2 7A24 MDCTL9 Module 9 Control Register 0x01C1 0A28 0x01E2 7A28 MDCTL10 Module 10 Control Register 0x01C1 0A2C 0x01E2 7A2C MDCTL11 Module 11 Control Register 0x01C1 0A30 0x01E2 7A30 MDCTL12 Module 12 Control Register 0x01C1 0A34 0x01E2 7A34 MDCTL13 Module 13 Control Register 0x01C1 0A38 0x01E2 7A38 MDCTL14 Module 14 Control Register 0x01C1 0A3C 0x01E2 7A3C MDCTL15 Module 15 Control Register - 0x01E2 7A40 MDCTL16 Module 16 Control Register - 0x01E2 7A44 MDCTL17 Module 17 Control Register - 0x01E2 7A48 MDCTL18 Module 18 Control Register - 0x01E2 7A4C MDCTL19 Module 19 Control Register - 0x01E2 7A50 MDCTL20 Module 20 Control Register - 0x01E2 7A54 MDCTL21 Module 21 Control Register - 0x01E2 7A58 MDCTL22 Module 22 Control Register - 0x01E2 7A5C MDCTL23 Module 23 Control Register - 0x01E2 7A60 MDCTL24 Module 24 Control Register - 0x01E2 7A64 MDCTL25 Module 25 Control Register - 0x01E2 7A68 MDCTL26 Module 26 Control Register - 0x01E2 7A6C MDCTL27 Module 27 Control Register - 0x01E2 7A70 MDCTL28 Module 28 Control Register Copyright © 2009–2017, Texas Instruments Incorporated Peripheral Information and Electrical Specifications Submit Documentation Feedback Product Folder Links: OMAP-L138 105 OMAP-L138 SPRS586J – JUNE 2009 – REVISED JANUARY 2017 www.ti.com Table 6-10. Power and Sleep Controller (PSC) Registers (continued) PSC0 BYTE ADDRESS PSC1 BYTE ADDRESS ACRONYM - 0x01E2 7A74 MDCTL29 Module 29 Control Register - 0x01E2 7A78 MDCTL30 Module 30 Control Register - 0x01E2 7A7C MDCTL31 Module 31 Control Register 6.8.1 REGISTER DESCRIPTION Power Domain and Module Topology The device includes two PSC modules. Each PSC module controls clock states for several of the on chip modules, controllers and interconnect components. Table 6-11 and Table 6-12 lists the set of peripherals/modules that are controlled by the PSC, the power domain they are associated with, the LPSC assignment and the default (power-on reset) module states. The module states and terminology are defined in Section 6.8.1.2. Table 6-11. PSC0 Default Module Configuration LPSC Number 106 Module Name Power Domain Default Module State Auto Sleep/Wake Only 0 EDMA3 Channel Controller 0 AlwaysON (PD0) SwRstDisable — 1 EDMA3 Transfer Controller 0 AlwaysON (PD0) SwRstDisable — 2 EDMA3 Transfer Controller 1 AlwaysON (PD0) SwRstDisable — 3 EMIFA (Br7) AlwaysON (PD0) SwRstDisable — 4 SPI 0 AlwaysON (PD0) SwRstDisable — 5 MMC/SD 0 AlwaysON (PD0) SwRstDisable — 6 ARM Interrupt Controller AlwaysON (PD0) SwRstDisable — 7 ARM RAM/ROM AlwaysON (PD0) Enable Yes 8 — — — — 9 UART 0 AlwaysON (PD0) SwRstDisable — 10 SCR0 (Br 0, Br 1, Br 2, Br 8) AlwaysON (PD0) Enable Yes 11 SCR1 (Br 4) AlwaysON (PD0) Enable Yes 12 SCR2 (Br 3, Br 5, Br 6) AlwaysON (PD0) Enable Yes 13 PRUSS AlwaysON (PD0) SwRstDisable — 14 ARM AlwaysON (PD0) SwRstDisable — 15 DSP PD_DSP (PD1) Enable — Peripheral Information and Electrical Specifications Submit Documentation Feedback Product Folder Links: OMAP-L138 Copyright © 2009–2017, Texas Instruments Incorporated OMAP-L138 www.ti.com SPRS586J – JUNE 2009 – REVISED JANUARY 2017 Table 6-12. PSC1 Default Module Configuration LPSC Number Module Name Power Domain Default Module State Auto Sleep/Wake Only 0 EDMA3 Channel Controller 1 AlwaysON (PD0) SwRstDisable — 1 USB0 (USB2.0) AlwaysON (PD0) SwRstDisable — 2 USB1 (USB1.1) AlwaysON (PD0) SwRstDisable — 3 GPIO AlwaysON (PD0) SwRstDisable — 4 UHPI AlwaysON (PD0) SwRstDisable — 5 EMAC AlwaysON (PD0) SwRstDisable — 6 DDR2 (and SCR_F3) AlwaysON (PD0) SwRstDisable — 7 McASP0 ( + McASP0 FIFO) AlwaysON (PD0) SwRstDisable — 8 SATA AlwaysON (PD0) SwRstDisable — 9 VPIF AlwaysON (PD0) SwRstDisable — 10 SPI 1 AlwaysON (PD0) SwRstDisable — 11 I2C 1 AlwaysON (PD0) SwRstDisable — 12 UART 1 AlwaysON (PD0) SwRstDisable — 13 UART 2 AlwaysON (PD0) SwRstDisable — 14 McBSP0 ( + McBSP0 FIFO) AlwaysON (PD0) SwRstDisable — 15 McBSP1 ( + McBSP1 FIFO) AlwaysON (PD0) SwRstDisable — 16 LCDC AlwaysON (PD0) SwRstDisable — 17 eHRPWM0/1 AlwaysON (PD0) SwRstDisable — 18 MMCSD1 AlwaysON (PD0) SwRstDisable — 19 uPP AlwaysON (PD0) SwRstDisable — 20 ECAP0/1/2 AlwaysON (PD0) SwRstDisable — 21 EDMA3 Transfer Controller 2 AlwaysON (PD0) SwRstDisable — 22 — — — — 23 — — — — 24 SCR_F0 (and bridge F0) AlwaysON (PD0) Enable Yes 25 SCR_F1 (and bridge F1) AlwaysON (PD0) Enable Yes 26 SCR_F2 (and bridge F2) AlwaysON (PD0) Enable Yes 27 SCR_F6 (and bridge F3) AlwaysON (PD0) Enable Yes 28 SCR_F7 (and bridge F4) AlwaysON (PD0) Enable Yes 29 SCR_F8 (and bridge F5) AlwaysON (PD0) Enable Yes 30 Bridge F7 (DDR Controller path) AlwaysON (PD0) Enable Yes 31 Shared RAM (including SCR_F4 and bridge F6) PD_SHRAM Enable — Copyright © 2009–2017, Texas Instruments Incorporated Peripheral Information and Electrical Specifications Submit Documentation Feedback Product Folder Links: OMAP-L138 107 OMAP-L138 SPRS586J – JUNE 2009 – REVISED JANUARY 2017 6.8.1.1 www.ti.com Power Domain States A power domain can only be in one of the two states: ON or OFF, defined as follows: • ON: power to the domain is on • OFF: power to the domain is off For both PSC0 and PSC1, the Always ON domain, or PD0 power domain, is always in the ON state when the chip is powered-on. This domain is not programmable to OFF state. • On PSC0 PD1/PD_DSP Domain: Controls the sleep state for DSP L1 and L2 Memories • On PSC1 PD1/PD_SHRAM Domain: Controls the sleep state for the 128K Shared RAM 6.8.1.2 Module States The PSC defines several possible states for a module. This states are essentially a combination of the module reset asserted or de-asserted and module clock on/enabled or off/disabled. The module states are defined in Table 6-13. Table 6-13. Module States Module State Module Reset Module Clock Module State Definition Enable De-asserted On A module in the enable state has its module reset de-asserted and it has its clock on. This is the normal operational state for a given module Disable De-asserted Off A module in the disabled state has its module reset de-asserted and it has its module clock off. This state is typically used for disabling a module clock to save power. The device is designed in full static CMOS, so when you stop a module clock, it retains the module’s state. When the clock is restarted, the module resumes operating from the stopping point. SyncReset Asserted On A module state in the SyncReset state has its module reset asserted and it has its clock on. Generally, software is not expected to initiate this state SwRstDisable Asserted Off A module in the SwResetDisable state has its module reset asserted and it has its clock disabled. After initial power-on, several modules come up in the SwRstDisable state. Generally, software is not expected to initiate this state Auto Sleep De-asserted Off A module in the Auto Sleep state also has its module reset de-asserted and its module clock disabled, similar to the Disable state. However this is a special state, once a module is configured in this state by software, it can “automatically” transition to “Enable” state whenever there is an internal read/write request made to it, and after servicing the request it will “automatically” transition into the sleep state (with module reset re de-asserted and module clock disabled), without any software intervention. The transition from sleep to enabled and back to sleep state has some cycle latency associated with it. It is not envisioned to use this mode when peripherals are fully operational and moving data. Auto Wake De-asserted Off A module in the Auto Wake state also has its module reset de-asserted and its module clock disabled, similar to the Disable state. However this is a special state, once a module is configured in this state by software, it will “automatically” transition to “Enable” state whenever there is an internal read/write request made to it, and will remain in the “Enabled” state from then on (with module reset re de-asserted and module clock on), without any software intervention. The transition from sleep to enabled state has some cycle latency associated with it. It is not envisioned to use this mode when peripherals are fully operational and moving data. 108 Peripheral Information and Electrical Specifications Submit Documentation Feedback Product Folder Links: OMAP-L138 Copyright © 2009–2017, Texas Instruments Incorporated OMAP-L138 www.ti.com 6.9 SPRS586J – JUNE 2009 – REVISED JANUARY 2017 Enhanced Direct Memory Access Controller (EDMA3) The EDMA3 controller handles all data transfers between memories and the device slave peripherals on the device. These data transfers include cache servicing, non-cacheable memory accesses, userprogrammed data transfers, and host accesses. 6.9.1 EDMA3 Channel Synchronization Events Each EDMA3 channel controller supports up to 32 channels which service peripherals and memory. Table 6-14 lists the source of the EDMA3 synchronization events associated with each of the programmable EDMA channels. Table 6-14. EDMA Synchronization Events EDMA3 Channel Controller 0 Event Event Name / Source Event Event Name / Source 0 McASP0 Receive 16 MMCSD0 Receive 1 McASP0 Transmit 17 MMCSD0 Transmit 2 McBSP0 Receive 18 SPI1 Receive 3 McBSP0 Transmit 19 SPI1 Transmit 4 McBSP1 Receive 20 PRU_EVTOUT6 5 McBSP1 Transmit 21 PRU_EVTOUT7 6 GPIO Bank 0 Interrupt 22 GPIO Bank 2 Interrupt 7 GPIO Bank 1 Interrupt 23 GPIO Bank 3 Interrupt 8 UART0 Receive 24 I2C0 Receive 9 UART0 Transmit 25 I2C0 Transmit 10 Timer64P0 Event Out 12 26 I2C1 Receive 11 Timer64P0 Event Out 34 27 I2C1 Transmit 12 UART1 Receive 28 GPIO Bank 4 Interrupt 13 UART1 Transmit 29 GPIO Bank 5 Interrupt 14 SPI0 Receive 30 UART2 Receive 15 SPI0 Transmit 31 UART2 Transmit EDMA3 Channel Controller 1 Event Event Name / Source Event Event Name / Source 0 Timer64P2 Compare Event 0 16 GPIO Bank 6 Interrupt 1 Timer64P2 Compare Event 1 17 GPIO Bank 7 Interrupt 2 Timer64P2 Compare Event 2 18 GPIO Bank 8 Interrupt 3 Timer64P2 Compare Event 3 19 Reserved 4 Timer64P2 Compare Event 4 20 Reserved 5 Timer64P2 Compare Event 5 21 Reserved 6 Timer64P2 Compare Event 6 22 Reserved 7 Timer64P2 Compare Event 7 23 Reserved 8 Timer64P3 Compare Event 0 24 Timer64P2 Event Out 12 9 Timer64P3 Compare Event 1 25 Timer64P2 Event Out 34 10 Timer64P3 Compare Event 2 26 Timer64P3 Event Out 12 11 Timer64P3 Compare Event 3 27 Timer64P3 Event Out 34 12 Timer64P3 Compare Event 4 28 MMCSD1 Receive 13 Timer64P3 Compare Event 5 29 MMCSD1 Transmit 14 Timer64P3 Compare Event 6 30 Reserved 15 Timer64P3 Compare Event 7 31 Reserved Copyright © 2009–2017, Texas Instruments Incorporated Peripheral Information and Electrical Specifications Submit Documentation Feedback Product Folder Links: OMAP-L138 109 OMAP-L138 SPRS586J – JUNE 2009 – REVISED JANUARY 2017 6.9.2 www.ti.com EDMA3 Peripheral Register Descriptions Table 6-15 is the list of EDMA3 Channel Controller Registers and Table 6-16 is the list of EDMA3 Transfer Controller registers. Table 6-15. EDMA3 Channel Controller (EDMA3CC) Registers EDMA3_0 Channel Controller 0 BYTE ADDRESS EDMA3_1 Channel Controller 0 BYTE ADDRESS ACRONYM 0x01C0 0000 0x01E3 0000 PID 0x01C0 0004 0x01E3 0004 CCCFG REGISTER DESCRIPTION Peripheral Identification Register EDMA3CC Configuration Register Global Registers 0x01C0 0200 0x01E3 0200 QCHMAP0 QDMA Channel 0 Mapping Register 0x01C0 0204 0x01E3 0204 QCHMAP1 QDMA Channel 1 Mapping Register 0x01C0 0208 0x01E3 0208 QCHMAP2 QDMA Channel 2 Mapping Register 0x01C0 020C 0x01E3 020C QCHMAP3 QDMA Channel 3 Mapping Register 0x01C0 0210 0x01E3 0210 QCHMAP4 QDMA Channel 4 Mapping Register 0x01C0 0214 0x01E3 0214 QCHMAP5 QDMA Channel 5 Mapping Register 0x01C0 0218 0x01E3 0218 QCHMAP6 QDMA Channel 6 Mapping Register 0x01C0 021C 0x01E3 021C QCHMAP7 QDMA Channel 7 Mapping Register 0x01C0 0240 0x01E3 0240 DMAQNUM0 DMA Channel Queue Number Register 0 0x01C0 0244 0x01E3 0244 DMAQNUM1 DMA Channel Queue Number Register 1 0x01C0 0248 0x01E3 0248 DMAQNUM2 DMA Channel Queue Number Register 2 0x01C0 024C 0x01E3 024C DMAQNUM3 DMA Channel Queue Number Register 3 0x01C0 0260 0x01E3 0260 QDMAQNUM QDMA Channel Queue Number Register 0x01C0 0284 0x01E3 0284 QUEPRI 0x01C0 0300 0x01E3 0300 EMR 0x01C0 0308 0x01E3 0308 EMCR Event Missed Clear Register 0x01C0 0310 0x01E3 0310 QEMR QDMA Event Missed Register 0x01C0 0314 0x01E3 0314 QEMCR QDMA Event Missed Clear Register 0x01C0 0318 0x01E3 0318 CCERR EDMA3CC Error Register 0x01C0 031C 0x01E3 031C CCERRCLR 0x01C0 0320 0x01E3 0320 EEVAL Error Evaluate Register 0x01C0 0340 0x01E3 0340 DRAE0 DMA Region Access Enable Register for Region 0 0x01C0 0348 0x01E3 0348 DRAE1 DMA Region Access Enable Register for Region 1 0x01C0 0350 0x01E3 0350 DRAE2 DMA Region Access Enable Register for Region 2 0x01C0 0358 0x01E3 0358 DRAE3 DMA Region Access Enable Register for Region 3 0x01C0 0380 0x01E3 0380 QRAE0 QDMA Region Access Enable Register for Region 0 0x01C0 0384 0x01E3 0384 QRAE1 QDMA Region Access Enable Register for Region 1 Queue Priority Register (1) Event Missed Register EDMA3CC Error Clear Register 0x01C0 0388 0x01E3 0388 QRAE2 QDMA Region Access Enable Register for Region 2 0x01C0 038C 0x01E3 038C QRAE3 QDMA Region Access Enable Register for Region 3 0x01C0 0400 - 0x01C0 043C 0x01E3 0400 - 0x01E3 043C Q0E0-Q0E15 Event Queue Entry Registers Q0E0-Q0E15 0x01C0 0440 - 0x01C0 047C 0x01E3 0440 - 0x01E3 047C Q1E0-Q1E15 Event Queue Entry Registers Q1E0-Q1E15 0x01C0 0600 0x01E3 0600 QSTAT0 Queue 0 Status Register 0x01C0 0604 0x01E3 0604 QSTAT1 Queue 1 Status Register 0x01C0 0620 0x01E3 0620 QWMTHRA 0x01C0 0640 0x01E3 0640 CCSTAT (1) 110 Queue Watermark Threshold A Register EDMA3CC Status Register On previous architectures, the EDMA3TC priority was controlled by the queue priority register (QUEPRI) in the EDMA3CC memorymap. However for this device, the priority control for the transfer controllers is controlled by the chip-level registers in the System Configuration Module. You should use the chip-level registers and not QUEPRI to configure the TC priority. Peripheral Information and Electrical Specifications Submit Documentation Feedback Product Folder Links: OMAP-L138 Copyright © 2009–2017, Texas Instruments Incorporated OMAP-L138 www.ti.com SPRS586J – JUNE 2009 – REVISED JANUARY 2017 Table 6-15. EDMA3 Channel Controller (EDMA3CC) Registers (continued) EDMA3_0 Channel Controller 0 BYTE ADDRESS EDMA3_1 Channel Controller 0 BYTE ADDRESS ACRONYM REGISTER DESCRIPTION 0x01C0 1000 0x01E3 1000 ER 0x01C0 1008 0x01E3 1008 ECR Event Clear Register 0x01C0 1010 0x01E3 1010 ESR Event Set Register 0x01C0 1018 0x01E3 1018 CER Chained Event Register 0x01C0 1020 0x01E3 1020 EER Event Enable Register 0x01C0 1028 0x01E3 1028 EECR Event Enable Clear Register 0x01C0 1030 0x01E3 1030 EESR Event Enable Set Register 0x01C0 1038 0x01E3 1038 SER Secondary Event Register 0x01C0 1040 0x01E3 1040 SECR 0x01C0 1050 0x01E3 1050 IER 0x01C0 1058 0x01E3 1058 IECR Interrupt Enable Clear Register 0x01C0 1060 0x01E3 1060 IESR Interrupt Enable Set Register 0x01C0 1068 0x01E3 1068 IPR Interrupt Pending Register 0x01C0 1070 0x01E3 1070 ICR Interrupt Clear Register 0x01C0 1078 0x01E3 1078 IEVAL 0x01C0 1080 0x01E3 1080 QER 0x01C0 1084 0x01E3 1084 QEER 0x01C0 1088 0x01E3 1088 QEECR QDMA Event Enable Clear Register 0x01C0 108C 0x01E3 108C QEESR QDMA Event Enable Set Register 0x01C0 1090 0x01E3 1090 QSER QDMA Secondary Event Register 0x01C0 1094 0x01E3 1094 QSECR 0x01C0 2000 0x01E3 2000 ER 0x01C0 2008 0x01E3 2008 ECR Event Clear Register 0x01C0 2010 0x01E3 2010 ESR Event Set Register 0x01C0 2018 0x01E3 2018 CER Chained Event Register 0x01C0 2020 0x01E3 2020 EER Event Enable Register 0x01C0 2028 0x01E3 2028 EECR Event Enable Clear Register 0x01C0 2030 0x01E3 2030 EESR Event Enable Set Register 0x01C0 2038 0x01E3 2038 SER Secondary Event Register 0x01C0 2040 0x01E3 2040 SECR 0x01C0 2050 0x01E3 2050 IER 0x01C0 2058 0x01E3 2058 IECR Interrupt Enable Clear Register 0x01C0 2060 0x01E3 2060 IESR Interrupt Enable Set Register 0x01C0 2068 0x01E3 2068 IPR Interrupt Pending Register 0x01C0 2070 0x01E3 2070 ICR Interrupt Clear Register 0x01C0 2078 0x01E3 2078 IEVAL 0x01C0 2080 0x01E3 2080 QER 0x01C0 2084 0x01E3 2084 QEER 0x01C0 2088 0x01E3 2088 QEECR QDMA Event Enable Clear Register 0x01C0 208C 0x01E3 208C QEESR QDMA Event Enable Set Register 0x01C0 2090 0x01E3 2090 QSER QDMA Secondary Event Register 0x01C0 2094 0x01E3 2094 QSECR Global Channel Registers Event Register Secondary Event Clear Register Interrupt Enable Register Interrupt Evaluate Register QDMA Event Register QDMA Event Enable Register QDMA Secondary Event Clear Register Shadow Region 0 Channel Registers Copyright © 2009–2017, Texas Instruments Incorporated Event Register Secondary Event Clear Register Interrupt Enable Register Interrupt Evaluate Register QDMA Event Register QDMA Event Enable Register QDMA Secondary Event Clear Register Peripheral Information and Electrical Specifications Submit Documentation Feedback Product Folder Links: OMAP-L138 111 OMAP-L138 SPRS586J – JUNE 2009 – REVISED JANUARY 2017 www.ti.com Table 6-15. EDMA3 Channel Controller (EDMA3CC) Registers (continued) EDMA3_0 Channel Controller 0 BYTE ADDRESS EDMA3_1 Channel Controller 0 BYTE ADDRESS ACRONYM REGISTER DESCRIPTION 0x01C0 2200 0x01E3 2200 ER 0x01C0 2208 0x01E3 2208 ECR Event Clear Register 0x01C0 2210 0x01E3 2210 ESR Event Set Register 0x01C0 2218 0x01E3 2218 CER Chained Event Register 0x01C0 2220 0x01E3 2220 EER Event Enable Register 0x01C0 2228 0x01E3 2228 EECR Event Enable Clear Register 0x01C0 2230 0x01E3 2230 EESR Event Enable Set Register 0x01C0 2238 0x01E3 2238 SER Secondary Event Register 0x01C0 2240 0x01E3 2240 SECR 0x01C0 2250 0x01E3 2250 IER 0x01C0 2258 0x01E3 2258 IECR Interrupt Enable Clear Register 0x01C0 2260 0x01E3 2260 IESR Interrupt Enable Set Register 0x01C0 2268 0x01E3 2268 IPR Interrupt Pending Register 0x01C0 2270 0x01E3 2270 ICR Interrupt Clear Register 0x01C0 2278 0x01E3 2278 IEVAL 0x01C0 2280 0x01E3 2280 QER 0x01C0 2284 0x01E3 2284 QEER 0x01C0 2288 0x01E3 2288 QEECR QDMA Event Enable Clear Register 0x01C0 228C 0x01E3 228C QEESR QDMA Event Enable Set Register 0x01C0 2290 0x01E3 2290 QSER QDMA Secondary Event Register 0x01C0 2294 0x01E3 2294 QSECR 0x01C0 4000 - 0x01C0 4FFF 0x01E3 4000 - 0x01E3 4FFF — Shadow Region 1 Channel Registers Event Register Secondary Event Clear Register Interrupt Enable Register Interrupt Evaluate Register QDMA Event Register QDMA Event Enable Register QDMA Secondary Event Clear Register Parameter RAM (PaRAM) Table 6-16. EDMA3 Transfer Controller (EDMA3TC) Registers EDMA3_0 Transfer Controller 0 BYTE ADDRESS EDMA3_0 Transfer Controller 1 BYTE ADDRESS EDMA3_1 Transfer Controller 0 BYTE ADDRESS ACRONYM REGISTER DESCRIPTION 0x01C0 8000 0x01C0 8400 0x01E3 8000 PID Peripheral Identification Register 0x01C0 8004 0x01C0 8404 0x01E3 8004 TCCFG EDMA3TC Configuration Register 0x01C0 8100 0x01C0 8500 0x01E3 8100 TCSTAT EDMA3TC Channel Status Register 0x01C0 8120 0x01C0 8520 0x01E3 8120 ERRSTAT Error Status Register 0x01C0 8124 0x01C0 8524 0x01E3 8124 ERREN Error Enable Register 0x01C0 8128 0x01C0 8528 0x01E3 8128 ERRCLR Error Clear Register 0x01C0 812C 0x01C0 852C 0x01E3 812C ERRDET Error Details Register 0x01C0 8130 0x01C0 8530 0x01E3 8130 ERRCMD Error Interrupt Command Register 0x01C0 8140 0x01C0 8540 0x01E3 8140 RDRATE Read Command Rate Register 0x01C0 8240 0x01C0 8640 0x01E3 8240 SAOPT Source Active Options Register 0x01C0 8244 0x01C0 8644 0x01E3 8244 SASRC Source Active Source Address Register 0x01C0 8248 0x01C0 8648 0x01E3 8248 SACNT Source Active Count Register 0x01C0 824C 0x01C0 864C 0x01E3 824C SADST Source Active Destination Address Register 0x01C0 8250 0x01C0 8650 0x01E3 8250 SABIDX Source Active B-Index Register 0x01C0 8254 0x01C0 8654 0x01E3 8254 SAMPPRXY Source Active Memory Protection Proxy Register 0x01C0 8258 0x01C0 8658 0x01E3 8258 SACNTRLD Source Active Count Reload Register 0x01C0 825C 0x01C0 865C 0x01E3 825C SASRCBREF Source Active Source Address B-Reference Register 0x01C0 8260 0x01C0 8660 0x01E3 8260 SADSTBREF Source Active Destination Address B-Reference Register 112 Peripheral Information and Electrical Specifications Submit Documentation Feedback Product Folder Links: OMAP-L138 Copyright © 2009–2017, Texas Instruments Incorporated OMAP-L138 www.ti.com SPRS586J – JUNE 2009 – REVISED JANUARY 2017 Table 6-16. EDMA3 Transfer Controller (EDMA3TC) Registers (continued) EDMA3_0 Transfer Controller 0 BYTE ADDRESS EDMA3_0 Transfer Controller 1 BYTE ADDRESS EDMA3_1 Transfer Controller 0 BYTE ADDRESS ACRONYM REGISTER DESCRIPTION 0x01C0 8280 0x01C0 8680 0x01C0 8284 0x01C0 8684 0x01E3 8280 DFCNTRLD Destination FIFO Set Count Reload Register 0x01E3 8284 DFSRCBREF Destination FIFO Set Source Address B-Reference Register 0x01C0 8288 0x01C0 8688 0x01E3 8288 DFDSTBREF Destination FIFO Set Destination Address B-Reference Register 0x01C0 8300 0x01C0 8700 0x01E3 8300 DFOPT0 Destination FIFO Options Register 0 0x01C0 8304 0x01C0 8704 0x01E3 8304 DFSRC0 Destination FIFO Source Address Register 0 0x01C0 8308 0x01C0 8708 0x01E3 8308 DFCNT0 Destination FIFO Count Register 0 0x01C0 830C 0x01C0 870C 0x01E3 830C DFDST0 Destination FIFO Destination Address Register 0 0x01C0 8310 0x01C0 8710 0x01E3 8310 DFBIDX0 Destination FIFO B-Index Register 0 0x01C0 8314 0x01C0 8714 0x01E3 8314 DFMPPRXY0 0x01C0 8340 0x01C0 8740 0x01E3 8340 DFOPT1 Destination FIFO Options Register 1 0x01C0 8344 0x01C0 8744 0x01E3 8344 DFSRC1 Destination FIFO Source Address Register 1 0x01C0 8348 0x01C0 8748 0x01E3 8348 DFCNT1 Destination FIFO Count Register 1 0x01C0 834C 0x01C0 874C 0x01E3 834C DFDST1 Destination FIFO Destination Address Register 1 0x01C0 8350 0x01C0 8750 0x01E3 8350 DFBIDX1 Destination FIFO B-Index Register 1 0x01C0 8354 0x01C0 8754 0x01E3 8354 DFMPPRXY1 0x01C0 8380 0x01C0 8780 0x01E3 8380 DFOPT2 Destination FIFO Options Register 2 0x01C0 8384 0x01C0 8784 0x01E3 8384 DFSRC2 Destination FIFO Source Address Register 2 Destination FIFO Memory Protection Proxy Register 0 Destination FIFO Memory Protection Proxy Register 1 0x01C0 8388 0x01C0 8788 0x01E3 8388 DFCNT2 Destination FIFO Count Register 2 0x01C0 838C 0x01C0 878C 0x01E3 838C DFDST2 Destination FIFO Destination Address Register 2 0x01C0 8390 0x01C0 8790 0x01E3 8390 DFBIDX2 Destination FIFO B-Index Register 2 0x01C0 8394 0x01C0 8794 0x01E3 8394 DFMPPRXY2 0x01C0 83C0 0x01C0 87C0 0x01E3 83C0 DFOPT3 Destination FIFO Memory Protection Proxy Register 2 Destination FIFO Options Register 3 0x01C0 83C4 0x01C0 87C4 0x01E3 83C4 DFSRC3 Destination FIFO Source Address Register 3 0x01C0 83C8 0x01C0 87C8 0x01E3 83C8 DFCNT3 Destination FIFO Count Register 3 0x01C0 83CC 0x01C0 87CC 0x01E3 83CC DFDST3 Destination FIFO Destination Address Register 3 0x01C0 83D0 0x01C0 87D0 0x01E3 83D0 DFBIDX3 Destination FIFO B-Index Register 3 0x01C0 83D4 0x01C0 87D4 0x01E3 83D4 DFMPPRXY3 Destination FIFO Memory Protection Proxy Register 3 Table 6-17 shows an abbreviation of the set of registers which make up the parameter set for each of 128 EDMA3 events. Each of the parameter register sets consist of 8 32-bit word entries. Table 6-18 shows the parameter set entry registers with relative memory address locations within each of the parameter sets. Table 6-17. EDMA3 Parameter Set RAM EDMA3_0 Channel Controller 0 BYTE ADDRESS RANGE EDMA3_1 Channel Controller 0 BYTE ADDRESS RANGE 0x01C0 4000 - 0x01C0 401F 0x01E3 4000 - 0x01E3 401F Parameters Set 0 (8 32-bit words) 0x01C0 4020 - 0x01C0 403F 0x01E3 4020 - 0x01E3 403F Parameters Set 1 (8 32-bit words) 0x01C0 4040 - 0x01CC0 405F 0x01E3 4040 - 0x01CE3 405F Parameters Set 2 (8 32-bit words) 0x01C0 4060 - 0x01C0 407F 0x01E3 4060 - 0x01E3 407F Parameters Set 3 (8 32-bit words) 0x01C0 4080 - 0x01C0 409F 0x01E3 4080 - 0x01E3 409F Parameters Set 4 (8 32-bit words) 0x01C0 40A0 - 0x01C0 40BF 0x01E3 40A0 - 0x01E3 40BF Parameters Set 5 (8 32-bit words) ... ... 0x01C0 4FC0 - 0x01C0 4FDF 0x01E3 4FC0 - 0x01E3 4FDF Parameters Set 126 (8 32-bit words) 0x01C0 4FE0 - 0x01C0 4FFF 0x01E3 4FE0 - 0x01E3 4FFF Parameters Set 127 (8 32-bit words) Copyright © 2009–2017, Texas Instruments Incorporated DESCRIPTION ... Peripheral Information and Electrical Specifications Submit Documentation Feedback Product Folder Links: OMAP-L138 113 OMAP-L138 SPRS586J – JUNE 2009 – REVISED JANUARY 2017 www.ti.com Table 6-18. Parameter Set Entries OFFSET BYTE ADDRESS WITHIN THE PARAMETER SET 114 ACRONYM PARAMETER ENTRY 0x0000 OPT Option 0x0004 SRC Source Address 0x0008 A_B_CNT 0x000C DST 0x0010 SRC_DST_BIDX Source B Index, Destination B Index 0x0014 LINK_BCNTRLD Link Address, B Count Reload 0x0018 SRC_DST_CIDX Source C Index, Destination C Index 0x001C CCNT Peripheral Information and Electrical Specifications Submit Documentation Feedback Product Folder Links: OMAP-L138 A Count, B Count Destination Address C Count Copyright © 2009–2017, Texas Instruments Incorporated OMAP-L138 www.ti.com SPRS586J – JUNE 2009 – REVISED JANUARY 2017 6.10 External Memory Interface A (EMIFA) EMIFA is one of two external memory interfaces supported on the device. It is primarily intended to support asynchronous memory types, such as NAND and NOR flash and Asynchronous SRAM. However on this device, EMIFA also provides a secondary interface to SDRAM. 6.10.1 EMIFA Asynchronous Memory Support EMIFA supports asynchronous: • SRAM memories • NAND Flash memories • NOR Flash memories The EMIFA data bus width is up to 16-bits.The device supports up to 23 address lines and two external wait/interrupt inputs. Up to four asynchronous chip selects are supported by EMIFA (EMA_CS[5:2]). Each chip select has the following individually programmable attributes: • Data Bus Width • Read cycle timings: setup, hold, strobe • Write cycle timings: setup, hold, strobe • Bus turn around time • Extended Wait Option With Programmable Timeout • Select Strobe Option • NAND flash controller supports 1-bit and 4-bit ECC calculation on blocks of 512 bytes. 6.10.2 EMIFA Synchronous DRAM Memory Support The device supports 16-bit SDRAM in addition to the asynchronous memories listed in Section 6.10.1. It has a single SDRAM chip select (EMA_CS[0]). SDRAM configurations that are supported are: • One, Two, and Four Bank SDRAM devices • Devices with Eight, Nine, Ten, and Eleven Column Address • CAS Latency of two or three clock cycles • Sixteen Bit Data Bus Width Additionally, the SDRAM interface of EMIFA supports placing the SDRAM in Self Refresh and Powerdown Modes. Self Refresh mode allows the SDRAM to be put into a low power state while still retaining memory contents; since the SDRAM will continue to refresh itself even without clocks from the device. Powerdown mode achieves even lower power, except the device must periodically wake the SDRAM up and issue refreshes if data retention is required. Finally, note that the EMIFA does not support Mobile SDRAM devices. Table 6-19 shows the supported SDRAM configurations for EMIFA. Copyright © 2009–2017, Texas Instruments Incorporated Peripheral Information and Electrical Specifications Submit Documentation Feedback Product Folder Links: OMAP-L138 115 OMAP-L138 SPRS586J – JUNE 2009 – REVISED JANUARY 2017 www.ti.com Table 6-19. EMIFA Supported SDRAM Configurations (1) SDRAM Memory Data Bus Width (bits) 16 8 (1) Number of Memories EMIFA Data Bus Size (bits) Rows Columns Banks Total Memory (Mbits) Total Memory (Mbytes) Memory Density (Mbits) 1 16 16 8 1 256 32 256 1 16 16 8 2 512 64 512 1 16 16 8 4 1024 128 1024 1 16 16 9 1 512 64 512 1 16 16 9 2 1024 128 1024 1 16 16 9 4 2048 256 2048 1 16 16 10 1 1024 128 1024 1 16 16 10 2 2048 256 2048 1 16 16 10 4 4096 512 4096 1 16 16 11 1 2048 256 2048 1 16 16 11 2 4096 512 4096 1 16 15 11 4 4096 512 4096 2 16 16 8 1 256 32 128 2 16 16 8 2 512 64 256 2 16 16 8 4 1024 128 512 2 16 16 9 1 512 64 256 2 16 16 9 2 1024 128 512 2 16 16 9 4 2048 256 1024 2 16 16 10 1 1024 128 512 2 16 16 10 2 2048 256 1024 2 16 16 10 4 4096 512 2048 2 16 16 11 1 2048 256 1024 2 16 16 11 2 4096 512 2048 2 16 15 11 4 4096 512 2048 The shaded cells indicate configurations that are possible on the EMIFA interface but as of this writing SDRAM memories capable of supporting these densities are not available in the market. 6.10.3 EMIFA SDRAM Loading Limitations EMIFA supports SDRAM up to 100 MHz with up to two SDRAM or asynchronous memory loads. Additional loads will limit the SDRAM operation to lower speeds and the maximum speed should be confirmed by board simulation using IBIS models. 6.10.4 EMIFA Connection Examples Figure 6-10 illustrates an example of how SDRAM, NOR, and NAND flash devices might be connected to EMIFA simultaneously. The SDRAM chip select must be EMA_CS[0]. Note that the NOR flash is connected to EMA_CS[2] and the NAND flash is connected to EMA_CS[3] in this example. Note that any type of asynchronous memory may be connected to EMA_CS[5:2]. The on-chip bootloader makes some assumptions on which chip select the contains the boot image, and this depends on the boot mode. For NOR boot mode; the on-chip bootloader requires that the image be stored in NOR flash on EMA_CS[2]. For NAND boot mode, the bootloader requires that the boot image is stored in NAND flash on EMA_CS[3]. It is always possible to have the image span multiple chip selects, but this must be supported by second stage boot code stored in the external flash. 116 Peripheral Information and Electrical Specifications Submit Documentation Feedback Product Folder Links: OMAP-L138 Copyright © 2009–2017, Texas Instruments Incorporated OMAP-L138 www.ti.com SPRS586J – JUNE 2009 – REVISED JANUARY 2017 EMA_CS[0] EMA_CAS EMIFA EMA_RAS EMA_WE EMA_CLK EMA_SDCKE EMA_BA[1:0] EMA_A[12:0] EMA_WE_DQM[0] EMA_WE_DQM[1] EMA_D[15:0] EMA_CS[2] EMA_CS[3] EMA_WAIT EMA_OE RESET EMA_BA[1] A likely use case with more than one EMIFA chip select used for NAND flash is illustrated in Figure 6-11. This figure shows how two multiplane NAND flash devices with two chip selects each would connect to the EMIFA. In this case if NAND is the boot memory, then the boot image needs to be stored in the NAND area selected by EMA_CS[3]. Part of the application image could spill over into the NAND regions selected by other EMIFA chip selects; but would rely on the code stored in the EMA_CS[3] area to bootload it. GPIO (6 Pins) RESET ... CE CAS RAS WE SDRAM 2M x 16 x 4 CLK Bank CKE BA[1:0] A[11:0] LDQM UDQM DQ[15:0] A[0] A[12:1] DQ[15:0] NOR CE FLASH WE 512K x 16 OE RESET A[18:13] RY/BY EMA_A[1] EMA_A[2] DVDD ALE CLE DQ[15:0] NAND FLASH CE 1Gb x 16 WE RE RB Figure 6-10. Connection Diagram: SDRAM, NOR, NAND Copyright © 2009–2017, Texas Instruments Incorporated Peripheral Information and Electrical Specifications Submit Documentation Feedback Product Folder Links: OMAP-L138 117 OMAP-L138 SPRS586J – JUNE 2009 – REVISED JANUARY 2017 www.ti.com EMA_A[1] EMA_A[2] EMA_D[7:0] EMA_CS[2] EMA_CS[3] EMA_WE EMA_OE EMIFA EMA_WAIT ALE CLE DQ[7:0] CE1 CE2 WE RE R/B1 R/B2 NAND FLASH x8, MultiPlane ALE CLE DQ[7:0] CE1 CE2 WE RE R/B1 R/B2 NAND FLASH x8, MultiPlane DVDD EMA_CS[4] EMA_CS[5] Figure 6-11. EMIFA Connection Diagram: Multiple NAND Flash Planes 118 Peripheral Information and Electrical Specifications Submit Documentation Feedback Product Folder Links: OMAP-L138 Copyright © 2009–2017, Texas Instruments Incorporated OMAP-L138 www.ti.com SPRS586J – JUNE 2009 – REVISED JANUARY 2017 6.10.5 External Memory Interface Register Descriptions Table 6-20. External Memory Interface (EMIFA) Registers BYTE ADDRESS ACRONYM REGISTER DESCRIPTION 0x6800 0000 MIDR Module ID Register 0x6800 0004 AWCC Asynchronous Wait Cycle Configuration Register 0x6800 0008 SDCR SDRAM Configuration Register 0x6800 000C SDRCR SDRAM Refresh Control Register 0x6800 0010 CE2CFG Asynchronous 1 Configuration Register 0x6800 0014 CE3CFG Asynchronous 2 Configuration Register 0x6800 0018 CE4CFG Asynchronous 3 Configuration Register 0x6800 001C CE5CFG Asynchronous 4 Configuration Register 0x6800 0020 SDTIMR SDRAM Timing Register 0x6800 003C SDSRETR 0x6800 0040 INTRAW EMIFA Interrupt Raw Register 0x6800 0044 INTMSK EMIFA Interrupt Mask Register 0x6800 0048 INTMSKSET EMIFA Interrupt Mask Set Register 0x6800 004C INTMSKCLR EMIFA Interrupt Mask Clear Register 0x6800 0060 NANDFCR NAND Flash Control Register 0x6800 0064 NANDFSR NAND Flash Status Register 0x6800 0070 NANDF1ECC NAND Flash 1 ECC Register (CS2 Space) 0x6800 0074 NANDF2ECC NAND Flash 2 ECC Register (CS3 Space) 0x6800 0078 NANDF3ECC NAND Flash 3 ECC Register (CS4 Space) 0x6800 007C NANDF4ECC NAND Flash 4 ECC Register (CS5 Space) 0x6800 00BC NAND4BITECCLOAD 0x6800 00C0 NAND4BITECC1 NAND Flash 4-Bit ECC Register 1 0x6800 00C4 NAND4BITECC2 NAND Flash 4-Bit ECC Register 2 0x6800 00C8 NAND4BITECC3 NAND Flash 4-Bit ECC Register 3 0x6800 00CC NAND4BITECC4 NAND Flash 4-Bit ECC Register 4 0x6800 00D0 NANDERRADD1 NAND Flash 4-Bit ECC Error Address Register 1 0x6800 00D4 NANDERRADD2 NAND Flash 4-Bit ECC Error Address Register 2 0x6800 00D8 NANDERRVAL1 NAND Flash 4-Bit ECC Error Value Register 1 0x6800 00DC NANDERRVAL2 NAND Flash 4-Bit ECC Error Value Register 2 Copyright © 2009–2017, Texas Instruments Incorporated SDRAM Self Refresh Exit Timing Register NAND Flash 4-Bit ECC Load Register Peripheral Information and Electrical Specifications Submit Documentation Feedback Product Folder Links: OMAP-L138 119 OMAP-L138 SPRS586J – JUNE 2009 – REVISED JANUARY 2017 www.ti.com 6.10.6 EMIFA Electrical Data/Timing Table 6-21 through Table 6-24 assume testing over recommended operating conditions. Table 6-21. Timing Requirements for EMIFA SDRAM Interface 1.3V, 1.2V NO. MIN 19 tsu(EMA_DV-EM_CLKH) Input setup time, read data valid on EMA_D[15:0] before EMA_CLK rising 20 th(CLKH-DIV) Input hold time, read data valid on EMA_D[15:0] after EMA_CLK rising MAX 1.1V MIN MAX 1.0V MIN MAX UNIT 2 3 3 ns 1.6 1.6 1.6 ns Table 6-22. Switching Characteristics for EMIFA SDRAM Interface NO. PARAMETER 1.3V, 1.2V MIN 1 tc(CLK) Cycle time, EMIF clock EMA_CLK 10 2 tw(CLK) Pulse width, EMIF clock EMA_CLK high or low 3 3 td(CLKH-CSV) Delay time, EMA_CLK rising to EMA_CS[0] valid 4 toh(CLKH-CSIV) Output hold time, EMA_CLK rising to EMA_CS[0] invalid 5 td(CLKH-DQMV) Delay time, EMA_CLK rising to EMA_WE_DQM[1:0] valid 6 toh(CLKH-DQMIV) Output hold time, EMA_CLK rising to EMA_WE_DQM[1:0] invalid 7 td(CLKH-AV) Delay time, EMA_CLK rising to EMA_A[12:0] and EMA_BA[1:0] valid 8 toh(CLKH-AIV) Output hold time, EMA_CLK rising to EMA_A[12:0] and EMA_BA[1:0] invalid 9 td(CLKH-DV) Delay time, EMA_CLK rising to EMA_D[15:0] valid 10 toh(CLKH-DIV) Output hold time, EMA_CLK rising to EMA_D[15:0] invalid 11 td(CLKH-RASV) Delay time, EMA_CLK rising to EMA_RAS valid 12 toh(CLKH-RASIV) Output hold time, EMA_CLK rising to EMA_RAS invalid 13 td(CLKH-CASV) Delay time, EMA_CLK rising to EMA_CAS valid 14 toh(CLKH-CASIV) Output hold time, EMA_CLK rising to EMA_CAS invalid 15 td(CLKH-WEV) Delay time, EMA_CLK rising to EMA_WE valid 16 toh(CLKH-WEIV) Output hold time, EMA_CLK rising to EMA_WE invalid 17 tdis(CLKH-DHZ) Delay time, EMA_CLK rising to EMA_D[15:0] tri-stated 18 tena(CLKH-DLZ) Output hold time, EMA_CLK rising to EMA_D[15:0] driving 120 Peripheral Information and Electrical Specifications Submit Documentation Feedback Product Folder Links: OMAP-L138 MAX 1.1V MIN 15 1 7 1 7 7 1 7 1 1 7 1 1 ns ns 13 1 ns ns 13 9.5 ns ns 13 9.5 ns ns 13 1 1 1 13 9.5 ns ns 1 9.5 7 1 13 9.5 ns ns 1 1 1 13 9.5 ns ns 1 1 1 ns 1 1 UNIT ns 13 9.5 7 MAX 8 9.5 1 1 1.0V MIN 20 5 7 1 MAX ns ns Copyright © 2009–2017, Texas Instruments Incorporated OMAP-L138 www.ti.com SPRS586J – JUNE 2009 – REVISED JANUARY 2017 1 BASIC SDRAM WRITE OPERATION 2 2 EMA_CLK 3 4 EMA_CS[0] 5 6 EMA_WE_DQM[1:0] 7 8 7 8 EMA_BA[1:0] EMA_A[12:0] 9 10 EMA_D[15:0] 11 12 EMA_RAS 13 EMA_CAS 15 16 EMA_WE Figure 6-12. EMIFA Basic SDRAM Write Operation BASIC SDRAM READ OPERATION 1 2 2 EMA_CLK 3 4 EMA_CS[0] 5 6 EMA_WE_DQM[1:0] 7 8 7 8 EMA_BA[1:0] EMA_A[12:0] 19 17 20 2 EM_CLK Delay 18 EMA_D[15:0] 11 12 EMA_RAS 13 14 EMA_CAS EMA_WE Figure 6-13. EMIFA Basic SDRAM Read Operation Copyright © 2009–2017, Texas Instruments Incorporated Peripheral Information and Electrical Specifications Submit Documentation Feedback Product Folder Links: OMAP-L138 121 OMAP-L138 SPRS586J – JUNE 2009 – REVISED JANUARY 2017 www.ti.com Table 6-23. Timing Requirements for EMIFA Asynchronous Memory Interface 1.3V, 1.2V NO. MIN MAX (1) 1.1V MIN MAX 1.0V MIN MAX UNIT READS and WRITES E tc(CLK) Cycle time, EMIFA module clock 2 tw(EM_WAIT) Pulse duration, EM_WAIT assertion and deassertion 6.75 13.33 20 ns 2E 2E 2E ns READS 12 tsu(EMDV-EMOEH) Setup time, EM_D[15:0] valid before EM_OE high 3 5 7 ns 13 th(EMOEH-EMDIV) Hold time, EM_D[15:0] valid after EM_OE high 0 0 0 ns 14 tsu (EMOEL- Setup Time, EM_WAIT asserted before end of Strobe Phase (2) 4E+3 4E+3 4E+3 ns 4E+3 4E+3 4E+3 ns EMWAIT) WRITES 28 tsu (EMWELEMWAIT) (1) (2) 122 Setup Time, EM_WAIT asserted before end of Strobe Phase (2) E = EMA_CLK period or in ns. EMA_CLK is selected either as SYSCLK3 or the PLL0 output clock divided by 4.5. As an example, when SYSCLK3 is selected and set to 100MHz, E=10ns Setup before end of STROBE phase (if no extended wait states are inserted) by which EM_WAIT must be asserted to add extended wait states. Figure 6-16 and Figure 6-17 describe EMIF transactions that include extended wait states inserted during the STROBE phase. However, cycles inserted as part of this extended wait period should not be counted; the 4E requirement is to the start of where the HOLD phase would begin if there were no extended wait cycles. Peripheral Information and Electrical Specifications Submit Documentation Feedback Product Folder Links: OMAP-L138 Copyright © 2009–2017, Texas Instruments Incorporated OMAP-L138 www.ti.com SPRS586J – JUNE 2009 – REVISED JANUARY 2017 Table 6-24. Switching Characteristics for EMIFA Asynchronous Memory Interface NO. (1) (2) (3) 1.3V, 1.2V, 1.1V, 1.0V PARAMETER MIN Nom UNIT MAX READS and WRITES 1 td(TURNAROUND) Turn around time (TA)*E - 3 (TA)*E (TA)*E + 3 ns READS 3 4 tc(EMRCYCLE) tsu(EMCEL-EMOEL) EMIF read cycle time (EW = 0) (RS+RST+RH)*E - 3 (RS+RST+RH)*E (RS+RST+RH)*E + 3 ns EMIF read cycle time (EW = 1) (RS+RST+RH+EWC)*E - 3 (RS+RST+RH+EWC)*E (RS+RST+RH+EWC)*E + 3 ns Output setup time, EMA_CE[5:2] low to EMA_OE low (SS = 0) (RS)*E-3 (RS)*E (RS)*E+3 ns Output setup time, EMA_CE[5:2] low to EMA_OE low (SS = 1) -3 0 +3 ns Output hold time, EMA_OE high to EMA_CE[5:2] high (SS = 0) (RH)*E - 3 (RH)*E (RH)*E + 3 ns Output hold time, EMA_OE high to EMA_CE[5:2] high (SS = 1) -3 0 +3 ns 5 th(EMOEH-EMCEH) 6 tsu(EMBAV-EMOEL) Output setup time, EMA_BA[1:0] valid to EMA_OE low (RS)*E-3 (RS)*E (RS)*E+3 ns 7 th(EMOEH-EMBAIV) Output hold time, EMA_OE high to EMA_BA[1:0] invalid (RH)*E-3 (RH)*E (RH)*E+3 ns 8 tsu(EMBAV-EMOEL) Output setup time, EMA_A[13:0] valid to EMA_OE low (RS)*E-3 (RS)*E (RS)*E+3 ns 9 th(EMOEH-EMAIV) Output hold time, EMA_OE high to EMA_A[13:0] invalid (RH)*E-3 (RH)*E (RH)*E+3 ns EMA_OE active low width (EW = 0) (RST)*E-3 (RST)*E (RST)*E+3 ns EMA_OE active low width (EW = 1) (RST+EWC)*E-3 (RST+EWC)*E (RST+EWC)*E+3 ns 3E-3 4E 4E+3 ns (RS)*E-3 (RS)*E (RS)*E+3 ns (RH)*E-3 (RH)*E (RH)*E+3 ns (WS+WST+WH)*E-3 (WS+WST+WH)*E (WS+WST+WH)*E+3 ns (WS+WST+WH+EWC)*E - 3 (WS+WST+WH+EWC)*E (WS+WST+WH+EWC)*E + 3 ns Output setup time, EMA_CE[5:2] low to EMA_WE low (SS = 0) (WS)*E - 3 (WS)*E (WS)*E + 3 ns Output setup time, EMA_CE[5:2] low to EMA_WE low (SS = 1) -3 0 +3 ns Output hold time, EMA_WE high to EMA_CE[5:2] high (SS = 0) (WH)*E-3 (WH)*E (WH)*E+3 ns Output hold time, EMA_WE high to EMA_CE[5:2] high (SS = 1) -3 0 +3 ns 10 tw(EMOEL) 11 td(EMWAITH-EMOEH) Delay time from EMA_WAIT deasserted to EMA_OE high 28 tsu(EMARW-EMOEL) Output setup time, EMA_A_RW valid to EMA_OE low 29 th(EMOEH-EMARW) Output hold time, EMA_OE high to EMA_A_RW invalid WRITES EMIF write cycle time (EW = 0) 15 tc(EMWCYCLE) 16 tsu(EMCEL-EMWEL) EMIF write cycle time (EW = 1) 17 th(EMWEH-EMCEH) 18 tsu(EMDQMV-EMWEL) Output setup time, EMA_BA[1:0] valid to EMA_WE low (WS)*E-3 (WS)*E (WS)*E+3 ns 19 th(EMWEH-EMDQMIV) Output hold time, EMA_WE high to EMA_BA[1:0] invalid (WH)*E-3 (WH)*E (WH)*E+3 ns 20 tsu(EMBAV-EMWEL) Output setup time, EMA_BA[1:0] valid to EMA_WE low (WS)*E-3 (WS)*E (WS)*E+3 ns 21 th(EMWEH-EMBAIV) Output hold time, EMA_WE high to EMA_BA[1:0] invalid (WH)*E-3 (WH)*E (WH)*E+3 ns (1) (2) (3) TA = Turn around, RS = Read setup, RST = Read strobe, RH = Read hold, WS = Write setup, WST = Write strobe, WH = Write hold, MEWC = Maximum external wait cycles. These parameters are programmed via the Asynchronous Bank and Asynchronous Wait Cycle Configuration Registers. These support the following range of values: TA[4-1], RS[16-1], RST[641], RH[8-1], WS[16-1], WST[64-1], WH[8-1], and MEW[1-256]. E = EMA_CLK period or in ns. EMA_CLK is selected either as SYSCLK3 or the PLL0 output clock divided by 4.5. As an example, when SYSCLK3 is selected and set to 100MHz, E=10ns. EWC = external wait cycles determined by EMA_WAIT input signal. EWC supports the following range of values EWC[256-1]. Note that the maximum wait time before timeout is specified by bit field MEWC in the Asynchronous Wait Cycle Configuration Register. Peripheral Information and Electrical Specifications Copyright © 2009–2017, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: OMAP-L138 123 OMAP-L138 SPRS586J – JUNE 2009 – REVISED JANUARY 2017 www.ti.com Table 6-24. Switching Characteristics for EMIFA Asynchronous Memory Interface NO. (1) (2) (3) (continued) 1.3V, 1.2V, 1.1V, 1.0V PARAMETER MIN Nom UNIT MAX 22 tsu(EMAV-EMWEL) Output setup time, EMA_A[13:0] valid to EMA_WE low (WS)*E-3 (WS)*E (WS)*E+3 ns 23 th(EMWEH-EMAIV) Output hold time, EMA_WE high to EMA_A[13:0] invalid (WH)*E-3 (WH)*E (WH)*E+3 ns EMA_WE active low width (EW = 0) (WST)*E-3 (WST)*E (WST)*E+3 ns EMA_WE active low width (EW = 1) (WST+EWC)*E-3 (WST+EWC)*E (WST+EWC)*E+3 ns 3E-3 4E 4E+3 ns 24 tw(EMWEL) 25 td(EMWAITH-EMWEH) Delay time from EMA_WAIT deasserted to EMA_WE high 26 tsu(EMDV-EMWEL) Output setup time, EMA_D[15:0] valid to EMA_WE low (WS)*E-3 (WS)*E (WS)*E+3 ns 27 th(EMWEH-EMDIV) Output hold time, EMA_WE high to EMA_D[15:0] invalid (WH)*E-3 (WH)*E (WH)*E+3 ns 30 tsu(EMARW-EMWEL) Output setup time, EMA_A_RW valid to EMA_WE low (WS)*E-3 (WS)*E (WS)*E+3 ns 31 th(EMWEH-EMARW) Output hold time, EMA_WE high to EMA_A_RW invalid (WH)*E-3 (WH)*E (WH)*E+3 ns 124 Peripheral Information and Electrical Specifications Copyright © 2009–2017, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: OMAP-L138 OMAP-L138 www.ti.com SPRS586J – JUNE 2009 – REVISED JANUARY 2017 SETUP STROBE HOLD 3 1 EMA_CS[5:2] EMA_BA[1:0] EMA_A[22:0] EMA_WE_DQM[1:0] 1 EMA_A_RW 4 8 6 28 5 9 7 29 10 EMA_OE 13 12 EMA_D[15:0] EMA_WE Figure 6-14. Asynchronous Memory Read Timing for EMIFA SETUP STROBE HOLD 15 1 EMA_CS[5:2] EMA_BA[1:0] EMA_A[22:0] EMA_WE_DQM[1:0] EMA_A_RW EMA_WE 16 17 18 19 20 21 22 30 23 31 26 24 1 27 EMA_D[15:0] EMA_OE Figure 6-15. Asynchronous Memory Write Timing for EMIFA Copyright © 2009–2017, Texas Instruments Incorporated Peripheral Information and Electrical Specifications Submit Documentation Feedback Product Folder Links: OMAP-L138 125 OMAP-L138 SPRS586J – JUNE 2009 – REVISED JANUARY 2017 EMA_CS[5:2] SETUP www.ti.com STROBE Extended Due to EMA_WAIT STROBE HOLD EMA_BA[1:0] EMA_A[22:0] EMA_D[15:0] EMA_A_RW 14 11 EMA_OE 2 EMA_WAIT Asserted 2 Deasserted Figure 6-16. EMA_WAIT Read Timing Requirements EMA_CS[5:2] EMA_BA[1:0] EMA_A[22:0] EMA_D[15:0] EMA_A_RW EMA_WE EMA_WAIT Figure 6-17. EMA_WAIT Write Timing Requirements 126 Peripheral Information and Electrical Specifications Submit Documentation Feedback Product Folder Links: OMAP-L138 Copyright © 2009–2017, Texas Instruments Incorporated OMAP-L138 www.ti.com SPRS586J – JUNE 2009 – REVISED JANUARY 2017 6.11 DDR2/mDDR Memory Controller The DDR2/mDDR Memory Controller is a dedicated interface to DDR2/mDDR SDRAM. It supports JESD79-2A standard compliant DDR2 SDRAM devices and compliant Mobile DDR SDRAM devices. The DDR2/mDDR Memory Controller support the following features: • • • • • • • • • • • • • • • • • • JESD79-2A standard compliant DDR2 SDRAM Mobile DDR SDRAM 256 MByte memory space for DDR2 256 MByte memory space for mDDR CAS latencies: – DDR2: 2, 3, 4 and 5 – mDDR: 2 and 3 Internal banks: – DDR2: 1, 2, 4 and 8 – mDDR:1, 2 and 4 Burst length: 8 Burst type: sequential 1 chip select (CS) signal Page sizes: 256, 512, 1024, and 2048 SDRAM autoinitialization Self-refresh mode Partial array self-refresh (for mDDR) Power down mode Prioritized refresh Programmable refresh rate and backlog counter Programmable timing parameters Little endian 6.11.1 DDR2/mDDR Memory Controller Electrical Data/Timing Table 6-25. Switching Characteristics Over Recommended Operating Conditions for DDR2/mDDR Memory Controller No. 1 (1) PARAMETER tc(DDR_CLK) 1.3V, 1.2V Cycle time, DDR_CLKP / DDR_CLKN 1.1V 1.0V UNIT MIN MAX MIN MAX MIN MAX DDR2 125 156 125 150 — (1) — (1) mDDR 105 150 100 133 95 133 MHz DDR2 is not supported at this voltage operating point. Copyright © 2009–2017, Texas Instruments Incorporated Peripheral Information and Electrical Specifications Submit Documentation Feedback Product Folder Links: OMAP-L138 127 OMAP-L138 SPRS586J – JUNE 2009 – REVISED JANUARY 2017 www.ti.com 6.11.2 DDR2/mDDR Memory Controller Register Description(s) Table 6-26. DDR2/mDDR Memory Controller Registers BYTE ADDRESS ACRONYM REGISTER DESCRIPTION 0xB000 0000 REVID 0xB000 0004 SDRSTAT Revision ID Register 0xB000 0008 SDCR 0xB000 000C SDRCR 0xB000 0010 SDTIMR1 SDRAM Timing Register 1 0xB000 0014 SDTIMR2 SDRAM Timing Register 2 0xB000 001C SDCR2 SDRAM Configuration Register 2 0xB000 0020 PBBPR Peripheral Bus Burst Priority Register 0xB000 0040 PC1 Performance Counter 1 Registers 0xB000 0044 PC2 Performance Counter 2 Register Performance Counter Configuration Register SDRAM Status Register SDRAM Configuration Register SDRAM Refresh Control Register 0xB000 0048 PCC 0xB000 004C PCMRS 0xB000 0050 PCT Performance Counter Time Register 0xB000 00C0 IRR Interrupt Raw Register 0xB000 00C4 IMR Interrupt Mask Register 0xB000 00C8 IMSR Interrupt Mask Set Register 0xB000 00CC IMCR Interrupt Mask Clear Register 0xB000 00E4 DRPYC1R DDR PHY Control Register 1 0x01E2 C000 VTPIO_CTL Performance Counter Master Region Select Register VTP IO Control Register 6.11.3 DDR2/mDDR Interface This section provides the timing specification for the DDR2/mDDR interface as a PCB design and manufacturing specification. The design rules constrain PCB trace length, PCB trace skew, signal integrity, cross-talk, and signal timing. These rules, when followed, result in a reliable DDR2/mDDR memory system without the need for a complex timing closure process. For more information regarding guidelines for using this DDR2/mDDR specification, Understanding TI's PCB Routing Rule-Based DDR2 Timing Specification (SPRAAV0). 6.11.3.1 DDR2/mDDR Interface Schematic Figure 6-18 shows the DDR2/mDDR interface schematic for a single-memory DDR2/mDDR system. The dual-memory system shown in Figure 6-19. Pin numbers for the device can be obtained from the pin description section. 128 Peripheral Information and Electrical Specifications Submit Documentation Feedback Product Folder Links: OMAP-L138 Copyright © 2009–2017, Texas Instruments Incorporated OMAP-L138 www.ti.com SPRS586J – JUNE 2009 – REVISED JANUARY 2017 DDR2/mDDR Memory Controller DDR2/mDDR ODT DDR_D[0] T DQ0 DDR_D[7] T DQ7 DDR_DQM[0] DDR_DQS[0] T T LDM LDQS DDR_D[8] T LDQS DQ8 DDR_D[15] T DQ15 DDR_DQM[1] DDR_DQS[1] T UDM UDQS NC T UDQS 50 Ω 5% NC DDR_BA[0] T BA0 DDR_BA[2] T BA2 DDR_A[0] T A0 DDR_A[13] DDR_CS DDR_CAS DDR_RAS DDR_WE DDR_CKE DDR_CLKP DDR_CLKN T A13 T CS CAS RAS WE CKE CK CK DDR_DQGATE0 DDR_DQGATE1 T T T T T T T DDR_ZP (1) VREF T DDR_DVDD18 (3) 0.1 μF 1 K Ω 1% DDR_VREF VREF (2) 0.1 μF T (1) (2) (3) (2) 0.1 μF (2) 0.1 μF 0.1 μF 1 K Ω 1% Terminator, if desired. See terminator comments. See Figure 6-25 for DQGATE routing specifications. For DDR2, one of these capacitors can be eliminated if the divider and its capacitors are placed near a device VREF pin. For mDDR, these capacitors can be eliminated completely. VREF applies in the case of DDR2 memories. For mDDR, the DDR_VREF pin still needs to be connected to the divider circuit. Figure 6-18. DDR2/mDDR Single-Memory High Level Schematic Copyright © 2009–2017, Texas Instruments Incorporated Peripheral Information and Electrical Specifications Submit Documentation Feedback Product Folder Links: OMAP-L138 129 OMAP-L138 SPRS586J – JUNE 2009 – REVISED JANUARY 2017 www.ti.com DDR2/mDDR Memory Controller ODT T DQ0 - DQ7 BA0-BA2 A0-A13 DDR_DQM[0] DDR_DQS[0] T DM DQS DQS T NC Lower Byte DDR2/mDDR DDR_D[0:7] CK CK CS CAS RAS WE CKE VREF T DDR_CLKP DDR_CLKN DDR_CS DDR_CAS DDR_RAS DDR_WE DDR_CKE T BA0-BA2 A0-A13 T CK CK CS CAS RAS WE CKE T T T T T T DDR_DQM1 DDR_DQS1 T T NC 50 Ω 5% DDR_D[8:15] T DDR_ZP DM DQS DQS DQ0 - DQ7 DDR_DVDD18 ODT (1) DDR_DQGATE0 DDR_DQGATE1 Upper Byte DDR2/mDDR DDR_BA[0:2] DDR_A[0:13] T VREF T (3) 0.1 μF 1 K Ω 1% DDR_VREF VREF (2) 0.1 μF T (1) (2) (3) (2) 0.1 μF (2) 0.1 μF 0.1 μF 1 K Ω 1% Terminator, if desired. See terminator comments. See Figure 6-25 for DQGATE routing specifications. For DDR2, one of these capacitors can be eliminated if the divider and its capacitors are placed near a device VREF pin. For mDDR, these capacitors can be eliminated completely. VREF applies in the case of DDR2 memories. For mDDR, the DDR_VREF pin still needs to be connected to the divider circuit. Figure 6-19. DDR2/mDDR Dual-Memory High Level Schematic 130 Peripheral Information and Electrical Specifications Submit Documentation Feedback Product Folder Links: OMAP-L138 Copyright © 2009–2017, Texas Instruments Incorporated OMAP-L138 www.ti.com SPRS586J – JUNE 2009 – REVISED JANUARY 2017 6.11.3.2 Compatible JEDEC DDR2/mDDR Devices Table 6-27 shows the parameters of the JEDEC DDR2/mDDR devices that are compatible with this interface. Generally, the DDR2/mDDR interface is compatible with x16 DDR2-400/mDDR-200 speed grade DDR2/mDDR devices. The device also supports JEDEC DDR2/mDDR x8 devices in the dual chip configuration. In this case, one chip supplies the upper byte and the second chip supplies the lower byte. Addresses and most control signals are shared just like regular dual chip memory configurations. Table 6-27. Compatible JEDEC DDR2/mDDR Devices NO. PARAMETER MIN MAX UNIT 1 JEDEC DDR2/mDDR Device Speed Grade (1) 2 JEDEC DDR2/mDDR Device Bit Width x8 x16 Bits 3 JEDEC DDR2/mDDR Device Count (2) 1 2 Devices (1) (2) DDR2-400/mDDR200 Higher DDR2/mDDR speed grades are supported due to inherent JEDEC DDR2/mDDR backwards compatibility. Supported configurations are one 16-bit DDR2/mDDR memory or two 8-bit DDR2/mDDR memories 6.11.3.3 PCB Stackup The minimum stackup required for routing the device is a six layer stack as shown in Table 6-28. Additional layers may be added to the PCB stack up to accommodate other circuitry or to reduce the size of the PCB footprint.Complete stack up specifications are provided in Table 6-29. Table 6-28. Device Minimum PCB Stack Up LAYER TYPE DESCRIPTION 1 Signal Top Routing Mostly Horizontal 2 Plane Ground 3 Plane Power 4 Signal Internal Routing 5 Plane Ground 6 Signal Bottom Routing Mostly Vertical Table 6-29. PCB Stack Up Specifications NO. (1) (2) (3) PARAMETER MIN TYP MAX UNIT 1 PCB Routing/Plane Layers 6 2 Signal Routing Layers 3 3 Full ground layers under DDR2/mDDR routing region 2 4 Number of ground plane cuts allowed within DDR routing region 5 Number of ground reference planes required for each DDR2/mDDR routing layer 6 Number of layers between DDR2/mDDR routing layer and reference ground plane 7 PCB Routing Feature Size 4 Mils 8 PCB Trace Width w 4 Mils 8 PCB BGA escape via pad size 18 Mils 8 Mils 0 1 0 9 PCB BGA escape via hole size 10 Device BGA pad size (1) 11 DDR2/mDDR Device BGA pad size (2) 12 Single Ended Impedance, Zo 50 13 Impedance Control (3) Z-5 Z 75 Ω Z+5 Ω Please refer to the Flip Chip Ball Grid Array Package Reference Guide (SPRU811) for device BGA pad size. Please refer to the DDR2/mDDR device manufacturer documentation for the DDR2/mDDR device BGA pad size. Z is the nominal singled ended impedance selected for the PCB specified by item 12. Copyright © 2009–2017, Texas Instruments Incorporated Peripheral Information and Electrical Specifications Submit Documentation Feedback Product Folder Links: OMAP-L138 131 OMAP-L138 SPRS586J – JUNE 2009 – REVISED JANUARY 2017 www.ti.com 6.11.3.4 Placement Figure 6-19 shows the required placement for the device as well as the DDR2/mDDR devices. The dimensions for Figure 6-20 are defined in Table 6-30. The placement does not restrict the side of the PCB that the devices are mounted on. The ultimate purpose of the placement is to limit the maximum trace lengths and allow for proper routing space. For single-memory DDR2/mDDR systems, the second DDR2/mDDR device is omitted from the placement. X Y OFFSET Y DDR2/mDDR Device Y OFFSET DDR2/mDDR Controller A1 A1 Recommended DDR2/mDDR Device Orientation Figure 6-20. OMAP-L138 and DDR2/mDDR Device Placement Table 6-30. Placement Specifications (1) (2) NO. MAX UNIT 1 X 1750 Mils 2 Y 1280 Mils 3 Y Offset (3) Mils 4 Clearance from non-DDR2/mDDR signal to DDR2/mDDR Keepout Region (4) (1) (2) (3) (4) (5) 132 PARAMETER MIN 650 4 w (5) See Figure 6-20 for dimension definitions. Measurements from center of device to center of DDR2/mDDR device. For single memory systems it is recommended that Y Offset be as small as possible. Non-DDR2/mDDR signals allowed within DDR2/mDDR keepout region provided they are separated from DDR2/mDDR routing layers by a ground plane. w = PCB trace width as defined in Table 6-29. Peripheral Information and Electrical Specifications Submit Documentation Feedback Product Folder Links: OMAP-L138 Copyright © 2009–2017, Texas Instruments Incorporated OMAP-L138 www.ti.com SPRS586J – JUNE 2009 – REVISED JANUARY 2017 6.11.3.5 DDR2/mDDR Keep Out Region The region of the PCB used for the DDR2/mDDR circuitry must be isolated from other signals. The DDR2/mDDR keep out region is defined for this purpose and is shown in Figure 6-21. The size of this region varies with the placement and DDR routing. Additional clearances required for the keep out region are shown in Table 6-30. DDR2/mDDR Device DDR2/mDDR Controller A1 A1 Region should encompass all DDR2/mDDR circuitry and varies depending on placement. Non-DDR2/mDDR signals should not be routed on the DDR signal layers within the DDR2/mDDR keep out region. Non-DDR2/mDDR signals may be routed in the region provided they are routed on layers separated from DDR2/mDDR signal layers by a ground layer. No breaks should be allowed in the reference ground layers in this region. In addition, the 1.8 V power plane should cover the entire keep out region. Figure 6-21. DDR2/mDDR Keepout Region Copyright © 2009–2017, Texas Instruments Incorporated Peripheral Information and Electrical Specifications Submit Documentation Feedback Product Folder Links: OMAP-L138 133 OMAP-L138 SPRS586J – JUNE 2009 – REVISED JANUARY 2017 www.ti.com 6.11.3.6 Bulk Bypass Capacitors Bulk bypass capacitors are required for moderate speed bypassing of the DDR2/mDDR and other circuitry. Table 6-31 contains the minimum numbers and capacitance required for the bulk bypass capacitors. Note that this table only covers the bypass needs of the Soc and DDR2/mDDR interfaces. Additional bulk bypass capacitance may be needed for other circuitry. Table 6-31. Bulk Bypass Capacitors NO. PARAMETER MIN MAX UNIT 1 DDR_DVDD18 Supply Bulk Bypass Capacitor Count (1) 3 2 DDR_DVDD18 Supply Bulk Bypass Total Capacitance 30 μF 3 DDR#1 Bulk Bypass Capacitor Count (1) 1 Devices 4 DDR#1 Bulk Bypass Total Capacitance 22 μF 5 DDR#2 Bulk Bypass Capacitor Count (1) (2) 1 Devices 6 DDR#2 Bulk Bypass Total Capacitance (2) 22 μF (1) Devices These devices should be placed near the device they are bypassing, but preference should be given to the placement of the high-speed (HS) bypass caps. Only used on dual-memory systems. (2) 6.11.3.7 High-Speed Bypass Capacitors High-speed (HS) bypass capacitors are critical for proper DDR2/mDDR interface operation. It is particularly important to minimize the parasitic series inductance of the HS bypass cap, Soc/DDR2/mDDR power, and Soc/DDR2/mDDR ground connections. Table 6-32 contains the specification for the HS bypass capacitors as well as for the power connections on the PCB. Table 6-32. High-Speed Bypass Capacitors NO. PARAMETER MIN (1) 1 HS Bypass Capacitor Package Size 2 Distance from HS bypass capacitor to device being bypassed 3 Number of connection vias for each HS bypass capacitor 4 Trace length from bypass capacitor contact to connection via 1 5 Number of connection vias for each DDR2/mDDR device power or ground balls 1 6 Trace length from DDR2/mDDR device power ball to connection via (3) 7 DDR_DVDD18 Supply HS Bypass Capacitor Count 8 DDR_DVDD18 Supply HS Bypass Capacitor Total Capacitance 9 DDR#1 HS Bypass Capacitor Count (3) 10 DDR#1 HS Bypass Capacitor Total Capacitance (3) (4) 11 DDR#2 HS Bypass Capacitor Count 12 DDR#2 HS Bypass Capacitor Total Capacitance (4) (1) (2) (3) (4) 134 MAX UNIT 0402 10 Mils 250 2 (2) Mils Vias 30 Mils Vias 35 10 Mils Devices 0.6 μF 8 Devices 0.4 μF 8 Devices 0.4 μF LxW, 10 mil units, i.e., a 0402 is a 40x20 mil surface mount capacitor An additional HS bypass capacitor can share the connection vias only if it is mounted on the opposite side of the board. These devices should be placed as close as possible to the device being bypassed. Only used on dual-memory systems. Peripheral Information and Electrical Specifications Submit Documentation Feedback Product Folder Links: OMAP-L138 Copyright © 2009–2017, Texas Instruments Incorporated OMAP-L138 www.ti.com SPRS586J – JUNE 2009 – REVISED JANUARY 2017 6.11.3.8 Net Classes Table 6-33 lists the clock net classes for the DDR2/mDDR interface. Table 6-34 lists the signal net classes, and associated clock net classes, for the signals in the DDR2/mDDR interface. These net classes are used for the termination and routing rules that follow. Table 6-33. Clock Net Class Definitions CLOCK NET CLASS Soc PIN NAMES CK DDR_CLKP / DDR_CLKN DQS0 DDR_DQS[0] DQS1 DDR_DQS[1] Table 6-34. Signal Net Class Definitions SIGNAL NET CLASS ASSOCIATED CLOCK NET CLASS ADDR_CTRL CK D0 DQS0 DDR_D[7:0], DDR_DQM0 D1 DQS1 DDR_D[15:8], DDR_DQM1 DQGATE CK, DQS0, DQS1 Soc PIN NAMES DDR_BA[2:0], DDR_A[13:0], DDR_CS, DDR_CAS, DDR_RAS, DDR_WE, DDR_CKE DDR_DQGATE0, DDR_DQGATE1 6.11.3.9 DDR2/mDDR Signal Termination No terminations of any kind are required in order to meet signal integrity and overshoot requirements. Serial terminators are permitted, if desired, to reduce EMI risk; however, serial terminations are the only type permitted. Table 6-35 shows the specifications for the series terminators. Table 6-35. DDR2/mDDR Signal Terminations (1) (2) (3) NO. PARAMETER MIN 1 CK Net Class 0 2 ADDR_CTRL Net Class 0 3 Data Byte Net Classes (DQS[0], DQS[1], D0, D1) (4) 0 4 DQGATE Net Class (DQGATE) 0 (1) (2) (3) (4) TYP MAX UNIT 10 Ω 22 Zo Ω 22 Zo Ω 10 Zo Ω Only series termination is permitted, parallel or SST specifically disallowed. Terminator values larger than typical only recommended to address EMI issues. Termination value should be uniform across net class. When no termination is used on data lines (0 Ω), the DDR2/mDDR devices must be programmed to operate in 60% strength mode. Copyright © 2009–2017, Texas Instruments Incorporated Peripheral Information and Electrical Specifications Submit Documentation Feedback Product Folder Links: OMAP-L138 135 OMAP-L138 SPRS586J – JUNE 2009 – REVISED JANUARY 2017 www.ti.com 6.11.3.10 VREF Routing VREF is used as a reference by the input buffers of the DDR2/mDDR memories as well as the OMAPL138. VREF is intended to be half the DDR2/mDDR power supply voltage and should be created using a resistive divider as shown in Figure 6-18. Other methods of creating VREF are not recommended. Figure 6-22 shows the layout guidelines for VREF. VREF Bypass Capacitor DDR2/mDDR Device A1 VREF Nominal Minimum Trace Width is 20 Mils DDR2/mDDR A1 Neck down to minimum in BGA escape regions is acceptable. Narrowing to accomodate via congestion for short distances is also acceptable. Best performance is obtained if the width of VREF is maximized. Figure 6-22. VREF Routing and Topology 136 Peripheral Information and Electrical Specifications Submit Documentation Feedback Product Folder Links: OMAP-L138 Copyright © 2009–2017, Texas Instruments Incorporated OMAP-L138 www.ti.com SPRS586J – JUNE 2009 – REVISED JANUARY 2017 6.11.3.11 DDR2/mDDR CK and ADDR_CTRL Routing Figure 6-23 shows the topology of the routing for the CK and ADDR_CTRL net classes. The route is a balanced T as it is intended that the length of segments B and C be equal. In addition, the length of A should be maximized. B DDR2/mDDR Controller A1 T C A A1 Figure 6-23. CK and ADDR_CTRL Routing and Topology Table 6-36. CK and ADDR_CTRL Routing Specification NO. (1) (2) (3) (4) PARAMETER MIN TYP (1) MAX 2w UNIT (2) 1 Center to Center CK-CKN Spacing 2 CK A to B/A to C Skew Length Mismatch (3) 25 Mils 3 CK B to C Skew Length Mismatch 25 Mils 4 Center to center CK to other DDR2/mDDR trace spacing (1) 5 CK/ADDR_CTRL nominal trace length (4) CACLM+50 Mils 6 ADDR_CTRL to CK Skew Length Mismatch 100 Mils 7 ADDR_CTRL to ADDR_CTRL Skew Length Mismatch 100 Mils 100 Mils 100 Mils 4w (2) CACLM-50 8 Center to center ADDR_CTRL to other DDR2/mDDR trace spacing (1) 4w (2) 9 Center to center ADDR_CTRL to other ADDR_CTRL trace spacing (1) 3w (2) 10 ADDR_CTRL A to B/A to C Skew Length Mismatch 11 ADDR_CTRL B to C Skew Length Mismatch (3) CACLM Center to center spacing is allowed to fall to minimum (w) for up to 500 mils of routed length to accommodate BGA escape and routing congestion. w = PCB trace width as defined in Table 6-29. Series terminator, if used, should be located closest to device. CACLM is the longest Manhattan distance of the CK and ADDR_CTRL net classes. Copyright © 2009–2017, Texas Instruments Incorporated Peripheral Information and Electrical Specifications Submit Documentation Feedback Product Folder Links: OMAP-L138 137 OMAP-L138 SPRS586J – JUNE 2009 – REVISED JANUARY 2017 www.ti.com Figure 6-24 shows the topology and routing for the DQS and D net class; the routes are point to point. Skew matching across bytes is not needed nor recommended. E0 A1 T A1 DDR2/mDDR Controller T E1 Figure 6-24. DQS and D Routing and Topology Table 6-37. DQS and D Routing Specification NO. PARAMETER MIN 1 Center to center DQS to other DDR2/mDDR trace spacing (1) 4w (2) 2 DQS/D nominal trace length (3) (4) 3 D to DQS Skew Length Mismatch (4) 4 D to D Skew Length Mismatch (4) 5 Center to center D to other DDR2/mDDR trace spacing (1) (5) 4w (2) 6 Center to Center D to other D trace spacing (1) (6) 3w (2) (1) (2) (3) (4) (5) (6) 138 DQLM-50 TYP MAX UNIT DQLM DQLM+50 Mils 100 Mils 100 Mils Center to center spacing is allowed to fall to minimum (w) for up to 500 mils of routed length to accommodate BGA escape and routing congestion. w = PCB trace width as defined in Table 6-29. Series terminator, if used, should be located closest to DDR. There is no need and it is not recommended to skew match across data bytes, i.e., from DQS0 and data byte 0 to DQS1 and data byte 1. D's from other DQS domains are considered other DDR2/mDDR trace. DQLM is the longest Manhattan distance of each of the DQS and D net class. Peripheral Information and Electrical Specifications Submit Documentation Feedback Product Folder Links: OMAP-L138 Copyright © 2009–2017, Texas Instruments Incorporated OMAP-L138 www.ti.com SPRS586J – JUNE 2009 – REVISED JANUARY 2017 Figure 6-25 shows the routing for the DQGATE net class. Table 6-38 contains the routing specification. A1 T T DDR2/mDDR Controller F A1 Figure 6-25. DQGATE Routing Table 6-38. DQGATE Routing Specification NO. (1) (2) (3) PARAMETER MIN 1 DQGATE Length F 2 Center to center DQGATE to any other trace spacing 3 DQS/D nominal trace length 4 DQGATE Skew (3) TYP CKB0B MAX UNIT DQLM+50 Mils 100 Mils (1) 4w (2) DQLM-50 DQLM CKB0B1 is the sum of the length of the CK net plus the average length of the DQS0 and DQS1 nets. w = PCB trace width as defined in Table 6-29. Skew from CKB0B1 6.11.3.12 DDR2/mDDR Boundary Scan Limitations Due to DDR implementation and timing restrictions, it was not possible to place boundary scan cells between core logic and the IO like boundary scan cells for other IO. Instead, the boundary scan cells are tapped-off to the DDR PHY and there is the equivalent of a multiplexer inside the DDR PHY which selects between functional and boundary scan paths. The implication for boundary scan is that the DDR pins will not support the SAMPLE function of the output enable cells on the DDR pins and this is a violation of IEEE 1149.1. Full EXTEST and PRELOAD capability is still available. Copyright © 2009–2017, Texas Instruments Incorporated Peripheral Information and Electrical Specifications Submit Documentation Feedback Product Folder Links: OMAP-L138 139 OMAP-L138 SPRS586J – JUNE 2009 – REVISED JANUARY 2017 www.ti.com 6.12 Memory Protection Units The MPU performs memory protection checking. It receives requests from a bus master in the system and checks the address against the fixed and programmable regions to see if the access is allowed. If allowed, the transfer is passed unmodified to its output bus (to the targeted address). If the transfer is illegal (fails the protection check) then the MPU does not pass the transfer to the output bus but rather services the transfer internally back to the input bus (to prevent a hang) returning the fault status to the requestor as well as generating an interrupt about the fault. The following features are supported by the MPU: • Provides memory protection for fixed and programmable address ranges. • Supports multiple programmable address region. • Supports secure and debug access privileges. • Supports read, write, and execute access privileges. • Supports privid(8) associations with ranges. • Generates an interrupt when there is a protection violation, and saves violating transfer parameters. • MMR access is also protected. Table 6-39. MPU1 Configuration Registers MPU1 BYTE ADDRESS ACRONYM 0x01E1 4000 REVID 0x01E1 4004 CONFIG 0x01E1 4010 IRAWSTAT 0x01E1 4014 IENSTAT REGISTER DESCRIPTION Revision ID Configuration Interrupt raw status/set Interrupt enable status/clear 0x01E1 4018 IENSET Interrupt enable 0x01E1 401C IENCLR Interrupt enable clear 0x01E1 4020 - 0x01E1 41FF - 0x01E1 4200 PROG1_MPSAR Programmable range 1, start address 0x01E1 4204 PROG1_MPEAR Programmable range 1, end address 0x01E1 4208 PROG1_MPPA Reserved Programmable range 1, memory page protection attributes 0x01E1 420C - 0x01E1 420F - 0x01E1 4210 PROG2_MPSAR Reserved Programmable range 2, start address 0x01E1 4214 PROG2_MPEAR Programmable range 2, end address 0x01E1 4218 PROG2_MPPA Programmable range 2, memory page protection attributes 0x01E1 421C - 0x01E1 421F - 0x01E1 4220 PROG3_MPSAR Reserved Programmable range 3, start address 0x01E1 4224 PROG3_MPEAR Programmable range 3, end address 0x01E1 4228 PROG3_MPPA 0x01E1 422C - 0x01E1 422F - 0x01E1 4230 PROG4_MPSAR Programmable range 4, start address 0x01E1 4234 PROG4_MPEAR Programmable range 4, end address 0x01E1 4238 PROG4_MPPA 0x01E1 423C - 0x01E1 423F - 0x01E1 4240 PROG5_MPSAR Programmable range 5, start address 0x01E1 4244 PROG5_MPEAR Programmable range 5, end address 0x01E1 4248 PROG5_MPPA 0x01E1 424C - 0x01E1 424F - 0x01E1 4250 PROG6_MPSAR Programmable range 6, start address 0x01E1 4254 PROG6_MPEAR Programmable range 6, end address 0x01E1 4258 PROG6_MPPA 0x01E1 425C - 0x01E1 42FF - 140 Programmable range 3, memory page protection attributes Reserved Programmable range 4, memory page protection attributes Reserved Programmable range 5, memory page protection attributes Reserved Programmable range 6, memory page protection attributes Reserved Peripheral Information and Electrical Specifications Submit Documentation Feedback Product Folder Links: OMAP-L138 Copyright © 2009–2017, Texas Instruments Incorporated OMAP-L138 www.ti.com SPRS586J – JUNE 2009 – REVISED JANUARY 2017 Table 6-39. MPU1 Configuration Registers (continued) MPU1 BYTE ADDRESS ACRONYM 0x01E1 4300 FLTADDRR 0x01E1 4304 FLTSTAT Fault status 0x01E1 4308 FLTCLR Fault clear 0x01E1 430C - 0x01E1 4FFF - Reserved REGISTER DESCRIPTION Fault address Table 6-40. MPU2 Configuration Registers MPU2 BYTE ADDRESS ACRONYM REGISTER DESCRIPTION 0x01E1 5000 REVID 0x01E1 5004 CONFIG Revision ID 0x01E1 5010 IRAWSTAT 0x01E1 5014 IENSTAT 0x01E1 5018 IENSET Interrupt enable Interrupt enable clear Configuration Interrupt raw status/set Interrupt enable status/clear 0x01E1 501C IENCLR 0x01E1 5020 - 0x01E1 51FF - 0x01E1 5200 PROG1_MPSAR Programmable range 1, start address 0x01E1 5204 PROG1_MPEAR Programmable range 1, end address Reserved 0x01E1 5208 PROG1_MPPA 0x01E1 520C - 0x01E1 520F - Programmable range 1, memory page protection attributes 0x01E1 5210 PROG2_MPSAR Programmable range 2, start address 0x01E1 5214 PROG2_MPEAR Programmable range 2, end address 0x01E1 5218 PROG2_MPPA 0x01E1 521C - 0x01E1 521F - 0x01E1 5220 PROG3_MPSAR Programmable range 3, start address 0x01E1 5224 PROG3_MPEAR Programmable range 3, end address 0x01E1 5228 PROG3_MPPA 0x01E1 522C - 0x01E1 522F - 0x01E1 5230 PROG4_MPSAR Programmable range 4, start address 0x01E1 5234 PROG4_MPEAR Programmable range 4, end address 0x01E1 5238 PROG4_MPPA Reserved Programmable range 2, memory page protection attributes Reserved Programmable range 3, memory page protection attributes Reserved Programmable range 4, memory page protection attributes 0x01E1 523C - 0x01E1 523F - 0x01E1 5240 PROG5_MPSAR Reserved Programmable range 5, start address 0x01E1 5244 PROG5_MPEAR Programmable range 5, end address 0x01E1 5248 PROG5_MPPA 0x01E1 524C - 0x01E1 524F - Programmable range 5, memory page protection attributes 0x01E1 5250 PROG6_MPSAR Programmable range 6, start address 0x01E1 5254 PROG6_MPEAR Programmable range 6, end address Reserved 0x01E1 5258 PROG6_MPPA 0x01E1 525C - 0x01E1 525F - 0x01E1 5260 PROG7_MPSAR Programmable range 7, start address 0x01E1 5264 PROG7_MPEAR Programmable range 7, end address 0x01E1 5268 PROG7_MPPA 0x01E1 526C - 0x01E1 526F - 0x01E1 5270 PROG8_MPSAR Programmable range 8, start address 0x01E1 5274 PROG8_MPEAR Programmable range 8, end address 0x01E1 5278 PROG8_MPPA 0x01E1 527C - 0x01E1 527F - Copyright © 2009–2017, Texas Instruments Incorporated Programmable range 6, memory page protection attributes Reserved Programmable range 7, memory page protection attributes Reserved Programmable range 8, memory page protection attributes Reserved Peripheral Information and Electrical Specifications Submit Documentation Feedback Product Folder Links: OMAP-L138 141 OMAP-L138 SPRS586J – JUNE 2009 – REVISED JANUARY 2017 www.ti.com Table 6-40. MPU2 Configuration Registers (continued) MPU2 BYTE ADDRESS ACRONYM 0x01E1 5280 PROG9_MPSAR Programmable range 9, start address 0x01E1 5284 PROG9_MPEAR Programmable range 9, end address 0x01E1 5288 PROG9_MPPA REGISTER DESCRIPTION Programmable range 9, memory page protection attributes 0x01E1 528C - 0x01E1 528F - 0x01E1 5290 PROG10_MPSAR Reserved Programmable range 10, start address 0x01E1 5294 PROG10_MPEAR Programmable range 10, end address 0x01E1 5298 PROG10_MPPA Programmable range 10, memory page protection attributes 0x01E1 529C - 0x01E1 529F - 0x01E1 52A0 PROG11_MPSAR Reserved Programmable range 11, start address 0x01E1 52A4 PROG11_MPEAR Programmable range 11, end address 0x01E1 52A8 PROG11_MPPA 0x01E1 52AC - 0x01E1 52AF - 0x01E1 52B0 PROG12_MPSAR Programmable range 12, start address 0x01E1 52B4 PROG12_MPEAR Programmable range 12, end address 0x01E1 52B8 PROG12_MPPA 0x01E1 52BC - 0x01E1 52FF - 0x01E1 5300 FLTADDRR 0x01E1 5304 FLTSTAT Fault status 0x01E1 5308 FLTCLR Fault clear 0x01E1 530C - 0x01E1 5FFF - Reserved 142 Programmable range 11, memory page protection attributes Reserved Programmable range 12, memory page protection attributes Reserved Fault address Peripheral Information and Electrical Specifications Submit Documentation Feedback Product Folder Links: OMAP-L138 Copyright © 2009–2017, Texas Instruments Incorporated OMAP-L138 www.ti.com SPRS586J – JUNE 2009 – REVISED JANUARY 2017 6.13 MMC / SD / SDIO (MMCSD0, MMCSD1) 6.13.1 MMCSD Peripheral Description The device includes an two MMCSD controllers which are compliant with MMC V4.0, Secure Digital Part 1 Physical Layer Specification V1.1 and Secure Digital Input Output (SDIO) V2.0 specifications. The MMC/SD Controller have following features: • MultiMediaCard (MMC) • Secure Digital (SD) Memory Card • MMC/SD protocol support • SD high capacity support • SDIO protocol support • Programmable clock frequency • 512 bit Read/Write FIFO to lower system overhead • Slave EDMA transfer capability The device MMC/SD Controller does not support SPI mode. 6.13.2 MMCSD Peripheral Register Description(s) Table 6-41. Multimedia Card/Secure Digital (MMC/SD) Card Controller Registers MMCSD0 BYTE ADDRESS MMCSD1 BYTE ADDRESS 0x01C4 0000 0x01E1 B000 MMCCTL MMC Control Register 0x01C4 0004 0x01E1 B004 MMCCLK MMC Memory Clock Control Register ACRONYM REGISTER DESCSRIPTION 0x01C4 0008 0x01E1 B008 MMCST0 MMC Status Register 0 0x01C4 000C 0x01E1 B00C MMCST1 MMC Status Register 1 0x01C4 0010 0x01E1 B010 MMCIM 0x01C4 0014 0x01E1 B014 MMCTOR MMC Response Time-Out Register 0x01C4 0018 0x01E1 B018 MMCTOD MMC Data Read Time-Out Register 0x01C4 001C 0x01E1 B01C MMCBLEN MMC Block Length Register 0x01C4 0020 0x01E1 B020 MMCNBLK MMC Number of Blocks Register 0x01C4 0024 0x01E1 B024 MMCNBLC MMC Number of Blocks Counter Register 0x01C4 0028 0x01E1 B028 MMCDRR MMC Data Receive Register 0x01C4 002C 0x01E1 B02C MMCDXR MMC Data Transmit Register 0x01C4 0030 0x01E1 B030 MMCCMD MMC Command Register 0x01C4 0034 0x01E1 B034 MMCARGHL MMC Argument Register 0x01C4 0038 0x01E1 B038 MMCRSP01 MMC Response Register 0 and 1 0x01C4 003C 0x01E1 B03C MMCRSP23 MMC Response Register 2 and 3 0x01C4 0040 0x01E1 B040 MMCRSP45 MMC Response Register 4 and 5 0x01C4 0044 0x01E1 B044 MMCRSP67 MMC Response Register 6 and 7 0x01C4 0048 0x01E1 B048 MMCDRSP MMC Data Response Register 0x01C4 0050 0x01E1 B050 MMCCIDX MMC Command Index Register 0x01C4 0064 0x01E1 B064 SDIOCTL SDIO Control Register 0x01C4 0068 0x01E1 B068 SDIOST0 SDIO Status Register 0 0x01C4 006C 0x01E1 B06C SDIOIEN SDIO Interrupt Enable Register 0x01C4 0070 0x01E1 B070 SDIOIST SDIO Interrupt Status Register 0x01C4 0074 0x01E1 B074 MMCFIFOCTL Copyright © 2009–2017, Texas Instruments Incorporated MMC Interrupt Mask Register MMC FIFO Control Register Peripheral Information and Electrical Specifications Submit Documentation Feedback Product Folder Links: OMAP-L138 143 OMAP-L138 SPRS586J – JUNE 2009 – REVISED JANUARY 2017 www.ti.com 6.13.3 MMC/SD Electrical Data/Timing Table 6-42 through Table 6-43 assume testing over recommended operating conditions. Table 6-42. Timing Requirements for MMC/SD (see Figure 6-27 and Figure 6-29) 1.3V, 1.2V NO. 1 MIN tsu(CMDV- Setup time, MMCSD_CMD valid before MMCSD_CLK high MAX 1.1V MIN 1.0V MAX MIN MAX UNIT 4 4 6 ns CLKH) 2 th(CLKH-CMDV) 2.5 2.5 2.5 ns 3 tsu(DATV-CLKH) Setup time, MMCSD_DATx valid before MMCSD_CLK high Hold time, MMCSD_CMD valid after MMCSD_CLK high 4.5 5 6 ns 4 th(CLKH-DATV) 2.5 2.5 2.5 ns Hold time, MMCSD_DATx valid after MMCSD_CLK high Table 6-43. Switching Characteristics for MMC/SD (see Figure 6-26 through Figure 6-29) NO. PARAMETER 1.3V, 1.2V 1.1V 1.0V UNIT MIN MAX MIN MAX MIN MAX 0 52 0 50 0 25 MHz 0 400 0 400 0 400 KHz 7 f(CLK) Operating frequency, MMCSD_CLK 8 f(CLK_ID) Identification mode frequency, MMCSD_CLK 9 tW(CLKL) Pulse width, MMCSD_CLK low 6.5 6.5 10 ns 10 tW(CLKH) Pulse width, MMCSD_CLK high 6.5 6.5 10 ns 11 tr(CLK) Rise time, MMCSD_CLK 3 3 10 ns 12 tf(CLK) Fall time, MMCSD_CLK 3 3 10 ns 13 td(CLKL-CMD) Delay time, MMCSD_CLK low to MMCSD_CMD transition -4 2.5 -4 3 -4 4 ns 14 td(CLKL-DAT) Delay time, MMCSD_CLK low to MMCSD_DATx transition -4 3.3 -4 3.5 -4 4 ns 144 Peripheral Information and Electrical Specifications Submit Documentation Feedback Product Folder Links: OMAP-L138 Copyright © 2009–2017, Texas Instruments Incorporated OMAP-L138 www.ti.com SPRS586J – JUNE 2009 – REVISED JANUARY 2017 10 9 7 MMCSD_CLK 13 13 START MMCSD_CMD 13 XMIT Valid Valid 13 Valid END Figure 6-26. MMC/SD Host Command Timing 9 7 10 MMCSD_CLK 1 2 START MMCSD_CMD XMIT Valid Valid Valid END Figure 6-27. MMC/SD Card Response Timing 10 9 7 MMCSD_CLK 14 14 START MMCSD_DATx 14 D0 D1 14 Dx END Figure 6-28. MMC/SD Host Write Timing 9 10 7 MMCSD_CLK 4 4 3 MMCSD_DATx Start 3 D0 D1 Dx End Figure 6-29. MMC/SD Host Read and Card CRC Status Timing Copyright © 2009–2017, Texas Instruments Incorporated Peripheral Information and Electrical Specifications Submit Documentation Feedback Product Folder Links: OMAP-L138 145 OMAP-L138 SPRS586J – JUNE 2009 – REVISED JANUARY 2017 www.ti.com 6.14 Serial ATA Controller (SATA) The Serial ATA Controller (SATA) provides a single HBA port operating in AHCI mode and is used to interface to data storage devices at both 1.5 Gbits/second and 3.0 Gbits/second line speeds. AHCI describes a system memory structure that contains a generic area for control and status, and a table of entries describing a command list where each command list entry contains information necessary to program an SATA device, and a pointer to a descriptor table for transferring data between system memory and the device. The SATA Controller supports the following features: • • • • • • • • • • • • Serial ATA 1.5 Gbps (Gen 1i) and 3 Gbps (Gen 2i) line speeds Support for the AHCI controller spec 1.1 Integrated SERDES PHY Integrated Rx and Tx data buffers Supports all SATA power management features Internal DMA engine per port Hardware-assisted native command queuing (NCQ) for up to 32 entries 32-bit addressing Supports port multiplier with command-based switching Activity LED support Mechanical presence switch Cold presence detect The SATA Controller support is dependent on the CPU voltage operating point: • • • • 146 At At At At CVDD CVDD CVDD CVDD = = = = 1.3V, SATA 1.2V, SATA 1.1V, SATA 1.0V, SATA Gen 2i (3.0 Gbps) and SATA Gen 1i (1.5 Gbps) are supported. Gen 2i (3.0 Gbps) and SATA Gen 1i (1.5 Gbps) are supported. Gen 1i (1.5 Gbps) only is supported. is not supported. Peripheral Information and Electrical Specifications Submit Documentation Feedback Product Folder Links: OMAP-L138 Copyright © 2009–2017, Texas Instruments Incorporated OMAP-L138 www.ti.com SPRS586J – JUNE 2009 – REVISED JANUARY 2017 6.14.1 SATA Register Descriptions Table 6-44 is a list of the SATA Controller registers. Table 6-44. SATA Controller Registers BYTE ADDRESS ACRONYM 0x01E1 8000 CAP HBA Capabilities Register REGISTER DESCRIPTION 0x01E1 8004 GHC Global HBA Control Register 0x01E1 8008 IS Interrupt Status Register 0x01E1 800C PI Ports Implemented Register 0x01E1 8010 VS AHCI Version Register 0x01E1 8014 CCC_CTL 0x01E1 8018 CCC_PORTS Command Completion Coalescing Control Register 0x01E1 80A0 BISTAFR BIST Active FIS Register 0x01E1 80A4 BISTCR BIST Control Register Command Completion Coalescing Ports Register 0x01E1 80A8 BISTFCTR 0x01E1 80AC BISTSR 0x01E1 80B0 BISTDECR BIST DWORD Error Count Register 0x01E1 80E0 TIMER1MS BIST DWORD Error Count Register 0x01E1 80E8 GPARAM1R Global Parameter 1 Register 0x01E1 80EC GPARAM2R Global Parameter 2 Register 0x01E1 80F0 PPARAMR 0x01E1 80F4 TESTR 0x01E1 80F8 VERSIONR 0x01E1 80FC IDR 0x01E1 8100 P0CLB 0x01E1 8108 P0FB Port FIS Base Address Register 0x01E1 8110 P0IS Port Interrupt Status Register 0x01E1 8114 P0IE Port Interrupt Enable Register 0x01E1 8118 P0CMD Port Command Register 0x01E1 8120 P0TFD Port Task File Data Register 0x01E1 8124 P0SIG Port Signature Register 0x01E1 8128 P0SSTS Port Serial ATA Status Register 0x01E1 812C P0SCTL Port Serial ATA Control Register 0x01E1 8130 P0SERR Port Serial ATA Error Register 0x01E1 8134 P0SACT Port Serial ATA Active Register 0x01E1 8138 P0CI Port Command Issue Register 0x01E1 813C P0SNTF 0x01E1 8170 P0DMACR Port DMA Control Register 0x01E1 8178 P0PHYCR Port PHY Control Register 0x01E1 817C P0PHYSR Port PHY Status Register Copyright © 2009–2017, Texas Instruments Incorporated BIST FIS Count Register BIST Status Register Port Parameter Register Test Register Version Register ID Register Port Command List Base Address Register Port Serial ATA Notification Register Peripheral Information and Electrical Specifications Submit Documentation Feedback Product Folder Links: OMAP-L138 147 OMAP-L138 SPRS586J – JUNE 2009 – REVISED JANUARY 2017 www.ti.com 6.14.2 1. SATA Interface This section provides the timing specification for the SATA interface as a PCB design and manufacturing specification. The design rules constrain PCB trace length, PCB trace skew, signal integrity, cross-talk, and signal timing. TI has performed the simulation and system design work to ensure the SATA interface requirements are met. 6.14.2.1 SATA Interface Schematic Figure 6-30 shows the SATA interface schematic. SATA Interface(Processor) SATA_TXN SATA_TXP SATA_RXN SATA_RXP SATA Connector 10nF TX– TX+ 10nF 10nF RX– RX+ 10nF LVDS Oscillator CLK– CLK+ 10nF SATA_REFCLKN SATA_REFCLKP SATA_REG 10nF 0.1uF Figure 6-30. SATA Interface High Level Schematic 6.14.2.2 Compatible SATA Components and Modes Table 6-45 shows the compatible SATA components and supported modes. Note that the only supported configuration is an internal cable from the processor host to the SATA device. Table 6-45. SATA Supported Modes 148 PARAMETER MIN MAX UNIT Transfer Rates 1.5 3.0 Gbps SUPPORTED eSATA No xSATA No Backplane No Internal Cable Yes Peripheral Information and Electrical Specifications Submit Documentation Feedback Product Folder Links: OMAP-L138 Copyright © 2009–2017, Texas Instruments Incorporated OMAP-L138 www.ti.com SPRS586J – JUNE 2009 – REVISED JANUARY 2017 6.14.2.3 PCB Stackup Specifications Table 6-46 shows the stackup and feature sizes required for SATA. Table 6-46. SATA PCB Stackup Specifications PARAMETER MIN TYP PCB Routing/Plane Layers 4 6 Signal Routing Layers 2 3 MAX Layers Number of ground plane cuts allowed within SATA routing region 0 Number of layers between SATA routing region and reference ground plane Layers 0 PCB Routing Feature Size 4 Mils PCB Trace Width w 4 Mils PCB BGA escape via pad size 18 Mils PCB BGA escape via hole size 8 Mils Device BGA pad size (1) UNIT Layers (1) Please refer to the Flip Chip Ball Grid Array Package Reference Guide (SPRU811) for device BGA pad size. 6.14.2.4 Routing Specifications The SATA data signal traces are edge-coupled and must be routed to achieve exactly 100 Ohms differential impedance. This is impacted by trace width, trace spacing, distance between planes, and dielectric material. Verify with a proper PCB manufacturing tool that the trace geometry for both data signal pairs results in exactly 100 ohms differential impedance traces. Table 6-47 shows the routing specifications for the data and REFCLK signals. Table 6-47. SATA Routing Specifications MAX UNIT Device to SATA header trace length PARAMETER MIN TYP 7000 Mils REFCLK trace length from oscillator to Device (1) 2000 Mils Number of stubs allowed on SATA traces 0 TX/RX pair differential impedance 100 Number of vias on each SATA trace SATA differential pair to any other trace spacing (1) (2) (3) 3 2*DS Stubs Ohms Vias (2) (3) The SATA_REFCLK(P/N) pins include an internal 100 Ohms differential termination Vias must be used in pairs with their distance minimized. DS is the differential spacing of the SATA traces. 6.14.2.5 Coupling Capacitors AC coupling capacitors are required on the receive data pair as well as the REFCLK pair. Table 6-48 shows the requirements for these capacitors. Table 6-48. SATA Bypass and Coupling Capacitors Requirements PARAMETER MIN TYP MAX SATA AC coupling capacitor value 0.3 10 12 nF 0603 10 Mils (1) (2) SATA AC coupling capacitor package size (1) (2) UNIT LxW, 10 mil units, i.e., a 0402 is a 40x20 mil surface mount capacitor. The physical size of the capacitor should be as small as possible. 6.14.2.6 SATA Interface Clock Source requirements A high-quality, low-jitter differential clock source is required for the SATA PHY. The SATA interface requires a LVDS differential clock source to be provided at signals SATA_REFCLKP and SATA_REFCLKN. The clock source should be placed physically as close to the processor as possible. Copyright © 2009–2017, Texas Instruments Incorporated Peripheral Information and Electrical Specifications Submit Documentation Feedback Product Folder Links: OMAP-L138 149 OMAP-L138 SPRS586J – JUNE 2009 – REVISED JANUARY 2017 www.ti.com Table 6-49 shows the requirements for the clock source. Table 6-49. SATA Input Clock Source Requirements PARAMETER Clock Frequency MIN (1) TYP 75 Jitter Duty Cycle 40 Rise/Fall Time (1) MAX UNIT 375 MHz 50 ps pk-pk 60 % 700 ps Discrete clock frequency points are supported based on the PLL multiplier used in the SATA PHY. 6.14.3 SATA Unused Signal Configuration If the SATA interface is not used, the SATA signals should be configured as shown below. Table 6-50. Unused SATA Signal Configuration SATA Signal Name 150 Configuration if SATA peripheral is not used SATA_RXP No Connect SATA_RXN No Connect SATA_TXP No Connect SATA_TXN No Connect SATA_REFCLKP No Connect SATA_REFCLKN No Connect SATA_MPSWITCH May be used as GPIO or other peripheral function SATA_CP_DET May be used as GPIO or other peripheral function SATA_CP_POD May be used as GPIO or other peripheral function SATA_LED May be used as GPIO or other peripheral function SATA_REG No Connect SATA_VDDR No Connect SATA_VDD Prior to silicon revision 2.0, this supply must be connected to a static 1.2V nominal supply. For silicon revision 2.0 and later, this supply may be left unconnected for additional power conservation. SATA_VSS Vss Peripheral Information and Electrical Specifications Submit Documentation Feedback Product Folder Links: OMAP-L138 Copyright © 2009–2017, Texas Instruments Incorporated OMAP-L138 www.ti.com SPRS586J – JUNE 2009 – REVISED JANUARY 2017 6.15 Multichannel Audio Serial Port (McASP) The McASP serial port is specifically designed for multichannel audio applications. Its key features are: • Flexible clock and frame sync generation logic and on-chip dividers • Up to sixteen transmit or receive data pins and serializers • Large number of serial data format options, including: – TDM Frames with 2 to 32 time slots per frame (periodic) or 1 slot per frame (burst) – Time slots of 8,12,16, 20, 24, 28, and 32 bits – First bit delay 0, 1, or 2 clocks – MSB or LSB first bit order – Left- or right-aligned data words within time slots • DIT Mode with 384-bit Channel Status and 384-bit User Data registers • Extensive error checking and mute generation logic • All unused pins GPIO-capable • • Transmit & Receive FIFO Buffers allow the McASP to operate at a higher sample rate by making it more tolerant to DMA latency. Dynamic Adjustment of Clock Dividers – Clock Divider Value may be changed without resetting the McASP Pins Peripheral Configuration Bus GIO Control DIT RAM 384 C 384 U Optional Receive Logic C lo ck /F ra m e G e n e ra to r State Machine Clock Check and Error Detection McASP DMA Bus (Dedicated) Receive F o rm a tte r AHCLKRx Receive Master Clock ACLKRx Receive Bit Clock AFSRx R e c e iv e L e ft/R ig h t C lo ck o r F ra m e S y n c AMUTEINx The McASP DOES NOT have a AMUTEx dedicated AMUTEIN pin. AFSXx AHCLKXx Tra n s m it L e ft/R ig h t C lo ck o r F ra m e S y n c Tra n s m it B it C lo ck Tra n s m it M a s te r C lo ck Serializer 0 AXRx[0] Tra n s m it/R e c e iv e S e ria l D a ta P in Serializer 1 AXRx[1] Tra n s m it/R e c e iv e S e ria l D a ta P in Serializer y AXRx[y] Tra n s m it/R e c e iv e S e ria l D a ta P in Tra n s m it L o g ic C lo ck /F ra m e G e n e ra to r State Machine Tra n s m it F o rm a tte r Function ACLKXx McASP Figure 6-31. McASP Block Diagram Copyright © 2009–2017, Texas Instruments Incorporated Peripheral Information and Electrical Specifications Submit Documentation Feedback Product Folder Links: OMAP-L138 151 OMAP-L138 SPRS586J – JUNE 2009 – REVISED JANUARY 2017 www.ti.com 6.15.1 McASP Peripheral Registers Description(s) Registers for the McASP are summarized in Table 6-51. The registers are accessed through the peripheral configuration port. The receive buffer registers (RBUF) and transmit buffer registers (XBUF) can also be accessed through the DMA port, as listed in Table 6-52 Registers for the McASP Audio FIFO (AFIFO) are summarized in Table 6-53. Note that the AFIFO Write FIFO (WFIFO) and Read FIFO (RFIFO) have independent control and status registers. The AFIFO control registers are accessed through the peripheral configuration port. Table 6-51. McASP Registers Accessed Through Peripheral Configuration Port BYTE ADDRESS REGISTER DESCRIPTION 0x01D0 0000 REV 0x01D0 0010 PFUNC Pin function register 0x01D0 0014 PDIR Pin direction register 0x01D0 0018 PDOUT Revision identification register Pin data output register 0x01D0 001C PDIN 0x01D0 001C PDSET Writes affect: Pin data set register (alternate write address: PDOUT) 0x01D0 0020 PDCLR Pin data clear register (alternate write address: PDOUT) 0x01D0 0044 GBLCTL Global control register 0x01D0 0048 AMUTE Audio mute control register 0x01D0 004C DLBCTL Digital loopback control register 0x01D0 0050 DITCTL DIT mode control register 0x01D0 0060 0x01D0 0064 RGBLCTL RMASK 0x01D0 0068 RFMT 0x01D0 006C AFSRCTL 0x01D0 0070 ACLKRCTL 0x01D0 0074 AHCLKRCTL 0x01D0 0078 RTDM 0x01D0 007C RINTCTL Read returns: Pin data input register Receiver global control register: Alias of GBLCTL, only receive bits are affected - allows receiver to be reset independently from transmitter Receive format unit bit mask register Receive bit stream format register Receive frame sync control register Receive clock control register Receive high-frequency clock control register Receive TDM time slot 0-31 register Receiver interrupt control register 0x01D0 0080 RSTAT Receiver status register 0x01D0 0084 RSLOT Current receive TDM time slot register 0x01D0 0088 RCLKCHK Receive clock check control register 0x01D0 008C REVTCTL Receiver DMA event control register XGBLCTL Transmitter global control register. Alias of GBLCTL, only transmit bits are affected - allows transmitter to be reset independently from receiver 0x01D0 00A0 0x01D0 00A4 152 ACRONYM XMASK 0x01D0 00A8 XFMT 0x01D0 00AC AFSXCTL 0x01D0 00B0 ACLKXCTL 0x01D0 00B4 AHCLKXCTL Transmit format unit bit mask register Transmit bit stream format register Transmit frame sync control register Transmit clock control register Transmit high-frequency clock control register 0x01D0 00B8 XTDM Transmit TDM time slot 0-31 register 0x01D0 00BC XINTCTL Transmitter interrupt control register 0x01D0 00C0 XSTAT Transmitter status register 0x01D0 00C4 XSLOT Current transmit TDM time slot register 0x01D0 00C8 XCLKCHK Transmit clock check control register 0x01D0 00CC XEVTCTL Transmitter DMA event control register 0x01D0 0100 DITCSRA0 Left (even TDM time slot) channel status register (DIT mode) 0 0x01D0 0104 DITCSRA1 Left (even TDM time slot) channel status register (DIT mode) 1 0x01D0 0108 DITCSRA2 Left (even TDM time slot) channel status register (DIT mode) 2 Peripheral Information and Electrical Specifications Submit Documentation Feedback Product Folder Links: OMAP-L138 Copyright © 2009–2017, Texas Instruments Incorporated OMAP-L138 www.ti.com SPRS586J – JUNE 2009 – REVISED JANUARY 2017 Table 6-51. McASP Registers Accessed Through Peripheral Configuration Port (continued) BYTE ADDRESS ACRONYM 0x01D0 010C DITCSRA3 Left (even TDM time slot) channel status register (DIT mode) 3 REGISTER DESCRIPTION 0x01D0 0110 DITCSRA4 Left (even TDM time slot) channel status register (DIT mode) 4 0x01D0 0114 DITCSRA5 Left (even TDM time slot) channel status register (DIT mode) 5 0x01D0 0118 DITCSRB0 Right (odd TDM time slot) channel status register (DIT mode) 0 0x01D0 011C DITCSRB1 Right (odd TDM time slot) channel status register (DIT mode) 1 0x01D0 0120 DITCSRB2 Right (odd TDM time slot) channel status register (DIT mode) 2 0x01D0 0124 DITCSRB3 Right (odd TDM time slot) channel status register (DIT mode) 3 0x01D0 0128 DITCSRB4 Right (odd TDM time slot) channel status register (DIT mode) 4 0x01D0 012C DITCSRB5 Right (odd TDM time slot) channel status register (DIT mode) 5 0x01D0 0130 DITUDRA0 Left (even TDM time slot) channel user data register (DIT mode) 0 0x01D0 0134 DITUDRA1 Left (even TDM time slot) channel user data register (DIT mode) 1 0x01D0 0138 DITUDRA2 Left (even TDM time slot) channel user data register (DIT mode) 2 0x01D0 013C DITUDRA3 Left (even TDM time slot) channel user data register (DIT mode) 3 0x01D0 0140 DITUDRA4 Left (even TDM time slot) channel user data register (DIT mode) 4 0x01D0 0144 DITUDRA5 Left (even TDM time slot) channel user data register (DIT mode) 5 0x01D0 0148 DITUDRB0 Right (odd TDM time slot) channel user data register (DIT mode) 0 0x01D0 014C DITUDRB1 Right (odd TDM time slot) channel user data register (DIT mode) 1 0x01D0 0150 DITUDRB2 Right (odd TDM time slot) channel user data register (DIT mode) 2 0x01D0 0154 DITUDRB3 Right (odd TDM time slot) channel user data register (DIT mode) 3 0x01D0 0158 DITUDRB4 Right (odd TDM time slot) channel user data register (DIT mode) 4 0x01D0 015C DITUDRB5 Right (odd TDM time slot) channel user data register (DIT mode) 5 0x01D0 0180 SRCTL0 Serializer control register 0 0x01D0 0184 SRCTL1 Serializer control register 1 0x01D0 0188 SRCTL2 Serializer control register 2 0x01D0 018C SRCTL3 Serializer control register 3 0x01D0 0190 SRCTL4 Serializer control register 4 0x01D0 0194 SRCTL5 Serializer control register 5 0x01D0 0198 SRCTL6 Serializer control register 6 0x01D0 019C SRCTL7 Serializer control register 7 0x01D0 01A0 SRCTL8 Serializer control register 8 0x01D0 01A4 SRCTL9 Serializer control register 9 0x01D0 01A8 SRCTL10 Serializer control register 10 0x01D0 01AC SRCTL11 Serializer control register 11 0x01D0 01B0 SRCTL12 Serializer control register 12 0x01D0 01B4 SRCTL13 Serializer control register 13 0x01D0 01B8 SRCTL14 Serializer control register 14 0x01D0 01BC SRCTL15 Serializer control register 15 Copyright © 2009–2017, Texas Instruments Incorporated Peripheral Information and Electrical Specifications Submit Documentation Feedback Product Folder Links: OMAP-L138 153 OMAP-L138 SPRS586J – JUNE 2009 – REVISED JANUARY 2017 www.ti.com Table 6-51. McASP Registers Accessed Through Peripheral Configuration Port (continued) BYTE ADDRESS ACRONYM 0x01D0 0200 XBUF0 (1) Transmit buffer register for serializer 0 0x01D0 0204 XBUF1 (1) Transmit buffer register for serializer 1 0x01D0 0208 XBUF2 (1) Transmit buffer register for serializer 2 0x01D0 020C XBUF3 (1) Transmit buffer register for serializer 3 0x01D0 0210 XBUF4 (1) Transmit buffer register for serializer 4 0x01D0 0214 XBUF5 (1) Transmit buffer register for serializer 5 0x01D0 0218 XBUF6 (1) Transmit buffer register for serializer 6 0x01D0 021C XBUF7 (1) Transmit buffer register for serializer 7 0x01D0 0220 XBUF8 (1) Transmit buffer register for serializer 8 0x01D0 0224 XBUF9 (1) Transmit buffer register for serializer 9 0x01D0 0228 XBUF10 (1) Transmit buffer register for serializer 10 0x01D0 022C XBUF11 (1) Transmit buffer register for serializer 11 0x01D0 0230 XBUF12 (1) Transmit buffer register for serializer 12 0x01D0 0234 XBUF13 (1) Transmit buffer register for serializer 13 0x01D0 0238 XBUF14 (1) Transmit buffer register for serializer 14 0x01D0 023C XBUF15 (1) Transmit buffer register for serializer 15 0x01D0 0280 RBUF0 (2) Receive buffer register for serializer 0 0x01D0 0284 RBUF1 (2) Receive buffer register for serializer 1 0x01D0 0288 RBUF2 (2) Receive buffer register for serializer 2 0x01D0 028C RBUF3 (2) Receive buffer register for serializer 3 0x01D0 0290 RBUF4 (2) Receive buffer register for serializer 4 0x01D0 0294 RBUF5 (2) Receive buffer register for serializer 5 0x01D0 0298 RBUF6 (2) Receive buffer register for serializer 6 0x01D0 029C RBUF7 (2) Receive buffer register for serializer 7 0x01D0 02A0 RBUF8 (2) Receive buffer register for serializer 8 0x01D0 02A4 RBUF9 (2) Receive buffer register for serializer 9 0x01D0 02A8 RBUF10 (2) Receive buffer register for serializer 10 0x01D0 02AC RBUF11 (2) Receive buffer register for serializer 11 0x01D0 02B0 RBUF12 (2) Receive buffer register for serializer 12 0x01D0 02B4 RBUF13 (2) Receive buffer register for serializer 13 0x01D0 02B8 RBUF14 (2) Receive buffer register for serializer 14 0x01D0 02BC (2) Receive buffer register for serializer 15 (1) (2) RBUF15 REGISTER DESCRIPTION Writes to XRBUF originate from peripheral configuration port only when XBUSEL = 1 in XFMT. Reads from XRBUF originate on peripheral configuration port only when RBUSEL = 1 in RFMT. Table 6-52. McASP Registers Accessed Through DMA Port ACCESS TYPE BYTE ADDRESS ACRONYM Read Accesses 0x01D0 2000 RBUF Receive buffer DMA port address. Cycles through receive serializers, skipping over transmit serializers and inactive serializers. Starts at the lowest serializer at the beginning of each time slot. Reads from DMA port only if XBUSEL = 0 in XFMT. Write Accesses 0x01D0 2000 XBUF Transmit buffer DMA port address. Cycles through transmit serializers, skipping over receive and inactive serializers. Starts at the lowest serializer at the beginning of each time slot. Writes to DMA port only if RBUSEL = 0 in RFMT. 154 REGISTER DESCRIPTION Peripheral Information and Electrical Specifications Submit Documentation Feedback Product Folder Links: OMAP-L138 Copyright © 2009–2017, Texas Instruments Incorporated OMAP-L138 www.ti.com SPRS586J – JUNE 2009 – REVISED JANUARY 2017 Table 6-53. McASP AFIFO Registers Accessed Through Peripheral Configuration Port BYTE ADDRESS ACRONYM REGISTER DESCRIPTION 0x01D0 1000 AFIFOREV AFIFO revision identification register 0x01D0 1010 WFIFOCTL Write FIFO control register 0x01D0 1014 WFIFOSTS Write FIFO status register 0x01D0 1018 RFIFOCTL Read FIFO control register 0x01D0 101C RFIFOSTS Read FIFO status register 6.15.2 McASP Electrical Data/Timing 6.15.2.1 Multichannel Audio Serial Port 0 (McASP0) Timing Table 6-54 and Table 6-56 assume testing over recommended operating conditions (see Figure 6-32 and Figure 6-33). Table 6-54. Timing Requirements for McASP0 (1.3V, 1.2V, 1.1V) (1) (2) 1.3V, 1.2V NO. 1 tc(AHCLKRX) Cycle time, AHCLKR/X 2 tw(AHCLKRX) Pulse duration, AHCLKR/X high or low 3 tc(ACLKRX) Cycle time, ACLKR/X 4 tw(ACLKRX) 5 6 7 8 (1) (2) (3) (4) (5) MIN tsu(AFSRX-ACLKRX) th(ACLKRX-AFSRX) tsu(AXR-ACLKRX) th(ACLKRX-AXR) MAX 1.1V MIN MAX UNIT 25 28 ns 12.5 14 ns AHCLKR/X ext 25 (3) 28 (3) ns Pulse duration, ACLKR/W high or low AHCLKR/X ext 12.5 14 ns AHCLKR/X int 11.5 12 ns AHCLKR/X ext input 4 5 ns AHCLKR/X ext output 4 5 ns AHCLKR/X int -1 -2 ns AHCLKR/X ext input 1 1 ns AHCLKR/X ext output 1 1 ns AHCLKR/X int 11.5 12 ns AHCLKR/X ext 4 5 ns AHCLKR/X int -1 -2 ns AHCLKR/X ext input 3 4 ns AHCLKR/X ext output 3 4 ns Setup time, AFSR/X input to ACLKR/X (4) Hold time, AFSR/X input after ACLKR/X (4) Setup time, AXR0[n] input to ACLKR/X (4) (5) Hold time, AXR0[n] input after ACLKR/X (4) (5) ACLKX0 internal – McASP0 ACLKXCTL.CLKXM = 1, PDIR.ACLKX = 1 ACLKX0 external input – McASP0 ACLKXCTL.CLKXM = 0, PDIR.ACLKX = 0 ACLKX0 external output – McASP0 ACLKXCTL.CLKXM = 0, PDIR.ACLKX = 1 ACLKR0 internal – McASP0 ACLKRCTL.CLKRM = 1, PDIR.ACLKR =1 ACLKR0 external input – McASP0 ACLKRCTL.CLKRM = 0, PDIR.ACLKR = 0 ACLKR0 external output – McASP0 ACLKRCTL.CLKRM = 0, PDIR.ACLKR = 1 P = SYSCLK2 period This timing is limited by the timing shown or 2P, whichever is greater. McASP0 ACLKXCTL.ASYNC=1: Receiver is clocked by its own ACLKR0 McASP0 ACLKXCTL.ASYNC=0: Receiver is clocked by transmitter's ACLKX0 Copyright © 2009–2017, Texas Instruments Incorporated Peripheral Information and Electrical Specifications Submit Documentation Feedback Product Folder Links: OMAP-L138 155 OMAP-L138 SPRS586J – JUNE 2009 – REVISED JANUARY 2017 www.ti.com Table 6-55. Timing Requirements for McASP0 (1.0V) (1) (2) 1.0V NO. MIN 1 tc(AHCLKRX) Cycle time, AHCLKR/X 2 tw(AHCLKRX) Pulse duration, AHCLKR/X high or low 3 tc(ACLKRX) Cycle time, ACLKR/X 4 tw(ACLKRX) Pulse duration, ACLKR/W high or low 5 tsu(AFSRX-ACLKRX) Setup time, AFSR/X input to ACLKR/X (4) 6 7 8 (1) (2) (3) (4) (5) 156 th(ACLKRX-AFSRX) tsu(AXR-ACLKRX) th(ACLKRX-AXR) Hold time, AFSR/X input after ACLKR/X (4) Setup time, AXR0[n] input to ACLKR/X (4) (5) Hold time, AXR0[n] input after ACLKR/X (4) (5) MAX UNIT 35 ns 17.5 ns AHCLKR/X ext 35 (3) ns AHCLKR/X ext 17.5 ns AHCLKR/X int 16 ns AHCLKR/X ext input 5.5 ns AHCLKR/X ext output 5.5 ns AHCLKR/X int -2 ns AHCLKR/X ext input 1 ns AHCLKR/X ext output 1 ns AHCLKR/X int 16 ns AHCLKR/X ext 5.5 ns AHCLKR/X int -2 ns AHCLKR/X ext input 5 ns AHCLKR/X ext output 5 ns ACLKX0 internal – McASP0 ACLKXCTL.CLKXM = 1, PDIR.ACLKX = 1 ACLKX0 external input – McASP0 ACLKXCTL.CLKXM = 0, PDIR.ACLKX = 0 ACLKX0 external output – McASP0 ACLKXCTL.CLKXM = 0, PDIR.ACLKX = 1 ACLKR0 internal – McASP0 ACLKRCTL.CLKRM = 1, PDIR.ACLKR =1 ACLKR0 external input – McASP0 ACLKRCTL.CLKRM = 0, PDIR.ACLKR = 0 ACLKR0 external output – McASP0 ACLKRCTL.CLKRM = 0, PDIR.ACLKR = 1 P = SYSCLK2 period This timing is limited by the timing shown or 2P, whichever is greater. McASP0 ACLKXCTL.ASYNC=1: Receiver is clocked by its own ACLKR0 McASP0 ACLKXCTL.ASYNC=0: Receiver is clocked by transmitter's ACLKX0 Peripheral Information and Electrical Specifications Submit Documentation Feedback Product Folder Links: OMAP-L138 Copyright © 2009–2017, Texas Instruments Incorporated OMAP-L138 www.ti.com SPRS586J – JUNE 2009 – REVISED JANUARY 2017 Table 6-56. Switching Characteristics for McASP0 (1.3V, 1.2V, 1.1V) (1) NO. 9 tc(AHCLKRX) Cycle time, AHCLKR/X 10 tw(AHCLKRX) Pulse duration, AHCLKR/X high or low 11 tc(ACLKRX) Cycle time, ACLKR/X 12 tw(ACLKRX) Pulse duration, ACLKR/X high or low 13 td(ACLKRX-AFSRX) Delay time, ACLKR/X transmit edge to AFSX/R output valid (6) 14 td(ACLKX-AXRV) 15 (1) 1.3V, 1.2V PARAMETER tdis(ACLKX-AXRHZ) Delay time, ACLKX transmit edge to AXR output valid Disable time, ACLKR/X transmit edge to AXR high impedance following last data bit MIN 1.1V MAX MIN MAX UNIT 25 28 ns AH – 2.5 (2) AH – 2.5 (2) ns ACLKR/X int 25 (3) (4) 28 (3) (4) ns ACLKR/X int A – 2.5 (5) A – 2.5 (5) ns ACLKR/X int -1 6 -1 8 ns ACLKR/X ext input 2 13.5 2 14.5 ns ACLKR/X ext output 2 13.5 2 14.5 ns ACLKR/X int -1 6 -1 8 ns ACLKR/X ext input 2 13.5 2 15 ns ACLKR/X ext output 2 13.5 2 15 ns ACLKR/X int 0 6 0 8 ns ACLKR/X ext 2 13.5 2 15 ns McASP0 ACLKX0 internal – ACLKXCTL.CLKXM = 1, PDIR.ACLKX = 1 ACLKX0 external input – McASP0 ACLKXCTL.CLKXM = 0, PDIR.ACLKX = 0 ACLKX0 external output – McASP0ACLKXCTL.CLKXM = 0, PDIR.ACLKX = 1 ACLKR0 internal – McASP0 ACLKR0CTL.CLKRM = 1, PDIR.ACLKR =1 ACLKR0 external input – McASP0 ACLKRCTL.CLKRM = 0, PDIR.ACLKR = 0 ACLKR0 external output – McASP0 ACLKRCTL.CLKRM = 0, PDIR.ACLKR = 1 AH = (AHCLKR/X period)/2 in ns. For example, when AHCLKR/X period is 25 ns, use AH = 12.5 ns. P = SYSCLK2 period This timing is limited by the timing shown or 2P, whichever is greater. A = (ACLKR/X period)/2 in ns. For example, when AHCLKR/X period is 25 ns, use AH = 12.5 ns. McASP0 ACLKXCTL.ASYNC=1: Receiver is clocked by its own ACLKR0 (2) (3) (4) (5) (6) Table 6-57. Switching Characteristics for McASP0 (1.0V) (1) NO. 1.0V PARAMETER 9 tc(AHCLKRX) Cycle time, AHCLKR/X 10 tw(AHCLKRX) Pulse duration, AHCLKR/X high or low MIN MAX UNIT 35 ns AH – 2.5 (2) ns 11 tc(ACLKRX) Cycle time, ACLKR/X ACLKR/X int 12 tw(ACLKRX) Pulse duration, ACLKR/X high or low ACLKR/X int A – 2.5 (5) ACLKR/X int -0.5 10 ns ACLKR/X ext input 2 19 ns ACLKR/X ext output 2 19 ns -0.5 10 ns ACLKR/X ext input 2 19 ns ACLKR/X ext output 2 19 ns ACLKR/X int 0 10 ns ACLKR/X ext 2 19 ns 13 td(ACLKRX-AFSRX) Delay time, ACLKR/X transmit edge to AFSX/R output valid (6) ACLKR/X int 14 15 (1) (2) (3) (4) (5) (6) td(ACLKX-AXRV) tdis(ACLKX-AXRHZ) Delay time, ACLKX transmit edge to AXR output valid Disable time, ACLKR/X transmit edge to AXR high impedance following last data bit 35 (3) (4) ns ns McASP0 ACLKX0 internal – ACLKXCTL.CLKXM = 1, PDIR.ACLKX = 1 ACLKX0 external input – McASP0 ACLKXCTL.CLKXM = 0, PDIR.ACLKX = 0 ACLKX0 external output – McASP0ACLKXCTL.CLKXM = 0, PDIR.ACLKX = 1 ACLKR0 internal – McASP0 ACLKR0CTL.CLKRM = 1, PDIR.ACLKR =1 ACLKR0 external input – McASP0 ACLKRCTL.CLKRM = 0, PDIR.ACLKR = 0 ACLKR0 external output – McASP0 ACLKRCTL.CLKRM = 0, PDIR.ACLKR = 1 AH = (AHCLKR/X period)/2 in ns. For example, when AHCLKR/X period is 25 ns, use AH = 12.5 ns. P = SYSCLK2 period This timing is limited by the timing shown or 2P, whichever is greater. A = (ACLKR/X period)/2 in ns. For example, when AHCLKR/X period is 25 ns, use AH = 12.5 ns. McASP0 ACLKXCTL.ASYNC=1: Receiver is clocked by its own ACLKR0 Copyright © 2009–2017, Texas Instruments Incorporated Peripheral Information and Electrical Specifications Submit Documentation Feedback Product Folder Links: OMAP-L138 157 OMAP-L138 SPRS586J – JUNE 2009 – REVISED JANUARY 2017 www.ti.com 2 1 2 AHCLKR/X (Falling Edge Polarity) AHCLKR/X (Rising Edge Polarity) 4 3 4 ACLKR/X (CLKRP = CLKXP = 0)(A) ACLKR/X (CLKRP = CLKXP = 1)(B) 6 5 AFSR/X (Bit Width, 0 Bit Delay) AFSR/X (Bit Width, 1 Bit Delay) AFSR/X (Bit Width, 2 Bit Delay) AFSR/X (Slot Width, 0 Bit Delay) AFSR/X (Slot Width, 1 Bit Delay) AFSR/X (Slot Width, 2 Bit Delay) 8 7 AXR[n] (Data In/Receive) A. B. For CLKRP = CLKXP = receiver is configured for For CLKRP = CLKXP = receiver is configured for A0 A1 A30 A31 B0 B1 B30 B31 C0 C1 C2 C3 C31 0, the McASP transmitter is configured for rising edge (to shift data out) and the McASP falling edge (to shift data in). 1, the McASP transmitter is configured for falling edge (to shift data out) and the McASP rising edge (to shift data in). Figure 6-32. McASP Input Timings 158 Peripheral Information and Electrical Specifications Submit Documentation Feedback Product Folder Links: OMAP-L138 Copyright © 2009–2017, Texas Instruments Incorporated OMAP-L138 www.ti.com SPRS586J – JUNE 2009 – REVISED JANUARY 2017 10 10 9 AHCLKR/X (Falling Edge Polarity) AHCLKR/X (Rising Edge Polarity) 12 11 12 ACLKR/X (CLKRP = CLKXP = 1)(A) ACLKR/X (CLKRP = CLKXP = 0)(B) 13 13 13 13 AFSR/X (Bit Width, 0 Bit Delay) AFSR/X (Bit Width, 1 Bit Delay) AFSR/X (Bit Width, 2 Bit Delay) 13 13 13 AFSR/X (Slot Width, 0 Bit Delay) AFSR/X (Slot Width, 1 Bit Delay) AFSR/X (Slot Width, 2 Bit Delay) 14 15 AXR[n] (Data Out/Transmit) A0 A. B. For CLKRP = CLKXP = receiver is configured for For CLKRP = CLKXP = receiver is configured for A1 A30 A31 B0 B1 B30 B31 C0 C1 C2 C3 C31 1, the McASP transmitter is configured for falling edge (to shift data out) and the McASP rising edge (to shift data in). 0, the McASP transmitter is configured for rising edge (to shift data out) and the McASP falling edge (to shift data in). Figure 6-33. McASP Output Timings Copyright © 2009–2017, Texas Instruments Incorporated Peripheral Information and Electrical Specifications Submit Documentation Feedback Product Folder Links: OMAP-L138 159 OMAP-L138 SPRS586J – JUNE 2009 – REVISED JANUARY 2017 www.ti.com 6.16 Multichannel Buffered Serial Port (McBSP) The McBSP provides these functions: • Full-duplex communication • Double-buffered data registers, which allow a continuous data stream • Independent framing and clocking for receive and transmit • Direct interface to industry-standard codecs, analog interface chips (AICs), and other serially connected analog-to-digital (A/D) and digital-to-analog (D/A) devices • External shift clock or an internal, programmable frequency shift clock for data transfer • Transmit & Receive FIFO Buffers allow the McBSP to operate at a higher sample rate by making it more tolerant to DMA latency If internal clock source is used, the CLKGDV field of the Sample Rate Generator Register (SRGR) must always be set to a value of 1 or greater. 6.16.1 McBSP Peripheral Register Description(s) Table 6-58. McBSP/FIFO Registers McBSP0 BYTE ADDRESS McBSP1 BYTE ADDRESS ACRONYM 0x01D1 0000 0x01D1 1000 DRR McBSP Data Receive Register (read-only) 0x01D1 0004 0x01D1 1004 DXR McBSP Data Transmit Register 0x01D1 0008 0x01D1 1008 SPCR 0x01D1 000C 0x01D1 100C RCR McBSP Receive Control Register 0x01D1 0010 0x01D1 1010 XCR McBSP Transmit Control Register 0x01D1 0014 0x01D1 1014 SRGR 0x01D1 0018 0x01D1 1018 MCR 0x01D1 001C 0x01D1 101C RCERE0 McBSP Enhanced Receive Channel Enable Register 0 Partition A/B 0x01D1 0020 0x01D1 1020 XCERE0 McBSP Enhanced Transmit Channel Enable Register 0 Partition A/B 0x01D1 0024 0x01D1 1024 PCR 0x01D1 0028 0x01D1 1028 RCERE1 McBSP Enhanced Receive Channel Enable Register 1 Partition C/D 0x01D1 002C 0x01D1 102C XCERE1 McBSP Enhanced Transmit Channel Enable Register 1 Partition C/D 0x01D1 0030 0x01D1 1030 RCERE2 McBSP Enhanced Receive Channel Enable Register 2 Partition E/F 0x01D1 0034 0x01D1 1034 XCERE2 McBSP Enhanced Transmit Channel Enable Register 2 Partition E/F 0x01D1 0038 0x01D1 1038 RCERE3 McBSP Enhanced Receive Channel Enable Register 3 Partition G/H 0x01D1 003C 0x01D1 103C XCERE3 McBSP Enhanced Transmit Channel Enable Register 3 Partition G/H REGISTER DESCRIPTION McBSP Registers McBSP Serial Port Control Register McBSP Sample Rate Generator register McBSP Multichannel Control Register McBSP Pin Control Register McBSP FIFO Control and Status Registers 0x01D1 0800 0x01D1 1800 BFIFOREV BFIFO Revision Identification Register 0x01D1 0810 0x01D1 1810 WFIFOCTL Write FIFO Control Register 0x01D1 0814 0x01D1 1814 WFIFOSTS Write FIFO Status Register 0x01D1 0818 0x01D1 1818 RFIFOCTL Read FIFO Control Register 0x01D1 081C 0x01D1 181C RFIFOSTS Read FIFO Status Register McBSP FIFO Data Registers 160 0x01F1 0000 0x01F1 1000 RBUF McBSP FIFO Receive Buffer 0x01F1 0000 0x01F1 1000 XBUF McBSP FIFO Transmit Buffer Peripheral Information and Electrical Specifications Submit Documentation Feedback Product Folder Links: OMAP-L138 Copyright © 2009–2017, Texas Instruments Incorporated OMAP-L138 www.ti.com SPRS586J – JUNE 2009 – REVISED JANUARY 2017 6.16.2 McBSP Electrical Data/Timing The following assume testing over recommended operating conditions. 6.16.2.1 Multichannel Buffered Serial Port (McBSP) Timing Table 6-59. Timing Requirements for McBSP0 [1.3V, 1.2V, 1.1V] (1) (see Figure 6-34) 1.3V, 1.2V NO. MIN 1.1V MAX MIN MAX UNIT 2 tc(CKRX) Cycle time, CLKR/X CLKR/X ext 2P or 20 (2) (3) 2P or 25 (2) (3) ns 3 tw(CKRX) Pulse duration, CLKR/X high or CLKR/X low CLKR/X ext P - 1 (4) P - 1 (4) ns 5 tsu(FRH-CKRL) Setup time, external FSR high before CLKR low CLKR int 14 15.5 CLKR ext 4 5 6 th(CKRL-FRH) Hold time, external FSR high after CLKR low CLKR int 6 6 CLKR ext 3 3 7 tsu(DRV-CKRL) Setup time, DR valid before CLKR low CLKR int 14 15.5 CLKR ext 4 5 8 th(CKRL-DRV) Hold time, DR valid after CLKR low CLKR int 3 3 CLKR ext 3 3 10 tsu(FXH-CKXL) Setup time, external FSX high before CLKX low CLKX int 14 15.5 CLKX ext 4 5 11 th(CKXL-FXH) Hold time, external FSX high after CLKX low CLKX int 6 6 CLKX ext 3 3 (1) (2) (3) (4) ns ns ns ns ns ns CLKRP = CLKXP = FSRP = FSXP = 0. If polarity of any of the signals is inverted, then the timing references of that signal are also inverted. P = ASYNC3 period in ns. For example, when the ASYNC clock domain is running at 100 MHz, use 10 ns. Use whichever value is greater. Minimum CLKR/X cycle times must be met, even when CLKR/X is generated by an internal clock source. The minimum CLKR/X cycle times are based on internal logic speed; the maximum usable speed may be lower due to EDMA limitations and AC timing requirements. This parameter applies to the maximum McBSP frequency. Operate serial clocks (CLKR/X) in the reasonable range of 40/60 duty cycle. Copyright © 2009–2017, Texas Instruments Incorporated Peripheral Information and Electrical Specifications Submit Documentation Feedback Product Folder Links: OMAP-L138 161 OMAP-L138 SPRS586J – JUNE 2009 – REVISED JANUARY 2017 www.ti.com Table 6-60. Timing Requirements for McBSP0 [1.0V] (1) (see Figure 6-34) 1.0V NO. MIN MAX UNIT 2 tc(CKRX) Cycle time, CLKR/X CLKR/X ext 2P or 26.6 (2) (3) ns 3 tw(CKRX) Pulse duration, CLKR/X high or CLKR/X low CLKR/X ext P - 1 (4) ns 5 tsu(FRH-CKRL) Setup time, external FSR high before CLKR low 6 th(CKRL-FRH) 7 tsu(DRV-CKRL) Setup time, DR valid before CLKR low 8 th(CKRL-DRV) Hold time, DR valid after CLKR low 10 tsu(FXH-CKXL) Setup time, external FSX high before CLKX low 11 th(CKXL-FXH) Hold time, external FSX high after CLKX low (1) (2) (3) (4) 162 Hold time, external FSR high after CLKR low CLKR int 20 CLKR ext 5 CLKR int 6 CLKR ext 3 CLKR int 20 CLKR ext 5 CLKR int 3 CLKR ext 3 CLKX int 20 CLKX ext 5 CLKX int 6 CLKX ext 3 ns ns ns ns ns ns CLKRP = CLKXP = FSRP = FSXP = 0. If polarity of any of the signals is inverted, then the timing references of that signal are also inverted. P = ASYNC3 period in ns. For example, when the ASYNC clock domain is running at 100 MHz, use 10 ns. Use whichever value is greater. Minimum CLKR/X cycle times must be met, even when CLKR/X is generated by an internal clock source. The minimum CLKR/X cycle times are based on internal logic speed; the maximum usable speed may be lower due to EDMA limitations and AC timing requirements. This parameter applies to the maximum McBSP frequency. Operate serial clocks (CLKR/X) in the reasonable range of 40/60 duty cycle. Peripheral Information and Electrical Specifications Submit Documentation Feedback Product Folder Links: OMAP-L138 Copyright © 2009–2017, Texas Instruments Incorporated OMAP-L138 www.ti.com SPRS586J – JUNE 2009 – REVISED JANUARY 2017 Table 6-61. Switching Characteristics for McBSP0 [1.3V, 1.2V, 1.1V] (1) (2) (see Figure 6-34) NO. 1.3V, 1.2V PARAMETER MIN MAX 2 14.5 2 16 Delay time, CLKS high to CLKR/X high for internal CLKR/X generated from CLKS input tc(CKRX) Cycle time, CLKR/X CLKR/X int 2P or 20 (3) (4) (5) 3 tw(CKRX) Pulse duration, CLKR/X high or CLKR/X low CLKR/X int C - 2 (6) 4 td(CKRH-FRV) Delay time, CLKR high to internal FSR valid CLKR int CLKR ext 9 td(CKXH-FXV) Delay time, CLKX high to internal FSX valid CLKX int CLKX ext 12 tdis(CKXHDXHZ) Disable time, DX high impedance following last data bit from CLKX high 13 td(CKXH-DXV) Delay time, CLKX high to DX valid 14 td(FXH-DXV) 2 (1) (2) (3) (4) (5) (6) (7) (8) td(CKSH- MAX CKRXH) 1 1.1V MIN 2P or 25 (3) (4) (5) C - 2 (6) C + 2 (6) -4 5.5 -4 5.5 2 14.5 2 16 -4 5.5 -4 5.5 2 14.5 2 16 CLKX int -4 7.5 -5.5 7.5 CLKX ext -2 16 -22 16 CLKX int -4 + D1 (7) CLKX ext 2 + D1 5.5 + D2 (7) 14.5 + D2 (7) -4 + D1 (7) 5.5 + D2 (7) (7) 16 + D2 (7) 2 + D1 ns ns C + 2 (6) (7) UNIT Delay time, FSX high to DX valid FSX int -4 (8) 5 (8) -4 (8) 5 (8) ONLY applies when in data delay 0 (XDATDLY = 00b) mode FSX ext -2 (8) 14.5 (8) -2 (8) 16 (8) ns ns ns ns ns ns CLKRP = CLKXP = FSRP = FSXP = 0. If polarity of any of the signals is inverted, then the timing references of that signal are also inverted. Minimum delay times also represent minimum output hold times. Minimum CLKR/X cycle times must be met, even when CLKR/X is generated by an internal clock source. Minimum CLKR/X cycle times are based on internal logic speed; the maximum usable speed may be lower due to EDMA limitations and AC timing requirements. P = ASYNC3 period in ns. For example, when the ASYNC clock domain is running at 100 MHz, use 10 ns. Use whichever value is greater. C = H or L S = sample rate generator input clock = P if CLKSM = 1 (P = ASYNC period) S = sample rate generator input clock = P_clks if CLKSM = 0 (P_clks = CLKS period) H = CLKX high pulse width = (CLKGDV/2 + 1) * S if CLKGDV is even H = (CLKGDV + 1)/2 * S if CLKGDV is odd L = CLKX low pulse width = (CLKGDV/2) * S if CLKGDV is even L = (CLKGDV + 1)/2 * S if CLKGDV is odd CLKGDV should be set appropriately to ensure the McBSP bit rate does not exceed the maximum limit (see (4) above). Extra delay from CLKX high to DX valid applies only to the first data bit of a device, if and only if DXENA = 1 in SPCR. if DXENA = 0, then D1 = D2 = 0 if DXENA = 1, then D1 = 6P, D2 = 12P Extra delay from FSX high to DX valid applies only to the first data bit of a device, if and only if DXENA = 1 in SPCR. if DXENA = 0, then D1 = D2 = 0 if DXENA = 1, then D1 = 6P, D2 = 12P Copyright © 2009–2017, Texas Instruments Incorporated Peripheral Information and Electrical Specifications Submit Documentation Feedback Product Folder Links: OMAP-L138 163 OMAP-L138 SPRS586J – JUNE 2009 – REVISED JANUARY 2017 www.ti.com Table 6-62. Switching Characteristics for McBSP0 [1.0V] (1) (see Figure 6-34) NO. (2) 1.0V PARAMETER MIN MAX 3 21.5 1 td(CKSH-CKRXH) Delay time, CLKS high to CLKR/X high for internal CLKR/X generated from CLKS input 2 tc(CKRX) Cycle time, CLKR/X CLKR/X int 2P or 26.6 (3) (4) (5) 3 tw(CKRX) Pulse duration, CLKR/X high or CLKR/X low CLKR/X int C - 2 (6) C + 2 (6) CLKR int -4 10 CLKR ext 2.5 21.5 4 td(CKRH-FRV) Delay time, CLKR high to internal FSR valid 9 td(CKXH-FXV) Delay time, CLKX high to internal FSX valid 12 tdis(CKXH-DXHZ) Disable time, DX high impedance following last data bit from CLKX high 13 td(CKXH-DXV) Delay time, CLKX high to DX valid 14 td(FXH-DXV) (1) (2) (3) (4) (5) (6) (7) (8) 164 -4 10 CLKX ext 2.5 21.5 CLKX int -4 10 CLKX ext -2 21.5 CLKX int -4 + D1 (7) CLKX ext 2.5 + D1 ns ns CLKX int (7) UNIT 10 + D2 (7) 21.5 + D2 (7) Delay time, FSX high to DX valid FSX int -4 (8) 5 (8) ONLY applies when in data delay 0 (XDATDLY = 00b) mode FSX ext -2 (8) 21.5 (8) ns ns ns ns ns ns CLKRP = CLKXP = FSRP = FSXP = 0. If polarity of any of the signals is inverted, then the timing references of that signal are also inverted. Minimum delay times also represent minimum output hold times. Minimum CLKR/X cycle times must be met, even when CLKR/X is generated by an internal clock source. Minimum CLKR/X cycle times are based on internal logic speed; the maximum usable speed may be lower due to EDMA limitations and AC timing requirements. P = ASYNC3 period in ns. For example, when the ASYNC clock domain is running at 100 MHz, use 10 ns. Use whichever value is greater. C = H or L S = sample rate generator input clock = P if CLKSM = 1 (P = ASYNC period) S = sample rate generator input clock = P_clks if CLKSM = 0 (P_clks = CLKS period) H = CLKX high pulse width = (CLKGDV/2 + 1) * S if CLKGDV is even H = (CLKGDV + 1)/2 * S if CLKGDV is odd L = CLKX low pulse width = (CLKGDV/2) * S if CLKGDV is even L = (CLKGDV + 1)/2 * S if CLKGDV is odd CLKGDV should be set appropriately to ensure the McBSP bit rate does not exceed the maximum limit (see (4) above). Extra delay from CLKX high to DX valid applies only to the first data bit of a device, if and only if DXENA = 1 in SPCR. if DXENA = 0, then D1 = D2 = 0 if DXENA = 1, then D1 = 6P, D2 = 12P Extra delay from FSX high to DX valid applies only to the first data bit of a device, if and only if DXENA = 1 in SPCR. if DXENA = 0, then D1 = D2 = 0 if DXENA = 1, then D1 = 6P, D2 = 12P Peripheral Information and Electrical Specifications Submit Documentation Feedback Product Folder Links: OMAP-L138 Copyright © 2009–2017, Texas Instruments Incorporated OMAP-L138 www.ti.com SPRS586J – JUNE 2009 – REVISED JANUARY 2017 Table 6-63. Timing Requirements for McBSP1 [1.3V, 1.2V, 1.1V] (1) (see Figure 6-34) 1.3V, 1.2V NO. 2 MIN 2P or 20 (2) (3) MIN 2P or 25 (2) tc(CKRX) Cycle time, CLKR/X 3 tw(CKRX) Pulse duration, CLKR/X high or CLKR/X low 5 tsu(FRH-CKRL) Setup time, external FSR high before CLKR low CLKR int 15 18 CLKR ext 5 5 6 th(CKRL-FRH) Hold time, external FSR high after CLKR low CLKR int 6 6 CLKR ext 3 3 7 tsu(DRV-CKRL) Setup time, DR valid before CLKR low CLKR int 15 18 CLKR ext 5 5 8 th(CKRL-DRV) Hold time, DR valid after CLKR low CLKR int 3 3 CLKR ext 3 3 10 tsu(FXH-CKXL) Setup time, external FSX high before CLKX low CLKX int 15 18 CLKX ext 5 5 11 th(CKXL-FXH) Hold time, external FSX high after CLKX low CLKX int 6 6 CLKX ext 3 3 (1) CLKR/X ext 1.1V MAX CLKR/X ext P-1 (5) P-1 MAX (4) UNIT ns (6) ns ns ns ns ns ns ns CLKRP = CLKXP = FSRP = FSXP = 0. If polarity of any of the signals is inverted, then the timing references of that signal are also inverted. P = ASYNC3 period in ns. For example, when the ASYNC clock domain is running at 100 MHz, use 10 ns. Use whichever value is greater. Minimum CLKR/X cycle times must be met, even when CLKR/X is generated by an internal clock source. The minimum CLKR/X cycle times are based on internal logic speed; the maximum usable speed may be lower due to EDMA limitations and AC timing requirements. Use whichever value is greater. Minimum CLKR/X cycle times must be met, even when CLKR/X is generated by an internal clock source. The minimum CLKR/X cycle times are based on internal logic speed; the maximum usable speed may be lower due to EDMA limitations and AC timing requirements. This parameter applies to the maximum McBSP frequency. Operate serial clocks (CLKR/X) in the reasonable range of 40/60 duty cycle. This parameter applies to the maximum McBSP frequency. Operate serial clocks (CLKR/X) in the reasonable range of 40/60 duty cycle. (2) (3) (4) (5) (6) Table 6-64. Timing Requirements for McBSP1 [1.0V] (1) (see Figure 6-34) 1.0V NO. MIN tc(CKRX) Cycle time, CLKR/X CLKR/X ext 2P or 26.6 (2) (3) ns 3 tw(CKRX) Pulse duration, CLKR/X high or CLKR/X low CLKR/X ext P - 1 (4) ns tsu(FRH-CKRL) Setup time, external FSR high before CLKR low 6 th(CKRL-FRH) Hold time, external FSR high after CLKR low 7 tsu(DRV-CKRL) Setup time, DR valid before CLKR low 8 th(CKRL-DRV) Hold time, DR valid after CLKR low 10 tsu(FXH-CKXL) Setup time, external FSX high before CLKX low 11 th(CKXL-FXH) Hold time, external FSX high after CLKX low (2) (3) (4) UNIT 2 5 (1) MAX CLKR int 21 CLKR ext 10 CLKR int 6 CLKR ext 3 CLKR int 21 CLKR ext 10 CLKR int 3 CLKR ext 3 CLKX int 21 CLKX ext 10 CLKX int 6 CLKX ext 3 ns ns ns ns ns ns CLKRP = CLKXP = FSRP = FSXP = 0. If polarity of any of the signals is inverted, then the timing references of that signal are also inverted. P = ASYNC3 period in ns. For example, when the ASYNC clock domain is running at 100 MHz, use 10 ns. Use whichever value is greater. Minimum CLKR/X cycle times must be met, even when CLKR/X is generated by an internal clock source. The minimum CLKR/X cycle times are based on internal logic speed; the maximum usable speed may be lower due to EDMA limitations and AC timing requirements. This parameter applies to the maximum McBSP frequency. Operate serial clocks (CLKR/X) in the reasonable range of 40/60 duty cycle. Copyright © 2009–2017, Texas Instruments Incorporated Peripheral Information and Electrical Specifications Submit Documentation Feedback Product Folder Links: OMAP-L138 165 OMAP-L138 SPRS586J – JUNE 2009 – REVISED JANUARY 2017 www.ti.com Table 6-65. Switching Characteristics for McBSP1 [1.3V, 1.2V, 1.1V] (1) (see Figure 6-34) NO. 1.3V, 1.2V PARAMETER MAX MIN MAX 0.5 16.5 1.5 18 td(CKSH-CKRXH) Delay time, CLKS high to CLKR/X high for internal CLKR/X generated from CLKS input 2 tc(CKRX) Cycle time, CLKR/X CLKR/X int 2P or 20 (3) (4) (5) 3 tw(CKRX) Pulse duration, CLKR/X high or CLKR/X low CLKR/X int C - 2 (6) 4 td(CKRH-FRV) Delay time, CLKR high to internal FSR valid CLKR int CLKR ext 9 td(CKXH-FXV) Delay time, CLKX high to internal FSX valid CLKX int CLKX ext tdis(CKXH-DXHZ) Disable time, DX high impedance following last data bit from CLKX high CLKX int 12 CLKX ext 13 td(CKXH-DXV) Delay time, CLKX high to DX valid CLKX int -4 + D1 (7) 14 td(FXH-DXV) (1) (2) (3) (4) (5) (6) (7) (8) (9) 166 1.1V MIN 1 CLKX ext (2) 2P or 25 (3) (4) (5) C - 2 (6) C + 2 (6) -4 6.5 -4 13 1 16.5 1 18 -4 6.5 -4 13 1 16.5 1 18 -4 6.5 -4 13 -2 16.5 -2 18 1 + D1 6.5 + D2 (7) 16.5 + D2 (7) -4 + D1 (7) 13 + D2 (7) (7) 18 + D2 (7) 1 + D1 ns ns C + 2 (6) (7) UNIT Delay time, FSX high to DX valid FSX int -4 (8) 6.5 (8) -4 (8) 13 (8) ONLY applies when in data delay 0 (XDATDLY = 00b) mode FSX ext -2 (8) 16.5 (8) -2 (8) 18 (9) ns ns ns ns ns ns CLKRP = CLKXP = FSRP = FSXP = 0. If polarity of any of the signals is inverted, then the timing references of that signal are also inverted. Minimum delay times also represent minimum output hold times. Minimum CLKR/X cycle times must be met, even when CLKR/X is generated by an internal clock source. Minimum CLKR/X cycle times are based on internal logic speed; the maximum usable speed may be lower due to EDMA limitations and AC timing requirements. P = ASYNC3 period in ns. For example, when the ASYNC clock domain is running at 100 MHz, use 10 ns. Use whichever value is greater. C = H or L S = sample rate generator input clock = P if CLKSM = 1 (P = ASYNC period) S = sample rate generator input clock = P_clks if CLKSM = 0 (P_clks = CLKS period) H = CLKX high pulse width = (CLKGDV/2 + 1) * S if CLKGDV is even H = (CLKGDV + 1)/2 * S if CLKGDV is odd L = CLKX low pulse width = (CLKGDV/2) * S if CLKGDV is even L = (CLKGDV + 1)/2 * S if CLKGDV is odd CLKGDV should be set appropriately to ensure the McBSP bit rate does not exceed the maximum limit (see (4) above). Extra delay from CLKX high to DX valid applies only to the first data bit of a device, if and only if DXENA = 1 in SPCR. if DXENA = 0, then D1 = D2 = 0 if DXENA = 1, then D1 = 6P, D2 = 12P Extra delay from FSX high to DX valid applies only to the first data bit of a device, if and only if DXENA = 1 in SPCR. if DXENA = 0, then D1 = D2 = 0 if DXENA = 1, then D1 = 6P, D2 = 12P Extra delay from FSX high to DX valid applies only to the first data bit of a device, if and only if DXENA = 1 in SPCR. if DXENA = 0, then D1 = D2 = 0 if DXENA = 1, then D1 = 6P, D2 = 12P Peripheral Information and Electrical Specifications Submit Documentation Feedback Product Folder Links: OMAP-L138 Copyright © 2009–2017, Texas Instruments Incorporated OMAP-L138 www.ti.com SPRS586J – JUNE 2009 – REVISED JANUARY 2017 Table 6-66. Switching Characteristics for McBSP1 [1.0V] (1) (see Figure 6-34) NO. tc(CKRX) Cycle time, CLKR/X CLKR/X int 2P or 26.6 (3) (4) (5) 3 tw(CKRX) Pulse duration, CLKR/X high or CLKR/X low CLKR/X int C - 2 (6) C + 2 (6) CLKR int -4 13 CLKR ext 2.5 23 CLKX int -4 13 CLKX ext 1 23 CLKX int -4 13 CLKX ext -2 23 CLKX int -4 + D1 (7) 13 + D2 (8) (8) 23 + D2 (8) Delay time, CLKX high to internal FSX valid 12 tdis(CKXH-DXHZ) Disable time, DX high impedance following last data bit from CLKX high 13 td(CKXH-DXV) Delay time, CLKX high to DX valid 14 td(FXH-DXV) (9) 23 2 td(CKXH-FXV) (8) 1.5 Delay time, CLKS high to CLKR/X high for internal CLKR/X generated from CLKS input 9 (7) MAX td(CKSH-CKRXH) Delay time, CLKR high to internal FSR valid (4) (5) (6) MIN 1 td(CKRH-FRV) (2) (3) 1.0V PARAMETER 4 (1) (2) CLKX ext 1 + D1 UNIT ns ns Delay time, FSX high to DX valid FSX int -4 (9) 13 (9) ONLY applies when in data delay 0 (XDATDLY = 00b) mode FSX ext -2 (9) 23 (9) ns ns ns ns ns ns CLKRP = CLKXP = FSRP = FSXP = 0. If polarity of any of the signals is inverted, then the timing references of that signal are also inverted. Minimum delay times also represent minimum output hold times. Minimum CLKR/X cycle times must be met, even when CLKR/X is generated by an internal clock source. Minimum CLKR/X cycle times are based on internal logic speed; the maximum usable speed may be lower due to EDMA limitations and AC timing requirements. P = ASYNC3 period in ns. For example, when the ASYNC clock domain is running at 100 MHz, use 10 ns. Use whichever value is greater. C = H or L S = sample rate generator input clock = P if CLKSM = 1 (P = ASYNC period) S = sample rate generator input clock = P_clks if CLKSM = 0 (P_clks = CLKS period) H = CLKX high pulse width = (CLKGDV/2 + 1) * S if CLKGDV is even H = (CLKGDV + 1)/2 * S if CLKGDV is odd L = CLKX low pulse width = (CLKGDV/2) * S if CLKGDV is even L = (CLKGDV + 1)/2 * S if CLKGDV is odd CLKGDV should be set appropriately to ensure the McBSP bit rate does not exceed the maximum limit (see (4) above). Extra delay from CLKX high to DX valid applies only to the first data bit of a device, if and only if DXENA = 1 in SPCR. if DXENA = 0, then D1 = D2 = 0 if DXENA = 1, then D1 = 6P, D2 = 12P Extra delay from CLKX high to DX valid applies only to the first data bit of a device, if and only if DXENA = 1 in SPCR. if DXENA = 0, then D1 = D2 = 0 if DXENA = 1, then D1 = 6P, D2 = 12P Extra delay from FSX high to DX valid applies only to the first data bit of a device, if and only if DXENA = 1 in SPCR. if DXENA = 0, then D1 = D2 = 0 if DXENA = 1, then D1 = 6P, D2 = 12P Copyright © 2009–2017, Texas Instruments Incorporated Peripheral Information and Electrical Specifications Submit Documentation Feedback Product Folder Links: OMAP-L138 167 OMAP-L138 SPRS586J – JUNE 2009 – REVISED JANUARY 2017 www.ti.com CLKS 1 2 3 3 CLKR 4 4 FSR (int) 5 6 FSR (ext) 7 8 DR Bit(n1) (n2) (n3) 2 3 3 CLKX 9 FSX (int) 11 10 FSX (ext) FSX (XDATDLY=00b) DX A. 13 (A) 14 13 (A) Bit(n1) 12 Bit 0 (n2) (n3) No. 13 applies to the first data bit only when XDATDLY ≠ 0. Figure 6-34. McBSP Timing Table 6-67. Timing Requirements for McBSP0 FSR When GSYNC = 1 (see Figure 6-35) 1.3V, 1.2V NO. MIN 1.1V MAX MIN 1.0V MAX MIN MAX UNIT 1 tsu(FRH-CKSH) Setup time, FSR high before CLKS high 4 4.5 5 ns 2 th(CKSH-FRH) Hold time, FSR high after CLKS high 4 4 4 ns Table 6-68. Timing Requirements for McBSP1 FSR When GSYNC = 1 (see Figure 6-35) 1.3V, 1.2V NO. MIN 1.1V MAX MIN 1.0V MAX MIN MAX UNIT 1 tsu(FRH-CKSH) Setup time, FSR high before CLKS high 5 5 10 ns 2 th(CKSH-FRH) Hold time, FSR high after CLKS high 4 4 4 ns CLKS 1 2 FSR external CLKR/X (no need to resync) CLKR/X (needs resync) Figure 6-35. FSR Timing When GSYNC = 1 168 Peripheral Information and Electrical Specifications Submit Documentation Feedback Product Folder Links: OMAP-L138 Copyright © 2009–2017, Texas Instruments Incorporated OMAP-L138 www.ti.com SPRS586J – JUNE 2009 – REVISED JANUARY 2017 6.17 Serial Peripheral Interface Ports (SPI0, SPI1) Figure 6-36 is a block diagram of the SPI module, which is a simple shift register and buffer plus control logic. Data is written to the shift register before transmission occurs and is read from the buffer at the end of transmission. The SPI can operate either as a master, in which case, it initiates a transfer and drives the SPIx_CLK pin, or as a slave. Four clock phase and polarity options are supported as well as many data formatting options. SPIx_SIMO SPIx_SOMI Peripheral Configuration Bus Interrupt and DMA Requests 16-Bit Shift Register 16-Bit Buffer SPIx_ENA GPIO Control (all pins) State Machine SPIx_SCS Clock Control SPIx_CLK Figure 6-36. Block Diagram of SPI Module The SPI supports 3-, 4-, and 5-pin operation with three basic pins (SPIx_CLK, SPIx_SIMO, and SPIx_SOMI) and two optional pins (SPIx_SCS, SPIx_ENA). The optional SPIx_SCS (Slave Chip Select) pin is most useful to enable in slave mode when there are other slave devices on the same SPI port. The device will only shift data and drive the SPIx_SOMI pin when SPIx_SCS is held low. In slave mode, SPIx_ENA is an optional output. The SPIx_ENA output provides the status of the internal transmit buffer (SPIDAT0/1 registers). In four-pin mode with the enable option, SPIx_ENA is asserted only when the transmit buffer is full, indicating that the slave is ready to begin another transfer. In five-pin mode, the SPIx_ENA is additionally qualified by SPIx_SCS being asserted. This allows a single handshake line to be shared by multiple slaves on the same SPI bus. In master mode, the SPIx_ENA pin is an optional input and the master can be configured to delay the start of the next transfer until the slave asserts SPIx_ENA. The addition of this handshake signal simplifies SPI communications and, on average, increases SPI bus throughput since the master does not need to delay each transfer long enough to allow for the worst-case latency of the slave device. Instead, each transfer can begin as soon as both the master and slave have actually serviced the previous SPI transfer. Copyright © 2009–2017, Texas Instruments Incorporated Peripheral Information and Electrical Specifications Submit Documentation Feedback Product Folder Links: OMAP-L138 169 OMAP-L138 SPRS586J – JUNE 2009 – REVISED JANUARY 2017 www.ti.com Optional − Slave Chip Select SPIx_SCS SPIx_SCS Optional Enable (Ready) SPIx_ENA SPIx_ENA SPIx_CLK SPIx_CLK SPIx_SOMI SPIx_SOMI SPIx_SIMO SPIx_SIMO MASTER SPI SLAVE SPI Figure 6-37. Illustration of SPI Master-to-SPI Slave Connection 170 Peripheral Information and Electrical Specifications Submit Documentation Feedback Product Folder Links: OMAP-L138 Copyright © 2009–2017, Texas Instruments Incorporated OMAP-L138 www.ti.com SPRS586J – JUNE 2009 – REVISED JANUARY 2017 6.17.1 SPI Peripheral Registers Description(s) Table 6-69 is a list of the SPI registers. Table 6-69. SPIx Configuration Registers SPI0 BYTE ADDRESS SPI1 BYTE ADDRESS ACRONYM 0x01C4 1000 0x01F0 E000 SPIGCR0 Global Control Register 0 0x01C4 1004 0x01F0 E004 SPIGCR1 Global Control Register 1 0x01C4 1008 0x01F0 E008 SPIINT0 Interrupt Register 0x01C4 100C 0x01F0 E00C SPILVL Interrupt Level Register 0x01C4 1010 0x01F0 E010 SPIFLG Flag Register 0x01C4 1014 0x01F0 E014 SPIPC0 Pin Control Register 0 (Pin Function) 0x01C4 1018 0x01F0 E018 SPIPC1 Pin Control Register 1 (Pin Direction) 0x01C4 101C 0x01F0 E01C SPIPC2 Pin Control Register 2 (Pin Data In) 0x01C4 1020 0x01F0 E020 SPIPC3 Pin Control Register 3 (Pin Data Out) 0x01C4 1024 0x01F0 E024 SPIPC4 Pin Control Register 4 (Pin Data Set) 0x01C4 1028 0x01F0 E028 SPIPC5 Pin Control Register 5 (Pin Data Clear) 0x01C4 102C 0x01F0 E02C Reserved Reserved - Do not write to this register 0x01C4 1030 0x01F0 E030 Reserved Reserved - Do not write to this register 0x01C4 1034 0x01F0 E034 Reserved Reserved - Do not write to this register DESCRIPTION 0x01C4 1038 0x01F0 E038 SPIDAT0 Shift Register 0 (without format select) 0x01C4 103C 0x01F0 E03C SPIDAT1 Shift Register 1 (with format select) 0x01C4 1040 0x01F0 E040 SPIBUF Buffer Register 0x01C4 1044 0x01F0 E044 SPIEMU Emulation Register 0x01C4 1048 0x01F0 E048 SPIDELAY 0x01C4 104C 0x01F0 E04C SPIDEF Default Chip Select Register 0x01C4 1050 0x01F0 E050 SPIFMT0 Format Register 0 0x01C4 1054 0x01F0 E054 SPIFMT1 Format Register 1 0x01C4 1058 0x01F0 E058 SPIFMT2 Format Register 2 0x01C4 105C 0x01F0 E05C SPIFMT3 Format Register 3 0x01C4 1060 0x01F0 E060 INTVEC0 Interrupt Vector for SPI INT0 0x01C4 1064 0x01F0 E064 INTVEC1 Interrupt Vector for SPI INT1 Copyright © 2009–2017, Texas Instruments Incorporated Delay Register Peripheral Information and Electrical Specifications Submit Documentation Feedback Product Folder Links: OMAP-L138 171 OMAP-L138 SPRS586J – JUNE 2009 – REVISED JANUARY 2017 www.ti.com 6.17.2 SPI Electrical Data/Timing 6.17.2.1 Serial Peripheral Interface (SPI) Timing Table 6-70 through Table 6-85 assume testing over recommended operating conditions (see Figure 6-38 through Figure 6-41). Table 6-70. General Timing Requirements for SPI0 Master Modes (1) 1.3V, 1.2V NO. 1.1V 1.0V MIN MAX MIN MAX MIN MAX 20 (2) 256P 30 (2) 256P 40 (2) 256P UNIT 1 tc(SPC)M Cycle Time, SPI0_CLK, All Master Modes 2 tw(SPCH)M Pulse Width High, SPI0_CLK, All Master Modes 0.5M-1 0.5M-1 0.5M-1 ns 3 tw(SPCL)M Pulse Width Low, SPI0_CLK, All Master Modes 0.5M-1 0.5M-1 0.5M-1 ns 4 5 6 7 8 (1) (2) (3) 172 td(SIMO_SPC)M td(SPC_SIMO)M toh(SPC_SIMO)M tsu(SOMI_SPC)M tih(SPC_SOMI)M Delay, initial data bit valid on SPI0_SIMO after initial edge on SPI0_CLK (3) Delay, subsequent bits valid on SPI0_SIMO after transmit edge of SPI0_CLK Output hold time, SPI0_SIMO valid after receive edge of SPI0_CLK Input Setup Time, SPI0_SOMI valid before receive edge of SPI0_CLK Input Hold Time, SPI0_SOMI valid after receive edge of SPI0_CLK Polarity = 0, Phase = 0, to SPI0_CLK rising 5 5 6 Polarity = 0, Phase = 1, to SPI0_CLK rising -0.5M+5 -0.5M+5 -0.5M+6 Polarity = 1, Phase = 0, to SPI0_CLK falling 5 5 6 Polarity = 1, Phase = 1, to SPI0_CLK falling -0.5M+5 -0.5M+5 -0.5M+6 Polarity = 0, Phase = 0, from SPI0_CLK rising 5 5 6 Polarity = 0, Phase = 1, from SPI0_CLK falling 5 5 6 Polarity = 1, Phase = 0, from SPI0_CLK falling 5 5 6 Polarity = 1, Phase = 1, from SPI0_CLK rising 5 5 6 ns ns ns Polarity = 0, Phase = 0, from SPI0_CLK falling 0.5M-3 0.5M-3 0.5M-3 Polarity = 0, Phase = 1, from SPI0_CLK rising 0.5M-3 0.5M-3 0.5M-3 Polarity = 1, Phase = 0, from SPI0_CLK rising 0.5M-3 0.5M-3 0.5M-3 Polarity = 1, Phase = 1, from SPI0_CLK falling 0.5M-3 0.5M-3 0.5M-3 Polarity = 0, Phase = 0, to SPI0_CLK falling 1.5 1.5 1.5 Polarity = 0, Phase = 1, to SPI0_CLK rising 1.5 1.5 1.5 Polarity = 1, Phase = 0, to SPI0_CLK rising 1.5 1.5 1.5 Polarity = 1, Phase = 1, to SPI0_CLK falling 1.5 1.5 1.5 Polarity = 0, Phase = 0, from SPI0_CLK falling 4 4 5 Polarity = 0, Phase = 1, from SPI0_CLK rising 4 4 5 Polarity = 1, Phase = 0, from SPI0_CLK rising 4 4 5 Polarity = 1, Phase = 1, from SPI0_CLK falling 4 4 5 ns ns ns P = SYSCLK2 period; M = tc(SPC)M (SPI master bit clock period) This timing is limited by the timing shown or 3P, whichever is greater. First bit may be MSB or LSB depending upon SPI configuration. MO(0) refers to first bit and MO(n) refers to last bit output on SPI0_SIMO. MI(0) refers to the first bit input and MI(n) refers to the last bit input on SPI0_SOMI. Peripheral Information and Electrical Specifications Submit Documentation Feedback Product Folder Links: OMAP-L138 Copyright © 2009–2017, Texas Instruments Incorporated OMAP-L138 www.ti.com SPRS586J – JUNE 2009 – REVISED JANUARY 2017 Table 6-71. General Timing Requirements for SPI0 Slave Modes (1) 1.3V, 1.2V NO. MIN ns 22 27 ns Pulse Width Low, SPI0_CLK, All Slave Modes 18 22 27 ns Polarity = 0, Phase = 0, to SPI0_CLK rising 2P 2P 2P Polarity = 0, Phase = 1, to SPI0_CLK rising 2P 2P 2P Polarity = 1, Phase = 0, to SPI0_CLK falling 2P 2P 2P Polarity = 1, Phase = 1, to SPI0_CLK falling 2P 2P 2P 11 tw(SPCL)S Setup time, transmit data written to SPI before initial clock edge from master. (3) (4) ns Polarity = 0, Phase = 0, from SPI0_CLK rising Polarity = 0, Phase = 1, Delay, subsequent bits valid from SPI0_CLK falling on SPI0_SOMI after transmit edge of SPI0_CLK Polarity = 1, Phase = 0, from SPI0_CLK falling 15 16 (1) (2) (3) (4) tsu(SIMO_SPC)S tih(SPC_SIMO)S Output hold time, SPI0_SOMI valid after receive edge of SPI0_CLK Input Setup Time, SPI0_SIMO valid before receive edge of SPI0_CLK Input Hold Time, SPI0_SIMO valid after receive edge of SPI0_CLK 17 20 27 17 20 27 17 20 27 17 20 27 ns Polarity = 1, Phase = 1, from SPI0_CLK rising toh(SPC_SOMI)S UNIT 18 tw(SPCH)S 14 MAX Pulse Width High, SPI0_CLK, All Slave Modes 10 td(SPC_SOMI)S MIN 60 (2) Cycle Time, SPI0_CLK, All Slave Modes 13 1.0V MAX 50 (2) tc(SPC)S tsu(SOMI_SPC)S 1.1V MIN 40 (2) 9 12 MAX Polarity = 0, Phase = 0, from SPI0_CLK falling 0.5S-6 0.5S-16 0.5S-20 Polarity = 0, Phase = 1, from SPI0_CLK rising 0.5S-6 0.5S-16 0.5S-20 Polarity = 1, Phase = 0, from SPI0_CLK rising 0.5S-6 0.5S-16 0.5S-20 Polarity = 1, Phase = 1, from SPI0_CLK falling 0.5S-6 0.5S-16 0.5S-20 Polarity = 0, Phase = 0, to SPI0_CLK falling 1.5 1.5 1.5 Polarity = 0, Phase = 1, to SPI0_CLK rising 1.5 1.5 1.5 Polarity = 1, Phase = 0, to SPI0_CLK rising 1.5 1.5 1.5 Polarity = 1, Phase = 1, to SPI0_CLK falling 1.5 1.5 1.5 Polarity = 0, Phase = 0, from SPI0_CLK falling 4 4 5 Polarity = 0, Phase = 1, from SPI0_CLK rising 4 4 5 Polarity = 1, Phase = 0, from SPI0_CLK rising 4 4 5 Polarity = 1, Phase = 1, from SPI0_CLK falling 4 4 5 ns ns ns P = SYSCLK2 period; S = tc(SPC)S (SPI slave bit clock period) This timing is limited by the timing shown or 3P, whichever is greater. First bit may be MSB or LSB depending upon SPI configuration. SO(0) refers to first bit and SO(n) refers to last bit output on SPI0_SOMI. SI(0) refers to the first bit input and SI(n) refers to the last bit input on SPI0_SIMO. Measured from the termination of the write of new data to the SPI module, In analyzing throughput requirements, additional internal bus cycles must be accounted for to allow data to be written to the SPI module by the CPU. Copyright © 2009–2017, Texas Instruments Incorporated Peripheral Information and Electrical Specifications Submit Documentation Feedback Product Folder Links: OMAP-L138 173 OMAP-L138 SPRS586J – JUNE 2009 – REVISED JANUARY 2017 www.ti.com Table 6-72. Additional SPI0 Master Timings, 4-Pin Enable Option NO. 17 td(ENA_SPC)M 18 (1) (2) (3) (4) (5) 1.3V, 1.2V PARAMETER td(SPC_ENA)M Delay from slave assertion of SPI0_ENA active to first SPI0_CLK from master. (4) Max delay for slave to deassert SPI0_ENA after final SPI0_CLK edge to ensure master does not begin the next transfer. (5) (1) (2) (3) MIN 1.1V MAX MIN 174 MAX 3P+5 3P+5 3P+6 Polarity = 0, Phase = 1, to SPI0_CLK rising 0.5M+3P+5 0.5M+3P+5 0.5M+3P+6 Polarity = 1, Phase = 0, to SPI0_CLK falling 3P+5 3P+5 3P+6 Polarity = 1, Phase = 1, to SPI0_CLK falling 0.5M+3P+5 0.5M+3P+5 0.5M+3P+6 Polarity = 0, Phase = 0, from SPI0_CLK falling 0.5M+P+5 0.5M+P+5 0.5M+P+6 Polarity = 0, Phase = 1, from SPI0_CLK falling P+5 P+5 P+6 Polarity = 1, Phase = 0, from SPI0_CLK rising 0.5M+P+5 0.5M+P+5 0.5M+P+6 Polarity = 1, Phase = 1, from SPI0_CLK rising P+5 P+5 P+6 UNIT ns ns These parameters are in addition to the general timings for SPI master modes (Table 6-70). P = SYSCLK2 period; M = tc(SPC)M (SPI master bit clock period) Figure shows only Polarity = 0, Phase = 0 as an example. Table gives parameters for all four master clocking modes. In the case where the master SPI is ready with new data before SPI0_ENA assertion. In the case where the master SPI is ready with new data before SPI0_EN A deassertion. NO. (1) (2) (3) (4) (5) MIN Polarity = 0, Phase = 0, to SPI0_CLK rising Table 6-73. Additional SPI0 Master Timings, 4-Pin Chip Select Option 19 1.0V MAX 1.3V, 1.2V PARAMETER td(SCS_SPC)M Delay from SPI0_SCS active to first SPI0_CLK (4) (5) MIN (1) (2) (3) 1.1V MAX MIN 1.0V MAX MIN Polarity = 0, Phase = 0, to SPI0_CLK rising 2P-1 2P-2 2P-3 Polarity = 0, Phase = 1, to SPI0_CLK rising 0.5M+2P-1 0.5M+2P-2 0.5M+2P-3 Polarity = 1, Phase = 0, to SPI0_CLK falling 2P-1 2P-2 2P-3 Polarity = 1, Phase = 1, to SPI0_CLK falling 0.5M+2P-1 0.5M+2P-2 0.5M+2P-3 MAX UNIT ns These parameters are in addition to the general timings for SPI master modes (Table 6-70). P = SYSCLK2 period; M = tc(SPC)M (SPI master bit clock period) Figure shows only Polarity = 0, Phase = 0 as an example. Table gives parameters for all four master clocking modes. In the case where the master SPI is ready with new data before SPI0_SCS assertion. This delay can be increased under software control by the register bit field SPIDELAY.C2TDELAY[4:0]. Peripheral Information and Electrical Specifications Copyright © 2009–2017, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: OMAP-L138 OMAP-L138 www.ti.com SPRS586J – JUNE 2009 – REVISED JANUARY 2017 Table 6-73. Additional SPI0 Master Timings, 4-Pin Chip Select Option NO. 20 (6) (7) 1.3V, 1.2V PARAMETER td(SPC_SCS)M MIN Delay from final SPI0_CLK edge to master deasserting SPI0_SCS (6) (7) (continued) 1.1V MAX MIN 1.0V MAX MIN MAX Polarity = 0, Phase = 0, from SPI0_CLK falling 0.5M+P-1 0.5M+P-2 0.5M+P-3 Polarity = 0, Phase = 1, from SPI0_CLK falling P-1 P-2 P-3 Polarity = 1, Phase = 0, from SPI0_CLK rising 0.5M+P-1 0.5M+P-2 0.5M+P-3 Polarity = 1, Phase = 1, from SPI0_CLK rising P-1 P-2 P-3 UNIT ns Except for modes when SPIDAT1.CSHOLD is enabled and there is additional data to transmit. In this case, SPI0_SCS will remain asserted. This delay can be increased under software control by the register bit field SPIDELAY.T2CDELAY[4:0]. Table 6-74. Additional SPI0 Master Timings, 5-Pin Option NO. 18 td(SPC_ENA)M Max delay for slave to deassert SPI0_ENA after final SPI0_CLK edge to ensure master does not begin the next transfer. (4) 20 td(SPC_SCS)M MIN td(SCSL_ENAL)M MAX 1.1V MIN 1.0V MAX MIN MAX Polarity = 0, Phase = 0, from SPI0_CLK falling 0.5M+P+5 0.5M+P+5 0.5M+P+6 Polarity = 0, Phase = 1, from SPI0_CLK falling P+5 P+5 P+6 Polarity = 1, Phase = 0, from SPI0_CLK rising 0.5M+P+5 0.5M+P+5 0.5M+P+6 Polarity = 1, Phase = 1, from SPI0_CLK rising P+5 P+5 P+6 Polarity = 0, Phase = 1, Delay from final SPI0_CLK edge to from SPI0_CLK falling (5) master deasserting SPI0_SCS (6) Polarity = 1, Phase = 0, from SPI0_CLK rising Polarity = 1, Phase = 1, from SPI0_CLK rising 21 (1) (2) (3) 1.3V, 1.2V PARAMETER Polarity = 0, Phase = 0, from SPI0_CLK falling (1) (2) (3) (4) (5) (6) (1)(2)(3) Max delay for slave SPI to drive SPI0_ENA valid after master asserts SPI0_SCS to delay the master from beginning the next transfer, UNIT ns 0.5M+P-2 0.5M+P-2 0.5M+P-3 P-2 P-2 P-3 0.5M+P-2 0.5M+P-2 0.5M+P-3 P-2 P-2 P-3 ns C2TDELAY+P C2TDELAY+P C2TDELAY+P ns These parameters are in addition to the general timings for SPI master modes (Table 6-71). P = SYSCLK2 period; M = tc(SPC)M (SPI master bit clock period) Figure shows only Polarity = 0, Phase = 0 as an example. Table gives parameters for all four master clocking modes. In the case where the master SPI is ready with new data before SPI0_ENA deassertion. Except for modes when SPIDAT1.CSHOLD is enabled and there is additional data to transmit. In this case, SPI0_SCS will remain asserted. This delay can be increased under software control by the register bit field SPIDELAY.T2CDELAY[4:0]. Peripheral Information and Electrical Specifications Copyright © 2009–2017, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: OMAP-L138 175 OMAP-L138 SPRS586J – JUNE 2009 – REVISED JANUARY 2017 www.ti.com Table 6-74. Additional SPI0 Master Timings, 5-Pin Option NO. 22 Delay from SPI0_SCS active to first SPI0_CLK (7) (8) (9) MIN td(ENA_SPC)M MIN MAX 2P-2 2P-3 Polarity = 0, Phase = 1, to SPI0_CLK rising 0.5M+2P-2 0.5M+2P-2 0.5M+2P-3 Polarity = 1, Phase = 0, to SPI0_CLK falling 2P-2 2P-2 2P-3 Polarity = 1, Phase = 1, to SPI0_CLK falling 0.5M+2P-2 0.5M+2P-2 0.5M+2P-3 176 MAX UNIT ns Polarity = 0, Phase = 1, Delay from assertion of SPI0_ENA to SPI0_CLK rising low to first SPI0_CLK edge. (10) Polarity = 1, Phase = 0, to SPI0_CLK falling 3P+5 3P+5 3P+6 0.5M+3P+5 0.5M+3P+5 0.5M+3P+6 3P+5 3P+5 3P+6 0.5M+3P+5 0.5M+3P+5 0.5M+3P+6 ns If SPI0_ENA is asserted immediately such that the transmission is not delayed by SPI0_ENA. In the case where the master SPI is ready with new data before SPI0_SCS assertion. This delay can be increased under software control by the register bit field SPIDELAY.C2TDELAY[4:0]. If SPI0_ENA was initially deasserted high and SPI0_CLK is delayed. NO. (1) (2) (3) MIN 2P-2 Table 6-75. Additional SPI0 Slave Timings, 4-Pin Enable Option 24 1.0V Polarity = 0, Phase = 0, to SPI0_CLK rising Polarity = 1, Phase = 1, to SPI0_CLK falling (7) (8) (9) (10) 1.1V MAX Polarity = 0, Phase = 0, to SPI0_CLK rising 23 (continued) 1.3V, 1.2V PARAMETER td(SCS_SPC)M (1)(2)(3) 1.3V, 1.2V PARAMETER td(SPC_ENAH)S Delay from final SPI0_CLK edge to slave deasserting SPI0_ENA. (1) (2) (3) 1.1V 1.0V MIN MAX MIN MAX MIN MAX Polarity = 0, Phase = 0, from SPI0_CLK falling 1.5P-3 2.5P+17.5 1.5P-3 2.5P+20 1.5P-3 2.5P+27 Polarity = 0, Phase = 1, from SPI0_CLK falling – 0.5M+1.5P-3 – 0.5M+2.5P+17.5 – 0.5M+1.5P-3 – 0.5M+2.5P+20 – 0.5M+1.5P-3 – 0.5M+2.5P+27 Polarity = 1, Phase = 0, from SPI0_CLK rising 1.5P-3 2.5P+17.5 1.5P-3 2.5P+20 1.5P-3 2.5P+27 Polarity = 1, Phase = 1, from SPI0_CLK rising – 0.5M+1.5P-3 – 0.5+2.5P+17.5 – 0.5M+1.5P-3 – 0.5+2.5P+20 – 0.5M+1.5P-3 – 0.5+2.5P+27 UNIT ns These parameters are in addition to the general timings for SPI slave modes (Table 6-71). P = SYSCLK2 period; M = tc(SPC)M (SPI master bit clock period) Figure shows only Polarity = 0, Phase = 0 as an example. Table gives parameters for all four slave clocking modes. Peripheral Information and Electrical Specifications Copyright © 2009–2017, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: OMAP-L138 OMAP-L138 www.ti.com SPRS586J – JUNE 2009 – REVISED JANUARY 2017 Table 6-76. Additional SPI0 Slave Timings, 4-Pin Chip Select Option NO. 25 26 1.3V, 1.2V PARAMETER td(SCSL_SPC)S td(SPC_SCSH)S (1) (2) (3) MIN Required delay from SPI0_SCS asserted at slave to first SPI0_CLK edge at slave. Required delay from final SPI0_CLK edge before SPI0_SCS is deasserted. 1.1V MAX MIN 1.0V MAX MIN MAX P + 1.5 P + 1.5 P + 1.5 Polarity = 0, Phase = 0, from SPI0_CLK falling 0.5M+P+4 0.5M+P+4 0.5M+P+5 Polarity = 0, Phase = 1, from SPI0_CLK falling P+4 P+4 P+5 Polarity = 1, Phase = 0, from SPI0_CLK rising 0.5M+P+4 0.5M+P+4 0.5M+P+5 Polarity = 1, Phase = 1, from SPI0_CLK rising P+4 P+4 P+5 UNIT ns ns 27 tena(SCSL_SOMI)S Delay from master asserting SPI0_SCS to slave driving SPI0_SOMI valid P+17.5 P+20 P+27 ns 28 tdis(SCSH_SOMI)S P+17.5 P+20 P+27 ns (1) (2) (3) Delay from master deasserting SPI0_SCS to slave 3-stating SPI0_SOMI These parameters are in addition to the general timings for SPI slave modes (Table 6-71). P = SYSCLK2 period; M = tc(SPC)M (SPI master bit clock period) Figure shows only Polarity = 0, Phase = 0 as an example. Table gives parameters for all four slave clocking modes. Table 6-77. Additional SPI0 Slave Timings, 5-Pin Option NO. 25 1.3V, 1.2V PARAMETER td(SCSL_SPC)S MIN Required delay from SPI0_SCS asserted at slave to first SPI0_CLK edge at slave. Polarity = 0, Phase = 0, from SPI0_CLK falling 26 td(SPC_SCSH)S (1) (2) (3) Polarity = 0, Phase = 1, Required delay from final from SPI0_CLK falling SPI0_CLK edge before SPI0_SCS Polarity = 1, Phase = 0, is deasserted. from SPI0_CLK rising Polarity = 1, Phase = 1, from SPI0_CLK rising 1.1V MAX MIN 1.0V MAX MIN P + 1.5 P + 1.5 P + 1.5 0.5M+P+4 0.5M+P+4 0.5M+P+5 P+4 P+4 P+5 0.5M+P+4 0.5M+P+4 0.5M+P+5 P+4 P+4 P+5 MAX UNIT ns ns 27 tena(SCSL_SOMI)S Delay from master asserting SPI0_SCS to slave driving SPI0_SOMI valid P+17.5 P+20 P+27 ns 28 tdis(SCSH_SOMI)S Delay from master deasserting SPI0_SCS to slave 3-stating SPI0_SOMI P+17.5 P+20 P+27 ns 29 tena(SCSL_ENA)S Delay from master deasserting SPI0_SCS to slave driving SPI0_ENA valid 17.5 20 27 ns (1) (2) (3) These parameters are in addition to the general timings for SPI slave modes (Table 6-71). P = SYSCLK2 period; M = tc(SPC)M (SPI master bit clock period) Figure shows only Polarity = 0, Phase = 0 as an example. Table gives parameters for all four slave clocking modes. Peripheral Information and Electrical Specifications Copyright © 2009–2017, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: OMAP-L138 177 OMAP-L138 SPRS586J – JUNE 2009 – REVISED JANUARY 2017 www.ti.com Table 6-77. Additional SPI0 Slave Timings, 5-Pin Option NO. 30 (4) 178 Delay from final clock receive edge on SPI0_CLK to slave 3stating or driving high SPI0_ENA. (4) (continued) 1.3V, 1.2V PARAMETER tdis(SPC_ENA)S (1)(2)(3) MIN MAX 1.1V MIN 1.0V MAX MIN MAX Polarity = 0, Phase = 0, from SPI0_CLK falling 2.5P+17.5 2.5P+20 2.5P+27 Polarity = 0, Phase = 1, from SPI0_CLK rising 2.5P+17.5 2.5P+20 2.5P+27 Polarity = 1, Phase = 0, from SPI0_CLK rising 2.5P+17.5 2.5P+20 2.5P+27 Polarity = 1, Phase = 1, from SPI0_CLK falling 2.5P+17.5 2.5P+20 2.5P+27 UNIT ns SPI0_ENA is driven low after the transmission completes if the SPIINT0.ENABLE_HIGHZ bit is programmed to 0. Otherwise it is tri-stated. If tri-stated, an external pullup resistor should be used to provide a valid level to the master. This option is useful when tying several SPI slave devices to a single master. Peripheral Information and Electrical Specifications Copyright © 2009–2017, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: OMAP-L138 OMAP-L138 www.ti.com SPRS586J – JUNE 2009 – REVISED JANUARY 2017 Table 6-78. General Timing Requirements for SPI1 Master Modes (1) 1.3V, 1.2V NO. 1.1V 1.0V MIN MAX MIN MAX MIN MAX 20 (2) 256P 30 (2) 256P 40 (2) 256P UNIT 1 tc(SPC)M Cycle Time, SPI1_CLK, All Master Modes 2 tw(SPCH)M Pulse Width High, SPI1_CLK, All Master Modes 0.5M-1 0.5M-1 0.5M-1 ns 3 tw(SPCL)M Pulse Width Low, SPI1_CLK, All Master Modes 0.5M-1 0.5M-1 0.5M-1 ns 4 5 td(SIMO_SPC)M td(SPC_SIMO)M Delay, initial data bit valid on SPI1_SIMO to initial edge on SPI1_CLK (3) Polarity = 0, Phase = 0, to SPI1_CLK rising 5 5 6 Polarity = 0, Phase = 1, to SPI1_CLK rising -0.5M+5 -0.5M+5 -0.5M+6 Polarity = 1, Phase = 0, to SPI1_CLK falling 5 5 6 Polarity = 1, Phase = 1, to SPI1_CLK falling -0.5M+5 -0.5M+5 -0.5M+6 Polarity = 0, Phase = 0, from SPI1_CLK rising 5 5 6 5 5 6 5 5 6 5 5 6 ns Polarity = 0, Phase = 1, Delay, subsequent bits valid on from SPI1_CLK falling SPI1_SIMO after transmit edge Polarity = 1, Phase = 0, of SPI1_CLK from SPI1_CLK falling ns Polarity = 1, Phase = 1, from SPI1_CLK rising 6 7 8 (1) (2) (3) toh(SPC_SIMO)M tsu(SOMI_SPC)M tih(SPC_SOMI)M Output hold time, SPI1_SIMO valid after receive edge of SPI1_CLK Input Setup Time, SPI1_SOMI valid before receive edge of SPI1_CLK Input Hold Time, SPI1_SOMI valid after receive edge of SPI1_CLK ns Polarity = 0, Phase = 0, from SPI1_CLK falling 0.5M-3 0.5M-3 0.5M-3 Polarity = 0, Phase = 1, from SPI1_CLK rising 0.5M-3 0.5M-3 0.5M-3 Polarity = 1, Phase = 0, from SPI1_CLK rising 0.5M-3 0.5M-3 0.5M-3 Polarity = 1, Phase = 1, from SPI1_CLK falling 0.5M-3 0.5M-3 0.5M-3 Polarity = 0, Phase = 0, to SPI1_CLK falling 1.5 1.5 1.5 Polarity = 0, Phase = 1, to SPI1_CLK rising 1.5 1.5 1.5 Polarity = 1, Phase = 0, to SPI1_CLK rising 1.5 1.5 1.5 Polarity = 1, Phase = 1, to SPI1_CLK falling 1.5 1.5 1.5 Polarity = 0, Phase = 0, from SPI1_CLK falling 4 5 6 Polarity = 0, Phase = 1, from SPI1_CLK rising 4 5 6 Polarity = 1, Phase = 0, from SPI1_CLK rising 4 5 6 Polarity = 1, Phase = 1, from SPI1_CLK falling 4 5 6 ns ns ns P = SYSCLK2 period; M = tc(SPC)M (SPI master bit clock period) This timing is limited by the timing shown or 3P, whichever is greater. First bit may be MSB or LSB depending upon SPI configuration. MO(0) refers to first bit and MO(n) refers to last bit output on SPI1_SIMO. MI(0) refers to the first bit input and MI(n) refers to the last bit input on SPI1_SOMI. Copyright © 2009–2017, Texas Instruments Incorporated Peripheral Information and Electrical Specifications Submit Documentation Feedback Product Folder Links: OMAP-L138 179 OMAP-L138 SPRS586J – JUNE 2009 – REVISED JANUARY 2017 www.ti.com Table 6-79. General Timing Requirements for SPI1 Slave Modes (1) 1.3V, 1.2V NO. MIN ns 22 27 ns Pulse Width Low, SPI1_CLK, All Slave Modes 18 22 27 ns Polarity = 0, Phase = 0, to SPI1_CLK rising 2P 2P 2P Polarity = 0, Phase = 1, to SPI1_CLK rising 2P 2P 2P Polarity = 1, Phase = 0, to SPI1_CLK falling 2P 2P 2P Polarity = 1, Phase = 1, to SPI1_CLK falling 2P 2P 2P 11 tw(SPCL)S 15 16 (1) (2) (3) (4) 180 toh(SPC_SOMI)S tsu(SIMO_SPC)S tih(SPC_SIMO)S UNIT 18 tw(SPCH)S 14 MAX Pulse Width High, SPI1_CLK, All Slave Modes 10 td(SPC_SOMI)S MIN 60 (2) Cycle Time, SPI1_CLK, All Slave Modes 13 1.0V MAX 50 (2) tc(SPC)S tsu(SOMI_SPC)S 1.1V MIN 40 (2) 9 12 MAX Setup time, transmit data written to SPI before initial clock edge from master. (3) (4) Delay, subsequent bits valid on SPI1_SOMI after transmit edge of SPI1_CLK Output hold time, SPI1_SOMI valid after receive edge of SPI1_CLK Polarity = 0, Phase = 0, from SPI1_CLK rising 15 17 19 Polarity = 0, Phase = 1, from SPI1_CLK falling 15 17 19 Polarity = 1, Phase = 0, from SPI1_CLK falling 15 17 19 Polarity = 1, Phase = 1, from SPI1_CLK rising 15 17 19 ns Polarity = 0, Phase = 0, from SPI1_CLK falling 0.5S-4 0.5S-10 0.5S-12 Polarity = 0, Phase = 1, from SPI1_CLK rising 0.5S-4 0.5S-10 0.5S-12 Polarity = 1, Phase = 0, from SPI1_CLK rising 0.5S-4 0.5S-10 0.5S-12 Polarity = 1, Phase = 1, from SPI1_CLK falling 0.5S-4 0.5S-10 0.5S-12 Polarity = 0, Phase = 0, to SPI1_CLK falling 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 Polarity = 1, Phase = 1, to SPI1_CLK falling 1.5 1.5 1.5 Polarity = 0, Phase = 0, from SPI1_CLK falling 4 5 6 Polarity = 0, Phase = 1, from SPI1_CLK rising 4 5 6 Polarity = 1, Phase = 0, from SPI1_CLK rising 4 5 6 Polarity = 1, Phase = 1, from SPI1_CLK falling 4 5 6 Polarity = 0, Phase = 1, Input Setup Time, SPI1_SIMO to SPI1_CLK rising valid before receive edge of Polarity = 1, Phase = 0, SPI1_CLK to SPI1_CLK rising Input Hold Time, SPI1_SIMO valid after receive edge of SPI1_CLK ns ns ns ns P = SYSCLK2 period; S = tc(SPC)S (SPI slave bit clock period) This timing is limited by the timing shown or 3P, whichever is greater. First bit may be MSB or LSB depending upon SPI configuration. SO(0) refers to first bit and SO(n) refers to last bit output on SPI1_SOMI. SI(0) refers to the first bit input and SI(n) refers to the last bit input on SPI1_SIMO. Measured from the termination of the write of new data to the SPI module, In analyzing throughput requirements, additional internal bus cycles must be accounted for to allow data to be written to the SPI module by the CPU. Peripheral Information and Electrical Specifications Submit Documentation Feedback Product Folder Links: OMAP-L138 Copyright © 2009–2017, Texas Instruments Incorporated OMAP-L138 www.ti.com SPRS586J – JUNE 2009 – REVISED JANUARY 2017 Table 6-80. Additional (1) SPI1 Master Timings, 4-Pin Enable Option (2) (3) NO. 17 td(EN A_SPC)M 18 (1) (2) (3) (4) (5) 1.3V, 1.2V PARAMETER td(SPC_ENA)M Delay from slave assertion of SPI1_ENA active to first SPI1_CLK from master. (4) Max delay for slave to deassert SPI1_ENA after final SPI1_CLK edge to ensure master does not begin the next transfer. (5) MIN 1.1V MAX MIN MAX 1.0V MIN Polarity = 0, Phase = 0, to SPI1_CLK rising 3P+5 3P+5 3P+6 Polarity = 0, Phase = 1, to SPI1_CLK rising 0.5M+3P+5 0.5M+3P+5 0.5M+3P+6 Polarity = 1, Phase = 0, to SPI1_CLK falling 3P+5 3P+5 3P+6 Polarity = 1, Phase = 1, to SPI1_CLK falling 0.5M+3P+5 0.5M+3P+5 0.5M+3P+6 Polarity = 0, Phase = 0, from SPI1_CLK falling 0.5M+P+5 0.5M+P+5 0.5M+P+6 Polarity = 0, Phase = 1, from SPI1_CLK falling P+5 P+5 P+6 Polarity = 1, Phase = 0, from SPI1_CLK rising 0.5M+P+5 0.5M+P+5 0.5M+P+6 Polarity = 1, Phase = 1, from SPI1_CLK rising P+5 P+5 P+6 ns These parameters are in addition to the general timings for SPI master modes (Table 6-78). P = SYSCLK2 period; M = tc(SPC)M (SPI master bit clock period) Figure shows only Polarity = 0, Phase = 0 as an example. Table gives parameters for all four master clocking modes. In the case where the master SPI is ready with new data before SPI1_ENA assertion. In the case where the master SPI is ready with new data before SPI1_ENA deassertion. NO. 20 (1) (2) (3) (4) (5) (6) (7) UNIT ns Table 6-81. Additional (1) SPI1 Master Timings, 4-Pin Chip Select Option (2) 19 MAX 1.3V, 1.2V PARAMETER td(SCS_SPC)M td(SPC_SCS)M Delay from SPI1_SCS active to first SPI1_CLK (4) (5) Delay from final SPI1_CLK edge to master deasserting SPI1_SCS (6) (7) MIN MAX 1.1V MIN (3) 1.0V MAX MIN Polarity = 0, Phase = 0, to SPI1_CLK rising 2P-1 2P-5 2P-6 Polarity = 0, Phase = 1, to SPI1_CLK rising 0.5M+2P-1 0.5M+2P-5 0.5M+2P-6 Polarity = 1, Phase = 0, to SPI1_CLK falling 2P-1 2P-5 2P-6 Polarity = 1, Phase = 1, to SPI1_CLK falling 0.5M+2P-1 0.5M+2P-5 0.5M+2P-6 Polarity = 0, Phase = 0, from SPI1_CLK falling 0.5M+P-1 0.5M+P-5 0.5M+P-6 Polarity = 0, Phase = 1, from SPI1_CLK falling P-1 P-5 P-6 Polarity = 1, Phase = 0, from SPI1_CLK rising 0.5M+P-1 0.5M+P-5 0.5M+P-6 Polarity = 1, Phase = 1, from SPI1_CLK rising P-1 P-5 P-6 MAX UNIT ns ns These parameters are in addition to the general timings for SPI master modes (Table 6-78). P = SYSCLK2 period; M = tc(SPC)M (SPI master bit clock period) Figure shows only Polarity = 0, Phase = 0 as an example. Table gives parameters for all four master clocking modes. In the case where the master SPI is ready with new data before SPI1_SCS assertion. This delay can be increased under software control by the register bit field SPIDELAY.C2TDELAY[4:0]. Except for modes when SPIDAT1.CSHOLD is enabled and there is additional data to transmit. In this case, SPI1_SCS will remain asserted. This delay can be increased under software control by the register bit field SPIDELAY.T2CDELAY[4:0]. Copyright © 2009–2017, Texas Instruments Incorporated Peripheral Information and Electrical Specifications Submit Documentation Feedback Product Folder Links: OMAP-L138 181 OMAP-L138 SPRS586J – JUNE 2009 – REVISED JANUARY 2017 www.ti.com Table 6-82. Additional (1) SPI1 Master Timings, 5-Pin Option (2) (3) NO. 18 1.3V, 1.2V PARAMETER td(SPC_ENA)M Max delay for slave to deassert SPI1_ENA after final SPI1_CLK edge to ensure master does not begin the next transfer. (4) MIN td(SPC_SCS)M td(SCSL_ENAL)M td(SCS_SPC)M 182 MAX 0.5M+P+6 Polarity = 0, Phase = 1, from SPI1_CLK falling P+5 P+5 P+6 Polarity = 1, Phase = 0, from SPI1_CLK rising 0.5M+P+5 0.5M+P+5 0.5M+P+6 Polarity = 1, Phase = 1, from SPI1_CLK rising P+5 P+5 P+6 Polarity = 0, Phase = 1, Delay from final SPI1_CLK edge to from SPI1_CLK falling master deasserting SPI1_SCS (5) (6) Polarity = 1, Phase = 0, from SPI1_CLK rising Polarity = 0, Phase = 1, Delay from SPI1_SCS active to first to SPI1_CLK rising SPI1_CLK (7) (8) (9) Polarity = 1, Phase = 0, to SPI1_CLK falling UNIT ns 0.5M+P-1 0.5M+P-5 0.5M+P-6 P-1 P-5 P-6 0.5M+P-1 0.5M+P-5 0.5M+P-6 P-1 P-5 P-6 ns Max delay for slave SPI to drive SPI1_ENA valid after master asserts SPI1_SCS to delay the master from beginning the next transfer, Polarity = 1, Phase = 1, to SPI1_CLK falling (1) (2) (3) (4) (5) (6) (7) (8) (9) MIN 0.5M+P+5 Polarity = 0, Phase = 0, to SPI1_CLK rising 22 1.0V MAX 0.5M+P+5 Polarity = 1, Phase = 1, from SPI1_CLK rising 21 MIN Polarity = 0, Phase = 0, from SPI1_CLK falling Polarity = 0, Phase = 0, from SPI1_CLK falling 20 1.1V MAX C2TDELAY+P 2P-1 0.5M+2P-1 C2TDELAY+P 2P-5 C2TDELAY+P ns 2P-6 0.5M+2P-5 0.5M+2P-6 ns 2P-1 0.5M+2P-1 2P-5 2P-6 0.5M+2P-5 0.5M+2P-6 These parameters are in addition to the general timings for SPI master modes (Table 6-79). P = SYSCLK2 period; M = tc(SPC)M (SPI master bit clock period) Figure shows only Polarity = 0, Phase = 0 as an example. Table gives parameters for all four master clocking modes. In the case where the master SPI is ready with new data before SPI1_ENA deassertion. Except for modes when SPIDAT1.CSHOLD is enabled and there is additional data to transmit. In this case, SPI1_SCS will remain asserted. This delay can be increased under software control by the register bit field SPIDELAY.T2CDELAY[4:0]. If SPI1_ENA is asserted immediately such that the transmission is not delayed by SPI1_ENA. In the case where the master SPI is ready with new data before SPI1_SCS assertion. This delay can be increased under software control by the register bit field SPIDELAY.C2TDELAY[4:0]. Peripheral Information and Electrical Specifications Copyright © 2009–2017, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: OMAP-L138 OMAP-L138 www.ti.com SPRS586J – JUNE 2009 – REVISED JANUARY 2017 Table 6-82. Additional(1) SPI1 Master Timings, 5-Pin Option(2)(3) (continued) NO. 1.3V, 1.2V PARAMETER MIN MAX Polarity = 0, Phase = 0, to SPI1_CLK rising 23 td(ENA_SPC)M Delay from assertion of SPI1_ENA low to first SPI1_CLK edge. (10) 1.1V 1.0V MIN MAX 3P+5 Polarity = 0, Phase = 1, to SPI1_CLK rising MIN MAX 3P+5 0.5M+3P+5 UNIT 3P+6 0.5M+3P+5 0.5M+3P+6 ns Polarity = 1, Phase = 0, to SPI1_CLK falling 3P+5 Polarity = 1, Phase = 1, to SPI1_CLK falling 3P+5 0.5M+3P+5 3P+6 0.5M+3P+5 0.5M+3P+6 (10) If SPI1_ENA was initially deasserted high and SPI1_CLK is delayed. Table 6-83. Additional (1) SPI1 Slave Timings, 4-Pin Enable Option (2) (3) NO. 24 (1) (2) (3) 1.3V, 1.2V PARAMETER td(SPC_ENAH)S Delay from final SPI1_CLK edge to slave deasserting SPI1_ENA. 1.1V 1.0V MIN MAX MIN MAX MIN MAX Polarity = 0, Phase = 0, from SPI1_CLK falling 1.5P-3 2.5P+15 1.5P-10 2.5P+17 1.5P-12 2.5P+19 Polarity = 0, Phase = 1, from SPI1_CLK falling –0.5M+1.5P-3 –0.5M+2.5P+15 –0.5M+1.5P-10 –0.5M+2.5P+17 –0.5M+1.5P-12 –0.5M+2.5P+19 Polarity = 1, Phase = 0, from SPI1_CLK rising 1.5P-3 2.5P+15 1.5P-10 2.5P+17 1.5P-12 2.5P+19 Polarity = 1, Phase = 1, from SPI1_CLK rising –0.5M+1.5P-3 –0.5M+2.5P+15 –0.5M+1.5P-10 –0.5M+2.5P+17 –0.5M+1.5P-12 –0.5M+2.5P+19 UNIT ns These parameters are in addition to the general timings for SPI slave modes (Table 6-79). P = SYSCLK2 period; M = tc(SPC)M (SPI master bit clock period) Figure shows only Polarity = 0, Phase = 0 as an example. Table gives parameters for all four slave clocking modes. Peripheral Information and Electrical Specifications Copyright © 2009–2017, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: OMAP-L138 183 OMAP-L138 SPRS586J – JUNE 2009 – REVISED JANUARY 2017 www.ti.com Table 6-84. Additional (1) SPI1 Slave Timings, 4-Pin Chip Select Option (2) (3) NO. 25 1.3V, 1.2V PARAMETER td(SCSL_SPC)S Required delay from SPI1_SCS asserted at slave to first SPI1_CLK edge at slave. Polarity = 0, Phase = 0, from SPI1_CLK falling 26 td(SPC_SCSH)S 1.1V MIN Polarity = 0, Phase = 1, Required delay from final SPI1_CLK edge from SPI1_CLK falling before SPI1_SCS is deasserted. Polarity = 1, Phase = 0, from SPI1_CLK rising MAX 1.0V MIN MAX MIN MAX P+1.5 P+1.5 P+1.5 0.5M+P+4 0.5M+P+5 0.5M+P+6 P+4 P+5 P+6 0.5M+P+4 0.5M+P+5 0.5M+P+6 P+4 P+5 P+6 UNIT ns ns Polarity = 1, Phase = 1, from SPI1_CLK rising 27 tena(SCSL_SOMI)S Delay from master asserting SPI1_SCS to slave driving SPI1_SOMI valid P+15 P+17 P+19 ns 28 tdis(SCSH_SOMI)S Delay from master deasserting SPI1_SCS to slave 3-stating SPI1_SOMI P+15 P+17 P+19 ns (1) (2) (3) These parameters are in addition to the general timings for SPI slave modes (Table 6-79). P = SYSCLK2 period; M = tc(SPC)M (SPI master bit clock period) Figure shows only Polarity = 0, Phase = 0 as an example. Table gives parameters for all four slave clocking modes. Table 6-85. Additional (1) SPI1 Slave Timings, 5-Pin Option (2) (3) NO. 25 26 1.3V, 1.2V PARAMETER td(SCSL_SPC)S td(SPC_SCSH)S MIN Required delay from SPI1_SCS asserted at slave to first SPI1_CLK edge at slave. Required delay from final SPI1_CLK edge before SPI1_SCS is deasserted. 1.1V MAX MIN 1.0V MAX MIN P+1.5 P+1.5 P+1.5 Polarity = 0, Phase = 0, from SPI1_CLK falling 0.5M+P+4 0.5M+P+5 0.5M+P+6 Polarity = 0, Phase = 1, from SPI1_CLK falling P+4 P+5 P+6 Polarity = 1, Phase = 0, from SPI1_CLK rising 0.5M+P+4 0.5M+P+5 0.5M+P+6 Polarity = 1, Phase = 1, from SPI1_CLK rising P+4 P+5 P+6 MAX UNIT ns ns 27 tena(SCSL_SOMI)S Delay from master asserting SPI1_SCS to slave driving SPI1_SOMI valid P+15 P+17 P+19 ns 28 tdis(SCSH_SOMI)S Delay from master deasserting SPI1_SCS to slave 3-stating SPI1_SOMI P+15 P+17 P+19 ns 29 tena(SCSL_ENA)S Delay from master deasserting SPI1_SCS to slave driving SPI1_ENA valid 15 17 19 ns (1) (2) (3) 184 These parameters are in addition to the general timings for SPI slave modes (Table 6-79). P = SYSCLK2 period; M = tc(SPC)M (SPI master bit clock period) Figure shows only Polarity = 0, Phase = 0 as an example. Table gives parameters for all four slave clocking modes. Peripheral Information and Electrical Specifications Copyright © 2009–2017, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: OMAP-L138 OMAP-L138 www.ti.com SPRS586J – JUNE 2009 – REVISED JANUARY 2017 Table 6-85. Additional(1) SPI1 Slave Timings, 5-Pin Option(2)(3) (continued) NO. 30 (4) 1.3V, 1.2V PARAMETER tdis(SPC_ENA)S Delay from final clock receive edge on SPI1_CLK to slave 3-stating or driving high SPI1_ENA. (4) MIN MAX 1.1V MIN 1.0V MAX MIN MAX Polarity = 0, Phase = 0, from SPI1_CLK falling 2.5P+15 2.5P+17 2.5P+19 Polarity = 0, Phase = 1, from SPI1_CLK rising 2.5P+15 2.5P+17 2.5P+19 Polarity = 1, Phase = 0, from SPI1_CLK rising 2.5P+15 2.5P+17 2.5P+19 Polarity = 1, Phase = 1, from SPI1_CLK falling 2.5P+15 2.5P+17 2.5P+19 UNIT ns SPI1_ENA is driven low after the transmission completes if the SPIINT0.ENABLE_HIGHZ bit is programmed to 0. Otherwise it is tri-stated. If tri-stated, an external pullup resistor should be used to provide a valid level to the master. This option is useful when tying several SPI slave devices to a single master. Peripheral Information and Electrical Specifications Copyright © 2009–2017, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: OMAP-L138 185 OMAP-L138 SPRS586J – JUNE 2009 – REVISED JANUARY 2017 www.ti.com 1 2 MASTER MODE POLARITY = 0 PHASE = 0 3 SPIx_CLK 5 4 SPIx_SIMO MO(0) 7 SPIx_SOMI 6 MO(1) MO(n−1) MO(n) 8 MI(0) MI(1) MI(n−1) MI(n) MASTER MODE POLARITY = 0 PHASE = 1 4 SPIx_CLK 6 5 SPIx_SIMO MO(0) 7 SPIx_SOMI MO(1) MO(n−1) MI(1) MI(n−1) MO(n) 8 MI(0) MI(n) 4 MASTER MODE POLARITY = 1 PHASE = 0 SPIx_CLK 5 SPIx_SIMO 6 MO(0) 7 SPIx_SOMI MO(1) MO(n−1) MO(n) 8 MI(0) MI(1) MI(n−1) MI(n) MASTER MODE POLARITY = 1 PHASE = 1 SPIx_CLK 5 4 SPIx_SIMO MO(0) 7 SPIx_SOMI MI(0) 6 MO(1) MO(n−1) MI(1) MI(n−1) MO(n) 8 MI(n) Figure 6-38. SPI Timings—Master Mode 186 Peripheral Information and Electrical Specifications Submit Documentation Feedback Product Folder Links: OMAP-L138 Copyright © 2009–2017, Texas Instruments Incorporated OMAP-L138 www.ti.com SPRS586J – JUNE 2009 – REVISED JANUARY 2017 9 12 10 SLAVE MODE POLARITY = 0 PHASE = 0 11 SPIx_CLK 15 SPIx_SIMO 16 SI(0) SI(1) SI(n−1) 13 SPIx_SOMI SO(0) SI(n) 14 SO(1) SO(n−1) 12 SO(n) SLAVE MODE POLARITY = 0 PHASE = 1 SPIx_CLK 15 SPIx_SIMO 16 SI(0) SI(1) 13 SPIx_SOMI SO(0) SI(n−1) SI(n) SO(n−1) SO(n) 14 SO(1) SLAVE MODE POLARITY = 1 PHASE = 0 12 SPIx_CLK 15 SPIx_SIMO 16 SI(0) SI(1) SI(n−1) 13 SPIx_SOMI SO(0) SO(1) SI(n) 14 SO(n−1) SO(n) SLAVE MODE POLARITY = 1 PHASE = 1 12 SPIx_CLK 15 SPIx_SIMO 16 SI(0) SI(1) 13 SPIx_SOMI SO(0) SO(1) SI(n−1) SI(n) 14 SO(n−1) SO(n) Figure 6-39. SPI Timings—Slave Mode Copyright © 2009–2017, Texas Instruments Incorporated Peripheral Information and Electrical Specifications Submit Documentation Feedback Product Folder Links: OMAP-L138 187 OMAP-L138 SPRS586J – JUNE 2009 – REVISED JANUARY 2017 www.ti.com MASTER MODE 4 PIN WITH ENABLE 17 18 SPIx_CLK SPIx_SIMO MO(0) SPIx_SOMI MI(0) MO(1) MO(n−1) MI(1) MI(n−1) MO(n) MI(n) SPIx_ENA MASTER MODE 4 PIN WITH CHIP SELECT 19 20 SPIx_CLK SPIx_SIMO MO(0) SPIx_SOMI MI(0) MO(1) MO(n−1) MO(n) MI(1) MI(n−1) MI(n) SPIx_SCS MASTER MODE 5 PIN 22 20 MO(1) 23 18 SPIx_CLK SPIx_SIMO MO(0) MO(n−1) MO(n) SPIx_SOMI 21 SPIx_ENA MI(0) MI(1) MI(n−1) MI(n) DESEL(A) DESEL(A) SPIx_SCS A. DESELECTED IS PROGRAMMABLE EITHER HIGH OR 3−STATE (REQUIRES EXTERNAL PULLUP) Figure 6-40. SPI Timings—Master Mode (4-Pin and 5-Pin) 188 Peripheral Information and Electrical Specifications Submit Documentation Feedback Product Folder Links: OMAP-L138 Copyright © 2009–2017, Texas Instruments Incorporated OMAP-L138 www.ti.com SPRS586J – JUNE 2009 – REVISED JANUARY 2017 SLAVE MODE 4 PIN WITH ENABLE 24 SPIx_CLK SPIx_SOMI SO(0) SO(1) SO(n−1) SO(n) SPIx_SIMO SI(0) SPIx_ENA SI(1) SI(n−1) SI(n) SLAVE MODE 4 PIN WITH CHIP SELECT 26 25 SPIx_CLK 27 SPIx_SOMI 28 SO(n−1) SO(0) SO(1) SO(n) SPIx_SIMO SI(0) SPIx_SCS SI(1) SI(n−1) SI(n) SLAVE MODE 5 PIN 26 30 25 SPIx_CLK 27 SPIx_SOMI 28 SO(1) SO(0) SO(n−1) SO(n) SPIx_SIMO 29 SPIx_ENA DESEL(A) SI(0) SI(1) SI(n−1) SI(n) DESEL(A) SPIx_SCS A. DESELECTED IS PROGRAMMABLE EITHER HIGH OR 3−STATE (REQUIRES EXTERNAL PULLUP) Figure 6-41. SPI Timings—Slave Mode (4-Pin and 5-Pin) Copyright © 2009–2017, Texas Instruments Incorporated Peripheral Information and Electrical Specifications Submit Documentation Feedback Product Folder Links: OMAP-L138 189 OMAP-L138 SPRS586J – JUNE 2009 – REVISED JANUARY 2017 www.ti.com 6.18 Inter-Integrated Circuit Serial Ports (I2C) 6.18.1 I2C Device-Specific Information Each I2C port supports: • Compatible with Philips® I2C Specification Revision 2.1 (January 2000) • Fast Mode up to 400 Kbps (no fail-safe I/O buffers) • Noise Filter to Remove Noise 50 ns or less • Seven- and Ten-Bit Device Addressing Modes • Master (Transmit/Receive) and Slave (Transmit/Receive) Functionality • Events: DMA, Interrupt, or Polling • General-Purpose I/O Capability if not used as I2C Figure 6-42 is block diagram of the device I2C Module. Clock Prescaler I2CPSCx Control Prescaler Register I2CCOARx Own Address Register I2CSARx Slave Address Register Bit Clock Generator I2Cx_SCL Noise Filter I2CCLKHx Clock Divide High Register I2CCMDRx Mode Register I2CCLKLx Clock Divide Low Register I2CEMDRx Extended Mode Register I2CCNTx Data Count Register I2CPID1 Peripheral ID Register 1 I2CPID2 Peripheral ID Register 2 Transmit I2Cx_SDA Noise Filter I2CXSRx Transmit Shift Register I2CDXRx Transmit Buffer Interrupt/DMA Receive Interrupt Enable Register I2CIERx I2CDRRx Receive Buffer I2CSTRx I2CRSRx Receive Shift Register I2CSRCx I2CPFUNC Pin Function Register I2CPDOUT Interrupt Status Register Interrupt Source Register Peripheral Configuration Bus Interrupt DMA Requests Control I2CPDIR I2CPDIN Pin Direction Register Pin Data In Register I2CPDSET I2CPDCLR Pin Data Out Register Pin Data Set Register Pin Data Clear Register Figure 6-42. I2C Module Block Diagram 190 Peripheral Information and Electrical Specifications Submit Documentation Feedback Product Folder Links: OMAP-L138 Copyright © 2009–2017, Texas Instruments Incorporated OMAP-L138 www.ti.com SPRS586J – JUNE 2009 – REVISED JANUARY 2017 6.18.2 I2C Peripheral Registers Description(s) Table 6-86 is the list of the I2C registers. Table 6-86. Inter-Integrated Circuit (I2C) Registers I2C0 BYTE ADDRESS I2C1 BYTE ADDRESS ACRONYM 0x01C2 2000 0x01E2 8000 ICOAR I2C Own Address Register 0x01C2 2004 0x01E2 8004 ICIMR I2C Interrupt Mask Register 0x01C2 2008 0x01E2 8008 ICSTR I2C Interrupt Status Register 0x01C2 200C 0x01E2 800C ICCLKL I2C Clock Low-Time Divider Register 0x01C2 2010 0x01E2 8010 ICCLKH I2C Clock High-Time Divider Register 0x01C2 2014 0x01E2 8014 ICCNT I2C Data Count Register 0x01C2 2018 0x01E2 8018 ICDRR I2C Data Receive Register 0x01C2 201C 0x01E2 801C ICSAR I2C Slave Address Register 0x01C2 2020 0x01E2 8020 ICDXR I2C Data Transmit Register 0x01C2 2024 0x01E2 8024 ICMDR I2C Mode Register 0x01C2 2028 0x01E2 8028 ICIVR I2C Interrupt Vector Register 0x01C2 202C 0x01E2 802C ICEMDR I2C Extended Mode Register 0x01C2 2030 0x01E2 8030 ICPSC I2C Prescaler Register 0x01C2 2034 0x01E2 8034 REVID1 I2C Revision Identification Register 1 0x01C2 2038 0x01E2 8038 REVID2 I2C Revision Identification Register 2 0x01C2 2048 0x01E2 8048 ICPFUNC I2C Pin Function Register 0x01C2 204C 0x01E2 804C ICPDIR I2C Pin Direction Register 0x01C2 2050 0x01E2 8050 ICPDIN I2C Pin Data In Register 0x01C2 2054 0x01E2 8054 ICPDOUT I2C Pin Data Out Register 0x01C2 2058 0x01E2 8058 ICPDSET I2C Pin Data Set Register 0x01C2 205C 0x01E2 805C ICPDCLR I2C Pin Data Clear Register Copyright © 2009–2017, Texas Instruments Incorporated REGISTER DESCRIPTION Peripheral Information and Electrical Specifications Submit Documentation Feedback Product Folder Links: OMAP-L138 191 OMAP-L138 SPRS586J – JUNE 2009 – REVISED JANUARY 2017 www.ti.com 6.18.3 I2C Electrical Data/Timing 6.18.3.1 Inter-Integrated Circuit (I2C) Timing Table 6-87 and Table 6-88 assume testing over recommended operating conditions (see Figure 6-43 and Figure 6-44). Table 6-87. Timing Requirements for I2C Input 1.3V, 1.2V, 1.1V, 1.0V NO. Standard Mode MIN MAX Fast Mode MIN UNIT MAX 1 tc(SCL) Cycle time, I2Cx_SCL 10 2.5 μs 2 tsu(SCLH-SDAL) Setup time, I2Cx_SCL high before I2Cx_SDA low 4.7 0.6 μs 3 th(SCLL-SDAL) Hold time, I2Cx_SCL low after I2Cx_SDA low 4 0.6 μs 4 tw(SCLL) Pulse duration, I2Cx_SCL low 4.7 1.3 μs 5 tw(SCLH) Pulse duration, I2Cx_SCL high 6 tsu(SDA-SCLH) Setup time, I2Cx_SDA before I2Cx_SCL high 7 th(SDA-SCLL) Hold time, I2Cx_SDA after I2Cx_SCL low 8 tw(SDAH) Pulse duration, I2Cx_SDA high 9 tr(SDA) Rise time, I2Cx_SDA 1000 10 tr(SCL) Rise time, I2Cx_SCL 11 tf(SDA) 12 tf(SCL) 13 tsu(SCLH-SDAH) Setup time, I2Cx_SCL high before I2Cx_SDA high 14 tw(SP) Pulse duration, spike (must be suppressed) 15 Cb Capacitive load for each bus line 4 0.6 μs 250 100 ns 0 0 0.9 μs 20 + 0.1Cb 300 ns 1000 20 + 0.1Cb 300 ns Fall time, I2Cx_SDA 300 20 + 0.1Cb 300 ns Fall time, I2Cx_SCL 300 20 + 0.1Cb 300 ns 50 ns 400 pF 4.7 1.3 4 0.6 N/A 0 μs μs 400 Table 6-88. Switching Characteristics for I2C (1) 1.3V, 1.2V, 1.1V, 1.0V NO. PARAMETER Standard Mode MIN MAX Fast Mode MIN UNIT MAX 16 tc(SCL) Cycle time, I2Cx_SCL 10 2.5 μs 17 tsu(SCLH-SDAL) Setup time, I2Cx_SCL high before I2Cx_SDA low 4.7 0.6 μs 18 th(SDAL-SCLL) Hold time, I2Cx_SCL low after I2Cx_SDA low 4 0.6 μs 19 tw(SCLL) Pulse duration, I2Cx_SCL low 4.7 1.3 μs 20 tw(SCLH) Pulse duration, I2Cx_SCL high 4 0.6 μs 21 tsu(SDAV-SCLH) Setup time, I2Cx_SDA valid before I2Cx_SCL high 250 100 ns 22 th(SCLL-SDAV) Hold time, I2Cx_SDA valid after I2Cx_SCL low 23 tw(SDAH) Pulse duration, I2Cx_SDA high 28 tsu(SCLH-SDAH) Setup time, I2Cx_SCL high before I2Cx_SDA high (1) 192 0 0 4.7 1.3 0.9 μs 4 0.6 μs μs I2C must be configured correctly to meet the timings in Table 6-88. Peripheral Information and Electrical Specifications Submit Documentation Feedback Product Folder Links: OMAP-L138 Copyright © 2009–2017, Texas Instruments Incorporated OMAP-L138 www.ti.com SPRS586J – JUNE 2009 – REVISED JANUARY 2017 11 9 I2Cx_SDA 6 8 14 4 13 5 10 I2Cx_SCL 1 12 3 2 7 3 Stop Start Repeated Start Stop Figure 6-43. I2C Receive Timings 26 24 I2Cx_SDA 21 23 19 28 20 25 I2Cx_SCL 16 27 18 17 22 18 Stop Start Repeated Start Stop Figure 6-44. I2C Transmit Timings Copyright © 2009–2017, Texas Instruments Incorporated Peripheral Information and Electrical Specifications Submit Documentation Feedback Product Folder Links: OMAP-L138 193 OMAP-L138 SPRS586J – JUNE 2009 – REVISED JANUARY 2017 6.19 www.ti.com Universal Asynchronous Receiver/Transmitter (UART) Each UART has the following features: • 16-byte storage space for both the transmitter and receiver FIFOs • 1, 4, 8, or 14 byte selectable receiver FIFO trigger level for autoflow control and DMA • DMA signaling capability for both received and transmitted data • Programmable auto-rts and auto-cts for autoflow control • Programmable Baud Rate up to 12 MBaud • Programmable Oversampling Options of x13 and x16 • Frequency pre-scale values from 1 to 65,535 to generate appropriate baud rates • Prioritized interrupts • Programmable serial data formats – 5, 6, 7, or 8-bit characters – Even, odd, or no parity bit generation and detection – 1, 1.5, or 2 stop bit generation • False start bit detection • Line break generation and detection • Internal diagnostic capabilities – Loopback controls for communications link fault isolation – Break, parity, overrun, and framing error simulation • Modem control functions (CTS, RTS) The UART registers are listed in Section 6.19.1 6.19.1 UART Peripheral Registers Description(s) Table 6-89 is the list of UART registers. Table 6-89. UART Registers UART0 BYTE ADDRESS UART1 BYTE ADDRESS UART2 BYTE ADDRESS ACRONYM 0x01C4 2000 0x01D0 C000 0x01D0 D000 RBR Receiver Buffer Register (read only) 0x01C4 2000 0x01D0 C000 0x01D0 D000 THR Transmitter Holding Register (write only) 0x01C4 2004 0x01D0 C004 0x01D0 D004 IER Interrupt Enable Register 0x01C4 2008 0x01D0 C008 0x01D0 D008 IIR Interrupt Identification Register (read only) 0x01C4 2008 0x01D0 C008 0x01D0 D008 FCR FIFO Control Register (write only) 0x01C4 200C 0x01D0 C00C 0x01D0 D00C LCR Line Control Register 0x01C4 2010 0x01D0 C010 0x01D0 D010 MCR Modem Control Register 0x01C4 2014 0x01D0 C014 0x01D0 D014 LSR Line Status Register 0x01C4 2018 0x01D0 C018 0x01D0 D018 MSR Modem Status Register 0x01C4 201C 0x01D0 C01C 0x01D0 D01C SCR Scratchpad Register 0x01C4 2020 0x01D0 C020 0x01D0 D020 DLL Divisor LSB Latch 0x01C4 2024 0x01D0 C024 0x01D0 D024 DLH Divisor MSB Latch 0x01C4 2028 0x01D0 C028 0x01D0 D028 REVID1 0x01C4 2030 0x01D0 C030 0x01D0 D030 PWREMU_MGMT 0x01C4 2034 0x01D0 C034 0x01D0 D034 MDR 194 REGISTER DESCRIPTION Revision Identification Register 1 Power and Emulation Management Register Mode Definition Register Peripheral Information and Electrical Specifications Submit Documentation Feedback Product Folder Links: OMAP-L138 Copyright © 2009–2017, Texas Instruments Incorporated OMAP-L138 www.ti.com SPRS586J – JUNE 2009 – REVISED JANUARY 2017 6.19.2 UART Electrical Data/Timing Table 6-90. Timing Requirements for UART Receive (1) (see Figure 6-45) 1.3V, 1.2V, 1.1V, 1.0V NO. MIN MAX UNIT 4 tw(URXDB) Pulse duration, receive data bit (RXDn) 0.96U 1.05U ns 5 tw(URXSB) Pulse duration, receive start bit 0.96U 1.05U ns (1) U = UART baud time = 1/programmed baud rate. Table 6-91. Switching Characteristics Over Recommended Operating Conditions for UARTx Transmit (1) (see Figure 6-45) NO. (1) (2) (3) (4) 1.3V, 1.2V, 1.1V, 1.0V PARAMETER MIN MAX D/E (2) (3) UNIT 1 f(baud) Maximum programmable baud rate MBaud 2 tw(UTXDB) Pulse duration, transmit data bit (TXDn) U-2 U+2 ns 3 tw(UTXSB) Pulse duration, transmit start bit U-2 U+2 ns (4) U = UART baud time = 1/programmed baud rate. D = UART input clock in MHz. For UART0, the UART input clock is SYSCLK2. For UART1 or UART2, the UART input clock is ASYNC3 (either PLL0_SYCLK2 or PLL1_SYSCLK2). E = UART divisor x UART sampling rate. The UART divisor is set through the UART divisor latch registers (DLL and DLH). The UART sampling rate is set through the over-sampling mode select bit (OSM_SEL) of the UART mode definition register (MDR). Baud rate is not indicative of data rate. Actual data rate will be limited by system factors such as EDMA loading, EMIF/DDR loading, system frequency, etc. 3 2 UART_TXDn Start Bit Data Bits 5 4 UART_RXDn Start Bit Data Bits Figure 6-45. UART Transmit/Receive Timing Copyright © 2009–2017, Texas Instruments Incorporated Peripheral Information and Electrical Specifications Submit Documentation Feedback Product Folder Links: OMAP-L138 195 OMAP-L138 SPRS586J – JUNE 2009 – REVISED JANUARY 2017 www.ti.com 6.20 Universal Serial Bus OTG Controller (USB0) [USB2.0 OTG] The USB2.0 peripheral supports the following features: • USB 2.0 peripheral at speeds high speed (HS: 480 Mb/s) and full speed (FS: 12 Mb/s) • USB 2.0 host at speeds HS, FS, and low speed (LS: 1.5 Mb/s) • All transfer modes (control, bulk, interrupt, and isochronous) • 4 Transmit (TX) and 4 Receive (RX) endpoints in addition to endpoint 0 • FIFO RAM – 4K endpoint – Programmable size • Integrated USB 2.0 High Speed PHY • Connects to a standard Charge Pump for VBUS 5 V generation • RNDIS mode for accelerating RNDIS type protocols using short packet termination over USB Important Notice: The USB0 controller module clock (PLL0_SYSCLK2) must be greater than 30 MHz for proper operation of the USB controller. A clock rate of 60 MHz or greater is recommended to avoid data throughput reduction. Table 6-92 is the list of USB OTG registers. Table 6-92. Universal Serial Bus OTG (USB0) Registers BYTE ADDRESS 196 ACRONYM REGISTER DESCRIPTION 0x01E0 0000 REVID Revision Register 0x01E0 0004 CTRLR Control Register 0x01E0 0008 STATR Status Register 0x01E0 000C EMUR Emulation Register 0x01E0 0010 MODE Mode Register 0x01E0 0014 AUTOREQ Autorequest Register 0x01E0 0018 SRPFIXTIME SRP Fix Time Register 0x01E0 001C TEARDOWN Teardown Register 0x01E0 0020 INTSRCR USB Interrupt Source Register 0x01E0 0024 INTSETR USB Interrupt Source Set Register 0x01E0 0028 INTCLRR USB Interrupt Source Clear Register 0x01E0 002C INTMSKR USB Interrupt Mask Register 0x01E0 0030 INTMSKSETR USB Interrupt Mask Set Register 0x01E0 0034 INTMSKCLRR USB Interrupt Mask Clear Register 0x01E0 0038 INTMASKEDR USB Interrupt Source Masked Register 0x01E0 003C EOIR USB End of Interrupt Register 0x01E0 0040 - 0x01E0 0050 GENRNDISSZ1 Reserved Generic RNDIS Size EP1 0x01E0 0054 GENRNDISSZ2 Generic RNDIS Size EP2 0x01E0 0058 GENRNDISSZ3 Generic RNDIS Size EP3 0x01E0 005C GENRNDISSZ4 Generic RNDIS Size EP4 0x01E0 0400 FADDR Function Address Register 0x01E0 0401 POWER Power Management Register 0x01E0 0402 INTRTX Interrupt Register for Endpoint 0 plus Transmit Endpoints 1 to 4 0x01E0 0404 INTRRX Interrupt Register for Receive Endpoints 1 to 4 0x01E0 0406 INTRTXE Interrupt enable register for INTRTX 0x01E0 0408 INTRRXE Interrupt Enable Register for INTRRX 0x01E0 040A INTRUSB Interrupt Register for Common USB Interrupts 0x01E0 040B INTRUSBE Interrupt Enable Register for INTRUSB Peripheral Information and Electrical Specifications Submit Documentation Feedback Product Folder Links: OMAP-L138 Copyright © 2009–2017, Texas Instruments Incorporated OMAP-L138 www.ti.com SPRS586J – JUNE 2009 – REVISED JANUARY 2017 Table 6-92. Universal Serial Bus OTG (USB0) Registers (continued) BYTE ADDRESS ACRONYM 0x01E0 040C FRAME REGISTER DESCRIPTION Frame Number Register 0x01E0 040E INDEX Index Register for Selecting the Endpoint Status and Control Registers 0x01E0 040F TESTMODE Register to Enable the USB 2.0 Test Modes Indexed Registers These registers operate on the endpoint selected by the INDEX register 0x01E0 0410 TXMAXP Maximum Packet Size for Peripheral/Host Transmit Endpoint (Index register set to select Endpoints 1-4 only) 0x01E0 0412 PERI_CSR0 Control Status Register for Endpoint 0 in Peripheral Mode. (Index register set to select Endpoint 0) HOST_CSR0 Control Status Register for Endpoint 0 in Host Mode. (Index register set to select Endpoint 0) PERI_TXCSR Control Status Register for Peripheral Transmit Endpoint. (Index register set to select Endpoints 1-4) HOST_TXCSR Control Status Register for Host Transmit Endpoint. (Index register set to select Endpoints 1-4) 0x01E0 0414 RXMAXP 0x01E0 0416 PERI_RXCSR Control Status Register for Peripheral Receive Endpoint. (Index register set to select Endpoints 1-4) HOST_RXCSR Control Status Register for Host Receive Endpoint. (Index register set to select Endpoints 1-4) 0x01E0 0418 COUNT0 RXCOUNT 0x01E0 041A HOST_TYPE0 HOST_TXTYPE 0x01E0 041B HOST_NAKLIMIT0 HOST_TXINTERVAL Maximum Packet Size for Peripheral/Host Receive Endpoint (Index register set to select Endpoints 1-4 only) Number of Received Bytes in Endpoint 0 FIFO. (Index register set to select Endpoint 0) Number of Bytes in Host Receive Endpoint FIFO. (Index register set to select Endpoints 1- 4) Defines the speed of Endpoint 0 Sets the operating speed, transaction protocol and peripheral endpoint number for the host Transmit endpoint. (Index register set to select Endpoints 1-4 only) Sets the NAK response timeout on Endpoint 0. (Index register set to select Endpoint 0) Sets the polling interval for Interrupt/ISOC transactions or the NAK response timeout on Bulk transactions for host Transmit endpoint. (Index register set to select Endpoints 1-4 only) 0x01E0 041C HOST_RXTYPE Sets the operating speed, transaction protocol and peripheral endpoint number for the host Receive endpoint. (Index register set to select Endpoints 1-4 only) 0x01E0 041D HOST_RXINTERVAL Sets the polling interval for Interrupt/ISOC transactions or the NAK response timeout on Bulk transactions for host Receive endpoint. (Index register set to select Endpoints 1-4 only) 0x01E0 041F CONFIGDATA Returns details of core configuration. (Index register set to select Endpoint 0) FIFO 0x01E0 0420 FIFO0 Transmit and Receive FIFO Register for Endpoint 0 0x01E0 0424 FIFO1 Transmit and Receive FIFO Register for Endpoint 1 0x01E0 0428 FIFO2 Transmit and Receive FIFO Register for Endpoint 2 0x01E0 042C FIFO3 Transmit and Receive FIFO Register for Endpoint 3 0x01E0 0430 FIFO4 Transmit and Receive FIFO Register for Endpoint 4 0x01E0 0460 DEVCTL 0x01E0 0462 TXFIFOSZ Transmit Endpoint FIFO Size (Index register set to select Endpoints 1-4 only) 0x01E0 0463 RXFIFOSZ Receive Endpoint FIFO Size (Index register set to select Endpoints 1-4 only) 0x01E0 0464 TXFIFOADDR Transmit Endpoint FIFO Address (Index register set to select Endpoints 1-4 only) OTG Device Control Device Control Register Dynamic FIFO Control Copyright © 2009–2017, Texas Instruments Incorporated Peripheral Information and Electrical Specifications Submit Documentation Feedback Product Folder Links: OMAP-L138 197 OMAP-L138 SPRS586J – JUNE 2009 – REVISED JANUARY 2017 www.ti.com Table 6-92. Universal Serial Bus OTG (USB0) Registers (continued) BYTE ADDRESS ACRONYM 0x01E0 0466 RXFIFOADDR 0x01E0 046C HWVERS REGISTER DESCRIPTION Receive Endpoint FIFO Address (Index register set to select Endpoints 1-4 only) Hardware Version Register Target Endpoint 0 Control Registers, Valid Only in Host Mode 0x01E0 0480 TXFUNCADDR Address of the target function that has to be accessed through the associated Transmit Endpoint. 0x01E0 0482 TXHUBADDR Address of the hub that has to be accessed through the associated Transmit Endpoint. This is used only when full speed or low speed device is connected via a USB2.0 high-speed hub. 0x01E0 0483 TXHUBPORT Port of the hub that has to be accessed through the associated Transmit Endpoint. This is used only when full speed or low speed device is connected via a USB2.0 high-speed hub. 0x01E0 0484 RXFUNCADDR 0x01E0 0486 RXHUBADDR Address of the hub that has to be accessed through the associated Receive Endpoint. This is used only when full speed or low speed device is connected via a USB2.0 high-speed hub. 0x01E0 0487 RXHUBPORT Port of the hub that has to be accessed through the associated Receive Endpoint. This is used only when full speed or low speed device is connected via a USB2.0 high-speed hub. 0x01E0 0488 TXFUNCADDR 0x01E0 048A TXHUBADDR Address of the hub that has to be accessed through the associated Transmit Endpoint. This is used only when full speed or low speed device is connected via a USB2.0 high-speed hub. 0x01E0 048B TXHUBPORT Port of the hub that has to be accessed through the associated Transmit Endpoint. This is used only when full speed or low speed device is connected via a USB2.0 high-speed hub. 0x01E0 048C RXFUNCADDR 0x01E0 048E RXHUBADDR Address of the hub that has to be accessed through the associated Receive Endpoint. This is used only when full speed or low speed device is connected via a USB2.0 high-speed hub. 0x01E0 048F RXHUBPORT Port of the hub that has to be accessed through the associated Receive Endpoint. This is used only when full speed or low speed device is connected via a USB2.0 high-speed hub. Address of the target function that has to be accessed through the associated Receive Endpoint. Target Endpoint 1 Control Registers, Valid Only in Host Mode Address of the target function that has to be accessed through the associated Transmit Endpoint. Address of the target function that has to be accessed through the associated Receive Endpoint. Target Endpoint 2 Control Registers, Valid Only in Host Mode 0x01E0 0490 TXFUNCADDR Address of the target function that has to be accessed through the associated Transmit Endpoint. 0x01E0 0492 TXHUBADDR Address of the hub that has to be accessed through the associated Transmit Endpoint. This is used only when full speed or low speed device is connected via a USB2.0 high-speed hub. 0x01E0 0493 TXHUBPORT Port of the hub that has to be accessed through the associated Transmit Endpoint. This is used only when full speed or low speed device is connected via a USB2.0 high-speed hub. 0x01E0 0494 RXFUNCADDR 0x01E0 0496 RXHUBADDR Address of the hub that has to be accessed through the associated Receive Endpoint. This is used only when full speed or low speed device is connected via a USB2.0 high-speed hub. 0x01E0 0497 RXHUBPORT Port of the hub that has to be accessed through the associated Receive Endpoint. This is used only when full speed or low speed device is connected via a USB2.0 high-speed hub. 0x01E0 0498 TXFUNCADDR Address of the target function that has to be accessed through the associated Receive Endpoint. Target Endpoint 3 Control Registers, Valid Only in Host Mode 198 Address of the target function that has to be accessed through the associated Transmit Endpoint. Peripheral Information and Electrical Specifications Submit Documentation Feedback Product Folder Links: OMAP-L138 Copyright © 2009–2017, Texas Instruments Incorporated OMAP-L138 www.ti.com SPRS586J – JUNE 2009 – REVISED JANUARY 2017 Table 6-92. Universal Serial Bus OTG (USB0) Registers (continued) BYTE ADDRESS ACRONYM 0x01E0 049A TXHUBADDR REGISTER DESCRIPTION Address of the hub that has to be accessed through the associated Transmit Endpoint. This is used only when full speed or low speed device is connected via a USB2.0 high-speed hub. 0x01E0 049B TXHUBPORT Port of the hub that has to be accessed through the associated Transmit Endpoint. This is used only when full speed or low speed device is connected via a USB2.0 high-speed hub. 0x01E0 049C RXFUNCADDR 0x01E0 049E RXHUBADDR Address of the hub that has to be accessed through the associated Receive Endpoint. This is used only when full speed or low speed device is connected via a USB2.0 high-speed hub. 0x01E0 049F RXHUBPORT Port of the hub that has to be accessed through the associated Receive Endpoint. This is used only when full speed or low speed device is connected via a USB2.0 high-speed hub. 0x01E0 04A0 TXFUNCADDR 0x01E0 04A2 TXHUBADDR Address of the hub that has to be accessed through the associated Transmit Endpoint. This is used only when full speed or low speed device is connected via a USB2.0 high-speed hub. 0x01E0 04A3 TXHUBPORT Port of the hub that has to be accessed through the associated Transmit Endpoint. This is used only when full speed or low speed device is connected via a USB2.0 high-speed hub. 0x01E0 04A4 RXFUNCADDR 0x01E0 04A6 RXHUBADDR Address of the hub that has to be accessed through the associated Receive Endpoint. This is used only when full speed or low speed device is connected via a USB2.0 high-speed hub. 0x01E0 04A7 RXHUBPORT Port of the hub that has to be accessed through the associated Receive Endpoint. This is used only when full speed or low speed device is connected via a USB2.0 high-speed hub. 0x01E0 0502 PERI_CSR0 Control Status Register for Endpoint 0 in Peripheral Mode HOST_CSR0 Control Status Register for Endpoint 0 in Host Mode Address of the target function that has to be accessed through the associated Receive Endpoint. Target Endpoint 4 Control Registers, Valid Only in Host Mode Address of the target function that has to be accessed through the associated Transmit Endpoint. Address of the target function that has to be accessed through the associated Receive Endpoint. Control and Status Register for Endpoint 0 0x01E0 0508 COUNT0 0x01E0 050A HOST_TYPE0 Number of Received Bytes in Endpoint 0 FIFO 0x01E0 050B HOST_NAKLIMIT0 0x01E0 050F CONFIGDATA Defines the Speed of Endpoint 0 Sets the NAK Response Timeout on Endpoint 0 Returns details of core configuration. Control and Status Register for Endpoint 1 0x01E0 0510 TXMAXP 0x01E0 0512 PERI_TXCSR Maximum Packet Size for Peripheral/Host Transmit Endpoint Control Status Register for Peripheral Transmit Endpoint (peripheral mode) HOST_TXCSR Control Status Register for Host Transmit Endpoint (host mode) 0x01E0 0514 RXMAXP 0x01E0 0516 PERI_RXCSR Maximum Packet Size for Peripheral/Host Receive Endpoint Control Status Register for Peripheral Receive Endpoint (peripheral mode) HOST_RXCSR Control Status Register for Host Receive Endpoint (host mode) 0x01E0 0518 RXCOUNT 0x01E0 051A HOST_TXTYPE 0x01E0 051B HOST_TXINTERVAL 0x01E0 051C HOST_RXTYPE 0x01E0 051D HOST_RXINTERVAL Number of Bytes in Host Receive endpoint FIFO Sets the operating speed, transaction protocol and peripheral endpoint number for the host Transmit endpoint. Sets the polling interval for Interrupt/ISOC transactions or the NAK response timeout on Bulk transactions for host Transmit endpoint. Sets the operating speed, transaction protocol and peripheral endpoint number for the host Receive endpoint. Sets the polling interval for Interrupt/ISOC transactions or the NAK response timeout on Bulk transactions for host Receive endpoint. Control and Status Register for Endpoint 2 Copyright © 2009–2017, Texas Instruments Incorporated Peripheral Information and Electrical Specifications Submit Documentation Feedback Product Folder Links: OMAP-L138 199 OMAP-L138 SPRS586J – JUNE 2009 – REVISED JANUARY 2017 www.ti.com Table 6-92. Universal Serial Bus OTG (USB0) Registers (continued) BYTE ADDRESS ACRONYM 0x01E0 0520 TXMAXP 0x01E0 0522 0x01E0 0524 0x01E0 0526 REGISTER DESCRIPTION Maximum Packet Size for Peripheral/Host Transmit Endpoint PERI_TXCSR Control Status Register for Peripheral Transmit Endpoint (peripheral mode) HOST_TXCSR Control Status Register for Host Transmit Endpoint (host mode) RXMAXP Maximum Packet Size for Peripheral/Host Receive Endpoint PERI_RXCSR Control Status Register for Peripheral Receive Endpoint (peripheral mode) HOST_RXCSR Control Status Register for Host Receive Endpoint (host mode) 0x01E0 0528 RXCOUNT Number of Bytes in Host Receive endpoint FIFO 0x01E0 052A HOST_TXTYPE 0x01E0 052B HOST_TXINTERVAL 0x01E0 052C HOST_RXTYPE 0x01E0 052D HOST_RXINTERVAL 0x01E0 0530 TXMAXP 0x01E0 0532 PERI_TXCSR Control Status Register for Peripheral Transmit Endpoint (peripheral mode) HOST_TXCSR Control Status Register for Host Transmit Endpoint (host mode) Sets the operating speed, transaction protocol and peripheral endpoint number for the host Transmit endpoint. Sets the polling interval for Interrupt/ISOC transactions or the NAK response timeout on Bulk transactions for host Transmit endpoint. Sets the operating speed, transaction protocol and peripheral endpoint number for the host Receive endpoint. Sets the polling interval for Interrupt/ISOC transactions or the NAK response timeout on Bulk transactions for host Receive endpoint. Control and Status Register for Endpoint 3 Maximum Packet Size for Peripheral/Host Transmit Endpoint 0x01E0 0534 RXMAXP 0x01E0 0536 PERI_RXCSR Maximum Packet Size for Peripheral/Host Receive Endpoint Control Status Register for Peripheral Receive Endpoint (peripheral mode) HOST_RXCSR Control Status Register for Host Receive Endpoint (host mode) 0x01E0 0538 RXCOUNT 0x01E0 053A HOST_TXTYPE 0x01E0 053B HOST_TXINTERVAL 0x01E0 053C HOST_RXTYPE 0x01E0 053D HOST_RXINTERVAL Number of Bytes in Host Receive endpoint FIFO Sets the operating speed, transaction protocol and peripheral endpoint number for the host Transmit endpoint. Sets the polling interval for Interrupt/ISOC transactions or the NAK response timeout on Bulk transactions for host Transmit endpoint. Sets the operating speed, transaction protocol and peripheral endpoint number for the host Receive endpoint. Sets the polling interval for Interrupt/ISOC transactions or the NAK response timeout on Bulk transactions for host Receive endpoint. Control and Status Register for Endpoint 4 0x01E0 0540 TXMAXP 0x01E0 0542 PERI_TXCSR Maximum Packet Size for Peripheral/Host Transmit Endpoint Control Status Register for Peripheral Transmit Endpoint (peripheral mode) HOST_TXCSR Control Status Register for Host Transmit Endpoint (host mode) 0x01E0 0544 RXMAXP 0x01E0 0546 PERI_RXCSR Control Status Register for Peripheral Receive Endpoint (peripheral mode) HOST_RXCSR Control Status Register for Host Receive Endpoint (host mode) 0x01E0 0548 RXCOUNT 0x01E0 054A HOST_TXTYPE 0x01E0 054B HOST_TXINTERVAL 0x01E0 054C HOST_RXTYPE 0x01E0 054D HOST_RXINTERVAL 0x01E0 1000 DMAREVID Maximum Packet Size for Peripheral/Host Receive Endpoint Number of Bytes in Host Receive endpoint FIFO Sets the operating speed, transaction protocol and peripheral endpoint number for the host Transmit endpoint. Sets the polling interval for Interrupt/ISOC transactions or the NAK response timeout on Bulk transactions for host Transmit endpoint. Sets the operating speed, transaction protocol and peripheral endpoint number for the host Receive endpoint. Sets the polling interval for Interrupt/ISOC transactions or the NAK response timeout on Bulk transactions for host Receive endpoint. DMA Registers 200 0x01E0 1004 TDFDQ 0x01E0 1008 DMAEMU DMA Revision Register DMA Teardown Free Descriptor Queue Control Register DMA Emulation Control Register Peripheral Information and Electrical Specifications Submit Documentation Feedback Product Folder Links: OMAP-L138 Copyright © 2009–2017, Texas Instruments Incorporated OMAP-L138 www.ti.com SPRS586J – JUNE 2009 – REVISED JANUARY 2017 Table 6-92. Universal Serial Bus OTG (USB0) Registers (continued) BYTE ADDRESS ACRONYM REGISTER DESCRIPTION 0x01E0 1800 TXGCR[0] Transmit Channel 0 Global Configuration Register Receive Channel 0 Global Configuration Register 0x01E0 1808 RXGCR[0] 0x01E0 180C RXHPCRA[0] Receive Channel 0 Host Packet Configuration Register A 0x01E0 1810 RXHPCRB[0] Receive Channel 0 Host Packet Configuration Register B 0x01E0 1820 TXGCR[1] Transmit Channel 1 Global Configuration Register 0x01E0 1828 RXGCR[1] Receive Channel 1 Global Configuration Register 0x01E0 182C RXHPCRA[1] Receive Channel 1 Host Packet Configuration Register A 0x01E0 1830 RXHPCRB[1] Receive Channel 1 Host Packet Configuration Register B 0x01E0 1840 TXGCR[2] Transmit Channel 2 Global Configuration Register 0x01E0 1848 RXGCR[2] Receive Channel 2 Global Configuration Register 0x01E0 184C RXHPCRA[2] Receive Channel 2 Host Packet Configuration Register A 0x01E0 1850 RXHPCRB[2] Receive Channel 2 Host Packet Configuration Register B 0x01E0 1860 TXGCR[3] Transmit Channel 3 Global Configuration Register 0x01E0 1868 RXGCR[3] Receive Channel 3 Global Configuration Register 0x01E0 186C RXHPCRA[3] Receive Channel 3 Host Packet Configuration Register A 0x01E0 1870 RXHPCRB[3] Receive Channel 3 Host Packet Configuration Register B 0x01E0 2000 DMA_SCHED_CTRL 0x01E0 2800 WORD[0] DMA Scheduler Table Word 0 0x01E0 2804 WORD[1] DMA Scheduler Table Word 1 ... ... 0x01E0 28FC WORD[63] 0x01E0 4000 QMGRREVID 0x01E0 4008 DIVERSION 0x01E0 4020 FDBSC0 Free Descriptor/Buffer Starvation Count Register 0 0x01E0 4024 FDBSC1 Free Descriptor/Buffer Starvation Count Register 1 0x01E0 4028 FDBSC2 Free Descriptor/Buffer Starvation Count Register 2 0x01E0 402C FDBSC3 Free Descriptor/Buffer Starvation Count Register 3 0x01E0 4080 LRAM0BASE Linking RAM Region 0 Base Address Register 0x01E0 4084 LRAM0SIZE Linking RAM Region 0 Size Register 0x01E0 4088 LRAM1BASE Linking RAM Region 1 Base Address Register 0x01E0 4090 PEND0 Queue Pending Register 0 0x01E0 4094 PEND1 Queue Pending Register 1 0x01E0 5000 QMEMRBASE[0] Memory Region 0 Base Address Register 0x01E0 5004 QMEMRCTRL[0] Memory Region 0 Control Register 0x01E0 5010 QMEMRBASE[1] Memory Region 1 Base Address Register 0x01E0 5014 QMEMRCTRL[1] Memory Region 1 Control Register DMA Scheduler Control Register ... DMA Scheduler Table Word 63 Queue Manager Registers Queue Manager Revision Register Queue Diversion Register ... ... 0x01E0 50F0 QMEMRBASE[15] Memory Region 15 Base Address Register 0x01E0 50F4 QMEMRCTRL[15] Memory Region 15 Control Register 0x01E0 600C CTRLD[0] Queue Manager Queue 0 Control Register D 0x01E0 601C CTRLD[1] Queue Manager Queue 1 Control Register D ... ... 0x01E0 63FC CTRLD[63] Queue Manager Queue 63 Status Register D 0x01E0 6800 QSTATA[0] Queue Manager Queue 0 Status Register A 0x01E0 6804 QSTATB[0] Queue Manager Queue 0 Status Register B 0x01E0 6808 QSTATC[0] Queue Manager Queue 0 Status Register C Copyright © 2009–2017, Texas Instruments Incorporated ... ... Peripheral Information and Electrical Specifications Submit Documentation Feedback Product Folder Links: OMAP-L138 201 OMAP-L138 SPRS586J – JUNE 2009 – REVISED JANUARY 2017 www.ti.com Table 6-92. Universal Serial Bus OTG (USB0) Registers (continued) BYTE ADDRESS ACRONYM REGISTER DESCRIPTION 0x01E0 6810 QSTATA[1] Queue Manager Queue 1 Status Register A 0x01E0 6814 QSTATB[1] Queue Manager Queue 1 Status Register B 0x01E0 6818 QSTATC[1] Queue Manager Queue 1 Status Register C ... ... 0x01E0 6BF0 QSTATA[63] Queue Manager Queue 63 Status Register A 0x01E0 6BF4 QSTATB[63] Queue Manager Queue 63 Status Register B 0x01E0 6BF8 QSTATC[63] Queue Manager Queue 63 Status Register C ... 6.20.1 USB0 [USB2.0] Electrical Data/Timing The USB PHY PLL can support input clock of the following frequencies: 12.0 MHz, 13.0 MHz, 19.2 MHz, 20.0 MHz, 24.0 MHz, 26.0 MHz, 38.4 MHz, 40.0 MHz or 48.0 MHz. USB_REFCLKIN jitter tolerance is 50 ppm (maximum). Table 6-93. Switching Characteristics Over Recommended Operating Conditions for USB0 [USB2.0] (see Figure 6-46) 1.3V, 1.2V, 1.1V, 1.0V NO. 1 LOW SPEED 1.5 Mbps PARAMETER tr(D) Rise time, USB_DP and USB_DM signals (1) (1) FULL SPEED 12 Mbps HIGH SPEED 480 Mbps MIN MAX MIN MAX MIN 75 300 4 20 0.5 UNIT MAX ns 2 tf(D) Fall time, USB_DP and USB_DM signals 75 300 4 20 0.5 3 trfM Rise/Fall time, matching (2) 80 120 90 111 – – 4 VCRS Output signal cross-over voltage (1) 1.3 2 1.3 2 – – 5 tjr(source)NT Source (Host) Driver jitter, next transition tjr(FUNC)NT Function Driver jitter, next transition tjr(source)PT Source (Host) Driver jitter, paired transition (4) tjr(FUNC)PT Function Driver jitter, paired transition 7 tw(EOPT) Pulse duration, EOP transmitter 8 tw(EOPR) Pulse duration, EOP receiver 9 t(DRATE) Data Rate 10 ZDRV Driver Output Resistance 11 ZINP Receiver Input Impedance 6 (1) (2) (3) (4) 1250 V (3) 2 2 2 (3) ns 1 1 (3) ns 10 1 (3) ns – ns 1500 160 175 82 – ns – – 1.5 – % 25 670 100k ns 12 40.5 49.5 100k ns 480 Mb/s 40.5 49.5 Ω - - Ω Low Speed: CL = 200 pF, Full Speed: CL = 50 pF, High Speed: CL = 50 pF tRFM = (tr/tf) x 100. [Excluding the first transaction from the Idle state.] For more detailed information, see the Universal Serial Bus Specification Revision 2.0, Chapter 7. Electrical. tjr = tpx(1) - tpx(0) USB_DM VCRS USB_DP tper − tjr 90% VOH 10% VOL tr tf Figure 6-46. USB2.0 Integrated Transceiver Interface Timing 202 Peripheral Information and Electrical Specifications Submit Documentation Feedback Product Folder Links: OMAP-L138 Copyright © 2009–2017, Texas Instruments Incorporated OMAP-L138 www.ti.com SPRS586J – JUNE 2009 – REVISED JANUARY 2017 6.21 Universal Serial Bus Host Controller (USB1) [USB1.1 OHCI] All the USB interfaces for this device are compliant with Universal Serial Bus Specifications, Revision 1.1. Table 6-94 is the list of USB Host Controller registers. Table 6-94. USB Host Controller Registers USB1 BYTE ADDRESS (1) (2) (3) ACRONYM REGISTER DESCRIPTION 0x01E2 5000 HCREVISION OHCI Revision Number Register 0x01E2 5004 HCCONTROL HC Operating Mode Register 0x01E2 5008 HCCOMMANDSTATUS HC Command and Status Register 0x01E2 500C HCINTERRUPTSTATUS HC Interrupt and Status Register 0x01E2 5010 HCINTERRUPTENABLE HC Interrupt Enable Register 0x01E2 5014 HCINTERRUPTDISABLE HC Interrupt Disable Register 0x01E2 5018 HCHCCA HC HCAA Address Register (1) 0x01E2 501C HCPERIODCURRENTED HC Current Periodic Register (1) 0x01E2 5020 HCCONTROLHEADED 0x01E2 5024 HCCONTROLCURRENTED 0x01E2 5028 HCBULKHEADED 0x01E2 502C HCBULKCURRENTED HC Current Bulk Register (1) 0x01E2 5030 HCDONEHEAD HC Head Done Register (1) 0x01E2 5034 HCFMINTERVAL HC Frame Interval Register 0x01E2 5038 HCFMREMAINING 0x01E2 503C HCFMNUMBER 0x01E2 5040 HCPERIODICSTART 0x01E2 5044 HCLSTHRESHOLD 0x01E2 5048 HCRHDESCRIPTORA HC Root Hub A Register 0x01E2 504C HCRHDESCRIPTORB HC Root Hub B Register 0x01E2 5050 HCRHSTATUS 0x01E2 5054 HCRHPORTSTATUS1 HC Port 1 Status and Control Register (2) 0x01E2 5058 HCRHPORTSTATUS2 HC Port 2 Status and Control Register (3) HC Head Control Register (1) HC Current Control Register (1) HC Head Bulk Register (1) HC Frame Remaining Register HC Frame Number Register HC Periodic Start Register HC Low-Speed Threshold Register HC Root Hub Status Register Restrictions apply to the physical addresses used in these registers. Connected to the integrated USB1.1 phy pins (USB1_DM, USB1_DP). Although the controller implements two ports, the second port cannot be used. Table 6-95. Switching Characteristics Over Recommended Operating Conditions for USB1 [USB1.1] 1.3V, 1.2V, 1.1V, 1.0V NO. U1 PARAMETER tr LOW SPEED Rise time, USB.DP and USB.DM signals (1) U2 tf Fall time, USB.DP and USB.DM signals U3 tRFM Rise/Fall time matching (2) VCRS Output signal cross-over voltage U5 tj Differential propagation jitter (3) U6 fop Operating frequency (4) (1) UNIT MIN MAX MAX MAX 75 (1) 300 (1) 4 (1) 20 (1) ns (1) (1) (1) 20 (1) ns 110 (2) % 75 80 (2) U4 (1) (2) (3) (4) (1) FULL SPEED 1.3 (1) -25 (3) 300 120 (2) 2 (1) 25 (3) 1.5 4 90 (2) 1.3 (1) -2 (3) (1) V 2 (3) ns 12 MHz 2 Low Speed: CL = 200 pF. High Speed: CL = 50pF tRFM =( tr/tf ) x 100 t jr = t px(1) - tpx(0) fop = 1/tper Copyright © 2009–2017, Texas Instruments Incorporated Peripheral Information and Electrical Specifications Submit Documentation Feedback Product Folder Links: OMAP-L138 203 OMAP-L138 SPRS586J – JUNE 2009 – REVISED JANUARY 2017 www.ti.com 6.22 Ethernet Media Access Controller (EMAC) The Ethernet Media Access Controller (EMAC) provides an efficient interface between device and the network. The EMAC supports both 10Base-T and 100Base-TX, or 10 Mbits/second (Mbps) and 100 Mbps in either half- or full-duplex mode, with hardware flow control and quality of service (QOS) support. The EMAC controls the flow of packet data from the device to the PHY. The MDIO module controls PHY configuration and status monitoring. Both the EMAC and the MDIO modules interface to the device through a custom interface that allows efficient data transmission and reception. This custom interface is referred to as the EMAC control module, and is considered integral to the EMAC/MDIO peripheral. The control module is also used to multiplex and control interrupts. 6.22.1 EMAC Peripheral Register Description(s) Table 6-96. Ethernet Media Access Controller (EMAC) Registers BYTE ADDRESS 0x01E2 3000 TXREV 0x01E2 3004 TXCONTROL 0x01E2 3008 TXTEARDOWN REGISTER DESCRIPTION Transmit Revision Register Transmit Control Register Transmit Teardown Register 0x01E2 3010 RXREV 0x01E2 3014 RXCONTROL 0x01E2 3018 RXTEARDOWN Receive Teardown Register 0x01E2 3080 TXINTSTATRAW Transmit Interrupt Status (Unmasked) Register 0x01E2 3084 TXINTSTATMASKED 0x01E2 3088 TXINTMASKSET 0x01E2 308C TXINTMASKCLEAR Receive Revision Register Receive Control Register Transmit Interrupt Status (Masked) Register Transmit Interrupt Mask Set Register Transmit Interrupt Clear Register 0x01E2 3090 MACINVECTOR 0x01E2 3094 MACEOIVECTOR MAC End Of Interrupt Vector Register 0x01E2 30A0 RXINTSTATRAW Receive Interrupt Status (Unmasked) Register 0x01E2 30A4 RXINTSTATMASKED 0x01E2 30A8 RXINTMASKSET 0x01E2 30AC RXINTMASKCLEAR Receive Interrupt Mask Clear Register 0x01E2 30B0 MACINTSTATRAW MAC Interrupt Status (Unmasked) Register 0x01E2 30B4 MACINTSTATMASKED 0x01E2 30B8 MACINTMASKSET 0x01E2 30BC MACINTMASKCLEAR MAC Input Vector Register Receive Interrupt Status (Masked) Register Receive Interrupt Mask Set Register MAC Interrupt Status (Masked) Register MAC Interrupt Mask Set Register MAC Interrupt Mask Clear Register 0x01E2 3100 RXMBPENABLE Receive Multicast/Broadcast/Promiscuous Channel Enable Register 0x01E2 3104 RXUNICASTSET Receive Unicast Enable Set Register 0x01E2 3108 RXUNICASTCLEAR 0x01E2 310C RXMAXLEN 0x01E2 3110 RXBUFFEROFFSET 0x01E2 3114 204 ACRONYM Receive Unicast Clear Register Receive Maximum Length Register Receive Buffer Offset Register RXFILTERLOWTHRESH Receive Filter Low Priority Frame Threshold Register 0x01E2 3120 RX0FLOWTHRESH Receive Channel 0 Flow Control Threshold Register 0x01E2 3124 RX1FLOWTHRESH Receive Channel 1 Flow Control Threshold Register 0x01E2 3128 RX2FLOWTHRESH Receive Channel 2 Flow Control Threshold Register 0x01E2 312C RX3FLOWTHRESH Receive Channel 3 Flow Control Threshold Register 0x01E2 3130 RX4FLOWTHRESH Receive Channel 4 Flow Control Threshold Register 0x01E2 3134 RX5FLOWTHRESH Receive Channel 5 Flow Control Threshold Register 0x01E2 3138 RX6FLOWTHRESH Receive Channel 6 Flow Control Threshold Register 0x01E2 313C RX7FLOWTHRESH Receive Channel 7 Flow Control Threshold Register Peripheral Information and Electrical Specifications Submit Documentation Feedback Product Folder Links: OMAP-L138 Copyright © 2009–2017, Texas Instruments Incorporated OMAP-L138 www.ti.com SPRS586J – JUNE 2009 – REVISED JANUARY 2017 Table 6-96. Ethernet Media Access Controller (EMAC) Registers (continued) BYTE ADDRESS ACRONYM 0x01E2 3140 RX0FREEBUFFER Receive Channel 0 Free Buffer Count Register REGISTER DESCRIPTION 0x01E2 3144 RX1FREEBUFFER Receive Channel 1 Free Buffer Count Register 0x01E2 3148 RX2FREEBUFFER Receive Channel 2 Free Buffer Count Register 0x01E2 314C RX3FREEBUFFER Receive Channel 3 Free Buffer Count Register 0x01E2 3150 RX4FREEBUFFER Receive Channel 4 Free Buffer Count Register 0x01E2 3154 RX5FREEBUFFER Receive Channel 5 Free Buffer Count Register 0x01E2 3158 RX6FREEBUFFER Receive Channel 6 Free Buffer Count Register 0x01E2 315C RX7FREEBUFFER Receive Channel 7 Free Buffer Count Register 0x01E2 3160 MACCONTROL MAC Control Register 0x01E2 3164 MACSTATUS MAC Status Register 0x01E2 3168 EMCONTROL Emulation Control Register 0x01E2 316C FIFOCONTROL 0x01E2 3170 MACCONFIG MAC Configuration Register 0x01E2 3174 SOFTRESET Soft Reset Register 0x01E2 31D0 MACSRCADDRLO MAC Source Address Low Bytes Register 0x01E2 31D4 MACSRCADDRHI MAC Source Address High Bytes Register 0x01E2 31D8 MACHASH1 MAC Hash Address Register 1 0x01E2 31DC MACHASH2 MAC Hash Address Register 2 0x01E2 31E0 BOFFTEST Back Off Test Register 0x01E2 31E4 TPACETEST 0x01E2 31E8 RXPAUSE Receive Pause Timer Register Transmit Pause Timer Register FIFO Control Register Transmit Pacing Algorithm Test Register 0x01E2 31EC TXPAUSE 0x01E2 3200 - 0x01E2 32FC (see Table 6-97) 0x01E2 3500 MACADDRLO MAC Address Low Bytes Register, Used in Receive Address Matching 0x01E2 3504 MACADDRHI MAC Address High Bytes Register, Used in Receive Address Matching 0x01E2 3508 MACINDEX 0x01E2 3600 TX0HDP Transmit Channel 0 DMA Head Descriptor Pointer Register 0x01E2 3604 TX1HDP Transmit Channel 1 DMA Head Descriptor Pointer Register 0x01E2 3608 TX2HDP Transmit Channel 2 DMA Head Descriptor Pointer Register 0x01E2 360C TX3HDP Transmit Channel 3 DMA Head Descriptor Pointer Register 0x01E2 3610 TX4HDP Transmit Channel 4 DMA Head Descriptor Pointer Register 0x01E2 3614 TX5HDP Transmit Channel 5 DMA Head Descriptor Pointer Register 0x01E2 3618 TX6HDP Transmit Channel 6 DMA Head Descriptor Pointer Register 0x01E2 361C TX7HDP Transmit Channel 7 DMA Head Descriptor Pointer Register 0x01E2 3620 RX0HDP Receive Channel 0 DMA Head Descriptor Pointer Register 0x01E2 3624 RX1HDP Receive Channel 1 DMA Head Descriptor Pointer Register 0x01E2 3628 RX2HDP Receive Channel 2 DMA Head Descriptor Pointer Register 0x01E2 362C RX3HDP Receive Channel 3 DMA Head Descriptor Pointer Register 0x01E2 3630 RX4HDP Receive Channel 4 DMA Head Descriptor Pointer Register 0x01E2 3634 RX5HDP Receive Channel 5 DMA Head Descriptor Pointer Register 0x01E2 3638 RX6HDP Receive Channel 6 DMA Head Descriptor Pointer Register 0x01E2 363C RX7HDP Receive Channel 7 DMA Head Descriptor Pointer Register 0x01E2 3640 TX0CP Transmit Channel 0 Completion Pointer Register 0x01E2 3644 TX1CP Transmit Channel 1 Completion Pointer Register EMAC Statistics Registers MAC Index Register 0x01E2 3648 TX2CP Transmit Channel 2 Completion Pointer Register 0x01E2 364C TX3CP Transmit Channel 3 Completion Pointer Register 0x01E2 3650 TX4CP Transmit Channel 4 Completion Pointer Register Copyright © 2009–2017, Texas Instruments Incorporated Peripheral Information and Electrical Specifications Submit Documentation Feedback Product Folder Links: OMAP-L138 205 OMAP-L138 SPRS586J – JUNE 2009 – REVISED JANUARY 2017 www.ti.com Table 6-96. Ethernet Media Access Controller (EMAC) Registers (continued) BYTE ADDRESS ACRONYM 0x01E2 3654 TX5CP Transmit Channel 5 Completion Pointer Register REGISTER DESCRIPTION 0x01E2 3658 TX6CP Transmit Channel 6 Completion Pointer Register 0x01E2 365C TX7CP Transmit Channel 7 Completion Pointer Register 0x01E2 3660 RX0CP Receive Channel 0 Completion Pointer Register 0x01E2 3664 RX1CP Receive Channel 1 Completion Pointer Register 0x01E2 3668 RX2CP Receive Channel 2 Completion Pointer Register 0x01E2 366C RX3CP Receive Channel 3 Completion Pointer Register 0x01E2 3670 RX4CP Receive Channel 4 Completion Pointer Register 0x01E2 3674 RX5CP Receive Channel 5 Completion Pointer Register 0x01E2 3678 RX6CP Receive Channel 6 Completion Pointer Register 0x01E2 367C RX7CP Receive Channel 7 Completion Pointer Register Table 6-97. EMAC Statistics Registers 206 BYTE ADDRESS ACRONYM REGISTER DESCRIPTION 0x01E2 3200 RXGOODFRAMES Good Receive Frames Register 0x01E2 3204 RXBCASTFRAMES Broadcast Receive Frames Register (Total number of good broadcast frames received) 0x01E2 3208 RXMCASTFRAMES Multicast Receive Frames Register (Total number of good multicast frames received) 0x01E2 320C RXPAUSEFRAMES Pause Receive Frames Register 0x01E2 3210 RXCRCERRORS 0x01E2 3214 RXALIGNCODEERRORS 0x01E2 3218 RXOVERSIZED 0x01E2 321C RXJABBER 0x01E2 3220 RXUNDERSIZED Receive Undersized Frames Register (Total number of undersized frames received) 0x01E2 3224 RXFRAGMENTS Receive Frame Fragments Register 0x01E2 3228 RXFILTERED 0x01E2 322C RXQOSFILTERED 0x01E2 3230 RXOCTETS 0x01E2 3234 TXGOODFRAMES Good Transmit Frames Register (Total number of good frames transmitted) Receive CRC Errors Register (Total number of frames received with CRC errors) Receive Alignment/Code Errors Register (Total number of frames received with alignment/code errors) Receive Oversized Frames Register (Total number of oversized frames received) Receive Jabber Frames Register (Total number of jabber frames received) Filtered Receive Frames Register Received QOS Filtered Frames Register Receive Octet Frames Register (Total number of received bytes in good frames) 0x01E2 3238 TXBCASTFRAMES Broadcast Transmit Frames Register 0x01E2 323C TXMCASTFRAMES Multicast Transmit Frames Register 0x01E2 3240 TXPAUSEFRAMES Pause Transmit Frames Register 0x01E2 3244 TXDEFERRED Deferred Transmit Frames Register 0x01E2 3248 TXCOLLISION Transmit Collision Frames Register 0x01E2 324C TXSINGLECOLL 0x01E2 3250 TXMULTICOLL 0x01E2 3254 TXEXCESSIVECOLL 0x01E2 3258 TXLATECOLL Transmit Late Collision Frames Register 0x01E2 325C TXUNDERRUN Transmit Underrun Error Register 0x01E2 3260 TXCARRIERSENSE 0x01E2 3264 TXOCTETS 0x01E2 3268 FRAME64 Transmit Single Collision Frames Register Transmit Multiple Collision Frames Register Transmit Excessive Collision Frames Register Transmit Carrier Sense Errors Register Transmit Octet Frames Register Transmit and Receive 64 Octet Frames Register Peripheral Information and Electrical Specifications Submit Documentation Feedback Product Folder Links: OMAP-L138 Copyright © 2009–2017, Texas Instruments Incorporated OMAP-L138 www.ti.com SPRS586J – JUNE 2009 – REVISED JANUARY 2017 Table 6-97. EMAC Statistics Registers (continued) BYTE ADDRESS ACRONYM 0x01E2 326C FRAME65T127 Transmit and Receive 65 to 127 Octet Frames Register REGISTER DESCRIPTION 0x01E2 3270 FRAME128T255 Transmit and Receive 128 to 255 Octet Frames Register 0x01E2 3274 FRAME256T511 Transmit and Receive 256 to 511 Octet Frames Register 0x01E2 3278 FRAME512T1023 Transmit and Receive 512 to 1023 Octet Frames Register 0x01E2 327C FRAME1024TUP Transmit and Receive 1024 to 1518 Octet Frames Register 0x01E2 3280 NETOCTETS 0x01E2 3284 RXSOFOVERRUNS Receive FIFO or DMA Start of Frame Overruns Register 0x01E2 3288 RXMOFOVERRUNS Receive FIFO or DMA Middle of Frame Overruns Register 0x01E2 328C RXDMAOVERRUNS Receive DMA Start of Frame and Middle of Frame Overruns Register Network Octet Frames Register Table 6-98. EMAC Control Module Registers BYTE ADDRESS ACRONYM 0x01E2 2000 REV REGISTER DESCRIPTION 0x01E2 2004 SOFTRESET EMAC Control Module Software Reset Register 0x01E2 200C INTCONTROL EMAC Control Module Interrupt Control Register 0x01E2 2010 C0RXTHRESHEN 0x01E2 2014 C0RXEN EMAC Control Module Interrupt Core 0 Receive Interrupt Enable Register EMAC Control Module Interrupt Core 0 Transmit Interrupt Enable Register EMAC Control Module Revision Register EMAC Control Module Interrupt Core 0 Receive Threshold Interrupt Enable Register 0x01E2 2018 C0TXEN 0x01E2 201C C0MISCEN 0x01E2 2020 C1RXTHRESHEN 0x01E2 2024 C1RXEN EMAC Control Module Interrupt Core 1 Receive Interrupt Enable Register EMAC Control Module Interrupt Core 1 Transmit Interrupt Enable Register EMAC Control Module Interrupt Core 0 Miscellaneous Interrupt Enable Register EMAC Control Module Interrupt Core 1 Receive Threshold Interrupt Enable Register 0x01E2 2028 C1TXEN 0x01E2 202C C1MISCEN 0x01E2 2030 C2RXTHRESHEN 0x01E2 2034 C2RXEN EMAC Control Module Interrupt Core 2 Receive Interrupt Enable Register 0x01E2 2038 C2TXEN EMAC Control Module Interrupt Core 2 Transmit Interrupt Enable Register 0x01E2 203C C2MISCEN 0x01E2 2040 C0RXTHRESHSTAT 0x01E2 2044 C0RXSTAT EMAC Control Module Interrupt Core 0 Receive Interrupt Status Register 0x01E2 2048 C0TXSTAT EMAC Control Module Interrupt Core 0 Transmit Interrupt Status Register 0x01E2 204C C0MISCSTAT 0x01E2 2050 C1RXTHRESHSTAT 0x01E2 2054 C1RXSTAT EMAC Control Module Interrupt Core 1 Receive Interrupt Status Register 0x01E2 2058 C1TXSTAT EMAC Control Module Interrupt Core 1 Transmit Interrupt Status Register EMAC Control Module Interrupt Core 1 Miscellaneous Interrupt Enable Register EMAC Control Module Interrupt Core 2 Receive Threshold Interrupt Enable Register EMAC Control Module Interrupt Core 2 Miscellaneous Interrupt Enable Register EMAC Control Module Interrupt Core 0 Receive Threshold Interrupt Status Register EMAC Control Module Interrupt Core 0 Miscellaneous Interrupt Status Register EMAC Control Module Interrupt Core 1 Receive Threshold Interrupt Status Register 0x01E2 205C C1MISCSTAT 0x01E2 2060 C2RXTHRESHSTAT EMAC Control Module Interrupt Core 1 Miscellaneous Interrupt Status Register 0x01E2 2064 C2RXSTAT EMAC Control Module Interrupt Core 2 Receive Interrupt Status Register EMAC Control Module Interrupt Core 2 Transmit Interrupt Status Register EMAC Control Module Interrupt Core 2 Receive Threshold Interrupt Status Register 0x01E2 2068 C2TXSTAT 0x01E2 206C C2MISCSTAT 0x01E2 2070 C0RXIMAX EMAC Control Module Interrupt Core 0 Receive Interrupts Per Millisecond Register 0x01E2 2074 C0TXIMAX EMAC Control Module Interrupt Core 0 Transmit Interrupts Per Millisecond Register EMAC Control Module Interrupt Core 2 Miscellaneous Interrupt Status Register 0x01E2 2078 C1RXIMAX EMAC Control Module Interrupt Core 1 Receive Interrupts Per Millisecond Register 0x01E2 207C C1TXIMAX EMAC Control Module Interrupt Core 1 Transmit Interrupts Per Millisecond Register 0x01E2 2080 C2RXIMAX EMAC Control Module Interrupt Core 2 Receive Interrupts Per Millisecond Register 0x01E2 2084 C2TXIMAX EMAC Control Module Interrupt Core 2 Transmit Interrupts Per Millisecond Register Copyright © 2009–2017, Texas Instruments Incorporated Peripheral Information and Electrical Specifications Submit Documentation Feedback Product Folder Links: OMAP-L138 207 OMAP-L138 SPRS586J – JUNE 2009 – REVISED JANUARY 2017 www.ti.com Table 6-99. EMAC Control Module RAM BYTE ADDRESS DESCRIPTION 0x01E2 0000 - 0x01E2 1FFF 6.22.1.1 EMAC Local Buffer Descriptor Memory EMAC Electrical Data/Timing Table 6-100. Timing Requirements for MII_RXCLK (see Figure 6-47) 1.3V, 1.2V, 1.1V NO. 10 Mbps MIN MAX 1.0V 100 Mbps MIN MAX 10 Mbps MIN UNIT MAX 1 tc(MII_RXCLK) Cycle time, MII_RXCLK 400 40 400 ns 2 tw(MII_RXCLKH) Pulse duration, MII_RXCLK high 140 14 140 ns 3 tw(MII_RXCLKL) Pulse duration, MII_RXCLK low 140 14 140 ns 1 3 2 MII_RXCLK Figure 6-47. MII_RXCLK Timing (EMAC - Receive) Table 6-101. Timing Requirements for MII_TXCLK (see Figure 6-48) 1.3V, 1.2V, 1.1V NO. 10 Mbps MIN MAX 1.0V 100 Mbps MIN MAX 10 Mbps MIN UNIT MAX 1 tc(MII_TXCLK) Cycle time, MII_TXCLK 400 40 400 ns 2 tw(MII_TXCLKH) Pulse duration, MII_TXCLK high 140 14 140 ns 3 tw(MII_TXCLKL) Pulse duration, MII_TXCLK low 140 14 140 ns 1 3 2 MII_TXCLK Figure 6-48. MII_TXCLK Timing (EMAC - Transmit) 208 Peripheral Information and Electrical Specifications Submit Documentation Feedback Product Folder Links: OMAP-L138 Copyright © 2009–2017, Texas Instruments Incorporated OMAP-L138 www.ti.com SPRS586J – JUNE 2009 – REVISED JANUARY 2017 Table 6-102. Timing Requirements for EMAC MII Receive 10/100 Mbit/s (1) (see Figure 6-49) 1.3V, 1.2V, 1.1V, 1.0V NO. MIN UNIT MAX 1 tsu(MRXD-MII_RXCLKH) Setup time, receive selected signals valid before MII_RXCLK high 8 ns 2 th(MII_RXCLKH-MRXD) Hold time, receive selected signals valid after MII_RXCLK high 8 ns (1) Receive selected signals include: MII_RXD[3]-MII_RXD[0], MII_RXDV, and MII_RXER. 1 2 MII_RXCLK (Input) MII_RXD[3]-MII_RXD[0], MII_RXDV, MII_RXER (Inputs) Figure 6-49. EMAC Receive Interface Timing Table 6-103. Switching Characteristics Over Recommended Operating Conditions for EMAC MII Transmit 10/100 Mbit/s (1) (see Figure 6-50) NO. 1 1.3V, 1.2V, 1.1V PARAMETER td(MII_TXCLKH- Delay time, MII_TXCLK high to transmit selected signals valid 1.0V UNIT MIN MAX MIN MAX 2 25 2 32 ns MTXD) (1) Transmit selected signals include: MTXD3-MTXD0, and MII_TXEN. 1 MII_TCLK (Input) MII_TXD[3]-MII_TXD[0], MII_TXEN (Outputs) Figure 6-50. EMAC Transmit Interface Timing Copyright © 2009–2017, Texas Instruments Incorporated Peripheral Information and Electrical Specifications Submit Documentation Feedback Product Folder Links: OMAP-L138 209 OMAP-L138 SPRS586J – JUNE 2009 – REVISED JANUARY 2017 www.ti.com Table 6-104. Timing Requirements for EMAC RMII 1.3V, 1.2V, 1.1V (1) NO. MIN TYP MAX UNIT 1 tc(REFCLK) Cycle Time, RMII_MHZ_50_CLK 2 tw(REFCLKH) Pulse Width, RMII_MHZ_50_CLK High 7 13 ns 3 tw(REFCLKL) Pulse Width, RMII_MHZ_50_CLK Low 7 13 ns 6 tsu(RXD-REFCLK) Input Setup Time, RXD Valid before RMII_MHZ_50_CLK High 4 ns 7 th(REFCLK-RXD) Input Hold Time, RXD Valid after RMII_MHZ_50_CLK High 2 ns 8 tsu(CRSDV-REFCLK) Input Setup Time, CRSDV Valid before RMII_MHZ_50_CLK High 4 ns 9 th(REFCLK-CRSDV) Input Hold Time, CRSDV Valid after RMII_MHZ_50_CLK High 2 ns 10 tsu(RXER-REFCLK) Input Setup Time, RXER Valid before RMII_MHZ_50_CLK High 4 ns 11 th(REFCLKR-RXER) Input Hold Time, RXER Valid after RMII_MHZ_50_CLK High 2 ns (1) 20 ns RMII is not supported at operating points below 1.1V nominal Note: Per the RMII industry specification, the RMII reference clock (RMII_MHZ_50_CLK) must have jitter tolerance of 50 ppm or less. Table 6-105. Switching Characteristics Over Recommended Operating Conditions for EMAC RMII NO. 4 5 (1) 1.3V, 1.2V, 1.1V (1) PARAMETER MIN TYP MAX UNIT td(REFCLK-TXD) Output Delay Time, RMII_MHZ_50_CLK High to TXD Valid 2.5 13 ns td(REFCLK-TXEN) Output Delay Time, RMII_MHZ_50_CLK High to TXEN Valid 2.5 13 ns RMII is not supported at operating points below 1.1V nominal. 1 2 3 RMII_MHz_50_CLK 5 5 RMII_TXEN 4 RMII_TXD[1:0] 6 7 RMII_RXD[1:0] 8 9 RMII_CRS_DV 10 11 RMII_RXER Figure 6-51. RMII Timing Diagram 210 Peripheral Information and Electrical Specifications Submit Documentation Feedback Product Folder Links: OMAP-L138 Copyright © 2009–2017, Texas Instruments Incorporated OMAP-L138 www.ti.com SPRS586J – JUNE 2009 – REVISED JANUARY 2017 6.23 Management Data Input/Output (MDIO) The Management Data Input/Output (MDIO) module continuously polls all 32 MDIO addresses in order to enumerate all PHY devices in the system. The Management Data Input/Output (MDIO) module implements the 802.3 serial management interface to interrogate and control Ethernet PHY(s) using a shared two-wire bus. Host software uses the MDIO module to configure the auto-negotiation parameters of each PHY attached to the EMAC, retrieve the negotiation results, and configure required parameters in the EMAC module for correct operation. The module is designed to allow almost transparent operation of the MDIO interface, with very little maintenance from the core processor. Only one PHY may be connected at any given time. 6.23.1 MDIO Register Description(s) Table 6-106. MDIO Register Memory Map BYTE ADDRESS ACRONYM 0x01E2 4000 REV REGISTER NAME 0x01E2 4004 CONTROL 0x01E2 4008 ALIVE MDIO PHY Alive Status Register 0x01E2 400C LINK MDIO PHY Link Status Register 0x01E2 4010 LINKINTRAW 0x01E2 4014 LINKINTMASKED 0x01E2 4018 – 0x01E2 4020 USERINTRAW Revision Identification Register MDIO Control Register MDIO Link Status Change Interrupt (Unmasked) Register MDIO Link Status Change Interrupt (Masked) Register Reserved MDIO User Command Complete Interrupt (Unmasked) Register 0x01E2 4024 USERINTMASKED MDIO User Command Complete Interrupt (Masked) Register 0x01E2 4028 USERINTMASKSET MDIO User Command Complete Interrupt Mask Set Register 0x01E2 402C USERINTMASKCLEAR MDIO User Command Complete Interrupt Mask Clear Register 0x01E2 4030 - 0x01E2 407C – 0x01E2 4080 USERACCESS0 MDIO User Access Register 0 0x01E2 4084 USERPHYSEL0 MDIO User PHY Select Register 0 0x01E2 4088 USERACCESS1 MDIO User Access Register 1 0x01E2 408C USERPHYSEL1 MDIO User PHY Select Register 1 0x01E2 4090 - 0x01E2 47FF – Copyright © 2009–2017, Texas Instruments Incorporated Reserved Reserved Peripheral Information and Electrical Specifications Submit Documentation Feedback Product Folder Links: OMAP-L138 211 OMAP-L138 SPRS586J – JUNE 2009 – REVISED JANUARY 2017 www.ti.com 6.23.2 Management Data Input/Output (MDIO) Electrical Data/Timing Table 6-107. Timing Requirements for MDIO Input (see Figure 6-52 and Figure 6-53) 1.3V, 1.2V, 1.1V NO. MIN MAX 1.0V MIN MAX UNIT 1 tc(MDCLK) Cycle time, MDCLK 400 400 ns 2 tw(MDCLK) Pulse duration, MDCLK high/low 180 180 ns 3 tt(MDCLK) Transition time, MDCLK 4 tsu(MDIO-MDCLKH) Setup time, MDIO data input valid before MDCLK high 16 21 ns 5 th(MDCLKH-MDIO) Hold time, MDIO data input valid after MDCLK high 0 0 ns 5 5 ns 1 3 3 MDCLK 4 5 MDIO (input) Figure 6-52. MDIO Input Timing Table 6-108. Switching Characteristics Over Recommended Operating Conditions for MDIO Output (see Figure 6-53) NO. 7 1.3V, 1.2V, 1.1V, 1.0V PARAMETER td(MDCLKL-MDIO) Delay time, MDCLK low to MDIO data output valid MIN MAX 0 100 UNIT ns 1 MDCLK 7 MDIO (output) Figure 6-53. MDIO Output Timing 212 Peripheral Information and Electrical Specifications Submit Documentation Feedback Product Folder Links: OMAP-L138 Copyright © 2009–2017, Texas Instruments Incorporated OMAP-L138 www.ti.com SPRS586J – JUNE 2009 – REVISED JANUARY 2017 6.24 LCD Controller (LCDC) The LCD controller consists of two independent controllers, the Raster Controller and the LCD Interface Display Driver (LIDD) controller. Each controller operates independently from the other and only one of them is active at any given time. • The Raster Controller handles the synchronous LCD interface. It provides timing and data for constant graphics refresh to a passive display. It supports a wide variety of monochrome and full-color display types and sizes by use of programmable timing controls, a built-in palette, and a gray-scale/serializer. Graphics data is processed and stored in frame buffers. A frame buffer is a contiguous memory block in the system. A built-in DMA engine supplies the graphics data to the Raster engine which, in turn, outputs to the external LCD device. • The LIDD Controller supports the asynchronous LCD interface. It provides full-timing programmability of control signals (CS, WE, OE, ALE) and output data. The maximum resolution for the LCD controller is 1024 x 1024 pixels. The maximum frame rate is determined by the image size in combination with the pixel clock rate. For details, see SPRAB93. Table 6-109 lists the LCD Controller registers. Table 6-109. LCD Controller Registers BYTE ADDRESS ACRONYM 0x01E1 3000 REVID 0x01E1 3004 LCD_CTRL LCD Control Register 0x01E1 3008 LCD_STAT LCD Status Register 0x01E1 300C LIDD_CTRL LCD LIDD Control Register 0x01E1 3010 LIDD_CS0_CONF LCD LIDD CS0 Configuration Register 0x01E1 3014 LIDD_CS0_ADDR LCD LIDD CS0 Address Read/Write Register 0x01E1 3018 LIDD_CS0_DATA LCD LIDD CS0 Data Read/Write Register 0x01E1 301C LIDD_CS1_CONF LCD LIDD CS1 Configuration Register 0x01E1 3020 LIDD_CS1_ADDR LCD LIDD CS1 Address Read/Write Register 0x01E1 3024 LIDD_CS1_DATA LCD LIDD CS1 Data Read/Write Register 0x01E1 3028 RASTER_CTRL 0x01E1 302C RASTER_TIMING_0 LCD Raster Timing 0 Register 0x01E1 3030 RASTER_TIMING_1 LCD Raster Timing 1 Register 0x01E1 3034 RASTER_TIMING_2 LCD Raster Timing 2 Register 0x01E1 3038 RASTER_SUBPANEL 0x01E1 3040 LCDDMA_CTRL 0x01E1 3044 LCDDMA_FB0_BASE 0x01E1 3048 LCDDMA_FB0_CEILING 0x01E1 304C LCDDMA_FB1_BASE 0x01E1 3050 LCDDMA_FB1_CEILING Copyright © 2009–2017, Texas Instruments Incorporated REGISTER DESCRIPTION LCD Revision Identification Register LCD Raster Control Register LCD Raster Subpanel Display Register LCD DMA Control Register LCD DMA Frame Buffer 0 Base Address Register LCD DMA Frame Buffer 0 Ceiling Address Register LCD DMA Frame Buffer 1 Base Address Register LCD DMA Frame Buffer 1 Ceiling Address Register Peripheral Information and Electrical Specifications Submit Documentation Feedback Product Folder Links: OMAP-L138 213 OMAP-L138 SPRS586J – JUNE 2009 – REVISED JANUARY 2017 www.ti.com 6.24.1 LCD Interface Display Driver (LIDD Mode) Table 6-110. Timing Requirements for LCD LIDD Mode 1.3V, 1.2V, 1.1V NO. MIN MAX 1.0V MIN UNIT MAX 16 tsu(LCD_D) Setup time, LCD_D[15:0] valid before LCD_MCLK high 7 8 ns 17 th(LCD_D) Hold time, LCD_D[15:0] valid after LCD_MCLK high 0 0 ns Table 6-111. Switching Characteristics Over Recommended Operating Conditions for LCD LIDD Mode NO. 1.3V, 1.2V, 1.1V PARAMETER 1.0V UNIT MIN MAX MIN MAX 4 td(LCD_D_V) Delay time, LCD_MCLK high to LCD_D[15:0] valid (write) 0 7 0 9 ns 5 td(LCD_D_I) Delay time, LCD_MCLK high to LCD_D[15:0] invalid (write) 0 7 0 9 ns 6 td(LCD_E_A) Delay time, LCD_MCLK high to LCD_AC_ENB_CS low 0 7 0 9 ns 7 td(LCD_E_I) Delay time, LCD_MCLK high to LCD_AC_ENB_CS high 0 7 0 9 ns 8 td(LCD_A_A) Delay time, LCD_MCLK high to LCD_VSYNC low 0 7 0 9 ns 9 td(LCD_A_I) Delay time, LCD_MCLK high to LCD_VSYNC high 0 7 0 9 ns 10 td(LCD_W_A) Delay time, LCD_MCLK high to LCD_HSYNC low 0 7 0 9 ns 11 td(LCD_W_I) Delay time, LCD_MCLK high to LCD_HSYNC high 0 7 0 9 ns 12 td(LCD_STRB_A) Delay time, LCD_MCLK high to LCD_PCLK active 0 7 0 9 ns 13 td(LCD_STRB_I) Delay time, LCD_MCLK high to LCD_PCLK inactive 0 7 0 9 ns 14 td(LCD_D_Z) Delay time, LCD_MCLK high to LCD_D[15:0] in 3-state 0 7 0 9 ns 15 td(Z_LCD_D) Delay time, LCD_MCLK high to LCD_D[15:0] (valid from 3-state) 0 7 0 9 ns CS_DELA Y 1 W_SU (0 to 31) 2 3 W_STROBE (1 to 63) R_SU (0 to 31) R_HOLD (1 to 15) R_STROBE (1 to 63) W_HOLD (1 to 15) CS_DELA Y LCD_MCLK 4 5 14 17 16 LCD_D[15:0] 15 Data[7:0] Write Data Read Status LCD_PCLK Not Used 8 9 LCD_VSYNC RS 10 11 LCD_HSYNC R/W 12 12 13 13 E0 E1 LCD_AC_ENB_CS Figure 6-54. Character Display HD44780 Write 214 Peripheral Information and Electrical Specifications Submit Documentation Feedback Product Folder Links: OMAP-L138 Copyright © 2009–2017, Texas Instruments Incorporated OMAP-L138 www.ti.com SPRS586J – JUNE 2009 – REVISED JANUARY 2017 W_HOLD (1–15) R_SU (0–31) 1 2 R_STROBE R_HOLD (1–63) (1–5) CS_DELAY W_SU W_STROBE (0–31) CS_DELAY (1–63) Not Used 3 LCD_MCLK 14 16 17 15 4 LCD_D[7:0] 5 Data[7:0] Write Instruction Read Data LCD_PCLK Not Used 8 9 RS LCD_VSYNC 10 11 LCD_HSYNC R/W 12 13 12 13 LCD_AC_ENB_CS E0 E1 Figure 6-55. Character Display HD44780 Read Copyright © 2009–2017, Texas Instruments Incorporated Peripheral Information and Electrical Specifications Submit Documentation Feedback Product Folder Links: OMAP-L138 215 OMAP-L138 SPRS586J – JUNE 2009 – REVISED JANUARY 2017 www.ti.com W_HOLD (1−15) W_HOLD (1−15) 1 2 W_SU W_STROBE (0−31) (1−63) CS_DELAY W_SU W_STROBE (0−31) (1−63) CS_DELAY 3 Clock LCD_MCLK 4 LCD_D[15:0] LCD_AC_ENB_CS (async mode) 5 5 4 Write Address Write Data 7 6 Data[15:0] 6 7 CS0 CS1 9 8 A0 LCD_VSYNC 10 11 11 10 R/W LCD_HSYNC 12 13 12 13 E LCD_PCLK Figure 6-56. Micro-Interface Graphic Display 6800 Write 216 Peripheral Information and Electrical Specifications Submit Documentation Feedback Product Folder Links: OMAP-L138 Copyright © 2009–2017, Texas Instruments Incorporated OMAP-L138 www.ti.com SPRS586J – JUNE 2009 – REVISED JANUARY 2017 W_HOLD (1−15) 1 2 W_SU W_STROBE (0−31) (1−63) R_SU (0−31) CS_DELAY R_STROBE R_HOLD (1−63 CS_DELAY (1−15) 3 Clock LCD_MCLK 4 LCD_D[15:0] 5 14 16 17 15 Write Address Data[15:0] 6 7 Read Data 6 7 LCD_AC_ENB_CS (async mode) CS0 CS1 9 8 LCD_VSYNC A0 11 10 LCD_HSYNC R/W 12 13 12 13 LCD_PCLK E Figure 6-57. Micro-Interface Graphic Display 6800 Read Copyright © 2009–2017, Texas Instruments Incorporated Peripheral Information and Electrical Specifications Submit Documentation Feedback Product Folder Links: OMAP-L138 217 OMAP-L138 SPRS586J – JUNE 2009 – REVISED JANUARY 2017 www.ti.com R_SU (0−31) R_SU (0−31) R_STROBE R_HOLD CS_DELAY R_STROBE R_HOLD CS_DELAY 1 2 (1−63) 3 (1−15) (1−63) (1−15) Clock LCD_MCLK 14 16 17 15 14 17 16 15 LCD_D[15:0] Data[15:0] Read Data 6 LCD_AC_ENB_CS (async mode) 7 Read Status 6 7 CS0 CS1 8 9 LCD_VSYNC A0 R/W LCD_HSYNC 12 13 12 13 E LCD_PCLK Figure 6-58. Micro-Interface Graphic Display 6800 Status 218 Peripheral Information and Electrical Specifications Submit Documentation Feedback Product Folder Links: OMAP-L138 Copyright © 2009–2017, Texas Instruments Incorporated OMAP-L138 www.ti.com SPRS586J – JUNE 2009 – REVISED JANUARY 2017 W_HOLD (1−15) W_HOLD (1−15) 1 2 W_SU W_STROBE (0−31) 3 (1−63) CS_DELAY W_SU W_STROBE (0−31) (1−63) CS_DELAY Clock LCD_MCLK 4 LCD_D[15:0] LCD_AC_ENB_CS (async mode) 5 4 Write Address 5 DATA[15:0] Write Data 7 6 6 7 CS0 CS1 8 9 LCD_VSYNC A0 10 11 10 11 LCD_HSYNC WR RD LCD_PCLK Figure 6-59. Micro-Interface Graphic Display 8080 Write Copyright © 2009–2017, Texas Instruments Incorporated Peripheral Information and Electrical Specifications Submit Documentation Feedback Product Folder Links: OMAP-L138 219 OMAP-L138 SPRS586J – JUNE 2009 – REVISED JANUARY 2017 www.ti.com W_HOLD (1−15) W_SU W_STROBE R_SU (0−31) CS_DELAY R_STROBE R_HOLD CS_DELAY 1 2 3 (0−31) (1−63) (1−63) (1−15) 16 17 Clock LCD_MCLK 4 LCD_D[15:0] 5 14 15 Data[15:0] Write Address 6 7 LCD_AC_ENB_CS (async mode) 6 Read Data 7 CS0 CS1 9 8 LCD_VSYNC A0 10 11 WR LCD_HSYNC 12 13 RD LCD_PCLK Figure 6-60. Micro-Interface Graphic Display 8080 Read 220 Peripheral Information and Electrical Specifications Submit Documentation Feedback Product Folder Links: OMAP-L138 Copyright © 2009–2017, Texas Instruments Incorporated OMAP-L138 www.ti.com SPRS586J – JUNE 2009 – REVISED JANUARY 2017 R_SU (0−31) R_SU (0−31) R_STROBE 1 2 (1−63) R_HOLD CS_DELAY R_STROBE R_HOLD (1−15) (1−63) CS_DELAY (1−15) 3 Clock LCD_MCLK 14 16 17 15 14 16 17 15 Data[15:0] LCD_D[15:0] Read Data Read Status 7 6 6 7 LCD_AC_ENB_CS CS0 CS1 8 9 A0 LCD_VSYNC WR LCD_HSYNC 12 13 12 13 RD LCD_PCLK Figure 6-61. Micro-Interface Graphic Display 8080 Status Copyright © 2009–2017, Texas Instruments Incorporated Peripheral Information and Electrical Specifications Submit Documentation Feedback Product Folder Links: OMAP-L138 221 OMAP-L138 SPRS586J – JUNE 2009 – REVISED JANUARY 2017 www.ti.com 6.24.2 LCD Raster Mode Table 6-112. Switching Characteristics Over Recommended Operating Conditions for LCD Raster Mode See Figure 6-62 through Figure 6-66 NO. PARAMETER 1 tc(PIXEL_CLK) Cycle time, pixel clock 2 tw(PIXEL_CLK_H) 3 tw(PIXEL_CLK_L) 4 1.3V, 1.2V, 1.1V MIN MAX 1.0V MIN MAX UNIT 26.66 33.33 ns Pulse duration, pixel clock high 10 10 ns Pulse duration, pixel clock low 10 10 td(LCD_D_V) Delay time, LCD_PCLK high to LCD_D[15:0] valid (write) 0 7 0 9 ns 5 td(LCD_D_IV) Delay time, LCD_PCLK high to LCD_D[15:0] invalid (write) 0 7 0 9 ns 6 td(LCD_AC_ENB_CS_A) Delay time, LCD_PCLK low to LCD_AC_ENB_CS high 0 7 0 9 ns 7 td(LCD_AC_ENB_CS_I) Delay time, LCD_PCLK low to LCD_AC_ENB_CS low 0 7 0 9 ns 8 td(LCD_VSYNC_A) Delay time, LCD_PCLK low to LCD_VSYNC high 0 7 0 9 ns 9 td(LCD_VSYNC_I) Delay time, LCD_PCLK low to LCD_VSYNC low 0 7 0 9 ns 10 td(LCD_HSYNC_A) Delay time, LCD_PCLK high to LCD_HSYNC high 0 7 0 9 ns 11 td(LCD_HSYNC_I) Delay time, LCD_PCLK high to LCD_HSYNC low 0 7 0 9 ns ns Frame-to-frame timing is derived through the following parameters in the LCD (RASTER_TIMING_1) register: • Vertical front porch (VFP) • Vertical sync pulse width (VSW) • Vertical back porch (VBP) • Lines per panel (LPP) Line-to-line timing is derived through the following parameters in the LCD (RASTER_TIMING_0) register: • Horizontal front porch (HFP) • Horizontal sync pulse width (HSW) • Horizontal back porch (HBP) • Pixels per panel (PPL) LCD_AC_ENB_CS timing is derived through the following parameter in the LCD (RASTER_TIMING_2) register: • AC bias frequency (ACB) The display format produced in raster mode is shown in Figure 6-62. An entire frame is delivered one line at a time. The first line delivered starts at data pixel (1, 1) and ends at data pixel (P, 1). The last line delivered starts at data pixel (1, L) and ends at data pixel (P, L). The beginning of each new frame is denoted by the activation of I/O signal LCD_VSYNC. The beginning of each new line is denoted by the activation of I/O signal LCD_HSYNC. 222 Peripheral Information and Electrical Specifications Submit Documentation Feedback Product Folder Links: OMAP-L138 Copyright © 2009–2017, Texas Instruments Incorporated OMAP-L138 www.ti.com SPRS586J – JUNE 2009 – REVISED JANUARY 2017 Data Pixels (From 1 to P) 1, 1 2, 1 1, 2 2, 2 P−2, 1 3, 1 P−1, 1 P, 1 P−1, 2 P, 2 P, 3 Data Lines (From 1 to L) 1, 3 LCD P, L−2 1, L−2 1, L−1 2, L−1 1, L 2, L P−1, L−1 P−2, L 3, L P−1, L P, L−1 P, L Figure 6-62. LCD Raster-Mode Display Format Copyright © 2009–2017, Texas Instruments Incorporated Peripheral Information and Electrical Specifications Submit Documentation Feedback Product Folder Links: OMAP-L138 223 OMAP-L138 SPRS586J – JUNE 2009 – REVISED JANUARY 2017 www.ti.com Frame Time ~ 70 Hz Active TFT VBP (0 to 255) VSW (1 to 64) Line Time LPP VFP (1 to 1024) (0 to 255) VSW (1 to 64) Hsync LCD_HSYNC LCD_VSYNC Vsync Data LCD_D[15:0] 1, 1 P, 1 1, L-1 P, L-1 1, 2 P, 2 1, L P, L LCD_AC_ENB_CS 10 11 Hsync LCD_HSYNC CLK LCD_PCLK Data LCD_D[15:0] 1, 1 2, 1 1, 2 P, 1 2, 2 P, 2 Enable LCD_AC_ENB_CS PLL HFP HSW HBP PLL 16 × (1 to 1024) (1 to 256) (1 to 64) (1 to 256) 16 × (1 to 1024) Line 1 Line 2 Figure 6-63. LCD Raster-Mode Active 224 Peripheral Information and Electrical Specifications Submit Documentation Feedback Product Folder Links: OMAP-L138 Copyright © 2009–2017, Texas Instruments Incorporated OMAP-L138 www.ti.com SPRS586J – JUNE 2009 – REVISED JANUARY 2017 Figure 6-64. LCD Raster-Mode Passive Copyright © 2009–2017, Texas Instruments Incorporated Peripheral Information and Electrical Specifications Submit Documentation Feedback Product Folder Links: OMAP-L138 225 OMAP-L138 SPRS586J – JUNE 2009 – REVISED JANUARY 2017 www.ti.com 6 LCD_AC_ENB_CS 8 LCD_VSYNC 10 11 LCD_HSYNC 1 2 3 LCD_PCLK (passive mode) 5 4 LCD_D[7:0] (passive mode) 1, L 2, L P, L 1, 1 2, 1 P, 1 1 2 3 LCD_PCLK (active mode) 4 LCD_D[15:0] (active mode) VBP = 0 VFP = 0 VSW = 1 1, L 2, L PPL 16 × (1 to 1024) 5 P, L HFP (1 to 256 HSW (1 to 64) Line L HBP (1 to 256) PPL 16 ×(1 to 1024) Line 1 (Passive Only) Figure 6-65. LCD Raster-Mode Control Signal Activation 226 Peripheral Information and Electrical Specifications Submit Documentation Feedback Product Folder Links: OMAP-L138 Copyright © 2009–2017, Texas Instruments Incorporated OMAP-L138 www.ti.com SPRS586J – JUNE 2009 – REVISED JANUARY 2017 7 LCD_AC_ENB_CS 9 LCD_VSYNC 10 11 LCD_HSYNC 1 3 4 LCD_PCLK (passive mode) 5 4 LCD_D[7:0] (passive mode) 1, 1 2, 1 P, 1 1, 2 2, 2 P, 2 1 2 3 LCD_PCLK (active mode) 4 LCD_D[15:0] (active mode) VBP = 0 VFP = 0 VSW = 1 5 1, 1 PPL 16 × (1 to 1024) HFP (1 to 256 HSW (1 to 64) HBP (1 to 256) Line 1 for passive 2, 1 P, 1 PPL 16 ×(1 to 1024) Line 1 for active Line 2 for passive Figure 6-66. LCD Raster-Mode Control Signal Deactivation Copyright © 2009–2017, Texas Instruments Incorporated Peripheral Information and Electrical Specifications Submit Documentation Feedback Product Folder Links: OMAP-L138 227 OMAP-L138 SPRS586J – JUNE 2009 – REVISED JANUARY 2017 www.ti.com 6.25 Host-Port Interface (UHPI) 6.25.1 HPI Device-Specific Information The device includes a user-configurable 16-bit Host-port interface (HPI16). The host port interface (UHPI) provides a parallel port interface through which an external host processor can directly access the processor's resources (configuration and program/data memories). The external host device is asynchronous to the CPU clock and functions as a master to the HPI interface. The UHPI enables a host device and the processor to exchange information via internal or external memory. Dedicated address (HPIA) and data (HPID) registers within the UHPI provide the data path between the external host interface and the processor resources. A UHPI control register (HPIC) is available to the host and the CPU for various configuration and interrupt functions. 6.25.2 HPI Peripheral Register Description(s) Table 6-113. HPI Control Registers BYTE ADDRESS ACRONYM 0x01E1 0000 PID 0x01E1 0004 PWREMU_MGMT REGISTER DESCRIPTION HPI power and emulation management register 0x01E1 0008 - 0x01E1 000C GPIO_EN 0x01E1 0010 GPIO_DIR1 General Purpose IO Direction Register 1 0x01E1 0014 GPIO_DAT1 General Purpose IO Data Register 1 0x01E1 0018 GPIO_DIR2 General Purpose IO Direction Register 2 0x01E1 001C GPIO_DAT2 General Purpose IO Data Register 2 0x01E1 0020 GPIO_DIR3 General Purpose IO Direction Register 3 0x01E1 0024 GPIO_DAT3 General Purpose IO Data Register 3 01E1 0028 - Reserved 01E1 002C - Reserved 01E1 0030 HPIC 01E1 0034 HPIA (HPIAW) (1) HPI address register (Write) 01E1 0038 HPIA (HPIAR) (1) HPI address register (Read) 01E1 000C - 01E1 07FF - (1) 228 COMMENTS Peripheral Identification Register The CPU has read/write access to the PWREMU_MGMT register. Reserved General Purpose IO Enable Register HPI control register The Host and the CPU both have read/write access to the HPIC register. The Host has read/write access to the HPIA registers. The CPU has only read access to the HPIA registers. Reserved There are two 32-bit HPIA registers: HPIAR for read operations and HPIAW for write operations. The HPI can be configured such that HPIAR and HPIAW act as a single 32-bit HPIA (single-HPIA mode) or as two separate 32-bit HPIAs (dual-HPIA mode) from the perspective of the Host. The CPU can access HPIAW and HPIAR independently. Peripheral Information and Electrical Specifications Submit Documentation Feedback Product Folder Links: OMAP-L138 Copyright © 2009–2017, Texas Instruments Incorporated OMAP-L138 www.ti.com SPRS586J – JUNE 2009 – REVISED JANUARY 2017 6.25.3 HPI Electrical Data/Timing Table 6-114. Timing Requirements for Host-Port Interface [1.2V, 1.1V] (1) (2) 1.3V, 1.2V, 1.1V, 1.0V NO. MIN UNIT MAX 1 tsu(SELV-HSTBL) Setup time, select signals (3) valid before UHPI_HSTROBE low 5 ns 2 th(HSTBL-SELV) Hold time, select signals (3) valid after UHPI_HSTROBE low 2 ns 3 tw(HSTBL) Pulse duration, UHPI_HSTROBE active low 15 ns 4 tw(HSTBH) Pulse duration, UHPI_HSTROBE inactive high between consecutive accesses 2M ns 9 tsu(SELV-HASL) Setup time, selects signals valid before UHPI_HAS low 5 ns 10 th(HASL-SELV) Hold time, select signals valid after UHPI_HAS low 2 ns 11 tsu(HDV-HSTBH) Setup time, host data valid before UHPI_HSTROBE high 5 ns 12 th(HSTBH-HDV) Hold time, host data valid after UHPI_HSTROBE high 2 ns 13 th(HRDYL-HSTBH) Hold time, UHPI_HSTROBE high after UHPI_HRDY low. UHPI_HSTROBE should not be inactivated until UHPI_HRDY is active (low); otherwise, HPI writes will not complete properly. 2 ns 16 tsu(HASL-HSTBL) Setup time, UHPI_HAS low before UHPI_HSTROBE low 5 ns th(HSTBL-HASH) Hold time, UHPI_HAS low after UHPI_HSTROBE low 2 ns 17 (1) (2) (3) UHPI_HSTROBE refers to the following logical operation on UHPI_HCS, UHPI_HDS1, and UHPI_HDS2: [NOT(UHPI_HDS1 XOR UHPI_HDS2)] OR UHPI_HCS. M=SYSCLK2 period in ns. Select signals include: HCNTL[1:0], HR/W and HHWIL. Copyright © 2009–2017, Texas Instruments Incorporated Peripheral Information and Electrical Specifications Submit Documentation Feedback Product Folder Links: OMAP-L138 229 OMAP-L138 SPRS586J – JUNE 2009 – REVISED JANUARY 2017 www.ti.com Table 6-115. Switching Characteristics Over Recommended Operating Conditions for Host-Port Interface [1.3V, 1.2V, 1.1V] (1) (2) (3) NO. 1.3V, 1.2V PARAMETER MIN MAX 1.1V MIN MAX UNIT For HPI Write, HRDY can go high (not ready) for these HPI Write conditions; otherwise, HRDY stays low (ready): Case 1: Back-to-back HPIA writes (can be either first or second half-word) Case 2: HPIA write following a PREFETCH command (can be either first or second half-word) Case 3: HPID write when FIFO is full or flushing (can be either first or second half-word) Case 4: HPIA write and Write FIFO not empty For HPI Read, HRDY can go high (not ready) for these HPI Read conditions: Case 1: HPID read (with autoincrement) and data not in Read FIFO (can only happen to first half-word of HPID access) Case 2: First half-word access of HPID Read without auto-increment For HPI Read, HRDY stays low (ready) for these HPI Read conditions: Case 1: HPID read with auto-increment and data is already in Read FIFO (applies to either half-word of HPID access) Case 2: HPID read without autoincrement and data is already in Read FIFO (always applies to second halfword of HPID access) Case 3: HPIC or HPIA read (applies to either half-word access) 5 td(HSTBL-HRDYV) Delay time, HSTROBE low to HRDY valid 5a td(HASL-HRDYV) Delay time, HAS low to HRDY valid 6 ten(HSTBL-HDLZ) Enable time, HD driven from HSTROBE low 7 td(HRDYL-HDV) Delay time, HRDY low to HD valid 8 toh(HSTBH-HDV) Output hold time, HD valid after HSTROBE high 14 tdis(HSTBH-HDHZ) Disable time, HD high-impedance from HSTROBE high 15 18 (1) (2) (3) 230 td(HSTBL-HDV) td(HSTBH-HRDYV) 15 15 1.5 17 ns 17 ns 1.5 0 1.5 ns 0 1.5 ns ns 15 17 ns Delay time, HSTROBE low to HD valid For HPI Read. Applies to conditions where data is already residing in HPID/FIFO: Case 1: HPIC or HPIA read Case 2: First half-word of HPID read with auto-increment and data is already in Read FIFO Case 3: Second half-word of HPID read with or without auto-increment 15 17 ns Delay time, HSTROBE high to HRDY valid For HPI Write, HRDY can go high (not ready) for these HPI Write conditions; otherwise, HRDY stays low (ready): Case 1: HPID write when Write FIFO is full (can happen to either half-word) Case 2: HPIA write (can happen to either half-word) Case 3: HPID write without autoincrement (only happens to second half-word) 15 17 ns M=SYSCLK2 period in ns. HSTROBE refers to the following logical operation on HCS, HDS1, and HDS2: [NOT(HDS1 XOR HDS2)] OR HCS. By design, whenever HCS is driven inactive (high), HPI will drive HRDY active (low). Peripheral Information and Electrical Specifications Submit Documentation Feedback Product Folder Links: OMAP-L138 Copyright © 2009–2017, Texas Instruments Incorporated OMAP-L138 www.ti.com SPRS586J – JUNE 2009 – REVISED JANUARY 2017 Table 6-116. Switching Characteristics Over Recommended Operating Conditions for Host-Port Interface [1.0V] (1) (2) (3) NO. PARAMETER 1.0V MIN MAX UNIT For HPI Write, HRDY can go high (not ready) for these HPI Write conditions; otherwise, HRDY stays low (ready): Case 1: Back-to-back HPIA writes (can be either first or second half-word) Case 2: HPIA write following a PREFETCH command (can be either first or second halfword) Case 3: HPID write when FIFO is full or flushing (can be either first or second half-word) Case 4: HPIA write and Write FIFO not empty For HPI Read, HRDY can go high (not ready) for these HPI Read conditions: Case 1: HPID read (with auto-increment) and data not in Read FIFO (can only happen to first half-word of HPID access) Case 2: First half-word access of HPID Read without auto-increment For HPI Read, HRDY stays low (ready) for these HPI Read conditions: Case 1: HPID read with auto-increment and data is already in Read FIFO (applies to either half-word of HPID access) Case 2: HPID read without auto-increment and data is already in Read FIFO (always applies to second half-word of HPID access) Case 3: HPIC or HPIA read (applies to either half-word access) 5 td(HSTBL-HRDYV) Delay time, HSTROBE low to HRDY valid 5a td(HASL-HRDYV) Delay time, HAS low to HRDY valid 6 ten(HSTBL-HDLZ) Enable time, HD driven from HSTROBE low 7 td(HRDYL-HDV) Delay time, HRDY low to HD valid 8 toh(HSTBH-HDV) Output hold time, HD valid after HSTROBE high 14 tdis(HSTBH-HDHZ) Disable time, HD high-impedance from HSTROBE high 15 18 (1) (2) (3) td(HSTBL-HDV) td(HSTBH-HRDYV) 22 ns 22 ns 1.5 ns 0 1.5 ns ns 22 ns Delay time, HSTROBE low to HD valid For HPI Read. Applies to conditions where data is already residing in HPID/FIFO: Case 1: HPIC or HPIA read Case 2: First half-word of HPID read with autoincrement and data is already in Read FIFO Case 3: Second half-word of HPID read with or without auto-increment 22 ns Delay time, HSTROBE high to HRDY valid For HPI Write, HRDY can go high (not ready) for these HPI Write conditions; otherwise, HRDY stays low (ready): Case 1: HPID write when Write FIFO is full (can happen to either half-word) Case 2: HPIA write (can happen to either halfword) Case 3: HPID write without auto-increment (only happens to second half-word) 22 ns M=SYSCLK2 period in ns. HSTROBE refers to the following logical operation on HCS, HDS1, and HDS2: [NOT(HDS1 XOR HDS2)] OR HCS. By design, whenever HCS is driven inactive (high), HPI will drive HRDY active (low). Copyright © 2009–2017, Texas Instruments Incorporated Peripheral Information and Electrical Specifications Submit Documentation Feedback Product Folder Links: OMAP-L138 231 OMAP-L138 SPRS586J – JUNE 2009 – REVISED JANUARY 2017 www.ti.com UHPI_HCS UHPI_HAS(D) 2 2 1 1 UHPI_HCNTL[1:0] 2 1 2 1 UHPI_HR/W 2 2 1 1 UHPI_HHWIL 4 3 3 UHPI_HSTROBE(A)(C) 15 15 14 14 6 8 6 8 UHPI_HD[15:0] (output) 5 13 7 1st Half-Word 2nd Half-Word UHPI_HRDY(B) A. UHPI_HSTROBE refers to the following logical operation on UHPI_HCS, UHPI_HDS1, and UHPI_HDS2: [NOT(HDS1 XOR HDS2)] OR UHPI_HCS. B. Depending on the type of write or read operation (HPID without auto-incrementing; HPIA, HPIC, or HPID with auto-incrementing) and the state of the FIFO, transitions on UHPI_HRDY may or may not occur. C. UHPI_HCS reflects typical UHPI_HCS behavior when UHPI_HSTROBE assertion is caused by UHPI_HDS1 or UHPI_HDS2. UHPI_HCS timing requirements are reflected by parameters for UHPI_HSTROBE. D The diagram above assumes UHPI_HAS has been pulled high. Figure 6-67. UHPI Read Timing (HAS Not Used, Tied High) 232 Peripheral Information and Electrical Specifications Submit Documentation Feedback Product Folder Links: OMAP-L138 Copyright © 2009–2017, Texas Instruments Incorporated OMAP-L138 www.ti.com SPRS586J – JUNE 2009 – REVISED JANUARY 2017 UHPI_HAS(A) 17 10 17 9 10 9 UHPI_HCNTL[1:0] 10 10 9 9 UHPI_HR/W 10 10 9 9 UHPI_HHWIL 4 3 UHPI_HSTROBE(B) 16 16 UHPI_HCS 14 UHPI_HD[15:0] 6 (output) 5a 8 1st half-word 14 15 7 8 2nd half-word UHPI_HRDY A. B. For correct operation, strobe the UHPI_HAS signal only once per UHPI_HSTROBE active cycle. UHPI_HSTROBE refers to the following logical operation on UHPI_HCS, UHPI_HDS1, and UHPI_HDS2: [NOT(UHPI_HDS1 XOR UHPI_HDS2)] OR UHPI_HCS. Figure 6-68. UHPI Read Timing (HAS Used) Copyright © 2009–2017, Texas Instruments Incorporated Peripheral Information and Electrical Specifications Submit Documentation Feedback Product Folder Links: OMAP-L138 233 OMAP-L138 SPRS586J – JUNE 2009 – REVISED JANUARY 2017 www.ti.com UHPI_HCS UHPI_HAS(D) 1 1 2 2 UHPI_HCNTL[1:0] 1 1 2 2 UHPI_HR/W 1 1 2 2 UHPI_HHWIL 3 3 4 UHPI_HSTROBE(A)(C) 11 UHPI_HD[15:0] (input) 11 12 12 1st Half-Word 5 13 2nd Half-Word 18 13 18 5 UHPI_HRDY(B) A. UHPI_HSTROBE refers to the following logical operation on UHPI_HCS, UHPI_HDS1, and UHPI_HDS2: [NOT(HDS1 XOR HDS2)] OR UHPI_HCS. B. Depending on the type of write or read operation (HPID without auto-incrementing; HPIA, HPIC, or HPID with auto-incrementing) and the state of the FIFO, transitions on UHPI_HRDY may or may not occur. C. UHPI_HCS reflects typical UHPI_HCS behavior when UHPI_HSTROBE assertion is caused by UHPI_HDS1 or UHPI_HDS2. UHPI_HCS timing requirements are reflected by parameters for UHPI_HSTROBE. D The diagram above assumes UHPI_HAS has been pulled high. Figure 6-69. UHPI Write Timing (HAS Not Used, Tied High) 234 Peripheral Information and Electrical Specifications Submit Documentation Feedback Product Folder Links: OMAP-L138 Copyright © 2009–2017, Texas Instruments Incorporated OMAP-L138 www.ti.com SPRS586J – JUNE 2009 – REVISED JANUARY 2017 17 UHPI_HAS† 17 10 10 9 9 UHPI_HCNTL[1:0] 10 10 9 9 UHPI_HR/W 10 10 9 9 UHPI_HHWIL 3 4 UHPI_HSTROBE‡ 16 16 UHPI_HCS 11 12 UHPI_HD[15:0] (input) 1st half-word 5a 11 12 2nd half-word 13 UHPI_HRDY A. B. For correct operation, strobe the UHPI_HAS signal only once per UHPI_HSTROBE active cycle. UHPI_HSTROBE refers to the following logical operation on UHPI_HCS, UHPI_HDS1, and UHPI_HDS2: [NOT(UHPI_HDS1 XOR UHPI_HDS2)] OR UHPI_HCS. Figure 6-70. UHPI Write Timing (HAS Used) Copyright © 2009–2017, Texas Instruments Incorporated Peripheral Information and Electrical Specifications Submit Documentation Feedback Product Folder Links: OMAP-L138 235 OMAP-L138 SPRS586J – JUNE 2009 – REVISED JANUARY 2017 www.ti.com 6.26 Universal Parallel Port (uPP) The Universal Parallel Port (uPP) peripheral is a multichannel, high-speed parallel interface with dedicated data lines and minimal control signals. It is designed to interface cleanly with high-speed analog-to-digital converters (ADCs) or digital-to-analog converters (DACs) with up to 16-bit data width (per channel). It may also be interconnected with field-programmable gate arrays (FPGAs) or other uPP devices to achieve high-speed digital data transfer. It can operate in receive mode, transmit mode, or duplex mode, in which its individual channels operate in opposite directions. The uPP peripheral includes an internal DMA controller to maximize throughput and minimize CPU overhead during high-speed data transmission. All uPP transactions use the internal DMA to provide data to or retrieve data from the I/O channels. The DMA controller includes two DMA channels, which typically service separate I/O channels. The uPP peripheral also supports data interleave mode, in which all DMA resources service a single I/O channel. In this mode, only one I/O channel may be used. The features of the uPP include: • Programmable data width per channel (from 8 to 16 bits inclusive) • Programmable data justification – Right-justify with zero extend – Right-justify with sign extend – Left-justify with zero fill • Supports multiplexing of interleaved data during SDR transmit • Optional frame START signal with programmable polarity • Optional data ENABLE signal with programmable polarity • Optional synchronization WAIT signal with programmable polarity • Single Data Rate (SDR) or Double data Rate (DDR, interleaved) interface – Supports multiplexing of interleaved data during SDR transmit – Supports demultiplexing and multiplexing of interleaved data during DDR transfers 236 Peripheral Information and Electrical Specifications Submit Documentation Feedback Product Folder Links: OMAP-L138 Copyright © 2009–2017, Texas Instruments Incorporated OMAP-L138 www.ti.com SPRS586J – JUNE 2009 – REVISED JANUARY 2017 6.26.1 uPP Register Descriptions Table 6-117. Universal Parallel Port (uPP) Registers BYTE ADDRESS ACRONYM 0x01E1 6000 UPPID uPP Peripheral Identification Register REGISTER DESCRIPTION 0x01E1 6004 UPPCR uPP Peripheral Control Register 0x01E1 6008 UPDLB uPP Digital Loopback Register 0x01E1 6010 UPCTL uPP Channel Control Register 0x01E1 6014 UPICR uPP Interface Configuration Register 0x01E1 6018 UPIVR uPP Interface Idle Value Register 0x01E1 601C UPTCR uPP Threshold Configuration Register 0x01E1 6020 UPISR uPP Interrupt Raw Status Register 0x01E1 6024 UPIER uPP Interrupt Enabled Status Register 0x01E1 6028 UPIES uPP Interrupt Enable Set Register 0x01E1 602C UPIEC uPP Interrupt Enable Clear Register 0x01E1 6030 UPEOI uPP End-of-Interrupt Register 0x01E1 6040 UPID0 uPP DMA Channel I Descriptor 0 Register 0x01E1 6044 UPID1 uPP DMA Channel I Descriptor 1 Register 0x01E1 6048 UPID2 uPP DMA Channel I Descriptor 2 Register 0x01E1 6050 UPIS0 uPP DMA Channel I Status 0 Register 0x01E1 6054 UPIS1 uPP DMA Channel I Status 1 Register 0x01E1 6058 UPIS2 uPP DMA Channel I Status 2 Register 0x01E1 6060 UPQD0 uPP DMA Channel Q Descriptor 0 Register 0x01E1 6064 UPQD1 uPP DMA Channel Q Descriptor 1 Register 0x01E1 6068 UPQD2 uPP DMA Channel Q Descriptor 2 Register 0x01E1 6070 UPQS0 uPP DMA Channel Q Status 0 Register 0x01E1 6074 UPQS1 uPP DMA Channel Q Status 1 Register 0x01E1 6078 UPQS2 uPP DMA Channel Q Status 2 Register Copyright © 2009–2017, Texas Instruments Incorporated Peripheral Information and Electrical Specifications Submit Documentation Feedback Product Folder Links: OMAP-L138 237 OMAP-L138 SPRS586J – JUNE 2009 – REVISED JANUARY 2017 www.ti.com 6.26.2 uPP Electrical Data/Timing Table 6-118. Timing Requirements for uPP (see Figure 6-71, Figure 6-72, Figure 6-73, Figure 6-74) 1.3V, 1.2V NO. MIN 1.1V MIN 1.0V MAX MIN SDR mode 13.33 20 26.66 DDR mode 26.66 40 53.33 1 tc(INCLK) Cycle time, CHn_CLK 2 tw(INCLKH) Pulse width, CHn_CLK high 3 tw(INCLKL) Pulse width, CHn_CLK low 4 tsu(STV-INCLKH) Setup time, CHn_START valid before CHn_CLK high 5 th(INCLKH-STV) Hold time, CHn_START valid after CHn_CLK high 6 tsu(ENV-INCLKH) Setup time, CHn_ENABLE valid before CHn_CLK high 7 th(INCLKH-ENV) Hold time, CHn_ENABLE valid after CHn_CLK high 8 tsu(DV-INCLKH) Setup time, CHn_DATA/XDATA valid before CHn_CLK high 9 th(INCLKH-DV) Hold time, CHn_DATA/XDATA valid after CHn_CLK high 10 tsu(DV-INCLKL) Setup time, CHn_DATA/XDATA valid before CHn_CLK low 11 th(INCLKL-DV) 19 tsu(WTV-INCLKL) 20 21 (1) MAX SDR mode 5 8 10 DDR mode 10 16 20 SDR mode 5 8 10 DDR mode 10 16 20 MAX UNIT ns ns ns 4 5.5 6.5 ns 0.8 0.8 0.8 ns 4 5.5 6.5 ns 0.8 0.8 0.8 ns 4 5.5 6.5 ns 0.8 0.8 0.8 ns 4 5.5 6.5 ns Hold time, CHn_DATA/XDATA valid after CHn_CLK low 0.8 0.8 0.8 ns Setup time, CHn_WAIT valid before CHn_CLK high 10 12 14 ns th(INCLKL-WTV) Hold time, CHn_WAIT valid after CHn_CLK high 0.8 0.8 0.8 ns tc(2xTXCLK) Cycle time, 2xTXCLK input clock (1) 6.66 10 13.33 ns 2xTXCLK is an alternate transmit clock source that must be at least 2 times the required uPP transmit clock rate (as it is is divided down by 2 inside the uPP). 2xTXCLK has no specified skew relationship to the CHn_CLOCK and therefore is not shown in the timing diagram. Table 6-119. Switching Characteristics Over Recommended Operating Conditions for uPP NO. 1.3V, 1.2V PARAMETER MIN MAX 1.1V MIN 1.0V MAX MIN SDR mode 13.33 20 26.66 DDR mode 26.66 40 53.33 SDR mode 5 8 10 DDR mode 10 16 20 MAX UNIT 12 tc(OUTCLK) Cycle time, CHn_CLK 13 tw(OUTCLKH) Pulse width, CHn_CLK high 14 tw(OUTCLKL) Pulse width, CHn_CLK low 15 td(OUTCLKH-STV) Delay time, CHn_START valid after CHn_CLK high 2 11 2 15 2 21 ns 16 td(OUTCLKH-ENV) Delay time, CHn_ENABLE valid after CHn_CLK high 2 11 2 15 2 21 ns 17 td(OUTCLKH-DV) Delay time, CHn_DATA/XDATA valid after CHn_CLK high 2 11 2 15 2 21 ns 18 td(OUTCLKL-DV) Delay time, CHn_DATA/XDATA valid after CHn_CLK low 2 11 2 15 2 21 ns 238 SDR mode 5 8 10 DDR mode 10 16 20 Peripheral Information and Electrical Specifications Submit Documentation Feedback Product Folder Links: OMAP-L138 ns ns ns Copyright © 2009–2017, Texas Instruments Incorporated OMAP-L138 www.ti.com SPRS586J – JUNE 2009 – REVISED JANUARY 2017 1 2 3 CHx_CLK 4 5 CHx_START 6 7 CHx_ENABLE CHx_WAIT 8 9 CHx_DATA[n:0] CHx_XDATA[n:0] Data1 Data2 Data3 Data4 Data5 Data7 Data6 Data8 Data9 Figure 6-71. uPP Single Data Rate (SDR) Receive Timing 1 2 3 CHx_CLK 4 5 CHx_START 6 7 CHx_ENABLE CHx_WAIT 8 CHx_DATA[n:0] CHx_XDATA[n:0] I1 Q1 I2 Q2 I3 Q3 10 9 I4 Q4 I5 Q5 I6 Q6 I7 11 Q7 I8 Q8 I9 Q9 Figure 6-72. uPP Double Data Rate (DDR) Receive Timing Copyright © 2009–2017, Texas Instruments Incorporated Peripheral Information and Electrical Specifications Submit Documentation Feedback Product Folder Links: OMAP-L138 239 OMAP-L138 SPRS586J – JUNE 2009 – REVISED JANUARY 2017 www.ti.com 12 13 14 CHx_CLK 15 CHx_START 16 CHx_ENABLE 19 20 CHx_WAIT 17 CHx_DATA[n:0] CHx_XDATA[n:0] Data1 Data2 Data3 Data4 Data5 Data6 Data7 Data8 Data9 Figure 6-73. uPP Single Data Rate (SDR) Transmit Timing 12 13 14 CHx_CLK 15 CHx_START 16 CHx_ENABLE 19 20 CHx_WAIT 17 CHx_DATA[n:0] CHx_XDATA[n:0] I1 Q1 18 I2 Q2 I3 Q3 I4 Q4 I5 Q5 I6 Q6 I7 Q7 I8 Q8 I9 Q9 Figure 6-74. uPP Double Data Rate (DDR) Transmit Timing 240 Peripheral Information and Electrical Specifications Submit Documentation Feedback Product Folder Links: OMAP-L138 Copyright © 2009–2017, Texas Instruments Incorporated OMAP-L138 www.ti.com SPRS586J – JUNE 2009 – REVISED JANUARY 2017 6.27 Video Port Interface (VPIF) The Video Port Interface (VPIF) allows the capture and display of digital video streams. Features include: • Up to 2 Video Capture Channels (Channel 0 and Channel 1) – Two 8-bit Standard-Definition (SD) Video with embedded timing codes (BT.656) – Single 16-bit High-Definition (HD) Video with embedded timing codes (BT.1120) – Single Raw Video (8-/10-/12-bit) • Up to 2 Video Display Channels (Channel 2 and Channel 3) – Two 8-bit SD Video Display with embedded timing codes (BT.656) – Single 16-bit HD Video Display with embedded timing codes (BT.1120) The VPIF capture channel input data format is selectable based on the settings of the specific Channel Control Register (Channels 0–3). The VPIF Raw Video data-bus width is selectable based on the settings of the Channel 0 Control Register. Copyright © 2009–2017, Texas Instruments Incorporated Peripheral Information and Electrical Specifications Submit Documentation Feedback Product Folder Links: OMAP-L138 241 OMAP-L138 SPRS586J – JUNE 2009 – REVISED JANUARY 2017 www.ti.com 6.27.1 VPIF Register Descriptions Table 6-120 shows the VPIF registers. Table 6-120. Video Port Interface (VPIF) Registers BYTE ADDRESS ACRONYM 0x01E1 7000 PID REGISTER DESCRIPTION 0x01E1 7004 CH0_CTRL Channel 0 control register 0x01E1 7008 CH1_CTRL Channel 1 control register 0x01E1 700C CH2_CTRL Channel 2 control register Channel 3 control register Peripheral identification register 0x01E1 7010 CH3_CTRL 0x01E1 7014 - 0x01E1 701F - 0x01E1 7020 INTEN Reserved Interrupt enable 0x01E1 7024 INTENSET Interrupt enable set 0x01E1 7028 INTENCLR Interrupt enable clear 0x01E1 702C INTSTAT 0x01E1 7030 INTSTATCLR 0x01E1 7034 EMU_CTRL Emulation control 0x01E1 7038 DMA_SIZE DMA size control 0x01E1 703C - 0x01E1 703F - 0x01E1 7040 CH0_TY_STRTADR Channel 0 Top Field luma buffer start address 0x01E1 7044 CH0_BY_STRTADR Channel 0 Bottom Field luma buffer start address Interrupt status Interrupt status clear Reserved CAPTURE CHANNEL 0 REGISTERS 0x01E1 7048 CH0_TC_STRTADR Channel 0 Top Field chroma buffer start address 0x01E1 704C CH0_BC_STRTADR Channel 0 Bottom Field chroma buffer start address 0x01E1 7050 CH0_THA_STRTADR Channel 0 Top Field horizontal ancillary data buffer start address 0x01E1 7054 CH0_BHA_STRTADR Channel 0 Bottom Field horizontal ancillary data buffer start address 0x01E1 7058 CH0_TVA_STRTADR Channel 0 Top Field vertical ancillary data buffer start address 0x01E1 705C CH0_BVA_STRTADR Channel 0 Bottom Field vertical ancillary data buffer start address 0x01E1 7060 CH0_SUBPIC_CFG 0x01E1 7064 CH0_IMG_ADD_OFST Channel 0 image data address offset 0x01E1 7068 CH0_HA_ADD_OFST Channel 0 horizontal ancillary data address offset 0x01E1 706C CH0_HSIZE_CFG Channel 0 horizontal data size configuration 0x01E1 7070 CH0_VSIZE_CFG0 Channel 0 vertical data size configuration (0) 0x01E1 7074 CH0_VSIZE_CFG1 Channel 0 vertical data size configuration (1) 0x01E1 7078 CH0_VSIZE_CFG2 Channel 0 vertical data size configuration (2) 0x01E1 707C CH0_VSIZE 0x01E1 7080 CH1_TY_STRTADR Channel 1 Top Field luma buffer start address 0x01E1 7084 CH1_BY_STRTADR Channel 1 Bottom Field luma buffer start address Channel 0 sub-picture configuration Channel 0 vertical image size CAPTURE CHANNEL 1 REGISTERS 242 0x01E1 7088 CH1_TC_STRTADR Channel 1 Top Field chroma buffer start address 0x01E1 708C CH1_BC_STRTADR Channel 1 Bottom Field chroma buffer start address 0x01E1 7090 CH1_THA_STRTADR Channel 1 Top Field horizontal ancillary data buffer start address 0x01E1 7094 CH1_BHA_STRTADR Channel 1 Bottom Field horizontal ancillary data buffer start address 0x01E1 7098 CH1_TVA_STRTADR Channel 1 Top Field vertical ancillary data buffer start address 0x01E1 709C CH1_BVA_STRTADR Channel 1 Bottom Field vertical ancillary data buffer start address 0x01E1 70A0 CH1_SUBPIC_CFG 0x01E1 70A4 CH1_IMG_ADD_OFST Channel 1 image data address offset 0x01E1 70A8 CH1_HA_ADD_OFST Channel 1 horizontal ancillary data address offset 0x01E1 70AC CH1_HSIZE_CFG Channel 1 sub-picture configuration Channel 1 horizontal data size configuration Peripheral Information and Electrical Specifications Submit Documentation Feedback Product Folder Links: OMAP-L138 Copyright © 2009–2017, Texas Instruments Incorporated OMAP-L138 www.ti.com SPRS586J – JUNE 2009 – REVISED JANUARY 2017 Table 6-120. Video Port Interface (VPIF) Registers (continued) BYTE ADDRESS ACRONYM 0x01E1 70B0 CH1_VSIZE_CFG0 Channel 1 vertical data size configuration (0) REGISTER DESCRIPTION 0x01E1 70B4 CH1_VSIZE_CFG1 Channel 1 vertical data size configuration (1) 0x01E1 70B8 CH1_VSIZE_CFG2 Channel 1 vertical data size configuration (2) 0x01E1 70BC CH1_VSIZE 0x01E1 70C0 CH2_TY_STRTADR Channel 2 Top Field luma buffer start address 0x01E1 70C4 CH2_BY_STRTADR Channel 2 Bottom Field luma buffer start address Channel 1 vertical image size DISPLAY CHANNEL 2 REGISTERS 0x01E1 70C8 CH2_TC_STRTADR Channel 2 Top Field chroma buffer start address 0x01E1 70CC CH2_BC_STRTADR Channel 2 Bottom Field chroma buffer start address 0x01E1 70D0 CH2_THA_STRTADR Channel 2 Top Field horizontal ancillary data buffer start address 0x01E1 70D4 CH2_BHA_STRTADR Channel 2 Bottom Field horizontal ancillary data buffer start address 0x01E1 70D8 CH2_TVA_STRTADR Channel 2 Top Field vertical ancillary data buffer start address 0x01E1 70DC CH2_BVA_STRTADR Channel 2 Bottom Field vertical ancillary data buffer start address 0x01E1 70E0 CH2_SUBPIC_CFG 0x01E1 70E4 CH2_IMG_ADD_OFST Channel 2 image data address offset 0x01E1 70E8 CH2_HA_ADD_OFST Channel 2 horizontal ancillary data address offset 0x01E1 70EC CH2_HSIZE_CFG Channel 2 horizontal data size configuration 0x01E1 70F0 CH2_VSIZE_CFG0 Channel 2 vertical data size configuration (0) 0x01E1 70F4 CH2_VSIZE_CFG1 Channel 2 vertical data size configuration (1) 0x01E1 70F8 CH2_VSIZE_CFG2 Channel 2 vertical data size configuration (2) 0x01E1 70FC CH2_VSIZE 0x01E1 7100 CH2_THA_STRTPOS 0x01E1 7104 CH2_THA_SIZE 0x01E1 7108 CH2_BHA_STRTPOS 0x01E1 710C CH2_BHA_SIZE 0x01E1 7110 CH2_TVA_STRTPOS 0x01E1 7114 CH2_TVA_SIZE 0x01E1 7118 CH2_BVA_STRTPOS 0x01E1 711C CH2_BVA_SIZE 0x01E1 7120 - 0x01E1 713F - Channel 2 sub-picture configuration Channel 2 vertical image size Channel 2 Top Field horizontal ancillary data insertion start position Channel 2 Top Field horizontal ancillary data size Channel 2 Bottom Field horizontal ancillary data insertion start position Channel 2 Bottom Field horizontal ancillary data size Channel 2 Top Field vertical ancillary data insertion start position Channel 2 Top Field vertical ancillary data size Channel 2 Bottom Field vertical ancillary data insertion start position Channel 2 Bottom Field vertical ancillary data size Reserved DISPLAY CHANNEL 3 REGISTERS 0x01E1 7140 CH3_TY_STRTADR Channel 3 Field 0 luma buffer start address 0x01E1 7144 CH3_BY_STRTADR Channel 3 Field 1 luma buffer start address 0x01E1 7148 CH3_TC_STRTADR Channel 3 Field 0 chroma buffer start address 0x01E1 714C CH3_BC_STRTADR Channel 3 Field 1 chroma buffer start address 0x01E1 7150 CH3_THA_STRTADR Channel 3 Field 0 horizontal ancillary data buffer start address 0x01E1 7154 CH3_BHA_STRTADR Channel 3 Field 1 horizontal ancillary data buffer start address 0x01E1 7158 CH3_TVA_STRTADR Channel 3 Field 0 vertical ancillary data buffer start address 0x01E1 715C CH3_BVA_STRTADR Channel 3 Field 1 vertical ancillary data buffer start address 0x01E1 7160 CH3_SUBPIC_CFG 0x01E1 7164 CH3_IMG_ADD_OFST Channel 3 image data address offset Channel 3 horizontal ancillary data address offset Channel 3 sub-picture configuration 0x01E1 7168 CH3_HA_ADD_OFST 0x01E1 716C CH3_HSIZE_CFG Channel 3 horizontal data size configuration 0x01E1 7170 CH3_VSIZE_CFG0 Channel 3 vertical data size configuration (0) 0x01E1 7174 CH3_VSIZE_CFG1 Channel 3 vertical data size configuration (1) 0x01E1 7178 CH3_VSIZE_CFG2 Channel 3 vertical data size configuration (2) 0x01E1 717C CH3_VSIZE Copyright © 2009–2017, Texas Instruments Incorporated Channel 3 vertical image size Peripheral Information and Electrical Specifications Submit Documentation Feedback Product Folder Links: OMAP-L138 243 OMAP-L138 SPRS586J – JUNE 2009 – REVISED JANUARY 2017 www.ti.com Table 6-120. Video Port Interface (VPIF) Registers (continued) BYTE ADDRESS ACRONYM 0x01E1 7180 CH3_THA_STRTPOS 0x01E1 7184 CH3_THA_SIZE 0x01E1 7188 CH3_BHA_STRTPOS 0x01E1 718C CH3_BHA_SIZE 0x01E1 7190 CH3_TVA_STRTPOS 0x01E1 7194 CH3_TVA_SIZE 0x01E1 7198 CH3_BVA_STRTPOS 0x01E1 719C CH3_BVA_SIZE 0x01E1 71A0 - 0x01E1 71FF - 244 REGISTER DESCRIPTION Channel 3 Top Field horizontal ancillary data insertion start position Channel 3 Top Field horizontal ancillary data size Channel 3 Bottom Field horizontal ancillary data insertion start position Channel 3 Bottom Field horizontal ancillary data size Channel 3 Top Field vertical ancillary data insertion start position Channel 3 Top Field vertical ancillary data size Channel 3 Bottom Field vertical ancillary data insertion start position Channel 3 Bottom Field vertical ancillary data size Reserved Peripheral Information and Electrical Specifications Submit Documentation Feedback Product Folder Links: OMAP-L138 Copyright © 2009–2017, Texas Instruments Incorporated OMAP-L138 www.ti.com SPRS586J – JUNE 2009 – REVISED JANUARY 2017 6.27.2 VPIF Electrical Data/Timing Table 6-121. Timing Requirements for VPIF VP_CLKINx Inputs (1) (see Figure 6-75) 1.3V, 1.2V NO. (1) MIN 1.1V MAX MIN 1.0V MAX MIN MAX UNIT Cycle time, VP_CLKIN0 13.3 20 37 ns Cycle time, VP_CLKIN1/2/3 13.3 20 37 ns tw(VKIH) Pulse duration, VP_CLKINx high 0.4C 0.4C 0.4C ns tw(VKIL) Pulse duration, VP_CLKINx low 0.4C 0.4C 0.4C tt(VKI) Transition time, VP_CLKINx 1 tc(VKI) 2 3 4 5 5 ns 5 ns C = VP_CLKINx period in ns. 1 2 4 3 VP_CLKINx 4 Figure 6-75. Video Port Capture VP_CLKINx Timing Copyright © 2009–2017, Texas Instruments Incorporated Peripheral Information and Electrical Specifications Submit Documentation Feedback Product Folder Links: OMAP-L138 245 OMAP-L138 SPRS586J – JUNE 2009 – REVISED JANUARY 2017 www.ti.com Table 6-122. Timing Requirements for VPIF Channels 0/1 Video Capture Data and Control Inputs (see Figure 6-76) 1.3V NO. MIN tsu(VDINV- 1 Setup time, VP_DINx valid before VP_OSCIN0/1 high 1.2V MAX MIN 1.1V MAX MIN 1.0V MAX MIN MAX UNIT 4 4 6 7 ns 0.5 0 0 0 ns VKIH) 2 th(VKIH-VDINV) Hold time, VP_DINx valid after VP_CLKIN0/1 high VP_CLKIN0/1 1 2 VP_DINx/FIELD/ HSYNC/VSYNC Figure 6-76. VPIF Channels 0/1 Video Capture Data and Control Input Timing Table 6-123. Switching Characteristics Over Recommended Operating Conditions for Video Data Shown With Respect to VP_CLKOUT2/3 (1) (see Figure 6-77) NO. 1.3V, 1.2V PARAMETER MIN 1.1V MAX MIN 1.0V MAX MIN MAX UNIT 1 tc(VKO) Cycle time, VP_CLKOUT2/3 13.3 20 37 ns 2 tw(VKOH) Pulse duration, VP_CLKOUT2/3 high 0.4C 0.4C 0.4C ns 3 tw(VKOL) Pulse duration, VP_CLKOUT2/3 low 0.4C 0.4C 0.4C ns 4 tt(VKO) Transition time, VP_CLKOUT2/3 11 td(VKOH-VPDOUTV) Delay time, VP_CLKOUT2/3 high to VP_DOUTx valid 12 td(VCLKOH-VPDOUTIV) Delay time, VP_CLKOUT2/3 high to VP_DOUTx invalid (1) 5 5 5 ns 8.5 12 17 ns 1.5 1.5 1.5 ns C = VP_CLKO2/3 period in ns. 2 1 VP_CLKOUTx (Positive Edge Clocking) 3 4 VP_CLKOUTx (Negative Edge Clocking) 4 11 12 VP_DOUTx Figure 6-77. VPIF Channels 2/3 Video Display Data Output Timing With Respect to VP_CLKOUT2/3 246 Peripheral Information and Electrical Specifications Submit Documentation Feedback Product Folder Links: OMAP-L138 Copyright © 2009–2017, Texas Instruments Incorporated OMAP-L138 www.ti.com SPRS586J – JUNE 2009 – REVISED JANUARY 2017 6.28 Enhanced Capture (eCAP) Peripheral The device contains up to three enhanced capture (eCAP) modules. Figure 6-78 shows a functional block diagram of a module. Uses for ECAP include: • Speed measurements of rotating machinery (e.g. toothed sprockets sensed via Hall sensors) • Elapsed time measurements between position sensor triggers • Period and duty cycle measurements of pulse train signals • Decoding current or voltage amplitude derived from duty cycle encoded current/voltage sensors The ECAP module described in this specification includes the following features: • 32 bit time base • 4 event time-stamp registers (each 32 bits) • Edge polarity selection for up to 4 sequenced time-stamp capture events • Interrupt on either of the 4 events • Single shot capture of up to 4 event time-stamps • Continuous mode capture of time-stamps in a 4 deep circular buffer • Absolute time-stamp capture • Difference mode time-stamp capture • All the above resources are dedicated to a single input pin The eCAP modules are clocked at the ASYNC3 clock domain rate. Copyright © 2009–2017, Texas Instruments Incorporated Peripheral Information and Electrical Specifications Submit Documentation Feedback Product Folder Links: OMAP-L138 247 OMAP-L138 SYNC SPRS586J – JUNE 2009 – REVISED JANUARY 2017 SYNCIn SYNCOut www.ti.com CTRPHS (phase register−32 bit) TSCTR (counter−32 bit) APWM mode OVF RST CTR_OVF Delta−mode CTR [0−31] PWM compare logic PRD [0−31] CMP [0−31] 32 CTR=PRD CTR [0−31] CTR=CMP 32 32 LD1 CAP1 (APRD active) APRD shadow 32 32 MODE SELECT PRD [0−31] Polarity select LD 32 CMP [0−31] CAP2 (ACMP active) 32 LD LD2 Polarity select Event qualifier ACMP shadow 32 CAP3 (APRD shadow) LD 32 CAP4 (ACMP shadow) LD eCAPx Event Pre-scale Polarity select LD3 LD4 Polarity select 4 Capture events 4 CEVT[1:4] to Interrupt Controller Interrupt Trigger and Flag control CTR_OVF Continuous / Oneshot Capture Control CTR=PRD CTR=CMP Figure 6-78. eCAP Functional Block Diagram 248 Peripheral Information and Electrical Specifications Submit Documentation Feedback Product Folder Links: OMAP-L138 Copyright © 2009–2017, Texas Instruments Incorporated OMAP-L138 www.ti.com SPRS586J – JUNE 2009 – REVISED JANUARY 2017 Table 6-124 is the list of the ECAP registers. Table 6-124. ECAPx Configuration Registers ECAP0 BYTE ADDRESS ECAP1 BYTE ADDRESS ECAP2 BYTE ADDRESS 0x01F0 6000 0x01F0 7000 0x01F0 8000 TSCTR 0x01F0 6004 0x01F0 7004 0x01F0 8004 CTRPHS ACRONYM DESCRIPTION Time-Stamp Counter Counter Phase Offset Value Register 0x01F0 6008 0x01F0 7008 0x01F0 8008 CAP1 Capture 1 Register 0x01F0 600C 0x01F0 700C 0x01F0 800C CAP2 Capture 2 Register 0x01F0 6010 0x01F0 7010 0x01F0 8010 CAP3 Capture 3 Register 0x01F0 6014 0x01F0 7014 0x01F0 8014 CAP4 Capture 4 Register 0x01F0 6028 0x01F0 7028 0x01F0 8028 ECCTL1 Capture Control Register 1 0x01F0 602A 0x01F0 702A 0x01F0 802A ECCTL2 Capture Control Register 2 0x01F0 602C 0x01F0 702C 0x01F0 802C ECEINT Capture Interrupt Enable Register 0x01F0 602E 0x01F0 702E 0x01F0 802E ECFLG Capture Interrupt Flag Register 0x01F0 6030 0x01F0 7030 0x01F0 8030 ECCLR Capture Interrupt Clear Register 0x01F0 6032 0x01F0 7032 0x01F0 8032 ECFRC Capture Interrupt Force Register 0x01F0 605C 0x01F0 705C 0x01F0 805C REVID Revision ID Table 6-125 shows the eCAP timing requirement and Table 6-126 shows the eCAP switching characteristics. Table 6-125. Timing Requirements for Enhanced Capture (eCAP) TEST CONDITIONS tw(CAP) Capture input pulse width 1.3V, 1.2V, 1.1V, 1.0V MIN MAX UNIT Asynchronous 2tc(SCO) cycles Synchronous 2tc(SCO) cycles Table 6-126. Switching Characteristics Over Recommended Operating Conditions for eCAP PARAMETER tw(APWM) Pulse duration, APWMx output high/low 1.3V, 1.2V MIN 20 Copyright © 2009–2017, Texas Instruments Incorporated 1.1V MAX MIN 20 1.0V MAX MIN MAX 20 Peripheral Information and Electrical Specifications Submit Documentation Feedback Product Folder Links: OMAP-L138 UNIT ns 249 OMAP-L138 SPRS586J – JUNE 2009 – REVISED JANUARY 2017 www.ti.com 6.29 Enhanced High-Resolution Pulse-Width Modulator (eHRPWM) The device contains two enhanced PWM Modules (eHRPWM). Figure 6-79 shows a block diagram of multiple eHRPWM modules. Figure 6-79 shows the signal interconnections with the eHRPWM. EPWMSYNCI EPWM0INT EPWM0SYNCI EPWM0A ePWM0 module EPWM0B TZ Interrupt Controllers EPWM0SYNCO GPIO MUX EPWM1SYNCI EPWM1INT EPWM1A ePWM1 module EPWM1SYNCO To eCAP0 module (sync in) EPWM1B TZ EPWMSYNCO Peripheral Bus Figure 6-79. Multiple PWM Modules in a OMAP-L138 System 250 Peripheral Information and Electrical Specifications Submit Documentation Feedback Product Folder Links: OMAP-L138 Copyright © 2009–2017, Texas Instruments Incorporated OMAP-L138 www.ti.com SPRS586J – JUNE 2009 – REVISED JANUARY 2017 Time−base (TB) Sync in/out select Mux CTR=ZERO CTR=CMPB Disabled TBPRD shadow (16) TBPRD active (16) CTR=PRD EPWMSYNCO TBCTL[SYNCOSEL] TBCTL[CNTLDE] EPWMSYNCI Counter up/down (16 bit) CTR=ZERO CTR_Dir TBCNT active (16) TBPHSHR (8) 16 8 TBPHS active (24) Phase control Counter compare (CC) CTR=CMPA CMPAHR (8) 16 TBCTL[SWFSYNC] (software forced sync) Action qualifier (AQ) CTR = PRD CTR = ZERO CTR = CMPA CTR = CMPB CTR_Dir 8 Event trigger and interrupt (ET) EPWMxINT HiRes PWM (HRPWM) CMPA active (24) EPWMxA EPWMA CMPA shadow (24) CTR=CMPB Dead band (DB) 16 PWM chopper (PC) EPWMxB EPWMB CMPB active (16) CMPB shadow (16) Trip zone (TZ) EPWMxTZINT CTR = ZERO TZ Figure 6-80. eHRPWM Sub-Modules Showing Critical Internal Signal Interconnections Copyright © 2009–2017, Texas Instruments Incorporated Peripheral Information and Electrical Specifications Submit Documentation Feedback Product Folder Links: OMAP-L138 251 OMAP-L138 SPRS586J – JUNE 2009 – REVISED JANUARY 2017 www.ti.com Table 6-127. eHRPWM Module Control and Status Registers Grouped by Submodule eHRPWM0 BYTE ADDRESS eHRPWM1 BYTE ADDRESS ACRONYM SHADOW REGISTER DESCRIPTION Time-Base Submodule Registers 0x01F0 0000 0x01F0 2000 0x01F0 0002 0x01F0 2002 0x01F0 0004 0x01F0 2004 0x01F0 0006 0x01F0 2006 TBCTL No Time-Base Control Register TBSTS No Time-Base Status Register No Extension for HRPWM Phase Register (1) No Time-Base Phase Register TBPHSHR TBPHS 0x01F0 0008 0x01F0 2008 TBCNT No Time-Base Counter Register 0x01F0 000A 0x01F0 200A TBPRD Yes Time-Base Period Register Counter-Compare Submodule Registers 0x01F0 000E 0x01F0 200E CMPCTL No Counter-Compare Control Register 0x01F0 0010 0x01F0 2010 CMPAHR No Extension for HRPWM Counter-Compare A Register (1) 0x01F0 0012 0x01F0 2012 CMPA Yes Counter-Compare A Register 0x01F0 0014 0x01F0 2014 CMPB Yes Counter-Compare B Register 0x01F0 0016 0x01F0 2016 AQCTLA No Action-Qualifier Control Register for Output A (eHRPWMxA) 0x01F0 0018 0x01F0 2018 AQCTLB No Action-Qualifier Control Register for Output B (eHRPWMxB) Action-Qualifier Submodule Registers 0x01F0 001A 0x01F0 201A AQSFRC No Action-Qualifier Software Force Register 0x01F0 001C 0x01F0 201C AQCSFRC Yes Action-Qualifier Continuous S/W Force Register Set Dead-Band Generator Submodule Registers 0x01F0 001E 0x01F0 201E DBCTL No Dead-Band Generator Control Register 0x01F0 0020 0x01F0 2020 DBRED No Dead-Band Generator Rising Edge Delay Count Register 0x01F0 0022 0x01F0 2022 DBFED No Dead-Band Generator Falling Edge Delay Count Register PWM-Chopper Submodule Registers 0x01F0 003C 0x01F0 203C PCCTL No PWM-Chopper Control Register Trip-Zone Submodule Registers 0x01F0 0024 0x01F0 2024 TZSEL No Trip-Zone Select Register 0x01F0 0028 0x01F0 2028 TZCTL No Trip-Zone Control Register 0x01F0 002A 0x01F0 202A TZEINT No Trip-Zone Enable Interrupt Register 0x01F0 002C 0x01F0 202C TZFLG No Trip-Zone Flag Register 0x01F0 002E 0x01F0 202E TZCLR No Trip-Zone Clear Register 0x01F0 0030 0x01F0 2030 TZFRC No Trip-Zone Force Register Event-Trigger Submodule Registers 0x01F0 0032 0x01F0 2032 ETSEL No Event-Trigger Selection Register 0x01F0 0034 0x01F0 0036 0x01F0 2034 ETPS No Event-Trigger Pre-Scale Register 0x01F0 2036 ETFLG No Event-Trigger Flag Register 0x01F0 0038 0x01F0 2038 ETCLR No Event-Trigger Clear Register 0x01F0 003A 0x01F0 203A ETFRC No Event-Trigger Force Register High-Resolution PWM (HRPWM) Submodule Registers 0x01F0 1040 (1) 252 0x01F0 3040 HRCNFG No HRPWM Configuration Register (1) These registers are only available on eHRPWM instances that include the high-resolution PWM (HRPWM) extension; otherwise, these locations are reserved. Peripheral Information and Electrical Specifications Submit Documentation Feedback Product Folder Links: OMAP-L138 Copyright © 2009–2017, Texas Instruments Incorporated OMAP-L138 www.ti.com SPRS586J – JUNE 2009 – REVISED JANUARY 2017 6.29.1 Enhanced Pulse Width Modulator (eHRPWM) Timing PWM refers to PWM outputs on eHRPWM1-6. Table 6-128 shows the PWM timing requirements and Table 6-129, switching characteristics. Table 6-128. Timing Requirements for eHRPWM TEST CONDITIONS 1.3V, 1.2V, 1.1V, 1.0V MIN tw(SYNCIN) Sync input pulse width UNIT MAX Asynchronous 2tc(SCO) cycles Synchronous 2tc(SCO) cycles Table 6-129. Switching Characteristics Over Recommended Operating Conditions for eHRPWM PARAMETER TEST CONDITIONS 1.3V, 1.2V MIN MAX 1.1V MIN 1.0V MAX MIN MAX tw(PWM) Pulse duration, PWMx output high/low tw(SYNCOUT) Sync output pulse width td(PWM)TZA Delay time, trip input active to PWM forced high Delay time, trip input active to PWM forced low no pin load; no additional programmable delay 25 25 25 Delay time, trip input active to PWM Hi-Z no additional programmable delay 20 20 20 td(TZ-PWM)HZ Copyright © 2009–2017, Texas Instruments Incorporated 20 20 26.6 8tc(SCO) 8tc(SCO) 8tc(SCO) UNIT ns cycles ns ns Peripheral Information and Electrical Specifications Submit Documentation Feedback Product Folder Links: OMAP-L138 253 OMAP-L138 SPRS586J – JUNE 2009 – REVISED JANUARY 2017 www.ti.com 6.29.2 Trip-Zone Input Timing tw(TZ) TZ td(TZ-PWM)HZ PWM(A) A. PWM refers to all the PWM pins in the device. The state of the PWM pins after TZ is taken high depends on the PWM recovery software. Figure 6-81. PWM Hi-Z Characteristics Table 6-130. Trip-Zone input Timing Requirements TEST CONDITIONS 1.3V, 1.2V, 1.1V, 1.0V MIN tw(TZ) 254 Pulse duration, TZx input low MAX UNIT Asynchronous 1tc(SCO) cycles Synchronous 2tc(SCO) cycles Peripheral Information and Electrical Specifications Submit Documentation Feedback Product Folder Links: OMAP-L138 Copyright © 2009–2017, Texas Instruments Incorporated OMAP-L138 www.ti.com SPRS586J – JUNE 2009 – REVISED JANUARY 2017 6.30 Timers The timers support the following features: • Configurable as single 64-bit timer or two 32-bit timers • Period timeouts generate interrupts, DMA events or external pin events • 8 32-bit compare registers • Compare matches generate interrupt events • Capture capability • 64-bit Watchdog capability (Timer64P1 only) Table 6-131 lists the timer registers. Table 6-131. Timer Registers TIMER64P 0 BYTE ADDRESS TIMER64P 1 BYTE ADDRESS TIMER64P 2 BYTE ADDRESS TIMER64P 3 BYTE ADDRESS 0x01C2 0000 0x01C2 1000 0x01F0 C000 0x01F0 D000 REV 0x01C2 0004 0x01C2 1004 0x01F0 C004 0x01F0 D004 EMUMGT 0x01C2 0008 0x01C2 1008 0x01F0 C008 0x01F0 D008 0x01C2 000C 0x01C2 100C 0x01F0 C00C 0x01F0 D00C 0x01C2 0010 0x01C2 1010 0x01F0 C010 0x01F0 D010 0x01C2 0014 0x01C2 1014 0x01F0 C014 0x01C2 0018 0x01C2 1018 0x01F0 C018 0x01C2 001C 0x01C2 101C 0x01C2 0020 0x01C2 0024 ACRONYM GPINTGPEN REGISTER DESCRIPTION Revision Register Emulation Management Register GPIO Interrupt and GPIO Enable Register GPDATGPDIR GPIO Data and GPIO Direction Register TIM12 Timer Counter Register 12 0x01F0 D014 TIM34 Timer Counter Register 34 0x01F0 D018 PRD12 Timer Period Register 12 0x01F0 C01C 0x01F0 D01C PRD34 Timer Period Register 34 0x01C2 1020 0x01F0 C020 0x01F0 D020 TCR 0x01C2 1024 0x01F0 C024 0x01F0 D024 TGCR 0x01C2 0028 0x01C2 1028 0x01F0 C028 0x01F0 D028 WDTCR 0x01C2 0034 0x01C2 1034 0x01F0 C034 0x01F0 D034 REL12 Timer Reload Register 12 Timer Control Register Timer Global Control Register Watchdog Timer Control Register 0x01C2 0038 0x01C2 1038 0x01F0 C038 0x01F0 D038 REL34 Timer Reload Register 34 0x01C2 003C 0x01C2 103C 0x01F0 C03C 0x01F0 D03C CAP12 Timer Capture Register 12 0x01C2 0040 0x01C2 1040 0x01F0 C040 0x01F0 D040 CAP34 Timer Capture Register 34 0x01C2 0044 0x01C2 1044 0x01F0 C044 0x01F0 D044 INTCTLSTAT 0x01C2 0060 0x01C2 1060 0x01F0 C060 0x01F0 D060 CMP0 Compare Register 0 0x01C2 0064 0x01C2 1064 0x01F0 C064 0x01F0 D064 CMP1 Compare Register 1 Timer Interrupt Control and Status Register 0x01C2 0068 0x01C2 1068 0x01F0 C068 0x01F0 D068 CMP2 Compare Register 2 0x01C2 006C 0x01C2 106C 0x01F0 C06C 0x01F0 D06C CMP3 Compare Register 3 0x01C2 0070 0x01C2 1070 0x01F0 C070 0x01F0 D070 CMP4 Compare Register 4 0x01C2 0074 0x01C2 1074 0x01F0 C074 0x01F0 D074 CMP5 Compare Register 5 0x01C2 0078 0x01C2 1078 0x01F0 C078 0x01F0 D078 CMP6 Compare Register 6 0x01C2 007C 0x01C2 107C 0x01F0 C07C 0x01F0 D07C CMP7 Compare Register 7 Copyright © 2009–2017, Texas Instruments Incorporated Peripheral Information and Electrical Specifications Submit Documentation Feedback Product Folder Links: OMAP-L138 255 OMAP-L138 SPRS586J – JUNE 2009 – REVISED JANUARY 2017 6.30.1 www.ti.com Timer Electrical Data/Timing Table 6-132. Timing Requirements for Timer Input (1) (2) (see Figure 6-82) 1.3V, 1.2V, 1.1V, 1.0V NO. MIN 1 tc(TM64Px_IN12) Cycle time, TM64Px_IN12 2 tw(TINPH) Pulse duration, TM64Px_IN12 high 0.45C 3 tw(TINPL) Pulse duration, TM64Px_IN12 low 0.45C 4 (1) (2) (3) tt(TM64Px_IN12) MAX UNIT 4P ns 0.55C ns 0.55C ns 0.25P or 10 Transition time, TM64Px_IN12 ns (3) P = OSCIN cycle time in ns. C = TM64P0_IN12 cycle time in ns. Whichever is smaller. P = the period of the applied signal. Maintaining transition times as fast as possible is recommended to improve noise immunity on input signals. 1 2 4 3 4 TM64P0_IN12 Figure 6-82. Timer Timing Table 6-133. Switching Characteristics Over Recommended Operating Conditions for Timer Output NO. 1.3V, 1.2V, 1.1V, 1.0V PARAMETER MIN MAX (1) UNIT 5 tw(TOUTH) Pulse duration, TM64P0_OUT12 high 4P ns 6 tw(TOUTL) Pulse duration, TM64P0_OUT12 low 4P ns (1) P = OSCIN cycle time in ns. For example, when OSCIN frequency is 27 MHz, use P = 37.037 ns. 5 6 TM64P0_OUT12 Figure 6-83. Timer Timing 256 Peripheral Information and Electrical Specifications Submit Documentation Feedback Product Folder Links: OMAP-L138 Copyright © 2009–2017, Texas Instruments Incorporated OMAP-L138 www.ti.com SPRS586J – JUNE 2009 – REVISED JANUARY 2017 6.31 Real Time Clock (RTC) The RTC provides a time reference to an application running on the device. The current date and time is tracked in a set of counter registers that update once per second. The time can be represented in 12-hour or 24-hour mode. The calendar and time registers are buffered during reads and writes so that updates do not interfere with the accuracy of the time and date. Alarms are available to interrupt the CPU at a particular time, or at periodic time intervals, such as once per minute or once per day. In addition, the RTC can interrupt the CPU every time the calendar and time registers are updated, or at programmable periodic intervals. The real-time clock (RTC) provides the following features: • 100-year calendar (xx00 to xx99) • Counts seconds, minutes, hours, day of the week, date, month, and year with leap year compensation • Binary-coded-decimal (BCD) representation of time, calendar, and alarm • 12-hour clock mode (with AM and PM) or 24-hour clock mode • Alarm interrupt • Periodic interrupt • Single interrupt to the CPU • Supports external 32.768-kHz crystal or external clock source of the same frequency • Separate isolated power supply Figure 6-84 shows a block diagram of the RTC. RTC_XI Counter 32 kHz Oscillator Compensation Seconds Minutes Week Days XTAL RTC_XO Hours Days Months Years Oscillator Alarm Alarm Interrupts Timer Periodic Interrupts Figure 6-84. Real-Time Clock Block Diagram Copyright © 2009–2017, Texas Instruments Incorporated Peripheral Information and Electrical Specifications Submit Documentation Feedback Product Folder Links: OMAP-L138 257 OMAP-L138 SPRS586J – JUNE 2009 – REVISED JANUARY 2017 www.ti.com 6.31.1 Clock Source The clock reference for the RTC is an external 32.768-kHz crystal or an external clock source of the same frequency. The RTC also has a separate power supply that is isolated from the rest of the system. When the CPU and other peripherals are without power, the RTC can remain powered to preserve the current time and calendar information. Even if the RTC is not used, it must remain powered when the rest of the device is powered. The source for the RTC reference clock may be provided by a crystal or by an external clock source. The RTC has an internal oscillator buffer to support direct operation with a crystal. The crystal is connected between pins RTC_XI and RTC_XO. RTC_XI is the input to the on-chip oscillator and RTC_XO is the output from the oscillator back to the crystal. An external 32.768-kHz clock source may be used instead of a crystal. In such a case, the clock source is connected to RTC_XI, and RTC_XO is left unconnected. If the RTC is not used, the RTC_XI pin should be held either low or high, RTC_XO should be left unconnected, RTC_CVDD should be connected to the device CVDD, and RTC_VSS should remain grounded. CVDD RTC Power Source RTC_CVDD C2 XTAL 32.768 kHz RTC_XI RTC_XO 32K OSC C1 RealTime Clock (RTC) Module RTC_VSS Isolated RTC Power Domain Figure 6-85. Clock Source 258 Peripheral Information and Electrical Specifications Submit Documentation Feedback Product Folder Links: OMAP-L138 Copyright © 2009–2017, Texas Instruments Incorporated OMAP-L138 www.ti.com SPRS586J – JUNE 2009 – REVISED JANUARY 2017 6.31.2 Real-Time Clock Register Descriptions Table 6-134. Real-Time Clock (RTC) Registers BYTE ADDRESS ACRONYM 0x01C2 3000 SECOND Seconds Register 0x01C2 3004 MINUTE Minutes Register 0x01C2 3008 HOUR 0x01C2 300C DAY 0x01C2 3010 MONTH 0x01C2 3014 YEAR Year Register 0x01C2 3018 DOTW Day of the Week Register 0x01C2 3020 ALARMSECOND Alarm Seconds Register 0x01C2 3024 ALARMMINUTE Alarm Minutes Register 0x01C2 3028 ALARMHOUR Alarm Hours Register 0x01C2 302C ALARMDAY Alarm Days Register 0x01C2 3030 ALARMMONTH 0x01C2 3034 ALARMYEAR 0x01C2 3040 CTRL Control Register 0x01C2 3044 STATUS Status Register 0x01C2 3048 INTERRUPT 0x01C2 304C COMPLSB Compensation (LSB) Register 0x01C2 3050 COMPMSB Compensation (MSB) Register 0x01C2 3054 OSC 0x01C2 3060 SCRATCH0 Scratch 0 (General-Purpose) Register 0x01C2 3064 SCRATCH1 Scratch 1 (General-Purpose) Register 0x01C2 3068 SCRATCH2 Scratch 2 (General-Purpose) Register 0x01C2 306C KICK0 Kick 0 (Write Protect) Register 0x01C2 3070 KICK1 Kick 1 (Write Protect) Register Copyright © 2009–2017, Texas Instruments Incorporated REGISTER DESCRIPTION Hours Register Day of the Month Register Month Register Alarm Months Register Alarm Years Register Interrupt Enable Register Oscillator Register Peripheral Information and Electrical Specifications Submit Documentation Feedback Product Folder Links: OMAP-L138 259 OMAP-L138 SPRS586J – JUNE 2009 – REVISED JANUARY 2017 www.ti.com 6.32 General-Purpose Input/Output (GPIO) The GPIO peripheral provides general-purpose pins that can be configured as either inputs or outputs. When configured as an output, a write to an internal register can control the state driven on the output pin. When configured as an input, the state of the input is detectable by reading the state of an internal register. In addition, the GPIO peripheral can produce CPU interrupts and EDMA events in different interrupt/event generation modes. The GPIO peripheral provides generic connections to external devices. The GPIO pins are grouped into banks of 16 pins per bank (i.e., bank 0 consists of GPIO [0:15]). The device GPIO peripheral supports the following: • Up to 144 Pins configurable as GPIO • External Interrupt and DMA request Capability – Every GPIO pin may be configured to generate an interrupt request on detection of rising and/or falling edges on the pin. – The interrupt requests within each bank are combined (logical or) to create eight unique bank level interrupt requests. – The bank level interrupt service routine may poll the INTSTATx register for its bank to determine which pin(s) have triggered the interrupt. – GPIO Banks 0, 1, 2, 3, 4, 5, 6, 7, and 8 Interrupts assigned to ARM INTC Interrupt Requests 42, 43, 44, 45, 46, 47, 48, 49, and 50 respectively – GPIO Banks 0, 1, 2, 3, 4, 5, 6, 7, and 8 Interrupts assigned to DSP Events 65, 41, 49, 52, 54, 59, 62, 72, and 75 respectively – GPIO Banks 0, 1, 2, 3, 4, and 5 are assigned to EDMA events 6, 7, 22, 23, 28, 29, and 29 respectively on Channel Controller 0 and GPIO Banks 6, 7, and 8 are assigned to EDMA events 16, 17, and 18 respectively on Channel Controller 1. • Set/clear functionality: Firmware writes 1 to corresponding bit position(s) to set or to clear GPIO signal(s). This allows multiple firmware processes to toggle GPIO output signals without critical section protection (disable interrupts, program GPIO, re-enable interrupts, to prevent context switching to anther process during GPIO programming). • Separate Input/Output registers • Output register in addition to set/clear so that, if preferred by firmware, some GPIO output signals can be toggled by direct write to the output register(s). • Output register, when read, reflects output drive status. This, in addition to the input register reflecting pin status and open-drain I/O cell, allows wired logic be implemented. The memory map for the GPIO registers is shown in Table 6-135. 260 Peripheral Information and Electrical Specifications Submit Documentation Feedback Product Folder Links: OMAP-L138 Copyright © 2009–2017, Texas Instruments Incorporated OMAP-L138 www.ti.com SPRS586J – JUNE 2009 – REVISED JANUARY 2017 6.32.1 GPIO Register Description(s) Table 6-135. GPIO Registers BYTE ADDRESS ACRONYM 0x01E2 6000 REV 0x01E2 6004 RESERVED 0x01E2 6008 BINTEN REGISTER DESCRIPTION Peripheral Revision Register Reserved GPIO Interrupt Per-Bank Enable Register GPIO Banks 0 and 1 0x01E2 6010 DIR01 0x01E2 6014 OUT_DATA01 GPIO Banks 0 and 1 Direction Register GPIO Banks 0 and 1 Output Data Register 0x01E2 6018 SET_DATA01 GPIO Banks 0 and 1 Set Data Register 0x01E2 601C CLR_DATA01 GPIO Banks 0 and 1 Clear Data Register 0x01E2 6020 IN_DATA01 GPIO Banks 0 and 1 Input Data Register 0x01E2 6024 SET_RIS_TRIG01 GPIO Banks 0 and 1 Set Rising Edge Interrupt Register 0x01E2 6028 CLR_RIS_TRIG01 GPIO Banks 0 and 1 Clear Rising Edge Interrupt Register 0x01E2 602C SET_FAL_TRIG01 GPIO Banks 0 and 1 Set Falling Edge Interrupt Register 0x01E2 6030 CLR_FAL_TRIG01 GPIO Banks 0 and 1 Clear Falling Edge Interrupt Register 0x01E2 6034 INTSTAT01 0x01E2 6038 DIR23 0x01E2 603C OUT_DATA23 GPIO Banks 2 and 3 Output Data Register 0x01E2 6040 SET_DATA23 GPIO Banks 2 and 3 Set Data Register 0x01E2 6044 CLR_DATA23 GPIO Banks 2 and 3 Clear Data Register 0x01E2 6048 IN_DATA23 GPIO Banks 2 and 3 Input Data Register GPIO Banks 0 and 1 Interrupt Status Register GPIO Banks 2 and 3 GPIO Banks 2 and 3 Direction Register 0x01E2 604C SET_RIS_TRIG23 GPIO Banks 2 and 3 Set Rising Edge Interrupt Register 0x01E2 6050 CLR_RIS_TRIG23 GPIO Banks 2 and 3 Clear Rising Edge Interrupt Register 0x01E2 6054 SET_FAL_TRIG23 GPIO Banks 2 and 3 Set Falling Edge Interrupt Register 0x01E2 6058 CLR_FAL_TRIG23 GPIO Banks 2 and 3 Clear Falling Edge Interrupt Register 0x01E2 605C INTSTAT23 0x01E2 6060 DIR45 0x01E2 6064 OUT_DATA45 GPIO Banks 4 and 5 Output Data Register 0x01E2 6068 SET_DATA45 GPIO Banks 4 and 5 Set Data Register 0x01E2 606C CLR_DATA45 GPIO Banks 4 and 5 Clear Data Register 0x01E2 6070 IN_DATA45 GPIO Banks 4 and 5 Input Data Register 0x01E2 6074 SET_RIS_TRIG45 GPIO Banks 4 and 5 Set Rising Edge Interrupt Register 0x01E2 6078 CLR_RIS_TRIG45 GPIO Banks 4 and 5 Clear Rising Edge Interrupt Register 0x01E2 607C SET_FAL_TRIG45 GPIO Banks 4 and 5 Set Falling Edge Interrupt Register 0x01E2 6080 CLR_FAL_TRIG45 GPIO Banks 4 and 5 Clear Falling Edge Interrupt Register 0x01E2 6084 INTSTAT45 GPIO Banks 2 and 3 Interrupt Status Register GPIO Banks 4 and 5 Copyright © 2009–2017, Texas Instruments Incorporated GPIO Banks 4 and 5 Direction Register GPIO Banks 4 and 5 Interrupt Status Register Peripheral Information and Electrical Specifications Submit Documentation Feedback Product Folder Links: OMAP-L138 261 OMAP-L138 SPRS586J – JUNE 2009 – REVISED JANUARY 2017 www.ti.com Table 6-135. GPIO Registers (continued) BYTE ADDRESS ACRONYM REGISTER DESCRIPTION GPIO Banks 6 and 7 0x01E2 6088 DIR67 0x01E2 608C OUT_DATA67 GPIO Banks 6 and 7 Direction Register GPIO Banks 6 and 7 Output Data Register 0x01E2 6090 SET_DATA67 GPIO Banks 6 and 7 Set Data Register 0x01E2 6094 CLR_DATA67 GPIO Banks 6 and 7 Clear Data Register 0x01E2 6098 IN_DATA67 GPIO Banks 6 and 7 Input Data Register 0x01E2 609C SET_RIS_TRIG67 GPIO Banks 6 and 7 Set Rising Edge Interrupt Register 0x01E2 60A0 CLR_RIS_TRIG67 GPIO Banks 6 and 7 Clear Rising Edge Interrupt Register 0x01E2 60A4 SET_FAL_TRIG67 GPIO Banks 6 and 7 Set Falling Edge Interrupt Register 0x01E2 60A8 CLR_FAL_TRIG67 GPIO Banks 6 and 7 Clear Falling Edge Interrupt Register 0x01E2 60AC INTSTAT67 0x01E2 60B0 DIR8 0x01E2 60B4 OUT_DATA8 GPIO Bank 8 Output Data Register GPIO Banks 6 and 7 Interrupt Status Register GPIO Bank 8 262 GPIO Bank 8 Direction Register 0x01E2 60B8 SET_DATA8 GPIO Bank 8 Set Data Register 0x01E2 60BC CLR_DATA8 GPIO Bank 8 Clear Data Register 0x01E2 60C0 IN_DATA8 GPIO Bank 8 Input Data Register 0x01E2 60C4 SET_RIS_TRIG8 GPIO Bank 8 Set Rising Edge Interrupt Register 0x01E2 60C8 CLR_RIS_TRIG8 GPIO Bank 8 Clear Rising Edge Interrupt Register 0x01E2 60CC SET_FAL_TRIG8 GPIO Bank 8 Set Falling Edge Interrupt Register 0x01E2 60D0 CLR_FAL_TRIG8 GPIO Bank 8 Clear Falling Edge Interrupt Register 0x01E2 60D4 INTSTAT8 GPIO Bank 8 Interrupt Status Register Peripheral Information and Electrical Specifications Submit Documentation Feedback Product Folder Links: OMAP-L138 Copyright © 2009–2017, Texas Instruments Incorporated OMAP-L138 www.ti.com 6.32.2 SPRS586J – JUNE 2009 – REVISED JANUARY 2017 GPIO Peripheral Input/Output Electrical Data/Timing Table 6-136. Timing Requirements for GPIO Inputs (1) (see Figure 6-86) 1.3V, 1.2V, 1.1V, 1.0V NO. MIN MAX UNIT 1 tw(GPIH) Pulse duration, GPn[m] as input high 2C (1) (2) ns 2 tw(GPIL) Pulse duration, GPn[m] as input low 2C (1) (2) ns (1) The pulse width given is sufficient to generate a CPU interrupt or an EDMA event. However, if a user wants to have the device recognize the GPIx changes through software polling of the GPIO register, the GPIx duration must be extended to allow the device enough time to access the GPIO register through the internal bus. C=SYSCLK4 period in ns. (2) Table 6-137. Switching Characteristics Over Recommended Operating Conditions for GPIO Outputs (see Figure 6-86) NO. 3 tw(GPOH) 4 (1) 1.3V, 1.2V, 1.1V, 1.0V PARAMETER tw(GPOL) MIN 2C (1) Pulse duration, GPn[m] as output high Pulse duration, GPn[m] as output low 2C MAX UNIT (2) ns (1) (2) ns This parameter value should not be used as a maximum performance specification. Actual performance of back-to-back accesses of the GPIO is dependent upon internal bus activity. C=SYSCLK4 period in ns. (2) 2 1 GPn[m] as input 4 3 GPn[m] as output Figure 6-86. GPIO Port Timing 6.32.3 GPIO Peripheral External Interrupts Electrical Data/Timing Table 6-138. Timing Requirements for External Interrupts (1) (see Figure 6-87) 1.3V, 1.2V, 1.1V, 1.0V NO. 1 2 (1) (2) MIN tw(ILOW) tw(IHIGH) 2C (1) Width of the external interrupt pulse low Width of the external interrupt pulse high 2C MAX UNIT (2) ns (1) (2) ns The pulse width given is sufficient to generate an interrupt or an EDMA event. However, if a user wants to have the device recognize the GPIO changes through software polling of the GPIO register, the GPIO duration must be extended to allow the device enough time to access the GPIO register through the internal bus. C=SYSCLK4 period in ns. 2 1 GPn[m] as input Figure 6-87. GPIO External Interrupt Timing Copyright © 2009–2017, Texas Instruments Incorporated Peripheral Information and Electrical Specifications Submit Documentation Feedback Product Folder Links: OMAP-L138 263 OMAP-L138 SPRS586J – JUNE 2009 – REVISED JANUARY 2017 www.ti.com 6.33 Programmable Real-Time Unit Subsystem (PRUSS) The Programmable Real-Time Unit Subsystem (PRUSS) consists of • Two Programmable Real-Time Units (PRU0 and PRU1) and their associated memories • An Interrupt Controller (INTC) for handling system interrupt events. The INTC also supports posting events back to the device level host CPU. • A Switched Central Resource (SCR) for connecting the various internal and external masters to the resources inside the PRUSS. The two PRUs can operate completely independently or in coordination with each other. The PRUs can also work in coordination with the device level host CPU. This is determined by the nature of the program which is loaded into the PRUs instruction memory. Several different signaling mechanisms are available between the two PRUs and the device level host CPU. The PRUs are optimized for performing embedded tasks that require manipulation of packed memory mapped data structures, handling of system events that have tight realtime constraints and interfacing with systems external to the device. The PRUSS comprises various distinct addressable regions. Externally the subsystem presents a single 64Kbyte range of addresses. The internal interconnect bus (also called switched central resource, or SCR) of the PRUSS decodes accesses for each of the individual regions. The PRUSS memory map is documented in Table 6-139 and in Table 6-140. Note that these two memory maps are implemented inside the PRUSS and are local to the components of the PRUSS. Table 6-139. Programmable Real-Time Unit Subsystem (PRUSS) Local Instruction Space Memory Map BYTE ADDRESS PRU0 PRU1 0x0000 0000 - 0x0000 0FFF PRU0 Instruction RAM PRU1 Instruction RAM Table 6-140. Programmable Real-Time Unit Subsystem (PRUSS) Local Data Space Memory Map BYTE ADDRESS PRU1 (1) Data RAM 1 (1) 0x0000 0200 - 0x0000 1FFF Reserved Reserved 0x0000 2000 - 0x0000 21FF Data RAM 1 (1) Data RAM 0 (1) 0x0000 2200 - 0x0000 3FFF Reserved Reserved 0x0000 0000 - 0x0000 01FF (1) PRU0 Data RAM 0 0x0000 4000 - 0x0000 6FFF INTC Registers INTC Registers 0x0000 7000 - 0x0000 73FF PRU0 Control Registers PRU0 Control Registers 0x0000 7400 - 0x0000 77FF Reserved Reserved 0x0000 7800 - 0x0000 7BFF PRU1 Control Registers PRU1 Control Registers 0x0000 7C00 - 0xFFFF FFFF Reserved Reserved Note that PRU0 accesses Data RAM0 at address 0x0000 0000, also PRU1 accesses Data RAM1 at address 0x0000 0000. Data RAM0 is intended to be the primary data memory for PRU0 and Data RAM1 is intended to be the primary data memory for PRU1. However for passing information between PRUs, each PRU can access the data ram of the ‘other’ PRU through address 0x0000 2000. The global view of the PRUSS internal memories and control ports is documented in Table 6-141. The offset addresses of each region are implemented inside the PRUSS but the global device memory mapping places the PRUSS slave port in the address range 0x01C3 0000-0x01C3 FFFF. The PRU0 and PRU1 can use either the local or global addresses to access their internal memories, but using the local addresses will provide access time several cycles faster than using the global addresses. This is because when accessing via the global address the access needs to be routed through the switch fabric outside PRUSS and back in through the PRUSS slave port. 264 Peripheral Information and Electrical Specifications Submit Documentation Feedback Product Folder Links: OMAP-L138 Copyright © 2009–2017, Texas Instruments Incorporated OMAP-L138 www.ti.com SPRS586J – JUNE 2009 – REVISED JANUARY 2017 Table 6-141. Programmable Real-Time Unit Subsystem (PRUSS) Global Memory Map BYTE ADDRESS REGION 0x01C3 0000 - 0x01C3 01FF Data RAM 0 0x01C3 0200 - 0x01C3 1FFF Reserved 0x01C3 2000 - 0x01C3 21FF Data RAM 1 0x01C3 2200 - 0x01C3 3FFF Reserved 0x01C3 4000 - 0x01C3 6FFF INTC Registers 0x01C3 7000 - 0x01C3 73FF PRU0 Control Registers 0x01C3 7400 - 0x01C3 77FF PRU0 Debug Registers 0x01C3 7800 - 0x01C3 7BFF PRU1 Control Registers 0x01C3 7C00 - 0x01C3 7FFF PRU1 Debug Registers 0x01C3 8000 - 0x01C3 8FFF PRU0 Instruction RAM 0x01C3 9000 - 0x01C3 BFFF Reserved 0x01C3 C000 - 0x01C3 CFFF PRU1 Instruction RAM 0x01C3 D000 - 0x01C3 FFFF Reserved Each of the PRUs can access the rest of the device memory (including memory mapped peripheral and configuration registers) using the global memory space addresses 6.33.1 PRUSS Register Descriptions Table 6-142. Programmable Real-Time Unit Subsystem (PRUSS) Control / Status Registers PRU0 BYTE ADDRESS PRU1 BYTE ADDRESS ACRONYM 0x01C3 7000 0x01C3 7800 CONTROL PRU Control Register REGISTER DESCRIPTION 0x01C3 7004 0x01C3 7804 STATUS PRU Status Register 0x01C3 7008 0x01C3 7808 WAKEUP PRU Wakeup Enable Register 0x01C3 700C 0x01C3 780C CYCLCNT PRU Cycle Count 0x01C3 7010 0x01C3 7810 STALLCNT PRU Stall Count 0x01C3 7020 0x01C3 7820 CONTABBLKIDX0 PRU Constant Table Block Index Register 0 0x01C3 7028 0x01C3 7828 CONTABPROPTR0 PRU Constant Table Programmable Pointer Register 0 0x01C3 702C 0x01C3 782C CONTABPROPTR1 PRU Constant Table Programmable Pointer Register 1 0x01C37400 0x01C3747C 0x01C3 7C00 0x01C3 7C7C INTGPR0 – INTGPR31 PRU Internal General Purpose Register 0 (for Debug) 0x01C37480 0x01C374FC 0x01C3 7C80 0x01C3 7CFC INTCTER0 – INTCTER31 PRU Internal General Purpose Register 0 (for Debug) Table 6-143. Programmable Real-Time Unit Subsystem Interrupt Controller (PRUSS INTC) Registers BYTE ADDRESS ACRONYM 0x01C3 4000 REVID REGISTER DESCRIPTION 0x01C3 4004 CONTROL 0x01C3 4010 GLBLEN 0x01C3 401C GLBLNSTLVL Global Nesting Level Register 0x01C3 4020 STATIDXSET System Interrupt Status Indexed Set Register 0x01C3 4024 STATIDXCLR System Interrupt Status Indexed Clear Register 0x01C3 4028 ENIDXSET System Interrupt Enable Indexed Set Register 0x01C3 402C ENIDXCLR System Interrupt Enable Indexed Clear Register Revision ID Register Control Register Global Enable Register 0x01C3 4034 HSTINTENIDXSET Host Interrupt Enable Indexed Set Register 0x01C3 4038 HSTINTENIDXCLR Host Interrupt Enable Indexed Clear Register 0x01C3 4080 GLBLPRIIDX 0x01C3 4200 STATSETINT0 Copyright © 2009–2017, Texas Instruments Incorporated Global Prioritized Index Register System Interrupt Status Raw/Set Register 0 Peripheral Information and Electrical Specifications Submit Documentation Feedback Product Folder Links: OMAP-L138 265 OMAP-L138 SPRS586J – JUNE 2009 – REVISED JANUARY 2017 www.ti.com Table 6-143. Programmable Real-Time Unit Subsystem Interrupt Controller (PRUSS INTC) Registers (continued) 266 BYTE ADDRESS ACRONYM 0x01C3 4204 STATSETINT1 System Interrupt Status Raw/Set Register 1 REGISTER DESCRIPTION 0x01C3 4280 STATCLRINT0 System Interrupt Status Enabled/Clear Register 0 0x01C3 4284 STATCLRINT1 System Interrupt Status Enabled/Clear Register 1 0x01C3 4300 ENABLESET0 System Interrupt Enable Set Register 0 0x01C3 4304 ENABLESET1 System Interrupt Enable Set Register 1 0x01C3 4380 ENABLECLR0 System Interrupt Enable Clear Register 0 0x01C3 4384 ENABLECLR1 System Interrupt Enable Clear Register 1 0x01C3 4400 - 0x01C3 4440 CHANMAP0 - CHANMAP15 0x01C3 4800 - 0x01C3 4808 HOSTMAP0 - HOSTMAP2 0x01C3 4900 - 0x01C3 4928 HOSTINTPRIIDX0 HOSTINTPRIIDX9 0x01C3 4D00 POLARITY0 System Interrupt Polarity Register 0 0x01C3 4D04 POLARITY1 System Interrupt Polarity Register 1 0x01C3 4D80 TYPE0 System Interrupt Type Register 0 0x01C3 4D84 TYPE1 System Interrupt Type Register 1 0x01C3 5100 - 0x01C3 5128 HOSTINTNSTLVL0HOSTINTNSTLVL9 0x01C3 5500 HOSTINTEN Channel Map Registers 0-15 Host Map Register 0-2 Host Interrupt Prioritized Index Registers 0-9 Host Interrupt Nesting Level Registers 0-9 Host Interrupt Enable Register Peripheral Information and Electrical Specifications Submit Documentation Feedback Product Folder Links: OMAP-L138 Copyright © 2009–2017, Texas Instruments Incorporated OMAP-L138 www.ti.com SPRS586J – JUNE 2009 – REVISED JANUARY 2017 6.34 Emulation Logic This section describes the steps to use a third party debugger on the ARM926EJ-S within the device. The debug capabilities and features for DSP and ARM are as shown below. DSP: • Basic Debug – Execution Control – System Visibility • Real-Time Debug – Interrupts serviced while halted – Low/non-intrusive system visibility while running • Advanced Debug – Global Start – Global Stop – Specify targeted memory level(s) during memory accesses – HSRTDX (High Speed Real Time Data eXchange) • Advanced System Control – Subsystem reset via debug – Peripheral notification of debug events – Cache-coherent debug accesses • Analysis Actions – Stop program execution – Generate debug interrupt – Benchmarking with counters – External trigger generation – Debug state machine state transition – Combinational and Sequential event generation • Analysis Events – Program event detection – Data event detection – External trigger Detection – System event detection (i.e. cache miss) – Debug state machine state detection • Analysis Configuration – Application access – Debugger access Table 6-144. DSP Debug Features Category Hardware Feature Availability Software breakpoint Unlimited Up to 10 HWBPs, including: Basic Debug Hardware breakpoint 4 precise (1) HWBPs inside DSP core and one of them is associated with a counter. 2 imprecise (1) HWBPs from AET. 4 imprecise (1) (1) HWBPs from AET which are shared for watch point. Precise hardware breakpoints will halt the processor immediately prior to the execution of the selected instruction. Imprecise breakpoints will halt the processor some number of cycles after the selected instruction depending on device conditions. Copyright © 2009–2017, Texas Instruments Incorporated Peripheral Information and Electrical Specifications Submit Documentation Feedback Product Folder Links: OMAP-L138 267 OMAP-L138 SPRS586J – JUNE 2009 – REVISED JANUARY 2017 www.ti.com Table 6-144. DSP Debug Features (continued) Category Analysis Hardware Feature Availability Watch point Up to 4 watch points, which are shared with HWBPs, and can also be used as 2 watch points with data (32 bits) Watch point with Data Up to 2, Which can also be used as 4 watch points. Counters/timers 1x64-bits (cycle only) + 2x32-bits (water mark counters) External Event Trigger In 1 External Event Trigger Out 1 ARM: • Basic Debug – Execution Control – System Visibility • Advanced Debug – Global Start – Global Stop • Advanced System Control – Subsystem reset via debug – Peripheral notification of debug events – Cache-coherent debug accesses • Program Trace – Program flow corruption – Code coverage – Path coverage – Thread/interrupt synchronization problems • Data Trace – Memory corruption • Timing Trace – Profiling • Analysis Actions – Stop program execution – Control trace streams – Generate debug interrupt – Benchmarking with counters – External trigger generation – Debug state machine state transition – Combinational and Sequential event generation • Analysis Events – Program event detection – Data event detection – External trigger Detection – System event detection (i.e. cache miss) – Debug state machine state detection • Analysis Configuration – Application access – Debugger access 268 Peripheral Information and Electrical Specifications Submit Documentation Feedback Product Folder Links: OMAP-L138 Copyright © 2009–2017, Texas Instruments Incorporated OMAP-L138 www.ti.com SPRS586J – JUNE 2009 – REVISED JANUARY 2017 Table 6-145. ARM Debug Features Category Hardware Feature Availability Software breakpoint Unlimited Up to 14 HWBPs, including: 2 precise (1) HWBP inside ARM core which are shared with watch points. Basic Debug Hardware breakpoint 8 imprecise (1) HWBPs from ETM’s address comparators, which are shared with trace function, and can be used as watch points. 4 imprecise (1) HWBPs from ICECrusher. Up to 6 watch points, including: 2 from ARM core which is shared with HWBPs and can be associated with a data. Watch point 8 from ETM’s address comparators, which are shared with trace function, and HWBPs. 2 from ARM core which is shared with HWBPs. Analysis Trace Control 8 watch points from ETM can be associated with a data comparator, and ETM has total 4 data comparators. Counters/timers 3x32-bit (1 cycle ; 2 event) External Event Trigger In 1 External Event Trigger Out 1 Internal Cross-Triggering Signals One between ARM and DSP Address range for trace 4 Data qualification for trace 2 System events for trace control 20 Counters/Timers for trace control 2x16-bit State Machines/Sequencers 1x3-State State Machine Context/Thread ID Comparator 1 Independent trigger control units 12 Capture depth PC 4k bytes ETB Capture depth PC + Timing 4k bytes ETB Application accessible Y On-chip Trace Capture (1) Watch point with Data Precise hardware breakpoints will halt the processor immediately prior to the execution of the selected instruction. Imprecise breakpoints will halt the processor some number of cycles after the selected instruction depending on device conditions. 6.34.1 JTAG Port Description The device target debug interface uses the five standard IEEE 1149.1(JTAG) signals (TRST, TCK, TMS, TDI, and TDO), a return clock (RTCK) due to the clocking requirements of the ARM926EJ-S and emulation signals EMU0 and EMU1. TRST holds the debug and boundary scan logic in reset (normal DSP operation) when pulled low (its default state). Since TRST has an internal pull-down resistor, this ensures that at power up the device functions in its normal (non-test) operation mode if TRST is not connected. Otherwise, TRST should be driven inactive by the emulator or boundary scan controller. Boundary scan test cannot be performed while the TRST pin is pulled low. Table 6-146. JTAG Port Description PIN TYPE NAME DESCRIPTION TRST I Test Logic Reset When asserted (active low) causes all test and debug logic in the device to be reset along with the IEEE 1149.1 interface TCK I Test Clock This is the test clock used to drive an IEEE 1149.1 TAP state machine and logic.Depending on the emulator attached to , this is a free running clock or a gated clock depending on RTCK monitoring. RTCK O Returned Test Clock TMS I Test Mode Select Copyright © 2009–2017, Texas Instruments Incorporated Synchronized TCK. Depending on the emulator attached to, the JTAG signals are clocked from RTCK or RTCK is monitored by the emulator to gate TCK. Directs the next state of the IEEE 1149.1 test access port state machine Peripheral Information and Electrical Specifications Submit Documentation Feedback Product Folder Links: OMAP-L138 269 OMAP-L138 SPRS586J – JUNE 2009 – REVISED JANUARY 2017 www.ti.com Table 6-146. JTAG Port Description (continued) PIN TYPE NAME TDI I Test Data Input DESCRIPTION Scan data input to the device TDO O Test Data Output EMU0 I/O Emulation 0 Scan data output of the device Channel 0 trigger + HSRTDX EMU1 I/O Emulation 1 Channel 1 trigger + HSRTDX 6.34.2 Scan Chain Configuration Parameters Table 6-147 shows the TAP configuration details required to configure the router/emulator for this device. Table 6-147. JTAG Port Description Router Port ID Default TAP TAP Name Tap IR Length 17 18 No C674x 38 No ARM926 19 4 No ETB 4 The router is revision C and has a 6-bit IR length. 6.34.3 Initial Scan Chain Configuration The first level of debug interface that sees the scan controller is the TAP router module. The debugger can configure the TAP router for serially linking up to 16 TAP controllers or individually scanning one of the TAP controllers without disrupting the IR state of the other TAPs. 6.34.3.1 Adding TAPS to the Scan Chain The TAP router must be programmed to add additional TAPs to the scan chain. The following JTAG scans must be completed to add the ARM926EJ-S to the scan chain. A Power-On Reset (POR) or the JTAG Test-Logic Reset state configures the TAP router to contain only the router’s TAP. Router TDO TDI CLK Steps TMS Router ARM926EJ-S/ETM Figure 6-88. Adding ARM926EJ-S to the scan chain Pre-amble: The device whose data reaches the emulator first is listed first in the board configuration file. This device is a pre-amble for all the other devices. This device has the lowest device ID. Post-amble: The device whose data reaches the emulator last is listed last in the board configuration file. This device is a post-amble for all the other devices. This device has the highest device ID. 270 Peripheral Information and Electrical Specifications Submit Documentation Feedback Product Folder Links: OMAP-L138 Copyright © 2009–2017, Texas Instruments Incorporated OMAP-L138 www.ti.com • • • • • • • • SPRS586J – JUNE 2009 – REVISED JANUARY 2017 Function : Update the JTAG preamble and post-amble counts. – Parameter : The IR pre-amble count is '0'. – Parameter : The IR post-amble count is '0'. – Parameter : The DR pre-amble count is '0'. – Parameter : The DR post-amble count is '0'. – Parameter : The IR main count is '6'. – Parameter : The DR main count is '1'. Function : Do a send-only JTAG IR/DR scan. – Parameter : The route to JTAG shift state is 'shortest transition'. – Parameter : The JTAG shift state is 'shift-ir'. – Parameter : The JTAG destination state is 'pause-ir'. – Parameter : The bit length of the command is '6'. – Parameter : The send data value is '0x00000007'. – Parameter : The actual receive data is 'discarded'. Function : Do a send-only JTAG IR/DR scan. – Parameter : The route to JTAG shift state is 'shortest transition'. – Parameter : The JTAG shift state is 'shift-dr'. – Parameter : The JTAG destination state is 'pause-dr'. – Parameter : The bit length of the command is '8'. – Parameter : The send data value is '0x00000089'. – Parameter : The actual receive data is 'discarded'. Function : Do a send-only JTAG IR/DR scan. – Parameter : The route to JTAG shift state is 'shortest transition'. – Parameter : The JTAG shift state is 'shift-ir'. – Parameter : The JTAG destination state is 'pause-ir'. – Parameter : The bit length of the command is '6'. – Parameter : The send data value is '0x00000002'. – Parameter : The actual receive data is 'discarded'. Function : Embed the port address in next command. – Parameter : The port address field is '0x0f000000'. – Parameter : The port address value is '3'. Function : Do a send-only JTAG IR/DR scan. – Parameter : The route to JTAG shift state is 'shortest transition'. – Parameter : The JTAG shift state is 'shift-dr'. – Parameter : The JTAG destination state is 'pause-dr'. – Parameter : The bit length of the command is '32'. – Parameter : The send data value is '0xa2002108'. – Parameter : The actual receive data is 'discarded'. Function : Do a send-only all-ones JTAG IR/DR scan. – Parameter : The JTAG shift state is 'shift-ir'. – Parameter : The JTAG destination state is 'run-test/idle'. – Parameter : The bit length of the command is '6'. – Parameter : The send data value is 'all-ones'. – Parameter : The actual receive data is 'discarded'. Function : Wait for a minimum number of TCLK pulses. – Parameter : The count of TCLK pulses is '10'. Copyright © 2009–2017, Texas Instruments Incorporated Peripheral Information and Electrical Specifications Submit Documentation Feedback Product Folder Links: OMAP-L138 271 OMAP-L138 SPRS586J – JUNE 2009 – REVISED JANUARY 2017 • www.ti.com Function : Update the JTAG preamble and post-amble counts. – Parameter : The IR pre-amble count is '0'. – Parameter : The IR post-amble count is '6'. – Parameter : The DR pre-amble count is '0'. – Parameter : The DR post-amble count is '1'. – Parameter : The IR main count is '4'. – Parameter : The DR main count is '1'. The initial scan chain contains only the TAP router module. The following steps must be completed in order to add ETB TAP to the scan chain. Router TDI ARM926EJ-S/ETM TDO CLK Steps TMS Router • • • • 272 ARM926EJ-S/ETM ETB Figure 6-89. Adding ETB to the scan chain Function : Do a send-only JTAG IR/DR scan. – Parameter : The route to JTAG shift state is 'shortest transition'. – Parameter : The JTAG shift state is 'shift-ir'. – Parameter : The JTAG destination state is 'pause-ir'. – Parameter : The bit length of the command is '6'. – Parameter : The send data value is '0x00000007'. – Parameter : The actual receive data is 'discarded'. Function : Do a send-only JTAG IR/DR scan. – Parameter : The route to JTAG shift state is 'shortest transition'. – Parameter : The JTAG shift state is 'shift-dr'. – Parameter : The JTAG destination state is 'pause-dr'. – Parameter : The bit length of the command is '8'. – Parameter : The send data value is '0x00000089'. – Parameter : The actual receive data is 'discarded'. Function : Do a send-only JTAG IR/DR scan. – Parameter : The route to JTAG shift state is 'shortest transition'. – Parameter : The JTAG shift state is 'shift-ir'. – Parameter : The JTAG destination state is 'pause-ir'. – Parameter : The bit length of the command is '6'. – Parameter : The send data value is '0x00000002'. – Parameter : The actual receive data is 'discarded'. Function : Embed the port address in next command. – Parameter : The port address field is '0x0f000000'. – Parameter : The port address value is '3'. Peripheral Information and Electrical Specifications Submit Documentation Feedback Product Folder Links: OMAP-L138 Copyright © 2009–2017, Texas Instruments Incorporated OMAP-L138 www.ti.com • • • • SPRS586J – JUNE 2009 – REVISED JANUARY 2017 Function : Do a send-only JTAG IR/DR scan. – Parameter : The route to JTAG shift state is 'shortest transition'. – Parameter : The JTAG shift state is 'shift-dr'. – Parameter : The JTAG destination state is 'pause-dr'. – Parameter : The bit length of the command is '32'. – Parameter : The send data value is '0xa3302108'. – Parameter : The actual receive data is 'discarded'. Function : Do a send-only all-ones JTAG IR/DR scan. – Parameter : The JTAG shift state is 'shift-ir'. – Parameter : The JTAG destination state is 'run-test/idle'. – Parameter : The bit length of the command is '6'. – Parameter : The send data value is 'all-ones'. – Parameter : The actual receive data is 'discarded'. Function : Wait for a minimum number of TCLK pulses. – Parameter : The count of TCLK pulses is '10'. Function : Update the JTAG preamble and post-amble counts. – Parameter : The IR pre-amble count is '0'. – Parameter : The IR post-amble count is '6 + 4'. – Parameter : The DR pre-amble count is '0'. – Parameter : The DR post-amble count is '1 + 1'. – Parameter : The IR main count is '4'. – Parameter : The DR main count is '1'. 6.34.4 IEEE 1149.1 JTAG The JTAG (1) interface is used for BSDL testing and emulation of the device. The device requires that both TRST and RESET be asserted upon power up to be properly initialized. While RESET initializes the device, TRST initializes the device's emulation logic. Both resets are required for proper operation. While both TRST and RESET need to be asserted upon power up, only RESET needs to be released for the device to boot properly. TRST may be asserted indefinitely for normal operation, keeping the JTAG port interface and device's emulation logic in the reset state. TRST only needs to be released when it is necessary to use a JTAG controller to debug the device or exercise the device's boundary scan functionality. Note: TRST is synchronous and must be clocked by TCK; otherwise, the boundary scan logic may not respond as expected after TRST is asserted. RESET must be released only in order for boundary-scan JTAG to read the variant field of IDCODE correctly. Other boundary-scan instructions work correctly independent of current state of RESET. For maximum reliability, the device includes an internal pulldown (IPD) on the TRST pin to ensure that TRST will always be asserted upon power up and the device's internal emulation logic will always be properly initialized. JTAG controllers from Texas Instruments actively drive TRST high. However, some third-party JTAG controllers may not drive TRST high but expect the use of a pullup resistor on TRST. When using this type of JTAG controller, assert TRST to initialize the device after powerup and externally drive TRST high before attempting any emulation or boundary scan operations. (1) IEEE Standard 1149.1-1990 Standard-Test-Access Port and Boundary Scan Architecture. Copyright © 2009–2017, Texas Instruments Incorporated Peripheral Information and Electrical Specifications Submit Documentation Feedback Product Folder Links: OMAP-L138 273 OMAP-L138 SPRS586J – JUNE 2009 – REVISED JANUARY 2017 6.34.4.1 www.ti.com JTAG Peripheral Register Description(s) – JTAG ID Register (DEVIDR0) Table 6-148. DEVIDR0 Register BYTE ADDRESS ACRONYM 0x01C1 4018 DEVIDR0 REGISTER DESCRIPTION COMMENTS Read-only. Provides 32-bit JTAG ID of the device. JTAG Identification Register The JTAG ID register is a read-only register that identifies the JTAG/Device ID. For the device, the JTAG ID register resides at address location 0x01C1 4018. The register hex value for each silicon revision is: • 0x0B7D 102F for silicon revision 1.x • 0x1B7D 102F for silicon revision 2.x For the actual register bit names and their associated bit field descriptions, see Figure 6-90 and Table 6149. Figure 6-90. JTAG ID (DEVIDR0) Register Description - Register Value 31-28 VARIANT (4-Bit) R-xxxx 27-12 PART NUMBER (16-Bit) R-1011 0111 1101 0001 11-1 MANUFACTURER (11-Bit) R-0000 0010 111 0 LSB R-1 LEGEND: R = Read, W = Write, n = value at reset Table 6-149. JTAG ID Register Selection Bit Descriptions BIT 274 NAME DESCRIPTION 31:28 VARIANT 27:12 PART NUMBER Variant (4-Bit) value Part Number (16-Bit) value 11-1 MANUFACTURER Manufacturer (11-Bit) value 0 LSB LSB. This bit is read as a "1". Peripheral Information and Electrical Specifications Submit Documentation Feedback Product Folder Links: OMAP-L138 Copyright © 2009–2017, Texas Instruments Incorporated OMAP-L138 www.ti.com 6.34.4.2 SPRS586J – JUNE 2009 – REVISED JANUARY 2017 JTAG Test-Port Electrical Data/Timing Table 6-150. Timing Requirements for JTAG Test Port (see Figure 6-91) 1.3V, 1.2V No. MIN MAX 1.1V MIN 1.0V MAX MIN MAX UNIT 1 tc(TCK) Cycle time, TCK 40 50 66.6 ns 2 tw(TCKH) Pulse duration, TCK high 16 20 26.6 ns 3 tw(TCKL) Pulse duration, TCK low 16 20 26.6 ns 4 tc(RTCK) Cycle time, RTCK 40 50 66.6 ns 5 tw(RTCKH) Pulse duration, RTCK high 16 20 26.6 ns 6 tw(RTCKL) Pulse duration, RTCK low 16 20 26.6 ns 7 tsu(TDIV-RTCKH) Setup time, TDI/TMS/TRST valid before RTCK high 4 4 4 ns 8 th(RTCKH-TDIV) 4 6 8 ns Hold time, TDI/TMS/TRST valid after RTCK high Table 6-151. Switching Characteristics Over Recommended Operating Conditions for JTAG Test Port (see Figure 6-91) No. 9 1.3V, 1.2V PARAMETER td(RTCKL-TDOV) MIN Delay time, RTCK low to TDO valid MAX 18 1.1V MIN 1.0V MAX 23 MIN MAX 31 UNIT ns 1 2 3 TCK 4 5 6 RTCK 9 TDO 8 7 TDI/TMS/TRST Figure 6-91. JTAG Test-Port Timing 6.34.5 JTAG 1149.1 Boundary Scan Considerations To use boundary scan, the following sequence should be followed: • Execute a valid reset sequence and exit reset • Wait at least 6000 OSCIN clock cycles • Enter boundary scan mode using the JTAG pins No specific value is required on the EMU0 and EMU1 pins for boundary scan testing. If TRST is not driven by the boundary scan tool or tester, TRST should be externally pulled high during boundary scan testing. Copyright © 2009–2017, Texas Instruments Incorporated Peripheral Information and Electrical Specifications Submit Documentation Feedback Product Folder Links: OMAP-L138 275 OMAP-L138 SPRS586J – JUNE 2009 – REVISED JANUARY 2017 www.ti.com 7 Device and Documentation Support TI offers an extensive line of development tools for the device platform, including tools to evaluate the performance of the processors, generate code, develop algorithm implementations, and fully integrate and debug software and hardware modules. The tool's support documentation is electronically available within the Code Composer Studio™ Integrated Development Environment (IDE). The following products support development of the device applications: 7.1 Device Nomenclature To designate the stages in the product development cycle, TI assigns prefixes to the part numbers of all DSP devices and support tools. Each DSP commercial family member has one of three prefixes: X, P or NULL (e.g., OMAP-L138). Texas Instruments recommends two of three possible prefix designators for its support tools: TMDX and TMDS. These prefixes represent evolutionary stages of product development from engineering prototypes (TMX/TMDX) through fully qualified production devices/tools (TMS/TMDS). Device development evolutionary flow: X Experimental device that is not necessarily representative of the final device's electrical specifications. P Final silicon die that conforms to the device's electrical specifications but has not completed quality and reliability verification. NULL Fully-qualified production device. Support tool development evolutionary flow: TMDX Development-support product that has not yet completed Texas Instruments internal qualification testing. TMDS Fully qualified development-support product. X and P devices and TMDX development-support tools are shipped against the following disclaimer: "Developmental product is intended for internal evaluation purposes." Null devices and TMDS development-support tools have been characterized fully, and the quality and reliability of the device have been demonstrated fully. TI's standard warranty applies. Predictions show that prototype devices (X or P) have a greater failure rate than the standard production devices. Texas Instruments recommends that these devices not be used in any production system because their expected end-use failure rate still is undefined. Only qualified production devices are to be used. TI device nomenclature also includes a suffix with the device family name. This suffix indicates the package type (for example, ZWT), the temperature range (for example, "Blank" is the commercial temperature range), and the device speed range in megahertz (for example, "Blank" is the default). Figure 7-1 provides a legend for reading the complete device. 276 Device and Documentation Support Copyright © 2009–2017, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: OMAP-L138 OMAP-L138 www.ti.com SPRS586J – JUNE 2009 – REVISED JANUARY 2017 X OMAPL138 ( ) ZWT ( ) 3 E Basic Secure Boot Enabled PREFIX X = Experimental Device P = Prototype Device Blank = Production Device (B) DEVICE SPEED RANGE 3 = 300 MHz (Revision 1.x) 3 = 375 MHz (Revision 2.x) 4 = 456 MHz (Revision 2.x) DEVICE OMAPL138 SILICON REVISION (C) Blank = Silicon Revision 1.0 A = Silicon Revision 1.1 B = Silicon Revision 2.0 or 2.1 E = Silicon Revision 2.3 A. B. C. TEMPERATURE RANGE (JUNCTION) Blank = 0°C to 90°C (Commercial Grade) D = –40°C to 90°C (Industrial Grade) A = –40°C to 105°C (Extended Grade) PACKAGE TYPE (A) ZCE = 361-Pin Plastic BGA, with Pb-free Soldered Balls [Green], 0.65-mm Ball Pitch ZWT = 361-Pin Plastic BGA, with Pb-free Soldered Balls [Green], 0.8-mm Ball Pitch BGA = Ball Grid Array The device speed range symbolization indicates the maximum CPU frequency. See the Recommended Operating Conditions table for the CVDD needed for the Operating Frequency. Parts marked revision B are silicon revision 2.1 if '21' is marked on the package, and silicon revision 2.0 if there is no '21' marking. Figure 7-1. Device Nomenclature 7.2 Tools and Software Software Code Composer Studio™ Integrated Development Environment (IDE): including Editor C/C++/Assembly Code Generation, and Debug plus additional development tools Scalable, Real-Time Foundation Software (DSP/BIOS™) provides the basic run-time target software needed to support any application. Development Tools Extended Development System (XDS™) Emulator For a complete listing of development-support tools for the device, visit the Texas Instruments web site on the Worldwide Web at http://www.ti.com uniform resource locator (URL). For information on pricing and availability, contact the nearest TI field sales office or authorized distributor. 7.3 Documentation Support To receive notification of documentation updates, navigate to the device product folder on ti.com. In the upper right corner, click on Alert me to register and receive a weekly digest of any product information that has changed. For change details, review the revision history included in any revised document. The current documentation that describes the DSP, related peripherals, and other technical collateral is listed below. User's Guides SPRUG82 TMS320C674x DSP Cache User's Guide. Explains the fundamentals of memory caches and describes how the two-level cache-based internal memory architecture in the TMS320C674x digital signal processor (DSP) can be efficiently used in DSP applications. Shows how to maintain coherence with external memory, how to use DMA to reduce memory latencies, and how to optimize your code to improve cache efficiency. The internal memory architecture in the C674x DSP is organized in a two-level hierarchy consisting of a dedicated program cache (L1P) and a dedicated data cache (L1D) on the first level. Accesses by the CPU to the these first level caches can complete without CPU pipeline stalls. If the data requested by the CPU is not contained in cache, it is fetched from the next lower memory level, L2 or external memory. SPRUFE8 TMS320C674x DSP CPU and Instruction Set Reference Guide. Describes the CPU architecture, pipeline, instruction set, and interrupts for the TMS320C674x digital signal processors (DSPs). The C674x DSP is an enhancement of the C64x+ and C67x+ DSPs with Device and Documentation Support Copyright © 2009–2017, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: OMAP-L138 277 OMAP-L138 SPRS586J – JUNE 2009 – REVISED JANUARY 2017 www.ti.com added functionality and an expanded instruction set. SPRUFK5 TMS320C674x DSP Megamodule Reference Guide. Describes the TMS320C674x digital signal processor (DSP) megamodule. Included is a discussion on the internal direct memory access (IDMA) controller, the interrupt controller, the power-down controller, memory protection, bandwidth management, and the memory and cache. SPRUFK9 TMS320C674x/OMAP-L1x Processor Peripherals Overview Reference Guide. Provides an overview and briefly describes the peripherals available on the device. SPRUGQ9 TMS320C674x/OMAP-L1x Processor Security User's Guide. Provides an overview of the security concepts implemented on TI Basic Secure Boot devices. Technical Reference Manuals SPRUH77 7.4 OMAP-L138 C6000 DSP+ARM Technical Reference Manual. Describes the System-onChip (SoC) system. The SoC system includes TI’s standard TMS320C674x Megamodule and several blocks of internal memory (L1P, L1D, and L2). Community Resources The following links connect to TI community resources. Linked contents are provided "AS IS" by the respective contributors. They do not constitute TI specifications and do not necessarily reflect TI's views; see TI's Terms of Use. TI E2E™ Online Community The TI engineer-to-engineer (E2E) community was created to foster collaboration among engineers. At e2e.ti.com, you can ask questions, share knowledge, explore ideas and help solve problems with fellow engineers. TI Embedded Processors Wiki Established to help developers get started with Embedded Processors from Texas Instruments and to foster innovation and growth of general knowledge about the hardware and software surrounding these devices. 7.5 Trademarks C6000, BIOS, E2E are trademarks of Texas Instruments. ARM926EJ-S, ICE-RT, ARM9 are trademarks of ARM Ltd. ARM, Jazelle are registered trademarks of ARM Ltd. Windows is a registered trademark of Microsoft. All other trademarks are the property of their respective owners. 7.6 Electrostatic Discharge Caution This integrated circuit can be damaged by ESD. Texas Instruments recommends that all integrated circuits be handled with appropriate precautions. Failure to observe proper handling and installation procedures can cause damage. ESD damage can range from subtle performance degradation to complete device failure. Precision integrated circuits may be more susceptible to damage because very small parametric changes could cause the device not to meet its published specifications. 7.7 Export Control Notice Recipient agrees to not knowingly export or re-export, directly or indirectly, any product or technical data (as defined by the U.S., EU, and other Export Administration Regulations) including software, or any controlled product restricted by other applicable national regulations, received from disclosing party under nondisclosure obligations (if any), or any direct product of such technology, to any destination to which such export or re-export is restricted or prohibited by U.S. or other applicable laws, without obtaining prior authorization from U.S. Department of Commerce and other competent Government authorities to the extent required by those laws. 7.8 Glossary TI Glossary This glossary lists and explains terms, acronyms, and definitions. 278 Device and Documentation Support Copyright © 2009–2017, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: OMAP-L138 OMAP-L138 www.ti.com SPRS586J – JUNE 2009 – REVISED JANUARY 2017 8 Mechanical Packaging and Orderable Information This section describes the orderable part numbers, packaging options, materials, thermal and mechanical parameters. 8.1 Thermal Data for ZCE Package The following table shows the thermal resistance characteristics for the PBGA–ZCE mechanical package. Table 8-1. Thermal Resistance Characteristics (PBGA Package) [ZCE] NO. RΘJC Junction-to-case 7.6 N/A 2 RΘJB Junction-to-board 11.3 N /A 3 RΘJA Junction-to-free air 23.9 0.00 4 21.2 0.50 5 20.3 1.00 RΘJMA Junction-to-moving air 19.5 2.00 7 18.6 4.00 8 0.2 0.00 0.3 0.50 0.3 1.00 0.4 2.00 12 0.5 4.00 13 11.2 0.00 14 11.1 0.50 11.1 1.00 16 11.0 2.00 17 10.9 4.00 9 10 PsiJT Junction-to-package top 11 15 (2) AIR FLOW (m/s) (2) 1 6 (1) °C/W (1) PsiJB Junction-to-board These measurements were conducted in a JEDEC defined 2S2P system and will change based on environment as well as application. For more information, see these EIA/JEDEC standards – EIA/JESD51-2, Integrated Circuits Thermal Test Method Environment Conditions - Natural Convection (Still Air) and JESD51-7, High Effective Thermal Conductivity Test Board for Leaded Surface Mount Packages. Power dissipation of 500 mW and ambient temp of 70C assumed. PCB with 2oz (70um) top and bottom copper thickness and 1.5oz (50um) inner copper thickness m/s = meters per second Copyright © 2009–2017, Texas Instruments Incorporated Mechanical Packaging and Orderable Information Submit Documentation Feedback Product Folder Links: OMAP-L138 279 OMAP-L138 SPRS586J – JUNE 2009 – REVISED JANUARY 2017 8.2 www.ti.com Thermal Data for ZWT Package The following table shows the thermal resistance characteristics for the PBGA–ZWT mechanical package. Table 8-2. Thermal Resistance Characteristics (PBGA Package) [ZWT] °C/W (1) NO. AIR FLOW (m/s) (2) 1 RΘJC Junction-to-case 7.3 N/A 2 RΘJB Junction-to-board 12.4 N /A 3 RΘJA Junction-to-free air 23.7 0.00 4 21.0 0.50 5 20.1 1.00 6 RΘJMA Junction-to-moving air 19.3 2.00 7 18.4 4.00 8 0.2 0.00 9 0.3 0.50 10 0.3 1.00 11 0.4 2.00 12 0.5 4.00 13 12.3 0.00 14 12.2 0.50 12.1 1.00 16 12.0 2.00 17 11.9 4.00 15 (1) (2) 8.3 PsiJT PsiJB Junction-to-package top Junction-to-board These measurements were conducted in a JEDEC defined 2S2P system and will change based on environment as well as application. For more information, see these EIA/JEDEC standards – EIA/JESD51-2, Integrated Circuits Thermal Test Method Environment Conditions - Natural Convection (Still Air) and JESD51-7, High Effective Thermal Conductivity Test Board for Leaded Surface Mount Packages. Power dissipation of 1W and ambient temp of 70C assumed. PCB with 2oz (70um) top and bottom copper thickness and 1.5oz (50um) inner copper thickness m/s = meters per second Packaging Information The following packaging information and addendum reflect the most current data available for the designated device(s). This data is subject to change without notice and without revision of this document. 280 Mechanical Packaging and Orderable Information Submit Documentation Feedback Product Folder Links: OMAP-L138 Copyright © 2009–2017, Texas Instruments Incorporated PACKAGE OPTION ADDENDUM www.ti.com 10-Dec-2020 PACKAGING INFORMATION Orderable Device Status (1) Package Type Package Pins Package Drawing Qty Eco Plan (2) Lead finish/ Ball material MSL Peak Temp Op Temp (°C) (3) Device Marking (4/5) (6) OMAPL138EZCE3 ACTIVE NFBGA ZCE 361 160 RoHS & Green SNAGCU Level-3-260C-168 HR 0 to 90 OMAPL138E ZCE 375 OMAPL138EZCE4 ACTIVE NFBGA ZCE 361 160 RoHS & Green SNAGCU Level-3-260C-168 HR 0 to 90 OMAPL138E ZCE 450 OMAPL138EZCEA3 ACTIVE NFBGA ZCE 361 160 RoHS & Green SNAGCU Level-3-260C-168 HR -40 to 105 OMAPL138E ZCE A375 OMAPL138EZCEA3R ACTIVE NFBGA ZCE 361 1000 RoHS & Green SNAGCU Level-3-260C-168 HR -40 to 105 OMAPL138E ZCE A375 OMAPL138EZCED4 ACTIVE NFBGA ZCE 361 160 RoHS & Green SNAGCU Level-3-260C-168 HR -40 to 90 OMAPL138E ZCE D450 OMAPL138EZCED4E ACTIVE NFBGA ZCE 361 160 RoHS & Green SNAGCU Level-3-260C-168 HR -40 to 90 OMAPL138E ZCE E D450 OMAPL138EZWT3 ACTIVE NFBGA ZWT 361 90 RoHS & Green SNAGCU Level-3-260C-168 HR 0 to 90 OMAPL138E ZWT 375 OMAPL138EZWT4 ACTIVE NFBGA ZWT 361 90 RoHS & Green SNAGCU Level-3-260C-168 HR 0 to 90 OMAPL138E ZWT 450 OMAPL138EZWTA3 ACTIVE NFBGA ZWT 361 90 RoHS & Green SNAGCU Level-3-260C-168 HR -40 to 105 OMAPL138E ZWT A375 OMAPL138EZWTA3E ACTIVE NFBGA ZWT 361 90 RoHS & Green SNAGCU Level-3-260C-168 HR -40 to 105 OMAPL138E ZWT E A375 OMAPL138EZWTA3R ACTIVE NFBGA ZWT 361 1000 RoHS & Green SNAGCU Level-3-260C-168 HR -40 to 105 OMAPL138E ZWT A375 OMAPL138EZWTD4 ACTIVE NFBGA ZWT 361 90 RoHS & Green SNAGCU Level-3-260C-168 HR -40 to 90 OMAPL138E ZWT Addendum-Page 1 Samples PACKAGE OPTION ADDENDUM www.ti.com Orderable Device 10-Dec-2020 Status (1) Package Type Package Pins Package Drawing Qty Eco Plan (2) Lead finish/ Ball material MSL Peak Temp Op Temp (°C) Device Marking (3) (4/5) (6) D450 OMAPL138EZWTD4E ACTIVE NFBGA ZWT 361 90 RoHS & Green SNAGCU Level-3-260C-168 HR -40 to 90 OMAPL138E ZWT E D450 (1) The marketing status values are defined as follows: ACTIVE: Product device recommended for new designs. LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect. NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design. PREVIEW: Device has been announced but is not in production. Samples may or may not be available. OBSOLETE: TI has discontinued the production of the device. (2) RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may reference these types of products as "Pb-Free". RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption. Green: TI defines "Green" to mean the content of Chlorine (Cl) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of
TMDSLCDK138 价格&库存

很抱歉,暂时无法提供与“TMDSLCDK138”相匹配的价格&库存,您可以联系我们找货

免费人工找货