0
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
会员中心
创作中心
发布
  • 发文章

  • 发资料

  • 发帖

  • 提问

  • 发视频

创作活动
TMS320F28235ZJZQ

TMS320F28235ZJZQ

  • 厂商:

    BURR-BROWN(德州仪器)

  • 封装:

    PBGA176

  • 描述:

    IC MCU 32BIT 512KB FLASH 176BGA

  • 数据手册
  • 价格&库存
TMS320F28235ZJZQ 数据手册
TMS320F28335, TMS320F28335-Q1, TMS320F28334, TMS320F28333 TMS320F28332, TMS320F28235, TMS320F28235-Q1 TMS320F28234, TMS320F28234-Q1, TMS320F28232, TMS320F28232-Q1 SPRS439Q – JUNE 2007 – REVISED AUGUST 2022 TMS320F2833x, TMS320F2823x Real-Time Microcontrollers 1 Features • • • • • • • • • • • • High-performance static CMOS technology – Up to 150 MHz (6.67-ns cycle time) – 1.9-V/1.8-V core, 3.3-V I/O design High-performance 32-bit CPU (TMS320C28x) – IEEE 754 single-precision Floating-Point Unit (FPU) (F2833x only) – 16 × 16 and 32 × 32 MAC operations – 16 × 16 dual MAC – Harvard bus architecture – Fast interrupt response and processing – Unified memory programming model – Code-efficient (in C/C++ and Assembly) Six-channel DMA controller (for ADC, McBSP, ePWM, XINTF, and SARAM) 16-bit or 32-bit External Interface (XINTF) – More than 2M × 16 address reach On-chip memory – F28335, F28333, F28235: 256K × 16 flash, 34K × 16 SARAM – F28334, F28234: 128K × 16 flash, 34K × 16 SARAM – F28332, F28232: 64K × 16 flash, 26K × 16 SARAM – 1K × 16 OTP ROM Boot ROM (8K × 16) – With software boot modes (through SCI, SPI, CAN, I2C, McBSP, XINTF, and parallel I/O) – Standard math tables Clock and system control – On-chip oscillator – Watchdog timer module GPIO0 to GPIO63 pins can be connected to one of the eight external core interrupts Peripheral Interrupt Expansion (PIE) block that supports all 58 peripheral interrupts 128-bit security key/lock – Protects flash/OTP/RAM blocks – Prevents firmware reverse-engineering Enhanced control peripherals – Up to 18 PWM outputs – Up to 6 HRPWM outputs with 150-ps MEP resolution – Up to 6 event capture inputs – Up to 2 Quadrature Encoder interfaces – Up to 8 32-bit timers (6 for eCAPs and 2 for eQEPs) – Up to 9 16-bit timers (6 for ePWMs and 3 XINTCTRs) Three 32-bit CPU timers • • • • • • • • • • Serial port peripherals – Up to 2 CAN modules – Up to 3 SCI (UART) modules – Up to 2 McBSP modules (configurable as SPI) – One SPI module – One Inter-Integrated Circuit (I2C) bus 12-bit ADC, 16 channels – 80-ns conversion rate – 2 × 8 channel input multiplexer – Two sample-and-hold – Single/simultaneous conversions – Internal or external reference Up to 88 individually programmable, multiplexed GPIO pins with input filtering JTAG boundary scan support – IEEE Standard 1149.1-1990 Standard Test Access Port and Boundary Scan Architecture Advanced debug features – Analysis and breakpoint functions – Real-time debug using hardware Development support includes – ANSI C/C++ compiler/assembler/linker – Code Composer Studio™ IDE – DSP/BIOS™ and SYS/BIOS – Digital motor control and digital power software libraries Low-power modes and power savings – IDLE, STANDBY, HALT modes supported – Disable individual peripheral clocks Endianness: Little endian Package options: – Lead-free, green packaging – 176-ball plastic Ball Grid Array (BGA) [ZJZ] – 179-ball MicroStar BGA™ [ZHH] – 179-ball New Fine Pitch Ball Grid Array (nFBGA) [ZAY] – 176-pin Low-Profile Quad Flatpack (LQFP) [PGF] – 176-pin Thermally Enhanced Low-Profile Quad Flatpack (HLQFP) [PTP] Temperature options: – A: –40°C to 85°C (PGF, ZHH, ZAY, ZJZ) – S: –40°C to 125°C (PTP, ZJZ) – Q: –40°C to 125°C (PTP, ZJZ) (AEC Q100 qualification for automotive applications) An IMPORTANT NOTICE at the end of this data sheet addresses availability, warranty, changes, use in safety-critical applications, intellectual property matters and other important disclaimers. PRODUCTION DATA. TMS320F28335, TMS320F28335-Q1, TMS320F28334, TMS320F28333 TMS320F28332, TMS320F28235, TMS320F28235-Q1 TMS320F28234, TMS320F28234-Q1, TMS320F28232, TMS320F28232-Q1 www.ti.com SPRS439Q – JUNE 2007 – REVISED AUGUST 2022 • 2 Applications • • • Advanced driver assistance systems (ADAS) – Medium/short range radar Building automation – HVAC motor control – Traction inverter motor control Factory automation & control – Automated sorting equipment – CNC control • • • Grid infrastructure – Central inverter – String inverter Hybrid, electric & powertrain systems – Inverter & motor control – On-board (OBC) & wireless charger Motor drives – AC-input BLDC motor drive – Servo drive control module Power delivery – Industrial AC-DC 3 Description C2000™ real-time microcontrollers are optimized for processing, sensing, and actuation to improve closed-loop performance in real-time control applications such as industrial motor drives; solar inverters and digital power; electrical vehicles and transportation; motor control; and sensing and signal processing. The C2000 line includes the Premium performance MCUs and the Entry performance MCUs. The TMS320F28335, TMS320F28334, TMS320F28333, TMS320F28332, TMS320F28235, TMS320F28234, and TMS320F28232 devices are highly integrated, high-performance solutions for demanding control applications. Throughout this document, the devices are abbreviated as F28335, F28334, F28333, F28332, F28235, F28234, and F28232, respectively. F2833x Device Comparison and F2823x Device Comparison provide a summary of features for each device. The Getting Started With C2000™ Real-Time Control Microcontrollers (MCUs) Getting Started Guide covers all aspects of development with C2000 devices from hardware to support resources. In addition to key reference documents, each section provides relevant links and resources to further expand on the information covered. To learn more about the C2000 MCUs, visit the C2000™ real-time control MCUs page. Package Information PART NUMBER(1) 2 PACKAGE BODY SIZE TMS320F28335ZAY nFBGA (179) 12.0 mm × 12.0 mm TMS320F28334ZAY nFBGA (179) 12.0 mm × 12.0 mm TMS320F28234ZAY nFBGA (179) 12.0 mm × 12.0 mm TMS320F28232ZAY nFBGA (179) 12.0 mm × 12.0 mm TMS320F28335ZHH BGA MicroStar (179) 12.0 mm × 12.0 mm TMS320F28334ZHH BGA MicroStar (179) 12.0 mm × 12.0 mm TMS320F28332ZHH BGA MicroStar (179) 12.0 mm × 12.0 mm TMS320F28235ZHH BGA MicroStar (179) 12.0 mm × 12.0 mm TMS320F28234ZHH BGA MicroStar (179) 12.0 mm × 12.0 mm TMS320F28232ZHH BGA MicroStar (179) 12.0 mm × 12.0 mm TMS320F28335ZJZ BGA (176) 15.0 mm × 15.0 mm TMS320F28334ZJZ BGA (176) 15.0 mm × 15.0 mm TMS320F28332ZJZ BGA (176) 15.0 mm × 15.0 mm TMS320F28235ZJZ BGA (176) 15.0 mm × 15.0 mm TMS320F28234ZJZ BGA (176) 15.0 mm × 15.0 mm TMS320F28232ZJZ BGA (176) 15.0 mm × 15.0 mm TMS320F28335PGF LQFP (176) 24.0 mm × 24.0 mm TMS320F28334PGF LQFP (176) 24.0 mm × 24.0 mm TMS320F28333PGF LQFP (176) 24.0 mm × 24.0 mm TMS320F28332PGF LQFP (176) 24.0 mm × 24.0 mm Submit Document Feedback Copyright © 2022 Texas Instruments Incorporated Product Folder Links: TMS320F28335 TMS320F28335-Q1 TMS320F28334 TMS320F28333 TMS320F28332 TMS320F28235 TMS320F28235-Q1 TMS320F28234 TMS320F28234-Q1 TMS320F28232 TMS320F28232-Q1 TMS320F28335, TMS320F28335-Q1, TMS320F28334, TMS320F28333 TMS320F28332, TMS320F28235, TMS320F28235-Q1 TMS320F28234, TMS320F28234-Q1, TMS320F28232, TMS320F28232-Q1 www.ti.com SPRS439Q – JUNE 2007 – REVISED AUGUST 2022 Package Information (continued) PART NUMBER(1) PACKAGE BODY SIZE TMS320F28235PGF LQFP (176) 24.0 mm × 24.0 mm TMS320F28234PGF LQFP (176) 24.0 mm × 24.0 mm TMS320F28232PGF LQFP (176) 24.0 mm × 24.0 mm TMS320F28335PTP HLQFP (176) 24.0 mm × 24.0 mm TMS320F28334PTP HLQFP (176) 24.0 mm × 24.0 mm TMS320F28332PTP HLQFP (176) 24.0 mm × 24.0 mm TMS320F28235PTP HLQFP (176) 24.0 mm × 24.0 mm TMS320F28234PTP HLQFP (176) 24.0 mm × 24.0 mm TMS320F28232PTP HLQFP (176) 24.0 mm × 24.0 mm (1) For more information on these devices, see Mechanical, Packaging, and Orderable Information. Copyright © 2022 Texas Instruments Incorporated Submit Document Feedback Product Folder Links: TMS320F28335 TMS320F28335-Q1 TMS320F28334 TMS320F28333 TMS320F28332 TMS320F28235 TMS320F28235-Q1 TMS320F28234 TMS320F28234-Q1 TMS320F28232 TMS320F28232-Q1 3 TMS320F28335, TMS320F28335-Q1, TMS320F28334, TMS320F28333 TMS320F28332, TMS320F28235, TMS320F28235-Q1 TMS320F28234, TMS320F28234-Q1, TMS320F28232, TMS320F28232-Q1 www.ti.com SPRS439Q – JUNE 2007 – REVISED AUGUST 2022 3.1 Functional Block Diagram M0 SARAM 1Kx16 (0-Wait) L0 SARAM 4K x 16 (0-Wait, Dual Map) M1 SARAM 1Kx16 (0-Wait) L1 SARAM 4K x 16 (0-Wait, Dual Map) OTP 1K x 16 Memory Bus L2 SARAM 4K x 16 (0-Wait, Dual Map) Flash 256K x 16 8 Sectors Code Security Module L3 SARAM 4K x 16 (0-Wait, Dual Map) TEST2 L4 SARAM 4K x 16 (0-W Data, 1-W Prog) Pump TEST1 PSWD L5 SARAM 4K x 16 (0-W Data, 1-W Prog) Boot ROM 8K x 16 Flash Wrapper L6 SARAM 4K x 16 (0-W Data, 1-W Prog) L7 SARAM 4K x 16 (0-W Data, 1-W Prog) Memory Bus XD31:0 FPU TCK XHOLDA TDI XHOLD TMS XREADY 88 GPIOs 32-bit CPU (150 MHZ @ 1.9 V) (100 MHz @ 1.8 V) XINTF XR/W GPIO MUX XZCS0 TDO TRST EMU0 XZCS7 EMU1 XWE0 XA0/XWE1 XA19:1 DMA Bus Memory Bus XZCS6 XCLKIN CPU Timer 0 DMA 6 Ch CPU Timer 1 X1 X2 XRS CPU Timer 2 XCLKOUT PIE (Interrupts) XRD 88 GPIOs OSC, PLL, LPM, WD 8 External Interrupts GPIO MUX A7:0 XINTF Memory Bus 12-Bit ADC 2-S/H B7:0 DMA Bus REFIN 32-bit peripheral bus (DMA accessible) 16-bit peripheral bus FIFO (16 Levels) ePWM-1/../6 McBSP-A/B eCAP-1/../6 eQEP-1/2 CAN-A/B (32-mbox) CANTXx CANRXx EQEPxI EQEPxS EQEPxB ESYNCI ESYNCO EPWMxB TZx EPWMxA MFSRx MFSXx MCLKRx MRXx MCLKXx HRPWM-1/../6 MDXx SCLx SDAx I2C SPISTEx SPICLKx SPISOMIx SPI-A SPISIMOx SCIRXDx SCITXDx SCI-A/B/C EQEPxA FIFO (16 Levels) ECAPx FIFO (16 Levels) 32-bit peripheral bus GPIO MUX Secure zone 88 GPIOs Figure 3-1. Functional Block Diagram 4 Submit Document Feedback Copyright © 2022 Texas Instruments Incorporated Product Folder Links: TMS320F28335 TMS320F28335-Q1 TMS320F28334 TMS320F28333 TMS320F28332 TMS320F28235 TMS320F28235-Q1 TMS320F28234 TMS320F28234-Q1 TMS320F28232 TMS320F28232-Q1 TMS320F28335, TMS320F28335-Q1, TMS320F28334, TMS320F28333 TMS320F28332, TMS320F28235, TMS320F28235-Q1 TMS320F28234, TMS320F28234-Q1, TMS320F28232, TMS320F28232-Q1 www.ti.com SPRS439Q – JUNE 2007 – REVISED AUGUST 2022 Table of Contents 1 Features............................................................................1 2 Applications..................................................................... 2 3 Description.......................................................................2 3.1 Functional Block Diagram........................................... 4 4 Revision History.............................................................. 6 5 Device Comparison......................................................... 8 5.1 Related Products.......................................................11 6 Terminal Configuration and Functions........................12 6.1 Pin Diagrams............................................................ 12 6.2 Signal Descriptions................................................... 22 7 Specifications................................................................ 32 7.1 Absolute Maximum Ratings...................................... 32 7.2 ESD Ratings – Automotive....................................... 33 7.3 ESD Ratings – Commercial...................................... 33 7.4 Recommended Operating Conditions.......................34 7.5 Power Consumption Summary................................. 35 7.6 Electrical Characteristics...........................................40 7.7 Thermal Resistance Characteristics......................... 41 7.8 Thermal Design Considerations................................45 7.9 Timing and Switching Characteristics....................... 46 7.10 On-Chip Analog-to-Digital Converter.................... 100 7.11 Migrating Between F2833x Devices and F2823x Devices.........................................................106 8 Detailed Description....................................................107 Copyright © 2022 Texas Instruments Incorporated 8.1 Brief Descriptions....................................................107 8.2 Peripherals.............................................................. 115 8.3 Memory Maps......................................................... 159 8.4 Register Map...........................................................166 8.5 Interrupts.................................................................169 8.6 System Control....................................................... 174 8.7 Low-Power Modes Block........................................ 180 9 Applications, Implementation, and Layout............... 181 9.1 TI Reference Design............................................... 181 10 Device and Documentation Support........................182 10.1 Getting Started and Next Steps............................ 182 10.2 Device and Development Support Tool Nomenclature............................................................ 182 10.3 Tools and Software............................................... 184 10.4 Documentation Support........................................ 186 10.5 Support Resources............................................... 187 10.6 Trademarks........................................................... 187 10.7 Electrostatic Discharge Caution............................188 10.8 Glossary................................................................188 11 Mechanical, Packaging, and Orderable Information.................................................................. 189 11.1 Package Redesign Details.................................... 189 11.2 Packaging Information.......................................... 189 Submit Document Feedback Product Folder Links: TMS320F28335 TMS320F28335-Q1 TMS320F28334 TMS320F28333 TMS320F28332 TMS320F28235 TMS320F28235-Q1 TMS320F28234 TMS320F28234-Q1 TMS320F28232 TMS320F28232-Q1 5 TMS320F28335, TMS320F28335-Q1, TMS320F28334, TMS320F28333 TMS320F28332, TMS320F28235, TMS320F28235-Q1 TMS320F28234, TMS320F28234-Q1, TMS320F28232, TMS320F28232-Q1 www.ti.com SPRS439Q – JUNE 2007 – REVISED AUGUST 2022 4 Revision History Changes from February 2, 2021 to August 8, 2022 (from Revision P (February 2021) to Revision Q (August 2022)) Page • Global: Changed document title from TMS320F2833x, TMS320F2823x Digital Signal Controllers (DSCs) to TMS320F2833x, TMS320F2823x Real-Time Microcontrollers. .........................................................................1 • Global: Changed "digital signal controller" to "real-time microcontroller". Changed "DSC" to "MCU". ............. 1 • Global: Due to an equipment End-of_Life notice from our substrate supplier, we are phasing out certain MicroStar BGA™ packaging devices. These devices have now been converted to a New Fine Pitch Ball Grid Array (nFBGA) package. For more information, see the Package Redesign Details section.............................1 • Global: Added 179-ball ZAY New Fine Pitch Ball Grid Array (nFBGA)..............................................................1 • Global: Changed title of errata from TMS320F2833x, TMS320F2823x DSCs Silicon Errata to TMS320F2833x, TMS320F2823x Real-Time MCUs Silicon Errata....................................................................1 • Global: Replaced references to peripheral reference guides with references to the TMS320x2833x, TMS320x2823x Real-Time Microcontrollers Technical Reference Manual........................................................ 1 • Global: Replaced "emulator" with "JTAG debug probe".....................................................................................1 • Section 1 (Features): Changed "Advanced emulation features" to "Advanced debug features"........................ 1 • Section 1: Added "179-ball New Fine Pitch Ball Grid Array (nFBGA) [ZAY]" to "Package options"................... 1 • Section 1: Added "ZAY" to Temperature option "A"............................................................................................ 1 • Section 2 (Applications): Updated section.......................................................................................................... 2 • Section 3 (Description): Updated section. Changed Device Information table to Package Information table. Added ZAY nFBGA to Package Information table.............................................................................................. 2 • Table 5-1 (F2833x Device Comparison): Appended "(UART-compatible)" to "Serial Communications Interface (SCI)".................................................................................................................................................................. 8 • Table 5-1: Added "179-Ball ZAY" to Packaging section. Added ZAY to "A" Temperature option........................8 • Table 5-2 (F2823x Device Comparison): Appended "(UART-compatible)" to "Serial Communications Interface (SCI)".................................................................................................................................................................. 8 • Table 5-2: Added "179-Ball ZAY" to Packaging section. Added ZAY to "A" Temperature option........................8 • Section 5.1 (Related Products): Updated section. ........................................................................................... 11 • Section 6.1 (Pin Diagrams): Added 179-ball ZAY new fine pitch ball grid array (nFBGA)................................ 12 • Table 6-1 (Signal Descriptions): Added ZAY package...................................................................................... 22 • Table 6-1: Updated DESCRIPTION of EMU0, EMU1, and XRS...................................................................... 22 • Section 7.3 (ESD Ratings – Commercial): Add data for ZAY package.............................................................33 • Section 7.5.3 (Reducing Current Consumption): Updated list of methods to reduce power consumption....... 38 • Section 7.7.4 (ZAY Package): Added table.......................................................................................................44 • Section 7.9.2 (Power Sequencing): Updated "No requirements are placed on the power-up and power-down sequences ..." paragraph..................................................................................................................................48 • Section 7.9.5: Changed section title from "Emulator Connection Without Signal Buffering for the DSP" to "JTAG Debug Probe Connection Without Signal Buffering for the MCU"......................................................... 79 • Figure 7-27: Changed figure title from "Emulator Connection Without Signal Buffering for the DSP" to "JTAG Debug Probe Connection Without Signal Buffering for the MCU".................................................................... 79 • Figure 7-27 (Emulator Connection Without Signal Buffering for the MCU): Changed "DSC" to "MCU"........... 79 • Section 7.9.6.8.2 (Synchronous XREADY Timing Requirements (Ready-on-Write, One Wait State)): Restored footnote.............................................................................................................................................................92 • Table 8-14 (SCI-C Registers): Restored footnotes......................................................................................... 141 • Figure 8-15 (Serial Communications Interface (SCI) Module Block Diagram): Updated figure......................141 • Figure 8-34 (Watchdog Module): Updated figure............................................................................................179 • Section 9.1: Changed title from "TI Design or Reference Design" to "TI Reference Design"......................... 181 • Section 9.1 (TI Reference Design): Updated section..................................................................................... 181 • Section 10 (Device and Documentation Support): Updated section...............................................................182 • Section 10.1: Changed title from "Getting Started" to "Getting Started and Next Steps". Updated section... 182 • Figure 10-1 (Example of F2833x, F2823x Device Nomenclature): Added 179-ball ZAY package under PACKAGE TYPE............................................................................................................................................ 182 6 Submit Document Feedback Copyright © 2022 Texas Instruments Incorporated Product Folder Links: TMS320F28335 TMS320F28335-Q1 TMS320F28334 TMS320F28333 TMS320F28332 TMS320F28235 TMS320F28235-Q1 TMS320F28234 TMS320F28234-Q1 TMS320F28232 TMS320F28232-Q1 TMS320F28335, TMS320F28335-Q1, TMS320F28334, TMS320F28333 TMS320F28332, TMS320F28235, TMS320F28235-Q1 TMS320F28234, TMS320F28234-Q1, TMS320F28232, TMS320F28232-Q1 www.ti.com • • • • • SPRS439Q – JUNE 2007 – REVISED AUGUST 2022 Section 10.3 (Tools and Software): Updated section. Updated Design Kits and Evaluation Modules section. Updated Models section. Added Training section...........................................................................................184 Section 10.4 (Documentation Support): Added nFBGA Packaging Application Report................................. 186 Section 10.4: Added Technical Reference Manual section. ........................................................................186 Section 10.4: Updated Peripheral Guides section. Removed most peripheral reference guides as they are now replaced by the TMS320x2833x, TMS320x2823x Real-Time Microcontrollers Technical Reference Manual............................................................................................................................................................ 186 Section 11.1 (Package Redesign Details): Added section..............................................................................189 Copyright © 2022 Texas Instruments Incorporated Submit Document Feedback Product Folder Links: TMS320F28335 TMS320F28335-Q1 TMS320F28334 TMS320F28333 TMS320F28332 TMS320F28235 TMS320F28235-Q1 TMS320F28234 TMS320F28234-Q1 TMS320F28232 TMS320F28232-Q1 7 TMS320F28335, TMS320F28335-Q1, TMS320F28334, TMS320F28333 TMS320F28332, TMS320F28235, TMS320F28235-Q1 TMS320F28234, TMS320F28234-Q1, TMS320F28232, TMS320F28232-Q1 www.ti.com SPRS439Q – JUNE 2007 – REVISED AUGUST 2022 5 Device Comparison Table 5-1. F2833x Device Comparison TYPE(1) F28335 F28335-Q1 (150 MHz) F28334 (150 MHz) F28333 (100 MHz) F28332 (100 MHz) Instruction cycle – 6.67 ns 6.67 ns 10 ns 10 ns Floating-point unit – Yes Yes Yes Yes 3.3-V on-chip flash (16-bit word) – 256K 128K 256K 64K Single-access RAM (SARAM) (16-bit word) – 34K 34K 34K 26K One-time programmable (OTP) ROM (16-bit word) – 1K 1K 1K 1K Code security for on-chip flash/ SARAM/OTP blocks – Yes Yes Yes Yes Boot ROM (8K × 16) – Yes Yes Yes Yes 16/32-bit External Interface (XINTF) 1 Yes Yes Yes Yes 6-channel Direct Memory Access (DMA) 0 Yes Yes Yes Yes PWM channels 0 ePWM1/2/3/4/5/6 ePWM1/2/3/4/5/6 ePWM1/2/3/4/5/6 ePWM1/2/3/4/5/6 FEATURE HRPWM channels 0 32-bit capture inputs or auxiliary PWM outputs 0 eCAP1/2/3/4/5/6 eCAP1/2/3/4 eCAP1/2/3/4/5/6 eCAP1/2/3/4 32-bit QEP channels (four inputs/ channel) 0 eQEP1/2 eQEP1/2 eQEP1/2 eQEP1/2 Watchdog timer – Yes Yes Yes Yes 16 16 16 16 No. of channels 12-bit ADC MSPS 2 Conversion time 12.5 12.5 12.5 12.5 80 ns 80 ns 80 ns 80 ns 32-bit CPU timers – 3 3 3 3 Multichannel Buffered Serial Port (McBSP)/SPI 1 2 (A/B) 2 (A/B) 2 (A/B) 1 (A) Serial Peripheral Interface (SPI) 0 1 1 1 1 Serial Communications Interface (SCI) (UART-compatible) 0 3 (A/B/C) 3 (A/B/C) 3 (A/B/C) 2 (A/B) Enhanced Controller Area Network (eCAN) 0 2 (A/B) 2 (A/B) 2 (A/B) 2 (A/B) Inter-Integrated Circuit (I2C) 0 1 1 1 1 General-purpose I/O pins (shared) – 88 88 88 88 External interrupts – 8 8 8 8 176-Pin PGF – Yes Yes Yes Yes 176-Pin PTP – Yes Yes – Yes 179-Ball ZHH – Yes Yes – Yes 179-Ball ZAY – Yes Yes – – 176-Ball ZJZ – Yes Yes – Yes Packaging 8 ePWM1A/2A/3A/4A/ ePWM1A/2A/3A/4A/ ePWM1A/2A/3A/4A/ ePWM1A/2A/3A/4A 5A/6A 5A/6A 5A/6A Submit Document Feedback Copyright © 2022 Texas Instruments Incorporated Product Folder Links: TMS320F28335 TMS320F28335-Q1 TMS320F28334 TMS320F28333 TMS320F28332 TMS320F28235 TMS320F28235-Q1 TMS320F28234 TMS320F28234-Q1 TMS320F28232 TMS320F28232-Q1 TMS320F28335, TMS320F28335-Q1, TMS320F28334, TMS320F28333 TMS320F28332, TMS320F28235, TMS320F28235-Q1 TMS320F28234, TMS320F28234-Q1, TMS320F28232, TMS320F28232-Q1 www.ti.com SPRS439Q – JUNE 2007 – REVISED AUGUST 2022 Table 5-1. F2833x Device Comparison (continued) FEATURE Temperature options (1) TYPE(1) F28335 F28335-Q1 (150 MHz) F28334 (150 MHz) PGF, ZHH, ZAY, ZJZ PGF, ZHH, ZAY, ZJZ F28333 (100 MHz) F28332 (100 MHz) PGF PGF, ZHH, ZJZ A: –40°C to 85°C – S: –40°C to 125°C – PTP, ZJZ PTP, ZJZ – PTP, ZJZ Q: –40°C to 125°C (AEC Q100 Qualification) – PTP, ZJZ PTP, ZJZ – PTP, ZJZ A type change represents a major functional feature difference in a peripheral module. Within a peripheral type, there may be minor differences between devices that do not affect the basic functionality of the module. These device-specific differences are listed in the C2000 Real-Time Control MCU Peripherals Reference Guide and the TMS320x2833x, TMS320x2823x Real-Time Microcontrollers Technical Reference Manual. Copyright © 2022 Texas Instruments Incorporated Submit Document Feedback Product Folder Links: TMS320F28335 TMS320F28335-Q1 TMS320F28334 TMS320F28333 TMS320F28332 TMS320F28235 TMS320F28235-Q1 TMS320F28234 TMS320F28234-Q1 TMS320F28232 TMS320F28232-Q1 9 TMS320F28335, TMS320F28335-Q1, TMS320F28334, TMS320F28333 TMS320F28332, TMS320F28235, TMS320F28235-Q1 TMS320F28234, TMS320F28234-Q1, TMS320F28232, TMS320F28232-Q1 www.ti.com SPRS439Q – JUNE 2007 – REVISED AUGUST 2022 Table 5-2. F2823x Device Comparison TYPE(1) F28235 F28235-Q1 (150 MHz) F28234 F28234-Q1 (150 MHz) F28232 F28232-Q1 (100 MHz) Instruction cycle – 6.67 ns 6.67 ns 10 ns Floating-point unit – No No No 3.3-V on-chip flash (16-bit word) – 256K 128K 64K Single-access RAM (SARAM) (16-bit word) – 34K 34K 26K One-time programmable (OTP) ROM (16-bit word) – 1K 1K 1K Code security for on-chip flash/ SARAM/OTP blocks – Yes Yes Yes Boot ROM (8K × 16) – Yes Yes Yes 16/32-bit External Interface (XINTF) 1 Yes Yes Yes 6-channel Direct Memory Access (DMA) 0 Yes Yes Yes PWM channels 0 ePWM1/2/3/4/5/6 ePWM1/2/3/4/5/6 HRPWM channels 0 32-bit capture inputs or auxiliary PWM outputs 0 eCAP1/2/3/4/5/6 eCAP1/2/3/4 eCAP1/2/3/4 32-bit QEP channels (four inputs/channel) 0 eQEP1/2 eQEP1/2 eQEP1/2 Watchdog timer – Yes Yes Yes 16 16 16 2 12.5 12.5 12.5 FEATURE No. of channels 12-bit ADC MSPS Conversion time ePWM1A/2A/3A/4A/5A/6A ePWM1A/2A/3A/4A/5A/6A ePWM1/2/3/4/5/6 ePWM1A/2A/3A/4A 80 ns 80 ns 80 ns 32-bit CPU timers – 3 3 3 Multichannel Buffered Serial Port (McBSP)/SPI 1 2 (A/B) 2 (A/B) 1 (A) Serial Peripheral Interface (SPI) 0 1 1 1 Serial Communications Interface (SCI) (UART-compatible) 0 3 (A/B/C) 3 (A/B/C) 2 (A/B) Enhanced Controller Area Network (eCAN) 0 2 (A/B) 2 (A/B) 2 (A/B) Inter-Integrated Circuit (I2C) 0 1 1 1 General-purpose I/O pins (shared) – 88 88 88 External interrupts – 8 8 8 176-Pin PGF – Yes Yes Yes 176-Pin PTP – Yes Yes Yes 179-Ball ZHH – Yes Yes Yes 179-Ball ZAY – – Yes Yes 176-Ball ZJZ – Yes Yes Yes A: –40°C to 85°C – PGF, ZHH, ZJZ PGF, ZHH, ZAY, ZJZ PGF, ZHH, ZAY, ZJZ S: –40°C to 125°C – PTP, ZJZ PTP, ZJZ PTP, ZJZ Q: –40°C to 125°C (AEC Q100 Qualification) – PTP, ZJZ PTP, ZJZ PTP, ZJZ Packaging Temperature options (1) 10 A type change represents a major functional feature difference in a peripheral module. Within a peripheral type, there may be minor differences between devices that do not affect the basic functionality of the module. These device-specific differences are listed in the C2000 Real-Time Control MCU Peripherals Reference Guide and the TMS320x2833x, TMS320x2823x Real-Time Microcontrollers Technical Reference Manual. Submit Document Feedback Copyright © 2022 Texas Instruments Incorporated Product Folder Links: TMS320F28335 TMS320F28335-Q1 TMS320F28334 TMS320F28333 TMS320F28332 TMS320F28235 TMS320F28235-Q1 TMS320F28234 TMS320F28234-Q1 TMS320F28232 TMS320F28232-Q1 TMS320F28335, TMS320F28335-Q1, TMS320F28334, TMS320F28333 TMS320F28332, TMS320F28235, TMS320F28235-Q1 TMS320F28234, TMS320F28234-Q1, TMS320F28232, TMS320F28232-Q1 www.ti.com SPRS439Q – JUNE 2007 – REVISED AUGUST 2022 5.1 Related Products For information about similar products, see the following links: TMS320F2833x Real-Time Microcontrollers The F2833x series is the first C2000™ MCU that is offered with a floating-point unit (FPU). It has the firstgeneration ePWM timers. The 12.5-MSPS, 12-bit ADC is still class-leading for an integrated analog-to-digital converter. The F2833x has a 150-MHz CPU and up to 512KB of on-chip Flash. It is available in a 176-pin QFP or 179-ball BGA package. TMS320C2834x Real-Time Microcontrollers The C2834x series removes the on-chip Flash memory and integrated ADC to enable the fastest available clock speeds of up to 300 MHz. It is available in a 179-ball nFBGA or 256-ball BGA package. TMS320F2837xD Real-Time Microcontrollers The F2837xD series sets a new standard for performance with dual subsystems. Each subsystem consists of a C28x CPU and a parallel control law accelerator (CLA), each running at 200 MHz. Enhancing performance are TMU and VCU accelerators. New capabilities include multiple 16-bit/12-bit mode ADCs, DAC, Sigma-Delta filters, USB, configurable logic block (CLB), on-chip oscillators, and enhanced versions of all peripherals. The F2837xD is available with up to 1MB of Flash. It is available in a 176-pin QFP or 337-pin BGA package. TMS320F2837xS Real-Time Microcontrollers The F2837xS series is a pin-to-pin compatible version of F2837xD but with only one C28x-CPU-and-CLA subsystem enabled. It is also available in a 100-pin QFP to enable compatibility with the TMS320F2807x series. Copyright © 2022 Texas Instruments Incorporated Submit Document Feedback Product Folder Links: TMS320F28335 TMS320F28335-Q1 TMS320F28334 TMS320F28333 TMS320F28332 TMS320F28235 TMS320F28235-Q1 TMS320F28234 TMS320F28234-Q1 TMS320F28232 TMS320F28232-Q1 11 TMS320F28335, TMS320F28335-Q1, TMS320F28334, TMS320F28333 TMS320F28332, TMS320F28235, TMS320F28235-Q1 TMS320F28234, TMS320F28234-Q1, TMS320F28232, TMS320F28232-Q1 www.ti.com SPRS439Q – JUNE 2007 – REVISED AUGUST 2022 6 Terminal Configuration and Functions 6.1 Pin Diagrams 132 131 130 129 128 127 126 125 124 123 122 121 120 119 118 117 116 115 114 113 112 111 110 109 108 107 106 105 104 103 102 101 100 99 98 97 96 95 94 93 92 91 90 89 GPIO75/XD4 GPIO74/XD5 GPIO73/XD6 GPIO72/XD7 GPIO71/XD8 GPIO70/XD9 VDD VSS GPIO69/XD10 GPIO68/XD11 GPIO67/XD12 VDDIO VSS GPIO66/XD13 VSS VDD GPIO65/XD14 GPIO64/XD15 GPIO63/SCITXDC/XD16 GPIO62/SCIRXDC/XD17 GPIO61/MFSRB/XD18 GPIO60/MCLKRB/XD19 GPIO59/MFSRA/XD20 VDD VSS VDDIO VSS XCLKIN X1 VSS X2 VDD GPIO58/MCLKRA/XD21 GPIO57/SPISTEA/XD22 GPIO56/SPICLKA/XD23 GPIO55/SPISOMIA/XD24 GPIO54/SPISIMOA/XD25 GPIO53/EQEP1I/XD26 GPIO52/EQEP1S/XD27 VDDIO VSS GPIO51/EQEP1B/XD28 GPIO50/EQEP1A/XD29 GPIO49/ECAP6/XD30 The 176-pin PGF/PTP low-profile quad flatpack (LQFP) pin assignments are shown in Figure 6-1. The 179-ball ZHH ball grid array (BGA) and the 179-ball ZAY new fine pitch ball grid array (nFBGA) terminal assignments are shown in Figure 6-2 through Figure 6-5. The 176-ball ZJZ plastic BGA terminal assignments are shown in Figure 6-6 through Figure 6-9. Table 6-1 describes the function(s) of each pin. 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 88 87 86 85 84 83 82 81 80 79 78 77 76 75 74 73 72 71 70 69 68 67 66 65 64 63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 GPIO48/ECAP5/XD31 TCK EMU1 EMU0 VDD3VFL VSS TEST2 TEST1 XRS TMS TRST TDO TDI GPIO33/SCLA/EPWMSYNCO/ADCSOCBO GPIO32/SDAA/EPWMSYNCI/ADCSOCAO GPIO27/ECAP4/EQEP2S/MFSXB GPIO26/ECAP3/EQEP2I/MCLKXB VDDIO VSS GPIO25/ECAP2/EQEP2B/MDRB GPIO24/ECAP1/EQEP2A/MDXB GPIO23/EQEP1I/MFSXA/SCIRXDB GPIO22/EQEP1S/MCLKXA/SCITXDB GPIO21/EQEP1B/MDRA/CANRXB GPIO20/EQEP1A/MDXA/CANTXB GPIO19/SPISTEA/SCIRXDB/CANTXA GPIO18/SPICLKA/SCITXDB/CANRXA VDD VSS VDD2A18 VSS2AGND ADCRESEXT ADCREFP ADCREFM ADCREFIN ADCINB7 ADCINB6 ADCINB5 ADCINB4 ADCINB3 ADCINB2 ADCINB1 ADCINB0 VDDAIO GPIO30/CANRXA/XA18 GPIO29/SCITXDA/XA19 VSS VDD GPIO0/EPWM1A GPIO1/EPWM1B/ECAP6/MFSRB GPIO2/EPWM2A VSS VDDIO GPIO3/EPWM2B/ECAP5/MCLKRB GPIO4/EPWM3A GPIO5/EPWM3B/MFSRA/ECAP1 GPIO6/EPWM4A/EPWMSYNCI/EPWMSYNCO VSS VDD GPIO7/EPWM4B/MCLKRA/ECAP2 GPIO8/EPWM5A/CANTXB/ADCSOCAO GPIO9/EPWM5B/SCITXDB/ECAP3 GPIO10/EPWM6A/CANRXB/ADCSOCBO GPIO11/EPWM6B/SCIRXDB/ECAP4 GPIO12/TZ1/CANTXB/MDXB VSS VDD GPIO13/TZ2/CANRXB/MDRB GPIO14/TZ3/XHOLD/SCITXDB/MCLKXB GPIO15/TZ4/XHOLDA/SCIRXDB/MFSXB GPIO16/SPISIMOA/CANTXB/TZ5 GPIO17/SPISOMIA/CANRXB/TZ6 VDD VSS VDD1A18 VSS1AGND VSSA2 VDDA2 ADCINA7 ADCINA6 ADCINA5 ADCINA4 ADCINA3 ADCINA2 ADCINA1 ADCINA0 ADCLO VSSAIO 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 GPIO76/XD3 GPIO77/XD2 GPIO78/XD1 GPIO79/XD0 GPIO38/XWE0 XCLKOUT VDD GPIO28/SCIRXDA/XZCS6 VSS GPIO28/SCIRXDA/XZCS6 GPIO34/ECAP1/XREADY VDDIO VSS GPIO36/SCIRXDA/XZCS0 VDD VSS GPIO35/SCITXDA/XR/W XRD GPIO37/ECAP2/XZCS7 GPIO40/XA0/XWE1 GPIO41/XA1 GPIO42/XA2 VDD VSS GPIO43/XA3 GPIO44/XA4 GPIO45/XA5 VDDIO VSS GPIO46/XA6 GPIO47/XA7 GPIO80/XA8 GPIO81/XA9 GPIO82/XA10 VSS VDD GPIO83/XA11 GPIO84/XA12 VDDIO VSS GPIO85/XA13 GPIO86/XA14 GPIO87/XA15 GPIO39/XA16 GPIO31/CANTXA/XA17 Figure 6-1. F2833x, F2823x 176-Pin PGF/PTP LQFP (Top View) 12 Submit Document Feedback Copyright © 2022 Texas Instruments Incorporated Product Folder Links: TMS320F28335 TMS320F28335-Q1 TMS320F28334 TMS320F28333 TMS320F28332 TMS320F28235 TMS320F28235-Q1 TMS320F28234 TMS320F28234-Q1 TMS320F28232 TMS320F28232-Q1 TMS320F28335, TMS320F28335-Q1, TMS320F28334, TMS320F28333 TMS320F28332, TMS320F28235, TMS320F28235-Q1 TMS320F28234, TMS320F28234-Q1, TMS320F28232, TMS320F28232-Q1 www.ti.com SPRS439Q – JUNE 2007 – REVISED AUGUST 2022 Note The thermal pad should be soldered to the ground (GND) plane of the PCB because this will provide the best thermal conduction path. For this device, the thermal pad is not electrically shorted to the internal die VSS; therefore, the thermal pad does not provide an electrical connection to the PCB ground. To make optimum use of the thermal efficiencies designed into the PowerPAD™ package, the PCB must be designed with this technology in mind. A thermal land is required on the surface of the PCB directly underneath the thermal pad. The thermal land should be soldered to the thermal pad; the thermal land should be as large as needed to dissipate the required heat. An array of thermal vias should be used to connect the thermal pad to the internal GND plane of the board. See PowerPAD™ Thermally Enhanced Package for more details on using the PowerPAD package. Copyright © 2022 Texas Instruments Incorporated Submit Document Feedback Product Folder Links: TMS320F28335 TMS320F28335-Q1 TMS320F28334 TMS320F28333 TMS320F28332 TMS320F28235 TMS320F28235-Q1 TMS320F28234 TMS320F28234-Q1 TMS320F28232 TMS320F28232-Q1 13 TMS320F28335, TMS320F28335-Q1, TMS320F28334, TMS320F28333 TMS320F28332, TMS320F28235, TMS320F28235-Q1 TMS320F28234, TMS320F28234-Q1, TMS320F28232, TMS320F28232-Q1 www.ti.com SPRS439Q – JUNE 2007 – REVISED AUGUST 2022 1 2 3 4 5 6 7 P VSSAIO ADCINB0 ADCINB2 ADCINB6 ADCREFP VSS GPIO21/ EQEP1B/ MDRA/ CANRXB P N ADCINA1 VDDAIO ADCINB1 ADCINB5 ADCREFM VDD GPIO22/ EQEP1S/ MCLKXA/ SCITXDB N M ADCINA2 ADCLO ADCINA0 ADCINB4 ADCRESEXT VDD2A18 GPIO23/ EQEP1I/ MFSXA/ SCIRXDB M ADCREFIN GPIO18/ SPICLKA/ SCITXDB/ CANRXA GPIO20/ EQEP1A/ MDXA/ CANTXB L VSS2AGND GPIO19/ SPISTEA/ SCIRXDB/ CANTXA K 6 7 L ADCINA5 ADCINA4 ADCINA3 ADCINB3 K VSS1AGND J GPIO17/ SPISOMIA/ CANRXB/ TZ6 VDD VSS VDD1A18 ADCINA6 J VDD GPIO14/ TZ3/XHOLD/ SCITXDB/ MCLKXB GPIO13/ TZ2/ CANRXB/ MDRB GPIO15/ TZ4/XHOLDA/ SCIRXDB/ MFSXB GPIO16/ SPISIMOA/ CANTXB/ TZ5 H 1 2 3 4 5 H VDDA2 VSSA2 ADCINA7 ADCINB7 Figure 6-2. F2833x, F2823x 179-Ball ZHH MicroStar BGA and 179-Ball ZAY nFBGA (Upper-Left Quadrant) (Bottom View) 14 Submit Document Feedback Copyright © 2022 Texas Instruments Incorporated Product Folder Links: TMS320F28335 TMS320F28335-Q1 TMS320F28334 TMS320F28333 TMS320F28332 TMS320F28235 TMS320F28235-Q1 TMS320F28234 TMS320F28234-Q1 TMS320F28232 TMS320F28232-Q1 TMS320F28335, TMS320F28335-Q1, TMS320F28334, TMS320F28333 TMS320F28332, TMS320F28235, TMS320F28235-Q1 TMS320F28234, TMS320F28234-Q1, TMS320F28232, TMS320F28232-Q1 www.ti.com SPRS439Q – JUNE 2007 – REVISED AUGUST 2022 10 13 8 9 P VSS GPIO33/ SCLA/ EPWMSYNCO/ ADCSOCBO TMS TEST2 EMU1 GPIO48/ ECAP5/ XD31 GPIO50/ EQEP1A/ XD29 P N GPIO25/ ECAP2/ EQEP2B/ MDRB GPIO32/ SDAA/ EPWMSYNCI/ ADCSOCAO VSS VSS TCK GPIO49/ ECAP6/ XD30 VDDIO N M GPIO24/ ECAP1/ EQEP2A/ MDXB TDI TRST VDD3VFL VSS GPIO51/ EQEP1B/ XD28 GPIO52/ EQEP1S/ XD27 M L VDDIO GPIO27/ ECAP4/ EQEP2S/ MFSXB XRS EMU0 GPIO53/ EQEP1I/ XD26 GPIO54/ SPISIMOA/ XD25 GPIO55/ SPISOMIA/ XD24 L K GPIO26/ ECAP3/ EQEP2I/ MCLKXB TDO TEST1 GPIO56/ SPICLKA/ XD23 GPIO58/ MCLKRA/ XD21 GPIO57/ SPISTEA/ XD22 VDD K 8 9 J VSS X2 VSS X1 XCLKIN J H VSS VDDIO VDD VSS GPIO59/ MFSRA/ XD20 H 10 11 12 13 14 11 12 14 Figure 6-3. F2833x, F2823x 179-Ball ZHH MicroStar BGA and 179-Ball ZAY nFBGA (Upper-Right Quadrant) (Bottom View) Copyright © 2022 Texas Instruments Incorporated Submit Document Feedback Product Folder Links: TMS320F28335 TMS320F28335-Q1 TMS320F28334 TMS320F28333 TMS320F28332 TMS320F28235 TMS320F28235-Q1 TMS320F28234 TMS320F28234-Q1 TMS320F28232 TMS320F28232-Q1 15 TMS320F28335, TMS320F28335-Q1, TMS320F28334, TMS320F28333 TMS320F28332, TMS320F28235, TMS320F28235-Q1 TMS320F28234, TMS320F28234-Q1, TMS320F28232, TMS320F28232-Q1 www.ti.com SPRS439Q – JUNE 2007 – REVISED AUGUST 2022 1 2 3 4 5 G VSS GPIO11/ EPWM6B/ SCIRXDB/ ECAP4 GPIO12/ TZ1/ CANTXB/ MDXB GPIO10/ EPWM6A/ CANRXB/ ADCSOCBO GPIO9/ EPWM5B/ SCITXDB/ ECAP3 G F GPIO8/ EPWM5A/ CANTXB/ ADCSOCAO GPIO7/ EPWM4B/ MCLKRA/ ECAP2 VDD VSS VDDIO F E GPIO6/ EPWM4A/ EPWMSYNCI/ EPWMSYNCO GPIO4/ EPWM3A GPIO5/ EPWM3B/ MFSRA/ ECAP1 GPIO3/ EPWM2B/ ECAP5/ MCLKRB D VSS GPIO2/ EPWM2A GPIO1/ EPWM1B/ ECAP6/ MFSRB C GPIO0/ EPWM1A GPIO29/ SCITXDA/ XA19 B VDD A 6 7 GPIO84/ XA12 GPIO81/ XA9 VDDIO E GPIO86/ XA14 GPIO83/ XA11 VSS GPIO45/ XA5 D VSS GPIO85/ XA13 GPIO82/ XA10 GPIO80/ XA8 VSS C GPIO30/ CANRXA/ XA18 GPIO39/ XA16 VSS VDD GPIO46/ XA6 GPIO43/ XA3 B GPIO31/ CANTXA/ XA17 GPIO87/ XA15 VDDIO VSS GPIO47/ XA7 GPIO44/ XA4 A 2 3 4 5 6 7 1 Figure 6-4. F2833x, F2823x 179-Ball ZHH MicroStar BGA and 179-Ball ZAY nFBGA (Lower-Left Quadrant) (Bottom View) 16 Submit Document Feedback Copyright © 2022 Texas Instruments Incorporated Product Folder Links: TMS320F28335 TMS320F28335-Q1 TMS320F28334 TMS320F28333 TMS320F28332 TMS320F28235 TMS320F28235-Q1 TMS320F28234 TMS320F28234-Q1 TMS320F28232 TMS320F28232-Q1 TMS320F28335, TMS320F28335-Q1, TMS320F28334, TMS320F28333 TMS320F28332, TMS320F28235, TMS320F28235-Q1 TMS320F28234, TMS320F28234-Q1, TMS320F28232, TMS320F28232-Q1 www.ti.com SPRS439Q – JUNE 2007 – REVISED AUGUST 2022 10 11 12 13 14 G GPIO64/ XD15 GPIO63/ SCITXDC/ XD16 GPIO61/ MFSRB/ XD18 GPIO62/ SCIRXDC XD17 GPIO60/ MCLKRB/ XD19 G F GPIO69/ XD10 GPIO66/ XD13 VSS VDD GPIO65/ XD14 F 8 9 E VSS VDD GPIO28/ SCIRXDA/ XZCS6 GPIO68/ XD11 VDDIO GPIO67/ XD12 VSS E D GPIO40/ XA0/ XWE1 GPIO37/ ECAP2/ XZCS7 GPIO34/ ECAP1/ XREADY GPIO38/ XWE0 GPIO70/ XD9 VDD VSS D C VDD VSS GPIO36/ SCIRXDA/ XZCS0 XCLKOUT GPIO73/ XD6 GPIO74/ XD5 GPIO71/ XD8 C B GPIO42/ XA2 XRD VDDIO VDD GPIO78/ XD1 GPIO76/ XD3 GPIO72/ XD7 B A GPIO41/ XA1 GPIO35/ SCITXDA/ XR/W VSS VSS GPIO79/ XD0 GPIO77/ XD2 GPIO75/ XD4 A 8 9 10 11 12 13 14 Figure 6-5. F2833x, F2823x 179-Ball ZHH MicroStar BGA and 179-Ball ZAY nFBGA (Lower-Right Quadrant) (Bottom View) Copyright © 2022 Texas Instruments Incorporated Submit Document Feedback Product Folder Links: TMS320F28335 TMS320F28335-Q1 TMS320F28334 TMS320F28333 TMS320F28332 TMS320F28235 TMS320F28235-Q1 TMS320F28234 TMS320F28234-Q1 TMS320F28232 TMS320F28232-Q1 17 TMS320F28335, TMS320F28335-Q1, TMS320F28334, TMS320F28333 TMS320F28332, TMS320F28235, TMS320F28235-Q1 TMS320F28234, TMS320F28234-Q1, TMS320F28232, TMS320F28232-Q1 www.ti.com SPRS439Q – JUNE 2007 – REVISED AUGUST 2022 1 2 3 4 5 6 7 P VSSA2 VSS2AGND ADCINB0 ADCREFM ADCREFP ADCRESEXT ADCREFIN N VSSAIO ADCLO ADCINB1 ADCINB3 ADCINB5 ADCINB7 EMU0 M ADCINA2 ADCINA1 ADCINA0 ADCINB2 ADCINB4 ADCINB6 TEST1 L ADCINA5 ADCINA4 ADCINA3 VSS1AGND VDDAIO VDD2A18 TEST2 K ADCINA7 ADCINA6 VDD1A18 VDDA2 J GPIO15/ TZ4/XHOLDA/ SCIRXDB/ MFSXB GPIO16/ SPISIMOA/ CANTXB/ TZ5 GPIO17/ SPISOMIA/ CANRXB/ TZ6 VDD VSS VSS H GPIO12/ TZ1/ CANTXB/ MDXB GPIO13/ TZ2/ CANRXB/ MDRB GPIO14/ TZ3/XHOLD/ SCITXDB/ MCLKXB VDD VSS VSS Figure 6-6. F2833x, F2823x 176-Ball ZJZ Plastic BGA (Upper-Left Quadrant) (Bottom View) 18 Submit Document Feedback Copyright © 2022 Texas Instruments Incorporated Product Folder Links: TMS320F28335 TMS320F28335-Q1 TMS320F28334 TMS320F28333 TMS320F28332 TMS320F28235 TMS320F28235-Q1 TMS320F28234 TMS320F28234-Q1 TMS320F28232 TMS320F28232-Q1 TMS320F28335, TMS320F28335-Q1, TMS320F28334, TMS320F28333 TMS320F28332, TMS320F28235, TMS320F28235-Q1 TMS320F28234, TMS320F28234-Q1, TMS320F28232, TMS320F28232-Q1 www.ti.com SPRS439Q – JUNE 2007 – REVISED AUGUST 2022 8 9 10 11 12 13 14 EMU1 GPIO20/ EQEP1A/ MDXA/ CANTXB GPIO23/ EQEP1I/ MFSXA/ SCIRXDB GPIO26/ ECAP3/ EQEP2I/ MCLKXB GPIO33/ SCLA/ EPWMSYNCO/ ADCSOCBO VSS VSS P GPIO18/ SPICLKA/ SCITXDB/ CANRXA GPIO21/ EQEP1B/ MDRA/ CANRXB GPIO24/ ECAP1/ EQEP2A/ MDXB GPIO27/ ECAP4/ EQEP2S/ MFSXB TDI TDO VDDIO N GPIO19/ SPISTEA/ SCIRXDB/ CANTXA GPIO22/ EQEP1S/ MCLKXA/ SCITXDB GPIO25/ ECAP2/ EQEP2B/ MDRB GPIO32/ SDAA/ EPWMSYNCI/ ADSOCAO TMS XRS TCK M VDD VDD3VFL VDDIO TRST GPIO50/ EQEP1A/ XD29 GPIO49/ ECAP6/ XD30 GPIO48/ ECAP5/ XD31 L VDD GPIO53 EQEP1I/ XD26 GPIO52/ EQEP1S/ XD27 GPIO51/ EQEP1B/ XD28 K VSS VSS VDD GPIO56/ SPICLKA/ XD23 GPIO55/ SPISOMIA/ XD24 GPIO54/ SPISIMOA/ XD25 J VSS VSS GPIO59/ MFSRA/ XD20 GPIO58/ MCLKRA/ XD21 GPIO57/ SPISTEA/ XD22 X2 H Figure 6-7. F2833x, F2823x 176-Ball ZJZ Plastic BGA (Upper-Right Quadrant) (Bottom View) Copyright © 2022 Texas Instruments Incorporated Submit Document Feedback Product Folder Links: TMS320F28335 TMS320F28335-Q1 TMS320F28334 TMS320F28333 TMS320F28332 TMS320F28235 TMS320F28235-Q1 TMS320F28234 TMS320F28234-Q1 TMS320F28232 TMS320F28232-Q1 19 TMS320F28335, TMS320F28335-Q1, TMS320F28334, TMS320F28333 TMS320F28332, TMS320F28235, TMS320F28235-Q1 TMS320F28234, TMS320F28234-Q1, TMS320F28232, TMS320F28232-Q1 www.ti.com SPRS439Q – JUNE 2007 – REVISED AUGUST 2022 G GPIO9/ EPWM5B/ SCITXDB/ ECAP3 GPIO10/ EPWM6A/ CANRXB/ ADCSOCBO GPIO11/ EPWM6B/ SCIRXDB/ ECAP4 VDDIO VSS VSS F GPIO6/ EPWM4A/ EPWMSYNCI/ EPWMSYNCO GPIO7/ EPWM4B/ MCLKRA/ ECAP2 GPIO8/ EPWM5A/ CANTXB/ ADCSOCAO VDD VSS VSS E GPIO3/ EPWM2B/ ECAP5/ MCLKRB GPIO4/ EPWM3A GPIO5/ EPWM3B/ MFSRA/ ECAP1 VDDIO D GPIO0/ EPWM1A GPIO1/ EPWM1B/ ECAP6/ MFSRB GPIO2/ EPWM2A VDD VDD GPIO47/ XA7 VDDIO C GPIO29/ SCITXDA/ XA19 GPIO30/ CANRXA/ XA18 GPIO39/ XA16 GPIO85/ XA13 GPIO82/ XA10 GPIO46/ XA6 GPIO43/ XA3 B VDDIO GPIO31/ CANTXA/ XA17 GPIO87/ XA15 GPIO84/ XA12 GPIO81/ XA9 GPIO45/ XA5 GPIO42/ XA2 A VSS VSS GPIO86/ XA14 GPIO83/ XA11 GPIO80/ XA8 GPIO44/ XA4 GPIO41/ XA1 1 2 3 4 5 6 7 Figure 6-8. F2833x, F2823x 176-Ball ZJZ Plastic BGA (Lower-Left Quadrant) (Bottom View) 20 Submit Document Feedback Copyright © 2022 Texas Instruments Incorporated Product Folder Links: TMS320F28335 TMS320F28335-Q1 TMS320F28334 TMS320F28333 TMS320F28332 TMS320F28235 TMS320F28235-Q1 TMS320F28234 TMS320F28234-Q1 TMS320F28232 TMS320F28232-Q1 TMS320F28335, TMS320F28335-Q1, TMS320F28334, TMS320F28333 TMS320F28332, TMS320F28235, TMS320F28235-Q1 TMS320F28234, TMS320F28234-Q1, TMS320F28232, TMS320F28232-Q1 www.ti.com SPRS439Q – JUNE 2007 – REVISED AUGUST 2022 VSS VSS VDDIO GPIO60/ MCLKRB/ XD19 XCLKIN X1 G VSS VSS VDD GPIO63/ SCITXDC/ XD16 GPIO62/ SCIRXDC/ XD17 GPIO61/ MFSRB/ XD18 F VDD GPIO66/ XD13 GPIO65/ XD14 GPIO64/ XD15 E VDD VDD GPIO28/ SCIRXDA/ XZCS6 VDDIO GPIO69/ XD10 GPIO68/ XD11 GPIO67/ XD12 D GPIO40/ XA0/XWE1 GPIO36/ SCIRXDA/ XZCS0 GPIO38/ XWE0 GPIO78/ XD1 GPIO75/ XD4 GPIO71/ XD8 GPIO70/ XD9 C GPIO37/ ECAP2/ XZCS7 GPIO35/ SCITXDA/ XR/W GPIO79/ XD0 GPIO77/ XD2 GPIO74/ XD5 GPIO72 XD7 VSS B XRD GPIO34/ ECAP1/ XREADY XCLKOUT GPIO76/ XD3 GPIO73/ XD6 VDDIO VSS A 8 9 10 11 12 13 14 Figure 6-9. F2833x, F2823x 176-Ball ZJZ Plastic BGA (Lower-Right Quadrant) (Bottom View) Copyright © 2022 Texas Instruments Incorporated Submit Document Feedback Product Folder Links: TMS320F28335 TMS320F28335-Q1 TMS320F28334 TMS320F28333 TMS320F28332 TMS320F28235 TMS320F28235-Q1 TMS320F28234 TMS320F28234-Q1 TMS320F28232 TMS320F28232-Q1 21 TMS320F28335, TMS320F28335-Q1, TMS320F28334, TMS320F28333 TMS320F28332, TMS320F28235, TMS320F28235-Q1 TMS320F28234, TMS320F28234-Q1, TMS320F28232, TMS320F28232-Q1 www.ti.com SPRS439Q – JUNE 2007 – REVISED AUGUST 2022 6.2 Signal Descriptions Table 6-1 describes the signals. The GPIO function (shown in Italics) is the default at reset. The peripheral signals that are listed under them are alternate functions. Some peripheral functions may not be available in all devices. See Table 5-1 and Table 5-2 for details. Inputs are not 5-V tolerant. All pins capable of producing an XINTF output function have a drive strength of 8 mA (typical). This is true even if the pin is not configured for XINTF functionality. All other pins have a drive strength of 4-mA drive typical (unless otherwise indicated). All GPIO pins are I/O/Z and have an internal pullup, which can be selectively enabled or disabled on a per-pin basis. This feature only applies to the GPIO pins. The pullups on GPIO0–GPIO11 pins are not enabled at reset. The pullups on GPIO12–GPIO87 are enabled upon reset. Table 6-1. Signal Descriptions PIN NO. NAME PGF, PTP PIN # ZHH, ZAY BALL # DESCRIPTION (1) ZJZ BALL # JTAG TRST 78 M10 L11 JTAG test reset with internal pulldown. TRST, when driven high, gives the scan system control of the operations of the device. If this signal is not connected or driven low, the device operates in its functional mode, and the test reset signals are ignored. NOTE: TRST is an active high test pin and must be maintained low at all times during normal device operation. An external pulldown resistor is required on this pin. The value of this resistor should be based on drive strength of the debugger pods applicable to the design. A 2.2-kΩ resistor generally offers adequate protection. Because this is applicationspecific, TI recommends validating each target board for proper operation of the debugger and the application. (I, ↓) TCK 87 N12 M14 JTAG test clock with internal pullup (I, ↑) TMS 79 P10 M12 JTAG test-mode select (TMS) with internal pullup. This serial control input is clocked into the TAP controller on the rising edge of TCK. (I, ↑) TDI 76 M9 N12 JTAG test data input (TDI) with internal pullup. TDI is clocked into the selected register (instruction or data) on a rising edge of TCK. (I, ↑) TDO 77 K9 N13 JTAG scan out, test data output (TDO). The contents of the selected register (instruction or data) are shifted out of TDO on the falling edge of TCK. (O/Z 8 mA drive) N7 Emulator pin 0. When TRST is driven high, this pin is used as an interrupt to or from the JTAG debug probe system and is defined as input/output through the JTAG scan. This pin is also used to put the device into boundary-scan mode. With the EMU0 pin at a logic-high state and the EMU1 pin at a logic-low state, a rising edge on the TRST pin would latch the device into boundary-scan mode. (I/O/Z, 8 mA drive ↑) NOTE: An external pullup resistor is required on this pin. The value of this resistor should be based on the drive strength of the debugger pods applicable to the design. A 2.2-kΩ to 4.7-kΩ resistor is generally adequate. Because this is application-specific, TI recommends validating each target board for proper operation of the debugger and the application. P8 Emulator pin 1. When TRST is driven high, this pin is used as an interrupt to or from the JTAG debug probe system and is defined as input/output through the JTAG scan. This pin is also used to put the device into boundary-scan mode. With the EMU0 pin at a logic-high state and the EMU1 pin at a logic-low state, a rising edge on the TRST pin would latch the device into boundary-scan mode. (I/O/Z, 8 mA drive ↑) NOTE: An external pullup resistor is required on this pin. The value of this resistor should be based on the drive strength of the debugger pods applicable to the design. A 2.2-kΩ to 4.7-kΩ resistor is generally adequate. Because this is application-specific, TI recommends validating each target board for proper operation of the debugger and the application. EMU0 EMU1 85 86 L11 P12 FLASH VDD3VFL 84 M11 L9 3.3-V Flash Core Power Pin. This pin should be connected to 3.3 V at all times. TEST1 81 K10 M7 Test Pin. Reserved for TI. Must be left unconnected. (I/O) TEST2 82 P11 L7 Test Pin. Reserved for TI. Must be left unconnected. (I/O) 22 Submit Document Feedback Copyright © 2022 Texas Instruments Incorporated Product Folder Links: TMS320F28335 TMS320F28335-Q1 TMS320F28334 TMS320F28333 TMS320F28332 TMS320F28235 TMS320F28235-Q1 TMS320F28234 TMS320F28234-Q1 TMS320F28232 TMS320F28232-Q1 TMS320F28335, TMS320F28335-Q1, TMS320F28334, TMS320F28333 TMS320F28332, TMS320F28235, TMS320F28235-Q1 TMS320F28234, TMS320F28234-Q1, TMS320F28232, TMS320F28232-Q1 www.ti.com SPRS439Q – JUNE 2007 – REVISED AUGUST 2022 Table 6-1. Signal Descriptions (continued) PIN NO. NAME PGF, PTP PIN # ZHH, ZAY BALL # DESCRIPTION (1) ZJZ BALL # CLOCK XCLKOUT 138 C11 A10 Output clock derived from SYSCLKOUT. XCLKOUT is either the same frequency, one-half the frequency, or one-fourth the frequency of SYSCLKOUT. This is controlled by bits 18:16 (XTIMCLK) and bit 2 (CLKMODE) in the XINTCNF2 register. At reset, XCLKOUT = SYSCLKOUT/4. The XCLKOUT signal can be turned off by setting XINTCNF2[CLKOFF] to 1. Unlike other GPIO pins, the XCLKOUT pin is not placed in high-impedance state during a reset. (O/Z, 8 mA drive). XCLKIN 105 J14 G13 External Oscillator Input. This pin is to feed a clock from an external 3.3-V oscillator. In this case, the X1 pin must be tied to GND. If a crystal/resonator is used (or if an external 1.9-V oscillator is used to feed clock to X1 pin), this pin must be tied to GND. (I) X1 104 J13 G14 Internal/External Oscillator Input. To use the internal oscillator, a quartz crystal or a ceramic resonator may be connected across X1 and X2. The X1 pin is referenced to the 1.9-V/1.8-V core digital power supply. A 1.9-V/1.8-V external oscillator may be connected to the X1 pin. In this case, the XCLKIN pin must be connected to ground. If a 3.3-V external oscillator is used with the XCLKIN pin, X1 must be tied to GND. (I) X2 102 J11 H14 Internal Oscillator Output. A quartz crystal or a ceramic resonator may be connected across X1 and X2. If X2 is not used, it must be left unconnected. (O) M13 Device Reset (in) and Watchdog Reset (out). Device reset. XRS causes the device to terminate execution. The PC will point to the address contained at the location 0x3FFFC0. When XRS is brought to a high level, execution begins at the location pointed to by the PC. This pin is driven low by the MCU when a watchdog reset occurs. During watchdog reset, the XRS pin is driven low for the watchdog reset duration of 512 OSCCLK cycles. (I/OD, ↑) The output buffer of this pin is an open drain with an internal pullup. If this pin is driven by an external device, it should be done using an open-drain device. An external R-C circuit may be used on the pin, taking care that the timing requirements during power down are still met. RESET XRS 80 L10 ADC SIGNALS ADCINA7 35 K4 K1 ADC Group A, Channel 7 input (I) ADCINA6 36 J5 K2 ADC Group A, Channel 6 input (I) ADCINA5 37 L1 L1 ADC Group A, Channel 5 input (I) ADCINA4 38 L2 L2 ADC Group A, Channel 4 input (I) ADCINA3 39 L3 L3 ADC Group A, Channel 3 input (I) ADCINA2 40 M1 M1 ADC Group A, Channel 2 input (I) ADCINA1 41 N1 M2 ADC Group A, Channel 1 input (I) ADCINA0 42 M3 M3 ADC Group A, Channel 0 input (I) ADCINB7 53 K5 N6 ADC Group B, Channel 7 input (I) ADCINB6 52 P4 M6 ADC Group B, Channel 6 input (I) ADCINB5 51 N4 N5 ADC Group B, Channel 5 input (I) ADCINB4 50 M4 M5 ADC Group B, Channel 4 input (I) ADCINB3 49 L4 N4 ADC Group B, Channel 3 input (I) ADCINB2 48 P3 M4 ADC Group B, Channel 2 input (I) ADCINB1 47 N3 N3 ADC Group B, Channel 1 input (I) ADCINB0 46 P2 P3 ADC Group B, Channel 0 input (I) ADCLO 43 M2 N2 Low Reference (connect to analog ground) (I) ADCRESEXT 57 M5 P6 ADC External Current Bias Resistor. Connect a 22-kΩ resistor to analog ground. ADCREFIN 54 L5 P7 External reference input (I) Copyright © 2022 Texas Instruments Incorporated Submit Document Feedback Product Folder Links: TMS320F28335 TMS320F28335-Q1 TMS320F28334 TMS320F28333 TMS320F28332 TMS320F28235 TMS320F28235-Q1 TMS320F28234 TMS320F28234-Q1 TMS320F28232 TMS320F28232-Q1 23 TMS320F28335, TMS320F28335-Q1, TMS320F28334, TMS320F28333 TMS320F28332, TMS320F28235, TMS320F28235-Q1 TMS320F28234, TMS320F28234-Q1, TMS320F28232, TMS320F28232-Q1 www.ti.com SPRS439Q – JUNE 2007 – REVISED AUGUST 2022 Table 6-1. Signal Descriptions (continued) PIN NO. NAME ADCREFP ADCREFM PGF, PTP PIN # ZHH, ZAY BALL # ZJZ BALL # 56 P5 P5 Internal Reference Positive Output. Requires a low ESR (under 1.5 Ω) ceramic bypass capacitor of 2.2 μF to analog ground. (O) NOTE: Use the ADC Clock rate to derive the ESR specification from the capacitor data sheet that is used in the system. P4 Internal Reference Medium Output. Requires a low ESR (under 1.5 Ω) ceramic bypass capacitor of 2.2 μF to analog ground. (O) NOTE: Use the ADC Clock rate to derive the ESR specification from the capacitor data sheet that is used in the system. 55 N5 DESCRIPTION (1) CPU AND I/O POWER PINS VDDA2 34 K2 K4 ADC Analog Power Pin VSSA2 33 K3 P1 ADC Analog Ground Pin VDDAIO 45 N2 L5 ADC Analog I/O Power Pin VSSAIO 44 P1 N1 ADC Analog I/O Ground Pin VDD1A18 31 J4 K3 ADC Analog Power Pin VSS1AGND 32 K1 L4 ADC Analog Ground Pin VDD2A18 59 M6 L6 ADC Analog Power Pin VSS2AGND 58 K6 P2 ADC Analog Ground Pin VDD 4 B1 D4 VDD 15 B5 D5 VDD 23 B11 D8 VDD 29 C8 D9 VDD 61 D13 E11 VDD 101 E9 F4 VDD 109 F3 F11 VDD 117 F13 H4 VDD 126 H1 J4 VDD 139 H12 J11 VDD 146 J2 K11 VDD 154 K14 L8 VDD 167 N6 VDDIO 9 A4 A13 VDDIO 71 B10 B1 VDDIO 93 E7 D7 VDDIO 107 E12 D11 VDDIO 121 F5 E4 VDDIO 143 L8 G4 VDDIO 159 H11 G11 VDDIO 170 N14 L10 VDDIO 24 CPU and Logic Digital Power Pins Digital I/O Power Pin N14 Submit Document Feedback Copyright © 2022 Texas Instruments Incorporated Product Folder Links: TMS320F28335 TMS320F28335-Q1 TMS320F28334 TMS320F28333 TMS320F28332 TMS320F28235 TMS320F28235-Q1 TMS320F28234 TMS320F28234-Q1 TMS320F28232 TMS320F28232-Q1 TMS320F28335, TMS320F28335-Q1, TMS320F28334, TMS320F28333 TMS320F28332, TMS320F28235, TMS320F28235-Q1 TMS320F28234, TMS320F28234-Q1, TMS320F28232, TMS320F28232-Q1 www.ti.com SPRS439Q – JUNE 2007 – REVISED AUGUST 2022 Table 6-1. Signal Descriptions (continued) PIN NO. NAME PGF, PTP PIN # ZHH, ZAY BALL # ZJZ BALL # VSS 3 A5 A1 VSS 8 A10 A2 VSS 14 A11 A14 VSS 22 B4 B14 VSS 30 C3 F6 VSS 60 C7 F7 VSS 70 C9 F8 VSS 83 D1 F9 VSS 92 D6 G6 VSS 103 D14 G7 VSS 106 E8 G8 VSS 108 E14 G9 VSS 118 F4 H6 VSS 120 F12 H7 VSS 125 G1 H8 VSS 140 H10 H9 VSS 144 H13 J6 VSS 147 J3 J7 VSS 155 J10 J8 VSS 160 J12 J9 VSS 166 M12 P13 VSS 171 N10 P14 VSS N11 VSS P6 VSS P8 DESCRIPTION (1) Digital Ground Pins GPIO AND PERIPHERAL SIGNALS GPIO0 EPWM1A - 5 C1 D1 General-purpose input/output 0 (I/O/Z) Enhanced PWM1 Output A and HRPWM channel (O) - GPIO1 EPWM1B ECAP6 MFSRB 6 D3 D2 General-purpose input/output 1 (I/O/Z) Enhanced PWM1 Output B (O) Enhanced Capture 6 input/output (I/O) McBSP-B receive frame synch (I/O) GPIO2 EPWM2A - 7 D2 D3 General-purpose input/output 2 (I/O/Z) Enhanced PWM2 Output A and HRPWM channel (O) - E1 General-purpose input/output 3 (I/O/Z) Enhanced PWM2 Output B (O) Enhanced Capture 5 input/output (I/O) McBSP-B receive clock (I/O) E2 General-purpose input/output 4 (I/O/Z) Enhanced PWM3 output A and HRPWM channel (O) - GPIO3 EPWM2B ECAP5 MCLKRB GPIO4 EPWM3A - 10 11 E4 E2 Copyright © 2022 Texas Instruments Incorporated Submit Document Feedback Product Folder Links: TMS320F28335 TMS320F28335-Q1 TMS320F28334 TMS320F28333 TMS320F28332 TMS320F28235 TMS320F28235-Q1 TMS320F28234 TMS320F28234-Q1 TMS320F28232 TMS320F28232-Q1 25 TMS320F28335, TMS320F28335-Q1, TMS320F28334, TMS320F28333 TMS320F28332, TMS320F28235, TMS320F28235-Q1 TMS320F28234, TMS320F28234-Q1, TMS320F28232, TMS320F28232-Q1 www.ti.com SPRS439Q – JUNE 2007 – REVISED AUGUST 2022 Table 6-1. Signal Descriptions (continued) PIN NO. NAME GPIO5 EPWM3B MFSRA ECAP1 GPIO6 EPWM4A EPWMSYNCI EPWMSYNCO PGF, PTP PIN # ZHH, ZAY BALL # ZJZ BALL # 12 E3 E3 General-purpose input/output 5 (I/O/Z) Enhanced PWM3 output B (O) McBSP-A receive frame synch (I/O) Enhanced Capture input/output 1 (I/O) F1 General-purpose input/output 6 (I/O/Z) Enhanced PWM4 output A and HRPWM channel (O) External ePWM sync pulse input (I) External ePWM sync pulse output (O) 13 E1 DESCRIPTION (1) GPIO7 EPWM4B MCLKRA ECAP2 16 F2 F2 General-purpose input/output 7 (I/O/Z) Enhanced PWM4 output B (O) McBSP-A receive clock (I/O) Enhanced capture input/output 2 (I/O) GPIO8 EPWM5A CANTXB ADCSOCAO 17 F1 F3 General-purpose Input/Output 8 (I/O/Z) Enhanced PWM5 output A and HRPWM channel (O) Enhanced CAN-B transmit (O) ADC start-of-conversion A (O) G1 General-purpose input/output 9 (I/O/Z) Enhanced PWM5 output B (O) SCI-B transmit data(O) Enhanced capture input/output 3 (I/O) GPIO9 EPWM5B SCITXDB ECAP3 18 G5 GPIO10 EPWM6A CANRXB ADCSOCBO 19 G4 G2 General-purpose input/output 10 (I/O/Z) Enhanced PWM6 output A and HRPWM channel (O) Enhanced CAN-B receive (I) ADC start-of-conversion B (O) GPIO11 EPWM6B SCIRXDB ECAP4 20 G2 G3 General-purpose input/output 11 (I/O/Z) Enhanced PWM6 output B (O) SCI-B receive data (I) Enhanced CAP Input/Output 4 (I/O) H1 General-purpose input/output 12 (I/O/Z) Trip Zone input 1 (I) Enhanced CAN-B transmit (O) McBSP-B transmit serial data (O) H2 General-purpose input/output 13 (I/O/Z) Trip Zone input 2 (I) Enhanced CAN-B receive (I) McBSP-B receive serial data (I) GPIO12 TZ1 CANTXB MDXB GPIO13 TZ2 CANRXB MDRB 21 24 G3 H3 GPIO14 General-purpose input/output 14 (I/O/Z) TZ3/ XHOLD Trip Zone input 3/External Hold Request. XHOLD, when active (low), requests the external interface (XINTF) to release the external bus and place all buses and strobes into a highimpedance state. To prevent this from happening when TZ3 signal goes active, disable this function by writing XINTCNF2[HOLD] = 1. If this is not done, the XINTF bus will go into high impedance anytime TZ3 goes low. On the ePWM side, TZn signals are ignored by default, unless they are enabled by the code. The XINTF will release the bus when any current access is complete and there are no pending accesses on the XINTF. (I) 25 H2 H3 SCITXDB SCI-B Transmit (O) MCLKXB McBSP-B transmit clock (I/O) 26 Submit Document Feedback Copyright © 2022 Texas Instruments Incorporated Product Folder Links: TMS320F28335 TMS320F28335-Q1 TMS320F28334 TMS320F28333 TMS320F28332 TMS320F28235 TMS320F28235-Q1 TMS320F28234 TMS320F28234-Q1 TMS320F28232 TMS320F28232-Q1 TMS320F28335, TMS320F28335-Q1, TMS320F28334, TMS320F28333 TMS320F28332, TMS320F28235, TMS320F28235-Q1 TMS320F28234, TMS320F28234-Q1, TMS320F28232, TMS320F28232-Q1 www.ti.com SPRS439Q – JUNE 2007 – REVISED AUGUST 2022 Table 6-1. Signal Descriptions (continued) PIN NO. PGF, PTP PIN # NAME ZHH, ZAY BALL # DESCRIPTION (1) ZJZ BALL # GPIO15 General-purpose input/output 15 (I/O/Z) TZ4/ XHOLDA Trip Zone input 4/External Hold Acknowledge. The pin function for this option is based on the direction chosen in the GPADIR register. If the pin is configured as an input, then TZ4 function is chosen. If the pin is configured as an output, then XHOLDA function is chosen. XHOLDA is driven active (low) when the XINTF has granted an XHOLD request. All XINTF buses and strobe signals will be in a high-impedance state. XHOLDA is released when the XHOLD signal is released. External devices should only drive the external bus when XHOLDA is active (low). (I/O) 26 H4 J1 SCIRXDB SCI-B receive (I) MFSXB McBSP-B transmit frame synch (I/O) GPIO16 SPISIMOA CANTXB TZ5 GPIO17 SPISOMIA CANRXB TZ6 27 28 H5 J1 J2 General-purpose input/output 16 (I/O/Z) SPI slave in, master out (I/O) Enhanced CAN-B transmit (O) Trip Zone input 5 (I) J3 General-purpose input/output 17 (I/O/Z) SPI-A slave out, master in (I/O) Enhanced CAN-B receive (I) Trip zone input 6 (I) GPIO18 SPICLKA SCITXDB CANRXA 62 L6 N8 General-purpose input/output 18 (I/O/Z) SPI-A clock input/output (I/O) SCI-B transmit (O) Enhanced CAN-A receive (I) GPIO19 SPISTEA SCIRXDB CANTXA 63 K7 M8 General-purpose input/output 19 (I/O/Z) SPI-A slave transmit enable input/output (I/O) SCI-B receive (I) Enhanced CAN-A transmit (O) P9 General-purpose input/output 20 (I/O/Z) Enhanced QEP1 input A (I) McBSP-A transmit serial data (O) Enhanced CAN-B transmit (O) GPIO20 EQEP1A MDXA CANTXB 64 L7 GPIO21 EQEP1B MDRA CANRXB 65 P7 N9 General-purpose input/output 21 (I/O/Z) Enhanced QEP1 input B (I) McBSP-A receive serial data (I) Enhanced CAN-B receive (I) GPIO22 EQEP1S MCLKXA SCITXDB 66 N7 M9 General-purpose input/output 22 (I/O/Z) Enhanced QEP1 strobe (I/O) McBSP-A transmit clock (I/O) SCI-B transmit (O) GPIO23 EQEP1I MFSXA SCIRXDB 67 M7 P10 General-purpose input/output 23 (I/O/Z) Enhanced QEP1 index (I/O) McBSP-A transmit frame synch (I/O) SCI-B receive (I) N10 General-purpose input/output 24 (I/O/Z) Enhanced capture 1 (I/O) Enhanced QEP2 input A (I) McBSP-B transmit serial data (O) GPIO24 ECAP1 EQEP2A MDXB 68 M8 GPIO25 ECAP2 EQEP2B MDRB 69 N8 M10 General-purpose input/output 25 (I/O/Z) Enhanced capture 2 (I/O) Enhanced QEP2 input B (I) McBSP-B receive serial data (I) GPIO26 ECAP3 EQEP2I MCLKXB 72 K8 P11 General-purpose input/output 26 (I/O/Z) Enhanced capture 3 (I/O) Enhanced QEP2 index (I/O) McBSP-B transmit clock (I/O) Copyright © 2022 Texas Instruments Incorporated Submit Document Feedback Product Folder Links: TMS320F28335 TMS320F28335-Q1 TMS320F28334 TMS320F28333 TMS320F28332 TMS320F28235 TMS320F28235-Q1 TMS320F28234 TMS320F28234-Q1 TMS320F28232 TMS320F28232-Q1 27 TMS320F28335, TMS320F28335-Q1, TMS320F28334, TMS320F28333 TMS320F28332, TMS320F28235, TMS320F28235-Q1 TMS320F28234, TMS320F28234-Q1, TMS320F28232, TMS320F28232-Q1 www.ti.com SPRS439Q – JUNE 2007 – REVISED AUGUST 2022 Table 6-1. Signal Descriptions (continued) PIN NO. PGF, PTP PIN # ZHH, ZAY BALL # ZJZ BALL # GPIO27 ECAP4 EQEP2S MFSXB 73 L9 N11 General-purpose input/output 27 (I/O/Z) Enhanced capture 4 (I/O) Enhanced QEP2 strobe (I/O) McBSP-B transmit frame synch (I/O) GPIO28 SCIRXDA XZCS6 141 E10 D10 General-purpose input/output 28 (I/O/Z) SCI receive data (I) External Interface zone 6 chip select (O) GPIO29 SCITXDA XA19 2 C2 C1 General-purpose input/output 29. (I/O/Z) SCI transmit data (O) External Interface Address Line 19 (O) GPIO30 CANRXA XA18 1 B2 C2 General-purpose input/output 30 (I/O/Z) Enhanced CAN-A receive (I) External Interface Address Line 18 (O) GPIO31 CANTXA XA17 176 A2 B2 General-purpose input/output 31 (I/O/Z) Enhanced CAN-A transmit (O) External Interface Address Line 17 (O) NAME GPIO32 SDAA EPWMSYNCI ADCSOCAO 74 GPIO33 SCLA EPWMSYNCO ADCSOCBO 75 N9 P9 DESCRIPTION (1) M11 General-purpose input/output 32 (I/O/Z) I2C data open-drain bidirectional port (I/OD) Enhanced PWM external sync pulse input (I) ADC start-of-conversion A (O) P12 General-purpose Input/Output 33 (I/O/Z) I2C clock open-drain bidirectional port (I/OD) Enhanced PWM external synch pulse output (O) ADC start-of-conversion B (O) GPIO34 ECAP1 XREADY 142 D10 A9 General-purpose Input/Output 34 (I/O/Z) Enhanced Capture input/output 1 (I/O) External Interface Ready signal. Note that this pin is always (directly) connected to the XINTF. If an application uses this pin as a GPIO while also using the XINTF, it should configure the XINTF to ignore READY. GPIO35 SCITXDA XR/ W 148 A9 B9 General-purpose Input/Output 35 (I/O/Z) SCI-A transmit data (O) External Interface read, not write strobe GPIO36 SCIRXDA XZCS0 145 C10 C9 General-purpose Input/Output 36 (I/O/Z) SCI receive data (I) External Interface zone 0 chip select (O) GPIO37 ECAP2 XZCS7 150 D9 B8 General-purpose Input/Output 37 (I/O/Z) Enhanced Capture input/output 2 (I/O) External Interface zone 7 chip select (O) GPIO38 XWE0 137 D11 C10 General-purpose Input/Output 38 (I/O/Z) External Interface Write Enable 0 (O) GPIO39 XA16 175 B3 C3 General-purpose Input/Output 39 (I/O/Z) External Interface Address Line 16 (O) GPIO40 XA0/ XWE1 151 D8 C8 General-purpose Input/Output 40 (I/O/Z) External Interface Address Line 0/External Interface Write Enable 1 (O) GPIO41 XA1 152 A8 A7 General-purpose Input/Output 41 (I/O/Z) External Interface Address Line 1 (O) GPIO42 XA2 153 B8 B7 General-purpose Input/Output 42 (I/O/Z) External Interface Address Line 2 (O) 28 Submit Document Feedback Copyright © 2022 Texas Instruments Incorporated Product Folder Links: TMS320F28335 TMS320F28335-Q1 TMS320F28334 TMS320F28333 TMS320F28332 TMS320F28235 TMS320F28235-Q1 TMS320F28234 TMS320F28234-Q1 TMS320F28232 TMS320F28232-Q1 TMS320F28335, TMS320F28335-Q1, TMS320F28334, TMS320F28333 TMS320F28332, TMS320F28235, TMS320F28235-Q1 TMS320F28234, TMS320F28234-Q1, TMS320F28232, TMS320F28232-Q1 www.ti.com SPRS439Q – JUNE 2007 – REVISED AUGUST 2022 Table 6-1. Signal Descriptions (continued) PIN NO. PGF, PTP PIN # ZHH, ZAY BALL # ZJZ BALL # GPIO43 XA3 156 B7 C7 General-purpose Input/Output 43 (I/O/Z) External Interface Address Line 3 (O) GPIO44 XA4 157 A7 A6 General-purpose Input/Output 44 (I/O/Z) External Interface Address Line 4 (O) GPIO45 XA5 158 D7 B6 General-purpose Input/Output 45 (I/O/Z) External Interface Address Line 5 (O) GPIO46 XA6 161 B6 C6 General-purpose Input/Output 46 (I/O/Z) External Interface Address Line 6 (O) GPIO47 XA7 162 A6 D6 General-purpose Input/Output 47 (I/O/Z) External Interface Address Line 7 (O) GPIO48 ECAP5 XD31 88 P13 L14 General-purpose Input/Output 48 (I/O/Z) Enhanced Capture input/output 5 (I/O) External Interface Data Line 31 (I/O/Z) GPIO49 ECAP6 XD30 89 N13 L13 General-purpose Input/Output 49 (I/O/Z) Enhanced Capture input/output 6 (I/O) External Interface Data Line 30 (I/O/Z) GPIO50 EQEP1A XD29 90 P14 L12 General-purpose Input/Output 50 (I/O/Z) Enhanced QEP1 input A (I) External Interface Data Line 29 (I/O/Z) GPIO51 EQEP1B XD28 91 M13 K14 General-purpose Input/Output 51 (I/O/Z) Enhanced QEP1 input B (I) External Interface Data Line 28 (I/O/Z) GPIO52 EQEP1S XD27 94 M14 K13 General-purpose Input/Output 52 (I/O/Z) Enhanced QEP1 Strobe (I/O) External Interface Data Line 27 (I/O/Z) GPIO53 EQEP1I XD26 95 L12 K12 General-purpose Input/Output 53 (I/O/Z) Enhanced QEP1 lndex (I/O) External Interface Data Line 26 (I/O/Z) GPIO54 SPISIMOA XD25 96 L13 J14 General-purpose Input/Output 54 (I/O/Z) SPI-A slave in, master out (I/O) External Interface Data Line 25 (I/O/Z) GPIO55 SPISOMIA XD24 97 L14 J13 General-purpose Input/Output 55 (I/O/Z) SPI-A slave out, master in (I/O) External Interface Data Line 24 (I/O/Z) GPIO56 SPICLKA XD23 98 K11 J12 General-purpose Input/Output 56 (I/O/Z) SPI-A clock (I/O) External Interface Data Line 23 (I/O/Z) GPIO57 SPISTEA XD22 99 K13 H13 General-purpose Input/Output 57 (I/O/Z) SPI-A slave transmit enable (I/O) External Interface Data Line 22 (I/O/Z) GPIO58 MCLKRA XD21 100 K12 H12 General-purpose Input/Output 58 (I/O/Z) McBSP-A receive clock (I/O) External Interface Data Line 21 (I/O/Z) GPIO59 MFSRA XD20 110 H14 H11 General-purpose Input/Output 59 (I/O/Z) McBSP-A receive frame synch (I/O) External Interface Data Line 20 (I/O/Z) GPIO60 MCLKRB XD19 111 G14 G12 General-purpose Input/Output 60 (I/O/Z) McBSP-B receive clock (I/O) External Interface Data Line 19 (I/O/Z) NAME Copyright © 2022 Texas Instruments Incorporated DESCRIPTION (1) Submit Document Feedback Product Folder Links: TMS320F28335 TMS320F28335-Q1 TMS320F28334 TMS320F28333 TMS320F28332 TMS320F28235 TMS320F28235-Q1 TMS320F28234 TMS320F28234-Q1 TMS320F28232 TMS320F28232-Q1 29 TMS320F28335, TMS320F28335-Q1, TMS320F28334, TMS320F28333 TMS320F28332, TMS320F28235, TMS320F28235-Q1 TMS320F28234, TMS320F28234-Q1, TMS320F28232, TMS320F28232-Q1 www.ti.com SPRS439Q – JUNE 2007 – REVISED AUGUST 2022 Table 6-1. Signal Descriptions (continued) PIN NO. PGF, PTP PIN # ZHH, ZAY BALL # ZJZ BALL # GPIO61 MFSRB XD18 112 G12 F14 General-purpose Input/Output 61 (I/O/Z) McBSP-B receive frame synch (I/O) External Interface Data Line 18 (I/O/Z) GPIO62 SCIRXDC XD17 113 G13 F13 General-purpose Input/Output 62 (I/O/Z) SCI-C receive data (I) External Interface Data Line 17 (I/O/Z) GPIO63 SCITXDC XD16 114 G11 F12 General-purpose Input/Output 63 (I/O/Z) SCI-C transmit data (O) External Interface Data Line 16 (I/O/Z) GPIO64 XD15 115 G10 E14 General-purpose Input/Output 64 (I/O/Z) External Interface Data Line 15 (I/O/Z) GPIO65 XD14 116 F14 E13 General-purpose Input/Output 65 (I/O/Z) External Interface Data Line 14 (I/O/Z) GPIO66 XD13 119 F11 E12 General-purpose Input/Output 66 (I/O/Z) External Interface Data Line 13 (I/O/Z) GPIO67 XD12 122 E13 D14 General-purpose Input/Output 67 (I/O/Z) External Interface Data Line 12 (I/O/Z) GPIO68 XD11 123 E11 D13 General-purpose Input/Output 68 (I/O/Z) External Interface Data Line 11 (I/O/Z) GPIO69 XD10 124 F10 D12 General-purpose Input/Output 69 (I/O/Z) External Interface Data Line 10 (I/O/Z) GPIO70 XD9 127 D12 C14 General-purpose Input/Output 70 (I/O/Z) External Interface Data Line 9 (I/O/Z) GPIO71 XD8 128 C14 C13 General-purpose Input/Output 71 (I/O/Z) External Interface Data Line 8 (I/O/Z) GPIO72 XD7 129 B14 B13 General-purpose Input/Output 72 (I/O/Z) External Interface Data Line 7 (I/O/Z) GPIO73 XD6 130 C12 A12 General-purpose Input/Output 73 (I/O/Z) External Interface Data Line 6 (I/O/Z) GPIO74 XD5 131 C13 B12 General-purpose Input/Output 74 (I/O/Z) External Interface Data Line 5 (I/O/Z) GPIO75 XD4 132 A14 C12 General-purpose Input/Output 75 (I/O/Z) External Interface Data Line 4 (I/O/Z) GPIO76 XD3 133 B13 A11 General-purpose Input/Output 76 (I/O/Z) External Interface Data Line 3 (I/O/Z) GPIO77 XD2 134 A13 B11 General-purpose Input/Output 77 (I/O/Z) External Interface Data Line 2 (I/O/Z) GPIO78 XD1 135 B12 C11 General-purpose Input/Output 78 (I/O/Z) External Interface Data Line 1 (I/O/Z) NAME 30 Submit Document Feedback DESCRIPTION (1) Copyright © 2022 Texas Instruments Incorporated Product Folder Links: TMS320F28335 TMS320F28335-Q1 TMS320F28334 TMS320F28333 TMS320F28332 TMS320F28235 TMS320F28235-Q1 TMS320F28234 TMS320F28234-Q1 TMS320F28232 TMS320F28232-Q1 TMS320F28335, TMS320F28335-Q1, TMS320F28334, TMS320F28333 TMS320F28332, TMS320F28235, TMS320F28235-Q1 TMS320F28234, TMS320F28234-Q1, TMS320F28232, TMS320F28232-Q1 www.ti.com SPRS439Q – JUNE 2007 – REVISED AUGUST 2022 Table 6-1. Signal Descriptions (continued) PIN NO. PGF, PTP PIN # ZHH, ZAY BALL # ZJZ BALL # GPIO79 XD0 136 A12 B10 General-purpose Input/Output 79 (I/O/Z) External Interface Data Line 0 (I/O/Z) GPIO80 XA8 163 C6 A5 General-purpose Input/Output 80 (I/O/Z) External Interface Address Line 8 (O) GPIO81 XA9 164 E6 B5 General-purpose Input/Output 81 (I/O/Z) External Interface Address Line 9 (O) GPIO82 XA10 165 C5 C5 General-purpose Input/Output 82 (I/O/Z) External Interface Address Line 10 (O) GPIO83 XA11 168 D5 A4 General-purpose Input/Output 83 (I/O/Z) External Interface Address Line 11 (O) GPIO84 XA12 169 E5 B4 General-purpose Input/Output 84 (I/O/Z) External Interface Address Line 12 (O) GPIO85 XA13 172 C4 C4 General-purpose Input/Output 85 (I/O/Z) External Interface Address Line 13 (O) GPIO86 XA14 173 D4 A3 General-purpose Input/Output 86 (I/O/Z) External Interface Address Line 14 (O) GPIO87 XA15 174 A3 B3 General-purpose Input/Output 87 (I/O/Z) External Interface Address Line 15 (O) XRD 149 B9 A8 External Interface Read Enable NAME (1) DESCRIPTION (1) I = Input, O = Output, Z = High impedance, OD = Open drain, ↑ = Pullup, ↓ = Pulldown Copyright © 2022 Texas Instruments Incorporated Submit Document Feedback Product Folder Links: TMS320F28335 TMS320F28335-Q1 TMS320F28334 TMS320F28333 TMS320F28332 TMS320F28235 TMS320F28235-Q1 TMS320F28234 TMS320F28234-Q1 TMS320F28232 TMS320F28232-Q1 31 TMS320F28335, TMS320F28335-Q1, TMS320F28334, TMS320F28333 TMS320F28332, TMS320F28235, TMS320F28235-Q1 TMS320F28234, TMS320F28234-Q1, TMS320F28232, TMS320F28232-Q1 www.ti.com SPRS439Q – JUNE 2007 – REVISED AUGUST 2022 7 Specifications This section provides the absolute maximum ratings and the recommended operating conditions. 7.1 Absolute Maximum Ratings Unless otherwise noted, the list of absolute maximum ratings are specified over operating temperature ranges. (1) (2) MIN MAX VDDIO, VDD3VFL with respect to VSS –0.3 4.6 VDDA2, VDDAIO with respect to VSSA –0.3 4.6 VDD with respect to VSS –0.3 2.5 VDD1A18, VDD2A18 with respect to VSSA –0.3 2.5 VSSA2, VSSAIO, VSS1AGND, VSS2AGND with respect to VSS –0.3 0.3 Input voltage VIN –0.3 4.6 Output voltage VO –0.3 4.6 V Input clamp current IIK (VIN < 0 or VIN > VDDIO)(3) –20 20 mA Output clamp current IOK (VO < 0 or VO > VDDIO) –20 20 mA A version(4) –40 85 S version –40 125 Q version –40 125 Junction temperature TJ (4) –40 150 °C Storage temperature Tstg (4) –65 150 °C Supply voltage Operating ambient temperature, TA (1) (2) (3) (4) UNIT V V °C Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under Section 7.4 is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability. All voltage values are with respect to VSS, unless otherwise noted. Continuous clamp current per pin is ±2 mA. This includes the analog inputs which have an internal clamping circuit that clamps the voltage to a diode drop above VDDA2 or below VSSA2. One or both of the following conditions may result in a reduction of overall device life: • • long-term high-temperature storage extended use at maximum temperature For additional information, see Semiconductor and IC Package Thermal Metrics. 32 Submit Document Feedback Copyright © 2022 Texas Instruments Incorporated Product Folder Links: TMS320F28335 TMS320F28335-Q1 TMS320F28334 TMS320F28333 TMS320F28332 TMS320F28235 TMS320F28235-Q1 TMS320F28234 TMS320F28234-Q1 TMS320F28232 TMS320F28232-Q1 TMS320F28335, TMS320F28335-Q1, TMS320F28334, TMS320F28333 TMS320F28332, TMS320F28235, TMS320F28235-Q1 TMS320F28234, TMS320F28234-Q1, TMS320F28232, TMS320F28232-Q1 www.ti.com SPRS439Q – JUNE 2007 – REVISED AUGUST 2022 7.2 ESD Ratings – Automotive VALUE UNIT TMS320F2833x, TMS320F2823x in PTP Package Human body model (HBM), per AEC Q100-002(1) ±2000 All pins V(ESD) Electrostatic discharge Charged-device model (CDM), per AEC Q100-011 ±500 V Corner pins on 176-pin PTP: 1, 44, 45, 88, 89, 132, 133, 176 ±750 TMS320F2833x, TMS320F2823x in ZJZ Package Human body model (HBM), per AEC Q100-002(1) V(ESD) (1) Electrostatic discharge Charged-device model (CDM), per AEC Q100-011 ±2000 All pins ±500 Corner pins on 176-ball ZJZ: A1, A14, P1, P14 ±750 V AEC Q100-002 indicates HBM stressing is done in accordance with the ANSI/ESDA/JEDEC JS-001 specification. 7.3 ESD Ratings – Commercial VALUE UNIT TMS320F2833x, TMS320F2823x in PGF Package V(ESD) Electrostatic discharge Human-body model (HBM), per ANSI/ESDA/JEDEC JS-001(1) ±2000 Charged-device model (CDM), per JEDEC specification JESD22C101(2) ±500 V TMS320F2833x, TMS320F2823x in ZHH Package V(ESD) Electrostatic discharge Human-body model (HBM), per ANSI/ESDA/JEDEC JS-001(1) ±2000 Charged-device model (CDM), per JEDEC specification JESD22C101(2) ±500 V TMS320F2833x, TMS320F2823x in ZAY Package V(ESD) (1) (2) Electrostatic discharge Human-body model (HBM), per ANSI/ESDA/JEDEC JS-001(1) ±2000 Charged-device model (CDM), per JEDEC specification JESD22C101(2) ±500 V JEDEC document JEP155 states that 500-V HBM allows safe manufacturing with a standard ESD control process. JEDEC document JEP157 states that 250-V CDM allows safe manufacturing with a standard ESD control process. Copyright © 2022 Texas Instruments Incorporated Submit Document Feedback Product Folder Links: TMS320F28335 TMS320F28335-Q1 TMS320F28334 TMS320F28333 TMS320F28332 TMS320F28235 TMS320F28235-Q1 TMS320F28234 TMS320F28234-Q1 TMS320F28232 TMS320F28232-Q1 33 TMS320F28335, TMS320F28335-Q1, TMS320F28334, TMS320F28333 TMS320F28332, TMS320F28235, TMS320F28235-Q1 TMS320F28234, TMS320F28234-Q1, TMS320F28232, TMS320F28232-Q1 www.ti.com SPRS439Q – JUNE 2007 – REVISED AUGUST 2022 7.4 Recommended Operating Conditions over operating free-air temperature range (unless otherwise noted) Device supply voltage, I/O, VDDIO Device supply voltage CPU, VDD MIN NOM MAX UNIT V 3.135 3.3 3.465 Device operation @ 150 MHz 1.805 1.9 1.995 Device operation @ 100 MHz 1.71 1.8 1.89 Supply ground, VSS, VSSIO, VSSAIO, VSSA2, VSS1AGND, VSS2AGND 0 ADC supply voltage (3.3 V), VDDA2, VDDAIO ADC supply voltage, VDD1A18, VDD2A18 3.3 3.465 Device operation @ 150 MHz 1.805 1.9 1.995 Device operation @ 100 MHz 1.71 1.8 1.89 3.135 3.3 3.465 Device clock frequency (system clock), F28335/F28334/F28235/F28234 fSYSCLKOUT F28333/F28332/F28232 High-level input voltage, VIH Low-level input voltage, VIL All inputs except X1 X1 2 150 2 100 2 VDDIO 0.7 * VDD – 0.05 VDD All inputs except X1 0.8 X1 0.3 * VDD + 0.05 High-level output source current, VOH = 2.4 V, IOH All I/Os except Group 2 Low-level output sink current, VOL = VOL MAX, IOL All I/Os except Group 2 Ambient temperature, TA V 3.135 Flash supply voltage, VDD3VFL Group Group –4 2(1) –8 4 2(1) 8 A version –40 85 S version –40 125 Q version –40 125 Junction temperature, TJ (1) 34 V 125 V V V MHz V V mA mA °C °C Group 2 pins are as follows: GPIO28, GPIO29, GPIO30, GPIO31, TDO, XCLKOUT, EMU0, EMU1, XINTF pins, GPIO35-87, XRD. Submit Document Feedback Copyright © 2022 Texas Instruments Incorporated Product Folder Links: TMS320F28335 TMS320F28335-Q1 TMS320F28334 TMS320F28333 TMS320F28332 TMS320F28235 TMS320F28235-Q1 TMS320F28234 TMS320F28234-Q1 TMS320F28232 TMS320F28232-Q1 TMS320F28335, TMS320F28335-Q1, TMS320F28334, TMS320F28333 TMS320F28332, TMS320F28235, TMS320F28235-Q1 TMS320F28234, TMS320F28234-Q1, TMS320F28232, TMS320F28232-Q1 www.ti.com SPRS439Q – JUNE 2007 – REVISED AUGUST 2022 7.5 Power Consumption Summary 7.5.1 TMS320F28335/F28235 Current Consumption by Power-Supply Pins at 150-MHz SYSCLKOUT MODE TEST CONDITIONS IDDIO (1) IDD TYP(4) IDD3VFL (9) MAX TYP(4) MAX TYP 290 mA 315 mA 30 mA 50 mA 100 mA 120 mA 60 μA 15 mA IDDA18 (2) MAX TYP(4) 35 mA 40 mA 120 μA 2 μA 60 μA 120 μA 60 μA 120 μA IDDA33 (3) MAX TYP(4) MAX 30 mA 35 mA 1.5 mA 2 mA 10 μA 5 μA 60 μA 15 μA 20 μA 2 μA 10 μA 5 μA 60 μA 15 μA 20 μA 2 μA 10 μA 5 μA 60 μA 15 μA 20 μA The following peripheral clocks are enabled: • ePWM1, ePWM2, ePWM3, ePWM4, ePWM5, ePWM6 • eCAP1, eCAP2, eCAP3, eCAP4, eCAP5, eCAP6 Operational (Flash)(6) • eQEP1, eQEP2 • eCAN-A • SCI-A, SCI-B (FIFO mode) • SPI-A (FIFO mode) • ADC • I2C • CPU-Timer 0, CPU-Timer 1, CPU-Timer 2 All PWM pins are toggled at 150 kHz. All I/O pins are left unconnected.(5) Flash is powered down. XCLKOUT is turned off. The following peripheral clocks are enabled: IDLE • eCAN-A • SCI-A • SPI-A • I2C STANDBY Flash is powered down. Peripheral clocks are off. 8 mA HALT(8) Flash is powered down. Peripheral clocks are off. Input clock is disabled.(7) 150 μA (1) (2) (3) (4) (5) IDDIO current is dependent on the electrical loading on the I/O pins. IDDA18 includes current into VDD1A18 and VDD2A18 pins. To realize the IDDA18 currents shown for IDLE, STANDBY, and HALT, clock to the ADC module must be turned off explicitly by writing to the PCLKCR0 register. IDDA33 includes current into VDDA2 and VDDAIO pins. The TYP numbers are applicable over room temperature and nominal voltage. MAX numbers are at 125°C, and MAX voltage (VDD = 2.0 V; VDDIO, VDD3VFL, VDDA = 3.6 V). The following is done in a loop: • • • (6) (7) (8) (9) Data is continuously transmitted out of the SCI-A, SCI-B, SPI-A, McBSP-A, and eCAN-A ports. Multiplication/addition operations are performed. Watchdog is reset. • ADC is performing continuous conversion. Data from ADC is transferred to SARAM through the DMA. • 32-bit read/write of the XINTF is performed. • GPIO19 is toggled. When the identical code is run off SARAM, IDD would increase as the code operates with zero wait states. If a quartz crystal or ceramic resonator is used as the clock source, the HALT mode shuts down the internal oscillator. HALT mode IDD currents will increase with temperature in a nonlinear fashion. The IDD3VFL current indicated in this table is the flash read-current and does not include additional current for erase/write operations. During flash programming, extra current is drawn from the VDD and VDD3VFL rails, as indicated in Section 7.9.7.3. If the user application involves on-board flash programming, this extra current must be taken into account while architecting the power-supply stage. Copyright © 2022 Texas Instruments Incorporated Submit Document Feedback Product Folder Links: TMS320F28335 TMS320F28335-Q1 TMS320F28334 TMS320F28333 TMS320F28332 TMS320F28235 TMS320F28235-Q1 TMS320F28234 TMS320F28234-Q1 TMS320F28232 TMS320F28232-Q1 35 TMS320F28335, TMS320F28335-Q1, TMS320F28334, TMS320F28333 TMS320F28332, TMS320F28235, TMS320F28235-Q1 TMS320F28234, TMS320F28234-Q1, TMS320F28232, TMS320F28232-Q1 www.ti.com SPRS439Q – JUNE 2007 – REVISED AUGUST 2022 Note The peripheral - I/O multiplexing implemented in the device prevents all available peripherals from being used at the same time. This is because more than one peripheral function may share an I/O pin. It is, however, possible to turn on the clocks to all the peripherals at the same time, although such a configuration is not useful. If this is done, the current drawn by the device will be more than the numbers specified in the current consumption tables. 7.5.2 TMS320F28334/F28234 Current Consumption by Power-Supply Pins at 150-MHz SYSCLKOUT MODE TEST CONDITIONS IDDIO (1) IDD IDD3VFL (9) IDDA18 (2) IDDA33 (3) TYP(4) MAX TYP(4) MAX TYP MAX TYP(4) MAX TYP(4) MAX 290 mA 315 mA 30 mA 50 mA 35 mA 40 mA 30 mA 35 mA 1.5 mA 2 mA The following peripheral clocks are enabled: • ePWM1, ePWM2, ePWM3, ePWM4, ePWM5, ePWM6 • eCAP1, eCAP2, eCAP3, eCAP4, eCAP5, eCAP6 Operational (Flash)(6) • eQEP1, eQEP2 • eCAN-A • SCI-A, SCI-B (FIFO mode) • SPI-A (FIFO mode) • ADC • I2C • CPU-Timer 0, CPU-Timer 1, CPU-Timer 2 All PWM pins are toggled at 150 kHz. All I/O pins are left unconnected. (5) 36 Submit Document Feedback Copyright © 2022 Texas Instruments Incorporated Product Folder Links: TMS320F28335 TMS320F28335-Q1 TMS320F28334 TMS320F28333 TMS320F28332 TMS320F28235 TMS320F28235-Q1 TMS320F28234 TMS320F28234-Q1 TMS320F28232 TMS320F28232-Q1 TMS320F28335, TMS320F28335-Q1, TMS320F28334, TMS320F28333 TMS320F28332, TMS320F28235, TMS320F28235-Q1 TMS320F28234, TMS320F28234-Q1, TMS320F28232, TMS320F28232-Q1 www.ti.com SPRS439Q – JUNE 2007 – REVISED AUGUST 2022 7.5.2 TMS320F28334/F28234 Current Consumption by Power-Supply Pins at 150-MHz SYSCLKOUT (continued) MODE TEST CONDITIONS IDDIO (1) IDD IDD3VFL (9) IDDA18 (2) IDDA33 (3) TYP(4) MAX TYP(4) MAX TYP MAX TYP(4) MAX TYP(4) MAX 100 mA 120 mA 60 μA 120 mA 2 μA 10 μA 5 μA 60 μA 15 μA 20 μA 15 mA 60 μA 120 μA 2 μA 10 μA 5 μA 60 μA 15 μA 20 μA 60 μA 120 μA 2 μA 10 μA 5 μA 60 μA 15 μA 20 μA Flash is powered down. XCLKOUT is turned off. The following peripheral clocks are enabled: IDLE • eCAN-A • SCI-A • SPI-A • I2C STANDBY Flash is powered down. Peripheral clocks are off. 8 mA HALT(8) Flash is powered down. Peripheral clocks are off. Input clock is disabled.(7) 150 μA (1) (2) (3) (4) (5) (6) (7) (8) (9) IDDIO current is dependent on the electrical loading on the I/O pins. IDDA18 includes current into VDD1A18 and VDD2A18 pins. To realize the IDDA18 currents shown for IDLE, STANDBY, and HALT, clock to the ADC module must be turned off explicitly by writing to the PCLKCR0 register. IDDA33 includes current into VDDA2 and VDDAIO pins. The TYP numbers are applicable over room temperature and nominal voltage. MAX numbers are at 125°C, and MAX voltage (VDD = 2.0 V; VDDIO, VDD3VFL, VDDA = 3.6 V). The following is done in a loop: • Data is continuously transmitted out of the SCI-A, SCI-B, SPI-A, McBSP-A, and eCAN-A ports. • Multiplication/addition operations are performed. • Watchdog is reset. • ADC is performing continuous conversion. Data from ADC is transferred to SARAM through the DMA. • 32-bit read/write of the XINTF is performed. • GPIO19 is toggled. When the identical code is run off SARAM, IDD would increase as the code operates with zero wait states. If a quartz crystal or ceramic resonator is used as the clock source, the HALT mode shuts down the internal oscillator. HALT mode IDD currents will increase with temperature in a nonlinear fashion. The IDD3VFL current indicated in this table is the flash read-current and does not include additional current for erase/write operations. During flash programming, extra current is drawn from the VDD and VDD3VFL rails, as indicated in Section 7.9.7.3. If the user application involves on-board flash programming, this extra current must be taken into account while architecting the power-supply stage. Copyright © 2022 Texas Instruments Incorporated Submit Document Feedback Product Folder Links: TMS320F28335 TMS320F28335-Q1 TMS320F28334 TMS320F28333 TMS320F28332 TMS320F28235 TMS320F28235-Q1 TMS320F28234 TMS320F28234-Q1 TMS320F28232 TMS320F28232-Q1 37 TMS320F28335, TMS320F28335-Q1, TMS320F28334, TMS320F28333 TMS320F28332, TMS320F28235, TMS320F28235-Q1 TMS320F28234, TMS320F28234-Q1, TMS320F28232, TMS320F28232-Q1 www.ti.com SPRS439Q – JUNE 2007 – REVISED AUGUST 2022 7.5.3 Reducing Current Consumption The 2833x and 2823x MCUs incorporate a method to reduce the device current consumption. Because each peripheral unit has an individual clock-enable bit, reduction in current consumption can be achieved by turning off the clock to any peripheral module that is not used in a given application. Furthermore, any one of the three low-power modes could be taken advantage of to reduce the current consumption even further. Table 7-1 indicates the typical reduction in current consumption achieved by turning off the clocks. Table 7-1. Typical Current Consumption by Various Peripherals (at 150 MHz) (1) (2) (3) (4) PERIPHERAL MODULE(1) IDD CURRENT REDUCTION/MODULE (mA)(2) ADC 8(3) I2C 2.5 eQEP 5 ePWM 5 eCAP 2 SCI 5 SPI 4 eCAN 8 McBSP 7 CPU-Timer 2 XINTF 10(4) DMA 10 FPU 15 All peripheral clocks are disabled upon reset. Writing to or reading from peripheral registers is possible only after the peripheral clocks are turned on. For peripherals with multiple instances, the current quoted is per module. For example, the 5 mA number quoted for ePWM is for one ePWM module. This number represents the current drawn by the digital portion of the ADC module. Turning off the clock to the ADC module results in the elimination of the current drawn by the analog portion of the ADC (IDDA18) as well. Operating the XINTF bus has a significant effect on IDDIO current. It will increase considerably based on the following: • • • • How many address/data pins toggle from one cycle to another How fast they toggle Whether 16-bit or 32-bit interface is used and The load on these pins. Following are other methods to reduce power consumption further: • The Flash module may be powered down if code is run off SARAM. This results in a current reduction of 35 mA (typical) in the VDD3VFL rail. • IDDIO current consumption is reduced by 15 mA (typical) when XCLKOUT is turned off. • Significant savings in IDDIO may be realized by disabling the pullups on pins that assume an output function and on XINTF pins. A savings of 35 mW (typical) can be achieved by this. • To realize the lowest VDDA current consumption in a low-power mode (LPM), refer to the respective analog chapter in the TMS320x2833x, TMS320x2823x Real-Time Microcontrollers Technical Reference Manual to ensure each module is powered down as well. The baseline IDD current (current when the core is executing a dummy loop with no peripherals enabled) is 165 mA, (typical). To arrive at the IDD current for a given application, the current-drawn by the peripherals (enabled by that application) must be added to the baseline IDD current. 38 Submit Document Feedback Copyright © 2022 Texas Instruments Incorporated Product Folder Links: TMS320F28335 TMS320F28335-Q1 TMS320F28334 TMS320F28333 TMS320F28332 TMS320F28235 TMS320F28235-Q1 TMS320F28234 TMS320F28234-Q1 TMS320F28232 TMS320F28232-Q1 TMS320F28335, TMS320F28335-Q1, TMS320F28334, TMS320F28333 TMS320F28332, TMS320F28235, TMS320F28235-Q1 TMS320F28234, TMS320F28234-Q1, TMS320F28232, TMS320F28232-Q1 www.ti.com SPRS439Q – JUNE 2007 – REVISED AUGUST 2022 7.5.4 Current Consumption Graphs Current Vs Frequency 350.00 300.00 Current (mA) 250.00 200.00 150.00 100.00 50.00 0.00 10 20 30 40 50 60 70 80 90 100 110 120 130 140 150 SYSCLKOUT (MHz) IDD IDDIO IDDA18 IDD3VFL 1.8-V Current 3.3-V Current Figure 7-1. Typical Operational Current Versus Frequency (F28335, F28235, F28334, F28234) Copyright © 2022 Texas Instruments Incorporated Submit Document Feedback Product Folder Links: TMS320F28335 TMS320F28335-Q1 TMS320F28334 TMS320F28333 TMS320F28332 TMS320F28235 TMS320F28235-Q1 TMS320F28234 TMS320F28234-Q1 TMS320F28232 TMS320F28232-Q1 39 TMS320F28335, TMS320F28335-Q1, TMS320F28334, TMS320F28333 TMS320F28332, TMS320F28235, TMS320F28235-Q1 TMS320F28234, TMS320F28234-Q1, TMS320F28232, TMS320F28232-Q1 www.ti.com SPRS439Q – JUNE 2007 – REVISED AUGUST 2022 Device Power Vs SYSCLKOUT 1000.0 900.0 Device Power (mW) 800.0 700.0 600.0 500.0 400.0 300.0 200.0 100.0 0 0 15 0 14 0 0 0 13 12 11 10 90 80 70 60 50 40 30 20 10 0.0 SYSCLKOUT (MHz) Figure 7-2. Typical Operational Power Versus Frequency (F28335, F28235, F28334, F28234) Note Typical operational current for 100-MHz devices (28x32) can be estimated from Figure 7-1. Compared to 150-MHz devices, the analog and flash module currents remain unchanged. While a marginal decrease in IDDIO current can be expected due to the reduced external activity of peripheral pins, current reduction is primarily in IDD. 7.6 Electrical Characteristics over recommended operating conditions (unless otherwise noted) PARAMETER VOH High-level output voltage VOL Low-level output voltage IIL Input current (low level) IIH Input current (high level) TEST CONDITIONS TYP MAX 2.4 IOH = 50 μA 0.4 Pin with pullup enabled VDDIO = 3.3 V, VIN = 0 V Pin with pulldown enabled VDDIO = 3.3 V, VIN = 0 V ±2 Pin with pullup enabled VDDIO = 3.3 V, VIN = VDDIO ±2 Pin with pulldown enabled VDDIO = 3.3 V, VIN = VDDIO –80 –140 V –190 μA μA Output current, pullup or pulldown VO = VDDIO or 0 V disabled CI Input capacitance Submit Document Feedback All I/Os (including XRS) UNIT V VDDIO – 0.2 IOL = IOL MAX IOZ 40 MIN IOH = IOH MAX 28 50 80 ±2 2 μA pF Copyright © 2022 Texas Instruments Incorporated Product Folder Links: TMS320F28335 TMS320F28335-Q1 TMS320F28334 TMS320F28333 TMS320F28332 TMS320F28235 TMS320F28235-Q1 TMS320F28234 TMS320F28234-Q1 TMS320F28232 TMS320F28232-Q1 TMS320F28335, TMS320F28335-Q1, TMS320F28334, TMS320F28333 TMS320F28332, TMS320F28235, TMS320F28235-Q1 TMS320F28234, TMS320F28234-Q1, TMS320F28232, TMS320F28232-Q1 www.ti.com SPRS439Q – JUNE 2007 – REVISED AUGUST 2022 7.7 Thermal Resistance Characteristics 7.7.1 PGF Package °C/W(1) (2) AIR FLOW (lfm)(3) RΘJC Junction-to-case 8.2 0 RΘJB Junction-to-board 28.1 0 RΘJA (High k PCB) PsiJT PsiJB (1) (2) (3) Junction-to-free air Junction-to-package top Junction-to-board 44 0 34.5 150 33 250 31 500 0.12 0 0.48 150 0.57 250 0.74 500 28.1 0 26.3 150 25.9 250 25.2 500 °C/W = degrees Celsius per watt These values are based on a JEDEC-defined 2S2P system (with the exception of the Theta JC [RΘJC] value, which is based on a JEDEC-defined 1S0P system) and will change based on environment as well as application. For more information, see these EIA/JEDEC standards: • JESD51-2, Integrated Circuits Thermal Test Method Environmental Conditions - Natural Convection (Still Air) • JESD51-3, Low Effective Thermal Conductivity Test Board for Leaded Surface Mount Packages • JESD51-7, High Effective Thermal Conductivity Test Board for Leaded Surface Mount Packages • JESD51-9, Test Boards for Area Array Surface Mount Package Thermal Measurements lfm = linear feet per minute Copyright © 2022 Texas Instruments Incorporated Submit Document Feedback Product Folder Links: TMS320F28335 TMS320F28335-Q1 TMS320F28334 TMS320F28333 TMS320F28332 TMS320F28235 TMS320F28235-Q1 TMS320F28234 TMS320F28234-Q1 TMS320F28232 TMS320F28232-Q1 41 TMS320F28335, TMS320F28335-Q1, TMS320F28334, TMS320F28333 TMS320F28332, TMS320F28235, TMS320F28235-Q1 TMS320F28234, TMS320F28234-Q1, TMS320F28232, TMS320F28232-Q1 www.ti.com SPRS439Q – JUNE 2007 – REVISED AUGUST 2022 7.7.2 PTP Package °C/W(1) (2) AIR FLOW (lfm)(3) RΘJC Junction-to-case 12.1 0 RΘJB Junction-to-board 5.1 0 RΘJA (High k PCB) PsiJT PsiJB (1) (2) (3) 42 Junction-to-free air Junction-to-package top Junction-to-board 17.4 0 11.7 150 10.1 250 8.8 500 0.2 0 0.3 150 0.4 250 0.5 500 5.0 0 4.7 150 4.7 250 4.6 500 °C/W = degrees Celsius per watt These values are based on a JEDEC-defined 2S2P system (with the exception of the Theta JC [RΘJC] value, which is based on a JEDEC-defined 1S0P system) and will change based on environment as well as application. For more information, see these EIA/JEDEC standards: • JESD51-2, Integrated Circuits Thermal Test Method Environmental Conditions - Natural Convection (Still Air) • JESD51-3, Low Effective Thermal Conductivity Test Board for Leaded Surface Mount Packages • JESD51-7, High Effective Thermal Conductivity Test Board for Leaded Surface Mount Packages • JESD51-9, Test Boards for Area Array Surface Mount Package Thermal Measurements lfm = linear feet per minute Submit Document Feedback Copyright © 2022 Texas Instruments Incorporated Product Folder Links: TMS320F28335 TMS320F28335-Q1 TMS320F28334 TMS320F28333 TMS320F28332 TMS320F28235 TMS320F28235-Q1 TMS320F28234 TMS320F28234-Q1 TMS320F28232 TMS320F28232-Q1 TMS320F28335, TMS320F28335-Q1, TMS320F28334, TMS320F28333 TMS320F28332, TMS320F28235, TMS320F28235-Q1 TMS320F28234, TMS320F28234-Q1, TMS320F28232, TMS320F28232-Q1 www.ti.com SPRS439Q – JUNE 2007 – REVISED AUGUST 2022 7.7.3 ZHH Package °C/W(1) (2) AIR FLOW (lfm)(3) RΘJC Junction-to-case 8.8 0 RΘJB Junction-to-board 12.5 0 RΘJA (High k PCB) PsiJT PsiJB (1) (2) (3) Junction-to-free air Junction-to-package top Junction-to-board 32.8 0 24.1 150 22.9 250 20.9 500 0.09 0 0.3 150 0.36 250 0.48 500 12.4 0 11.8 150 11.7 250 11.5 500 °C/W = degrees Celsius per watt These values are based on a JEDEC-defined 2S2P system (with the exception of the Theta JC [RΘJC] value, which is based on a JEDEC-defined 1S0P system) and will change based on environment as well as application. For more information, see these EIA/JEDEC standards: • JESD51-2, Integrated Circuits Thermal Test Method Environmental Conditions - Natural Convection (Still Air) • JESD51-3, Low Effective Thermal Conductivity Test Board for Leaded Surface Mount Packages • JESD51-7, High Effective Thermal Conductivity Test Board for Leaded Surface Mount Packages • JESD51-9, Test Boards for Area Array Surface Mount Package Thermal Measurements lfm = linear feet per minute Copyright © 2022 Texas Instruments Incorporated Submit Document Feedback Product Folder Links: TMS320F28335 TMS320F28335-Q1 TMS320F28334 TMS320F28333 TMS320F28332 TMS320F28235 TMS320F28235-Q1 TMS320F28234 TMS320F28234-Q1 TMS320F28232 TMS320F28232-Q1 43 TMS320F28335, TMS320F28335-Q1, TMS320F28334, TMS320F28333 TMS320F28332, TMS320F28235, TMS320F28235-Q1 TMS320F28234, TMS320F28234-Q1, TMS320F28232, TMS320F28232-Q1 www.ti.com SPRS439Q – JUNE 2007 – REVISED AUGUST 2022 7.7.4 ZAY Package °C/W(1) (2) AIR FLOW (m/s)(3) RΘJC Junction-to-case 9.4 0 RΘJB Junction-to-board 13.5 0 28.5 0 22.8 1 21.6 2 20.8 3 0.27 0 0.5 1 0.7 2 RΘJA (High k PCB) PsiJT PsiJB (1) (2) (3) 44 Junction-to-free air Junction-to-package top Junction-to-board 0.8 3 13.3 0 13.2 1 13 2 12.9 3 °C/W = degrees Celsius per watt These values are based on a JEDEC-defined 2S2P system (with the exception of the Theta JC [RΘJC] value, which is based on a JEDEC-defined 1S0P system) and will change based on environment as well as application. For more information, see these EIA/JEDEC standards: • JESD51-2, Integrated Circuits Thermal Test Method Environmental Conditions - Natural Convection (Still Air) • JESD51-3, Low Effective Thermal Conductivity Test Board for Leaded Surface Mount Packages • JESD51-7, High Effective Thermal Conductivity Test Board for Leaded Surface Mount Packages • JESD51-9, Test Boards for Area Array Surface Mount Package Thermal Measurements m/s = meter per second Submit Document Feedback Copyright © 2022 Texas Instruments Incorporated Product Folder Links: TMS320F28335 TMS320F28335-Q1 TMS320F28334 TMS320F28333 TMS320F28332 TMS320F28235 TMS320F28235-Q1 TMS320F28234 TMS320F28234-Q1 TMS320F28232 TMS320F28232-Q1 TMS320F28335, TMS320F28335-Q1, TMS320F28334, TMS320F28333 TMS320F28332, TMS320F28235, TMS320F28235-Q1 TMS320F28234, TMS320F28234-Q1, TMS320F28232, TMS320F28232-Q1 www.ti.com SPRS439Q – JUNE 2007 – REVISED AUGUST 2022 7.7.5 ZJZ Package °C/W(1) (2) AIR FLOW (lfm)(3) RΘJC Junction-to-case 11.4 0 RΘJB Junction-to-board 12 0 RΘJA (High k PCB) PsiJT PsiJB (1) (2) (3) Junction-to-free air Junction-to-package top Junction-to-board 29.6 0 20.9 150 19.7 250 18 500 0.2 0 0.78 150 0.91 250 1.11 500 12.2 0 11.6 150 11.5 250 11.3 500 °C/W = degrees Celsius per watt These values are based on a JEDEC-defined 2S2P system (with the exception of the Theta JC [RΘJC] value, which is based on a JEDEC-defined 1S0P system) and will change based on environment as well as application. For more information, see these EIA/JEDEC standards: • JESD51-2, Integrated Circuits Thermal Test Method Environmental Conditions - Natural Convection (Still Air) • JESD51-3, Low Effective Thermal Conductivity Test Board for Leaded Surface Mount Packages • JESD51-7, High Effective Thermal Conductivity Test Board for Leaded Surface Mount Packages • JESD51-9, Test Boards for Area Array Surface Mount Package Thermal Measurements lfm = linear feet per minute 7.8 Thermal Design Considerations Based on the end application design and operational profile, the IDD and IDDIO currents could vary. Systems with more than 1 Watt power dissipation may require a product level thermal design. Care should be taken to keep Tj within specified limits. In the end applications, Tcase should be measured to estimate the operating junction temperature Tj. Tcase is normally measured at the center of the package top side surface. The thermal application note Semiconductor and IC Package Thermal Metrics helps to understand the thermal metrics and definitions. Copyright © 2022 Texas Instruments Incorporated Submit Document Feedback Product Folder Links: TMS320F28335 TMS320F28335-Q1 TMS320F28334 TMS320F28333 TMS320F28332 TMS320F28235 TMS320F28235-Q1 TMS320F28234 TMS320F28234-Q1 TMS320F28232 TMS320F28232-Q1 45 TMS320F28335, TMS320F28335-Q1, TMS320F28334, TMS320F28333 TMS320F28332, TMS320F28235, TMS320F28235-Q1 TMS320F28234, TMS320F28234-Q1, TMS320F28232, TMS320F28232-Q1 www.ti.com SPRS439Q – JUNE 2007 – REVISED AUGUST 2022 7.9 Timing and Switching Characteristics 7.9.1 Timing Parameter Symbology Timing parameter symbols used are created in accordance with JEDEC Standard 100. To shorten the symbols, some of the pin names and other related terminology have been abbreviated as follows: Lowercase subscripts and their meanings: Letters and symbols and their meanings: a access time H High c cycle time (period) L Low d delay time V Valid f fall time X Unknown, changing, or don't care level h hold time Z High impedance r rise time su setup time t transition time v valid time w pulse duration (width) 7.9.1.1 General Notes on Timing Parameters All output signals from the 28x devices (including XCLKOUT) are derived from an internal clock such that all output transitions for a given half-cycle occur with a minimum of skewing relative to each other. The signal combinations shown in the following timing diagrams may not necessarily represent actual cycles. For actual cycle examples, see the appropriate cycle description section of this document. 7.9.1.2 Test Load Circuit This test load circuit is used to measure all switching characteristics provided in this document. Tester Pin Electronics 42 Ω 3.5 nH Transmission Line Data Sheet Timing Reference Point Output Under Test Z0 = 50 Ω(Α) Device Pin(B) 4.0 pF A. B. 1.85 pF Input requirements in this data sheet are tested with an input slew rate of < 4 Volts per nanosecond (4 V/ns) at the device pin. The data sheet provides timing at the device pin. For output timing analysis, the tester pin electronics and its transmission line effects must be taken into account. A transmission line with a delay of 2 ns or longer can be used to produce the desired transmission line effect. The transmission line is intended as a load only. It is not necessary to add or subtract the transmission line delay (2 ns or longer) from the data sheet timing. Figure 7-3. 3.3-V Test Load Circuit 46 Submit Document Feedback Copyright © 2022 Texas Instruments Incorporated Product Folder Links: TMS320F28335 TMS320F28335-Q1 TMS320F28334 TMS320F28333 TMS320F28332 TMS320F28235 TMS320F28235-Q1 TMS320F28234 TMS320F28234-Q1 TMS320F28232 TMS320F28232-Q1 TMS320F28335, TMS320F28335-Q1, TMS320F28334, TMS320F28333 TMS320F28332, TMS320F28235, TMS320F28235-Q1 TMS320F28234, TMS320F28234-Q1, TMS320F28232, TMS320F28232-Q1 www.ti.com SPRS439Q – JUNE 2007 – REVISED AUGUST 2022 7.9.1.3 Device Clock Table This section provides the timing requirements and switching characteristics for the various clock options available. Section 7.9.1.3.1 and Section 7.9.1.3.2 list the cycle times of various clocks. 7.9.1.3.1 Clocking and Nomenclature (150-MHz Devices) MIN On-chip oscillator clock Frequency tc(CI), Cycle time XCLKIN(1) Frequency tc(SCO), Cycle time SYSCLKOUT Frequency tc(XCO), Cycle time XCLKOUT Frequency tc(HCO), Cycle time HSPCLK(2) tc(LCO), Cycle time ADC clock MAX UNIT 50 ns 20 35 MHz 6.67 250 ns 4 150 MHz 6.67 500 ns 2 150 MHz 6.67 2000 ns 150 MHz 0.5 6.67 13.3(3) 75(3) 13.3 ns 150 26.7(3) 37.5(3) Frequency tc(ADCCLK), Cycle time NOM 28.6 Frequency LSPCLK(2) (1) (2) (3) (4) tc(OSC), Cycle time MHz ns 75(4) 40 MHz ns Frequency 25 MHz This also applies to the X1 pin if a 1.9-V oscillator is used. Lower LSPCLK and HSPCLK will reduce device power consumption. This is the default value if SYSCLKOUT = 150 MHz. Although LSPCLK is capable of reaching 100 MHz, it is specified at 75 MHz because the smallest valid "Low-speed peripheral clock prescaler register" value is "1" for 150-MHz devices. 7.9.1.3.2 Clocking and Nomenclature (100-MHz Devices) MIN On-chip oscillator clock XCLKIN(1) SYSCLKOUT XCLKOUT HSPCLK(2) LSPCLK(2) ADC clock (1) (2) (3) tc(OSC), Cycle time NOM MAX UNIT 28.6 50 ns Frequency 20 35 MHz tc(CI), Cycle time 10 250 ns 4 100 MHz 10 500 ns Frequency tc(SCO), Cycle time Frequency 2 100 MHz tc(XCO), Cycle time 10 2000 ns Frequency 0.5 100 MHz tc(HCO), Cycle time 10 50(3) Frequency tc(LCO), Cycle time 10 ns 100 40(3) 25(3) Frequency tc(ADCCLK), Cycle time 20(3) MHz ns 100 40 MHz ns Frequency 25 MHz This also applies to the X1 pin if a 1.8-V oscillator is used. Lower LSPCLK and HSPCLK will reduce device power consumption. This is the default value if SYSCLKOUT = 100 MHz. Copyright © 2022 Texas Instruments Incorporated Submit Document Feedback Product Folder Links: TMS320F28335 TMS320F28335-Q1 TMS320F28334 TMS320F28333 TMS320F28332 TMS320F28235 TMS320F28235-Q1 TMS320F28234 TMS320F28234-Q1 TMS320F28232 TMS320F28232-Q1 47 TMS320F28335, TMS320F28335-Q1, TMS320F28334, TMS320F28333 TMS320F28332, TMS320F28235, TMS320F28235-Q1 TMS320F28234, TMS320F28234-Q1, TMS320F28232, TMS320F28232-Q1 www.ti.com SPRS439Q – JUNE 2007 – REVISED AUGUST 2022 7.9.2 Power Sequencing No requirements are placed on the power-up and power-down sequences of the various power pins to ensure the correct reset state for all the modules. However, if the 3.3-V transistors in the level shifting output buffers of the I/O pins are powered prior to the 1.9-V/1.8-V transistors, it is possible for the output buffers to turn on, causing a glitch to occur on the pin during power up. To avoid this behavior, power the VDD (core voltage) pins prior to or simultaneously with the VDDIO (input/output voltage) pins, ensuring that the VDD pins have reached 0.7 V before or at the same time as the VDDIO pins reach 0.7 V. There are some requirements on the XRS pin: 1. During power up, the XRS pin must be held low for tw(RSL1) after the input clock is stable (see Section 7.9.2.2). This is to enable the entire device to start from a known condition. 2. During power down, the XRS pin must be pulled low at least 8 μs prior to VDD reaching 1.5 V. Meeting this requirement is important to help prevent unintended flash program or erase. No voltage larger than a diode drop (0.7 V) above VDDIO should be applied to any digital pin (for analog pins, this value is 0.7 V above VDDA) before powering up the device. Furthermore, VDDIO and VDDA should always be within 0.3 V of each other. Voltages applied to pins on an unpowered device can bias internal P-N junctions in unintended ways and produce unpredictable results. 7.9.2.1 Power Management and Supervisory Circuit Solutions LDO selection depends on the total power consumed in the end application. Go to the Power Management page for a list of TI power management ICs. Click the Reference designs tab for specific power management reference designs. 48 Submit Document Feedback Copyright © 2022 Texas Instruments Incorporated Product Folder Links: TMS320F28335 TMS320F28335-Q1 TMS320F28334 TMS320F28333 TMS320F28332 TMS320F28235 TMS320F28235-Q1 TMS320F28234 TMS320F28234-Q1 TMS320F28232 TMS320F28232-Q1 TMS320F28335, TMS320F28335-Q1, TMS320F28334, TMS320F28333 TMS320F28332, TMS320F28235, TMS320F28235-Q1 TMS320F28234, TMS320F28234-Q1, TMS320F28232, TMS320F28232-Q1 www.ti.com SPRS439Q – JUNE 2007 – REVISED AUGUST 2022 VDDIO, VDD3VFL VDDA2, VDDAIO (3.3 V) VDD, VDD1A18, VDD2A18 (1.9 V/1.8 V) XCLKIN X1/X2 OSCCLK/16(A) XCLKOUT tOSCST OSCCLK/8 User-Code Dependent tw(RSL1) XRS Address/Data Valid. Internal Boot-ROM Code Execution Phase Address/Data/ Control (Internal) td(EX) th(boot-mode)(B) Boot-Mode Pins User-Code Execution Phase User-Code Dependent GPIO Pins as Input Peripheral/GPIO Function Based on Boot Code Boot-ROM Execution Starts I/O Pins(C) GPIO Pins as Input (State Depends on Internal PU/PD) User-Code Dependent A. B. C. Upon power up, SYSCLKOUT is OSCCLK/4. Because both the XTIMCLK and CLKMODE bits in the XINTCNF2 register come up with a reset state of 1, SYSCLKOUT is further divided by 4 before it appears at XCLKOUT. This explains why XCLKOUT = OSCCLK/16 during this phase. Subsequently, boot ROM changes SYSCLKOUT to OSCCLK/2. Because the XTIMCLK register is unchanged by the boot ROM, XCLKOUT is OSCCLK/8 during this phase. After reset, the boot ROM code samples Boot Mode pins. Based on the status of the Boot Mode pin, the boot code branches to destination memory or boot code function. If boot ROM code executes after power-on conditions (in debugger environment), the boot code execution time is based on the current SYSCLKOUT speed. The SYSCLKOUT will be based on user environment and could be with or without PLL enabled. See Section 7.9.2 for requirements to ensure a high-impedance state for GPIO pins during power up. Figure 7-4. Power-on Reset Copyright © 2022 Texas Instruments Incorporated Submit Document Feedback Product Folder Links: TMS320F28335 TMS320F28335-Q1 TMS320F28334 TMS320F28333 TMS320F28332 TMS320F28235 TMS320F28235-Q1 TMS320F28234 TMS320F28234-Q1 TMS320F28232 TMS320F28232-Q1 49 TMS320F28335, TMS320F28335-Q1, TMS320F28334, TMS320F28333 TMS320F28332, TMS320F28235, TMS320F28235-Q1 TMS320F28234, TMS320F28234-Q1, TMS320F28232, TMS320F28232-Q1 www.ti.com SPRS439Q – JUNE 2007 – REVISED AUGUST 2022 7.9.2.2 Reset (XRS) Timing Requirements MIN tw(RSL1) (1) Pulse duration, stable input clock to XRS high tw(RSL2) Pulse duration, XRS low tw(WDRS) Pulse duration, reset pulse generated by watchdog td(EX) Delay time, address/data valid after XRS high tOSCST (2) UNIT cycles 32tc(OSCCLK) cycles 512tc(OSCCLK) cycles 32tc(OSCCLK) cycles 1 Hold time for boot-mode pins MAX 32tc(OSCCLK) Oscillator start-up time th(boot-mode) (1) (2) Warm reset NOM 10 200tc(OSCCLK) ms cycles In addition to the tw(RSL1) requirement, XRS must be low at least for 1 ms after VDD reaches 1.5 V. Dependent on crystal/resonator and board design. XCLKIN X1/X2 OSCCLK/8 XCLKOUT User-Code Dependent OSCCLK * 5 tw(RSL2) XRS Address/Data/ Control (Internal) td(EX) User-Code Execution (Don’t Care) Boot-ROM Execution Starts Boot-Mode Pins Peripheral/GPIO Function User-Code Execution Phase GPIO Pins as Input th(boot-mode)(A) Peripheral/GPIO Function User-Code Execution Starts I/O Pins User-Code Dependent GPIO Pins as Input (State Depends on Internal PU/PD) User-Code Dependent A. After reset, the Boot ROM code samples BOOT Mode pins. Based on the status of the Boot Mode pin, the boot code branches to destination memory or boot code function. If Boot ROM code executes after power-on conditions (in debugger environment), the Boot code execution time is based on the current SYSCLKOUT speed. The SYSCLKOUT will be based on user environment and could be with or without PLL enabled. Figure 7-5. Warm Reset 50 Submit Document Feedback Copyright © 2022 Texas Instruments Incorporated Product Folder Links: TMS320F28335 TMS320F28335-Q1 TMS320F28334 TMS320F28333 TMS320F28332 TMS320F28235 TMS320F28235-Q1 TMS320F28234 TMS320F28234-Q1 TMS320F28232 TMS320F28232-Q1 TMS320F28335, TMS320F28335-Q1, TMS320F28334, TMS320F28333 TMS320F28332, TMS320F28235, TMS320F28235-Q1 TMS320F28234, TMS320F28234-Q1, TMS320F28232, TMS320F28232-Q1 www.ti.com SPRS439Q – JUNE 2007 – REVISED AUGUST 2022 Figure 7-6 shows an example for the effect of writing into PLLCR register. In the first phase, PLLCR = 0x0004 and SYSCLKOUT = OSCCLK × 2. The PLLCR is then written with 0x0008. Right after the PLLCR register is written, the PLL lock-up phase begins. During this phase, SYSCLKOUT = OSCCLK/2. After the PLL lockup is complete (which takes 131072 OSCCLK cycles), SYSCLKOUT reflects the new operating frequency, OSCCLK × 4. OSCCLK Write to PLLCR SYSCLKOUT OSCCLK * 2 OSCCLK/2 OSCCLK * 4 (Current CPU Frequency) (CPU Frequency While PLL is Stabilizing With the Desired Frequency. This Period (PLL Lock-up Time, tp) is 131072 OSCCLK Cycles Long.) (Changed CPU Frequency) Figure 7-6. Example of Effect of Writing Into PLLCR Register Copyright © 2022 Texas Instruments Incorporated Submit Document Feedback Product Folder Links: TMS320F28335 TMS320F28335-Q1 TMS320F28334 TMS320F28333 TMS320F28332 TMS320F28235 TMS320F28235-Q1 TMS320F28234 TMS320F28234-Q1 TMS320F28232 TMS320F28232-Q1 51 TMS320F28335, TMS320F28335-Q1, TMS320F28334, TMS320F28333 TMS320F28332, TMS320F28235, TMS320F28235-Q1 TMS320F28234, TMS320F28234-Q1, TMS320F28232, TMS320F28232-Q1 www.ti.com SPRS439Q – JUNE 2007 – REVISED AUGUST 2022 7.9.3 Clock Requirements and Characteristics 7.9.3.1 Input Clock Frequency PARAMETER MIN Resonator (X1/X2) Crystal (X1/X2) fx Input clock frequency fl Limp mode SYSCLKOUT frequency range (with /2 enabled) TYP MAX UNIT 20 External oscillator/clock source (XCLKIN or X1 pin) 35 20 35 150-MHz device 4 150 100-MHz device 4 MHz 100 1-5 MHz 7.9.3.2 XCLKIN Timing Requirements – PLL Enabled NO. MIN C8 tc(CI) Cycle time, XCLKIN C9 tf(CI) Fall time, XCLKIN(1) MAX UNIT 33.3 200 ns 6 ns 6 ns XCLKIN(1) C10 tr(CI) Rise time, C11 tw(CIL) Pulse duration, XCLKIN low as a percentage of tc(CI) (1) 45% 55% C12 tw(CIH) Pulse duration, XCLKIN high as a percentage of tc(CI) (1) 45% 55% MIN MAX UNIT (1) jj This applies to the X1 pin also. 7.9.3.3 XCLKIN Timing Requirements – PLL Disabled NO. C8 tc(CI) Cycle time, XCLKIN C9 tf(CI) Fall time, XCLKIN(1) C10 tr(CI) Rise time, XCLKIN(1) C11 tw(CIL) Pulse duration, XCLKIN low as a percentage of tc(CI) (1) C12 (1) tw(CIH) Pulse duration, XCLKIN high as a percentage of tc(CI) 150-MHz device 6.67 250 100-MHz device 10 250 Up to 30 MHz 6 30 MHz to 150 MHz 2 Up to 30 MHz 6 30 MHz to 150 MHz 2 (1) 45% 55% 45% 55% ns ns ns This applies to the X1 pin also. The possible configuration modes are shown in Table 8-38. 7.9.3.4 XCLKOUT Switching Characteristics (PLL Bypassed or Enabled) PARAMETER(1) (2) NO. 150-MHz device 6.67 100-MHz device 10 TYP MAX UNIT C1 tc(XCO) Cycle time, XCLKOUT C3 tf(XCO) Fall time, XCLKOUT 2 ns C4 tr(XCO) Rise time, XCLKOUT 2 ns C5 tw(XCOL) Pulse duration, XCLKOUT low H–2 H+2 ns C6 tw(XCOH) Pulse duration, XCLKOUT high H–2 H+2 ns tp (1) (2) (3) 52 MIN PLL lock time ns 131072tc(OSCCLK) (3) cycles A load of 40 pF is assumed for these parameters. H = 0.5tc(XCO) OSCCLK is either the output of the on-chip oscillator or the output from an external oscillator. Submit Document Feedback Copyright © 2022 Texas Instruments Incorporated Product Folder Links: TMS320F28335 TMS320F28335-Q1 TMS320F28334 TMS320F28333 TMS320F28332 TMS320F28235 TMS320F28235-Q1 TMS320F28234 TMS320F28234-Q1 TMS320F28232 TMS320F28232-Q1 TMS320F28335, TMS320F28335-Q1, TMS320F28334, TMS320F28333 TMS320F28332, TMS320F28235, TMS320F28235-Q1 TMS320F28234, TMS320F28234-Q1, TMS320F28232, TMS320F28232-Q1 www.ti.com SPRS439Q – JUNE 2007 – REVISED AUGUST 2022 7.9.3.5 Timing Diagram C10 C9 C8 XCLKIN(A) C1 C6 C3 C4 C5 XCLKOUT(B) A. B. The relationship of XCLKIN to XCLKOUT depends on the divide factor chosen. The waveform relationship shown is intended to illustrate the timing parameters only and may differ based on actual configuration. XCLKOUT configured to reflect SYSCLKOUT. Figure 7-7. Clock Timing Copyright © 2022 Texas Instruments Incorporated Submit Document Feedback Product Folder Links: TMS320F28335 TMS320F28335-Q1 TMS320F28334 TMS320F28333 TMS320F28332 TMS320F28235 TMS320F28235-Q1 TMS320F28234 TMS320F28234-Q1 TMS320F28232 TMS320F28232-Q1 53 TMS320F28335, TMS320F28335-Q1, TMS320F28334, TMS320F28333 TMS320F28332, TMS320F28235, TMS320F28235-Q1 TMS320F28234, TMS320F28234-Q1, TMS320F28232, TMS320F28232-Q1 www.ti.com SPRS439Q – JUNE 2007 – REVISED AUGUST 2022 7.9.4 Peripherals 7.9.4.1 General-Purpose Input/Output (GPIO) 7.9.4.1.1 GPIO - Output Timing 7.9.4.1.1.1 General-Purpose Output Switching Characteristics PARAMETER MIN tr(GPO) Rise time, GPIO switching low to high All GPIOs tf(GPO) Fall time, GPIO switching high to low All GPIOs tfGPO Toggling frequency, GPO pins MAX 8 UNIT ns 8 ns 25 MHz GPIO tf(GPO) tr(GPO) Figure 7-8. General-Purpose Output Timing 54 Submit Document Feedback Copyright © 2022 Texas Instruments Incorporated Product Folder Links: TMS320F28335 TMS320F28335-Q1 TMS320F28334 TMS320F28333 TMS320F28332 TMS320F28235 TMS320F28235-Q1 TMS320F28234 TMS320F28234-Q1 TMS320F28232 TMS320F28232-Q1 TMS320F28335, TMS320F28335-Q1, TMS320F28334, TMS320F28333 TMS320F28332, TMS320F28235, TMS320F28235-Q1 TMS320F28234, TMS320F28234-Q1, TMS320F28232, TMS320F28232-Q1 www.ti.com SPRS439Q – JUNE 2007 – REVISED AUGUST 2022 7.9.4.1.2 GPIO - Input Timing 7.9.4.1.2.1 General-Purpose Input Timing Requirements MIN tw(SP) Sampling period tw(IQSW) Input qualifier sampling window tw(GPI) (2) (1) (2) QUALPRD = 0 1tc(SCO) QUALPRD ≠ 0 2tc(SCO) * QUALPRD MAX UNIT cycles tw(SP) * (n(1) – 1) Synchronous mode Pulse duration, GPIO low/high cycles 2tc(SCO) With input qualifier cycles tw(IQSW) + tw(SP) + 1tc(SCO) "n" represents the number of qualification samples as defined by GPxQSELn register. For tw(GPI), pulse width is measured from VIL to VIL for an active low signal and VIH to VIH for an active high signal. (A) GPIO Signal GPxQSELn = 1,0 (6 samples) 1 1 0 0 0 0 0 0 0 1 tw(SP) 0 0 0 1 1 1 1 1 1 1 1 1 Sampling Period determined by GPxCTRL[QUALPRD](B) tw(IQSW) (SYSCLKOUT cycle * 2 * QUALPRD) * 5(C)) Sampling Window SYSCLKOUT QUALPRD = 1 (SYSCLKOUT/2) (D) Output From Qualifier A. B. C. D. This glitch will be ignored by the input qualifier. The QUALPRD bit field specifies the qualification sampling period. It can vary from 00 to 0xFF. If QUALPRD = 00, then the sampling period is 1 SYSCLKOUT cycle. For any other value "n", the qualification sampling period in 2n SYSCLKOUT cycles (that is, at every 2n SYSCLKOUT cycles, the GPIO pin will be sampled). The qualification period selected through the GPxCTRL register applies to groups of 8 GPIO pins. The qualification block can take either three or six samples. The GPxQSELn Register selects which sample mode is used. In the example shown, for the qualifier to detect the change, the input should be stable for 10 SYSCLKOUT cycles or greater. In other words, the inputs should be stable for (5 × QUALPRD × 2) SYSCLKOUT cycles. This would ensure 5 sampling periods for detection to occur. Because external signals are driven asynchronously, an 13-SYSCLKOUT-wide pulse ensures reliable recognition. Figure 7-9. Sampling Mode Copyright © 2022 Texas Instruments Incorporated Submit Document Feedback Product Folder Links: TMS320F28335 TMS320F28335-Q1 TMS320F28334 TMS320F28333 TMS320F28332 TMS320F28235 TMS320F28235-Q1 TMS320F28234 TMS320F28234-Q1 TMS320F28232 TMS320F28232-Q1 55 TMS320F28335, TMS320F28335-Q1, TMS320F28334, TMS320F28333 TMS320F28332, TMS320F28235, TMS320F28235-Q1 TMS320F28234, TMS320F28234-Q1, TMS320F28232, TMS320F28232-Q1 www.ti.com SPRS439Q – JUNE 2007 – REVISED AUGUST 2022 7.9.4.1.3 Sampling Window Width for Input Signals The following section summarizes the sampling window width for input signals for various input qualifier configurations. Sampling frequency denotes how often a signal is sampled with respect to SYSCLKOUT. Sampling frequency = SYSCLKOUT/(2 * QUALPRD), if QUALPRD ≠ 0 Sampling frequency = SYSCLKOUT, if QUALPRD = 0 Sampling period = SYSCLKOUT cycle × 2 × QUALPRD, if QUALPRD ≠ 0 In the above equations, SYSCLKOUT cycle indicates the time period of SYSCLKOUT. Sampling period = SYSCLKOUT cycle, if QUALPRD = 0 In a given sampling window, either 3 or 6 samples of the input signal are taken to determine the validity of the signal. This is determined by the value written to GPxQSELn register. Case 1: Qualification using three samples Sampling window width = (SYSCLKOUT cycle × 2 × QUALPRD) × 2, if QUALPRD ≠ 0 Sampling window width = (SYSCLKOUT cycle) × 2, if QUALPRD = 0 Case 2: Qualification using six samples Sampling window width = (SYSCLKOUT cycle × 2 × QUALPRD) × 5, if QUALPRD ≠ 0 Sampling window width = (SYSCLKOUT cycle) × 5, if QUALPRD = 0 SYSCLK GPIOxn tw(GPI) Figure 7-10. General-Purpose Input Timing 56 Submit Document Feedback Copyright © 2022 Texas Instruments Incorporated Product Folder Links: TMS320F28335 TMS320F28335-Q1 TMS320F28334 TMS320F28333 TMS320F28332 TMS320F28235 TMS320F28235-Q1 TMS320F28234 TMS320F28234-Q1 TMS320F28232 TMS320F28232-Q1 TMS320F28335, TMS320F28335-Q1, TMS320F28334, TMS320F28333 TMS320F28332, TMS320F28235, TMS320F28235-Q1 TMS320F28234, TMS320F28234-Q1, TMS320F28232, TMS320F28232-Q1 www.ti.com SPRS439Q – JUNE 2007 – REVISED AUGUST 2022 7.9.4.1.4 Low-Power Mode Wakeup Timing Section 7.9.4.1.4.1 shows the timing requirements, Section 7.9.4.1.4.2 shows the switching characteristics, and Figure 7-11 shows the timing diagram for IDLE mode. 7.9.4.1.4.1 IDLE Mode Timing Requirements MIN tw(WAKE-INT) (1) Pulse duration, external wake-up signal Without input qualifier(1) MAX 2tc(SCO) With input qualifier(1) UNIT cycles 5tc(SCO) + tw(IQSW) For an explanation of the input qualifier parameters, see Section 7.9.4.1.2.1. 7.9.4.1.4.2 IDLE Mode Switching Characteristics PARAMETER TEST CONDITIONS MIN MAX UNIT Delay time, external wake signal to program execution resume (2) Without input qualifier(1) Wake-up from flash • td(WAKE-IDLE) Flash module in active state Wake-up from flash Without input qualifier(1) • With input qualifier(1) Flash module in sleep state Without input qualifier(1) Wake-up from SARAM (1) (2) With input qualifier(1) With input qualifier(1) 20tc(SCO) 20tc(SCO) + tw(IQSW) 1050tc(SCO) 1050tc(SCO) + tw(IQSW) 20tc(SCO) 20tc(SCO) + tw(IQSW) cycles cycles cycles For an explanation of the input qualifier parameters, see Section 7.9.4.1.2.1. This is the time taken to begin execution of the instruction that immediately follows the IDLE instruction. execution of an ISR (triggered by the wake up) signal involves additional latency. 7.9.4.1.4.3 IDLE Mode Timing Diagram td(WAKE−IDLE) Address/Data (internal) XCLKOUT tw(WAKE−INT) WAKE A. B. INT(A)(B) WAKE INT can be any enabled interrupt, WDINT, XNMI, or XRS. From the time the IDLE instruction is executed to place the device into low-power mode (LPM), wakeup should not be initiated until at least 4 OSCCLK cycles have elapsed. Figure 7-11. IDLE Entry and Exit Timing Copyright © 2022 Texas Instruments Incorporated Submit Document Feedback Product Folder Links: TMS320F28335 TMS320F28335-Q1 TMS320F28334 TMS320F28333 TMS320F28332 TMS320F28235 TMS320F28235-Q1 TMS320F28234 TMS320F28234-Q1 TMS320F28232 TMS320F28232-Q1 57 TMS320F28335, TMS320F28335-Q1, TMS320F28334, TMS320F28333 TMS320F28332, TMS320F28235, TMS320F28235-Q1 TMS320F28234, TMS320F28234-Q1, TMS320F28232, TMS320F28232-Q1 www.ti.com SPRS439Q – JUNE 2007 – REVISED AUGUST 2022 7.9.4.1.4.4 STANDBY Mode Timing Requirements MIN tw(WAKE-INT) (1) Pulse duration, external wake-up signal Without input qualification With input qualification(1) MAX 3tc(OSCCLK) UNIT cycles (2 + QUALSTDBY) * tc(OSCCLK) QUALSTDBY is a 6-bit field in the LPMCR0 register. 7.9.4.1.4.5 STANDBY Mode Switching Characteristics PARAMETER td(IDLE-XCOL) TEST CONDITIONS Delay time, IDLE instruction executed to XCLKOUT low MIN MAX UNIT 32tc(SCO) 45tc(SCO) cycles Delay time, external wake signal to program execution resume(1) • Wake up from flash – td(WAKE-STBY) • Wake up from flash – • Flash module in active state Flash module in sleep state Wake up from SARAM Without input qualifier With input qualifier Without input qualifier With input qualifier Without input qualifier With input qualifier (1) 58 100tc(SCO) 100tc(SCO) + tw(WAKE-INT) cycles 1125tc(SCO) 1125tc(SCO) + tw(WAKE-INT) 100tc(SCO) 100tc(SCO) + tw(WAKE-INT) cycles cycles This is the time taken to begin execution of the instruction that immediately follows the IDLE instruction. execution of an ISR (triggered by the wake up signal) involves additional latency. Submit Document Feedback Copyright © 2022 Texas Instruments Incorporated Product Folder Links: TMS320F28335 TMS320F28335-Q1 TMS320F28334 TMS320F28333 TMS320F28332 TMS320F28235 TMS320F28235-Q1 TMS320F28234 TMS320F28234-Q1 TMS320F28232 TMS320F28232-Q1 TMS320F28335, TMS320F28335-Q1, TMS320F28334, TMS320F28333 TMS320F28332, TMS320F28235, TMS320F28235-Q1 TMS320F28234, TMS320F28234-Q1, TMS320F28232, TMS320F28232-Q1 www.ti.com SPRS439Q – JUNE 2007 – REVISED AUGUST 2022 7.9.4.1.4.6 STANDBY Mode Timing Diagram (A) (C) (B) Device Status STANDBY (E) (D) (F) STANDBY Normal Execution Flushing Pipeline Wake-up Signal(G) tw(WAKE-INT) td(WAKE-STBY) X1/X2 or X1 or XCLKIN XCLKOUT td(IDLE−XCOL) A. B. IDLE instruction is executed to put the device into STANDBY mode. The PLL block responds to the STANDBY signal. SYSCLKOUT is held for the number of cycles indicated below before being turned off: • • • 16 cycles, when DIVSEL = 00 or 01 32 cycles, when DIVSEL = 10 64 cycles, when DIVSEL = 11 This delay enables the CPU pipeline and any other pending operations to flush properly. If an access to XINTF is in progress and its access time is longer than this number then it will fail. It is recommended to enter STANDBY mode from SARAM without an XINTF access in progress. C. D. E. F. G. Clock to the peripherals are turned off. However, the PLL and watchdog are not shut down. The device is now in STANDBY mode. The external wake-up signal is driven active. After a latency period, the STANDBY mode is exited. Normal execution resumes. The device will respond to the interrupt (if enabled). From the time the IDLE instruction is executed to place the device into low-power mode (LPM), wakeup should not be initiated until at least 4 OSCCLK cycles have elapsed. Figure 7-12. STANDBY Entry and Exit Timing Diagram Copyright © 2022 Texas Instruments Incorporated Submit Document Feedback Product Folder Links: TMS320F28335 TMS320F28335-Q1 TMS320F28334 TMS320F28333 TMS320F28332 TMS320F28235 TMS320F28235-Q1 TMS320F28234 TMS320F28234-Q1 TMS320F28232 TMS320F28232-Q1 59 TMS320F28335, TMS320F28335-Q1, TMS320F28334, TMS320F28333 TMS320F28332, TMS320F28235, TMS320F28235-Q1 TMS320F28234, TMS320F28234-Q1, TMS320F28232, TMS320F28232-Q1 www.ti.com SPRS439Q – JUNE 2007 – REVISED AUGUST 2022 7.9.4.1.4.7 HALT Mode Timing Requirements MIN tw(WAKE-GPIO) Pulse duration, GPIO wake-up signal tw(WAKE-XRS) Pulse duration, XRS wake-up signal (1) MAX UNIT toscst + 2tc(OSCCLK) (1) cycles toscst + 8tc(OSCCLK) cycles See Section 7.9.2.2 for an explanation of toscst. 7.9.4.1.4.8 HALT Mode Switching Characteristics PARAMETER td(IDLE-XCOL) Delay time, IDLE instruction executed to XCLKOUT low tp PLL lock-up time MIN MAX UNIT 32tc(SCO) 45tc(SCO) cycles 131072tc(OSCCLK) cycles 1125tc(SCO) cycles 35tc(SCO) cycles Delay time, PLL lock to program execution resume • td(WAKE-HALT) – • 60 Wake up from flash Flash module in sleep state Wake up from SARAM Submit Document Feedback Copyright © 2022 Texas Instruments Incorporated Product Folder Links: TMS320F28335 TMS320F28335-Q1 TMS320F28334 TMS320F28333 TMS320F28332 TMS320F28235 TMS320F28235-Q1 TMS320F28234 TMS320F28234-Q1 TMS320F28232 TMS320F28232-Q1 TMS320F28335, TMS320F28335-Q1, TMS320F28334, TMS320F28333 TMS320F28332, TMS320F28235, TMS320F28235-Q1 TMS320F28234, TMS320F28234-Q1, TMS320F28232, TMS320F28232-Q1 www.ti.com SPRS439Q – JUNE 2007 – REVISED AUGUST 2022 7.9.4.1.4.9 HALT Mode Timing Diagram (A) (C) Device Status (D) HALT Flushing Pipeline (G) (E) (B) (F) HALT PLL Lock-up Time Wake-up Latency Normal Execution GPIOn(H) td(WAKE−HALT) tw(WAKE-GPIO) tp X1/X2 or XCLKIN Oscillator Start-up Time XCLKOUT td(IDLE−XCOL) A. B. IDLE instruction is executed to put the device into HALT mode. The PLL block responds to the HALT signal. SYSCLKOUT is held for the number of cycles indicated below before oscillator is turned off and the CLKIN to the core is stopped: • • • C. D. E. F. G. H. 16 cycles, when DIVSEL = 00 or 01 32 cycles, when DIVSEL = 10 64 cycles, when DIVSEL = 11 This delay enables the CPU pipeline and any other pending operations to flush properly. If an access to XINTF is in progress and its access time is longer than this number then it will fail. It is recommended to enter HALT mode from SARAM without an XINTF access in progress. Clocks to the peripherals are turned off and the PLL is shut down. If a quartz crystal or ceramic resonator is used as the clock source, the internal oscillator is shut down as well. The device is now in HALT mode and consumes absolute minimum power. When the GPIOn pin (used to bring the device out of HALT) is driven low, the oscillator is turned on and the oscillator wake-up sequence is initiated. The GPIO pin should be driven high only after the oscillator has stabilized. This enables the provision of a clean clock signal during the PLL lock sequence. Because the falling edge of the GPIO pin asynchronously begins the wake-up process, care should be taken to maintain a low noise environment prior to entering and during HALT mode. Once the oscillator has stabilized, the PLL lock sequence is initiated, which takes 131,072 OSCCLK (X1/X2 or X1 or XCLKIN) cycles. Note that these 131,072 clock cycles are applicable even when the PLL is disabled (that is, code execution will be delayed by this duration even when the PLL is disabled). Clocks to the core and peripherals are enabled. The HALT mode is now exited. The device will respond to the interrupt (if enabled), after a latency. Normal operation resumes. From the time the IDLE instruction is executed to place the device into low-power mode (LPM), wakeup should not be initiated until at least 4 OSCCLK cycles have elapsed. Figure 7-13. HALT Wakeup Using GPIOn Copyright © 2022 Texas Instruments Incorporated Submit Document Feedback Product Folder Links: TMS320F28335 TMS320F28335-Q1 TMS320F28334 TMS320F28333 TMS320F28332 TMS320F28235 TMS320F28235-Q1 TMS320F28234 TMS320F28234-Q1 TMS320F28232 TMS320F28232-Q1 61 TMS320F28335, TMS320F28335-Q1, TMS320F28334, TMS320F28333 TMS320F28332, TMS320F28235, TMS320F28235-Q1 TMS320F28234, TMS320F28234-Q1, TMS320F28232, TMS320F28232-Q1 www.ti.com SPRS439Q – JUNE 2007 – REVISED AUGUST 2022 7.9.4.2 Enhanced Control Peripherals 7.9.4.2.1 Enhanced Pulse Width Modulator (ePWM) Timing PWM refers to PWM outputs on ePWM1–6. Section 7.9.4.2.1.1 shows the ePWM timing requirements and Section 7.9.4.2.1.2, ePWM switching characteristics. 7.9.4.2.1.1 ePWM Timing Requirements MIN tw(SYCIN) Sync input pulse width Asynchronous 2tc(SCO) Synchronous 2tc(SCO) With input (1) qualifier(1) MAX UNIT cycles 1tc(SCO) + tw(IQSW) For an explanation of the input qualifier parameters, see Section 7.9.4.1.2.1. 7.9.4.2.1.2 ePWM Switching Characteristics PARAMETER TEST CONDITIONS tw(PWM) Pulse duration, PWMx output high/low tw(SYNCOUT) Sync output pulse width td(PWM)tza Delay time, trip input active to PWM forced high Delay time, trip input active to PWM forced low td(TZ-PWM)HZ Delay time, trip input active to PWM Hi-Z MIN MAX UNIT 20 ns 8tc(SCO) no pin load cycles 25 ns 20 ns 7.9.4.2.2 Trip-Zone Input Timing SYSCLK tw(TZ) (A) TZ td(TZ-PWM)HZ (B) PWM A. B. TZ - TZ1, TZ2, TZ3, TZ4, TZ5, TZ6 PWM refers to all the PWM pins in the device. The state of the PWM pins after TZ is taken high depends on the PWM recovery software. Figure 7-14. PWM Hi-Z Characteristics 7.9.4.2.2.1 Trip-Zone Input Timing Requirements MIN Asynchronous tw(TZ) Pulse duration, TZx input low Synchronous With input qualifier(1) (1) 62 MAX UNIT 1tc(SCO) 2tc(SCO) cycles 1tc(SCO) + tw(IQSW) For an explanation of the input qualifier parameters, see Section 7.9.4.1.2.1. Submit Document Feedback Copyright © 2022 Texas Instruments Incorporated Product Folder Links: TMS320F28335 TMS320F28335-Q1 TMS320F28334 TMS320F28333 TMS320F28332 TMS320F28235 TMS320F28235-Q1 TMS320F28234 TMS320F28234-Q1 TMS320F28232 TMS320F28232-Q1 TMS320F28335, TMS320F28335-Q1, TMS320F28334, TMS320F28333 TMS320F28332, TMS320F28235, TMS320F28235-Q1 TMS320F28234, TMS320F28234-Q1, TMS320F28232, TMS320F28232-Q1 www.ti.com SPRS439Q – JUNE 2007 – REVISED AUGUST 2022 7.9.4.2.3 High-Resolution PWM Timing Section 7.9.4.2.3.1 shows the high-resolution PWM switching characteristics. 7.9.4.2.3.1 High-Resolution PWM Characteristics at SYSCLKOUT = (60–150 MHz) MIN Micro Edge Positioning (MEP) step (1) TYP size(1) MAX UNIT 150 310 ps The MEP step size will be largest at high temperature and minimum voltage on VDD. MEP step size will increase with higher temperature and lower voltage and decrease with lower temperature and higher voltage. Applications that use the HRPWM feature should use MEP Scale Factor Optimizer (SFO) estimation software functions. See the TI software libraries for details of using SFO function in end applications. SFO functions help to estimate the number of MEP steps per SYSCLKOUT period dynamically while the HRPWM is in operation. 7.9.4.2.4 Enhanced Capture (eCAP) Timing Section 7.9.4.2.4.1 shows the eCAP timing requirement and Section 7.9.4.2.4.2 shows the eCAP switching characteristics. 7.9.4.2.4.1 Enhanced Capture (eCAP) Timing Requirements MIN tw(CAP) Capture input pulse width Asynchronous 2tc(SCO) Synchronous 2tc(SCO) With input (1) qualifier(1) MAX UNIT cycles 1tc(SCO) + tw(IQSW) For an explanation of the input qualifier parameters, see Section 7.9.4.1.2.1. 7.9.4.2.4.2 eCAP Switching Characteristics PARAMETER tw(APWM) Pulse duration, APWMx output high/low Copyright © 2022 Texas Instruments Incorporated TEST CONDITIONS MIN MAX 20 UNIT ns Submit Document Feedback Product Folder Links: TMS320F28335 TMS320F28335-Q1 TMS320F28334 TMS320F28333 TMS320F28332 TMS320F28235 TMS320F28235-Q1 TMS320F28234 TMS320F28234-Q1 TMS320F28232 TMS320F28232-Q1 63 TMS320F28335, TMS320F28335-Q1, TMS320F28334, TMS320F28333 TMS320F28332, TMS320F28235, TMS320F28235-Q1 TMS320F28234, TMS320F28234-Q1, TMS320F28232, TMS320F28232-Q1 www.ti.com SPRS439Q – JUNE 2007 – REVISED AUGUST 2022 7.9.4.2.5 Enhanced Quadrature Encoder Pulse (eQEP) Timing Section 7.9.4.2.5.1 shows the eQEP timing requirement and Section 7.9.4.2.5.2 shows the eQEP switching characteristics. 7.9.4.2.5.1 Enhanced Quadrature Encoder Pulse (eQEP) Timing Requirements MIN tw(QEPP) QEP input period tw(INDEXH) QEP Index Input High time tw(INDEXL) QEP Index Input Low time tw(STROBH) QEP Strobe High time tw(STROBL) QEP Strobe Input Low time (1) (2) Asynchronous(1)/synchronous With input qualifier(2) 2tc(SCO) With input qualifier(2) 2tc(SCO) cycles 2tc(SCO) + tw(IQSW) Asynchronous(1)/synchronous With input qualifier(2) 2tc(SCO) cycles 2tc(SCO) + tw(IQSW) Asynchronous(1)/synchronous With input qualifier(2) 2tc(SCO) cycles 2tc(SCO) + tw(IQSW) Asynchronous(1)/synchronous UNIT cycles 2[1tc(SCO) + tw(IQSW)] Asynchronous(1)/synchronous With input qualifier(2) MAX 2tc(SCO) cycles 2tc(SCO) + tw(IQSW) Refer to the TMS320F2833x, TMS320F2823x Real-Time MCUs Silicon Errata for limitations in the asynchronous mode. For an explanation of the input qualifier parameters, see Section 7.9.4.1.2.1. 7.9.4.2.5.2 eQEP Switching Characteristics MAX UNIT td(CNTR)xin Delay time, external clock to counter increment PARAMETER 4tc(SCO) cycles td(PCS-OUT)QEP Delay time, QEP input edge to position compare sync output 6tc(SCO) cycles 64 Submit Document Feedback TEST CONDITIONS MIN Copyright © 2022 Texas Instruments Incorporated Product Folder Links: TMS320F28335 TMS320F28335-Q1 TMS320F28334 TMS320F28333 TMS320F28332 TMS320F28235 TMS320F28235-Q1 TMS320F28234 TMS320F28234-Q1 TMS320F28232 TMS320F28232-Q1 TMS320F28335, TMS320F28335-Q1, TMS320F28334, TMS320F28333 TMS320F28332, TMS320F28235, TMS320F28235-Q1 TMS320F28234, TMS320F28234-Q1, TMS320F28232, TMS320F28232-Q1 www.ti.com SPRS439Q – JUNE 2007 – REVISED AUGUST 2022 7.9.4.2.6 ADC Start-of-Conversion Timing 7.9.4.2.6.1 External ADC Start-of-Conversion Switching Characteristics PARAMETER tw(ADCSOCL) MIN Pulse duration, ADCSOCxO low MAX 32tc(HCO ) UNIT cycles 7.9.4.2.6.2 ADCSOCAO or ADCSOCBO Timing tw(ADCSOCL) ADCSOCAO or ADCSOCBO Figure 7-15. ADCSOCAO or ADCSOCBO Timing 7.9.4.3 External Interrupt Timing 7.9.4.3.1 External Interrupt Timing Requirements MIN tw(INT) (1) (1) (2) Pulse duration, INT input low/high Synchronous With qualifier(2) MAX 1tc(SCO) UNIT cycles 1tc(SCO) + tw(IQSW) This timing is applicable to any GPIO pin configured for ADCSOC functionality. For an explanation of the input qualifier parameters, see Section 7.9.4.1.2.1. 7.9.4.3.2 External Interrupt Switching Characteristics PARAMETER(1) td(INT) (1) Delay time, INT low/high to interrupt-vector fetch MIN MAX UNIT tw(IQSW) + 12tc(SCO) cycles For an explanation of the input qualifier parameters, see Section 7.9.4.1.2.1. 7.9.4.3.3 External Interrupt Timing Diagram tw(INT) XNMI, XINT1, XINT2 td(INT) Address bus (internal) Interrupt Vector Figure 7-16. External Interrupt Timing Copyright © 2022 Texas Instruments Incorporated Submit Document Feedback Product Folder Links: TMS320F28335 TMS320F28335-Q1 TMS320F28334 TMS320F28333 TMS320F28332 TMS320F28235 TMS320F28235-Q1 TMS320F28234 TMS320F28234-Q1 TMS320F28232 TMS320F28232-Q1 65 TMS320F28335, TMS320F28335-Q1, TMS320F28334, TMS320F28333 TMS320F28332, TMS320F28235, TMS320F28235-Q1 TMS320F28234, TMS320F28234-Q1, TMS320F28232, TMS320F28232-Q1 www.ti.com SPRS439Q – JUNE 2007 – REVISED AUGUST 2022 7.9.4.4 I2C Electrical Specification and Timing 7.9.4.4.1 I2C Timing TEST CONDITIONS MIN I2C clock module frequency is between 7 MHz and 12 MHz and I2C prescaler and clock divider registers are configured appropriately MAX UNIT 400 kHz fSCL SCL clock frequency vil Low level input voltage Vih High level input voltage Vhys Input hysteresis Vol Low level output voltage 3-mA sink current tLOW Low period of SCL clock I2C clock module frequency is between 7 MHz and 12 MHz and I2C prescaler and clock divider registers are configured appropriately 1.3 μs tHIGH High period of SCL clock I2C clock module frequency is between 7 MHz and 12 MHz and I2C prescaler and clock divider registers are configured appropriately 0.6 μs lI Input current with an input voltage between 0.1 VDDIO and 0.9 VDDIO MAX 66 Submit Document Feedback 0.3 VDDIO 0.7 VDDIO V 0.05 VDDIO 0 –10 V V 0.4 10 V μA Copyright © 2022 Texas Instruments Incorporated Product Folder Links: TMS320F28335 TMS320F28335-Q1 TMS320F28334 TMS320F28333 TMS320F28332 TMS320F28235 TMS320F28235-Q1 TMS320F28234 TMS320F28234-Q1 TMS320F28232 TMS320F28232-Q1 TMS320F28335, TMS320F28335-Q1, TMS320F28334, TMS320F28333 TMS320F28332, TMS320F28235, TMS320F28235-Q1 TMS320F28234, TMS320F28234-Q1, TMS320F28232, TMS320F28232-Q1 www.ti.com SPRS439Q – JUNE 2007 – REVISED AUGUST 2022 7.9.4.5 Serial Peripheral Interface (SPI) Timing This section contains both Master Mode and Slave Mode timing data. 7.9.4.5.1 Master Mode Timing Section 7.9.4.5.1.1 lists the master mode timing (clock phase = 0) and Section 7.9.4.5.1.2 lists the master mode timing (clock phase = 1). Figure 7-17 and Figure 7-18 show the timing waveforms. 7.9.4.5.1.1 SPI Master Mode External Timing (Clock Phase = 0) PARAMETER(1) (2) (3) (4) (5) NO. 1 (1) (2) (3) (4) (5) tc(SPC)M Cycle time, SPICLK 2 tw(SPC1)M Pulse duration, SPICLK first pulse 3 tw(SPC2)M Pulse duration, SPICLK second pulse 4 td(SIMO)M Delay time, SPICLK to SPISIMO valid 5 tv(SIMO)M Valid time, SPISIMO valid after SPICLK 8 tsu(SOMI)M Setup time, SPISOMI before SPICLK 9 th(SOMI)M Hold time, SPISOMI valid after SPICLK 23 td(SPC)M 24 td(STE)M BRR EVEN BRR ODD MIN MAX MIN MAX 4tc(LSPCLK) 128tc(LSPCLK) UNIT 5tc(LSPCLK) 127tc(LSPCLK) ns 0.5tc(SPC)M – 10 0.5tc(SPC)M + 0.5tc(LSPCLK) 0.5tc(SPC)M + 10 – 10 0.5tc(SPC)M + 0.5tc(LSPCLK) + 10 ns 0.5tc(SPC)M – 10 0.5tc(SPC)M + 10 0.5tc(SPC)M – 0.5tc(LSPCLK) – 10 0.5tc(SPC)M – 0.5tc(LSPCLK) + 10 ns 10 ns 10 0.5tc(SPC)M – 10 0.5tc(SPC)M – 0.5tc(LSPCLK) – 10 ns 35 35 ns 0 0 ns Delay time, SPISTE active to SPICLK 1.5tc(SPC)M – 3tc(SYSCLK) – 10 1.5tc(SPC)M – 3tc(SYSCLK) – 10 ns Delay time, SPICLK to SPISTE inactive 0.5tc(SPC)M – 10 0.5tc(SPC)M – 0.5tc(LSPCLK) – 10 ns The MASTER / SLAVE bit (SPICTL.2) is set and the CLOCK PHASE bit (SPICTL.3) is cleared. tc(SPC) = SPI clock cycle time = LSPCLK/4 or LSPCLK/(SPIBRR +1) tc(LCO) = LSPCLK cycle time Internal clock prescalers must be adjusted such that the SPI clock speed is limited to the following SPI clock rate: Master mode transmit 25-MHz MAX, master mode receive 12.5-MHz MAX Slave mode transmit 12.5-MAX, slave mode receive 12.5-MHz MAX. The active edge of the SPICLK signal referenced is controlled by the clock polarity bit (SPICCR.6). Copyright © 2022 Texas Instruments Incorporated Submit Document Feedback Product Folder Links: TMS320F28335 TMS320F28335-Q1 TMS320F28334 TMS320F28333 TMS320F28332 TMS320F28235 TMS320F28235-Q1 TMS320F28234 TMS320F28234-Q1 TMS320F28232 TMS320F28232-Q1 67 TMS320F28335, TMS320F28335-Q1, TMS320F28334, TMS320F28333 TMS320F28332, TMS320F28235, TMS320F28235-Q1 TMS320F28234, TMS320F28234-Q1, TMS320F28232, TMS320F28232-Q1 www.ti.com SPRS439Q – JUNE 2007 – REVISED AUGUST 2022 1 SPICLK (clock polarity = 0) 2 3 SPICLK (clock polarity = 1) 4 5 SPISIMO Master Out Data Is Valid 8 9 Master In Data Must Be Valid SPISOMI 23 24 SPISTE Figure 7-17. SPI Master Mode External Timing (Clock Phase = 0) 68 Submit Document Feedback Copyright © 2022 Texas Instruments Incorporated Product Folder Links: TMS320F28335 TMS320F28335-Q1 TMS320F28334 TMS320F28333 TMS320F28332 TMS320F28235 TMS320F28235-Q1 TMS320F28234 TMS320F28234-Q1 TMS320F28232 TMS320F28232-Q1 TMS320F28335, TMS320F28335-Q1, TMS320F28334, TMS320F28333 TMS320F28332, TMS320F28235, TMS320F28235-Q1 TMS320F28234, TMS320F28234-Q1, TMS320F28232, TMS320F28232-Q1 www.ti.com SPRS439Q – JUNE 2007 – REVISED AUGUST 2022 7.9.4.5.1.2 SPI Master Mode External Timing (Clock Phase = 1) 1 (1) (2) (3) (4) (5) BRR EVEN PARAMETER(1) (2) (3) (4) (5) NO. BRR ODD MIN MAX 4tc(LSPCLK) UNIT MIN MAX 128tc(LSPCLK) 5tc(LSPCLK) 127tc(LSPCLK) ns 0.5tc(SPC)M – 0.5tc(LSPCLK) + 10 ns 0.5tc(SPC)M + 0.5tc(LSPCLK) + 10 ns tc(SPC)M Cycle time, SPICLK 2 tw(SPC1)M Pulse duration, SPICLK first pulse 0.5tc(SPC)M – 10 0.5tc(SPC)M + 10 0.5tc(SPC)M – 0.5tc(LSPCLK) – 10 3 tw(SPC2)M Pulse duration, SPICLK second pulse 0.5tc(SPC)M – 10 0.5tc(SPC)M + 10 0.5tc(SPC)M + 0.5tc(LSPCLK) – 10 6 td(SIMO)M Delay time, SPISIMO valid to SPICLK 0.5tc(SPC)M – 10 0.5tc(SPC)M + 0.5tc(LSPCLK) – 10 ns 7 tv(SIMO)M Valid time, SPISIMO valid after SPICLK 0.5tc(SPC)M – 10 0.5tc(SPC)M – 0.5tc(LSPCLK) – 10 ns 10 tsu(SOMI)M Setup time, SPISOMI before SPICLK 35 35 ns 11 th(SOMI)M Hold time, SPISOMI valid after SPICLK 0 0 ns 23 td(SPC)M Delay time, SPISTE active to SPICLK 2tc(SPC)M – 3tc(SYSCLK) – 10 2tc(SPC)M – 3tc(SYSCLK) – 10 ns 24 td(STE)M Delay time, SPICLK to SPISTE inactive 0.5tc(SPC) – 10 0.5tc(SPC) – 0.5tc(LSPCLK) – 10 ns The MASTER/SLAVE bit (SPICTL.2) is set and the CLOCK PHASE bit (SPICTL.3) is set. tc(SPC) = SPI clock cycle time = LSPCLK/4 or LSPCLK/(SPIBRR + 1) Internal clock prescalers must be adjusted such that the SPI clock speed is limited to the following SPI clock rate: Master mode transmit 25 MHz MAX, master mode receive 12.5 MHz MAX Slave mode transmit 12.5 MHz MAX, slave mode receive 12.5 MHz MAX. tc(LCO) = LSPCLK cycle time The active edge of the SPICLK signal referenced is controlled by the CLOCK POLARITY bit (SPICCR.6). 1 SPICLK (clock polarity = 0) 2 3 SPICLK (clock polarity = 1) 6 7 Master Out Data Is Valid SPISIMO 10 11 Master In Data Must Be Valid SPISOMI 24 23 SPISTE Figure 7-18. SPI Master Mode External Timing (Clock Phase = 1) Copyright © 2022 Texas Instruments Incorporated Submit Document Feedback Product Folder Links: TMS320F28335 TMS320F28335-Q1 TMS320F28334 TMS320F28333 TMS320F28332 TMS320F28235 TMS320F28235-Q1 TMS320F28234 TMS320F28234-Q1 TMS320F28232 TMS320F28232-Q1 69 TMS320F28335, TMS320F28335-Q1, TMS320F28334, TMS320F28333 TMS320F28332, TMS320F28235, TMS320F28235-Q1 TMS320F28234, TMS320F28234-Q1, TMS320F28232, TMS320F28232-Q1 www.ti.com SPRS439Q – JUNE 2007 – REVISED AUGUST 2022 7.9.4.5.2 Slave Mode Timing Section 7.9.4.5.2.1 lists the slave mode timing (clock phase = 0) and Section 7.9.4.5.2.2 lists the slave mode timing (clock phase = 1). Figure 7-19 and Figure 7-20 show the timing waveforms. 7.9.4.5.2.1 SPI Slave Mode External Timing (Clock Phase = 0) PARAMETER(1) (2) (3) (4) (5) NO. MIN MAX UNIT 12 tc(SPC)S Cycle time, SPICLK 4tc(SYSCLK) ns 13 tw(SPC1)S Pulse duration, SPICLK first pulse 2tc(SYSCLK) – 1 ns 14 tw(SPC2)S Pulse duration, SPICLK second pulse 2tc(SYSCLK) – 1 15 td(SOMI)S Delay time, SPICLK to SPISOMI valid 16 tv(SOMI)S Valid time, SPISOMI data valid after SPICLK 0 ns 19 tsu(SIMO)S Setup time, SPISIMO valid before SPICLK 1.5tc(SYSCLK) ns 20 th(SIMO)S Hold time, SPISIMO data valid after SPICLK 1.5tc(SYSCLK) ns 25 tsu(STE)S Setup time, SPISTE active before SPICLK 1.5tc(SYSCLK) ns 26 th(STE)S Hold time, SPISTE inactive after SPICLK 1.5tc(SYSCLK) ns (1) (2) (3) (4) (5) ns 35 ns The MASTER / SLAVE bit (SPICTL.2) is cleared and the CLOCK PHASE bit (SPICTL.3) is cleared. tc(SPC) = SPI clock cycle time = LSPCLK/4 or LSPCLK/(SPIBRR + 1) tc(LCO) = LSPCLK cycle time Internal clock prescalers must be adjusted such that the SPI clock speed is limited to the following SPI clock rate: Master mode transmit 25-MHz MAX, master mode receive 12.5-MHz MAX Slave mode transmit 12.5-MHz MAX, slave mode receive 12.5-MHz MAX. The active edge of the SPICLK signal referenced is controlled by the CLOCK POLARITY bit (SPICCR.6). 12 SPICLK (clock polarity = 0) 13 14 SPICLK (clock polarity = 1) 15 SPISOMI 16 SPISOMI Data Is Valid 19 20 SPISIMO Data Must Be Valid SPISIMO 25 26 SPISTE Figure 7-19. SPI Slave Mode External Timing (Clock Phase = 0) 70 Submit Document Feedback Copyright © 2022 Texas Instruments Incorporated Product Folder Links: TMS320F28335 TMS320F28335-Q1 TMS320F28334 TMS320F28333 TMS320F28332 TMS320F28235 TMS320F28235-Q1 TMS320F28234 TMS320F28234-Q1 TMS320F28232 TMS320F28232-Q1 TMS320F28335, TMS320F28335-Q1, TMS320F28334, TMS320F28333 TMS320F28332, TMS320F28235, TMS320F28235-Q1 TMS320F28234, TMS320F28234-Q1, TMS320F28232, TMS320F28232-Q1 www.ti.com SPRS439Q – JUNE 2007 – REVISED AUGUST 2022 7.9.4.5.2.2 SPI Slave Mode External Timing (Clock Phase = 1) PARAMETER(1) (2) (3) (4) NO. MIN 12 tc(SPC)S Cycle time, SPICLK 13 tw(SPC1)S 14 tw(SPC2)S 17 td(SOMI)S Delay time, SPICLK to SPISOMI valid 18 tv(SOMI)S Valid time, SPISOMI data valid after SPICLK 21 tsu(SIMO)S 22 th(SIMO)S 25 26 (1) (2) (3) (4) MAX UNIT 4tc(SYSCLK) ns Pulse duration, SPICLK first pulse 2tc(SYSCLK) – 1 ns Pulse duration, SPICLK second pulse 2tc(SYSCLK) – 1 ns 35 ns 0 ns Setup time, SPISIMO valid before SPICLK 1.5tc(SYSCLK) ns Hold time, SPISIMO data valid after SPICLK 1.5tc(SYSCLK) ns tsu(STE)S Setup time, SPISTE active before SPICLK 1.5tc(SYSCLK) ns th(STE)S Hold time, SPISTE inactive after SPICLK 1.5tc(SYSCLK) ns The MASTER / SLAVE bit (SPICTL.2) is cleared and the CLOCK PHASE bit (SPICTL.3) is cleared. tc(SPC) = SPI clock cycle time = LSPCLK/4 or LSPCLK/(SPIBRR + 1) Internal clock prescalers must be adjusted such that the SPI clock speed is limited to the following SPI clock rate: Master mode transmit 25-MHz MAX, master mode receive 12.5-MHz MAX Slave mode transmit 12.5-MHz MAX, slave mode receive 12.5-MHz MAX. The active edge of the SPICLK signal referenced is controlled by the CLOCK POLARITY bit (SPICCR.6). 12 SPICLK (clock polarity = 0) 13 14 SPICLK (clock polarity = 1) 17 SPISOMI Data Valid SPISOMI Data Is Valid Data Valid 18 21 22 SPISIMO Data Must Be Valid SPISIMO 26 25 SPISTE Figure 7-20. SPI Slave Mode External Timing (Clock Phase = 1) Copyright © 2022 Texas Instruments Incorporated Submit Document Feedback Product Folder Links: TMS320F28335 TMS320F28335-Q1 TMS320F28334 TMS320F28333 TMS320F28332 TMS320F28235 TMS320F28235-Q1 TMS320F28234 TMS320F28234-Q1 TMS320F28232 TMS320F28232-Q1 71 TMS320F28335, TMS320F28335-Q1, TMS320F28334, TMS320F28333 TMS320F28332, TMS320F28235, TMS320F28235-Q1 TMS320F28234, TMS320F28234-Q1, TMS320F28232, TMS320F28232-Q1 www.ti.com SPRS439Q – JUNE 2007 – REVISED AUGUST 2022 7.9.4.6 Multichannel Buffered Serial Port (McBSP) Timing 7.9.4.6.1 McBSP Transmit and Receive Timing 7.9.4.6.1.1 McBSP Timing Requirements NO. MIN McBSP module clock (CLKG, CLKX, CLKR) range(1) Cycle time, CLKR/X(1) M12 tw(CKRX) Pulse duration, CLKR/X high or CLKR/X M13 tr(CKRX) Rise time, CLKR/X(1) M14 tf(CKRX) Fall time, low(1) CLKR/X(1) M15 tsu(FRH-CKRL) Setup time, external FSR high before CLKR low(1) M16 th(CKRL-FRH) Hold time, external FSR high after CLKR low(1) M17 tsu(DRV-CKRL) Setup time, DR valid before CLKR low(1) M18 th(CKRL-DRV) Hold time, DR valid after CLKR low(1) M19 tsu(FXH-CKXL) Setup time, external FSX high before CLKX low(1) M20 th(CKXL-FXH) Hold time, external FSX high after CLKX low(1) (1) (2) (3) 72 tc(CKRX) (3) 40 2P(2) CLKR/X ext P–7 CLKR/X ext CLKR/X ext CLKR int 18 CLKR ext 2 CLKR int 0 CLKR ext 6 CLKR int 18 CLKR ext 2 CLKR int 0 CLKR ext 6 CLKX int 18 CLKX ext 2 CLKX int 0 CLKX ext 6 MHz ns 1 CLKR/X ext UNIT kHz 25 McBSP module cycle time (CLKG, CLKX, CLKR) range(1) M11 MAX 1 ms ns ns 7 ns 7 ns ns ns ns ns ns ns Polarity bits CLKRP = CLKXP = FSRP = FSXP = 0. If the polarity of any of the signals is inverted, then the timing references of that signal are also inverted. CLKSRG 2P = 1/CLKG in ns. CLKG is the output of sample rate generator mux. CLKG = (1 ) CLKGDV) CLKSRG can be LSPCLK, CLKX, CLKR as source. CLKSRG ≤ (SYSCLKOUT/2). McBSP performance is limited by I/O buffer switching speed. Internal clock prescalers must be adjusted such that the McBSP clock (CLKG, CLKX, CLKR) speeds are not greater than the I/O buffer speed limit (25 MHz). Submit Document Feedback Copyright © 2022 Texas Instruments Incorporated Product Folder Links: TMS320F28335 TMS320F28335-Q1 TMS320F28334 TMS320F28333 TMS320F28332 TMS320F28235 TMS320F28235-Q1 TMS320F28234 TMS320F28234-Q1 TMS320F28232 TMS320F28232-Q1 TMS320F28335, TMS320F28335-Q1, TMS320F28334, TMS320F28333 TMS320F28332, TMS320F28235, TMS320F28235-Q1 TMS320F28234, TMS320F28234-Q1, TMS320F28232, TMS320F28232-Q1 www.ti.com SPRS439Q – JUNE 2007 – REVISED AUGUST 2022 7.9.4.6.1.2 McBSP Switching Characteristics PARAMETER(1) NO. M1 tc(CKRX) MIN Cycle time, CLKR/X (3) MAX ns ns C + 5 (3) ns tw(CKRXH) Pulse duration, CLKR/X high CLKR/X int D–5 tw(CKRXL) Pulse duration, CLKR/X low CLKR/X int C – 5 (3) M4 td(CKRH-FRV) Delay time, CLKR high to internal FSR valid M5 td(CKXH-FXV) Delay time, CLKX high to internal FSX valid M6 tdis(CKXH-DXHZ) Disable time, CLKX high to DX high impedance following last data bit CLKX int 8 CLKX ext 14 Delay time, CLKX high to DX valid. CLKX int 9 This applies to all bits except the first bit transmitted. CLKX ext 28 td(CKXH-DXV) Delay time, CLKX high to DX valid DXENA = 0 Enable time, CLKX high to DX driven M8 ten(CKXH-DX) Only applies to first bit transmitted when in Data Delay 1 or 2 (XDATDLY=01b or DXENA = 1 10b) modes Delay time, FSX high to DX valid M9 td(FXH-DXV) ten(FXH-DX) DXENA = 0 Only applies to first bit transmitted when DXENA = 1 in Data Delay 0 (XDATDLY=00b) mode. Enable time, FSX high to DX driven M10 DXENA = 0 DXENA = 0 Only applies to first bit transmitted when DXENA = 1 in Data Delay 0 (XDATDLY=00b) mode D+5 CLKR int 0 4 CLKR ext 3 27 CLKX int 0 4 CLKX ext 3 27 CLKX int 8 CLKX ext 14 CLKX int P+8 CLKX ext P + 14 CLKX int 0 CLKX ext 6 CLKX int P CLKX ext P+6 UNIT (3) M3 Only applies to first bit transmitted when in Data Delay 1 or 2 (XDATDLY=01b or DXENA = 1 10b) modes (2) (3) 2P(2) M2 M7 (1) CLKR/X int ns ns ns ns ns FSX int 8 FSX ext 14 FSX int P+8 FSX ext ns P + 14 FSX int 0 FSX ext 6 FSX int P FSX ext P+6 ns Polarity bits CLKRP = CLKXP = FSRP = FSXP = 0. If the polarity of any of the signals is inverted, then the timing references of that signal are also inverted. 2P = 1/CLKG in ns. C = CLKRX low pulse width = P D = CLKRX high pulse width = P Copyright © 2022 Texas Instruments Incorporated Submit Document Feedback Product Folder Links: TMS320F28335 TMS320F28335-Q1 TMS320F28334 TMS320F28333 TMS320F28332 TMS320F28235 TMS320F28235-Q1 TMS320F28234 TMS320F28234-Q1 TMS320F28232 TMS320F28232-Q1 73 TMS320F28335, TMS320F28335-Q1, TMS320F28334, TMS320F28333 TMS320F28332, TMS320F28235, TMS320F28235-Q1 TMS320F28234, TMS320F28234-Q1, TMS320F28232, TMS320F28232-Q1 www.ti.com SPRS439Q – JUNE 2007 – REVISED AUGUST 2022 M1, M11 M2, M12 M13 M3, M12 CLKR M4 M4 M14 FSR (int) M15 M16 FSR (ext) M18 M17 DR (RDATDLY=00b) Bit (n−1) (n−2) (n−3) M17 (n−4) M18 DR (RDATDLY=01b) Bit (n−1) (n−2) (n−3) M17 M18 DR (RDATDLY=10b) Bit (n−1) (n−2) Figure 7-21. McBSP Receive Timing M1, M11 M2, M12 M13 M3, M12 CLKX M5 M5 FSX (int) M19 M20 FSX (ext) M9 M7 M10 DX (XDATDLY=00b) Bit 0 Bit (n−1) (n−2) (n−3) M7 M8 DX (XDATDLY=01b) Bit 0 Bit (n−1) M7 M6 DX (XDATDLY=10b) (n−2) M8 Bit 0 Bit (n−1) Figure 7-22. McBSP Transmit Timing 74 Submit Document Feedback Copyright © 2022 Texas Instruments Incorporated Product Folder Links: TMS320F28335 TMS320F28335-Q1 TMS320F28334 TMS320F28333 TMS320F28332 TMS320F28235 TMS320F28235-Q1 TMS320F28234 TMS320F28234-Q1 TMS320F28232 TMS320F28232-Q1 TMS320F28335, TMS320F28335-Q1, TMS320F28334, TMS320F28333 TMS320F28332, TMS320F28235, TMS320F28235-Q1 TMS320F28234, TMS320F28234-Q1, TMS320F28232, TMS320F28232-Q1 www.ti.com SPRS439Q – JUNE 2007 – REVISED AUGUST 2022 7.9.4.6.2 McBSP as SPI Master or Slave Timing 7.9.4.6.2.1 McBSP as SPI Master or Slave Timing Requirements (CLKSTP = 10b, CLKXP = 0) NO. M30 tsu(DRV-CKXL) th(CKXL-DRV) Hold time, DR valid after CLKX tsu(BFXL-CKXH) Setup time, FSX low before CLKX high(1) (1) (2) MIN MIN Cycle time, MAX 30 low(1) M32 tc(CKX) SLAVE Setup time, DR valid before CLKX low(1) M31 M33 MASTER 1 CLKX(1) MAX UNIT 8P – 10 ns 8P – 10 ns 8P + 10 ns 16P ns 2P(2) For all SPI slave modes, CLKX must be a minimum of 8 CLKG cycles. Furthermore, CLKG should be LSPCLK/2 by setting CLKSM = CLKGDV = 1. 2P = 1/CLKG 7.9.4.6.2.2 McBSP as SPI Master or Slave Switching Characteristics (CLKSTP = 10b, CLKXP = 0) NO. (1) MASTER PARAMETER MIN SLAVE MAX MIN MAX UNIT M24 th(CKXL-FXL) Hold time, FSX low after CLKX low 2P(1) ns M25 td(FXL-CKXH) Delay time, FSX low to CLKX high P ns M28 tdis(FXH-DXHZ) Disable time, DX high impedance following last data bit from FSX high 6 6P + 6 ns M29 td(FXL-DXV) Delay time, FSX low to DX valid 6 4P + 6 ns 2P = 1/CLKG M32 LSB M33 MSB CLKX M25 M24 FSX M28 DX M29 Bit 0 Bit(n-1) M30 DR Bit 0 (n-2) (n-3) (n-4) M31 Bit(n-1) (n-2) (n-3) (n-4) Figure 7-23. McBSP Timing as SPI Master or Slave: CLKSTP = 10b, CLKXP = 0 Copyright © 2022 Texas Instruments Incorporated Submit Document Feedback Product Folder Links: TMS320F28335 TMS320F28335-Q1 TMS320F28334 TMS320F28333 TMS320F28332 TMS320F28235 TMS320F28235-Q1 TMS320F28234 TMS320F28234-Q1 TMS320F28232 TMS320F28232-Q1 75 TMS320F28335, TMS320F28335-Q1, TMS320F28334, TMS320F28333 TMS320F28332, TMS320F28235, TMS320F28235-Q1 TMS320F28234, TMS320F28234-Q1, TMS320F28232, TMS320F28232-Q1 www.ti.com SPRS439Q – JUNE 2007 – REVISED AUGUST 2022 7.9.4.6.2.3 McBSP as SPI Master or Slave Timing Requirements (CLKSTP = 11b, CLKXP = 0) MASTER NO. MIN M39 tsu(DRV-CKXH) Setup time, DR valid before CLKX high(1) M40 th(CKXH-DRV) Hold time, DR valid after CLKX high(1) M41 tsu(FXL-CKXH) Setup time, FSX low before CLKX M42 tc(CKX) Cycle time, CLKX(1) (1) (2) SLAVE MAX MIN MAX UNIT 30 8P – 10 ns 1 8P – 10 ns 16P + 10 ns 16P ns high(1) 2P(2) For all SPI slave modes, CLKX must be a minimum of 8 CLKG cycles. Furthermore, CLKG should be LSPCLK/2 by setting CLKSM = CLKGDV = 1. 2P = 1/CLKG 7.9.4.6.2.4 McBSP as SPI Master or Slave Switching Characteristics (CLKSTP = 11b, CLKXP = 0) NO. MASTER PARAMETER MIN SLAVE MAX MIN MAX UNIT M34 th(CKXL-FXL) Hold time, FSX low after CLKX low P ns M35 td(FXL-CKXH) Delay time, FSX low to CLKX high 2P(1) ns M37 tdis(CKXL-DXHZ) Disable time, DX high impedance following last data bit from CLKX low P+6 7P + 6 ns M38 td(FXL-DXV) Delay time, FSX low to DX valid 6 4P + 6 ns (1) 2P = 1/CLKG LSB M42 MSB M41 CLKX M34 M35 FSX M37 DX M38 Bit 0 Bit(n-1) M39 DR Bit 0 (n-2) (n-3) (n-4) M40 Bit(n-1) (n-2) (n-3) (n-4) Figure 7-24. McBSP Timing as SPI Master or Slave: CLKSTP = 11b, CLKXP = 0 76 Submit Document Feedback Copyright © 2022 Texas Instruments Incorporated Product Folder Links: TMS320F28335 TMS320F28335-Q1 TMS320F28334 TMS320F28333 TMS320F28332 TMS320F28235 TMS320F28235-Q1 TMS320F28234 TMS320F28234-Q1 TMS320F28232 TMS320F28232-Q1 TMS320F28335, TMS320F28335-Q1, TMS320F28334, TMS320F28333 TMS320F28332, TMS320F28235, TMS320F28235-Q1 TMS320F28234, TMS320F28234-Q1, TMS320F28232, TMS320F28232-Q1 www.ti.com SPRS439Q – JUNE 2007 – REVISED AUGUST 2022 7.9.4.6.2.5 McBSP as SPI Master or Slave Timing Requirements (CLKSTP = 10b, CLKXP = 1) NO. M49 tsu(DRV-CKXH) Setup time, DR valid before CLKX high(1) M50 th(CKXH-DRV) Hold time, DR valid after CLKX high(1) M51 tsu(FXL-CKXL) Setup time, FSX low before CLKX M52 tc(CKX) Cycle time, CLKX(1) (1) (2) MASTER SLAVE MIN MIN MAX MAX UNIT 30 8P – 10 ns 1 8P – 10 ns 8P + 10 ns 16P ns low(1) 2P(2) For all SPI slave modes, CLKX must be a minimum of 8 CLKG cycles. Furthermore, CLKG should be LSPCLK/2 by setting CLKSM = CLKGDV = 1. 2P = 1/CLKG 7.9.4.6.2.6 McBSP as SPI Master or Slave Switching Characteristics (CLKSTP = 10b, CLKXP = 1) NO. PARAMETER SLAVE MIN MIN MAX MAX UNIT 2P(1) ns Delay time, FSX low to CLKX low P ns tdis(FXH-DXHZ) Disable time, DX high impedance following last data bit from FSX high 6 6P + 6 ns td(FXL-DXV) Delay time, FSX low to DX valid 6 4P + 6 ns M43 th(CKXH-FXL) Hold time, FSX low after CLKX high M44 td(FXL-CKXL) M47 M48 (1) MASTER 2P = 1/CLKG M51 LSB M52 MSB CLKX M43 M44 FSX M47 DX M48 Bit 0 Bit(n-1) M49 DR Bit 0 (n-2) (n-3) (n-4) M50 Bit(n-1) (n-2) (n-3) (n-4) Figure 7-25. McBSP Timing as SPI Master or Slave: CLKSTP = 10b, CLKXP = 1 Copyright © 2022 Texas Instruments Incorporated Submit Document Feedback Product Folder Links: TMS320F28335 TMS320F28335-Q1 TMS320F28334 TMS320F28333 TMS320F28332 TMS320F28235 TMS320F28235-Q1 TMS320F28234 TMS320F28234-Q1 TMS320F28232 TMS320F28232-Q1 77 TMS320F28335, TMS320F28335-Q1, TMS320F28334, TMS320F28333 TMS320F28332, TMS320F28235, TMS320F28235-Q1 TMS320F28234, TMS320F28234-Q1, TMS320F28232, TMS320F28232-Q1 www.ti.com SPRS439Q – JUNE 2007 – REVISED AUGUST 2022 7.9.4.6.2.7 McBSP as SPI Master or Slave Timing Requirements (CLKSTP = 11b, CLKXP = 1) MASTER NO. MIN M58 tsu(DRV-CKXL) Setup time, DR valid before CLKX low(1) M59 th(CKXL-DRV) Hold time, DR valid after CLKX low(1) M60 tsu(FXL-CKXL) Setup time, FSX low before CLKX M61 tc(CKX) Cycle time, CLKX(1) (1) (2) SLAVE MAX MIN MAX UNIT 30 8P – 10 ns 1 8P – 10 ns 16P + 10 ns 16P ns low(1) 2P(2) For all SPI slave modes, CLKX must be a minimum of 8 CLKG cycles. Furthermore, CLKG should be LSPCLK/2 by setting CLKSM = CLKGDV = 1. 2P = 1/CLKG 7.9.4.6.2.8 McBSP as SPI Master or Slave Switching Characteristics (CLKSTP = 11b, CLKXP = 1) NO. MASTER PARAMETER MIN M53 th(CKXH-FXL) Hold time, FSX low after CLKX high M54 td(FXL-CKXL) Delay time, FSX low to CLKX low M55 td(CLKXH-DXV) Delay time, CLKX high to DX valid M56 tdis(CKXH-DXHZ) Disable time, DX high impedance following last data bit from CLKX high M57 td(FXL-DXV) Delay time, FSX low to DX valid (1) SLAVE MAX MIN MAX UNIT P ns 2P(1) ns –2 0 3P + 6 5P + 20 ns P+6 7P + 6 ns 6 4P + 6 ns 2P = 1/CLKG M60 LSB M61 MSB CLKX M53 M54 FSX M56 DX M55 M57 Bit 0 Bit(n-1) M58 DR Bit 0 (n-2) (n-3) (n-4) M59 Bit(n-1) (n-2) (n-3) (n-4) Figure 7-26. McBSP Timing as SPI Master or Slave: CLKSTP = 11b, CLKXP = 1 78 Submit Document Feedback Copyright © 2022 Texas Instruments Incorporated Product Folder Links: TMS320F28335 TMS320F28335-Q1 TMS320F28334 TMS320F28333 TMS320F28332 TMS320F28235 TMS320F28235-Q1 TMS320F28234 TMS320F28234-Q1 TMS320F28232 TMS320F28232-Q1 TMS320F28335, TMS320F28335-Q1, TMS320F28334, TMS320F28333 TMS320F28332, TMS320F28235, TMS320F28235-Q1 TMS320F28234, TMS320F28234-Q1, TMS320F28232, TMS320F28232-Q1 www.ti.com SPRS439Q – JUNE 2007 – REVISED AUGUST 2022 7.9.5 JTAG Debug Probe Connection Without Signal Buffering for the MCU Figure 7-27 shows the connection between the DSP and JTAG header for a single-processor configuration. If the distance between the JTAG header and the DSP is greater than 6 inches, the emulation signals must be buffered. If the distance is less than 6 inches, buffering is typically not needed. Figure 7-27 shows the simpler, no-buffering situation. For the pullup/pulldown resistor values, see the Signal Descriptions section. For details on buffering JTAG signals and multiple processor connections, see the TMS320F/C24x DSP Controllers Reference Guide: CPU and Instruction Set. 6 inches or less VDDIO VDDIO 5 13 EMU0 EMU0 PD 14 EMU1 EMU1 4 2 TRST TRST GND TMS GND TDI GND TDO GND TCK GND 6 1 TMS 8 3 TDI 10 7 TDO 12 11 TCK 9 TCK_RET MCU JTAG Header Figure 7-27. JTAG Debug Probe Connection Without Signal Buffering for the MCU Copyright © 2022 Texas Instruments Incorporated Submit Document Feedback Product Folder Links: TMS320F28335 TMS320F28335-Q1 TMS320F28334 TMS320F28333 TMS320F28332 TMS320F28235 TMS320F28235-Q1 TMS320F28234 TMS320F28234-Q1 TMS320F28232 TMS320F28232-Q1 79 TMS320F28335, TMS320F28335-Q1, TMS320F28334, TMS320F28333 TMS320F28332, TMS320F28235, TMS320F28235-Q1 TMS320F28234, TMS320F28234-Q1, TMS320F28232, TMS320F28232-Q1 www.ti.com SPRS439Q – JUNE 2007 – REVISED AUGUST 2022 7.9.6 External Interface (XINTF) Timing Each XINTF access consists of three parts: Lead, Active, and Trail. The user configures the Lead/Active/Trail wait states in the XTIMING registers. There is one XTIMING register for each XINTF zone. Table 7-2 shows the relationship between the parameters configured in the XTIMING register and the duration of the pulse in terms of XTIMCLK cycles. Table 7-2. Relationship Between Parameters Configured in XTIMING and Duration of Pulse DURATION (ns)(1) (2) DESCRIPTION X2TIMING = 0 X2TIMING = 1 LR Lead period, read access XRDLEAD × tc(XTIM) (XRDLEAD × 2) × tc(XTIM) AR Active period, read access (XRDACTIVE + WS + 1) × tc(XTIM) (XRDACTIVE × 2 + WS + 1) × tc(XTIM) TR Trail period, read access XRDTRAIL × tc(XTIM) (XRDTRAIL × 2) × tc(XTIM) LW Lead period, write access XWRLEAD × tc(XTIM) (XWRLEAD × 2) × tc(XTIM) AW Active period, write access (XWRACTIVE + WS + 1) × tc(XTIM) (XWRACTIVE × 2 + WS + 1) × tc(XTIM) TW Trail period, write access XWRTRAIL × tc(XTIM) (XWRTRAIL × 2) × tc(XTIM) (1) (2) tc(XTIM) − Cycle time, XTIMCLK WS refers to the number of wait states inserted by hardware when using XREADY. If the zone is configured to ignore XREADY (USEREADY = 0), then WS = 0. Minimum wait-state requirements must be met when configuring each zone’s XTIMING register. These requirements are in addition to any timing requirements as specified by that device’s data sheet. No internal device hardware is included to detect illegal settings. 7.9.6.1 USEREADY = 0 If the XREADY signal is ignored (USEREADY = 0), then: Lead: LR ≥ tc(XTIM) LW ≥ tc(XTIM) These requirements result in the following XTIMING register configuration restrictions: XRDLEAD XRDACTIVE XRDTRAIL XWRLEAD XWRACTIVE XWRTRAIL X2TIMING ≥1 ≥0 ≥0 ≥1 ≥0 ≥0 0, 1 Examples of valid and invalid timing when not sampling XREADY: (1) 80 XRDLEAD XRDACTIVE XRDTRAIL XWRLEAD XWRACTIVE XWRTRAIL X2TIMING Invalid(1) 0 0 0 0 0 0 0, 1 Valid 1 0 0 1 0 0 0, 1 No hardware to detect illegal XTIMING configurations Submit Document Feedback Copyright © 2022 Texas Instruments Incorporated Product Folder Links: TMS320F28335 TMS320F28335-Q1 TMS320F28334 TMS320F28333 TMS320F28332 TMS320F28235 TMS320F28235-Q1 TMS320F28234 TMS320F28234-Q1 TMS320F28232 TMS320F28232-Q1 TMS320F28335, TMS320F28335-Q1, TMS320F28334, TMS320F28333 TMS320F28332, TMS320F28235, TMS320F28235-Q1 TMS320F28234, TMS320F28234-Q1, TMS320F28232, TMS320F28232-Q1 www.ti.com SPRS439Q – JUNE 2007 – REVISED AUGUST 2022 7.9.6.2 Synchronous Mode (USEREADY = 1, READYMODE = 0) If the XREADY signal is sampled in the synchronous mode (USEREADY = 1, READYMODE = 0), then: 1 Lead: LR ≥ tc(XTIM) LW ≥ tc(XTIM) 2 Active: AR ≥ 2 × tc(XTIM) AW ≥ 2 × tc(XTIM) Note Restriction does not include external hardware wait states. These requirements result in the following XTIMING register configuration restrictions : XRDLEAD XRDACTIVE XRDTRAIL XWRLEAD XWRACTIVE XWRTRAIL X2TIMING ≥1 ≥2 ≥0 ≥1 ≥2 ≥0 0, 1 Examples of valid and invalid timing when using synchronous XREADY: (1) XRDLEAD XRDACTIVE XRDTRAIL XWRLEAD XWRACTIVE XWRTRAIL X2TIMING Invalid(1) 0 0 0 0 0 0 0, 1 Invalid(1) 1 0 0 1 0 0 0, 1 Valid 1 2 0 1 2 0 0, 1 No hardware to detect illegal XTIMING configurations Copyright © 2022 Texas Instruments Incorporated Submit Document Feedback Product Folder Links: TMS320F28335 TMS320F28335-Q1 TMS320F28334 TMS320F28333 TMS320F28332 TMS320F28235 TMS320F28235-Q1 TMS320F28234 TMS320F28234-Q1 TMS320F28232 TMS320F28232-Q1 81 TMS320F28335, TMS320F28335-Q1, TMS320F28334, TMS320F28333 TMS320F28332, TMS320F28235, TMS320F28235-Q1 TMS320F28234, TMS320F28234-Q1, TMS320F28232, TMS320F28232-Q1 www.ti.com SPRS439Q – JUNE 2007 – REVISED AUGUST 2022 7.9.6.3 Asynchronous Mode (USEREADY = 1, READYMODE = 1) If the XREADY signal is sampled in the asynchronous mode (USEREADY = 1, READYMODE = 1), then: 1 Lead: LR ≥ tc(XTIM) LW ≥ tc(XTIM) 2 Active: AR ≥ 2 × tc(XTIM) AW ≥ 2 × tc(XTIM) 3 Lead + Active: LR + AR ≥ 4 × tc(XTIM) LW + AW ≥ 4 × tc(XTIM) Note Restrictions do not include external hardware wait states. These requirements result in the following XTIMING register configuration restrictions : XRDLEAD XRDACTIVE XRDTRAIL XWRLEAD XWRACTIVE XWRTRAIL X2TIMING ≥1 ≥2 0 ≥1 ≥2 0 0, 1 XRDLEAD XRDACTIVE XRDTRAIL XWRLEAD XWRACTIVE XWRTRAIL X2TIMING ≥2 ≥1 0 ≥2 ≥1 0 0, 1 or Examples of valid and invalid timing when using asynchronous XREADY: (1) 82 XRDLEAD XRDACTIVE XRDTRAIL XWRLEAD XWRACTIVE XWRTRAIL X2TIMING Invalid(1) 0 0 0 0 0 0 0, 1 Invalid(1) 1 0 0 1 0 0 0, 1 Invalid(1) 1 1 0 1 1 0 0 Valid 1 2 0 1 2 0 1 Valid 1 2 0 1 2 0 0, 1 Valid 2 1 0 2 1 0 0, 1 No hardware to detect illegal XTIMING configurations Submit Document Feedback Copyright © 2022 Texas Instruments Incorporated Product Folder Links: TMS320F28335 TMS320F28335-Q1 TMS320F28334 TMS320F28333 TMS320F28332 TMS320F28235 TMS320F28235-Q1 TMS320F28234 TMS320F28234-Q1 TMS320F28232 TMS320F28232-Q1 TMS320F28335, TMS320F28335-Q1, TMS320F28334, TMS320F28333 TMS320F28332, TMS320F28235, TMS320F28235-Q1 TMS320F28234, TMS320F28234-Q1, TMS320F28232, TMS320F28232-Q1 www.ti.com SPRS439Q – JUNE 2007 – REVISED AUGUST 2022 Unless otherwise specified, all XINTF timing is applicable for the clock configurations listed in Table 7-3. Table 7-3. XINTF Clock Configurations MODE SYSCLKOUT 1 Example: XTIMCLK XCLKOUT SYSCLKOUT SYSCLKOUT 150 MHz 150 MHz SYSCLKOUT 1/2 SYSCLKOUT 150 MHz 75 MHz 1/2 SYSCLKOUT 1/2 SYSCLKOUT 75 MHz 75 MHz 1/2 SYSCLKOUT 1/4 SYSCLKOUT 75 MHz 37.5 MHz 150 MHz 2 Example: 150 MHz 3 Example: 150 MHz 4 Example: 150 MHz The relationship between SYSCLKOUT and XTIMCLK is shown in Figure 7-28. PCLKR3[XINTFENCLK] XTIMING0 0 XTIMING6 0 1 LEAD/ACTIVE/TRAIL XTIMING7 XBANK C28x CPU SYSCLKOUT /2 1 0 XTIMCLK XINTCNF2 (XTIMCLK) /2 XCLKOUT 1 0 XINTCNF2 (CLKMODE) XINTCNF2 (CLKOFF) Figure 7-28. Relationship Between SYSCLKOUT and XTIMCLK Copyright © 2022 Texas Instruments Incorporated Submit Document Feedback Product Folder Links: TMS320F28335 TMS320F28335-Q1 TMS320F28334 TMS320F28333 TMS320F28332 TMS320F28235 TMS320F28235-Q1 TMS320F28234 TMS320F28234-Q1 TMS320F28232 TMS320F28232-Q1 83 TMS320F28335, TMS320F28335-Q1, TMS320F28334, TMS320F28333 TMS320F28332, TMS320F28235, TMS320F28235-Q1 TMS320F28234, TMS320F28234-Q1, TMS320F28232, TMS320F28232-Q1 www.ti.com SPRS439Q – JUNE 2007 – REVISED AUGUST 2022 7.9.6.4 XINTF Signal Alignment to XCLKOUT For each XINTF access, the number of lead, active, and trail cycles is based on the internal clock XTIMCLK. Strobes such as XRD, XWE0, XWE1, and zone chip-select ( XZCS) change state in relationship to the rising edge of XTIMCLK. The external clock, XCLKOUT, can be configured to be either equal to or one-half the frequency of XTIMCLK. For the case where XCLKOUT = XTIMCLK, all of the XINTF strobes will change state with respect to the rising edge of XCLKOUT. For the case where XCLKOUT = one-half XTIMCLK, some strobes will change state either on the rising edge of XCLKOUT or the falling edge of XCLKOUT. In the XINTF timing tables, the notation XCOHL is used to indicate that the parameter is with respect to either case; XCLKOUT rising edge (high) or XCLKOUT falling edge (low). If the parameter is always with respect to the rising edge of XCLKOUT, the notation XCOH is used. For the case where XCLKOUT = one-half XTIMCLK, the XCLKOUT edge with which the change will be aligned can be determined based on the number of XTIMCLK cycles from the start of the access to the point at which the signal changes. If this number of XTIMCLK cycles is even, the alignment will be with respect to the rising edge of XCLKOUT. If this number is odd, then the signal will change with respect to the falling edge of XCLKOUT. Examples include the following: • Strobes that change at the beginning of an access always align to the rising edge of XCLKOUT. This is because all XINTF accesses begin with respect to the rising edge of XCLKOUT. Examples: XZCSL Zone chip-select active low XRNWL • Strobes that change at the beginning of the active period will align to the rising edge of XCLKOUT if the total number of lead XTIMCLK cycles for the access is even. If the number of lead XTIMCLK cycles is odd, then the alignment will be with respect to the falling edge of XCLKOUT. Examples: XRDL XRD active low XWEL • XWE1 or XWE0 inactive high Strobes that change at the end of the access will align to the rising edge of XCLKOUT if the total number of lead + active + trail XTIMCLK cycles (including hardware wait states) is even. If the number of lead + active + trail XTIMCLK cycles (including hardware wait states) is odd, then the alignment will be with respect to the falling edge of XCLKOUT. Examples: XZCSH Zone chip-select inactive high XRNWH 84 XWE1 or XWE0 active low Strobes that change at the beginning of the trail period will align to the rising edge of XCLKOUT if the total number of lead + active XTIMCLK cycles (including hardware wait states) for the access is even. If the number of lead + active XTIMCLK cycles (including hardware wait states) is odd, then the alignment will be with respect to the falling edge of XCLKOUT. Examples: XRDH XRD inactive high XWEH • XR/ W active low Submit Document Feedback XR/ W inactive high Copyright © 2022 Texas Instruments Incorporated Product Folder Links: TMS320F28335 TMS320F28335-Q1 TMS320F28334 TMS320F28333 TMS320F28332 TMS320F28235 TMS320F28235-Q1 TMS320F28234 TMS320F28234-Q1 TMS320F28232 TMS320F28232-Q1 TMS320F28335, TMS320F28335-Q1, TMS320F28334, TMS320F28333 TMS320F28332, TMS320F28235, TMS320F28235-Q1 TMS320F28234, TMS320F28234-Q1, TMS320F28232, TMS320F28232-Q1 www.ti.com SPRS439Q – JUNE 2007 – REVISED AUGUST 2022 7.9.6.5 External Interface Read Timing 7.9.6.5.1 External Interface Read Timing Requirements MIN ta(A) Access time, read data from address valid ta(XRD) Access time, read data valid from XRD active low tsu(XD)XRD Setup time, read data valid before XRD strobe inactive high th(XD)XRD Hold time, read data valid after XRD inactive high (1) MAX UNIT (LR + AR) – 16 (1) ns AR – 14 (1) ns 14 ns 0 ns LR = Lead period, read access. AR = Active period, read access. See Table 7-2. 7.9.6.5.2 External Interface Read Switching Characteristics PARAMETER MIN MAX UNIT 1 ns –1 0.5 ns td(XCOH-XZCSL) Delay time, XCLKOUT high to zone chip-select active low td(XCOHL-XZCSH) Delay time, XCLKOUT high/low to zone chip-select inactive high td(XCOH-XA) Delay time, XCLKOUT high to address valid 1.5 ns td(XCOHL-XRDL) Delay time, XCLKOUT high/low to XRD active low 0.5 ns td(XCOHL-XRDH) Delay time, XCLKOUT high/low to XRD inactive high 0.5 ns th(XA)XZCSH Hold time, address valid after zone chip-select inactive high (1) ns Hold time, address valid after XRD inactive high (1) ns th(XA)XRD (1) –1.5 During inactive cycles, the XINTF address bus always holds the last address put out on the bus except XA0, which remains high. This includes alignment cycles. Copyright © 2022 Texas Instruments Incorporated Submit Document Feedback Product Folder Links: TMS320F28335 TMS320F28335-Q1 TMS320F28334 TMS320F28333 TMS320F28332 TMS320F28235 TMS320F28235-Q1 TMS320F28234 TMS320F28234-Q1 TMS320F28232 TMS320F28232-Q1 85 TMS320F28335, TMS320F28335-Q1, TMS320F28334, TMS320F28333 TMS320F28332, TMS320F28235, TMS320F28235-Q1 TMS320F28234, TMS320F28234-Q1, TMS320F28232, TMS320F28232-Q1 www.ti.com SPRS439Q – JUNE 2007 – REVISED AUGUST 2022 (A)(B) Trail Active Lead (C) XCLKOUT = XTIMCLK XCLKOUT = 1/2 XTIMCLK td(XCOH-XZCSL) td(XCOHL-XZCSH) XZCS0, XZCS6, XZCS7 td(XCOH-XA) XA[0:19] td(XCOHL-XRDH) td(XCOHL-XRDL) XRD tsu(XD)XRD (D) XWE0, XWE1 XR/W ta(A) th(XD)XRD ta(XRD) XD[0:31], XD[0:15] XREADY A. B. C. D. E. DIN (E) All XINTF accesses (lead period) begin on the rising edge of XCLKOUT. When necessary, the device inserts an alignment cycle before an access to meet this requirement. During alignment cycles, all signals transition to their inactive state. XA[0:19] holds the last address put on the bus during inactive cycles, including alignment cycles except XA0, which remains high. XWE1 is used in 32-bit data bus mode. In 16-bit mode, this signal is XA0. For USEREADY = 0, the external XREADY input signal is ignored. Figure 7-29. Example Read Access XTIMING register parameters used for this example : (1) 86 XRDLEAD XRDACTIVE XRDTRAIL USEREADY X2TIMING XWRLEAD XWRACTIVE XWRTRAIL READYMODE ≥1 ≥0 ≥0 0 0 N/A(1) N/A(1) N/A(1) N/A(1) N/A = Not applicable (or "Don’t care") for this example Submit Document Feedback Copyright © 2022 Texas Instruments Incorporated Product Folder Links: TMS320F28335 TMS320F28335-Q1 TMS320F28334 TMS320F28333 TMS320F28332 TMS320F28235 TMS320F28235-Q1 TMS320F28234 TMS320F28234-Q1 TMS320F28232 TMS320F28232-Q1 TMS320F28335, TMS320F28335-Q1, TMS320F28334, TMS320F28333 TMS320F28332, TMS320F28235, TMS320F28235-Q1 TMS320F28234, TMS320F28234-Q1, TMS320F28232, TMS320F28232-Q1 www.ti.com SPRS439Q – JUNE 2007 – REVISED AUGUST 2022 7.9.6.6 External Interface Write Timing 7.9.6.6.1 External Interface Write Switching Characteristics PARAMETER MIN td(XCOH-XZCSL) Delay time, XCLKOUT high to zone chip-select active low td(XCOHL-XZCSH) Delay time, XCLKOUT high or low to zone chip-select inactive high td(XCOH-XA) Delay time, XCLKOUT high to address valid td(XCOHL-XWEL) Delay time, XCLKOUT high/low to XWE0, XWE1 (3) low td(XCOHL-XWEH) td(XCOH-XRNWL) td(XCOHL-XRNWH) Delay time, XCLKOUT high/low to XR/ W high ten(XD)XWEL Enable time, data bus driven from XWE0, XWE1 low td(XWEL-XD) Delay time, data valid after XWE0, XWE1 active low th(XA)XZCSH Hold time, address valid after zone chip-select inactive high (1) th(XD)XWE Hold time, write data valid after XWE0, XWE1 inactive high (2) tdis(XD)XRNW Maximum time for DSP to release the data bus after XR/ W inactive high (1) (2) (3) MAX UNIT 1 ns 0.5 ns 1.5 ns 2 ns Delay time, XCLKOUT high/low to XWE0, XWE1 high 2 ns Delay time, XCLKOUT high to XR/ W low 1 ns 0.5 ns –1 –1 0 ns 1 TW – 2 ns ns ns 4 ns During inactive cycles, the XINTF address bus will always hold the last address put out on the bus except XA0, which remains high. This includes alignment cycles. TW = Trail period, write access. See Table 7-2. XWE1 is used in 32-bit data bus mode only. In 16-bit mode, this signal is XA0. Copyright © 2022 Texas Instruments Incorporated Submit Document Feedback Product Folder Links: TMS320F28335 TMS320F28335-Q1 TMS320F28334 TMS320F28333 TMS320F28332 TMS320F28235 TMS320F28235-Q1 TMS320F28234 TMS320F28234-Q1 TMS320F28232 TMS320F28232-Q1 87 TMS320F28335, TMS320F28335-Q1, TMS320F28334, TMS320F28333 TMS320F28332, TMS320F28235, TMS320F28235-Q1 TMS320F28234, TMS320F28234-Q1, TMS320F28232, TMS320F28232-Q1 www.ti.com SPRS439Q – JUNE 2007 – REVISED AUGUST 2022 (A) (B) Active Lead (C) Trail XCLKOUT = XTIMCLK XCLKOUT = 1/2 XTIMCLK td(XCOHL-XZCSH) td(XCOH-XZCSL) XZCS0, XZCS6, XZCS7 td(XCOH-XA) XA[0:19] XRD td(XCOHL-XWEH) td(XCOHL-XWEL) (D) XWE0, XWE1 A. B. C. D. E. tdis(XD)XRNW th(XD)XWEH td(XWEL-XD) ten(XD)XWEL XD[0:31], XD[0:15] XREADY td(XCOHL-XRNWH) td(XCOH-XRNWL) XR/W DOUT (E) All XINTF accesses (lead period) begin on the rising edge of XCLKOUT. When necessary, the device inserts an alignment cycle before an access to meet this requirement. During alignment cycles, all signals transition to their inactive state. XA[0:19] holds the last address put on the bus during inactive cycles, including alignment cycles except XA0, which remains high. XWE1 is used in 32-bit data bus mode. In 16-bit mode, this signal is XA0. For USEREADY = 0, the external XREADY input signal is ignored. Figure 7-30. Example Write Access XTIMING register parameters used for this example : XRDLEAD N/A(1) (1) 88 XRDACTIVE XRDTRAIL N/A(1) N/A(1) USEREADY 0 X2TIMING 0 XWRLEAD ≥1 XWRACTIVE ≥0 XWRTRAIL READYMODE ≥0 N/A(1) N/A = Not applicable (or “Don’t care”) for this example Submit Document Feedback Copyright © 2022 Texas Instruments Incorporated Product Folder Links: TMS320F28335 TMS320F28335-Q1 TMS320F28334 TMS320F28333 TMS320F28332 TMS320F28235 TMS320F28235-Q1 TMS320F28234 TMS320F28234-Q1 TMS320F28232 TMS320F28232-Q1 TMS320F28335, TMS320F28335-Q1, TMS320F28334, TMS320F28333 TMS320F28332, TMS320F28235, TMS320F28235-Q1 TMS320F28234, TMS320F28234-Q1, TMS320F28232, TMS320F28232-Q1 www.ti.com SPRS439Q – JUNE 2007 – REVISED AUGUST 2022 7.9.6.7 External Interface Ready-on-Read Timing With One External Wait State 7.9.6.7.1 External Interface Read Switching Characteristics (Ready-on-Read, One Wait State) PARAMETER MIN MAX UNIT td(XCOH-XZCSL) Delay time, XCLKOUT high to zone chip-select active low td(XCOHL-XZCSH) Delay time, XCLKOUT high/low to zone chip-select inactive high td(XCOH-XA) td(XCOHL-XRDL) td(XCOHL-XRDH) Delay time, XCLKOUT high/low to XRD inactive high th(XA)XZCSH Hold time, address valid after zone chip-select inactive high (1) ns Hold time, address valid after XRD inactive high (1) ns th(XA)XRD (1) 1 ns 0.5 ns Delay time, XCLKOUT high to address valid 1.5 ns Delay time, XCLKOUT high/low to XRD active low 0.5 ns 0.5 ns –1 – 1.5 During inactive cycles, the XINTF address bus always holds the last address put out on the bus, except XA0, which remains high. This includes alignment cycles. 7.9.6.7.2 External Interface Read Timing Requirements (Ready-on-Read, One Wait State) MIN ta(A) Access time, read data from address valid ta(XRD) Access time, read data valid from XRD active low tsu(XD)XRD Setup time, read data valid before XRD strobe inactive high th(XD)XRD Hold time, read data valid after XRD inactive high (1) MAX UNIT (1) ns AR – 14 (1) ns (LR + AR) – 16 14 ns 0 ns LR = Lead period, read access. AR = Active period, read access. See Table 7-2. 7.9.6.7.3 Synchronous XREADY Timing Requirements (Ready-on-Read, One Wait State) MIN tsu(XRDYsynchL)XCOHL Setup time, XREADY (synchronous) low before XCLKOUT high/low(1) low(1) th(XRDYsynchL) Hold time, XREADY (synchronous) te(XRDYsynchH) Earliest time XREADY (synchronous) can go high before the sampling XCLKOUT edge(1) tsu(XRDYsynchH)XCOHL Setup time, XREADY (synchronous) high before XCLKOUT high/low(1) th(XRDYsynchH)XZCSH (1) Hold time, XREADY (synchronous) held high after zone chip select high(1) MAX UNIT 12 ns 6 ns 3 ns 12 ns 0 ns The first XREADY (synchronous) sample occurs with respect to E in Figure 7-31: E = (XRDLEAD + XRDACTIVE) tc(XTIM) When first sampled, if XREADY (synchronous) is found to be high, then the access will finish. If XREADY (synchronous) is found to be low, it is sampled again each tc(XTIM) until it is found to be high. For each sample (n) the setup time (F) with respect to the beginning of the access can be calculated as: F = (XRDLEAD + XRDACTIVE +n − 1) tc(XTIM) − tsu(XRDYsynchL)XCOHL where n is the sample number: n = 1, 2, 3, and so forth. 7.9.6.7.4 Asynchronous XREADY Timing Requirements (Ready-on-Read, One Wait State) MIN tsu(XRDYAsynchL)XCOHL Setup time, XREADY (asynchronous) low before XCLKOUT high/low th(XRDYAsynchL) Hold time, XREADY (asynchronous) low te(XRDYAsynchH) Earliest time XREADY (asynchronous) can go high before the sampling XCLKOUT edge tsu(XRDYAsynchH)XCOHL Setup time, XREADY (asynchronous) high before XCLKOUT high/low th(XRDYasynchH)XZCSH Hold time, XREADY (asynchronous) held high after zone chip select high Copyright © 2022 Texas Instruments Incorporated MAX UNIT 11 ns 6 ns 3 ns 11 ns 0 ns Submit Document Feedback Product Folder Links: TMS320F28335 TMS320F28335-Q1 TMS320F28334 TMS320F28333 TMS320F28332 TMS320F28235 TMS320F28235-Q1 TMS320F28234 TMS320F28234-Q1 TMS320F28232 TMS320F28232-Q1 89 TMS320F28335, TMS320F28335-Q1, TMS320F28334, TMS320F28333 TMS320F28332, TMS320F28235, TMS320F28235-Q1 TMS320F28234, TMS320F28234-Q1, TMS320F28232, TMS320F28232-Q1 www.ti.com SPRS439Q – JUNE 2007 – REVISED AUGUST 2022 WS (Synch) (A) (B) Active Lead (C) Trail XCLKOUT = XTIMCLK XCLKOUT = 1/2 XTIMCLK td(XCOHL-XZCSH) td(XCOH-XZCSL) XZCS0 XZCS6, XZCS7 td(XCOH-XA) XA[0:19] td(XCOHL-XRDH) td(XCOHL-XRDL) XRD tsu(XD)XRD XWE0, XWE1 (D) ta(XRD) XR/W ta(A) th(XD)XRD XD[0:31], XD[0:15] DIN tsu(XRDYsynchL)XCOHL te(XRDYsynchH) th(XRDYsynchL) th(XRDYsynchH)XZCSH tsu(XRDHsynchH)XCOHL XREADY(Synch) (E) (F) Legend: = Don’t care. Signal can be high or low during this time. A. B. C. D. E. F. All XINTF accesses (lead period) begin on the rising edge of XCLKOUT. When necessary, the device inserts an alignment cycle before an access to meet this requirement. During alignment cycles, all signals transition to their inactive state. During inactive cycles, the XINTF address bus always holds the last address put out on the bus except XA0, which remains high. This includes alignment cycles. XWE1 is valid only in 32-bit data bus mode. In 16-bit mode, this signal is XA0. For each sample, setup time from the beginning of the access (E) can be calculated as: D = (XRDLEAD + XRDACTIVE +n - 1) tc(XTIM) – tsu(XRDYsynchL)XCOHL Reference for the first sample is with respect to this point: F = (XRDLEAD + XRDACTIVE) tc(XTIM) where n is the sample number: n = 1, 2, 3, and so forth. Figure 7-31. Example Read With Synchronous XREADY Access XTIMING register parameters used for this example : XRDLEAD ≥1 (1) 90 XRDACTIVE XRDTRAIL 3 ≥1 USEREADY 1 X2TIMING 0 XWRLEAD N/A(1) XWRACTIVE N/A(1) XWRTRAIL READYMODE N/A(1) 0 = XREADY (Synch) N/A = “Don’t care” for this example Submit Document Feedback Copyright © 2022 Texas Instruments Incorporated Product Folder Links: TMS320F28335 TMS320F28335-Q1 TMS320F28334 TMS320F28333 TMS320F28332 TMS320F28235 TMS320F28235-Q1 TMS320F28234 TMS320F28234-Q1 TMS320F28232 TMS320F28232-Q1 TMS320F28335, TMS320F28335-Q1, TMS320F28334, TMS320F28333 TMS320F28332, TMS320F28235, TMS320F28235-Q1 TMS320F28234, TMS320F28234-Q1, TMS320F28232, TMS320F28232-Q1 www.ti.com SPRS439Q – JUNE 2007 – REVISED AUGUST 2022 WS (Async) (A) (B) Active Lead Trail (C) XCLKOUT = XTIMCLK XCLKOUT = 1/2 XTIMCLK td(XCOH-XZCSL) XZCS0, XZCS6, XZCS7 td(XCOHL-XZCSH) td(XCOH-XA) XA[0:19] td(XCOHL-XRDH) td(XCOHL-XRDL) XRD tsu(XD)XRD XWE0, XWE1(D) ta(XRD) XR/W ta(A) th(XD)XRD DIN XD[0:31], XD[0:15] tsu(XRDYasynchL)XCOHL te(XRDYasynchH) th(XRDYasynchH)XZCSH th(XRDYasynchL) tsu(XRDYasynchH)XCOHL XREADY(Asynch) (E) (F) Legend: = Don’t care. Signal can be high or low during this time. A. B. C. D. E. F. All XINTF accesses (lead period) begin on the rising edge of XCLKOUT. When necessary, the device will insert an alignment cycle before an access to meet this requirement. During alignment cycles, all signals will transition to their inactive state. During inactive cycles, the XINTF address bus will always hold the last address put out on the bus except XA0, which remains high. This includes alignment cycles. XWE1 is valid only in 32-bit data bus mode. In 16-bit mode, this signal is XA0. For each sample, setup time from the beginning of the access can be calculated as: E = (XRDLEAD + XRDACTIVE -3 +n) tc(XTIM) – tsu(XRDYasynchL)XCOHL where n is the sample number: n = 1, 2, 3, and so forth. Reference for the first sample is with respect to this point: F = (XRDLEAD + XRDACTIVE –2) tc(XTIM) Figure 7-32. Example Read With Asynchronous XREADY Access XTIMING register parameters used for this example : XRDLEAD ≥1 (1) XRDACTIVE 3 XRDTRAIL ≥1 USEREADY 1 X2TIMING 0 XWRLEAD N/A(1) XWRACTIVE N/A(1) XWRTRAIL N/A(1) READYMODE 1 = XREADY (Async) N/A = “Don’t care” for this example Copyright © 2022 Texas Instruments Incorporated Submit Document Feedback Product Folder Links: TMS320F28335 TMS320F28335-Q1 TMS320F28334 TMS320F28333 TMS320F28332 TMS320F28235 TMS320F28235-Q1 TMS320F28234 TMS320F28234-Q1 TMS320F28232 TMS320F28232-Q1 91 TMS320F28335, TMS320F28335-Q1, TMS320F28334, TMS320F28333 TMS320F28332, TMS320F28235, TMS320F28235-Q1 TMS320F28234, TMS320F28234-Q1, TMS320F28232, TMS320F28232-Q1 www.ti.com SPRS439Q – JUNE 2007 – REVISED AUGUST 2022 7.9.6.8 External Interface Ready-on-Write Timing With One External Wait State 7.9.6.8.1 External Interface Write Switching Characteristics (Ready-on-Write, One Wait State) PARAMETER MIN td(XCOH-XZCSL) Delay time, XCLKOUT high to zone chip-select active low td(XCOHL-XZCSH) Delay time, XCLKOUT high or low to zone chip-select inactive high td(XCOH-XA) Delay time, XCLKOUT high to address valid td(XCOHL-XWEL) Delay time, XCLKOUT high/low to XWE0, XWE1 low(3) –1 high(3) td(XCOHL-XWEH) Delay time, XCLKOUT high/low to XWE0, XWE1 td(XCOH-XRNWL) Delay time, XCLKOUT high to XR/ W low td(XCOHL-XRNWH) Delay time, XCLKOUT high/low to XR/ W high ten(XD)XWEL Enable time, data bus driven from XWE0, XWE1 low(3) td(XWEL-XD) Delay time, data valid after XWE0, XWE1 active low(3) th(XA)XZCSH Hold time, address valid after zone chip-select inactive high –1 ns 0.5 ns 1.5 ns 2 ns 2 ns 1 ns 0.5 ns ns 1 ns (1) high(3) Hold time, write data valid after XWE0, XWE1 inactive tdis(XD)XRNW Maximum time for DSP to release the data bus after XR/ W inactive high (2) (3) UNIT 1 0 th(XD)XWE (1) MAX TW – 2 ns (2) ns 4 ns During inactive cycles, the XINTF address bus always holds the last address put out on the bus except XA0, which remains high. This includes alignment cycles. TW = trail period, write access (see Table 7-2) XWE1 is used in 32-bit data bus mode only. In 16-bit, this signal is XA0. 7.9.6.8.2 Synchronous XREADY Timing Requirements (Ready-on-Write, One Wait State) MIN high/low(1) tsu(XRDYsynchL)XCOHL Setup time, XREADY (synchronous) low before XCLKOUT th(XRDYsynchL) Hold time, XREADY (synchronous) low(1) te(XRDYsynchH) Earliest time XREADY (synchronous) can go high before the sampling XCLKOUT edge(1) tsu(XRDYsynchH)XCOHL Setup time, XREADY (synchronous) high before XCLKOUT high/low(1) th(XRDYsynchH)XZCSH Hold time, XREADY (synchronous) held high after zone chip select high(1) (1) MAX UNIT 12 ns 6 ns 3 ns 12 ns 0 ns The first XREADY (synchronous) sample occurs with respect to E in Figure 7-33: E =(XWRLEAD + XWRACTIVE) tc(XTIM) When first sampled, if XREADY (synchronous) is high, then the access will complete. If XREADY (synchronous) is low, it is sampled again each tc(XTIM) until it is high. For each sample, setup time from the beginning of the access can be calculated as: F = (XWRLEAD + XWRACTIVE +n –1) tc(XTIM) – tsu(XRDYsynchL)XCOHL where n is the sample number: n = 1, 2, 3, and so forth. 7.9.6.8.3 Asynchronous XREADY Timing Requirements (Ready-on-Write, One Wait State) MIN tsu(XRDYasynchL)XCOHL Setup time, XREADY (asynchronous) low before XCLKOUT high/low(1) low(1) th(XRDYasynchL) Hold time, XREADY (asynchronous) te(XRDYasynchH) Earliest time XREADY (asynchronous) can go high before the sampling XCLKOUT edge(1) tsu(XRDYasynchH)XCOHL Setup time, XREADY (asynchronous) high before XCLKOUT high/low(1) th(XRDYasynchH)XZCSH (1) 92 Hold time, XREADY (asynchronous) held high after zone chip select MAX ns 6 ns 3 high(1) UNIT 11 ns 11 ns 0 ns The first XREADY (synchronous) sample occurs with respect to E in Figure 7-33: E = (XWRLEAD + XWRACTIVE –2) tc(XTIM). When first sampled, if XREADY (asynchronous) is high, then the access will complete. If XREADY (asynchronous) is low, it is sampled again each tc(XTIM) until it is high. For each sample, setup time from the beginning of the access can be calculated as: F = (XWRLEAD + XWRACTIVE –3 + n) tc(XTIM) – tsu(XRDYasynchL)XCOHL where n is the sample number: n = 1, 2, 3, and so forth. Submit Document Feedback Copyright © 2022 Texas Instruments Incorporated Product Folder Links: TMS320F28335 TMS320F28335-Q1 TMS320F28334 TMS320F28333 TMS320F28332 TMS320F28235 TMS320F28235-Q1 TMS320F28234 TMS320F28234-Q1 TMS320F28232 TMS320F28232-Q1 TMS320F28335, TMS320F28335-Q1, TMS320F28334, TMS320F28333 TMS320F28332, TMS320F28235, TMS320F28235-Q1 TMS320F28234, TMS320F28234-Q1, TMS320F28232, TMS320F28232-Q1 www.ti.com SPRS439Q – JUNE 2007 – REVISED AUGUST 2022 WS (Synch) (A) (B) (C) Trail Active Lead 1 (D) XCLKOUT = XTIMCLK td(XCOHL-XZCSH) td(XCOH-XZCSL) XZCS0AND1, XZCS2, XZCS6AND7 th(XRDYsynchH)XZCSH td(XCOH-XA) XA[0:18] XRD td(XCOHL-XWEH) td(XCOHL-XWEL) XWE td(XCOHL-XRNWH) td(XCOH-XRNWL) XR/W tdis(XD)XRNW td(XWEL-XD th(XD)XWEH ) ten(XD)XWEL XD[0:15] DOUT tsu(XRDYsynchL)XCOHL th(XRDYsynchL) tsu(XRDHsynchH)XCOHL XREADY (Synch) (E) (F) Legend: = Don’t care. Signal can be high or low during this time. A. B. C. D. E. F. All XINTF accesses (lead period) begin on the rising edge of XCLKOUT. When necessary, the device inserts an alignment cycle before an access to meet this requirement. During alignment cycles, all signals will transition to their inactive state. During inactive cycles, the XINTF address bus always holds the last address put out on the bus except XA0, which remains high. This includes alignment cycles. XWE1 is used in 32-bit data bus mode only. In 16-bit, this signal is XA0. For each sample, setup time from the beginning of the access can be calculated as E = (XWRLEAD + XWRACTIVE + n –1) tc(XTIM) – tsu(XRDYsynchL)XCOH where n is the sample number: n = 1, 2, 3, and so forth. Reference for the first sample is with respect to this point: F = (XWRLEAD + XWRACTIVE) tc(XTIM) Figure 7-33. Write With Synchronous XREADY Access XTIMING register parameters used for this example : XRDLEAD N/A(1) (1) XRDACTIVE N/A(1) XRDTRAIL N/A(1) USEREADY 1 X2TIMING 0 XWRLEAD ≥1 XWRACTIVE 3 XWRTRAIL ≥1 READYMODE 0 = XREADY (Synch) N/A = "Don't care" for this example. Copyright © 2022 Texas Instruments Incorporated Submit Document Feedback Product Folder Links: TMS320F28335 TMS320F28335-Q1 TMS320F28334 TMS320F28333 TMS320F28332 TMS320F28235 TMS320F28235-Q1 TMS320F28234 TMS320F28234-Q1 TMS320F28232 TMS320F28232-Q1 93 TMS320F28335, TMS320F28335-Q1, TMS320F28334, TMS320F28333 TMS320F28332, TMS320F28235, TMS320F28235-Q1 TMS320F28234, TMS320F28234-Q1, TMS320F28232, TMS320F28232-Q1 www.ti.com SPRS439Q – JUNE 2007 – REVISED AUGUST 2022 WS (Async) (A) (B) (C) Trail Active Lead 1 XCLKOUT = XTIMCLK XCLKOUT = 1/2 XTIMCLK td(XCOH-XZCSL) td(XCOHL-XZCSH) td(XCOH-XA) th(XRDYasynchH)XZCSH XZCS0, XZCS6, XZCS7 XA[0:19] XRD td(XCOHL-XWEH) td(XCOHL-XWEL) XWE0, XWE1(D) td(XCOH-XRNWL) td(XCOHL-XRNWH) XR/W tdis(XD)XRNW td(XWEL-XD ten(XD)XWEL th(XD)XWEH ) XD[31:0], XD[15:0] DOUT tsu(XRDYasynchL)XCOHL th(XRDYasynchL) te(XRDYasynchH) tsu(XRDYasynchH)XCOHL XREADY(Asynch) (D) (E) Legend: = Don’t care. Signal can be high or low during this time. A. B. C. D. E. F. All XINTF accesses (lead period) begin on the rising edge of XCLKOUT. When necessary, the device inserts an alignment cycle before an access to meet this requirement. During alignment cycles, all signals transition to their inactive state. During inactive cycles, the XINTF address bus always holds the last address put out on the bus except XA0, which remains high. This includes alignment cycles. XWE1 is used in 32-bit data bus mode only. In 16-bit, this signal is XA0. For each sample, set up time from the beginning of the access can be calculated as: E = (XWRLEAD + XWRACTIVE -3 + n) tc(XTIM) – tsu(XRDYasynchL)XCOHL where n is the sample number: n = 1, 2, 3, and so forth. Reference for the first sample is with respect to this point: F = (XWRLEAD + XWRACTIVE – 2) tc(XTIM) Figure 7-34. Write With Asynchronous XREADY Access XTIMING register parameters used for this example : XRDLEAD N/A(1) (1) 94 XRDACTIVE XRDTRAIL N/A(1) N/A(1) USEREADY 1 X2TIMING 0 XWRLEAD ≥1 XWRACTIVE 3 XWRTRAIL ≥1 READYMODE 1 = XREADY (Async) N/A = “Don’t care” for this example Submit Document Feedback Copyright © 2022 Texas Instruments Incorporated Product Folder Links: TMS320F28335 TMS320F28335-Q1 TMS320F28334 TMS320F28333 TMS320F28332 TMS320F28235 TMS320F28235-Q1 TMS320F28234 TMS320F28234-Q1 TMS320F28232 TMS320F28232-Q1 TMS320F28335, TMS320F28335-Q1, TMS320F28334, TMS320F28333 TMS320F28332, TMS320F28235, TMS320F28235-Q1 TMS320F28234, TMS320F28234-Q1, TMS320F28232, TMS320F28232-Q1 www.ti.com SPRS439Q – JUNE 2007 – REVISED AUGUST 2022 7.9.6.9 XHOLD and XHOLDA Timing If the HOLD mode bit is set while XHOLD and XHOLDA are both low (external bus accesses granted), the XHOLDA signal is forced high (at the end of the current cycle) and the external interface is taken out of high-impedance mode. On a reset ( XRS), the HOLD mode bit is set to 0. If the XHOLD signal is active low on a system reset, the bus and all signal strobes must be in high-impedance mode, and the XHOLDA signal is also driven active low. When HOLD mode is enabled and XHOLDA is active low (external bus grant active), the CPU can still execute code from internal memory. If an access is made to the external interface, the CPU is stalled until the XHOLD signal is removed. An external DMA request, when granted, places the following signals in a high-impedance mode: XA[19:0] XZCS0 XD[31:0], XD[15:0] XZCS6 XWE0, XWE1, XRD XZCS7 XR/ W All other signals not listed in this group remain in their default or functional operational modes during these signal events. Copyright © 2022 Texas Instruments Incorporated Submit Document Feedback Product Folder Links: TMS320F28335 TMS320F28335-Q1 TMS320F28334 TMS320F28333 TMS320F28332 TMS320F28235 TMS320F28235-Q1 TMS320F28234 TMS320F28234-Q1 TMS320F28232 TMS320F28232-Q1 95 TMS320F28335, TMS320F28335-Q1, TMS320F28334, TMS320F28333 TMS320F28332, TMS320F28235, TMS320F28235-Q1 TMS320F28234, TMS320F28234-Q1, TMS320F28232, TMS320F28232-Q1 www.ti.com SPRS439Q – JUNE 2007 – REVISED AUGUST 2022 7.9.6.9.1 XHOLD/ XHOLDA Timing Requirements (XCLKOUT = XTIMCLK) MIN td(HL-HiZ) td(HL-HAL) Delay time, XHOLD high to bus valid(1) (2) (2) 5tc(XTIM) + 30 ns 3tc(XTIM) + 30 ns 4tc(XTIM) + 30 ns 4tc(XTIM) + 2tc(XCO) + 30 ns high(1) (2) Delay time, XHOLD high to XHOLDA (1) ns Delay time, XHOLD low to XHOLDA low(1) (2) td(HH-BV) Delay time, XHOLD low to XHOLDA low(1) (2) UNIT 4tc(XTIM) + 30 (2) td(HH-HAH) td(HL-HAL) MAX Delay time, XHOLD low to Hi-Z on all address, data, and control(1) When a low signal is detected on XHOLD, all pending XINTF accesses will be completed before the bus is placed in a high-impedance state. The state of XHOLD is latched on the rising edge of XTIMCLK. XCLKOUT (/1 Mode) td(HL-Hiz) XHOLD td(HH-HAH) XHOLDA td(HL-HAL) td(HH-BV) XR/W High-Impedance XZCS0, XZCS6, XZCS7 XA[19:0] Valid XD[31:0], XD[15:0] Valid (A) A. B. Valid High-Impedance (B) All pending XINTF accesses are completed. Normal XINTF operation resumes. Figure 7-35. External Interface Hold Waveform 96 Submit Document Feedback Copyright © 2022 Texas Instruments Incorporated Product Folder Links: TMS320F28335 TMS320F28335-Q1 TMS320F28334 TMS320F28333 TMS320F28332 TMS320F28235 TMS320F28235-Q1 TMS320F28234 TMS320F28234-Q1 TMS320F28232 TMS320F28232-Q1 TMS320F28335, TMS320F28335-Q1, TMS320F28334, TMS320F28333 TMS320F28332, TMS320F28235, TMS320F28235-Q1 TMS320F28234, TMS320F28234-Q1, TMS320F28232, TMS320F28232-Q1 www.ti.com SPRS439Q – JUNE 2007 – REVISED AUGUST 2022 7.9.6.9.2 XHOLD/XHOLDA Timing Requirements (XCLKOUT = 1/2 XTIMCLK) MIN td(HL-HiZ) Delay time, XHOLD low to Hi-Z on all address, data, and control(1) (2) (3) td(HL-HAL) Delay time, XHOLD low to XHOLDA low(1) (2) (3) Delay time, XHOLD high to XHOLDA td(HH-BV) Delay time, XHOLD high to bus valid(1) (2) (3) (2) (3) UNIT 4tc(XTIM) + tc(XCO) + 30 ns 4tc(XTIM) + 2tc(XCO) + 30 ns 4tc(XTIM) + 30 ns 6tc(XTIM) + 30 ns high(1) (2) (3) td(HH-HAH) (1) MAX When a low signal is detected on XHOLD, all pending XINTF accesses will be completed before the bus is placed in a high-impedance state. The state of XHOLD is latched on the rising edge of XTIMCLK. After the XHOLD is detected low or high, all bus transitions and XHOLDA transitions occur with respect to the rising edge of XCLKOUT. Thus, for this mode where XCLKOUT = 1/2 XTIMCLK, the transitions can occur up to 1 XTIMCLK cycle earlier than the maximum value specified. XCLKOUT (1/2 XTIMCLK) td(HL-HAL) XHOLD td(HH-HAH) XHOLDA td(HL-HiZ) td(HH-BV) XR/W, XZCS0, XZCS6, XZCS7 XA[19:0] High-Impedance XD[0:31]XD[15:0] Valid (A) A. B. High-Impedance Valid Valid High-Impedance (B) All pending XINTF accesses are completed. Normal XINTF operation resumes. Figure 7-36. XHOLD/ XHOLDA Timing Requirements (XCLKOUT = 1/2 XTIMCLK) Copyright © 2022 Texas Instruments Incorporated Submit Document Feedback Product Folder Links: TMS320F28335 TMS320F28335-Q1 TMS320F28334 TMS320F28333 TMS320F28332 TMS320F28235 TMS320F28235-Q1 TMS320F28234 TMS320F28234-Q1 TMS320F28232 TMS320F28232-Q1 97 TMS320F28335, TMS320F28335-Q1, TMS320F28334, TMS320F28333 TMS320F28332, TMS320F28235, TMS320F28235-Q1 TMS320F28234, TMS320F28234-Q1, TMS320F28232, TMS320F28232-Q1 www.ti.com SPRS439Q – JUNE 2007 – REVISED AUGUST 2022 7.9.7 Flash Timing 7.9.7.1 Flash Endurance for A and S Temperature Material ERASE/PROGRAM TEMPERATURE Nf Flash endurance for the array (write/erase cycles)(1) 0°C to 85°C (ambient) NOTP OTP endurance for the array (write cycles)(1) 0°C to 85°C (ambient) (1) MIN TYP 20000 50000 MAX UNIT cycles 1 write Write/erase operations outside of the temperature ranges indicated are not specified and may affect the endurance numbers. 7.9.7.2 Flash Endurance for Q Temperature Material ERASE/PROGRAM TEMPERATURE Flash endurance for the array (write/erase cycles)(1) Nf NOTP (1) OTP endurance for the array (write cycles)(1) –40°C to 125°C (ambient) MIN TYP 20000 50000 MAX UNIT cycles –40°C to 125°C (ambient) 1 write Write/erase operations outside of the temperature ranges indicated are not specified and may affect the endurance numbers. 7.9.7.3 Flash Parameters at 150-MHz SYSCLKOUT PARAMETER TEST CONDITIONS 16-Bit Word Program Time(3) Erase Time(1) Erase Time(1) 50 (4) 98 μs ms 16K Sector 500 2000(2) ms 32K Sector 2 12(2) 2 12(2) 2 15(2) 2 15(2) 16K Sector 32K Sector 16K Sector Q grade A, S grade VDD current consumption during Erase/Program cycle (2) (3) UNIT 2000(2) IDDP (4) (1) MAX 1000 VDD3VFL current consumption during the Erase/Program Erase cycle Program IDDIOP TYP 32K Sector IDD3VFLP (4) (4) MIN VDDIO current consumption during Erase/Program cycle s s 75 mA 35 mA 180 mA 20 mA The on-chip flash memory is in an erased state when the device is shipped from TI. As such, erasing the flash memory is not required prior to programming, when programming the device for the first time. However, the erase operation is needed on all subsequent programming operations. Maximum flash parameter mentioned are for the first 100 program and erase cycles. Program time is at the maximum device frequency. The programming time indicated in this table is applicable only when all the required code/data is available in the device RAM, ready for programming. Program time includes overhead of the flash state machine but does not include the time to transfer the following into RAM: • the code that uses flash API to program the flash • the Flash API itself • Flash data to be programmed Typical parameters as seen at room temperature including function call overhead, with all peripherals off. It is important to maintain a stable power supply during the entire flash programming process. It is conceivable that device current consumption during flash programming could be higher than normal operating conditions. The power supply used should ensure VMIN on the supply rails at all times, as specified in the Recommended Operating Conditions of the data sheet. Any brown-out or interruption to power during erasing/programming could potentially corrupt the password locations and lock the device permanently. Powering a target board (during flash programming) through the USB port is not recommended, as the port may be unable to respond to the power demands placed during the programming process. Submit Document Feedback Copyright © 2022 Texas Instruments Incorporated Product Folder Links: TMS320F28335 TMS320F28335-Q1 TMS320F28334 TMS320F28333 TMS320F28332 TMS320F28235 TMS320F28235-Q1 TMS320F28234 TMS320F28234-Q1 TMS320F28232 TMS320F28232-Q1 TMS320F28335, TMS320F28335-Q1, TMS320F28334, TMS320F28333 TMS320F28332, TMS320F28235, TMS320F28235-Q1 TMS320F28234, TMS320F28234-Q1, TMS320F28232, TMS320F28232-Q1 www.ti.com SPRS439Q – JUNE 2007 – REVISED AUGUST 2022 7.9.7.4 Flash/OTP Access Timing PARAMETER MIN MAX UNIT ta(fp) Paged Flash access time 37 ns ta(fr) Random Flash access time 37 ns ta(OTP) OTP access time 60 ns 7.9.7.5 Flash Data Retention Duration PARAMETER tretention TEST CONDITIONS Data retention duration MIN TJ = 55°C MAX 15 UNIT years Table 7-4. Minimum Required Flash/OTP Wait-States at Different Frequencies SYSCLKOUT (MHz) SYSCLKOUT (ns) PAGE WAIT-STATE RANDOM WAIT-STATE(1) OTP WAIT-STATE 150 6.67 5 5 8 120 8.33 4 4 7 100 10 3 3 5 75 13.33 2 2 4 50 20 1 1 2 30 33.33 1 1 1 25 40 1 1 1 15 66.67 1 1 1 4 250 1 1 1 (1) Page and random wait-state must be ≥ 1. The equations to compute the Flash page wait-state and random wait-state in Table 7-4 are as follows: Flash Page Wait State + ƪǒ Ǔ ƫ round up to the next highest integer or 1, whichever is larger Flash Random Wait State + ƪǒ Ǔ ƫ round up to the next highest integer or 1, whichever is larger t a(f@p) *1 t c(SCO) t a(f@r) *1 t c(SCO) The equation to compute the OTP wait-state in Table 7-4 is as follows: OTP Wait State + ƪǒ Ǔ ƫ t a(OTP) *1 t c(SCO) Copyright © 2022 Texas Instruments Incorporated round up to the next highest integer or 1, whichever is larger Submit Document Feedback Product Folder Links: TMS320F28335 TMS320F28335-Q1 TMS320F28334 TMS320F28333 TMS320F28332 TMS320F28235 TMS320F28235-Q1 TMS320F28234 TMS320F28234-Q1 TMS320F28232 TMS320F28232-Q1 99 TMS320F28335, TMS320F28335-Q1, TMS320F28334, TMS320F28333 TMS320F28332, TMS320F28235, TMS320F28235-Q1 TMS320F28234, TMS320F28234-Q1, TMS320F28232, TMS320F28232-Q1 www.ti.com SPRS439Q – JUNE 2007 – REVISED AUGUST 2022 7.10 On-Chip Analog-to-Digital Converter 7.10.1 ADC Electrical Characteristics (over recommended operating conditions) PARAMETER(1) (2) DC SPECIFICATIONS MIN TYP MAX UNIT (3) Resolution 12 ADC clock 0.001 Bits 25 MHz ±1.5 LSB ±2 LSB ACCURACY 1-12.5 MHz ADC clock (6.25 MSPS) INL (Integral nonlinearity) 12.5-25 MHz ADC clock (12.5 MSPS) DNL (Differential nonlinearity)(4) Offset error(5) (3) Overall gain error with internal reference(6) (3) Overall gain error with external reference(3) ±1 LSB –15 15 LSB –30 30 LSB –30 30 LSB Channel-to-channel offset variation ±4 LSB Channel-to-channel gain variation ±4 LSB ANALOG INPUT Analog input voltage (ADCINx to ADCLO)(7) 0 ADCLO –5 Input capacitance 0 3 V 5 mV 10 Input leakage current pF ±5 μA INTERNAL VOLTAGE REFERENCE (6) VADCREFP - ADCREFP output voltage at the pin based on internal reference 1.275 V VADCREFM - ADCREFM output voltage at the pin based on internal reference 0.525 V Voltage difference, ADCREFP - ADCREFM 0.75 Temperature coefficient 50 V PPM/°C EXTERNAL VOLTAGE REFERENCE (6) (8) VADCREFIN - External reference voltage input on ADCREFIN pin 0.2% or better accurate reference recommended ADCREFSEL[15:14] = 11b 1.024 V ADCREFSEL[15:14] = 10b 1.500 V ADCREFSEL[15:14] = 01b 2.048 V 67.5 dB 68 dB AC SPECIFICATIONS SINAD (100 kHz) Signal-to-noise ratio + distortion SNR (100 kHz) Signal-to-noise ratio THD (100 kHz) Total harmonic distortion –79 dB ENOB (100 kHz) Effective number of bits 10.9 Bits 83 dB SFDR (100 kHz) Spurious free dynamic range (1) (2) (3) (4) (5) (6) (7) (8) 100 Tested at 25 MHz ADCCLK. All voltages listed in this table are with respect to VSSA2. ADC parameters for gain error and offset error are only specified if the ADC calibration routine is executed from the Boot ROM. See Section 8.2.7.3 for more information. TI specifies that the ADC will have no missing codes. 1 LSB has the weighted value of 3.0/4096 = 0.732 mV. A single internal/external band gap reference sources both ADCREFP and ADCREFM signals, and hence, these voltages track together. The ADC converter uses the difference between these two as its reference. The total gain error listed for the internal reference is inclusive of the movement of the internal band gap over temperature. Gain error over temperature for the external reference option will depend on the temperature profile of the source used. Voltages above VDDA + 0.3 V or below VSS - 0.3 V applied to an analog input pin may temporarily affect the conversion of another pin. To avoid this, the analog inputs should be kept within these limits. TI recommends using high precision external reference TI part REF3020/3120 or equivalent for 2.048-V reference. Submit Document Feedback Copyright © 2022 Texas Instruments Incorporated Product Folder Links: TMS320F28335 TMS320F28335-Q1 TMS320F28334 TMS320F28333 TMS320F28332 TMS320F28235 TMS320F28235-Q1 TMS320F28234 TMS320F28234-Q1 TMS320F28232 TMS320F28232-Q1 TMS320F28335, TMS320F28335-Q1, TMS320F28334, TMS320F28333 TMS320F28332, TMS320F28235, TMS320F28235-Q1 TMS320F28234, TMS320F28234-Q1, TMS320F28232, TMS320F28232-Q1 www.ti.com SPRS439Q – JUNE 2007 – REVISED AUGUST 2022 7.10.2 ADC Power-Up Control Bit Timing ADC Power Up Delay ADC Ready for Conversions PWDNBG PWDNREF td(BGR) PWDNADC td(PWD) Request for ADC Conversion Figure 7-37. ADC Power-Up Control Bit Timing 7.10.2.1 ADC Power-Up Delays PARAMETER(1) MIN td(BGR) Delay time for band gap reference to be stable. Bits 7 and 6 of the ADCTRL3 register (ADCBGRFDN1/0) must be set to 1 before the PWDNADC bit is enabled. td(PWD) Delay time for power-down control to be stable. Bit delay time for band-gap reference to be stable. Bits 7 and 6 of the ADCTRL3 register (ADCBGRFDN1/0) must be set to 1 before the PWDNADC bit is enabled. Bit 5 of the ADCTRL3 register (PWDNADC) must be set to 1 before any ADC conversions are initiated. (1) TYP MAX 5 20 50 UNIT ms μs 1 ms Timings maintain compatibility to the 281x ADC module. The 2833x/2823x ADC also supports driving all 3 bits at the same time and waiting td(BGR) ms before first conversion. 7.10.2.2 Typical Current Consumption for Different ADC Configurations (at 25-MHz ADCCLK) CONDITIONS(1) (2) ADC OPERATING MODE VDDA18 VDDA3.3 UNIT Mode A (Operational Mode): • • BG and REF enabled PWD disabled 30 2 mA Mode B: • • • ADC clock enabled BG and REF enabled PWD enabled 9 0.5 mA Mode C: • • • ADC clock enabled BG and REF disabled PWD enabled 5 20 μA Mode D: • • • ADC clock disabled BG and REF disabled PWD enabled 5 15 μA (1) (2) Test Conditions: SYSCLKOUT = 150 MHz ADC module clock = 25 MHz ADC performing a continuous conversion of all 16 channels in Mode A VDDA18 includes current into VDD1A18 and VDD2A18. VDDA3.3 includes current into VDDA2 and VDDAIO. Copyright © 2022 Texas Instruments Incorporated Submit Document Feedback Product Folder Links: TMS320F28335 TMS320F28335-Q1 TMS320F28334 TMS320F28333 TMS320F28332 TMS320F28235 TMS320F28235-Q1 TMS320F28234 TMS320F28234-Q1 TMS320F28232 TMS320F28232-Q1 101 TMS320F28335, TMS320F28335-Q1, TMS320F28334, TMS320F28333 TMS320F28332, TMS320F28235, TMS320F28235-Q1 TMS320F28234, TMS320F28234-Q1, TMS320F28232, TMS320F28232-Q1 www.ti.com SPRS439Q – JUNE 2007 – REVISED AUGUST 2022 Rs Source Signal ADCIN0 Ron 1 kΩ Switch Cp 10 pF ac Ch 1.64 pF 28x DSP Typical Values of the Input Circuit Components: Switch Resistance (Ron): Sampling Capacitor (Ch): Parasitic Capacitance (Cp): Source Resistance (Rs): 1 kΩ 1.64 pF 10 pF 50 Ω Figure 7-38. ADC Analog Input Impedance Model 7.10.3 Definitions Reference Voltage The on-chip ADC has a built-in reference, which provides the reference voltages for the ADC. Analog Inputs The on-chip ADC consists of 16 analog inputs, which are sampled either one at a time or two channels at a time. These inputs are software-selectable. Converter The on-chip ADC uses a 12-bit four-stage pipeline architecture, which achieves a high sample rate with low power consumption. Conversion Modes The conversion can be performed in two different conversion modes: • Sequential sampling mode (SMODE = 0) • Simultaneous sampling mode (SMODE = 1) 102 Submit Document Feedback Copyright © 2022 Texas Instruments Incorporated Product Folder Links: TMS320F28335 TMS320F28335-Q1 TMS320F28334 TMS320F28333 TMS320F28332 TMS320F28235 TMS320F28235-Q1 TMS320F28234 TMS320F28234-Q1 TMS320F28232 TMS320F28232-Q1 TMS320F28335, TMS320F28335-Q1, TMS320F28334, TMS320F28333 TMS320F28332, TMS320F28235, TMS320F28235-Q1 TMS320F28234, TMS320F28234-Q1, TMS320F28232, TMS320F28232-Q1 www.ti.com SPRS439Q – JUNE 2007 – REVISED AUGUST 2022 7.10.4 Sequential Sampling Mode (Single-Channel) (SMODE = 0) In sequential sampling mode, the ADC can continuously convert input signals on any of the channels (Ax to Bx). The ADC can start conversions on event triggers from the ePWM, software trigger, or from an external ADCSOC signal. If the SMODE bit is 0, the ADC will do conversions on the selected channel on every Sample/Hold pulse. The conversion time and latency of the Result register update are explained below. The ADC interrupt flags are set a few SYSCLKOUT cycles after the Result register update. The selected channels will be sampled at every falling edge of the Sample/Hold pulse. The Sample/Hold pulse width can be programmed to be 1 ADC clock wide (minimum) or 16 ADC clocks wide (maximum). Sample n+2 Sample n+1 Analog Input on Channel Ax or Bx Sample n ADC Clock Sample and Hold SH Pulse SMODE Bit td(SH) tdschx_n+1 tdschx_n ADC Event Trigger from ePWM or Other Sources tSH Figure 7-39. Sequential Sampling Mode (Single-Channel) Timing 7.10.4.1 Sequential Sampling Mode Timing SAMPLE n SAMPLE n + 1 AT 25-MHz ADC CLOCK, tc(ADCCLK) = 40 ns td(SH) Delay time from event trigger to sampling 2.5tc(ADCCLK) tSH Sample/Hold width/Acquisition Width (1 + Acqps) * tc(ADCCLK) 40 ns with Acqps = 0 td(schx_n) Delay time for first result to appear in Result register 4tc(ADCCLK) 160 ns td(schx_n+1) Delay time for successive results to appear in Result register Copyright © 2022 Texas Instruments Incorporated (2 + Acqps) * tc(ADCCLK) REMARKS Acqps value = 0-15 ADCTRL1[8:11] 80 ns Submit Document Feedback Product Folder Links: TMS320F28335 TMS320F28335-Q1 TMS320F28334 TMS320F28333 TMS320F28332 TMS320F28235 TMS320F28235-Q1 TMS320F28234 TMS320F28234-Q1 TMS320F28232 TMS320F28232-Q1 103 TMS320F28335, TMS320F28335-Q1, TMS320F28334, TMS320F28333 TMS320F28332, TMS320F28235, TMS320F28235-Q1 TMS320F28234, TMS320F28234-Q1, TMS320F28232, TMS320F28232-Q1 www.ti.com SPRS439Q – JUNE 2007 – REVISED AUGUST 2022 7.10.5 Simultaneous Sampling Mode (Dual-Channel) (SMODE = 1) In simultaneous mode, the ADC can continuously convert input signals on any one pair of channels (A0/B0 to A7/B7). The ADC can start conversions on event triggers from the ePWM, software trigger, or from an external ADCSOC signal. If the SMODE bit is 1, the ADC will do conversions on two selected channels on every Sample/ Hold pulse. The conversion time and latency of the result register update are explained below. The ADC interrupt flags are set a few SYSCLKOUT cycles after the Result register update. The selected channels will be sampled simultaneously at the falling edge of the Sample/Hold pulse. The Sample/Hold pulse width can be programmed to be 1 ADC clock wide (minimum) or 16 ADC clocks wide (maximum). Note In simultaneous mode, the ADCIN channel pair select must be A0/B0, A1/B1, ..., A7/B7, and not in other combinations (such as A1/B3, and so on). Sample n Sample n+1 Analog Input on Channel Ax Analog Input on Channel Bx Sample n+2 ADC Clock Sample and Hold SH Pulse SMODE Bit td(SH) tdschA0_n+1 tSH ADC Event Trigger from ePWM or Other Sources tdschA0_n tdschB0_n+1 tdschB0_n Figure 7-40. Simultaneous Sampling Mode Timing 7.10.5.1 Simultaneous Sampling Mode Timing SAMPLE n SAMPLE n + 1 AT 25-MHz ADC CLOCK, tc(ADCCLK) = 40 ns td(SH) Delay time from event trigger to sampling 2.5tc(ADCCLK) tSH Sample/Hold width/Acquisition Width (1 + Acqps) * tc(ADCCLK) 40 ns with Acqps = 0 td(schA0_n) Delay time for first result to appear in Result register 4tc(ADCCLK) 160 ns td(schB0_n ) Delay time for first result to appear in Result register 5tc(ADCCLK) 200 ns td(schA0_n+1) Delay time for successive results to appear in Result register (3 + Acqps) * tc(ADCCLK) 120 ns td(schB0_n+1 ) Delay time for successive results to appear in Result register (3 + Acqps) * tc(ADCCLK) 120 ns 104 Submit Document Feedback REMARKS Acqps value = 0-15 ADCTRL1[8:11] Copyright © 2022 Texas Instruments Incorporated Product Folder Links: TMS320F28335 TMS320F28335-Q1 TMS320F28334 TMS320F28333 TMS320F28332 TMS320F28235 TMS320F28235-Q1 TMS320F28234 TMS320F28234-Q1 TMS320F28232 TMS320F28232-Q1 TMS320F28335, TMS320F28335-Q1, TMS320F28334, TMS320F28333 TMS320F28332, TMS320F28235, TMS320F28235-Q1 TMS320F28234, TMS320F28234-Q1, TMS320F28232, TMS320F28232-Q1 www.ti.com SPRS439Q – JUNE 2007 – REVISED AUGUST 2022 7.10.6 Detailed Descriptions Integral Nonlinearity Integral nonlinearity refers to the deviation of each individual code from a line drawn from zero through full scale. The point used as zero occurs one-half LSB before the first code transition. The full-scale point is defined as level one-half LSB beyond the last code transition. The deviation is measured from the center of each particular code to the true straight line between these two points. Differential Nonlinearity An ideal ADC exhibits code transitions that are exactly 1 LSB apart. DNL is the deviation from this ideal value. A differential nonlinearity error of less than ±1 LSB ensures no missing codes. Zero Offset The major carry transition should occur when the analog input is at zero volts. Zero error is defined as the deviation of the actual transition from that point. Gain Error The first code transition should occur at an analog value one-half LSB above negative full scale. The last transition should occur at an analog value one and one-half LSB below the nominal full scale. Gain error is the deviation of the actual difference between first and last code transitions and the ideal difference between first and last code transitions. Signal-to-Noise Ratio + Distortion (SINAD) SINAD is the ratio of the rms value of the measured input signal to the rms sum of all other spectral components below the Nyquist frequency, including harmonics but excluding dc. The value for SINAD is expressed in decibels. Effective Number of Bits (ENOB) For a sine wave, SINAD can be expressed in terms of the number of bits. Using the following formula, (SINAD * 1.76) N+ 6.02 it is possible to get a measure of performance expressed as N, the effective number of bits. Thus, effective number of bits for a device for sine wave inputs at a given input frequency can be calculated directly from its measured SINAD. Total Harmonic Distortion (THD) THD is the ratio of the rms sum of the first nine harmonic components to the rms value of the measured input signal and is expressed as a percentage or in decibels. Spurious Free Dynamic Range (SFDR) SFDR is the difference in dB between the rms amplitude of the input signal and the peak spurious signal. Copyright © 2022 Texas Instruments Incorporated Submit Document Feedback Product Folder Links: TMS320F28335 TMS320F28335-Q1 TMS320F28334 TMS320F28333 TMS320F28332 TMS320F28235 TMS320F28235-Q1 TMS320F28234 TMS320F28234-Q1 TMS320F28232 TMS320F28232-Q1 105 TMS320F28335, TMS320F28335-Q1, TMS320F28334, TMS320F28333 TMS320F28332, TMS320F28235, TMS320F28235-Q1 TMS320F28234, TMS320F28234-Q1, TMS320F28232, TMS320F28232-Q1 www.ti.com SPRS439Q – JUNE 2007 – REVISED AUGUST 2022 7.11 Migrating Between F2833x Devices and F2823x Devices The principal difference between these two devices is the absence of the floating-point unit (FPU) in the F2823x devices. This section describes how to build an application for each: • For F2833x devices: – Code Composer Studio 3.3 with Service Release 9 or later is required for debug support of C28x + floating-point devices. – Use -v28 --float_support = fpu32 compiler options. The --float_support option is available in compiler v5.0.2 or later. In Code Composer Studio, the --float_support option is located on the advanced tab of the compiler options (Project → Build_Options → Compiler → Advanced tab). – Include the compiler’s run-time support library for native 32-bit floating-point. For example, use rts2800_fpu32.lib for C code or rts2800_fpu32_eh.lib for C++ code. – Consider using the C28x FPU Fast RTS Library (part of C2000Ware for C2000 MCUs) for highperformance floating-point math functions such as sin, cos, div, sqrt, and atan. The Fast RTS library should be linked in before the normal run-time support library. • For F2823x devices: – Either leave off the --float_support switch or use -v28 --float_support=none – Include the appropriate run-time support library for fixed point code. For example, use rts2800_ml.lib for C code or rts2800_ml_eh.lib for C++ code. – Consider using the C28x IQMath Library - A Virtual Floating Point Engine to achieve a performance boost from math functions such as sin, cos, div, sqrt, and atan. Code built in this manner will also run on F2833x devices, but it will not make use of the on-chip floating-point unit. In either case, to allow for quick portability between native floating-point and fixed-point devices, TI suggests writing your code using the IQmath macro language described in C28x IQMath Library. 106 Submit Document Feedback Copyright © 2022 Texas Instruments Incorporated Product Folder Links: TMS320F28335 TMS320F28335-Q1 TMS320F28334 TMS320F28333 TMS320F28332 TMS320F28235 TMS320F28235-Q1 TMS320F28234 TMS320F28234-Q1 TMS320F28232 TMS320F28232-Q1 TMS320F28335, TMS320F28335-Q1, TMS320F28334, TMS320F28333 TMS320F28332, TMS320F28235, TMS320F28235-Q1 TMS320F28234, TMS320F28234-Q1, TMS320F28232, TMS320F28232-Q1 www.ti.com SPRS439Q – JUNE 2007 – REVISED AUGUST 2022 8 Detailed Description 8.1 Brief Descriptions 8.1.1 C28x CPU The F2833x (C28x+FPU)/F2823x (C28x) family is a member of the TMS320C2000™ real-time microcontroller (MCU) platform. The C28x+FPU based controllers have the same 32-bit fixed-point architecture as TI's existing C28x MCUs, but also include a single-precision (32-bit) IEEE 754 floating-point unit (FPU). It is a very efficient C/C++ engine, enabling users to develop their system control software in a high-level language. It also enables math algorithms to be developed using C/C++. The device is as efficient at DSP math tasks as it is at system control tasks that typically are handled by microcontroller devices. This efficiency removes the need for a second processor in many systems. The 32 × 32-bit MAC 64-bit processing capabilities enable the controller to handle higher numerical resolution problems efficiently. Add to this the fast interrupt response with automatic context save of critical registers, resulting in a device that is capable of servicing many asynchronous events with minimal latency. The device has an 8-level-deep protected pipeline with pipelined memory accesses. This pipelining enables it to execute at high speeds without resorting to expensive high-speed memories. Special branch-look-ahead hardware minimizes the latency for conditional discontinuities. Special store conditional operations further improve performance. The F2823x family is also a member of the TMS320C2000™ real-time microcontroller (MCU) platform but it does not include a floating-point unit (FPU). 8.1.2 Memory Bus (Harvard Bus Architecture) As with many MCU type devices, multiple buses are used to move data between the memories and peripherals and the CPU. The C28x memory bus architecture contains a program read bus, data read bus and data write bus. The program read bus consists of 22 address lines and 32 data lines. The data read and write buses consist of 32 address lines and 32 data lines each. The 32-bit-wide data buses enable single cycle 32-bit operations. The multiple bus architecture, commonly termed Harvard Bus, enables the C28x to fetch an instruction, read a data value and write a data value in a single cycle. All peripherals and memories attached to the memory bus will prioritize memory accesses. Generally, the priority of memory bus accesses can be summarized as follows: Highest: Data Writes (Simultaneous data and program writes cannot occur on the memory bus.) Program Writes (Simultaneous data and program writes cannot occur on the memory bus.) Data Reads Program Reads (Simultaneous program reads and fetches cannot occur on the memory bus.) Lowest: Fetches (Simultaneous program reads and fetches cannot occur on the memory bus.) 8.1.3 Peripheral Bus To enable migration of peripherals between various TI MCU family of devices, the 2833x/2823x devices adopt a peripheral bus standard for peripheral interconnect. The peripheral bus bridge multiplexes the various buses that make up the processor Memory Bus into a single bus consisting of 16 address lines and 16 or 32 data lines and associated control signals. Three versions of the peripheral bus are supported. One version supports only 16-bit accesses (called peripheral frame 2). Another version supports both 16- and 32-bit accesses (called peripheral frame 1). The third version supports DMA access and both 16- and 32-bit accesses (called peripheral frame 3). 8.1.4 Real-Time JTAG and Analysis The 2833x/2823x devices implement the standard IEEE 1149.1 JTAG interface. Additionally, the devices support real-time mode of operation whereby the contents of memory, peripheral and register locations can be modified while the processor is running and executing code and servicing interrupts. The user can also single step through non-time-critical code while enabling time-critical interrupts to be serviced without interference. The device implements the real-time mode in hardware within the CPU. This is a feature unique to the 2833x/2823x device, requiring no software monitor. Additionally, special analysis hardware is provided that allows setting of Copyright © 2022 Texas Instruments Incorporated Submit Document Feedback Product Folder Links: TMS320F28335 TMS320F28335-Q1 TMS320F28334 TMS320F28333 TMS320F28332 TMS320F28235 TMS320F28235-Q1 TMS320F28234 TMS320F28234-Q1 TMS320F28232 TMS320F28232-Q1 107 TMS320F28335, TMS320F28335-Q1, TMS320F28334, TMS320F28333 TMS320F28332, TMS320F28235, TMS320F28235-Q1 TMS320F28234, TMS320F28234-Q1, TMS320F28232, TMS320F28232-Q1 www.ti.com SPRS439Q – JUNE 2007 – REVISED AUGUST 2022 hardware breakpoint or data/address watch-points and generate various user-selectable break events when a match occurs. 8.1.5 External Interface (XINTF) This asynchronous interface consists of 20 address lines, 32 data lines, and three chip-select lines. The chipselect lines are mapped to three external zones, Zones 0, 6, and 7. Each of the three zones can be programmed with a different number of wait states, strobe signal setup and hold timing and each zone can be programmed for extending wait states externally or not. The programmable wait state, chip-select and programmable strobe timing enables glueless interface to external memories and peripherals. 8.1.6 Flash The F28335/F28333/F28235 devices contain 256K × 16 of embedded flash memory, segregated into eight 32K × 16 sectors. The F28334/F28234 devices contain 128K × 16 of embedded flash memory, segregated into eight 16K × 16 sectors. The F28332/F28232 devices contain 64K × 16 of embedded flash, segregated into four 16K × 16 sectors. All the devices also contain a single 1K × 16 of OTP memory at address range 0x380400– 0x3807FF. The user can individually erase, program, and validate a flash sector while leaving other sectors untouched. However, it is not possible to use one sector of the flash or the OTP to execute flash algorithms that erase/program other sectors. Special memory pipelining is provided to enable the flash module to achieve higher performance. The flash/OTP is mapped to both program and data space; therefore, it can be used to execute code or store data information. Note that addresses 0x33FFF0–0x33FFF5 are reserved for data variables and should not contain program code. Note The Flash and OTP wait-states can be configured by the application. This allows applications running at slower frequencies to configure the flash to use fewer wait-states. Flash effective performance can be improved by enabling the flash pipeline mode in the Flash options register. With this mode enabled, effective performance of linear code execution will be much faster than the raw performance indicated by the wait-state configuration alone. The exact performance gain when using the Flash pipeline mode is application-dependent. For more information on the Flash options, Flash wait-state, and OTP wait-state registers, see the System Control and Interrupts chapter of the TMS320x2833x, TMS320x2823x Real-Time Microcontrollers Technical Reference Manual. 8.1.7 M0, M1 SARAMs All 2833x/2823x devices contain these two blocks of single access memory, each 1K × 16 in size. The stack pointer points to the beginning of block M1 on reset. The M0 and M1 blocks, like all other memory blocks on C28x devices, are mapped to both program and data space. Hence, the user can use M0 and M1 to execute code or for data variables. The partitioning is performed within the linker. The C28x device presents a unified memory map to the programmer. This makes for easier programming in high-level languages. 8.1.8 L0, L1, L2, L3, L4, L5, L6, L7 SARAMs The F28335/F28333/F28235 and F28334/F28234 each contain 32K × 16 of single-access RAM, divided into 8 blocks (L0–L7 with 4K each). The F28332/F28232 contain 24K × 16 of single-access RAM, divided into 6 blocks (L0–L5 with 4K each). Each block can be independently accessed to minimize CPU pipeline stalls. Each block is mapped to both program and data space. L4, L5, L6, and L7 are DMA-accessible. 108 Submit Document Feedback Copyright © 2022 Texas Instruments Incorporated Product Folder Links: TMS320F28335 TMS320F28335-Q1 TMS320F28334 TMS320F28333 TMS320F28332 TMS320F28235 TMS320F28235-Q1 TMS320F28234 TMS320F28234-Q1 TMS320F28232 TMS320F28232-Q1 TMS320F28335, TMS320F28335-Q1, TMS320F28334, TMS320F28333 TMS320F28332, TMS320F28235, TMS320F28235-Q1 TMS320F28234, TMS320F28234-Q1, TMS320F28232, TMS320F28232-Q1 www.ti.com SPRS439Q – JUNE 2007 – REVISED AUGUST 2022   8.1.9 Boot ROM The Boot ROM is factory-programmed with boot-loading software. Boot-mode signals are provided to tell the bootloader software what boot mode to use on power up. The user can select to boot normally or to download new software from an external connection or to select boot software that is programmed in the internal Flash/ ROM. The Boot ROM also contains standard tables, such as SIN/COS waveforms, for use in math related algorithms. Table 8-1. Boot Mode Selection (1) MODE GPIO87/XA15 GPIO86/XA14 GPIO85/XA13 GPIO84/XA12 MODE(1) F 1 1 1 1 Jump to Flash E 1 1 1 0 SCI-A boot D 1 1 0 1 SPI-A boot C 1 1 0 0 I2C-A boot B 1 0 1 1 eCAN-A boot A 1 0 1 0 McBSP-A boot 9 1 0 0 1 Jump to XINTF x16 8 1 0 0 0 Jump to XINTF x32 7 0 1 1 1 Jump to OTP 6 0 1 1 0 Parallel GPIO I/O boot 5 0 1 0 1 Parallel XINTF boot 4 0 1 0 0 Jump to SARAM 3 0 0 1 1 Branch to check boot mode 2 0 0 1 0 Branch to Flash, skip ADC calibration 1 0 0 0 1 Branch to SARAM, skip ADC calibration 0 0 0 0 0 Branch to SCI, skip ADC calibration All four GPIO pins have an internal pullup.   Note Modes 0, 1, and 2 in Table 8-1 are for TI debug only. Skipping the ADC calibration function in an application will cause the ADC to operate outside of the stated specifications Copyright © 2022 Texas Instruments Incorporated Submit Document Feedback Product Folder Links: TMS320F28335 TMS320F28335-Q1 TMS320F28334 TMS320F28333 TMS320F28332 TMS320F28235 TMS320F28235-Q1 TMS320F28234 TMS320F28234-Q1 TMS320F28232 TMS320F28232-Q1 109 TMS320F28335, TMS320F28335-Q1, TMS320F28334, TMS320F28333 TMS320F28332, TMS320F28235, TMS320F28235-Q1 TMS320F28234, TMS320F28234-Q1, TMS320F28232, TMS320F28232-Q1 www.ti.com SPRS439Q – JUNE 2007 – REVISED AUGUST 2022 8.1.9.1 Peripheral Pins Used by the Bootloader Table 8-2 shows which GPIO pins are used by each peripheral bootloader. Refer to the GPIO mux table to see if these conflict with any of the peripherals you would like to use in your application. Table 8-2. Peripheral Bootload Pins BOOTLOADER PERIPHERAL LOADER PINS SCI-A SCIRXDA (GPIO28) SCITXDA (GPIO29) SPI-A SPISIMOA (GPIO16) SPISOMIA (GPIO17) SPICLKA (GPIO18) SPISTEA (GPIO19) I2C SDAA (GPIO32) SCLA (GPIO33) CAN CANRXA (GPIO30) CANTXA (GPIO31) McBSP MDXA (GPIO20) MDRA (GPIO21) MCLKXA (GPIO22) MFSXA (GPIO23) MCLKRA (GPIO7) MFSRA (GPIO5) 8.1.10 Security The devices support high levels of security to protect the user firmware from being reverse engineered. The security features a 128-bit password (hardcoded for 16 wait-states), which the user programs into the flash. One code security module (CSM) is used to protect the flash/OTP and the L0/L1/L2/L3 SARAM blocks. The security feature prevents unauthorized users from examining the memory contents via the JTAG port, executing code from external memory or trying to boot-load some undesirable software that would export the secure memory contents. To enable access to the secure blocks, the user must write the correct 128-bit KEY value, which matches the value stored in the password locations within the Flash. In addition to the CSM, the emulation code security logic (ECSL) has been implemented to prevent unauthorized users from stepping through secure code. Any code or data access to flash, user OTP, L0, L1, L2, or L3 memory while the JTAG debug probe is connected will trip the ECSL and break the emulation connection. To allow emulation of secure code, while maintaining the CSM protection against secure memory reads, the user must write the correct value into the lower 64 bits of the KEY register, which matches the value stored in the lower 64 bits of the password locations within the flash. Note that dummy reads of all 128 bits of the password in the flash must still be performed. If the lower 64 bits of the password locations are all ones (unprogrammed), then the KEY value does not need to match. When initially debugging a device with the password locations in flash programmed (that is, secured), the JTAG debug probe takes some time to take control of the CPU. During this time, the CPU will start running and may execute an instruction that performs an access to a protected ECSL area. If this happens, the ECSL will trip and cause the JTAG debug probe connection to be cut. Two solutions to this problem exist: 1. The first is to use the Wait-In-Reset emulation mode, which will hold the device in reset until the JTAG debug probe takes control. The JTAG debug probe must support this mode for this option. 2. The second option is to use the “Branch to check boot mode” boot option. This will sit in a loop and continuously poll the boot mode select pins. The user can select this boot mode and then exit this mode once the JTAG debug probe is connected by re-mapping the PC to another address or by changing the boot mode selection pin to the desired boot mode. 110 Submit Document Feedback Copyright © 2022 Texas Instruments Incorporated Product Folder Links: TMS320F28335 TMS320F28335-Q1 TMS320F28334 TMS320F28333 TMS320F28332 TMS320F28235 TMS320F28235-Q1 TMS320F28234 TMS320F28234-Q1 TMS320F28232 TMS320F28232-Q1 TMS320F28335, TMS320F28335-Q1, TMS320F28334, TMS320F28333 TMS320F28332, TMS320F28235, TMS320F28235-Q1 TMS320F28234, TMS320F28234-Q1, TMS320F28232, TMS320F28232-Q1 www.ti.com • • SPRS439Q – JUNE 2007 – REVISED AUGUST 2022 Note When the code-security passwords are programmed, all addresses from 0x33FF80 to 0x33FFF5 cannot be used as program code or data. These locations must be programmed to 0x0000. If the code security feature is not used, addresses 0x33FF80 to 0x33FFEF may be used for code or data. Addresses 0x33FFF0 to 0x33FFF5 are reserved for data and should not contain program code. The 128-bit password (at 0x33FFF8 to 0x33FFFF) must not be programmed to zeros. Doing so would permanently lock the device. Code Security Module Disclaimer THE CODE SECURITY MODULE (CSM) INCLUDED ON THIS DEVICE WAS DESIGNED TO PASSWORD PROTECT THE DATA STORED IN THE ASSOCIATED MEMORY (EITHER ROM OR FLASH) AND IS WARRANTED BY TEXAS INSTRUMENTS (TI), IN ACCORDANCE WITH ITS STANDARD TERMS AND CONDITIONS, TO CONFORM TO TI'S PUBLISHED SPECIFICATIONS FOR THE WARRANTY PERIOD APPLICABLE FOR THIS DEVICE. TI DOES NOT, HOWEVER, WARRANT OR REPRESENT THAT THE CSM CANNOT BE COMPROMISED OR BREACHED OR THAT THE DATA STORED IN THE ASSOCIATED MEMORY CANNOT BE ACCESSED THROUGH OTHER MEANS. MOREOVER, EXCEPT AS SET FORTH ABOVE, TI MAKES NO WARRANTIES OR REPRESENTATIONS CONCERNING THE CSM OR OPERATION OF THIS DEVICE, INCLUDING ANY IMPLIED WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. IN NO EVENT SHALL TI BE LIABLE FOR ANY CONSEQUENTIAL, SPECIAL, INDIRECT, INCIDENTAL, OR PUNITIVE DAMAGES, HOWEVER CAUSED, ARISING IN ANY WAY OUT OF YOUR USE OF THE CSM OR THIS DEVICE, WHETHER OR NOT TI HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES. EXCLUDED DAMAGES INCLUDE, BUT ARE NOT LIMITED TO LOSS OF DATA, LOSS OF GOODWILL, LOSS OF USE OR INTERRUPTION OF BUSINESS OR OTHER ECONOMIC LOSS. Copyright © 2022 Texas Instruments Incorporated Submit Document Feedback Product Folder Links: TMS320F28335 TMS320F28335-Q1 TMS320F28334 TMS320F28333 TMS320F28332 TMS320F28235 TMS320F28235-Q1 TMS320F28234 TMS320F28234-Q1 TMS320F28232 TMS320F28232-Q1 111 TMS320F28335, TMS320F28335-Q1, TMS320F28334, TMS320F28333 TMS320F28332, TMS320F28235, TMS320F28235-Q1 TMS320F28234, TMS320F28234-Q1, TMS320F28232, TMS320F28232-Q1 www.ti.com SPRS439Q – JUNE 2007 – REVISED AUGUST 2022 8.1.11 Peripheral Interrupt Expansion (PIE) Block The PIE block serves to multiplex numerous interrupt sources into a smaller set of interrupt inputs. The PIE block can support up to 96 peripheral interrupts. On the 2833x/2823x, 58 of the possible 96 interrupts are used by peripherals. The 96 interrupts are grouped into blocks of 8 and each group is fed into 1 of 12 CPU interrupt lines (INT1 to INT12). Each of the 96 interrupts is supported by its own vector stored in a dedicated RAM block that can be overwritten by the user. The vector is automatically fetched by the CPU on servicing the interrupt. It takes eight CPU clock cycles to fetch the vector and save critical CPU registers. Hence the CPU can quickly respond to interrupt events. Prioritization of interrupts is controlled in hardware and software. Each individual interrupt can be enabled or disabled within the PIE block. 8.1.12 External Interrupts (XINT1–XINT7, XNMI) The devices support eight masked external interrupts (XINT1–XINT7, XNMI). XNMI can be connected to the INT13 or NMI interrupt of the CPU. Each of the interrupts can be selected for negative, positive, or both negative and positive edge triggering and can also be enabled or disabled (including the XNMI). XINT1, XINT2, and XNMI also contain a 16-bit free-running up counter, which is reset to zero when a valid interrupt edge is detected. This counter can be used to accurately time-stamp the interrupt. Unlike the 281x devices, there are no dedicated pins for the external interrupts. XINT1 XINT2, and XNMI interrupts can accept inputs from GPIO0–GPIO31 pins. XINT3–XINT7 interrupts can accept inputs from GPIO32–GPIO63 pins. 8.1.13 Oscillator and PLL The device can be clocked by an external oscillator or by a crystal attached to the on-chip oscillator circuit. A PLL is provided supporting up to 10 input-clock-scaling ratios. The PLL ratios can be changed on-the-fly in software, enabling the user to scale back on operating frequency if lower power operation is desired. Refer to Section 7.9.4.4 for timing details. The PLL block can be set in bypass mode. 8.1.14 Watchdog The devices contain a watchdog timer. The user software must regularly reset the watchdog counter within a certain time frame; otherwise, the watchdog will generate a reset to the processor. The watchdog can be disabled if necessary. 8.1.15 Peripheral Clocking The clocks to each individual peripheral can be enabled or disabled so as to reduce power consumption when a peripheral is not in use. Additionally, the system clock to the serial ports (except I2C and eCAN) and the ADC blocks can be scaled relative to the CPU clock. This enables the timing of peripherals to be decoupled from increasing CPU clock speeds. 8.1.16 Low-Power Modes The devices are full static CMOS devices. Three low-power modes are provided: 112 IDLE: Place CPU into low-power mode. Peripheral clocks may be turned off selectively and only those peripherals that need to function during IDLE are left operating. An enabled interrupt from an active peripheral or the watchdog timer will wake the processor from IDLE mode. STANDBY: Turns off clock to CPU and peripherals. This mode leaves the oscillator and PLL functional. An external interrupt event will wake the processor and the peripherals. Execution begins on the next valid cycle after detection of the interrupt event HALT: Turns off the internal oscillator. This mode basically shuts down the device and places it in the lowest possible power consumption mode. A reset or external signal can wake the device from this mode. Submit Document Feedback Copyright © 2022 Texas Instruments Incorporated Product Folder Links: TMS320F28335 TMS320F28335-Q1 TMS320F28334 TMS320F28333 TMS320F28332 TMS320F28235 TMS320F28235-Q1 TMS320F28234 TMS320F28234-Q1 TMS320F28232 TMS320F28232-Q1 TMS320F28335, TMS320F28335-Q1, TMS320F28334, TMS320F28333 TMS320F28332, TMS320F28235, TMS320F28235-Q1 TMS320F28234, TMS320F28234-Q1, TMS320F28232, TMS320F28232-Q1 www.ti.com SPRS439Q – JUNE 2007 – REVISED AUGUST 2022 8.1.17 Peripheral Frames 0, 1, 2, 3 (PFn) The device segregates peripherals into four sections. The mapping of peripherals is as follows: PF0: PF1: PF2: PF3: PIE: PIE Interrupt Enable and Control Registers Plus PIE Vector Table Flash: Flash Wait State Registers XINTF: External Interface Registers DMA DMA Registers Timers: CPU-Timers 0, 1, 2 Registers CSM: Code Security Module KEY Registers ADC: ADC Result Registers (dual-mapped) eCAN: eCAN Mailbox and Control Registers GPIO: GPIO MUX Configuration and Control Registers ePWM: Enhanced Pulse Width Modulator Module and Registers (dual mapped) eCAP: Enhanced Capture Module and Registers eQEP: Enhanced Quadrature Encoder Pulse Module and Registers SYS: System Control Registers SCI: Serial Communications Interface (SCI) Control and RX/TX Registers SPI: Serial Port Interface (SPI) Control and RX/TX Registers ADC: ADC Status, Control, and Result Register I2C: Inter-Integrated Circuit Module and Registers XINT External Interrupt Registers McBSP Multichannel Buffered Serial Port Registers ePWM: Enhanced Pulse Width Modulator Module and Registers (dual mapped) 8.1.18 General-Purpose Input/Output (GPIO) Multiplexer Most of the peripheral signals are multiplexed with GPIO signals. This enables the user to use a pin as GPIO if the peripheral signal or function is not used. On reset, GPIO pins are configured as inputs. The user can individually program each pin for GPIO mode or peripheral signal mode. For specific inputs, the user can also select the number of input qualification cycles. This is to filter unwanted noise glitches. The GPIO signals can also be used to bring the device out of specific low-power modes. 8.1.19 32-Bit CPU-Timers (0, 1, 2) CPU-Timers 0, 1, and 2 are identical 32-bit timers with presettable periods and with 16-bit clock prescaling. The timers have a 32-bit count down register, which generates an interrupt when the counter reaches zero. The counter is decremented at the CPU clock speed divided by the prescale value setting. When the counter reaches zero, it is automatically reloaded with a 32-bit period value. CPU-Timer 2 is reserved for Real-Time OS (RTOS)/BIOS applications. It is connected to INT14 of the CPU. If DSP/BIOS or SYS/BIOS is not being used, CPU-Timer 2 is available for general use. CPU-Timer 1 is for general use and can be connected to INT13 of the CPU. CPU-Timer 0 is also for general use and is connected to the PIE block. Copyright © 2022 Texas Instruments Incorporated Submit Document Feedback Product Folder Links: TMS320F28335 TMS320F28335-Q1 TMS320F28334 TMS320F28333 TMS320F28332 TMS320F28235 TMS320F28235-Q1 TMS320F28234 TMS320F28234-Q1 TMS320F28232 TMS320F28232-Q1 113 TMS320F28335, TMS320F28335-Q1, TMS320F28334, TMS320F28333 TMS320F28332, TMS320F28235, TMS320F28235-Q1 TMS320F28234, TMS320F28234-Q1, TMS320F28232, TMS320F28232-Q1 www.ti.com SPRS439Q – JUNE 2007 – REVISED AUGUST 2022 8.1.20 Control Peripherals The 2833x/2823x devices support the following peripherals which are used for embedded control and communication: ePWM: The enhanced PWM peripheral supports independent and complementary PWM generation, adjustable dead-band generation for leading and trailing edges, latched and cycle-by-cycle trip mechanism. Some of the PWM pins support HRPWM features. The ePWM registers are supported by the DMA to reduce the overhead for servicing this peripheral. eCAP: The enhanced capture peripheral uses a 32-bit time base and registers up to four programmable events in continuous/one-shot capture modes. This peripheral can also be configured to generate an auxiliary PWM signal. eQEP: The enhanced QEP peripheral uses a 32-bit position counter, supports low-speed measurement using capture unit and high-speed measurement using a 32-bit unit timer. This peripheral has a watchdog timer to detect motor stall and input error detection logic to identify simultaneous edge transition in QEP signals. ADC: The ADC block is a 12-bit converter, single ended, 16-channels. It contains two sampleand-hold units for simultaneous sampling. The ADC registers are supported by the DMA to reduce the overhead for servicing this peripheral. 8.1.21 Serial Port Peripherals The devices support the following serial communication peripherals: 114 eCAN: This is the enhanced version of the CAN peripheral. It supports 32 mailboxes, timestamping of messages, and is compliant with ISO 11898-1 (CAN 2.0B). McBSP: The multichannel buffered serial port (McBSP) connects to E1/T1 lines, phone-quality CODECs for modem applications or high-quality stereo audio DAC devices. The McBSP receive and transmit registers are supported by the DMA to significantly reduce the overhead for servicing this peripheral. Each McBSP module can be configured as an SPI as required. SPI: The SPI is a high-speed, synchronous serial I/O port that allows a serial bit stream of programmed length (1 to 16 bits) to be shifted into and out of the device at a programmable bit-transfer rate. Normally, the SPI is used for communications between the MCU and external peripherals or another processor. Typical applications include external I/O or peripheral expansion through devices such as shift registers, display drivers, and ADCs. Multidevice communications are supported by the master/slave operation of the SPI. On the 2833x/2823x, the SPI contains a 16-level receive and transmit FIFO for reducing interrupt servicing overhead. SCI: The serial communications interface is a 2-wire asynchronous serial port, commonly known as UART. The SCI contains a 16-level receive and transmit FIFO for reducing interrupt servicing overhead. I2C: The inter-integrated circuit (I2C) module provides an interface between an MCU and other devices compliant with Philips Semiconductors Inter-IC bus (I2C-bus) specification version 2.1 and connected by way of an I2C-bus. External components attached to this 2-wire serial bus can transmit/receive up to 8-bit data to/from the MCU through the I2C module. On the 2833x/2823x, the I2C contains a 16-level receive and transmit FIFO for reducing interrupt servicing overhead. Submit Document Feedback Copyright © 2022 Texas Instruments Incorporated Product Folder Links: TMS320F28335 TMS320F28335-Q1 TMS320F28334 TMS320F28333 TMS320F28332 TMS320F28235 TMS320F28235-Q1 TMS320F28234 TMS320F28234-Q1 TMS320F28232 TMS320F28232-Q1 TMS320F28335, TMS320F28335-Q1, TMS320F28334, TMS320F28333 TMS320F28332, TMS320F28235, TMS320F28235-Q1 TMS320F28234, TMS320F28234-Q1, TMS320F28232, TMS320F28232-Q1 www.ti.com SPRS439Q – JUNE 2007 – REVISED AUGUST 2022 8.2 Peripherals The integrated peripherals of the 2833x and 2823x devices are described in the following subsections: • 6-channel Direct Memory Access (DMA) • Three 32-bit CPU-Timers • Up to six enhanced PWM modules (ePWM1, ePWM2, ePWM3, ePWM4, ePWM5, ePWM6) • Up to six enhanced capture modules (eCAP1, eCAP2, eCAP3, eCAP4, eCAP5, eCAP6) • Up to two enhanced QEP modules (eQEP1, eQEP2) • Enhanced analog-to-digital converter (ADC) module • Up to two enhanced controller area network (eCAN) modules (eCAN-A, eCAN-B) • Up to three serial communications interface modules (SCI-A, SCI-B, SCI-C) • One serial peripheral interface (SPI) module (SPI-A) • Inter-integrated circuit (I2C) module • Up to two multichannel buffered serial port (McBSP-A, McBSP-B) modules • Digital I/O and shared pin functions • External Interface (XINTF) 8.2.1 DMA Overview Features: • 6 channels with independent PIE interrupts • Trigger sources: – ePWM SOCA/SOCB – ADC Sequencer 1 and Sequencer 2 – McBSP-A and McBSP-B transmit and receive logic – XINT1–7 and XINT13 – CPU timers – Software • Data sources and destinations: – L4–L7 16K × 16 SARAM – All XINTF zones – ADC Memory Bus mapped RESULT registers – McBSP-A and McBSP-B transmit and receive buffers – ePWM registers • Word Size: 16-bit or 32-bit (McBSPs limited to 16-bit) • Throughput: 4 cycles/word (5 cycles/word for McBSP reads) Copyright © 2022 Texas Instruments Incorporated Submit Document Feedback Product Folder Links: TMS320F28335 TMS320F28335-Q1 TMS320F28334 TMS320F28333 TMS320F28332 TMS320F28235 TMS320F28235-Q1 TMS320F28234 TMS320F28234-Q1 TMS320F28232 TMS320F28232-Q1 115 TMS320F28335, TMS320F28335-Q1, TMS320F28334, TMS320F28333 TMS320F28332, TMS320F28235, TMS320F28235-Q1 TMS320F28234, TMS320F28234-Q1, TMS320F28232, TMS320F28232-Q1 www.ti.com SPRS439Q – JUNE 2007 – REVISED AUGUST 2022 ADC CPU ADC PF0 ADC control I/F RESULT and ADC registers RESULT DMA registers PF0 I/F L4 I/F L4 SARAM (4Kx16) L5 I/F L5 SARAM (4Kx16) L6 I/F L6 SARAM (4Kx16) L7 I/F L7 SARAM (4Kx16) INT7 ADC PF2 I/F External interrupts CPU timers PIE DINT[CH1:CH6] XINTF zones interface XINTF memory zones CPU bus CPU McBSP A PF3 I/F Event triggers McBSP B ePWM/ (A) HRPWM registers DMA 6-ch DMA bus A. The ePWM and HRPWM registers must be remapped to PF3 (through bit 0 of the MAPCNF register) before they can be accessed by the DMA. The ePWM or HRPWM connection to DMA is not present in silicon revision 0. Figure 8-1. DMA Functional Block Diagram 116 Submit Document Feedback Copyright © 2022 Texas Instruments Incorporated Product Folder Links: TMS320F28335 TMS320F28335-Q1 TMS320F28334 TMS320F28333 TMS320F28332 TMS320F28235 TMS320F28235-Q1 TMS320F28234 TMS320F28234-Q1 TMS320F28232 TMS320F28232-Q1 TMS320F28335, TMS320F28335-Q1, TMS320F28334, TMS320F28333 TMS320F28332, TMS320F28235, TMS320F28235-Q1 TMS320F28234, TMS320F28234-Q1, TMS320F28232, TMS320F28232-Q1 www.ti.com SPRS439Q – JUNE 2007 – REVISED AUGUST 2022 8.2.2 32-Bit CPU-Timer 0, CPU-Timer 1, CPU-Timer 2 There are three 32-bit CPU-timers on the devices (CPU-Timer 0, CPU-Timer 1, CPU-Timer 2). CPU-Timer 2 is reserved for DSP/BIOS or SYS/BIOS. CPU-Timer 0 and CPU-Timer 1 can be used in user applications. These timers are different from the timers that are present in the ePWM modules. Note If the application is not using DSP/BIOS or SYS/BIOS, then CPU-Timer 2 can be used in the application. Reset Timer Reload 16-Bit Timer Divide-Down TDDRH:TDDR 32-Bit Timer Period PRDH:PRD 16-Bit Prescale Counter PSCH:PSC SYSCLKOUT TCR.4 (Timer Start Status) 32-Bit Counter TIMH:TIM Borrow Borrow TINT Figure 8-2. CPU-Timers The timer interrupt signals ( TINT0, TINT1, TINT2) are connected as shown in Figure 8-3. INT1 to INT12 PIE TINT0 CPU-TIMER 0 28x CPU TINT1 CPU-TIMER 1 INT13 XINT13 INT14 A. B. TINT2 CPU-TIMER 2 (Reserved for DSP/BIOS or SYS/BIOS) The timer registers are connected to the memory bus of the C28x processor. The timing of the timers is synchronized to SYSCLKOUT of the processor clock. Figure 8-3. CPU-Timer Interrupt Signals and Output Signal The general operation of the timer is as follows: The 32-bit counter register "TIMH:TIM" is loaded with the value in the period register "PRDH:PRD". The counter register decrements at the SYSCLKOUT rate of the C28x. When the counter reaches 0, a timer interrupt output signal generates an interrupt pulse. The registers listed in Table 8-3 are used to configure the timers. For more information, see the System Control and Interrupts chapter of the TMS320x2833x, TMS320x2823x Real-Time Microcontrollers Technical Reference Manual. Copyright © 2022 Texas Instruments Incorporated Submit Document Feedback Product Folder Links: TMS320F28335 TMS320F28335-Q1 TMS320F28334 TMS320F28333 TMS320F28332 TMS320F28235 TMS320F28235-Q1 TMS320F28234 TMS320F28234-Q1 TMS320F28232 TMS320F28232-Q1 117 TMS320F28335, TMS320F28335-Q1, TMS320F28334, TMS320F28333 TMS320F28332, TMS320F28235, TMS320F28235-Q1 TMS320F28234, TMS320F28234-Q1, TMS320F28232, TMS320F28232-Q1 www.ti.com SPRS439Q – JUNE 2007 – REVISED AUGUST 2022 Table 8-3. CPU-Timers 0, 1, 2 Configuration and Control Registers NAME ADDRESS SIZE (x16) TIMER0TIM 0x0C00 1 CPU-Timer 0, Counter Register TIMER0TIMH 0x0C01 1 CPU-Timer 0, Counter Register High TIMER0PRD 0x0C02 1 CPU-Timer 0, Period Register TIMER0PRDH 0x0C03 1 CPU-Timer 0, Period Register High TIMER0TCR 0x0C04 1 CPU-Timer 0, Control Register Reserved 0x0C05 1 TIMER0TPR 0x0C06 1 CPU-Timer 0, Prescale Register TIMER0TPRH 0x0C07 1 CPU-Timer 0, Prescale Register High TIMER1TIM 0x0C08 1 CPU-Timer 1, Counter Register TIMER1TIMH 0x0C09 1 CPU-Timer 1, Counter Register High TIMER1PRD 0x0C0A 1 CPU-Timer 1, Period Register TIMER1PRDH 0x0C0B 1 CPU-Timer 1, Period Register High TIMER1TCR 0x0C0C 1 CPU-Timer 1, Control Register Reserved 0x0C0D 1 TIMER1TPR 0x0C0E 1 CPU-Timer 1, Prescale Register TIMER1TPRH 0x0C0F 1 CPU-Timer 1, Prescale Register High TIMER2TIM 0x0C10 1 CPU-Timer 2, Counter Register TIMER2TIMH 0x0C11 1 CPU-Timer 2, Counter Register High TIMER2PRD 0x0C12 1 CPU-Timer 2, Period Register TIMER2PRDH 0x0C13 1 CPU-Timer 2, Period Register High TIMER2TCR 0x0C14 1 CPU-Timer 2, Control Register Reserved 0x0C15 1 TIMER2TPR 0x0C16 1 CPU-Timer 2, Prescale Register 0x0C17 1 CPU-Timer 2, Prescale Register High 0x0C18 – 0x0C3F 40 TIMER2TPRH Reserved 118 Submit Document Feedback DESCRIPTION Copyright © 2022 Texas Instruments Incorporated Product Folder Links: TMS320F28335 TMS320F28335-Q1 TMS320F28334 TMS320F28333 TMS320F28332 TMS320F28235 TMS320F28235-Q1 TMS320F28234 TMS320F28234-Q1 TMS320F28232 TMS320F28232-Q1 TMS320F28335, TMS320F28335-Q1, TMS320F28334, TMS320F28333 TMS320F28332, TMS320F28235, TMS320F28235-Q1 TMS320F28234, TMS320F28234-Q1, TMS320F28232, TMS320F28232-Q1 www.ti.com SPRS439Q – JUNE 2007 – REVISED AUGUST 2022 8.2.3 Enhanced PWM Modules The 2833x/2823x devices contain up to six enhanced PWM (ePWM) modules (ePWM1 to ePWM6). Figure 8-4 shows the time-base counter synchronization scheme 3. Figure 8-5 shows the signal interconnections with the ePWM. Table 8-4 shows the complete ePWM register set per module and Table 8-5 shows the remapped register configuration. eCAP4 EPWM1SYNCI GPIO MUX ePWM1 EPWM1SYNCO SYNCI eCAP1 EPWM4SYNCI EPWM2SYNCI ePWM4 ePWM2 EPWM4SYNCO EPWM2SYNCO EPWM5SYNCI EPWM3SYNCI ePWM5 ePWM3 EPWM5SYNCO EPWM3SYNCO EPWM6SYNCI ePWM6 A. By default, ePWM and HRPWM registers are mapped to Peripheral Frame 1 (PF1). Table 8-4 shows this configuration. To re-map the registers to Peripheral Frame 3 (PF3) to enable DMA access, bit 0 (MAPEPWM) of MAPCNF register (address 0x702E) must be set to 1. Table 8-5 shows the remapped configuration. Figure 8-4. Time-Base Counter Synchronization Scheme 3 Copyright © 2022 Texas Instruments Incorporated Submit Document Feedback Product Folder Links: TMS320F28335 TMS320F28335-Q1 TMS320F28334 TMS320F28333 TMS320F28332 TMS320F28235 TMS320F28235-Q1 TMS320F28234 TMS320F28234-Q1 TMS320F28232 TMS320F28232-Q1 119 TMS320F28335, TMS320F28335-Q1, TMS320F28334, TMS320F28333 TMS320F28332, TMS320F28235, TMS320F28235-Q1 TMS320F28234, TMS320F28234-Q1, TMS320F28232, TMS320F28232-Q1 www.ti.com SPRS439Q – JUNE 2007 – REVISED AUGUST 2022 Table 8-4. ePWM Control and Status Registers (Default Configuration in PF1) ePWM1 ePWM2 ePWM3 ePWM4 ePWM5 ePWM6 SIZE (x16) / #SHADOW TBCTL 0x6800 0x6840 0x6880 0x68C0 0x6900 0x6940 1/0 Time Base Control Register TBSTS 0x6801 0x6841 0x6881 0x68C1 0x6901 0x6941 1/0 Time Base Status Register TBPHSHR 0x6802 0x6842 0x6882 0x68C2 0x6902 0x6942 1/0 Time Base Phase HRPWM Register TBPHS 0x6803 0x6843 0x6883 0x68C3 0x6903 0x6943 1/0 Time Base Phase Register TBCTR 0x6804 0x6844 0x6884 0x68C4 0x6904 0x6944 1/0 Time Base Counter Register TBPRD 0x6805 0x6845 0x6885 0x68C5 0x6905 0x6945 1/1 Time Base Period Register Set CMPCTL 0x6807 0x6847 0x6887 0x68C7 0x6907 0x6947 1/0 Counter Compare Control Register CMPAHR 0x6808 0x6848 0x6888 0x68C8 0x6908 0x6948 1/1 Time Base Compare A HRPWM Register CMPA 0x6809 0x6849 0x6889 0x68C9 0x6909 0x6949 1/1 Counter Compare A Register Set CMPB 0x680A 0x684A 0x688A 0x68CA 0x690A 0x694A 1/1 Counter Compare B Register Set AQCTLA 0x680B 0x684B 0x688B 0x68CB 0x690B 0x694B 1/0 Action Qualifier Control Register For Output A AQCTLB 0x680C 0x684C 0x688C 0x68CC 0x690C 0x694C 1/0 Action Qualifier Control Register For Output B AQSFRC 0x680D 0x684D 0x688D 0x68CD 0x690D 0x694D 1/0 Action Qualifier Software Force Register AQCSFRC 0x680E 0x684E 0x688E 0x68CE 0x690E 0x694E 1/1 Action Qualifier Continuous S/W Force Register Set DBCTL 0x680F 0x684F 0x688F 0x68CF 0x690F 0x694F 1/1 Dead-Band Generator Control Register DBRED 0x6810 0x6850 0x6890 0x68D0 0x6910 0x6950 1/0 Dead-Band Generator Rising Edge Delay Count Register DBFED 0x6811 0x6851 0x6891 0x68D1 0x6911 0x6951 1/0 Dead-Band Generator Falling Edge Delay Count Register TZSEL 0x6812 0x6852 0x6892 0x68D2 0x6912 0x6952 1/0 Trip Zone Select Register(1) TZCTL 0x6814 0x6854 0x6894 0x68D4 0x6914 0x6954 1/0 Trip Zone Control Register(1) TZEINT 0x6815 0x6855 0x6895 0x68D5 0x6915 0x6955 1/0 Trip Zone Enable Interrupt Register(1) TZFLG 0x6816 0x6856 0x6896 0x68D6 0x6916 0x6956 1/0 Trip Zone Flag Register TZCLR 0x6817 0x6857 0x6897 0x68D7 0x6917 0x6957 1/0 Trip Zone Clear Register(1) TZFRC 0x6818 0x6858 0x6898 0x68D8 0x6918 0x6958 1/0 Trip Zone Force Register(1) ETSEL 0x6819 0x6859 0x6899 0x68D9 0x6919 0x6959 1/0 Event Trigger Selection Register ETPS 0x681A 0x685A 0x689A 0x68DA 0x691A 0x695A 1/0 Event Trigger Prescale Register ETFLG 0x681B 0x685B 0x689B 0x68DB 0x691B 0x695B 1/0 Event Trigger Flag Register ETCLR 0x681C 0x685C 0x689C 0x68DC 0x691C 0x695C 1/0 Event Trigger Clear Register ETFRC 0x681D 0x685D 0x689D 0x68DD 0x691D 0x695D 1/0 Event Trigger Force Register PCCTL 0x681E 0x685E 0x689E 0x68DE 0x691E 0x695E 1/0 PWM Chopper Control Register HRCNFG 0x6820 0x6860 0x68A0 0x68E0 0x6920 0x6960 1/0 HRPWM Configuration Register(1) NAME (1) 120 DESCRIPTION Registers that are EALLOW protected. Submit Document Feedback Copyright © 2022 Texas Instruments Incorporated Product Folder Links: TMS320F28335 TMS320F28335-Q1 TMS320F28334 TMS320F28333 TMS320F28332 TMS320F28235 TMS320F28235-Q1 TMS320F28234 TMS320F28234-Q1 TMS320F28232 TMS320F28232-Q1 TMS320F28335, TMS320F28335-Q1, TMS320F28334, TMS320F28333 TMS320F28332, TMS320F28235, TMS320F28235-Q1 TMS320F28234, TMS320F28234-Q1, TMS320F28232, TMS320F28232-Q1 www.ti.com SPRS439Q – JUNE 2007 – REVISED AUGUST 2022 Table 8-5. ePWM Control and Status Registers (Remapped Configuration in PF3 - DMA-Accessible) ePWM1 ePWM2 ePWM3 ePWM4 ePWM5 ePWM6 SIZE (x16) / #SHADOW TBCTL 0x5800 0x5840 0x5880 0x58C0 0x5900 0x5940 1/0 Time Base Control Register TBSTS 0x5801 0x5841 0x5881 0x58C1 0x5901 0x5941 1/0 Time Base Status Register TBPHSHR 0x5802 0x5842 0x5882 0x58C2 0x5902 0x5942 1/0 Time Base Phase HRPWM Register TBPHS 0x5803 0x5843 0x5883 0x58C3 0x5903 0x5943 1/0 Time Base Phase Register TBCTR 0x5804 0x5844 0x5884 0x58C4 0x5904 0x5944 1/0 Time Base Counter Register TBPRD 0x5805 0x5845 0x5885 0x58C5 0x5905 0x5945 1/1 Time Base Period Register Set CMPCTL 0x5807 0x5847 0x5887 0x58C7 0x5907 0x5947 1/0 Counter Compare Control Register CMPAHR 0x5808 0x5848 0x5888 0x58C8 0x5908 0x5948 1/1 Time Base Compare A HRPWM Register CMPA 0x5809 0x5849 0x5889 0x58C9 0x5909 0x5949 1/1 Counter Compare A Register Set CMPB 0x580A 0x584A 0x588A 0x58CA 0x590A 0x594A 1/1 Counter Compare B Register Set AQCTLA 0x580B 0x584B 0x588B 0x58CB 0x590B 0x594B 1/0 Action Qualifier Control Register For Output A AQCTLB 0x580C 0x584C 0x588C 0x58CC 0x590C 0x594C 1/0 Action Qualifier Control Register For Output B AQSFRC 0x580D 0x584D 0x588D 0x58CD 0x590D 0x594D 1/0 Action Qualifier Software Force Register AQCSFRC 0x580E 0x584E 0x588E 0x58CE 0x590E 0x594E 1/1 Action Qualifier Continuous S/W Force Register Set DBCTL 0x580F 0x584F 0x588F 0x58CF 0x590F 0x594F 1/1 Dead-Band Generator Control Register DBRED 0x5810 0x5850 0x5890 0x58D0 0x5910 0x5950 1/0 Dead-Band Generator Rising Edge Delay Count Register DBFED 0x5811 0x5851 0x5891 0x58D1 0x5911 0x5951 1/0 Dead-Band Generator Falling Edge Delay Count Register TZSEL 0x5812 0x5852 0x5892 0x58D2 0x5912 0x5952 1/0 Trip Zone Select Register(1) TZCTL 0x5814 0x5854 0x5894 0x58D4 0x5914 0x5954 1/0 Trip Zone Control Register(1) TZEINT 0x5815 0x5855 0x5895 0x58D5 0x5915 0x5955 1/0 Trip Zone Enable Interrupt Register(1) TZFLG 0x5816 0x5856 0x5896 0x58D6 0x5916 0x5956 1/0 Trip Zone Flag Register TZCLR 0x5817 0x5857 0x5897 0x58D7 0x5917 0x5957 1/0 Trip Zone Clear Register(1) TZFRC 0x5818 0x5858 0x5898 0x58D8 0x5918 0x5958 1/0 Trip Zone Force Register(1) ETSEL 0x5819 0x5859 0x5899 0x58D9 0x5919 0x5959 1/0 Event Trigger Selection Register ETPS 0x581A 0x585A 0x589A 0x58DA 0x591A 0x595A 1/0 Event Trigger Prescale Register ETFLG 0x581B 0x585B 0x589B 0x58DB 0x591B 0x595B 1/0 Event Trigger Flag Register ETCLR 0x581C 0x585C 0x589C 0x58DC 0x591C 0x595C 1/0 Event Trigger Clear Register ETFRC 0x581D 0x585D 0x589D 0x58DD 0x591D 0x595D 1/0 Event Trigger Force Register PCCTL 0x581E 0x585E 0x589E 0x58DE 0x591E 0x595E 1/0 PWM Chopper Control Register HRCNFG 0x5820 0x5860 0x58A0 058E0 0x5920 0x5960 1/0 HRPWM Configuration Register(1) NAME (1) DESCRIPTION Registers that are EALLOW protected. Copyright © 2022 Texas Instruments Incorporated Submit Document Feedback Product Folder Links: TMS320F28335 TMS320F28335-Q1 TMS320F28334 TMS320F28333 TMS320F28332 TMS320F28235 TMS320F28235-Q1 TMS320F28234 TMS320F28234-Q1 TMS320F28232 TMS320F28232-Q1 121 TMS320F28335, TMS320F28335-Q1, TMS320F28334, TMS320F28333 TMS320F28332, TMS320F28235, TMS320F28235-Q1 TMS320F28234, TMS320F28234-Q1, TMS320F28232, TMS320F28232-Q1 www.ti.com SPRS439Q – JUNE 2007 – REVISED AUGUST 2022 Time−base (TB) Sync in/out select Mux CTR=ZERO CTR=CMPB Disabled TBPRD shadow (16) TBPRD active (16) CTR=PRD EPWMxSYNCO TBCTL[SYNCOSEL] TBCTL[PHSEN] EPWMxSYNCI Counter up/down (16 bit) CTR=ZERO CTR_Dir TBCTR active (16) TBPHSHR (8) 16 8 TBPHS active (24) Phase control Counter compare (CC) CTR=CMPA CMPAHR (8) 16 TBCTL[SWFSYNC] (software forced sync) Action qualifier (AQ) CTR = PRD CTR = ZERO CTR = CMPA CTR = CMPB CTR_Dir 8 Event trigger and interrupt (ET) EPWMxINT EPWMxSOCA EPWMxSOCB HRPWM CMPA active (24) EPWMxAO EPWMA CMPA shadow (24) CTR=CMPB Dead band (DB) 16 PWM chopper (PC) EPWMxBO EPWMB CMPB active (16) CMPB shadow (16) Trip zone (TZ) EPWMxTZINT CTR = ZERO TZ1 to TZ6 Figure 8-5. ePWM Submodules Showing Critical Internal Signal Interconnections 8.2.4 High-Resolution PWM (HRPWM) The HRPWM module offers PWM resolution (time granularity) which is significantly better than what can be achieved using conventionally derived digital PWM methods. The key points for the HRPWM module are: • Significantly extends the time resolution capabilities of conventionally derived digital PWM • Typically used when effective PWM resolution falls below approximately 9 or 10 bits. This occurs at PWM frequencies greater than approximately 200 kHz when using a CPU/System clock of 100 MHz. • This capability can be used in both duty cycle and phase-shift control methods. • Finer time granularity control or edge positioning is controlled through extensions to the Compare A and Phase registers of the ePWM module. • HRPWM capabilities are offered only on the A signal path of an ePWM module (that is, on the EPWMxA output). EPWMxB output has conventional PWM capabilities. 122 Submit Document Feedback Copyright © 2022 Texas Instruments Incorporated Product Folder Links: TMS320F28335 TMS320F28335-Q1 TMS320F28334 TMS320F28333 TMS320F28332 TMS320F28235 TMS320F28235-Q1 TMS320F28234 TMS320F28234-Q1 TMS320F28232 TMS320F28232-Q1 TMS320F28335, TMS320F28335-Q1, TMS320F28334, TMS320F28333 TMS320F28332, TMS320F28235, TMS320F28235-Q1 TMS320F28234, TMS320F28234-Q1, TMS320F28232, TMS320F28232-Q1 www.ti.com SPRS439Q – JUNE 2007 – REVISED AUGUST 2022 8.2.5 Enhanced CAP Modules The 2833x/2823x device contains up to six enhanced capture (eCAP) modules (eCAP1 to eCAP6). Figure 8-6 shows a functional block diagram of a module. SYNC CTRPHS (Phase Register - 32-bit) SYNCIn SYNCOut TSCTR (Counter - 32-bit) APWM Mode CTR_OVF OVF RST Delta Mode CTR [0-31] PRD [0-31] PWM Compare Logic CMP [0-31] 32 CTR=PRD CTR [0-31] CTR=CMP 32 CAP1 (APRD Active) APRD Shadow 32 32 32 LD1 Polarity Select CMP [0-31] CAP2 (ACMP Active) 32 LD MODE SELECT 32 PRD [0-31] LD 32 CAP3 (APRD Shadow) LD 32 CAP4 (ACMP Shadow) LD Polarity Select LD2 Event Qualifier ACMP Shadow eCAPx Event Prescale LD3 Polarity Select LD4 Polarity Select 4 Capture Events 4 CEVT[1:4] to PIE Interrupt Trigger and Flag Control CTR_OVF Continuous/ One-Shot Capture Control CTR=PRD CTR=CMP Figure 8-6. eCAP Functional Block Diagram Copyright © 2022 Texas Instruments Incorporated Submit Document Feedback Product Folder Links: TMS320F28335 TMS320F28335-Q1 TMS320F28334 TMS320F28333 TMS320F28332 TMS320F28235 TMS320F28235-Q1 TMS320F28234 TMS320F28234-Q1 TMS320F28232 TMS320F28232-Q1 123 TMS320F28335, TMS320F28335-Q1, TMS320F28334, TMS320F28333 TMS320F28332, TMS320F28235, TMS320F28235-Q1 TMS320F28234, TMS320F28234-Q1, TMS320F28232, TMS320F28232-Q1 www.ti.com SPRS439Q – JUNE 2007 – REVISED AUGUST 2022 The eCAP modules are clocked at the SYSCLKOUT rate. The clock enable bits (ECAP1ENCLK, ECAP2ENCLK, ECAP3ENCLK, ECAP4ENCLK, ECAP5ENCLK, ECAP6ENCLK) in the PCLKCR1 register are used to turn off the eCAP modules individually (for low power operation). Upon reset, ECAP1ENCLK, ECAP2ENCLK, ECAP3ENCLK, ECAP4ENCLK, ECAP5ENCLK, and ECAP6ENCLK are set to low, indicating that the peripheral clock is off. Table 8-6. eCAP Control and Status Registers eCAP1 eCAP2 eCAP3 eCAP4 eCAP5 eCAP6 SIZE (x16) TSCTR 0x6A00 0x6A20 0x6A40 0x6A60 0x6A80 0x6AA0 2 Timestamp Counter CTRPHS 0x6A02 0x6A22 0x6A42 0x6A62 0x6A82 0x6AA2 2 Counter Phase Offset Value Register CAP1 0x6A04 0x6A24 0x6A44 0x6A64 0x6A84 0x6AA4 2 Capture 1 Register CAP2 0x6A06 0x6A26 0x6A46 0x6A66 0x6A86 0x6AA6 2 Capture 2 Register NAME DESCRIPTION CAP3 0x6A08 0x6A28 0x6A48 0x6A68 0x6A88 0x6AA8 2 Capture 3 Register CAP4 0x6A0A 0x6A2A 0x6A4A 0x6A6A 0x6A8A 0x6AAA 2 Capture 4 Register Reserved 0x6A0C0x6A12 0x6A2C-0x6 A32 0x6A4C0x6A52 0x6A6C0x6A72 0x6A8C-0 x6A92 0x6AAC0x6AB2 8 Reserved ECCTL1 0x6A14 0x6A34 0x6A54 0x6A74 0x6A94 0x6AB4 1 Capture Control Register 1 ECCTL2 0x6A15 0x6A35 0x6A55 0x6A75 0x6A95 0x6AB5 1 Capture Control Register 2 ECEINT 0x6A16 0x6A36 0x6A56 0x6A76 0x6A96 0x6AB6 1 Capture Interrupt Enable Register ECFLG 0x6A17 0x6A37 0x6A57 0x6A77 0x6A97 0x6AB7 1 Capture Interrupt Flag Register ECCLR 0x6A18 0x6A38 0x6A58 0x6A78 0x6A98 0x6AB8 1 Capture Interrupt Clear Register ECFRC 0x6A19 0x6A39 0x6A59 0x6A79 0x6A99 0x6AB9 1 Capture Interrupt Force Register Reserved 0x6A1A0x6A1F 0x6A3A0x6A3F 0x6A5A0x6A5F 0x6A7A0x6A7F 0x6A9A-0x 0x6ABA6A9F 0x6ABF 6 Reserved 124 Submit Document Feedback Copyright © 2022 Texas Instruments Incorporated Product Folder Links: TMS320F28335 TMS320F28335-Q1 TMS320F28334 TMS320F28333 TMS320F28332 TMS320F28235 TMS320F28235-Q1 TMS320F28234 TMS320F28234-Q1 TMS320F28232 TMS320F28232-Q1 TMS320F28335, TMS320F28335-Q1, TMS320F28334, TMS320F28333 TMS320F28332, TMS320F28235, TMS320F28235-Q1 TMS320F28234, TMS320F28234-Q1, TMS320F28232, TMS320F28232-Q1 www.ti.com SPRS439Q – JUNE 2007 – REVISED AUGUST 2022 8.2.6 Enhanced QEP Modules The device contains up to two enhanced quadrature encoder (eQEP) modules (eQEP1, eQEP2). Figure 8-7 shows the block diagram of the eQEP module. System Control Registers To CPU EQEPxENCLK Data Bus SYSCLKOUT QCPRD QCAPCTL QCTMR 16 16 16 Quadrature Capture Unit (QCAP) QCTMRLAT QCPRDLAT Registers Used by Multiple Units QUTMR QWDTMR QUPRD QWDPRD 32 16 QEPCTL QEPSTS UTOUT UTIME QFLG QWDOG QDECCTL 16 WDTOUT PIE QCLK EQEPxINT QDIR 16 QI Position Counter/ Control Unit (PCCU) QPOSLAT QS Quadrature Decoder PHE (QDU) PCSOUT QPOSSLAT QPOSILAT EQEPxAIN EQEPxA/XCLK EQEPxBIN EQEPxIIN EQEPxB/XDIR EQEPxIOUT EQEPxIOE GPIO MUX EQEPxSIN EQEPxSOUT EQEPxSOE 32 32 QPOSCNT QPOSCMP EQEPxI EQEPxS 16 QEINT QFRC QPOSINIT QPOSMAX QCLR QPOSCTL Enhanced QEP (eQEP) Peripheral Figure 8-7. eQEP Functional Block Diagram Copyright © 2022 Texas Instruments Incorporated Submit Document Feedback Product Folder Links: TMS320F28335 TMS320F28335-Q1 TMS320F28334 TMS320F28333 TMS320F28332 TMS320F28235 TMS320F28235-Q1 TMS320F28234 TMS320F28234-Q1 TMS320F28232 TMS320F28232-Q1 125 TMS320F28335, TMS320F28335-Q1, TMS320F28334, TMS320F28333 TMS320F28332, TMS320F28235, TMS320F28235-Q1 TMS320F28234, TMS320F28234-Q1, TMS320F28232, TMS320F28232-Q1 www.ti.com SPRS439Q – JUNE 2007 – REVISED AUGUST 2022 Table 8-7 provides a summary of the eQEP registers. Table 8-7. eQEP Control and Status Registers eQEP1 ADDRESS eQEP2 ADDRESS eQEP1 SIZE(x16)/ #SHADOW QPOSCNT 0x6B00 0x6B40 2/0 eQEP Position Counter QPOSINIT 0x6B02 0x6B42 2/0 eQEP Initialization Position Count QPOSMAX 0x6B04 0x6B44 2/0 eQEP Maximum Position Count QPOSCMP 0x6B06 0x6B46 2/1 eQEP Position-compare NAME REGISTER DESCRIPTION QPOSILAT 0x6B08 0x6B48 2/0 eQEP Index Position Latch QPOSSLAT 0x6B0A 0x6B4A 2/0 eQEP Strobe Position Latch QPOSLAT 0x6B0C 0x6B4C 2/0 eQEP Position Latch QUTMR 0x6B0E 0x6B4E 2/0 eQEP Unit Timer QUPRD 0x6B10 0x6B50 2/0 eQEP Unit Period Register QWDTMR 0x6B12 0x6B52 1/0 eQEP Watchdog Timer QWDPRD 0x6B13 0x6B53 1/0 eQEP Watchdog Period Register QDECCTL 0x6B14 0x6B54 1/0 eQEP Decoder Control Register QEPCTL 0x6B15 0x6B55 1/0 eQEP Control Register QCAPCTL 0x6B16 0x6B56 1/0 eQEP Capture Control Register QPOSCTL 0x6B17 0x6B57 1/0 eQEP Position-compare Control Register QEINT 0x6B18 0x6B58 1/0 eQEP Interrupt Enable Register QFLG 0x6B19 0x6B59 1/0 eQEP Interrupt Flag Register QCLR 0x6B1A 0x6B5A 1/0 eQEP Interrupt Clear Register QFRC 0x6B1B 0x6B5B 1/0 eQEP Interrupt Force Register QEPSTS 0x6B1C 0x6B5C 1/0 eQEP Status Register QCTMR 0x6B1D 0x6B5D 1/0 eQEP Capture Timer QCPRD 0x6B1E 0x6B5E 1/0 eQEP Capture Period Register QCTMRLAT 0x6B1F 0x6B5F 1/0 eQEP Capture Timer Latch 0x6B20 0x6B60 1/0 eQEP Capture Period Latch 0x6B21 – 0x6B3F 0x6B61 – 0x6B7F 31/0 QCPRDLAT Reserved 126 Submit Document Feedback Copyright © 2022 Texas Instruments Incorporated Product Folder Links: TMS320F28335 TMS320F28335-Q1 TMS320F28334 TMS320F28333 TMS320F28332 TMS320F28235 TMS320F28235-Q1 TMS320F28234 TMS320F28234-Q1 TMS320F28232 TMS320F28232-Q1 TMS320F28335, TMS320F28335-Q1, TMS320F28334, TMS320F28333 TMS320F28332, TMS320F28235, TMS320F28235-Q1 TMS320F28234, TMS320F28234-Q1, TMS320F28232, TMS320F28232-Q1 www.ti.com SPRS439Q – JUNE 2007 – REVISED AUGUST 2022 8.2.7 Analog-to-Digital Converter (ADC) Module A simplified functional block diagram of the ADC module is shown in Figure 8-8. The ADC module consists of a 12-bit ADC with a built-in sample-and-hold (S/H) circuit. Functions of the ADC module include: • • • • • • • 12-bit ADC core with built-in S/H Analog input: 0.0 V to 3.0 V (Voltages above 3.0 V produce full-scale conversion results.) Fast conversion rate: Up to 80 ns at 25-MHz ADC clock, 12.5 MSPS 16 dedicated ADC channels. 8 channels multiplexed per Sample/Hold Autosequencing capability provides up to 16 "autoconversions" in a single session. Each conversion can be programmed to select any 1 of 16 input channels Sequencer can be operated as two independent 8-state sequencers or as one large 16-state sequencer (that is, two cascaded 8-state sequencers) Sixteen result registers (individually addressable) to store conversion values – The digital value of the input analog voltage is derived by: , when ADCIN £ ADCLO Digital Value = 0 ( Digital Value = floor 4096 ´ • • • • • ADCIN - ADCLO 3 ( , when ADCLO < ADCIN < 3 V , when ADCIN ³ 3 V Digital Value = 4095 Multiple triggers as sources for the start-of-conversion (SOC) sequence – S/W - software immediate start – ePWM start of conversion – XINT2 ADC start of conversion Flexible interrupt control allows interrupt request on every end-of-sequence (EOS) or every other EOS. Sequencer can operate in "start/stop" mode, allowing multiple "time-sequenced triggers" to synchronize conversions. SOCA and SOCB triggers can operate independently in dual-sequencer mode. Sample-and-hold (S/H) acquisition time window has separate prescale control. The ADC module in the 2833x/2823x devices has been enhanced to provide flexible interface to ePWM peripherals. The ADC interface is built around a fast, 12-bit ADC module with a fast conversion rate of up to 80 ns at 25-MHz ADC clock. The ADC module has 16 channels, configurable as two independent 8-channel modules. The two independent 8-channel modules can be cascaded to form a 16-channel module. Although there are multiple input channels and two sequencers, there is only one converter in the ADC module. Figure 8-8 shows the block diagram of the ADC module. The two 8-channel modules have the capability to autosequence a series of conversions, each module has the choice of selecting any one of the respective eight channels available through an analog MUX. In the cascaded mode, the autosequencer functions as a single 16-channel sequencer. On each sequencer, once the conversion is complete, the selected channel value is stored in its respective RESULT register. Autosequencing allows the system to convert the same channel multiple times, allowing the user to perform oversampling algorithms. This gives increased resolution over traditional single-sampled conversion results. Copyright © 2022 Texas Instruments Incorporated Submit Document Feedback Product Folder Links: TMS320F28335 TMS320F28335-Q1 TMS320F28334 TMS320F28333 TMS320F28332 TMS320F28235 TMS320F28235-Q1 TMS320F28234 TMS320F28234-Q1 TMS320F28232 TMS320F28232-Q1 127 TMS320F28335, TMS320F28335-Q1, TMS320F28334, TMS320F28333 TMS320F28332, TMS320F28235, TMS320F28235-Q1 TMS320F28234, TMS320F28234-Q1, TMS320F28232, TMS320F28232-Q1 www.ti.com SPRS439Q – JUNE 2007 – REVISED AUGUST 2022 System Control Block ADCENCLK SYSCLKOUT High-Speed Prescaler HALT DSP HSPCLK Analog MUX Result Registers Result Reg 0 ADCINA0 70A8h Result Reg 1 S/H ADCINA7 12-Bit ADC Module Result Reg 7 70AFh Result Reg 8 70B0h Result Reg 15 70B7h ADCINB0 S/H ADCINB7 ADC Control Registers S/W EPWMSOCA GPIO/ XINT2_ADCSOC SOC Sequencer 1 Sequencer 2 S/W SOC EPWMSOCB Figure 8-8. Block Diagram of the ADC Module To obtain the specified accuracy of the ADC, proper board layout is very critical. To the best extent possible, traces leading to the ADCIN pins should not run in close proximity to the digital signal paths. This is to minimize switching noise on the digital lines from getting coupled to the ADC inputs. Furthermore, proper isolation techniques must be used to isolate the ADC module power pins ( VDD1A18, VDD2A18 , VDDA2, VDDAIO) from the digital supply.Figure 8-9 shows the ADC pin connections for the devices. Note 1. The ADC registers are accessed at the SYSCLKOUT rate. The internal timing of the ADC module is controlled by the high-speed peripheral clock (HSPCLK). 2. The behavior of the ADC module based on the state of the ADCENCLK and HALT signals is as follows: • ADCENCLK: On reset, this signal will be low. While reset is active-low ( XRS) the clock to the register will still function. This is necessary to make sure all registers and modes go into their default reset state. The analog module, however, will be in a low-power inactive state. As soon as reset goes high, then the clock to the registers will be disabled. When the user sets the ADCENCLK signal high, then the clocks to the registers will be enabled and the analog module will be enabled. There will be a certain time delay (ms range) before the ADC is stable and can be used. • HALT: This mode only affects the analog module. It does not affect the registers. In this mode, the ADC module goes into low-power mode. This mode also will stop the clock to the CPU, which will stop the HSPCLK; therefore, the ADC register logic will be turned off indirectly. 128 Submit Document Feedback Copyright © 2022 Texas Instruments Incorporated Product Folder Links: TMS320F28335 TMS320F28335-Q1 TMS320F28334 TMS320F28333 TMS320F28332 TMS320F28235 TMS320F28235-Q1 TMS320F28234 TMS320F28234-Q1 TMS320F28232 TMS320F28232-Q1 TMS320F28335, TMS320F28335-Q1, TMS320F28334, TMS320F28333 TMS320F28332, TMS320F28235, TMS320F28235-Q1 TMS320F28234, TMS320F28234-Q1, TMS320F28232, TMS320F28232-Q1 www.ti.com SPRS439Q – JUNE 2007 – REVISED AUGUST 2022 Figure 8-9 shows the ADC pin-biasing for internal reference and Figure 8-10 shows the ADC pin-biasing for external reference. ADC 16-Channel Analog Inputs ADCINA[7:0] ADCINB[7:0] ADCLO ADCREFIN Analog input 0−3 V with respect to ADCLO Connect to analog ground Connect to analog ground if internal reference is used 22 k ADC External Current Bias Resistor ADCRESEXT (A) ADC Reference Positive Output ADC Reference Medium Output ADCREFP ADCREFM VDD1A18 VDD2A18 VSS1AGND VSS2AGND Reference I/O Power A. B. C. 2.2 μF (A) 2.2 μF ADCREFP and ADCREFM should not be loaded by external circuitry ADC Analog Power Pin (1.9 V/1.8 V) ADC Analog Power Pin (1.9 V/1.8 V) ADC Analog Ground Pin ADC Analog Ground Pin VDDA2 VSSA2 ADC Analog Power Pin (3.3 V) VDDAIO VSSAIO ADC Analog Power Pin (3.3 V) ADC Analog I/O Ground Pin ADC Analog Ground Pin TAIYO YUDEN LMK212BJ225MG-T or equivalent External decoupling capacitors are recommended on all power pins. Analog inputs must be driven from an operational amplifier that does not degrade the ADC performance. Figure 8-9. ADC Pin Connections With Internal Reference Copyright © 2022 Texas Instruments Incorporated Submit Document Feedback Product Folder Links: TMS320F28335 TMS320F28335-Q1 TMS320F28334 TMS320F28333 TMS320F28332 TMS320F28235 TMS320F28235-Q1 TMS320F28234 TMS320F28234-Q1 TMS320F28232 TMS320F28232-Q1 129 TMS320F28335, TMS320F28335-Q1, TMS320F28334, TMS320F28333 TMS320F28332, TMS320F28235, TMS320F28235-Q1 TMS320F28234, TMS320F28234-Q1, TMS320F28232, TMS320F28232-Q1 www.ti.com SPRS439Q – JUNE 2007 – REVISED AUGUST 2022 ADC 16-Channel Analog Inputs ADCINA[7:0] ADCINB[7:0] ADCLO ADCREFIN ADC External Current Bias Resistor ADCRESEXT ADC Reference Positive Output ADCREFP ADC Reference Medium Output ADCREFM Analog input 0-3 V with respect to ADCLO Connect to Analog Ground (D) Connect to 1.500, 1.024, or 2.048-V precision source 22 k (A) 2.2 μF (A) 2.2 μF VDD1A18 VDD2A18 ADC Analog Power Pin (1.9 V/1.8 V) ADC Analog Power Pin (1.9 V/1.8 V) ADC Analog Ground Pin ADC Analog Ground Pin VSS1AGND VSS2AGND Reference I/O Power A. B. C. D. ADCREFP and ADCREFM should not be loaded by external circuitry VDDA2 VSSA2 ADC Analog Power Pin (3.3 V) ADC Analog Ground Pin VDDAIO VSSAIO ADC Analog Power Pin (3.3 V) ADC Analog I/O Ground Pin TAIYO YUDEN LMK212BJ225MG-T or equivalent External decoupling capacitors are recommended on all power pins. Analog inputs must be driven from an operational amplifier that does not degrade the ADC performance. External voltage on ADCREFIN is enabled by changing bits 15:14 in the ADC Reference Select register depending on the voltage used on this pin. TI recommends TI part REF3020 or equivalent for 2.048-V generation. Overall gain accuracy will be determined by accuracy of this voltage source. Figure 8-10. ADC Pin Connections With External Reference Note The temperature rating of any recommended component must match the rating of the end product. 130 Submit Document Feedback Copyright © 2022 Texas Instruments Incorporated Product Folder Links: TMS320F28335 TMS320F28335-Q1 TMS320F28334 TMS320F28333 TMS320F28332 TMS320F28235 TMS320F28235-Q1 TMS320F28234 TMS320F28234-Q1 TMS320F28232 TMS320F28232-Q1 TMS320F28335, TMS320F28335-Q1, TMS320F28334, TMS320F28333 TMS320F28332, TMS320F28235, TMS320F28235-Q1 TMS320F28234, TMS320F28234-Q1, TMS320F28232, TMS320F28232-Q1 www.ti.com SPRS439Q – JUNE 2007 – REVISED AUGUST 2022 8.2.7.1 ADC Connections if the ADC Is Not Used It is recommended to keep the connections for the analog power pins, even if the ADC is not used. Following is a summary of how the ADC pins should be connected, if the ADC is not used in an application: • VDD1A18/VDD2A18 – Connect to VDD • VDDA2, VDDAIO – Connect to VDDIO • VSS1AGND/VSS2AGND, VSSA2, VSSAIO – Connect to VSS • ADCLO – Connect to VSS • ADCREFIN – Connect to VSS • ADCREFP/ADCREFM – Connect a 100-nF cap to VSS • ADCRESEXT – Connect a 20-kΩ resistor (very loose tolerance) to VSS. • ADCINAn, ADCINBn – Connect to VSS When the ADC is not used, be sure that the clock to the ADC module is not turned on to realize power savings. When the ADC module is used in an application, unused ADC input pins should be connected to analog ground (VSS1AGND/VSS2AGND) Note ADC parameters for gain error and offset error are specified only if the ADC calibration routine is executed from the Boot ROM. See Section 8.2.7.3 for more information. Copyright © 2022 Texas Instruments Incorporated Submit Document Feedback Product Folder Links: TMS320F28335 TMS320F28335-Q1 TMS320F28334 TMS320F28333 TMS320F28332 TMS320F28235 TMS320F28235-Q1 TMS320F28234 TMS320F28234-Q1 TMS320F28232 TMS320F28232-Q1 131 TMS320F28335, TMS320F28335-Q1, TMS320F28334, TMS320F28333 TMS320F28332, TMS320F28235, TMS320F28235-Q1 TMS320F28234, TMS320F28234-Q1, TMS320F28232, TMS320F28232-Q1 www.ti.com SPRS439Q – JUNE 2007 – REVISED AUGUST 2022 8.2.7.2 ADC Registers The ADC operation is configured, controlled, and monitored by the registers listed in Table 8-8. Table 8-8. ADC Registers NAME ADDRESS(1) ADDRESS(2) ADCTRL1 0x7100 1 ADC Control Register 1 SIZE (x16) DESCRIPTION ADCTRL2 0x7101 1 ADC Control Register 2 ADCMAXCONV 0x7102 1 ADC Maximum Conversion Channels Register ADCCHSELSEQ1 0x7103 1 ADC Channel Select Sequencing Control Register 1 ADCCHSELSEQ2 0x7104 1 ADC Channel Select Sequencing Control Register 2 ADCCHSELSEQ3 0x7105 1 ADC Channel Select Sequencing Control Register 3 ADCCHSELSEQ4 0x7106 1 ADC Channel Select Sequencing Control Register 4 ADCASEQSR 0x7107 1 ADC Auto-Sequence Status Register ADCRESULT0 0x7108 0x0B00 1 ADC Conversion Result Buffer Register 0 ADCRESULT1 0x7109 0x0B01 1 ADC Conversion Result Buffer Register 1 ADCRESULT2 0x710A 0x0B02 1 ADC Conversion Result Buffer Register 2 ADCRESULT3 0x710B 0x0B03 1 ADC Conversion Result Buffer Register 3 ADCRESULT4 0x710C 0x0B04 1 ADC Conversion Result Buffer Register 4 ADCRESULT5 0x710D 0x0B05 1 ADC Conversion Result Buffer Register 5 ADCRESULT6 0x710E 0x0B06 1 ADC Conversion Result Buffer Register 6 ADCRESULT7 0x710F 0x0B07 1 ADC Conversion Result Buffer Register 7 ADCRESULT8 0x7110 0x0B08 1 ADC Conversion Result Buffer Register 8 ADCRESULT9 0x7111 0x0B09 1 ADC Conversion Result Buffer Register 9 ADCRESULT10 0x7112 0x0B0A 1 ADC Conversion Result Buffer Register 10 ADCRESULT11 0x7113 0x0B0B 1 ADC Conversion Result Buffer Register 11 ADCRESULT12 0x7114 0x0B0C 1 ADC Conversion Result Buffer Register 12 ADCRESULT13 0x7115 0x0B0D 1 ADC Conversion Result Buffer Register 13 ADCRESULT14 0x7116 0x0B0E 1 ADC Conversion Result Buffer Register 14 ADCRESULT15 0x7117 0x0B0F 1 ADC Conversion Result Buffer Register 15 ADCTRL3 0x7118 1 ADC Control Register 3 ADCST 0x7119 1 ADC Status Register Reserved 0x711A – 0x711B 2 (1) (2) 132 ADCREFSEL 0x711C 1 ADC Reference Select Register ADCOFFTRIM 0x711D 1 ADC Offset Trim Register Reserved 0x711E – 0x711F 2 The registers in this column are Peripheral Frame 2 Registers. The ADC result registers are dual mapped. Locations in Peripheral Frame 2 (0x7108–0x7117) are 2 wait-states and left justified. Locations in Peripheral frame 0 space (0x0B00–0x0B0F) are 1 wait-state for CPU accesses and 0 wait state for DMA accesses and right justified. During high speed/continuous conversion use of the ADC, use the 0 wait-state locations for fast transfer of ADC results to user memory. Submit Document Feedback Copyright © 2022 Texas Instruments Incorporated Product Folder Links: TMS320F28335 TMS320F28335-Q1 TMS320F28334 TMS320F28333 TMS320F28332 TMS320F28235 TMS320F28235-Q1 TMS320F28234 TMS320F28234-Q1 TMS320F28232 TMS320F28232-Q1 TMS320F28335, TMS320F28335-Q1, TMS320F28334, TMS320F28333 TMS320F28332, TMS320F28235, TMS320F28235-Q1 TMS320F28234, TMS320F28234-Q1, TMS320F28232, TMS320F28232-Q1 www.ti.com SPRS439Q – JUNE 2007 – REVISED AUGUST 2022 8.2.7.3 ADC Calibration The ADC_cal() routine is programmed into TI reserved OTP memory by the factory. The boot ROM automatically calls the ADC_cal() routine to initialize the ADCREFSEL and ADCOFFTRIM registers with device specific calibration data. During normal operation, this process occurs automatically and no action is required by the user. If the boot ROM is bypassed by Code Composer Studio during the development process, then ADCREFSEL and ADCOFFTRIM must be initialized by the application. Methods for calling the ADC_cal() routine from an application are described in the Analog-to-Digital Converter (ADC) chapter of the TMS320x2833x, TMS320x2823x Real-Time Microcontrollers Technical Reference Manual. CAUTION FAILURE TO INITIALIZE THESE REGISTERS WILL CAUSE THE ADC TO FUNCTION OUT OF SPECIFICATION. If the system is reset or the ADC module is reset using Bit 14 (RESET) from the ADC Control Register 1, the routine must be repeated. 8.2.8 Multichannel Buffered Serial Port (McBSP) Module The McBSP module has the following features: • • • • • • • • • • • • • Compatible to McBSP in TMS320C54x/TMS320C55x DSP devices Full-duplex communication Double-buffered data registers that allow a continuous data stream Independent framing and clocking for receive and transmit External shift clock generation or an internal programmable frequency shift clock A wide selection of data sizes including 8, 12, 16, 20, 24, or 32 bits 8-bit data transfers with LSB or MSB first Programmable polarity for both frame synchronization and data clocks Highly programmable internal clock and frame generation Direct interface to industry-standard CODECs, Analog Interface Chips (AICs), and other serially connected A/D and D/A devices Works with SPI-compatible devices The following application interfaces can be supported on the McBSP: – T1/E1 framers – IOM-2 compliant devices – AC97-compliant devices (the necessary multiphase frame synchronization capability is provided.) – IIS-compliant devices – SPI McBSP clock rate, CLKG = CLKSRG (1 + CLKGDV ) where CLKSRG source could be LSPCLK, CLKX, or CLKR. Serial port performance is limited by I/O buffer switching speed. Internal prescalers must be adjusted such that the peripheral speed is less than the I/O buffer speed limit. Note See Section 7 for maximum I/O pin toggling speed. Copyright © 2022 Texas Instruments Incorporated Submit Document Feedback Product Folder Links: TMS320F28335 TMS320F28335-Q1 TMS320F28334 TMS320F28333 TMS320F28332 TMS320F28235 TMS320F28235-Q1 TMS320F28234 TMS320F28234-Q1 TMS320F28232 TMS320F28232-Q1 133 TMS320F28335, TMS320F28335-Q1, TMS320F28334, TMS320F28333 TMS320F28332, TMS320F28235, TMS320F28235-Q1 TMS320F28234, TMS320F28234-Q1, TMS320F28232, TMS320F28232-Q1 www.ti.com SPRS439Q – JUNE 2007 – REVISED AUGUST 2022 Figure 8-11 shows the block diagram of the McBSP module. TX Interrupt MXINT To CPU Peripheral Write Bus CPU TX Interrupt Logic 16 McBSP Transmit Interrupt Select Logic 16 DXR2 Transmit Buffer LSPCLK DXR1 Transmit Buffer MFSXx 16 16 MCLKXx DMA Bus Peripheral Bus CPU Bridge Compand Logic XSR2 XSR1 MDXx RSR2 RSR1 MDRx 16 MCLKRx 16 Expand Logic MFSRx RBR2 Register McBSP Receive Interrupt Select Logic MRINT RX Interrupt Logic RBR1 Register 16 16 DRR2 Receive Buffer DRR1 Receive Buffer 16 RX Interrupt 16 Peripheral Read Bus CPU To CPU Figure 8-11. McBSP Module 134 Submit Document Feedback Copyright © 2022 Texas Instruments Incorporated Product Folder Links: TMS320F28335 TMS320F28335-Q1 TMS320F28334 TMS320F28333 TMS320F28332 TMS320F28235 TMS320F28235-Q1 TMS320F28234 TMS320F28234-Q1 TMS320F28232 TMS320F28232-Q1 TMS320F28335, TMS320F28335-Q1, TMS320F28334, TMS320F28333 TMS320F28332, TMS320F28235, TMS320F28235-Q1 TMS320F28234, TMS320F28234-Q1, TMS320F28232, TMS320F28232-Q1 www.ti.com SPRS439Q – JUNE 2007 – REVISED AUGUST 2022 Table 8-9 provides a summary of the McBSP registers. Table 8-9. McBSP Register Summary NAME McBSP-A ADDRESS McBSP-B ADDRESS TYPE RESET VALUE DESCRIPTION Data Registers, Receive, Transmit DRR2 0x5000 0x5040 R 0x0000 McBSP Data Receive Register 2 DRR1 0x5001 0x5041 R 0x0000 McBSP Data Receive Register 1 DXR2 0x5002 0x5042 W 0x0000 McBSP Data Transmit Register 2 DXR1 0x5003 0x5043 W 0x0000 McBSP Data Transmit Register 1 SPCR2 0x5004 0x5044 R/W 0x0000 McBSP Serial Port Control Register 2 SPCR1 0x5005 0x5045 R/W 0x0000 McBSP Serial Port Control Register 1 RCR2 0x5006 0x5046 R/W 0x0000 McBSP Receive Control Register 2 RCR1 0x5007 0x5047 R/W 0x0000 McBSP Receive Control Register 1 XCR2 0x5008 0x5048 R/W 0x0000 McBSP Transmit Control Register 2 McBSP Control Registers XCR1 0x5009 0x5049 R/W 0x0000 McBSP Transmit Control Register 1 SRGR2 0x500A 0x504A R/W 0x0000 McBSP Sample Rate Generator Register 2 SRGR1 0x500B 0x504B R/W 0x0000 McBSP Sample Rate Generator Register 1 Multichannel Control Registers MCR2 0x500C 0x504C R/W 0x0000 McBSP Multichannel Register 2 MCR1 0x500D 0x504D R/W 0x0000 McBSP Multichannel Register 1 RCERA 0x500E 0x504E R/W 0x0000 McBSP Receive Channel Enable Register Partition A RCERB 0x500F 0x504F R/W 0x0000 McBSP Receive Channel Enable Register Partition B XCERA 0x5010 0x5050 R/W 0x0000 McBSP Transmit Channel Enable Register Partition A XCERB 0x5011 0x5051 R/W 0x0000 McBSP Transmit Channel Enable Register Partition B PCR 0x5012 0x5052 R/W 0x0000 McBSP Pin Control Register RCERC 0x5013 0x5053 R/W 0x0000 McBSP Receive Channel Enable Register Partition C RCERD 0x5014 0x5054 R/W 0x0000 McBSP Receive Channel Enable Register Partition D XCERC 0x5015 0x5055 R/W 0x0000 McBSP Transmit Channel Enable Register Partition C XCERD 0x5016 0x5056 R/W 0x0000 McBSP Transmit Channel Enable Register Partition D RCERE 0x5017 0x5057 R/W 0x0000 McBSP Receive Channel Enable Register Partition E RCERF 0x5018 0x5058 R/W 0x0000 McBSP Receive Channel Enable Register Partition F XCERE 0x5019 0x5059 R/W 0x0000 McBSP Transmit Channel Enable Register Partition E XCERF 0x501A 0x505A R/W 0x0000 McBSP Transmit Channel Enable Register Partition F RCERG 0x501B 0x505B R/W 0x0000 McBSP Receive Channel Enable Register Partition G RCERH 0x501C 0x505C R/W 0x0000 McBSP Receive Channel Enable Register Partition H XCERG 0x501D 0x505D R/W 0x0000 McBSP Transmit Channel Enable Register Partition G XCERH 0x501E 0x505E R/W 0x0000 McBSP Transmit Channel Enable Register Partition H MFFINT 0x5023 0x5063 R/W 0x0000 McBSP Interrupt Enable Register Copyright © 2022 Texas Instruments Incorporated Submit Document Feedback Product Folder Links: TMS320F28335 TMS320F28335-Q1 TMS320F28334 TMS320F28333 TMS320F28332 TMS320F28235 TMS320F28235-Q1 TMS320F28234 TMS320F28234-Q1 TMS320F28232 TMS320F28232-Q1 135 TMS320F28335, TMS320F28335-Q1, TMS320F28334, TMS320F28333 TMS320F28332, TMS320F28235, TMS320F28235-Q1 TMS320F28234, TMS320F28234-Q1, TMS320F28232, TMS320F28232-Q1 www.ti.com SPRS439Q – JUNE 2007 – REVISED AUGUST 2022 8.2.9 Enhanced Controller Area Network (eCAN) Modules (eCAN-A and eCAN-B) The CAN module has the following features: • Fully compliant with ISO 11898-1 (CAN 2.0B) • Supports data rates up to 1 Mbps • Thirty-two mailboxes, each with the following properties: – Configurable as receive or transmit – Configurable with standard or extended identifier – Has a programmable receive mask – Supports data and remote frame – Composed of 0 to 8 bytes of data – Uses a 32-bit timestamp on receive and transmit message – Protects against reception of new message – Holds the dynamically programmable priority of transmit message – Employs a programmable interrupt scheme with two interrupt levels – Employs a programmable alarm on transmission or reception time-out • Low-power mode • Programmable wake-up on bus activity • Automatic reply to a remote request message • Automatic retransmission of a frame in case of loss of arbitration or error • 32-bit local network time counter synchronized by a specific message (communication in conjunction with mailbox 16) • Self-test mode – Operates in a loopback mode receiving its own message. A "dummy" acknowledge is provided, thereby eliminating the need for another node to provide the acknowledge bit. Note For a SYSCLKOUT of 100 MHz, the smallest bit rate possible is 7.812 kbps. For a SYSCLKOUT of 150 MHz, the smallest bit rate possible is 11.719 kbps. The F2833x/F2823x CAN has passed the conformance test per ISO/DIS 16845. Contact TI for test report and exceptions. 136 Submit Document Feedback Copyright © 2022 Texas Instruments Incorporated Product Folder Links: TMS320F28335 TMS320F28335-Q1 TMS320F28334 TMS320F28333 TMS320F28332 TMS320F28235 TMS320F28235-Q1 TMS320F28234 TMS320F28234-Q1 TMS320F28232 TMS320F28232-Q1 TMS320F28335, TMS320F28335-Q1, TMS320F28334, TMS320F28333 TMS320F28332, TMS320F28235, TMS320F28235-Q1 TMS320F28234, TMS320F28234-Q1, TMS320F28232, TMS320F28232-Q1 www.ti.com SPRS439Q – JUNE 2007 – REVISED AUGUST 2022 eCAN0INT eCAN1INT Controls Address Data Enhanced CAN Controller 32 Message Controller Mailbox RAM (512 Bytes) 32-Message Mailbox of 4 x 32-Bit Words Memory Management Unit 32 CPU Interface, Receive Control Unit, Timer Management Unit 32 eCAN Memory (512 Bytes) Registers and Message Objects Control 32 eCAN Protocol Kernel Receive Buffer Transmit Buffer Control Buffer Status Buffer SN65HVD23x 3.3-V CAN Transceiver CAN Bus Figure 8-12. eCAN Block Diagram and Interface Circuit Table 8-10. 3.3-V eCAN Transceivers PART NUMBER SUPPLY VOLTAGE LOW-POWER MODE SLOPE CONTROL VREF OTHER TA SN65HVD230 3.3 V Standby Adjustable Yes – –40°C to 85°C SN65HVD230Q 3.3 V Standby Adjustable Yes – –40°C to 125°C SN65HVD231 3.3 V Sleep Adjustable Yes – –40°C to 85°C SN65HVD231Q 3.3 V Sleep Adjustable Yes – –40°C to 125°C SN65HVD232 3.3 V None None None – –40°C to 85°C SN65HVD232Q 3.3 V None None None – –40°C to 125°C SN65HVD233 3.3 V Standby Adjustable None Diagnostic Loopback –40°C to 125°C SN65HVD234 3.3 V Standby and Sleep Adjustable None – –40°C to 125°C SN65HVD235 3.3 V Standby Adjustable None Autobaud Loopback –40°C to 125°C Copyright © 2022 Texas Instruments Incorporated Submit Document Feedback Product Folder Links: TMS320F28335 TMS320F28335-Q1 TMS320F28334 TMS320F28333 TMS320F28332 TMS320F28235 TMS320F28235-Q1 TMS320F28234 TMS320F28234-Q1 TMS320F28232 TMS320F28232-Q1 137 TMS320F28335, TMS320F28335-Q1, TMS320F28334, TMS320F28333 TMS320F28332, TMS320F28235, TMS320F28235-Q1 TMS320F28234, TMS320F28234-Q1, TMS320F28232, TMS320F28232-Q1 www.ti.com SPRS439Q – JUNE 2007 – REVISED AUGUST 2022 eCAN-A Control and Status Registers Mailbox Enable - CANME Mailbox Direction - CANMD Transmission Request Set - CANTRS Transmission Request Reset - CANTRR Transmission Acknowledge - CANTA Abort Acknowledge - CANAA eCAN-A Memory (512 Bytes) 6000h Received Message Pending - CANRMP Control and Status Registers 603Fh 6040h 607Fh 6080h 60BFh 60C0h 60FFh Received Message Lost - CANRML Remote Frame Pending - CANRFP Local Acceptance Masks (LAM) (32 x 32-Bit RAM) Global Acceptance Mask - CANGAM Message Object Timestamps (MOTS) (32 x 32-Bit RAM) Bit-Timing Configuration - CANBTC Master Control - CANMC Error and Status - CANES Message Object Time-Out (MOTO) (32 x 32-Bit RAM) Transmit Error Counter - CANTEC Receive Error Counter - CANREC Global Interrupt Flag 0 - CANGIF0 Global Interrupt Mask - CANGIM Global Interrupt Flag 1 - CANGIF1 eCAN-A Memory RAM (512 Bytes) 6100h-6107h Mailbox 0 6108h-610Fh Mailbox 1 6110h-6117h Mailbox 2 6118h-611Fh Mailbox 3 6120h-6127h Mailbox 4 Mailbox Interrupt Mask - CANMIM Mailbox Interrupt Level - CANMIL Overwrite Protection Control - CANOPC TX I/O Control - CANTIOC RX I/O Control - CANRIOC Timestamp Counter - CANTSC Time-Out Control - CANTOC Time-Out Status - CANTOS 61E0h-61E7h Mailbox 28 61E8h-61EFh Mailbox 29 61F0h-61F7h Mailbox 30 61F8h-61FFh Mailbox 31 Reserved Message Mailbox (16 Bytes) 61E8h-61E9h Message Identifier - MSGID 61EAh-61EBh Message Control - MSGCTRL 61ECh-61EDh Message Data Low - MDL 61EEh-61EFh Message Data High - MDH Figure 8-13. eCAN-A Memory Map Note If the eCAN module is not used in an application, the RAM available (LAM, MOTS, MOTO, and mailbox RAM) can be used as general-purpose RAM. The CAN module clock should be enabled for this. 138 Submit Document Feedback Copyright © 2022 Texas Instruments Incorporated Product Folder Links: TMS320F28335 TMS320F28335-Q1 TMS320F28334 TMS320F28333 TMS320F28332 TMS320F28235 TMS320F28235-Q1 TMS320F28234 TMS320F28234-Q1 TMS320F28232 TMS320F28232-Q1 TMS320F28335, TMS320F28335-Q1, TMS320F28334, TMS320F28333 TMS320F28332, TMS320F28235, TMS320F28235-Q1 TMS320F28234, TMS320F28234-Q1, TMS320F28232, TMS320F28232-Q1 www.ti.com SPRS439Q – JUNE 2007 – REVISED AUGUST 2022 eCAN-B Control and Status Registers Mailbox Enable - CANME Mailbox Direction - CANMD Transmission Request Set - CANTRS Transmission Request Reset - CANTRR Transmission Acknowledge - CANTA Abort Acknowledge - CANAA eCAN-B Memory (512 Bytes) 6200h Received Message Pending - CANRMP Control and Status Registers 623Fh 6240h 627Fh 6280h 62BFh 62C0h 62FFh Received Message Lost - CANRML Remote Frame Pending - CANRFP Local Acceptance Masks (LAM) (32 x 32-Bit RAM) Global Acceptance Mask - CANGAM Message Object Timestamps (MOTS) (32 x 32-Bit RAM) Bit-Timing Configuration - CANBTC Master Control - CANMC Error and Status - CANES Message Object Time-Out (MOTO) (32 x 32-Bit RAM) Transmit Error Counter - CANTEC Receive Error Counter - CANREC Global Interrupt Flag 0 - CANGIF0 Global Interrupt Mask - CANGIM Global Interrupt Flag 1 - CANGIF1 eCAN-B Memory RAM (512 Bytes) 6300h-6307h Mailbox 0 6308h-630Fh Mailbox 1 6310h-6317h Mailbox 2 6318h-631Fh Mailbox 3 6320h-6327h Mailbox 4 Mailbox Interrupt Mask - CANMIM Mailbox Interrupt Level - CANMIL Overwrite Protection Control - CANOPC TX I/O Control - CANTIOC RX I/O Control - CANRIOC Timestamp Counter - CANTSC Time-Out Control - CANTOC Time-Out Status - CANTOS 63E0h-63E7h Mailbox 28 63E8h-63EFh Mailbox 29 63F0h-63F7h Mailbox 30 63F8h-63FFh Mailbox 31 Reserved Message Mailbox (16 Bytes) 63E8h-63E9h Message Identifier - MSGID 63EAh-63EBh Message Control - MSGCTRL 63ECh-63EDh Message Data Low - MDL 63EEh-63EFh Message Data High - MDH Figure 8-14. eCAN-B Memory Map Copyright © 2022 Texas Instruments Incorporated Submit Document Feedback Product Folder Links: TMS320F28335 TMS320F28335-Q1 TMS320F28334 TMS320F28333 TMS320F28332 TMS320F28235 TMS320F28235-Q1 TMS320F28234 TMS320F28234-Q1 TMS320F28232 TMS320F28232-Q1 139 TMS320F28335, TMS320F28335-Q1, TMS320F28334, TMS320F28333 TMS320F28332, TMS320F28235, TMS320F28235-Q1 TMS320F28234, TMS320F28234-Q1, TMS320F28232, TMS320F28232-Q1 www.ti.com SPRS439Q – JUNE 2007 – REVISED AUGUST 2022 The CAN registers listed in Table 8-11 are used by the CPU to configure and control the CAN controller and the message objects. eCAN control registers only support 32-bit read/write operations. Mailbox RAM can be accessed as 16 bits or 32 bits. Thirty-two-bit accesses are aligned to an even boundary. Table 8-11. CAN Register Map REGISTER NAME(1) eCAN-A ADDRESS eCAN-B ADDRESS SIZE (x32) CANME 0x6000 0x6200 1 Mailbox enable CANMD 0x6002 0x6202 1 Mailbox direction CANTRS 0x6004 0x6204 1 Transmit request set CANTRR 0x6006 0x6206 1 Transmit request reset CANTA 0x6008 0x6208 1 Transmission acknowledge DESCRIPTION CANAA 0x600A 0x620A 1 Abort acknowledge CANRMP 0x600C 0x620C 1 Receive message pending CANRML 0x600E 0x620E 1 Receive message lost CANRFP 0x6010 0x6210 1 Remote frame pending CANGAM 0x6012 0x6212 1 Global acceptance mask CANMC 0x6014 0x6214 1 Master control CANBTC 0x6016 0x6216 1 Bit-timing configuration CANES 0x6018 0x6218 1 Error and status CANTEC 0x601A 0x621A 1 Transmit error counter CANREC 0x601C 0x621C 1 Receive error counter CANGIF0 0x601E 0x621E 1 Global interrupt flag 0 CANGIM 0x6020 0x6220 1 Global interrupt mask CANGIF1 0x6022 0x6222 1 Global interrupt flag 1 CANMIM 0x6024 0x6224 1 Mailbox interrupt mask CANMIL 0x6026 0x6226 1 Mailbox interrupt level CANOPC 0x6028 0x6228 1 Overwrite protection control CANTIOC 0x602A 0x622A 1 TX I/O control CANRIOC 0x602C 0x622C 1 RX I/O control CANTSC 0x602E 0x622E 1 Timestamp counter (Reserved in SCC mode) CANTOC 0x6030 0x6230 1 Time-out control (Reserved in SCC mode) CANTOS 0x6032 0x6232 1 Time-out status (Reserved in SCC mode) (1) 140 These registers are mapped to Peripheral Frame 1. Submit Document Feedback Copyright © 2022 Texas Instruments Incorporated Product Folder Links: TMS320F28335 TMS320F28335-Q1 TMS320F28334 TMS320F28333 TMS320F28332 TMS320F28235 TMS320F28235-Q1 TMS320F28234 TMS320F28234-Q1 TMS320F28232 TMS320F28232-Q1 TMS320F28335, TMS320F28335-Q1, TMS320F28334, TMS320F28333 TMS320F28332, TMS320F28235, TMS320F28235-Q1 TMS320F28234, TMS320F28234-Q1, TMS320F28232, TMS320F28232-Q1 www.ti.com SPRS439Q – JUNE 2007 – REVISED AUGUST 2022 8.2.10 Serial Communications Interface (SCI) Modules (SCI-A, SCI-B, SCI-C) The devices include three serial communications interface (SCI) modules. The SCI modules support digital communications between the CPU and other asynchronous peripherals that use the standard nonreturn-to-zero (NRZ) format. The SCI receiver and transmitter are double-buffered, and each has its own separate enable and interrupt bits. Both can be operated independently or simultaneously in the full-duplex mode. To ensure data integrity, the SCI checks received data for break detection, parity, overrun, and framing errors. The bit rate is programmable to more than 65000 different speeds through a 16-bit baud-select register. Features of each SCI module include: • Two external pins: – SCITXD: SCI transmit-output pin – SCIRXD: SCI receive-input pin Note Both pins can be used as GPIO if not used for SCI. – Baud rate programmable to 64K different rates: Baud rate = LSPCLK (BRR + 1) * 8 when BRR ¹ 0 Baud rate = LSPCLK 16 when BRR = 0 Note See Section 7 for maximum I/O pin toggling speed. • • • • • • • • Data-word format – One start bit – Data-word length programmable from one to eight bits – Optional even/odd/no parity bit – One or two stop bits Four error-detection flags: parity, overrun, framing, and break detection Two wake-up multiprocessor modes: idle-line and address bit Half- or full-duplex operation Double-buffered receive and transmit functions Transmitter and receiver operations can be accomplished through interrupt-driven or polled algorithms with status flags. – Transmitter: TXRDY flag (transmitter-buffer register is ready to receive another character) and TX EMPTY flag (transmitter-shift register is empty) – Receiver: RXRDY flag (receiver-buffer register is ready to receive another character), BRKDT flag (break condition occurred), and RX ERROR flag (monitoring four interrupt conditions) Separate enable bits for transmitter and receiver interrupts (except BRKDT) NRZ (nonreturn-to-zero) format Note All registers in this module are 8-bit registers that are connected to Peripheral Frame 2. When a register is accessed, the register data is in the lower byte (7-0), and the upper byte (15-8) is read as zeros. Writing to the upper byte has no effect. Copyright © 2022 Texas Instruments Incorporated Submit Document Feedback Product Folder Links: TMS320F28335 TMS320F28335-Q1 TMS320F28334 TMS320F28333 TMS320F28332 TMS320F28235 TMS320F28235-Q1 TMS320F28234 TMS320F28234-Q1 TMS320F28232 TMS320F28232-Q1 141 TMS320F28335, TMS320F28335-Q1, TMS320F28334, TMS320F28333 TMS320F28332, TMS320F28235, TMS320F28235-Q1 TMS320F28234, TMS320F28234-Q1, TMS320F28232, TMS320F28232-Q1 www.ti.com SPRS439Q – JUNE 2007 – REVISED AUGUST 2022 Enhanced features: • Auto baud-detect hardware logic • 16-level transmit/receive FIFO The SCI port operation is configured and controlled by the registers listed in Table 8-12, Table 8-13, and Table 8-14. Table 8-12. SCI-A Registers NAME(1) ADDRESS SIZE (x16) SCICCRA 0x7050 1 SCI-A Communications Control Register SCICTL1A 0x7051 1 SCI-A Control Register 1 SCIHBAUDA 0x7052 1 SCI-A Baud Register, High Bits SCILBAUDA 0x7053 1 SCI-A Baud Register, Low Bits SCICTL2A 0x7054 1 SCI-A Control Register 2 SCIRXSTA 0x7055 1 SCI-A Receive Status Register SCIRXEMUA 0x7056 1 SCI-A Receive Emulation Data Buffer Register SCIRXBUFA 0x7057 1 SCI-A Receive Data Buffer Register SCITXBUFA 0x7059 1 SCI-A Transmit Data Buffer Register SCIFFTXA(2) 0x705A 1 SCI-A FIFO Transmit Register SCIFFRXA(2) 0x705B 1 SCI-A FIFO Receive Register SCIFFCTA(2) 0x705C 1 SCI-A FIFO Control Register SCIPRIA 0x705F 1 SCI-A Priority Control Register (1) (2) DESCRIPTION Registers in this table are mapped to Peripheral Frame 2 space. This space only allows 16-bit accesses. 32-bit accesses produce undefined results. These registers are new registers for the FIFO mode. Table 8-13. SCI-B Registers NAME(1) ADDRESS SIZE (x16) SCICCRB 0x7750 1 SCI-B Communications Control Register SCICTL1B 0x7751 1 SCI-B Control Register 1 SCIHBAUDB 0x7752 1 SCI-B Baud Register, High Bits SCILBAUDB 0x7753 1 SCI-B Baud Register, Low Bits SCICTL2B 0x7754 1 SCI-B Control Register 2 SCIRXSTB 0x7755 1 SCI-B Receive Status Register SCIRXEMUB 0x7756 1 SCI-B Receive Emulation Data Buffer Register SCIRXBUFB 0x7757 1 SCI-B Receive Data Buffer Register SCITXBUFB 0x7759 1 SCI-B Transmit Data Buffer Register SCIFFTXB(2) 0x775A 1 SCI-B FIFO Transmit Register SCIFFRXB(2) 0x775B 1 SCI-B FIFO Receive Register SCIFFCTB(2) 0x775C 1 SCI-B FIFO Control Register SCIPRIB 0x775F 1 SCI-B Priority Control Register (1) (2) 142 DESCRIPTION Registers in this table are mapped to Peripheral Frame 2 space. This space only allows 16-bit accesses. 32-bit accesses produce undefined results. These registers are new registers for the FIFO mode. Submit Document Feedback Copyright © 2022 Texas Instruments Incorporated Product Folder Links: TMS320F28335 TMS320F28335-Q1 TMS320F28334 TMS320F28333 TMS320F28332 TMS320F28235 TMS320F28235-Q1 TMS320F28234 TMS320F28234-Q1 TMS320F28232 TMS320F28232-Q1 TMS320F28335, TMS320F28335-Q1, TMS320F28334, TMS320F28333 TMS320F28332, TMS320F28235, TMS320F28235-Q1 TMS320F28234, TMS320F28234-Q1, TMS320F28232, TMS320F28232-Q1 www.ti.com SPRS439Q – JUNE 2007 – REVISED AUGUST 2022 Table 8-14. SCI-C Registers NAME(1) ADDRESS SIZE (x16) SCICCRC 0x7770 1 SCI-C Communications Control Register SCICTL1C 0x7771 1 SCI-C Control Register 1 SCIHBAUDC 0x7772 1 SCI-C Baud Register, High Bits SCILBAUDC 0x7773 1 SCI-C Baud Register, Low Bits SCICTL2C 0x7774 1 SCI-C Control Register 2 SCIRXSTC 0x7775 1 SCI-C Receive Status Register SCIRXEMUC 0x7776 1 SCI-C Receive Emulation Data Buffer Register SCIRXBUFC 0x7777 1 SCI-C Receive Data Buffer Register SCITXBUFC 0x7779 1 SCI-C Transmit Data Buffer Register SCIFFTXC(2) 0x777A 1 SCI-C FIFO Transmit Register SCIFFRXC(2) 0x777B 1 SCI-C FIFO Receive Register SCIFFCTC(2) 0x777C 1 SCI-C FIFO Control Register SCIPRC 0x777F 1 SCI-C Priority Control Register (1) (2) DESCRIPTION Registers in this table are mapped to Peripheral Frame 2 space. This space only allows 16-bit accesses. 32-bit accesses produce undefined results. These registers are new registers for the FIFO mode. Copyright © 2022 Texas Instruments Incorporated Submit Document Feedback Product Folder Links: TMS320F28335 TMS320F28335-Q1 TMS320F28334 TMS320F28333 TMS320F28332 TMS320F28235 TMS320F28235-Q1 TMS320F28234 TMS320F28234-Q1 TMS320F28232 TMS320F28232-Q1 143 TMS320F28335, TMS320F28335-Q1, TMS320F28334, TMS320F28333 TMS320F28332, TMS320F28235, TMS320F28235-Q1 TMS320F28234, TMS320F28234-Q1, TMS320F28232, TMS320F28232-Q1 www.ti.com SPRS439Q – JUNE 2007 – REVISED AUGUST 2022 Figure 8-15 shows the SCI module block diagram. TXENA SCICTL1.1 TXSHF Register Frame Format and Mode SCITXD 8 Parity Even/Odd 0 TXEMPTY 1 SCICCR.6 SCICTL2.6 8 Enable TX FIFO_0 SCICCR.5 88 TX FIFO_1 TX Interrupt Logic TX FIFO Interrupts TXINT To CPU TX FIFO_N TXINTENA 8 0 TXWAKE SCICTL2.0 TXRDY 1 SCICTL2.7 SCICTL1.3 SCI TX Interrupt Select Logic 8 WUT Transmit Data Buffer Register SCITXBUF.7-0 Auto Baud Detect Logic RXENA LSPCLK Baud Rate MSB/LSB Registers SCICTL1.0 RXSHF Register SCIHBAUD.15-8 SCIRXD RXWAKE 8 SCILBAUD.7-0 SCIRXST.1 0 1 8 SCIFFENA RX FIFO_0 SCIFFTX.14 8 RX FIFO_1 RX FIFO Interrupts RX Interrupt Logic RXINT To CPU RX FIFO_N RXFFOVF 8 0 SCIFFRX.15 1 RXBKINTENA SCICTL2.1 RXRDY SCIRXST.6 RXENA BRKDT SCICTL1.0 RXERRINTENA SCIRXST.5 8 SCICTL1.6 SCI RX Interrupt Select Logic SCIRXST.5-2 Receive Data Buffer Register SCIRXBUF.7-0 BRKDT FE OE PE RXERROR SCIRXST.7 Figure 8-15. Serial Communications Interface (SCI) Module Block Diagram 144 Submit Document Feedback Copyright © 2022 Texas Instruments Incorporated Product Folder Links: TMS320F28335 TMS320F28335-Q1 TMS320F28334 TMS320F28333 TMS320F28332 TMS320F28235 TMS320F28235-Q1 TMS320F28234 TMS320F28234-Q1 TMS320F28232 TMS320F28232-Q1 TMS320F28335, TMS320F28335-Q1, TMS320F28334, TMS320F28333 TMS320F28332, TMS320F28235, TMS320F28235-Q1 TMS320F28234, TMS320F28234-Q1, TMS320F28232, TMS320F28232-Q1 www.ti.com SPRS439Q – JUNE 2007 – REVISED AUGUST 2022 8.2.11 Serial Peripheral Interface (SPI) Module (SPI-A) The device includes the four-pin serial peripheral interface (SPI) module. One SPI module (SPI-A) is available. The SPI is a high-speed, synchronous serial I/O port that allows a serial bit stream of programmed length (1 to 16 bits) to be shifted into and out of the device at a programmable bit-transfer rate. Normally, the SPI is used for communications between the MCU controller and external peripherals or another processor. Typical applications include external I/O or peripheral expansion through devices such as shift registers, display drivers, and ADCs. Multidevice communications are supported by the master/slave operation of the SPI. The SPI module features include: • Four external pins: – SPISOMI: SPI slave-output/master-input pin – SPISIMO: SPI slave-input/master-output pin – SPISTE: SPI slave transmit-enable pin – SPICLK: SPI serial-clock pin Note All four pins can be used as GPIO if the SPI module is not used. • Two operational modes: master and slave Baud rate: 125 different programmable rates. Baud rate = LSPCLK (SPIBRR + 1) when SPIBRR = 3 to 127 Baud rate = LSPCLK 4 when SPIBRR = 0, 1, 2 Note See Section 7 for maximum I/O pin toggling speed. • • • • • Data word length: 1 to 16 data bits Four clocking schemes (controlled by clock polarity and clock phase bits) include: – Falling edge without phase delay: SPICLK active-high. SPI transmits data on the falling edge of the SPICLK signal and receives data on the rising edge of the SPICLK signal. – Falling edge with phase delay: SPICLK active-high. SPI transmits data one half-cycle ahead of the falling edge of the SPICLK signal and receives data on the falling edge of the SPICLK signal. – Rising edge without phase delay: SPICLK inactive-low. SPI transmits data on the rising edge of the SPICLK signal and receives data on the falling edge of the SPICLK signal. – Rising edge with phase delay: SPICLK inactive-low. SPI transmits data one half-cycle ahead of the rising edge of the SPICLK signal and receives data on the rising edge of the SPICLK signal. Simultaneous receive and transmit operation (transmit function can be disabled in software) Transmitter and receiver operations are accomplished through either interrupt-driven or polled algorithms. Nine SPI module control registers: Located in control register frame beginning at address 7040h. Note All registers in this module are 16-bit registers that are connected to Peripheral Frame 2. When a register is accessed, the register data is in the lower byte (7–0), and the upper byte (15–8) is read as zeros. Writing to the upper byte has no effect. Enhanced features: • 16-level transmit/receive FIFO • Delayed transmit control Copyright © 2022 Texas Instruments Incorporated Submit Document Feedback Product Folder Links: TMS320F28335 TMS320F28335-Q1 TMS320F28334 TMS320F28333 TMS320F28332 TMS320F28235 TMS320F28235-Q1 TMS320F28234 TMS320F28234-Q1 TMS320F28232 TMS320F28232-Q1 145 TMS320F28335, TMS320F28335-Q1, TMS320F28334, TMS320F28333 TMS320F28332, TMS320F28235, TMS320F28235-Q1 TMS320F28234, TMS320F28234-Q1, TMS320F28232, TMS320F28232-Q1 www.ti.com SPRS439Q – JUNE 2007 – REVISED AUGUST 2022 The SPI port operation is configured and controlled by the registers listed in Table 8-15 . Table 8-15. SPI-A Registers NAME DESCRIPTION(1) ADDRESS SIZE (x16) SPICCR 0x7040 1 SPI-A Configuration Control Register SPICTL 0x7041 1 SPI-A Operation Control Register SPISTS 0x7042 1 SPI-A Status Register SPIBRR 0x7044 1 SPI-A Baud Rate Register SPIRXEMU 0x7046 1 SPI-A Receive Emulation Buffer Register SPIRXBUF 0x7047 1 SPI-A Serial Input Buffer Register SPITXBUF 0x7048 1 SPI-A Serial Output Buffer Register SPIDAT 0x7049 1 SPI-A Serial Data Register SPIFFTX 0x704A 1 SPI-A FIFO Transmit Register SPIFFRX 0x704B 1 SPI-A FIFO Receive Register SPIFFCT 0x704C 1 SPI-A FIFO Control Register SPIPRI 0x704F 1 SPI-A Priority Control Register (1) 146 Registers in this table are mapped to Peripheral Frame 2. This space only allows 16-bit accesses. 32-bit accesses produce undefined results. Submit Document Feedback Copyright © 2022 Texas Instruments Incorporated Product Folder Links: TMS320F28335 TMS320F28335-Q1 TMS320F28334 TMS320F28333 TMS320F28332 TMS320F28235 TMS320F28235-Q1 TMS320F28234 TMS320F28234-Q1 TMS320F28232 TMS320F28232-Q1 TMS320F28335, TMS320F28335-Q1, TMS320F28334, TMS320F28333 TMS320F28332, TMS320F28235, TMS320F28235-Q1 TMS320F28234, TMS320F28234-Q1, TMS320F28232, TMS320F28232-Q1 www.ti.com SPRS439Q – JUNE 2007 – REVISED AUGUST 2022 Figure 8-16 is a block diagram of the SPI in slave mode. SPIFFENA Overrun INT ENA Receiver Overrun Flag SPIFFTX.14 RX FIFO registers SPISTS.7 SPICTL.4 SPIRXBUF RX FIFO _0 RX FIFO _1 SPIINT/SPIRXINT RX FIFO Interrupt −−−−− RX Interrupt Logic RX FIFO _15 16 SPIRXBUF Buffer Register SPIFFOVF FLAG SPIFFRX.15 To CPU TX FIFO registers SPITXBUF TX FIFO _15 TX Interrupt Logic TX FIFO Interrupt −−−−− TX FIFO _1 TX FIFO _0 SPITXINT 16 SPI INT FLAG SPITXBUF Buffer Register 16 SPI INT ENA SPISTS.6 SPICTL.0 16 M M SPIDAT Data Register S S SW1 SPISIMO M M SPIDAT.15 − 0 S S SW2 SPISOMI Talk SPICTL.1 (A) SPISTE State Control Master/Slave SPI Char SPICCR.3 − 0 3 2 1 0 SW3 M SPI Bit Rate LSPCLK SPIBRR.6 − 0 6 A. 5 4 3 SPICTL.2 S 2 1 0 S Clock Polarity Clock Phase SPICCR.6 SPICTL.3 SPICLK M SPISTE is driven low by the master for a slave device. Figure 8-16. SPI Module Block Diagram (Slave Mode) Copyright © 2022 Texas Instruments Incorporated Submit Document Feedback Product Folder Links: TMS320F28335 TMS320F28335-Q1 TMS320F28334 TMS320F28333 TMS320F28332 TMS320F28235 TMS320F28235-Q1 TMS320F28234 TMS320F28234-Q1 TMS320F28232 TMS320F28232-Q1 147 TMS320F28335, TMS320F28335-Q1, TMS320F28334, TMS320F28333 TMS320F28332, TMS320F28235, TMS320F28235-Q1 TMS320F28234, TMS320F28234-Q1, TMS320F28232, TMS320F28232-Q1 www.ti.com SPRS439Q – JUNE 2007 – REVISED AUGUST 2022 8.2.12 Inter-Integrated Circuit (I2C) The device contains one I2C Serial Port. Figure 8-17 shows how the I2C peripheral module interfaces within the device. System Control Block C28x CPU I2CAENCLK SYSRS Control Data[16] SDAA GPIO MUX Peripheral Bus SYSCLKOUT Data[16] I2C-A Addr[16] SCLA I2CINT1A I2CINT2A A. B. PIE Block The I2C registers are accessed at the SYSCLKOUT rate. The internal timing and signal waveforms of the I2C port are also at the SYSCLKOUT rate. The clock enable bit (I2CAENCLK) in the PCLKCR0 register turns off the clock to the I2C port for low power operation. Upon reset, I2CAENCLK is clear, which indicates the peripheral internal clocks are off. Figure 8-17. I2C Peripheral Module Interfaces 148 Submit Document Feedback Copyright © 2022 Texas Instruments Incorporated Product Folder Links: TMS320F28335 TMS320F28335-Q1 TMS320F28334 TMS320F28333 TMS320F28332 TMS320F28235 TMS320F28235-Q1 TMS320F28234 TMS320F28234-Q1 TMS320F28232 TMS320F28232-Q1 TMS320F28335, TMS320F28335-Q1, TMS320F28334, TMS320F28333 TMS320F28332, TMS320F28235, TMS320F28235-Q1 TMS320F28234, TMS320F28234-Q1, TMS320F28232, TMS320F28232-Q1 www.ti.com SPRS439Q – JUNE 2007 – REVISED AUGUST 2022 The I2C module has the following features: • Compliance with the Philips Semiconductors I2C-bus specification (version 2.1): – Support for 1-bit to 8-bit format transfers – 7-bit and 10-bit addressing modes – General call – START byte mode – Support for multiple master-transmitters and slave-receivers – Support for multiple slave-transmitters and master-receivers – Combined master transmit/receive and receive/transmit mode – Data transfer rate from 10 kbps up to 400 kbps (I2C Fast-mode rate) • One 16-word receive FIFO and one 16-word transmit FIFO • One interrupt that can be used by the CPU. This interrupt can be generated as a result of one of the following conditions: – Transmit-data ready – Receive-data ready – Register-access ready – No-acknowledgment received – Arbitration lost – Stop condition detected – Addressed as slave • An additional interrupt that can be used by the CPU when in FIFO mode • Module-enable and module-disable capability • Free data format mode The registers in Table 8-16 configure and control the I2C port operation. Table 8-16. I2C-A Registers NAME ADDRESS DESCRIPTION I2COAR 0x7900 I2C own address register I2CIER 0x7901 I2C interrupt enable register I2CSTR 0x7902 I2C status register I2CCLKL 0x7903 I2C clock low-time divider register I2CCLKH 0x7904 I2C clock high-time divider register I2CCNT 0x7905 I2C data count register I2CDRR 0x7906 I2C data receive register I2CSAR 0x7907 I2C slave address register I2CDXR 0x7908 I2C data transmit register I2CMDR 0x7909 I2C mode register I2CISRC 0x790A I2C interrupt source register I2CPSC 0x790C I2C prescaler register I2CFFTX 0x7920 I2C FIFO transmit register I2CFFRX 0x7921 I2C FIFO receive register I2CRSR – I2C receive shift register (not accessible to the CPU) I2CXSR – I2C transmit shift register (not accessible to the CPU) Copyright © 2022 Texas Instruments Incorporated Submit Document Feedback Product Folder Links: TMS320F28335 TMS320F28335-Q1 TMS320F28334 TMS320F28333 TMS320F28332 TMS320F28235 TMS320F28235-Q1 TMS320F28234 TMS320F28234-Q1 TMS320F28232 TMS320F28232-Q1 149 TMS320F28335, TMS320F28335-Q1, TMS320F28334, TMS320F28333 TMS320F28332, TMS320F28235, TMS320F28235-Q1 TMS320F28234, TMS320F28234-Q1, TMS320F28232, TMS320F28232-Q1 www.ti.com SPRS439Q – JUNE 2007 – REVISED AUGUST 2022 8.2.13 GPIO MUX On the 2833x/2823x devices, the GPIO MUX can multiplex up to three independent peripheral signals on a single GPIO pin in addition to providing individual pin bit-banging I/O capability. The GPIO MUX block diagram per pin is shown in Figure 8-18. Because of the open-drain capabilities of the I2C pins, the GPIO MUX block diagram for these pins differ. See the System Control and Interrupts chapter of the TMS320x2833x, TMS320x2823x Real-Time Microcontrollers Technical Reference Manual for details. Note There is a 2-SYSCLKOUT cycle delay from when the write to the GPxMUXn and GPxQSELn registers occurs to when the action is valid. 150 Submit Document Feedback Copyright © 2022 Texas Instruments Incorporated Product Folder Links: TMS320F28335 TMS320F28335-Q1 TMS320F28334 TMS320F28333 TMS320F28332 TMS320F28235 TMS320F28235-Q1 TMS320F28234 TMS320F28234-Q1 TMS320F28232 TMS320F28232-Q1 TMS320F28335, TMS320F28335-Q1, TMS320F28334, TMS320F28333 TMS320F28332, TMS320F28235, TMS320F28235-Q1 TMS320F28234, TMS320F28234-Q1, TMS320F28232, TMS320F28232-Q1 www.ti.com SPRS439Q – JUNE 2007 – REVISED AUGUST 2022 GPIOXINT1SEL GPIOXINT2SEL GPIOXINT3SEL GPIOLMPSEL GPIOXINT7SEL LPMCR0 GPIOXNMISEL Low-Power Modes Block External Interrupt MUX PIE GPxDAT (read) Asynchronous path GPxQSEL1/2 GPxCTRL GPxPUD Input Qualification Internal Pullup 00 N/C 01 Peripheral 1 Input 10 Peripheral 2 Input 11 Peripheral 3 Input Asynchronous path GPxTOGGLE GPxCLEAR GPxSET GPIOx pin 00 GPxDAT (latch) 01 Peripheral 1 Output 10 Peripheral 2 Output 11 Peripheral 3 Output High-Impedance Output Control 00 0 = Input, 1 = Output XRS = Default at Reset A. B. C. GPxDIR (latch) 01 Peripheral 1 Output Enable 10 Peripheral 2 Output Enable 11 Peripheral 3 Output Enable GPxMUX1/2 x stands for the port, either A or B. For example, GPxDIR refers to either the GPADIR and GPBDIR register depending on the particular GPIO pin selected. GPxDAT latch/read are accessed at the same memory location. This is a generic GPIO MUX block diagram. Not all options may be applicable for all GPIO pins. See the System Control and Interrupts chapter of the TMS320x2833x, TMS320x2823x Real-Time Microcontrollers Technical Reference Manual for pin-specific variations. Figure 8-18. GPIO MUX Block Diagram Copyright © 2022 Texas Instruments Incorporated Submit Document Feedback Product Folder Links: TMS320F28335 TMS320F28335-Q1 TMS320F28334 TMS320F28333 TMS320F28332 TMS320F28235 TMS320F28235-Q1 TMS320F28234 TMS320F28234-Q1 TMS320F28232 TMS320F28232-Q1 151 TMS320F28335, TMS320F28335-Q1, TMS320F28334, TMS320F28333 TMS320F28332, TMS320F28235, TMS320F28235-Q1 TMS320F28234, TMS320F28234-Q1, TMS320F28232, TMS320F28232-Q1 www.ti.com SPRS439Q – JUNE 2007 – REVISED AUGUST 2022 The device supports 88 GPIO pins. The GPIO control and data registers are mapped to Peripheral Frame 1 to enable 32-bit operations on the registers (along with 16-bit operations). Table 8-17 shows the GPIO register mapping. Table 8-17. GPIO Registers NAME ADDRESS SIZE (x16) DESCRIPTION GPIO CONTROL REGISTERS (EALLOW PROTECTED) GPACTRL 0x6F80 2 GPIO A Control Register (GPIO0 to 31) GPAQSEL1 0x6F82 2 GPIO A Qualifier Select 1 Register (GPIO0 to 15) GPAQSEL2 0x6F84 2 GPIO A Qualifier Select 2 Register (GPIO16 to 31) GPAMUX1 0x6F86 2 GPIO A MUX 1 Register (GPIO0 to 15) GPAMUX2 0x6F88 2 GPIO A MUX 2 Register (GPIO16 to 31) GPADIR 0x6F8A 2 GPIO A Direction Register (GPIO0 to 31) GPAPUD 0x6F8C 2 GPIO A Pullup Disable Register (GPIO0 to 31) Reserved 0x6F8E – 0x6F8F 2 GPBCTRL 0x6F90 2 GPIO B Control Register (GPIO32 to 63) GPBQSEL1 0x6F92 2 GPIO B Qualifier Select 1 Register (GPIO32 to 47) GPBQSEL2 0x6F94 2 GPIOB Qualifier Select 2 Register (GPIO48 to 63) GPBMUX1 0x6F96 2 GPIO B MUX 1 Register (GPIO32 to 47) GPBMUX2 0x6F98 2 GPIO B MUX 2 Register (GPIO48 to 63) GPBDIR 0x6F9A 2 GPIO B Direction Register (GPIO32 to 63) GPBPUD 0x6F9C 2 GPIO B Pullup Disable Register (GPIO32 to 63) Reserved 0x6F9E – 0x6FA5 8 0x6FA6 2 GPIO C MUX1 Register (GPIO64 to 79) GPCMUX2 0x6FA8 2 GPIO C MUX2 Register (GPIO80 to 87) GPCDIR 0x6FAA 2 GPIO C Direction Register (GPIO64 to 87) GPIO C Pullup Disable Register (GPIO64 to 87) GPCMUX1 GPCPUD 0x6FAC 2 Reserved 0x6FAE – 0x6FBF 18 GPADAT 0x6FC0 2 GPIO A Data Register (GPIO0 to 31) GPASET 0x6FC2 2 GPIO A Data Set Register (GPIO0 to 31) GPACLEAR 0x6FC4 2 GPIO A Data Clear Register (GPIO0 to 31) GPATOGGLE 0x6FC6 2 GPIO A Data Toggle Register (GPIO0 to 31) GPBDAT 0x6FC8 2 GPIO B Data Register (GPIO32 to 63) GPBSET 0x6FCA 2 GPIO B Data Set Register (GPIO32 to 63) GPBCLEAR 0x6FCC 2 GPIO B Data Clear Register (GPIO32 to 63) GPBTOGGLE 0x6FCE 2 GPIOB Data Toggle Register (GPIO32 to 63) GPCDAT 0x6FD0 2 GPIO C Data Register (GPIO64 to 87) GPCSET 0x6FD2 2 GPIO C Data Set Register (GPIO64 to 87) GPCCLEAR 0x6FD4 2 GPIO C Data Clear Register (GPIO64 to 87) GPCTOGGLE 0x6FD6 2 GPIO C Data Toggle Register (GPIO64 to 87) 0x6FD8 – 0x6FDF 8 GPIO DATA REGISTERS (NOT EALLOW PROTECTED) Reserved GPIO INTERRUPT AND LOW-POWER MODES SELECT REGISTERS (EALLOW PROTECTED) GPIOXINT1SEL 0x6FE0 1 XINT1 GPIO Input Select Register (GPIO0 to 31) GPIOXINT2SEL 0x6FE1 1 XINT2 GPIO Input Select Register (GPIO0 to 31) GPIOXNMISEL 0x6FE2 1 XNMI GPIO Input Select Register (GPIO0 to 31) GPIOXINT3SEL 0x6FE3 1 XINT3 GPIO Input Select Register (GPIO32 to 63) GPIOXINT4SEL 0x6FE4 1 XINT4 GPIO Input Select Register (GPIO32 to 63) 152 Submit Document Feedback Copyright © 2022 Texas Instruments Incorporated Product Folder Links: TMS320F28335 TMS320F28335-Q1 TMS320F28334 TMS320F28333 TMS320F28332 TMS320F28235 TMS320F28235-Q1 TMS320F28234 TMS320F28234-Q1 TMS320F28232 TMS320F28232-Q1 TMS320F28335, TMS320F28335-Q1, TMS320F28334, TMS320F28333 TMS320F28332, TMS320F28235, TMS320F28235-Q1 TMS320F28234, TMS320F28234-Q1, TMS320F28232, TMS320F28232-Q1 www.ti.com SPRS439Q – JUNE 2007 – REVISED AUGUST 2022 Table 8-17. GPIO Registers (continued) NAME ADDRESS SIZE (x16) GPIOXINT5SEL 0x6FE5 1 XINT5 GPIO Input Select Register (GPIO32 to 63) GPIOXINT6SEL 0x6FE6 1 XINT6 GPIO Input Select Register (GPIO32 to 63) GPIOINT7SEL 0x6FE7 1 XINT7 GPIO Input Select Register (GPIO32 to 63) 0x6FE8 2 LPM GPIO Select Register (GPIO0 to 31) 0x6FEA – 0x6FFF 22 GPIOLPMSEL Reserved DESCRIPTION Table 8-18. GPIO-A Mux Peripheral Selection Matrix REGISTER BITS GPADIR GPADAT GPASET GPACLR GPATOGGLE QUALPRD0 QUALPRD1 QUALPRD2 QUALPRD3 PERIPHERAL SELECTION GPAMUX1 GPAQSEL1 GPIOx GPAMUX1 = 0,0 PER1 GPAMUX1 = 0, 1 0 1, 0 GPIO0 (I/O) EPWM1A (O) Reserved Reserved 1 3, 2 GPIO1 (I/O) EPWM1B (O) ECAP6 (I/O) MFSRB (I/O) 2 5, 4 GPIO2 (I/O) EPWM2A (O) Reserved Reserved 3 7, 6 GPIO3 (I/O) EPWM2B (O) ECAP5 (I/O) MCLKRB (I/O) 4 9, 8 GPIO4 (I/O) EPWM3A (O) Reserved Reserved 5 11, 10 GPIO5 (I/O) EPWM3B (O) MFSRA (I/O) ECAP1 (I/O) 6 13, 12 GPIO6 (I/O) EPWM4A (O) EPWMSYNCI (I) EPWMSYNCO (O) 7 15, 14 GPIO7 (I/O) EPWM4B (O) MCLKRA (I/O) ECAP2 (I/O) 8 17, 16 GPIO8 (I/O) EPWM5A (O) CANTXB (O) ADCSOCAO (O) 9 19, 18 GPIO9 (I/O) EPWM5B (O) SCITXDB (O) ECAP3 (I/O) 10 21, 20 GPIO10 (I/O) EPWM6A (O) CANRXB (I) ADCSOCBO (O) 11 23, 22 GPIO11 (I/O) EPWM6B (O) SCIRXDB (I) ECAP4 (I/O) 12 25, 24 GPIO12 (I/O) TZ1 (I) CANTXB (O) MDXB (O) 13 27, 26 GPIO13 (I/O) TZ2 (I) CANRXB (I) MDRB (I) 14 29, 28 GPIO14 (I/O) TZ3 (I)/ XHOLD (I) SCITXDB (O) MCLKXB (I/O) 15 31, 30 GPIO15 (I/O) TZ4 (I)/ XHOLDA (O) SCIRXDB (I) MFSXB (I/O) GPAMUX2 GPAQSEL2 GPAMUX2 = 0, 0 GPAMUX2 = 0, 1 GPAMUX2 = 1, 0 GPAMUX2 = 1, 1 16 1, 0 GPIO16 (I/O) SPISIMOA (I/O) CANTXB (O) TZ5 (I) 17 3, 2 GPIO17 (I/O) SPISOMIA (I/O) CANRXB (I) TZ6 (I) 18 5, 4 GPIO18 (I/O) SPICLKA (I/O) SCITXDB (O) CANRXA (I) 19 7, 6 GPIO19 (I/O) SPISTEA (I/O) SCIRXDB (I) CANTXA (O) 20 9, 8 GPIO20 (I/O) EQEP1A (I) MDXA (O) CANTXB (O) 21 11, 10 GPIO21 (I/O) EQEP1B (I) MDRA (I) CANRXB (I) 22 13, 12 GPIO22 (I/O) EQEP1S (I/O) MCLKXA (I/O) SCITXDB (O) 23 15, 14 GPIO23 (I/O) EQEP1I (I/O) MFSXA (I/O) SCIRXDB (I) 24 17, 16 GPIO24 (I/O) ECAP1 (I/O) EQEP2A (I) MDXB (O) 25 19, 18 GPIO25 (I/O) ECAP2 (I/O) EQEP2B (I) MDRB (I) 26 21, 20 GPIO26 (I/O) ECAP3 (I/O) EQEP2I (I/O) MCLKXB (I/O) 27 23, 22 GPIO27 (I/O) ECAP4 (I/O) EQEP2S (I/O) 28 25, 24 GPIO28 (I/O) SCIRXDA (I) XZCS6 (O) 29 27, 26 GPIO29 (I/O) SCITXDA (O) XA19 (O) 30 29, 28 GPIO30 (I/O) CANRXA (I) XA18 (O) 31 31, 30 GPIO31 (I/O) CANTXA (O) XA17 (O) Copyright © 2022 Texas Instruments Incorporated PER2 GPAMUX1 = 1, 0 PER3 GPAMUX1 = 1, 1 MFSXB (I/O) Submit Document Feedback Product Folder Links: TMS320F28335 TMS320F28335-Q1 TMS320F28334 TMS320F28333 TMS320F28332 TMS320F28235 TMS320F28235-Q1 TMS320F28234 TMS320F28234-Q1 TMS320F28232 TMS320F28232-Q1 153 TMS320F28335, TMS320F28335-Q1, TMS320F28334, TMS320F28333 TMS320F28332, TMS320F28235, TMS320F28235-Q1 TMS320F28234, TMS320F28234-Q1, TMS320F28232, TMS320F28232-Q1 www.ti.com SPRS439Q – JUNE 2007 – REVISED AUGUST 2022 Table 8-19. GPIO-B Mux Peripheral Selection Matrix REGISTER BITS GPBDIR GPBDAT GPBSET GPBCLR GPBTOGGLE 0 QUALPRD0 QUALPRD1 QUALPRD3 (1) 154 GPBMUX1 GPBQSEL1 GPIOx GPBMUX1 = 0, 0 PER1 GPBMUX1 = 0, 1 PER2 GPBMUX1 = 1, 0 PER3 GPBMUX1 = 1, 1 1, 0 GPIO32 (I/O) SDAA (I/OC)(1) EPWMSYNCI (I) ADCSOCAO (O) (I/OC)(1) EPWMSYNCO (O) ADCSOCBO (O) 1 3, 2 GPIO33 (I/O) 2 5, 4 GPIO34 (I/O) ECAP1 (I/O) 3 7, 6 GPIO35 (I/O) SCITXDA (O) XR/ W (O) 4 9, 8 GPIO36 (I/O) SCIRXDA (I) XZCS0 (O) 5 11, 10 GPIO37 (I/O) ECAP2 (I/O) XZCS7 (O) 6 13, 12 GPIO38 (I/O) 7 15, 14 GPIO39 (I/O) XA16 (O) 8 17, 16 GPIO40 (I/O) XA0/ XWE1 (O) XA1 (O) 9 19, 18 GPIO41 (I/O) 10 21, 20 GPIO42 (I/O) SCLA XREADY (I) XWE0 (O) Reserved XA2 (O) 11 23, 22 GPIO43 (I/O) 12 25, 24 GPIO44 (I/O) XA4 (O) 13 27, 26 GPIO45 (I/O) XA5 (O) 14 29, 28 GPIO46 (I/O) XA6 (O) XA7 (O) 15 QUALPRD2 PERIPHERAL SELECTION XA3 (O) 31, 30 GPIO47 (I/O) GPBMUX2 GPBQSEL2 GPBMUX2 = 0, 0 GPBMUX2 = 0, 1 16 1, 0 GPIO48 (I/O) ECAP5 (I/O) XD31 (I/O) 17 3, 2 GPIO49 (I/O) ECAP6 (I/O) XD30 (I/O) 18 5, 4 GPIO50 (I/O) EQEP1A (I) XD29 (I/O) 19 7, 6 GPIO51 (I/O) EQEP1B (I) XD28 (I/O) 20 9, 8 GPIO52 (I/O) EQEP1S (I/O) XD27 (I/O) 21 11, 10 GPIO53 (I/O) EQEP1I (I/O) XD26 (I/O) 22 13, 12 GPIO54 (I/O) SPISIMOA (I/O) XD25 (I/O) 23 15, 14 GPIO55 (I/O) SPISOMIA (I/O) XD24 (I/O) 24 17, 16 GPIO56 (I/O) SPICLKA (I/O) XD23 (I/O) 25 19, 18 GPIO57 (I/O) SPISTEA (I/O) XD22 (I/O) 26 21, 20 GPIO58 (I/O) MCLKRA (I/O) XD21 (I/O) 27 23, 22 GPIO59 (I/O) MFSRA (I/O) XD20 (I/O) 28 25, 24 GPIO60 (I/O) MCLKRB (I/O) XD19 (I/O) 29 27, 26 GPIO61 (I/O) MFSRB (I/O) XD18 (I/O) 30 29, 28 GPIO62 (I/O) SCIRXDC (I) XD17 (I/O) 31 31, 30 GPIO63 (I/O) SCITXDC (O) XD16 (I/O) GPBMUX2 = 1, 0 GPBMUX2 = 1, 1 Open drain Submit Document Feedback Copyright © 2022 Texas Instruments Incorporated Product Folder Links: TMS320F28335 TMS320F28335-Q1 TMS320F28334 TMS320F28333 TMS320F28332 TMS320F28235 TMS320F28235-Q1 TMS320F28234 TMS320F28234-Q1 TMS320F28232 TMS320F28232-Q1 TMS320F28335, TMS320F28335-Q1, TMS320F28334, TMS320F28333 TMS320F28332, TMS320F28235, TMS320F28235-Q1 TMS320F28234, TMS320F28234-Q1, TMS320F28232, TMS320F28232-Q1 www.ti.com SPRS439Q – JUNE 2007 – REVISED AUGUST 2022 Table 8-20. GPIO-C Mux Peripheral Selection Matrix REGISTER BITS GPCDIR GPCDAT GPCSET GPCCLR GPCTOGGLE no qual no qual GPCMUX1 GPIOx or PER1 GPCMUX1 = 0, 0 or 0, 1 PER2 or PER3 GPCMUX1 = 1, 0 or 1, 1 0 1, 0 GPIO64 (I/O) XD15 (I/O) 1 3, 2 GPIO65 (I/O) XD14 (I/O) 2 5, 4 GPIO66 (I/O) XD13 (I/O) 3 7, 6 GPIO67 (I/O) XD12 (I/O) 4 9, 8 GPIO68 (I/O) XD11 (I/O) 5 11, 10 GPIO69 (I/O) XD10 (I/O) 6 13, 12 GPIO70 (I/O) XD9 (I/O) 7 15, 14 GPIO71 (I/O) XD8 (I/O) 8 17, 16 GPIO72 (I/O) XD7 (I/O) 9 19, 18 GPIO73 (I/O) XD6 (I/O) 10 21, 20 GPIO74 (I/O) XD5 (I/O) 11 23, 22 GPIO75 (I/O) XD4 (I/O) 12 25, 24 GPIO76 (I/O) XD3 (I/O) 13 27, 26 GPIO77 (I/O) XD2 (I/O) 14 29, 28 GPIO78 (I/O) XD1 (I/O) 15 no qual PERIPHERAL SELECTION 31, 30 GPIO79 (I/O) XD0 (I/O) GPCMUX2 GPCMUX2 = 0, 0 or 0, 1 GPCMUX2 = 1, 0 or 1, 1 16 1, 0 GPIO80 (I/O) XA8 (O) 17 3, 2 GPIO81 (I/O) XA9 (O) 18 5, 4 GPIO82 (I/O) XA10 (O) 19 7, 6 GPIO83 (I/O) XA11 (O) 20 9, 8 GPIO84 (I/O) XA12 (O) 21 11, 10 GPIO85 (I/O) XA13 (O) 22 13, 12 GPIO86 (I/O) XA14 (O) 23 15, 14 GPIO87 (I/O) XA15 (O) Copyright © 2022 Texas Instruments Incorporated Submit Document Feedback Product Folder Links: TMS320F28335 TMS320F28335-Q1 TMS320F28334 TMS320F28333 TMS320F28332 TMS320F28235 TMS320F28235-Q1 TMS320F28234 TMS320F28234-Q1 TMS320F28232 TMS320F28232-Q1 155 TMS320F28335, TMS320F28335-Q1, TMS320F28334, TMS320F28333 TMS320F28332, TMS320F28235, TMS320F28235-Q1 TMS320F28234, TMS320F28234-Q1, TMS320F28232, TMS320F28232-Q1 www.ti.com SPRS439Q – JUNE 2007 – REVISED AUGUST 2022 The user can select the type of input qualification for each GPIO pin through the GPxQSEL1/2 registers from four choices: • • Synchronization To SYSCLKOUT Only (GPxQSEL1/2 = 0, 0): This is the default mode of all GPIO pins at reset and it simply synchronizes the input signal to the system clock (SYSCLKOUT). Qualification Using Sampling Window (GPxQSEL1/2 = 0, 1 and 1, 0): In this mode the input signal, after synchronization to the system clock (SYSCLKOUT), is qualified by a specified number of cycles before the input is allowed to change. Time Between Samples GPyCTRL Reg GPIOx SYNC Input Signal Qualified by 3 or 6 Samples Qualification GPxQSEL SYSCLKOUT Number of Samples • • Figure 8-19. Qualification Using Sampling Window The sampling period is specified by the QUALPRD bits in the GPxCTRL register and is configurable in groups of 8 signals. It specifies a multiple of SYSCLKOUT cycles for sampling the input signal. The sampling window is either 3-samples or 6-samples wide and the output is only changed when all samples are the same (all 0s or all 1s) as shown in Figure 8-19 (for 6-sample mode). No Synchronization (GPxQSEL1/2 = 1,1): This mode is used for peripherals where synchronization is not required (synchronization is performed within the peripheral). Due to the multilevel multiplexing that is required on the device, there may be cases where a peripheral input signal can be mapped to more then one GPIO pin. Also, when an input signal is not selected, the input signal will default to either a 0 or 1 state, depending on the peripheral. 156 Submit Document Feedback Copyright © 2022 Texas Instruments Incorporated Product Folder Links: TMS320F28335 TMS320F28335-Q1 TMS320F28334 TMS320F28333 TMS320F28332 TMS320F28235 TMS320F28235-Q1 TMS320F28234 TMS320F28234-Q1 TMS320F28232 TMS320F28232-Q1 TMS320F28335, TMS320F28335-Q1, TMS320F28334, TMS320F28333 TMS320F28332, TMS320F28235, TMS320F28235-Q1 TMS320F28234, TMS320F28234-Q1, TMS320F28232, TMS320F28232-Q1 www.ti.com SPRS439Q – JUNE 2007 – REVISED AUGUST 2022 8.2.14 External Interface (XINTF) This section gives a top-level view of the external interface (XINTF) that is implemented on the 2833x/2823x devices. The XINTF is a nonmultiplexed asynchronous bus, similar to the 2812 XINTF. The XINTF is mapped into three fixed zones shown in Figure 8-20. Data Space Prog Space 0x0000-0000 XD[31:0] XA[19:0] 0x0000-4000 XINTF Zone 0 (8K x 16) XZCS0 XINTF Zone 6 (1M x 16) XZCS6 XINTF Zone 7 (1M x 16) XZCS7 0x0000-5000 0x0010-0000 0x0020-0000 XA0/XWE1 0x0030-0000 XWE0 XRD XR/W XREADY XHOLD XHOLDA XCLKOUT A. B. C. Each zone can be programmed with different wait states, setup and hold timings, and is supported by zone chip selects that toggle when an access to a particular zone is performed. These features enable glueless connection to many external memories and peripherals. Zones 1 – 5 are reserved for future expansion. Zones 0, 6, and 7 are always enabled. Figure 8-20. External Interface Block Diagram Copyright © 2022 Texas Instruments Incorporated Submit Document Feedback Product Folder Links: TMS320F28335 TMS320F28335-Q1 TMS320F28334 TMS320F28333 TMS320F28332 TMS320F28235 TMS320F28235-Q1 TMS320F28234 TMS320F28234-Q1 TMS320F28232 TMS320F28232-Q1 157 TMS320F28335, TMS320F28335-Q1, TMS320F28334, TMS320F28333 TMS320F28332, TMS320F28235, TMS320F28235-Q1 TMS320F28234, TMS320F28234-Q1, TMS320F28232, TMS320F28232-Q1 www.ti.com SPRS439Q – JUNE 2007 – REVISED AUGUST 2022 Figure 8-21 and Figure 8-22 show typical 16-bit and 32-bit data bus XINTF connections, illustrating how the functionality of the XA0 and XWE1 signals change, depending on the configuration. Table 8-21 defines XINTF configuration and control registers. XINTF External wait-state generator 16-bits XREADY XCLKOUT XZCS0, XZCS6, XZCS7 CS A(19:1) XA(19:1) A(0) XA0/XWE1 OE XRD WE XWE0 D(15:0) XD(15:0) Figure 8-21. Typical 16-Bit Data Bus XINTF Connections XINTF External wait-state generator Low 16-bits XREADY XCLKOUT CS A(18:0) XA(19:1) OE XRD WE XWE0 D(15:0) XD(15:0) High 16-bits A(18:0) XZCS0, XZCS6, XZCS7 CS OE XA0/XWE1 (select XWE1) WE D(31:16) XD(31:16) Figure 8-22. Typical 32-Bit Data Bus XINTF Connections Table 8-21. XINTF Configuration and Control Register Mapping NAME ADDRESS SIZE (x16) XTIMING0 0x00−0B20 2 XINTF Timing Register, Zone 0 XTIMING6(1) 0x00−0B2C 2 XINTF Timing Register, Zone 6 XTIMING7 0x00−0B2E 2 XINTF Timing Register, Zone 7 XINTCNF2(2) 0x00−0B34 2 XINTF Configuration Register XBANK 0x00−0B38 1 XINTF Bank Control Register XREVISION 0x00−0B3A 1 XINTF Revision Register XRESET 0x00−0B3D 1 XINTF Reset Register (1) (2) 158 DESCRIPTION XTIMING1 - XTIMING5 are reserved for future expansion and are not currently used. XINTCNF1 is reserved and not currently used. Submit Document Feedback Copyright © 2022 Texas Instruments Incorporated Product Folder Links: TMS320F28335 TMS320F28335-Q1 TMS320F28334 TMS320F28333 TMS320F28332 TMS320F28235 TMS320F28235-Q1 TMS320F28234 TMS320F28234-Q1 TMS320F28232 TMS320F28232-Q1 TMS320F28335, TMS320F28335-Q1, TMS320F28334, TMS320F28333 TMS320F28332, TMS320F28235, TMS320F28235-Q1 TMS320F28234, TMS320F28234-Q1, TMS320F28232, TMS320F28232-Q1 www.ti.com SPRS439Q – JUNE 2007 – REVISED AUGUST 2022 8.3 Memory Maps In Figure 8-23 to Figure 8-25, the following apply: • Memory blocks are not to scale. • Peripheral Frame 0, Peripheral Frame 1, Peripheral Frame 2, and Peripheral Frame 3 memory maps are restricted to data memory only. A user program cannot access these memory maps in program space. • Protected means the order of "Write followed by Read" operations is preserved rather than the pipeline order. See the System Control and Interrupts chapter of the TMS320x2833x, TMS320x2823x Real-Time Microcontrollers Technical Reference Manual for more details. • Certain memory ranges are EALLOW protected against spurious writes after configuration. • Locations 0x38 0080–0x38 008F contain the ADC calibration routine. It is not programmable by the user. • If the eCAN module is not used in an application, the RAM available (LAM, MOTS, MOTO, and mailbox RAM) can be used as general-purpose RAM. The CAN module clock should be enabled for this. Copyright © 2022 Texas Instruments Incorporated Submit Document Feedback Product Folder Links: TMS320F28335 TMS320F28335-Q1 TMS320F28334 TMS320F28333 TMS320F28332 TMS320F28235 TMS320F28235-Q1 TMS320F28234 TMS320F28234-Q1 TMS320F28232 TMS320F28232-Q1 159 TMS320F28335, TMS320F28335-Q1, TMS320F28334, TMS320F28333 TMS320F28332, TMS320F28235, TMS320F28235-Q1 TMS320F28234, TMS320F28234-Q1, TMS320F28232, TMS320F28232-Q1 www.ti.com SPRS439Q – JUNE 2007 – REVISED AUGUST 2022 Block Start Address On-Chip Memory Prog Space Data Space 0x00 0000 Prog Space Data Space M0 Vector - RAM (32 x 32) (Enabled if VMAP = 0) 0x00 0040 M0 SARAM (1K x 16) 0x00 0400 M1 SARAM (1K x 16) 0x00 0800 Peripheral Frame 0 Reserved 0x00 0D00 Low 64K (24x/240x Equivalent Data Space) External Memory XINTF PIE Vector - RAM (256 x 16) (Enabled if VMAP = 1, ENPIE = 1) 0x00 0E00 Reserved Peripheral Frame 0 0x00 2000 XINTF Zone 0 (4K x 16, XZCS0) (Protected) DMA-Accessible Reserved 0x00 5000 0x00 4000 0x00 5000 Peripheral Frame 3 (Protected) DMA-Accessible 0x00 6000 Peripheral Frame 1 (Protected) Reserved 0x00 7000 Peripheral Frame 2 (Protected) 0x00 8000 0x00 9000 0x00 A000 0x00 B000 L0 SARAM (4K x 16, Secure Zone, Dual-Mapped) L1 SARAM (4K x 16, Secure Zone, Dual-Mapped) Reserved L2 SARAM (4K x 16, Secure Zone, Dual-Mapped) L3 SARAM (4K x 16, Secure Zone, Dual-Mapped) 0x00 C000 L4 SARAM (4K x 16, DMA-Accessible) 0x00 D000 L5 SARAM (4K x 16, DMA-Accessible) 0x00 E000 L6 SARAM (4K x 16, DMA-Accessible) 0x00 F000 L7 SARAM (4K x 16, DMA-Accessible) 0x01 0000 Reserved XINTF Zone 6 (1M x 16, XZCS6) (DMA-Accessible) XINTF Zone 7 (1M x 16, XZCS7) (DMA-Accessible) 0x30 0000 0x20 0000 0x30 0000 FLASH (256K x 16, Secure Zone) 0x33 FFF8 0x34 0000 0x38 0080 0x38 0091 0x10 0000 128-bit Password Reserved ADC Calibration Data and PARTID (Secure Zone) Reserved 0x38 0400 User OTP (1K x 16, Secure Zone) 0x38 0800 Reserved High 64K (24x/240x Equivalent Program Space) 0x3F 8000 0x3F 9000 0x3F A000 0x3F B000 L0 SARAM (4K x 16, Secure Zone, Dual-Mapped) L1 SARAM (4K x 16, Secure Zone, Dual-Mapped) Reserved L2 SARAM (4K x 16, Secure Zone, Dual-Mapped) L3 SARAM (4K x 16, Secure Zone, Dual-Mapped) 0x3F C000 Reserved 0x3F E000 Boot ROM (8K x 16) 0x3F FFC0 BROM Vector - ROM (32 x 32) (Enabled if VMAP = 1, ENPIE = 0) LEGEND: Only one of these vector maps-M0 vector, PIE vector, BROM vector- should be enabled at a time. Figure 8-23. F28335, F28333, F28235 Memory Map 160 Submit Document Feedback Copyright © 2022 Texas Instruments Incorporated Product Folder Links: TMS320F28335 TMS320F28335-Q1 TMS320F28334 TMS320F28333 TMS320F28332 TMS320F28235 TMS320F28235-Q1 TMS320F28234 TMS320F28234-Q1 TMS320F28232 TMS320F28232-Q1 TMS320F28335, TMS320F28335-Q1, TMS320F28334, TMS320F28333 TMS320F28332, TMS320F28235, TMS320F28235-Q1 TMS320F28234, TMS320F28234-Q1, TMS320F28232, TMS320F28232-Q1 www.ti.com SPRS439Q – JUNE 2007 – REVISED AUGUST 2022 Block Start Address On-Chip Memory External Memory XINTF Prog Space Data Space Prog Space Data Space 0x00 0000 M0 Vector - RAM (32 x 32) (Enabled if VMAP = 0) 0x00 0040 M0 SARAM (1K x 16) 0x00 0400 M1 SARAM (1K x 16) 0x00 0800 Peripheral Frame 0 Reserved Low 64K (24x/240x Equivalent Data Space) 0x00 0D00 0x00 0E00 PIE Vector - RAM (256 x 16) (Enabled if VMAP = 1, ENPIE = 1) Reserved Peripheral Frame 0 0x00 2000 Reserved XINTF Zone 0 (4K x 16, XZCS0) (Protected) DMA-Accessible 0x00 5000 0x00 6000 0x00 7000 0x00 8000 0x00 9000 0x00 A000 0x00 B000 0x00 C000 0x00 D000 0x00 E000 0x00 F000 Peripheral Frame 1 (Protected) Reserved Peripheral Frame 2 (Protected) L0 SARAM (4K x 16, Secure Zone, Dual-Mapped) L1 SARAM (4K x 16, Secure Zone, Dual-Mapped) L2 SARAM (4K x 16, Secure Zone, Dual-Mapped) Reserved L3 SARAM (4K x 16, Secure Zone, Dual-Mapped) L4 SARAM (4K x 16, DMA-Accessible) L5 SARAM (4K x 16, DMA-Accessible) L6 SARAM (4K x 16, DMA-Accessible) L7 SARAM (4K x 16, DMA-Accessible) XINTF Zone 6 (1M x 16, XZCS6) (DMA-Accessible) Reserved Reserved ADC Calibration Data and PARTID (Secure Zone) 0x38 0091 Reserved User OTP (1K x 16, Secure Zone) 0x38 0800 High 64K (24x/240x Equivalent Program Space) 0x3F 8000 0x3F 9000 0x3F A000 0x3F B000 0x10 0000 0x20 0000 0x30 0000 128-bit Password 0x34 0000 0x38 0400 XINTF Zone 7 (1M x 16, XZCS7) (DMA-Accessible) FLASH (128K x 16, Secure Zone) 0x33 FFF8 0x38 0080 0x00 5000 Peripheral Frame 3 (Protected) DMA-Accessible 0x01 0000 0x32 0000 0x00 4000 Reserved L0 SARAM (4K x 16, Secure Zone, Dual-Mapped) Reserved L1 SARAM (4K x 16, Secure Zone, Dual-Mapped) L2 SARAM (4K x 16, Secure Zone, Dual-Mapped) L3 SARAM (4K x 16, Secure Zone, Dual-Mapped) 0x3F C000 Reserved 0x3F E000 Boot ROM (8K x 16) 0x3F FFC0 BROM Vector - ROM (32 x 32) (Enabled if VMAP = 1, ENPIE = 0) LEGEND: Only one of these vector maps-M0 vector, PIE vector, BROM vector-should be enabled at a time. Figure 8-24. F28334, F28234 Memory Map Copyright © 2022 Texas Instruments Incorporated Submit Document Feedback Product Folder Links: TMS320F28335 TMS320F28335-Q1 TMS320F28334 TMS320F28333 TMS320F28332 TMS320F28235 TMS320F28235-Q1 TMS320F28234 TMS320F28234-Q1 TMS320F28232 TMS320F28232-Q1 161 TMS320F28335, TMS320F28335-Q1, TMS320F28334, TMS320F28333 TMS320F28332, TMS320F28235, TMS320F28235-Q1 TMS320F28234, TMS320F28234-Q1, TMS320F28232, TMS320F28232-Q1 www.ti.com SPRS439Q – JUNE 2007 – REVISED AUGUST 2022 Block Start Address On-Chip Memory Prog Space Data Space 0x00 0000 Prog Space Data Space M0 Vector - RAM (32 x 32) (Enabled if VMAP = 0) 0x00 0040 M0 SARAM (1K x 16) 0x00 0400 M1 SARAM (1K x 16) 0x00 0800 Peripheral Frame 0 Reserved 0x00 0D00 Low 64K (24x/240x Equivalent Data Space) External Memory XINTF PIE Vector - RAM (256 x 16) (Enabled if VMAP = 1, ENPIE = 1) 0x00 0E00 Reserved Peripheral Frame 0 0x00 2000 XINTF Zone 0 (4K x 16, XZCS0) (Protected) DMA-Accessible Reserved 0x00 5000 0x00 4000 0x00 5000 Peripheral Frame 3 (Protected) DMA-Accessible 0x00 6000 Peripheral Frame 1 (Protected) Reserved 0x00 7000 Peripheral Frame 2 (Protected) 0x00 8000 0x00 9000 0x00 A000 0x00 B000 L0 SARAM (4K x 16, Secure Zone, Dual-Mapped) L1 SARAM (4K x 16, Secure Zone, Dual-Mapped) Reserved L2 SARAM (4K x 16, Secure Zone, Dual-Mapped) L3 SARAM (4K x 16, Secure Zone, Dual-Mapped) 0x00 C000 L4 SARAM (4K x 16, DMA-Accessible) 0x00 D000 L5 SARAM (4K x 16, DMA-Accessible) 0x00 E000 XINTF Zone 6 (1M x 16, XZCS6) (DMA-Accessible) Reserved 0x10 0000 0x20 0000 XINTF Zone 7 (1M x 16, XZCS7) (DMA-Accessible) 0x30 0000 0x33 0000 FLASH (64K x 16, Secure Zone) 0x33 FFF8 128-bit Password 0x34 0000 Reserved 0x38 0080 ADC Calibration Data and PARTID (Secure Zone) 0x38 0091 Reserved 0x38 0400 User OTP (1K x 16, Secure Zone) 0x38 0800 High 64K (24x/240x Equivalent Program Space) 0x3F 8000 0x3F 9000 0x3F A000 0x3F B000 0x3F C000 Reserved L0 SARAM (4K x 16, Secure Zone, Dual-Mapped) L1 SARAM (4K x 16, Secure Zone, Dual-Mapped) Reserved L2 SARAM (4K x 16, Secure Zone, Dual-Mapped) L3 SARAM (4K x 16, Secure Zone, Dual-Mapped) Reserved 0x3F E000 Boot ROM (8K x 16) 0x3F FFC0 BROM Vector - ROM (32 x 32) (Enabled if VMAP = 1, ENPIE = 0) LEGEND: Only one of these vector maps-M0 vector, PIE vector, BROM vector-should be enabled at a time. Figure 8-25. F28332, F28232 Memory Map 162 Submit Document Feedback Copyright © 2022 Texas Instruments Incorporated Product Folder Links: TMS320F28335 TMS320F28335-Q1 TMS320F28334 TMS320F28333 TMS320F28332 TMS320F28235 TMS320F28235-Q1 TMS320F28234 TMS320F28234-Q1 TMS320F28232 TMS320F28232-Q1 TMS320F28335, TMS320F28335-Q1, TMS320F28334, TMS320F28333 TMS320F28332, TMS320F28235, TMS320F28235-Q1 TMS320F28234, TMS320F28234-Q1, TMS320F28232, TMS320F28232-Q1 www.ti.com SPRS439Q – JUNE 2007 – REVISED AUGUST 2022 Table 8-22. Addresses of Flash Sectors in F28335, F28333, F28235 ADDRESS RANGE PROGRAM AND DATA SPACE 0x30 0000 - 0x30 7FFF Sector H (32K × 16) 0x30 8000 - 0x30 FFFF Sector G (32K × 16) 0x31 0000 - 0x31 7FFF Sector F (32K × 16) 0x31 8000 - 0x31 FFFF Sector E (32K × 16) 0x32 0000 - 0x32 7FFF Sector D (32K × 16) 0x32 8000 - 0x32 FFFF Sector C (32K × 16) 0x33 0000 - 0x33 7FFF Sector B (32K × 16) 0x33 8000 - 0x33 FF7F Sector A (32K × 16) 0x33 FF80 - 0x33 FFF5 Program to 0x0000 when using the Code Security Module 0x33 FFF6 - 0x33 FFF7 Boot-to-Flash Entry Point (program branch instruction here) 0x33 FFF8 - 0x33 FFFF Security Password (128-Bit) (Do Not Program to all zeros) Table 8-23. Addresses of Flash Sectors in F28334, F28234 ADDRESS RANGE PROGRAM AND DATA SPACE 0x32 0000 - 0x32 3FFF Sector H (16K × 16) 0x32 4000 - 0x32 7FFF Sector G (16K × 16) 0x32 8000 - 0x32 BFFF Sector F (16K × 16) 0x32 C000 - 0x32 FFFF Sector E (16K × 16) 0x33 0000 - 0x33 3FFF Sector D (16K × 16) 0x33 4000 - 0x33 7FFFF Sector C (16K × 16) 0x33 8000 - 0x33 BFFF Sector B (16K × 16) 0x33 C000 - 0x33 FF7F Sector A (16K × 16) 0x33 FF80 - 0x33 FFF5 Program to 0x0000 when using the Code Security Module 0x33 FFF6 - 0x33 FFF7 Boot-to-Flash Entry Point (program branch instruction here) 0x33 FFF8 - 0x33 FFFF Security Password (128-Bit) (Do Not Program to all zeros) Table 8-24. Addresses of Flash Sectors in F28332, F28232 ADDRESS RANGE PROGRAM AND DATA SPACE 0x33 0000 - 0x33 3FFF Sector D (16K × 16) 0x33 4000 - 0x33 7FFFF Sector C (16K × 16) 0x33 8000 - 0x33 BFFF Sector B (16K × 16) 0x33 C000 - 0x33 FF7F Sector A (16K × 16) 0x33 FF80 - 0x33 FFF5 Program to 0x0000 when using the Code Security Module 0x33 FFF6 - 0x33 FFF7 Boot-to-Flash Entry Point (program branch instruction here) 0x33 FFF8 - 0x33 FFFF Security Password (128-Bit) (Do Not Program to all zeros) Copyright © 2022 Texas Instruments Incorporated Submit Document Feedback Product Folder Links: TMS320F28335 TMS320F28335-Q1 TMS320F28334 TMS320F28333 TMS320F28332 TMS320F28235 TMS320F28235-Q1 TMS320F28234 TMS320F28234-Q1 TMS320F28232 TMS320F28232-Q1 163 TMS320F28335, TMS320F28335-Q1, TMS320F28334, TMS320F28333 TMS320F28332, TMS320F28235, TMS320F28235-Q1 TMS320F28234, TMS320F28234-Q1, TMS320F28232, TMS320F28232-Q1 www.ti.com SPRS439Q – JUNE 2007 – REVISED AUGUST 2022 • • Note When the code-security passwords are programmed, all addresses from 0x33FF80 to 0x33FFF5 cannot be used as program code or data. These locations must be programmed to 0x0000. If the code security feature is not used, addresses 0x33FF80 to 0x33FFEF may be used for code or data. Addresses 0x33FFF0 to 0x33FFF5 are reserved for data and should not contain program code. Table 8-25 shows how to handle these memory locations. Table 8-25. Handling Security Code Locations ADDRESS 0x33FF80 – 0x33FFEF 0x33FFF0 – 0x33FFF5 FLASH CODE SECURITY ENABLED Fill with 0x0000 CODE SECURITY DISABLED Application code and data Reserved for data only Peripheral Frame 1, Peripheral Frame 2, and Peripheral Frame 3 are grouped together to enable these blocks to be write/read peripheral block protected. The protected mode ensures that all accesses to these blocks happen as written. Because of the C28x pipeline, a write immediately followed by a read, to different memory locations, will appear in reverse order on the memory bus of the CPU. This can cause problems in certain peripheral applications where the user expected the write to occur first (as written). The C28x CPU supports a block protection mode where a region of memory can be protected so as to make sure that operations occur as written (the penalty is extra cycles are added to align the operations). This mode is programmable and by default, it will protect the selected zones. 164 Submit Document Feedback Copyright © 2022 Texas Instruments Incorporated Product Folder Links: TMS320F28335 TMS320F28335-Q1 TMS320F28334 TMS320F28333 TMS320F28332 TMS320F28235 TMS320F28235-Q1 TMS320F28234 TMS320F28234-Q1 TMS320F28232 TMS320F28232-Q1 TMS320F28335, TMS320F28335-Q1, TMS320F28334, TMS320F28333 TMS320F28332, TMS320F28235, TMS320F28235-Q1 TMS320F28234, TMS320F28234-Q1, TMS320F28232, TMS320F28232-Q1 www.ti.com SPRS439Q – JUNE 2007 – REVISED AUGUST 2022 The wait states for the various spaces in the memory map area are listed in the following Wait States table. Table 8-26. Wait States AREA WAIT STATES (CPU) M0 and M1 SARAMs 0-wait Peripheral Frame 0 0-wait (writes) 0-wait (reads) 1-wait (reads) No access (writes) 0-wait (writes) 0-wait (writes) 2-wait (reads) 1-wait (reads) 0-wait (writes) No access Peripheral Frame 3 Peripheral Frame 1 WAIT STATES (DMA)(1) Fixed 2-wait (reads) Peripheral Frame 2 0-wait (writes) COMMENTS Assumes no conflicts between CPU and DMA. Cycles can be extended by peripheral generated ready. Consecutive (back-to-back) writes to Peripheral Frame 1 registers will experience a 1-cycle pipeline hit (1-cycle delay) No access Fixed. Cycles cannot be extended by the peripheral. 0-wait No access Assumes no CPU conflicts L4 SARAM 0-wait data (reads) 0-wait L5 SARAM 0-wait data (writes) 2-wait (reads) L0 SARAM L1 SARAM L2 SARAM L3 SARAM L6 SARAM 1-wait program (reads) L7 SARAM 1-wait program (writes) XINTF Programmable Programmable Assumes no conflicts between CPU and DMA. Programmed through the XTIMING registers or extendable through external XREADY signal to meet system timing requirements. 1-wait is minimum wait states allowed on external waveforms for both reads and writes on XINTF. 0-wait minimum writes 0-wait minimum writes 0-wait minimum for writes assumes write buffer enabled and with write buffer with write buffer enabled not full. enabled Assumes no conflicts between CPU and DMA. When DMA and CPU try simultaneously (conflict), a 1-cycle delay is added for arbitration. OTP Programmable No access 1-wait minimum FLASH Programmable Programmed via the Flash registers. 1-wait is minimum number of wait states allowed. 1-wait-state operation is possible at a reduced CPU frequency. No access 1-wait Paged min Programmed via the Flash registers. 0-wait minimum for paged access is not allowed 1-wait Random min Random ≥ Paged (1) FLASH Password 16-wait fixed No access Wait states of password locations are fixed. Boot-ROM 1-wait No access 0-wait speed is not possible. The DMA has a base of four cycles/word. Copyright © 2022 Texas Instruments Incorporated Submit Document Feedback Product Folder Links: TMS320F28335 TMS320F28335-Q1 TMS320F28334 TMS320F28333 TMS320F28332 TMS320F28235 TMS320F28235-Q1 TMS320F28234 TMS320F28234-Q1 TMS320F28232 TMS320F28232-Q1 165 TMS320F28335, TMS320F28335-Q1, TMS320F28334, TMS320F28333 TMS320F28332, TMS320F28235, TMS320F28235-Q1 TMS320F28234, TMS320F28234-Q1, TMS320F28232, TMS320F28232-Q1 www.ti.com SPRS439Q – JUNE 2007 – REVISED AUGUST 2022 8.4 Register Map The devices contain four peripheral register spaces. The spaces are categorized as follows: Peripheral Frame 0: These are peripherals that are mapped directly to the CPU memory bus. See Table 8-27. Peripheral Frame 1 These are peripherals that are mapped to the 32-bit peripheral bus. See Table 8-28. Peripheral Frame 2: These are peripherals that are mapped to the 16-bit peripheral bus. See Table 8-29. Peripheral Frame 3: These are peripherals that are mapped to the 32-bit DMA-accessible peripheral bus. See Table 8-30. Table 8-27. Peripheral Frame 0 Registers NAME(1) ACCESS TYPE(2) ADDRESS RANGE SIZE (x16) Device Emulation Registers 0x00 0880 – 0x00 09FF 384 EALLOW protected FLASH Registers(3) 0x00 0A80 – 0x00 0ADF 96 EALLOW protected Code Security Module Registers 0x00 0AE0 – 0x00 0AEF 16 EALLOW protected ADC registers (dual-mapped) 0 wait (DMA), 1 wait (CPU), read only 0x00 0B00 – 0x00 0B0F 16 Not EALLOW protected XINTF Registers 0x00 0B20 – 0x00 0B3F 32 EALLOW protected CPU-Timer 0, CPU-Timer 1, CPU-Timer 2 Registers 0x00 0C00 – 0x00 0C3F 64 Not EALLOW protected PIE Registers 0x00 0CE0 – 0x00 0CFF 32 Not EALLOW protected PIE Vector Table 0x00 0D00 – 0x00 0DFF 256 EALLOW protected DMA Registers 0x00 1000 – 0x00 11FF 512 EALLOW protected (1) (2) (3) Registers in Frame 0 support 16-bit and 32-bit accesses. If registers are EALLOW protected, then writes cannot be performed until the EALLOW instruction is executed. The EDIS instruction disables writes to prevent stray code or pointers from corrupting register contents. The Flash Registers are also protected by the Code Security Module (CSM). Table 8-28. Peripheral Frame 1 Registers NAME ADDRESS RANGE SIZE (x16) eCAN-A Registers 0x00 6000 – 0x00 61FF 512 eCAN-B Registers 0x00 6200 – 0x00 63FF 512 ePWM1 + HRPWM1 Registers 0x00 6800 – 0x00 683F 64 ePWM2 + HRPWM2 Registers 0x00 6840 – 0x00 687F 64 ePWM3 + HRPWM3 Registers 0x00 6880 – 0x00 68BF 64 ePWM4 + HRPWM4 Registers 0x00 68C0 – 0x00 68FF 64 ePWM5 + HRPWM5 Registers 0x00 6900 – 0x00 693F 64 ePWM6 + HRPWM6 Registers 0x00 6940 – 0x00 697F 64 eCAP1 Registers 0x00 6A00 – 0x00 6A1F 32 eCAP2 Registers 0x00 6A20 – 0x00 6A3F 32 eCAP3 Registers 0x00 6A40 – 0x00 6A5F 32 eCAP4 Registers 0x00 6A60 – 0x00 6A7F 32 eCAP5 Registers 0x00 6A80 – 0x00 6A9F 32 eCAP6 Registers 0x00 6AA0 – 0x00 6ABF 32 eQEP1 Registers 0x00 6B00 – 0x00 6B3F 64 eQEP2 Registers 0x00 6B40 – 0x00 6B7F 64 GPIO Registers 0x00 6F80 – 0x00 6FFF 128 166 Submit Document Feedback Copyright © 2022 Texas Instruments Incorporated Product Folder Links: TMS320F28335 TMS320F28335-Q1 TMS320F28334 TMS320F28333 TMS320F28332 TMS320F28235 TMS320F28235-Q1 TMS320F28234 TMS320F28234-Q1 TMS320F28232 TMS320F28232-Q1 TMS320F28335, TMS320F28335-Q1, TMS320F28334, TMS320F28333 TMS320F28332, TMS320F28235, TMS320F28235-Q1 TMS320F28234, TMS320F28234-Q1, TMS320F28232, TMS320F28232-Q1 www.ti.com SPRS439Q – JUNE 2007 – REVISED AUGUST 2022   Table 8-29. Peripheral Frame 2 Registers NAME ADDRESS RANGE SIZE (x16) System Control Registers 0x00 7010 – 0x00 702F 32 SPI-A Registers 0x00 7040 – 0x00 704F 16 SCI-A Registers 0x00 7050 – 0x00 705F 16 External Interrupt Registers 0x00 7070 – 0x00 707F 16 ADC Registers 0x00 7100 – 0x00 711F 32 SCI-B Registers 0x00 7750 – 0x00 775F 16 SCI-C Registers 0x00 7770 – 0x00 777F 16 I2C-A Registers 0x00 7900 – 0x00 793F 64 Table 8-30. Peripheral Frame 3 Registers NAME ADDRESS RANGE SIZE (x16) McBSP-A Registers (DMA) 0x5000 – 0x503F 64 McBSP-B Registers (DMA) 0x5040 – 0x507F 64 0x5800 – 0x583F 64 0x5840 – 0x587F 64 ePWM3 + HRPWM3 (DMA) 0x5880 – 0x58BF 64 ePWM4 + HRPWM4 (DMA) 0x58C0 – 0x58FF 64 ePWM5 + HRPWM5 (DMA) 0x5900 – 0x593F 64 ePWM6 + HRPWM6 (DMA) 0x5940 – 0x597F 64 ePWM1 + HRPWM1 (DMA)(1) ePWM2 + HRPWM2 (DMA) (1) The ePWM and HRPWM modules can be re-mapped to Peripheral Frame 3 where they can be accessed by the DMA module. To achieve this, bit 0 (MAPEPWM) of MAPCNF register (address 0x702E) must be set to 1. This register is EALLOW protected. When this bit is 0, the ePWM and HRPWM modules are mapped to Peripheral Frame 1. Copyright © 2022 Texas Instruments Incorporated Submit Document Feedback Product Folder Links: TMS320F28335 TMS320F28335-Q1 TMS320F28334 TMS320F28333 TMS320F28332 TMS320F28235 TMS320F28235-Q1 TMS320F28234 TMS320F28234-Q1 TMS320F28232 TMS320F28232-Q1 167 TMS320F28335, TMS320F28335-Q1, TMS320F28334, TMS320F28333 TMS320F28332, TMS320F28235, TMS320F28235-Q1 TMS320F28234, TMS320F28234-Q1, TMS320F28232, TMS320F28232-Q1 www.ti.com SPRS439Q – JUNE 2007 – REVISED AUGUST 2022 8.4.1 Device Emulation Registers These registers are used to control the protection mode of the C28x CPU and to monitor some critical device signals. The registers are defined in Table 8-31. Table 8-31. Device Emulation Registers NAME DEVICECNF PARTID CLASSID ADDRESS RANGE SIZE (x16) 0x0880 0x0881 2 Device Configuration Register 0x380090 1 Part ID Register 0x0882 1 DESCRIPTION TMS320F2833x Floating-Point Class Device TMS320F2823x Fixed-Point Class Device REVID 0x0883 1 Revision ID Register PROTSTART 0x0884 1 Block Protection Start Address Register PROTRANGE 0x0885 1 Block Protection Range Address Register 168 Submit Document Feedback TMS320F28335 0x00EF TMS320F28334 0x00EE TMS320F28333 0x00E0 TMS320F28332 0x00ED TMS320F28235 0x00E8 TMS320F28234 0x00E7 TMS320F28232 0x00E6 TMS320F28335 0x00EF TMS320F28334 0x00EF TMS320F28333 0x00EF TMS320F28332 0x00EF TMS320F28235 0x00E8 TMS320F28234 0x00E8 TMS320F28232 0x00E8 0x0001 – Silicon Rev. A – TMS Copyright © 2022 Texas Instruments Incorporated Product Folder Links: TMS320F28335 TMS320F28335-Q1 TMS320F28334 TMS320F28333 TMS320F28332 TMS320F28235 TMS320F28235-Q1 TMS320F28234 TMS320F28234-Q1 TMS320F28232 TMS320F28232-Q1 TMS320F28335, TMS320F28335-Q1, TMS320F28334, TMS320F28333 TMS320F28332, TMS320F28235, TMS320F28235-Q1 TMS320F28234, TMS320F28234-Q1, TMS320F28232, TMS320F28232-Q1 www.ti.com SPRS439Q – JUNE 2007 – REVISED AUGUST 2022 8.5 Interrupts Figure 8-26 shows how the various interrupt sources are multiplexed. WAKEINT DMA WDINT Sync LPMINT Watchdog Low-Power Models SYSCLKOUT Interrupt Control XINT1 Latch XINT1CR(15:0) XINT1CTR(15:0) GPIOXINT1SEL(4:0) DMA XINT2 ADC XINT2 XINT2SOC Latch Interrupt Control MUX PIE INT1 to INT12 96 Interrupts XINT1 Clear MUX DMA Peripherals (A) (SPI, SCI, I2C, CAN, McBSP , (A) (A) ePWM , eCAP, eQEP, ADC ) XINT2CR(15:0) C28 Core XINT2CTR(15:0) GPIOXINT2SEL(4:0) DMA TINT0 CPU Timer 0 DMA TINT2 CPU Timer 2 NMI CPU Timer 1 Interrupt Control MUX INT13 MUX TINT1 XNMI_ XINT13 GPIO0.int Latch MUX INT14 XNMICR(15:0) 1 GPIO Mux GPIO31.int XNMICTR(15:0) GPIOXNMISEL(4:0) DMA A. DMA-accessible Figure 8-26. External and PIE Interrupt Sources Copyright © 2022 Texas Instruments Incorporated Submit Document Feedback Product Folder Links: TMS320F28335 TMS320F28335-Q1 TMS320F28334 TMS320F28333 TMS320F28332 TMS320F28235 TMS320F28235-Q1 TMS320F28234 TMS320F28234-Q1 TMS320F28232 TMS320F28232-Q1 169 TMS320F28335, TMS320F28335-Q1, TMS320F28334, TMS320F28333 TMS320F28332, TMS320F28235, TMS320F28235-Q1 TMS320F28234, TMS320F28234-Q1, TMS320F28232, TMS320F28232-Q1 www.ti.com SPRS439Q – JUNE 2007 – REVISED AUGUST 2022 XINT3 Interrupt Control Latch Mux DMA XINT3CR(15:0) GPIOXINT3SEL(4:0) XINT4 Interrupt Control Latch Mux DMA XINT4CR(15:0) PIE C28 Core XINT5 Interrupt Control Latch Mux INT1 to INT12 96 Interrupts GPIOXINT4SEL(4:0) DMA XINT5CR(15:0) GPIOXINT5SEL(4:0) XINT6 Interrupt Control Latch Mux DMA XINT6CR(15:0) GPIOXINT6SEL(4:0) DMA Interrupt Control Latch Mux GPIO32.int XINT7 XINT7CR(15:0) GPIO63.int GPIO Mux GPIOXINT7SEL(4:0) Figure 8-27. External Interrupts Eight PIE block interrupts are grouped into one CPU interrupt. In total, 12 CPU interrupt groups, with 8 interrupts per group equals 96 possible interrupts. On the 2833x/2823x devices, 58 of these are used by peripherals as shown in Table 8-32. The TRAP #VectorNumber instruction transfers program control to the interrupt service routine corresponding to the vector specified. TRAP #0 tries to transfer program control to the address pointed to by the reset vector. The PIE vector table does not, however, include a reset vector. Therefore, TRAP #0 should not be used when the PIE is enabled. Doing so will result in undefined behavior. When the PIE is enabled, TRAP #1 to TRAP #12 will transfer program control to the interrupt service routine corresponding to the first vector within the PIE group. For example: TRAP #1 fetches the vector from INT1.1, TRAP #2 fetches the vector from INT2.1, and so forth. 170 Submit Document Feedback Copyright © 2022 Texas Instruments Incorporated Product Folder Links: TMS320F28335 TMS320F28335-Q1 TMS320F28334 TMS320F28333 TMS320F28332 TMS320F28235 TMS320F28235-Q1 TMS320F28234 TMS320F28234-Q1 TMS320F28232 TMS320F28232-Q1 TMS320F28335, TMS320F28335-Q1, TMS320F28334, TMS320F28333 TMS320F28332, TMS320F28235, TMS320F28235-Q1 TMS320F28234, TMS320F28234-Q1, TMS320F28232, TMS320F28232-Q1 www.ti.com SPRS439Q – JUNE 2007 – REVISED AUGUST 2022 IFR(12:1) INTM IER(12:1) INT1 INT2 1 CPU MUX 0 INT11 INT12 (Flag) Global Enable (Enable) INTx.1 INTx.2 INTx INTx.3 INTx.4 MUX From Peripherals or External Interrupts INTx.5 INTx.6 INTx.7 PIEACKx INTx.8 (Enable) (Flag) PIEIERx(8:1) PIEIFRx(8:1) (Enable/Flag) Figure 8-28. Multiplexing of Interrupts Using the PIE Block Table 8-32. PIE Peripheral Interrupts CPU INTERRUPTS INT1 (1) (2) PIE INTERRUPTS(1) INTx.8 INTx.7 INTx.6 WAKEINT (LPM/WD) TINT0 (TIMER 0) ADCINT(2) (ADC) INTx.5 XINT2 EPWM5_TZINT (ePWM5) INTx.4 INTx.3 INTx.2 INTx.1 XINT1 Reserved SEQ2INT (ADC) SEQ1INT (ADC) EPWM4_TZINT (ePWM4) EPWM3_TZINT (ePWM3) EPWM2_TZINT (ePWM2) EPWM1_TZINT (ePWM1) INT2 Reserved Reserved EPWM6_TZINT (ePWM6) INT3 Reserved Reserved EPWM6_INT (ePWM6) EPWM5_INT (ePWM5) EPWM4_INT (ePWM4) EPWM3_INT (ePWM3) EPWM2_INT (ePWM2) EPWM1_INT (ePWM1) INT4 Reserved Reserved ECAP6_INT (eCAP6) ECAP5_INT (eCAP5) ECAP4_INT (eCAP4) ECAP3_INT (eCAP3) ECAP2_INT (eCAP2) ECAP1_INT (eCAP1) INT5 Reserved Reserved Reserved Reserved Reserved Reserved EQEP2_INT (eQEP2) EQEP1_INT (eQEP1) INT6 Reserved Reserved MXINTA (McBSP-A) MRINTA (McBSP-A) MXINTB (McBSP-B) MRINTB (McBSP-B) SPITXINTA (SPI-A) SPIRXINTA (SPI-A) INT7 Reserved Reserved DINTCH6 (DMA) DINTCH5 (DMA) DINTCH4 (DMA) DINTCH3 (DMA) DINTCH2 (DMA) DINTCH1 (DMA) INT8 Reserved Reserved SCITXINTC (SCI-C) SCIRXINTC (SCI-C) Reserved Reserved I2CINT2A (I2C-A) I2CINT1A (I2C-A) INT9 ECAN1_INTB (CAN-B) ECAN0_INTB (CAN-B) ECAN1_INTA (CAN-A) ECAN0_INTA (CAN-A) SCITXINTB (SCI-B) SCIRXINTB (SCI-B) SCITXINTA (SCI-A) SCIRXINTA (SCI-A) INT10 Reserved Reserved Reserved Reserved Reserved Reserved Reserved Reserved INT11 Reserved Reserved Reserved Reserved Reserved Reserved Reserved Reserved INT12 LUF (FPU) LVF (FPU) Reserved XINT7 XINT6 XINT5 XINT4 XINT3 Out of the 96 possible interrupts, 58 interrupts are currently used. The remaining interrupts are reserved for future devices. These interrupts can be used as software interrupts if they are enabled at the PIEIFRx level, provided none of the interrupts within the group is being used by a peripheral. Otherwise, interrupts coming in from peripherals may be lost by accidentally clearing their flag while modifying the PIEIFR. To summarize, there are two safe cases when the reserved interrupts could be used as software interrupts: 1) No peripheral within the group is asserting interrupts. 2) No peripheral interrupts are assigned to the group (example PIE group 11). ADCINT is sourced as a logical "OR" of both the SEQ1INT and SEQ2INT signals. This is to support backward compatibility with the implementation found on the TMS320F281x series of devices, where SEQ1INT and SEQ2INT did not exist, only ADCINT. For new implementations, TI recommends using SEQ1INT and SEQ2INT and not enabling ADCINT in the PIEIER register. Copyright © 2022 Texas Instruments Incorporated Submit Document Feedback Product Folder Links: TMS320F28335 TMS320F28335-Q1 TMS320F28334 TMS320F28333 TMS320F28332 TMS320F28235 TMS320F28235-Q1 TMS320F28234 TMS320F28234-Q1 TMS320F28232 TMS320F28232-Q1 171 TMS320F28335, TMS320F28335-Q1, TMS320F28334, TMS320F28333 TMS320F28332, TMS320F28235, TMS320F28235-Q1 TMS320F28234, TMS320F28234-Q1, TMS320F28232, TMS320F28232-Q1 www.ti.com SPRS439Q – JUNE 2007 – REVISED AUGUST 2022 Table 8-33. PIE Configuration and Control Registers NAME SIZE (x16) PIECTRL 0x0CE0 1 PIE, Control Register PIEACK 0x0CE1 1 PIE, Acknowledge Register PIEIER1 0x0CE2 1 PIE, INT1 Group Enable Register PIEIFR1 0x0CE3 1 PIE, INT1 Group Flag Register PIEIER2 0x0CE4 1 PIE, INT2 Group Enable Register PIEIFR2 0x0CE5 1 PIE, INT2 Group Flag Register PIEIER3 0x0CE6 1 PIE, INT3 Group Enable Register PIEIFR3 0x0CE7 1 PIE, INT3 Group Flag Register PIEIER4 0x0CE8 1 PIE, INT4 Group Enable Register PIEIFR4 0x0CE9 1 PIE, INT4 Group Flag Register PIEIER5 0x0CEA 1 PIE, INT5 Group Enable Register PIEIFR5 0x0CEB 1 PIE, INT5 Group Flag Register PIEIER6 0x0CEC 1 PIE, INT6 Group Enable Register PIEIFR6 0x0CED 1 PIE, INT6 Group Flag Register PIEIER7 0x0CEE 1 PIE, INT7 Group Enable Register PIEIFR7 0x0CEF 1 PIE, INT7 Group Flag Register PIEIER8 0x0CF0 1 PIE, INT8 Group Enable Register PIEIFR8 0x0CF1 1 PIE, INT8 Group Flag Register PIEIER9 0x0CF2 1 PIE, INT9 Group Enable Register PIEIFR9 0x0CF3 1 PIE, INT9 Group Flag Register PIEIER10 0x0CF4 1 PIE, INT10 Group Enable Register PIEIFR10 0x0CF5 1 PIE, INT10 Group Flag Register PIEIER11 0x0CF6 1 PIE, INT11 Group Enable Register PIEIFR11 0x0CF7 1 PIE, INT11 Group Flag Register PIEIER12 0x0CF8 1 PIE, INT12 Group Enable Register PIEIFR12 0x0CF9 1 PIE, INT12 Group Flag Register Reserved 0x0CFA – 0x0CFF 6 Reserved (1) 172 DESCRIPTION(1) ADDRESS The PIE configuration and control registers are not protected by EALLOW mode. The PIE vector table is protected. Submit Document Feedback Copyright © 2022 Texas Instruments Incorporated Product Folder Links: TMS320F28335 TMS320F28335-Q1 TMS320F28334 TMS320F28333 TMS320F28332 TMS320F28235 TMS320F28235-Q1 TMS320F28234 TMS320F28234-Q1 TMS320F28232 TMS320F28232-Q1 TMS320F28335, TMS320F28335-Q1, TMS320F28334, TMS320F28333 TMS320F28332, TMS320F28235, TMS320F28235-Q1 TMS320F28234, TMS320F28234-Q1, TMS320F28232, TMS320F28232-Q1 www.ti.com SPRS439Q – JUNE 2007 – REVISED AUGUST 2022 8.5.1 External Interrupts Table 8-34. External Interrupt Registers NAME ADDRESS SIZE (x16) DESCRIPTION XINT1CR 0x00 7070 1 XINT1 configuration register XINT2CR 0x00 7071 1 XINT2 configuration register XINT3CR 0x00 7072 1 XINT3 configuration register XINT4CR 0x00 7073 1 XINT4 configuration register XINT5CR 0x00 7074 1 XINT5 configuration register XINT6CR 0x00 7075 1 XINT6 configuration register XINT7CR 0x00 7076 1 XINT7 configuration register XNMICR 0x00 7077 1 XNMI configuration register XINT1CTR 0x00 7078 1 XINT1 counter register XINT2CTR 0x00 7079 1 XINT2 counter register Reserved 0x707A – 0x707E 5 XNMICTR 0x00 707F 1 XNMI counter register Each external interrupt can be enabled or disabled or qualified using positive, negative, or both positive and negative edge. For more information, see the System Control and Interrupts chapter of the TMS320x2833x, TMS320x2823x Real-Time Microcontrollers Technical Reference Manual. Copyright © 2022 Texas Instruments Incorporated Submit Document Feedback Product Folder Links: TMS320F28335 TMS320F28335-Q1 TMS320F28334 TMS320F28333 TMS320F28332 TMS320F28235 TMS320F28235-Q1 TMS320F28234 TMS320F28234-Q1 TMS320F28232 TMS320F28232-Q1 173 TMS320F28335, TMS320F28335-Q1, TMS320F28334, TMS320F28333 TMS320F28332, TMS320F28235, TMS320F28235-Q1 TMS320F28234, TMS320F28234-Q1, TMS320F28232, TMS320F28232-Q1 www.ti.com SPRS439Q – JUNE 2007 – REVISED AUGUST 2022 8.6 System Control This section describes the oscillator, PLL and clocking mechanisms, the watchdog function and the low-power modes. Figure 8-29 shows the various clock and reset domains that will be discussed. C28x Core CLKIN SYSCLKOUT I/O SPI-A, SCI-A/B/C LOSPCP Peripheral Registers Clock Enables I2C-A Clock Enables Bridge Memory Bus LSPCLK Peripheral Bus Clock Enables System Control Register /2 Bridge I/O eCAN-A/B GPIO Mux Peripheral Registers Clock Enables I/O ePWM1/../6, HRPWM1/../6, Peripheral Registers eCAP1/../6, eQEP1/2 Clock Enables LSPCLK I/O McBSP-A/B Bridge LOSPCP Peripheral Registers Clock Enables HSPCLK HISPCP Bridge 12-Bit ADC ADC Registers Result Registers Clock Enables A. DMA Bus 16 Channels DMA CLKIN is the clock into the CPU. It is passed out of the CPU as SYSCLKOUT (that is, CLKIN is the same frequency as SYSCLKOUT). See Figure 8-30 for an illustration of how CLKIN is derived. Figure 8-29. Clock and Reset Domains 174 Submit Document Feedback Copyright © 2022 Texas Instruments Incorporated Product Folder Links: TMS320F28335 TMS320F28335-Q1 TMS320F28334 TMS320F28333 TMS320F28332 TMS320F28235 TMS320F28235-Q1 TMS320F28234 TMS320F28234-Q1 TMS320F28232 TMS320F28232-Q1 TMS320F28335, TMS320F28335-Q1, TMS320F28334, TMS320F28333 TMS320F28332, TMS320F28235, TMS320F28235-Q1 TMS320F28234, TMS320F28234-Q1, TMS320F28232, TMS320F28232-Q1 www.ti.com SPRS439Q – JUNE 2007 – REVISED AUGUST 2022 Note There is a 2-SYSCLKOUT cycle delay from when the write to the PCLKCR0, PCLKCR1, and PCLKCR2 registers (enables peripheral clocks) occurs to when the action is valid. This delay must be considered before trying to access the peripheral configuration registers. The PLL, clocking, watchdog and low-power modes, are controlled by the registers listed in Table 8-35. Table 8-35. PLL, Clocking, Watchdog, and Low-Power Mode Registers NAME ADDRESS SIZE (x16) PLLSTS 0x00 7011 1 PLL Status Register Reserved 0x00 7012 – 0x00 7018 7 Reserved Reserved 0x00 7019 1 Reserved HISPCP 0x00 701A 1 High-Speed Peripheral Clock Prescaler Register LOSPCP 0x00 701B 1 Low-Speed Peripheral Clock Prescaler Register PCLKCR0 0x00 701C 1 Peripheral Clock Control Register 0 PCLKCR1 0x00 701D 1 Peripheral Clock Control Register 1 LPMCR0 0x00 701E 1 Low-Power Mode Control Register 0 Reserved 0x00 701F 1 Reserved PCLKCR3 0x00 7020 1 Peripheral Clock Control Register 3 PLLCR 0x00 7021 1 PLL Control Register SCSR 0x00 7022 1 System Control and Status Register WDCNTR 0x00 7023 1 Watchdog Counter Register Reserved 0x00 7024 1 Reserved WDKEY Reserved WDCR DESCRIPTION 0x00 7025 1 Watchdog Reset Key Register 0x00 7026 – 0x00 7028 3 Reserved 0x00 7029 1 Watchdog Control Register Reserved 0x00 702A – 0x00 702D 4 Reserved MAPCNF 0x00 702E 1 ePWM/HRPWM Re-map Register Copyright © 2022 Texas Instruments Incorporated Submit Document Feedback Product Folder Links: TMS320F28335 TMS320F28335-Q1 TMS320F28334 TMS320F28333 TMS320F28332 TMS320F28235 TMS320F28235-Q1 TMS320F28234 TMS320F28234-Q1 TMS320F28232 TMS320F28232-Q1 175 TMS320F28335, TMS320F28335-Q1, TMS320F28334, TMS320F28333 TMS320F28332, TMS320F28235, TMS320F28235-Q1 TMS320F28234, TMS320F28234-Q1, TMS320F28232, TMS320F28232-Q1 www.ti.com SPRS439Q – JUNE 2007 – REVISED AUGUST 2022 8.6.1 OSC and PLL Block Figure 8-30 shows the OSC and PLL block. OSCCLK XCLKIN (3.3-V clock input from external oscillator) OSCCLK 0 PLLSTS[OSCOFF] PLL OSCCLK or VCOCLK VCOCLK n /1 /2 CLKIN To CPU /4 n≠ 0 PLLSTS[PLLOFF] External Crystal or Resonator PLLSTS[DIVSEL] X1 On-chip oscillator 4-bit Multiplier PLLCR[DIV] X2 Figure 8-30. OSC and PLL Block Diagram The on-chip oscillator circuit enables a crystal/resonator to be attached to the 2833x/2823x devices using the X1 and X2 pins. If the on-chip oscillator is not used, an external oscillator can be used in either one of the following configurations: • A 3.3-V external oscillator can be directly connected to the XCLKIN pin. The X2 pin should be left unconnected and the X1 pin tied low. The logic-high level in this case should not exceed VDDIO. • A 1.9-V (1.8-V for 100 MHz devices) external oscillator can be directly connected to the X1 pin. The X2 pin should be left unconnected and the XCLKIN pin tied low. The logic-high level in this case should not exceed VDD. The three possible input-clock configurations are shown in Figure 8-31 to Figure 8-33. XCLKIN X1 X2 NC External Clock Signal (Toggling 0-VDDIO) Figure 8-31. Using a 3.3-V External Oscillator XCLKIN X1 X2 External Clock Signal (Toggling 0-VDD) NC Figure 8-32. Using a 1.9-V External Oscillator X1 XCLKIN X2 CL2 CL1 Crystal Figure 8-33. Using the Internal Oscillator 176 Submit Document Feedback Copyright © 2022 Texas Instruments Incorporated Product Folder Links: TMS320F28335 TMS320F28335-Q1 TMS320F28334 TMS320F28333 TMS320F28332 TMS320F28235 TMS320F28235-Q1 TMS320F28234 TMS320F28234-Q1 TMS320F28232 TMS320F28232-Q1 TMS320F28335, TMS320F28335-Q1, TMS320F28334, TMS320F28333 TMS320F28332, TMS320F28235, TMS320F28235-Q1 TMS320F28234, TMS320F28234-Q1, TMS320F28232, TMS320F28232-Q1 www.ti.com SPRS439Q – JUNE 2007 – REVISED AUGUST 2022 8.6.1.1 External Reference Oscillator Clock Option The typical specifications for the external quartz crystal for a frequency of 30 MHz follow: • • • • • Fundamental mode, parallel resonant CL (load capacitance) = 12 pF CL1 = CL2 = 24 pF Cshunt = 6 pF ESR range = 25 to 40 Ω TI recommends that customers have the resonator/crystal vendor characterize the operation of their device with the MCU chip. The resonator/crystal vendor has the equipment and expertise to tune the tank circuit. The vendor can also advise the customer regarding the proper tank component values that will produce proper start-up and stability over the entire operating range. 8.6.1.2 PLL-Based Clock Module The devices have an on-chip, PLL-based clock module. This module provides all the necessary clocking signals for the device, as well as control for low-power mode entry. The PLL has a 4-bit ratio control PLLCR[DIV] to select different CPU clock rates. The watchdog module should be disabled before writing to the PLLCR register. It can be re-enabled (if need be) after the PLL module has stabilized, which takes 131072 OSCCLK cycles. The input clock and PLLCR[DIV] bits should be chosen in such a way that the output frequency of the PLL (VCOCLK) does not exceed 300 MHz. Table 8-36. PLL Settings (1) (2) (3) (4) PLLCR[DIV] VALUE(2) (3) PLLSTS[DIVSEL] = 0 or 1(1) 0000 (PLL bypass) 0001 SYSCLKOUT (CLKIN) PLLSTS[DIVSEL] = 2(1) PLLSTS[DIVSEL] = 3(1) (4) OSCCLK/4 (Default) OSCCLK/2 OSCCLK (OSCCLK * 1)/4 (OSCCLK * 1)/2 – 0010 (OSCCLK * 2)/4 (OSCCLK * 2)/2 – 0011 (OSCCLK * 3)/4 (OSCCLK * 3)/2 – 0100 (OSCCLK * 4)/4 (OSCCLK * 4)/2 – 0101 (OSCCLK * 5)/4 (OSCCLK * 5)/2 – 0110 (OSCCLK * 6)/4 (OSCCLK * 6)/2 – 0111 (OSCCLK * 7)/4 (OSCCLK * 7)/2 – 1000 (OSCCLK * 8)/4 (OSCCLK * 8)/2 – 1001 (OSCCLK * 9)/4 (OSCCLK * 9)/2 – 1010 (OSCCLK * 10)/4 (OSCCLK * 10)/2 – 1011 – 1111 Reserved Reserved Reserved By default, PLLSTS[DIVSEL] is configured for /4. (The boot ROM changes this to /2.) PLLSTS[DIVSEL] must be 0 before writing to the PLLCR and should be changed only after PLLSTS[PLLLOCKS] = 1. The PLL control register (PLLCR) and PLL Status Register (PLLSTS) are reset to their default state by the XRS signal or a watchdog reset only. A reset issued by the debugger or the missing clock detect logic have no effect. This register is EALLOW protected. See the System Control and Interrupts chapter of the TMS320x2833x, TMS320x2823x Real-Time Microcontrollers Technical Reference Manual for more information. A divider at the output of the PLL is necessary to ensure correct duty cycle of the clock fed to the core. For this reason, a DIVSEL value of 3 is not allowed when the PLL is active. Copyright © 2022 Texas Instruments Incorporated Submit Document Feedback Product Folder Links: TMS320F28335 TMS320F28335-Q1 TMS320F28334 TMS320F28333 TMS320F28332 TMS320F28235 TMS320F28235-Q1 TMS320F28234 TMS320F28234-Q1 TMS320F28232 TMS320F28232-Q1 177 TMS320F28335, TMS320F28335-Q1, TMS320F28334, TMS320F28333 TMS320F28332, TMS320F28235, TMS320F28235-Q1 TMS320F28234, TMS320F28234-Q1, TMS320F28232, TMS320F28232-Q1 www.ti.com SPRS439Q – JUNE 2007 – REVISED AUGUST 2022 Table 8-37. CLKIN Divide Options (1) PLLSTS [DIVSEL] CLKIN DIVIDE 0 /4 1 /4 2 /2 3 /1(1) This mode can be used only when the PLL is bypassed or off. The PLL-based clock module provides two modes of operation: • Crystal-operation - This mode allows the use of an external crystal/resonator to provide the time base to the device. External clock source operation - This mode allows the internal oscillator to be bypassed. The device clocks are generated from an external clock source input on the X1 or the XCLKIN pin. • Table 8-38. Possible PLL Configuration Modes REMARKS PLLSTS[DIVSEL] CLKIN AND SYSCLKOUT PLL Off Invoked by the user setting the PLLOFF bit in the PLLSTS register. The PLL block is disabled in this mode. This can be useful to reduce system noise and for low power operation. The PLLCR register must first be set to 0x0000 (PLL Bypass) before entering this mode. The CPU clock (CLKIN) is derived directly from the input clock on either X1/X2, X1 or XCLKIN. 0, 1 2 3 OSCCLK/4 OSCCLK/2 OSCCLK/1 PLL Bypass PLL Bypass is the default PLL configuration upon power up or after an external reset ( XRS). This mode is selected when the PLLCR register is set to 0x0000 or while the PLL locks to a new frequency after the PLLCR register has been modified. In this mode, the PLL itself is bypassed but the PLL is not turned off. 0, 1 2 3 OSCCLK/4 OSCCLK/2 OSCCLK/1 PLL Enable Achieved by writing a nonzero value n into the PLLCR register. Upon writing to the PLLCR the device will switch to PLL Bypass mode until the PLL locks. 0, 1 2 OSCCLK*n/4 OSCCLK*n/2 PLL MODE 8.6.1.3 Loss of Input Clock In PLL-enabled and PLL-bypass mode, if the input clock OSCCLK is removed or absent, the PLL will still issue a limp-mode clock. The limp-mode clock continues to clock the CPU and peripherals at a typical frequency of 1–5 MHz. Limp mode is not specified to work from power up, only after input clocks have been present initially. In PLL bypass mode, the limp mode clock from the PLL is automatically routed to the CPU if the input clock is removed or absent. Normally, when the input clocks are present, the watchdog counter decrements to initiate a watchdog reset or WDINT interrupt. However, when the external input clock fails, the watchdog counter stops decrementing (that is, the watchdog counter does not change with the limp-mode clock). In addition to this, the device will be reset and the “Missing Clock Status” (MCLKSTS) bit will be set. These conditions could be used by the application firmware to detect the input clock failure and initiate necessary shut-down procedure for the system. Note Applications in which the correct CPU operating frequency is absolutely critical should implement a mechanism by which the MCU will be held in reset, should the input clocks ever fail. For example, an R-C circuit may be used to trigger the XRS pin of the MCU, should the capacitor ever get fully charged. An I/O pin may be used to discharge the capacitor on a periodic basis to prevent it from getting fully charged. Such a circuit would also help detect failure of the flash memory and the VDD3VFL rail. 178 Submit Document Feedback Copyright © 2022 Texas Instruments Incorporated Product Folder Links: TMS320F28335 TMS320F28335-Q1 TMS320F28334 TMS320F28333 TMS320F28332 TMS320F28235 TMS320F28235-Q1 TMS320F28234 TMS320F28234-Q1 TMS320F28232 TMS320F28232-Q1 TMS320F28335, TMS320F28335-Q1, TMS320F28334, TMS320F28333 TMS320F28332, TMS320F28235, TMS320F28235-Q1 TMS320F28234, TMS320F28234-Q1, TMS320F28232, TMS320F28232-Q1 www.ti.com SPRS439Q – JUNE 2007 – REVISED AUGUST 2022 8.6.2 Watchdog Block The watchdog block on the 2833x/2823x device is similar to the one used on the 240x and 281x devices. The watchdog module generates an output pulse, 512 oscillator clocks wide (OSCCLK), whenever the 8-bit watchdog up counter has reached its maximum value. To prevent this, the user disables the counter or the software must periodically write a 0x55 + 0xAA sequence into the watchdog key register which will reset the watchdog counter. Figure 8-34 shows the various functional blocks within the watchdog module. WDCR (WDPS[2:0]) WDCR (WDDIS) WDCNTR(7:0) OSCCLK Watchdog Prescaler /512 WDCLK 8-Bit Watchdog Counter CLR SCSR(WDOVERRIDE) Clear Counter Internal Pullup WDKEY(7:0) Watchdog 55 + AA Key Detector WDRST Generate Output Pulse WDINT (512 OSCCLKs) Good K ey XRS Core-reset WDCR (WDCHK[2:0]) WDRST(A) A. 1 0 Bad WDCHK Key SCSR (WDENINT) 1 The WDRST signal is driven low for 512 OSCCLK cycles. Figure 8-34. Watchdog Module The WDINT signal enables the watchdog to be used as a wakeup from IDLE/STANDBY mode. In STANDBY mode, all peripherals are turned off on the device. The only peripheral that remains functional is the watchdog. The WATCHDOG module will run off OSCCLK. The WDINT signal is fed to the LPM block so that it can wake the device from STANDBY (if enabled). See Section 8.7, Low-Power Modes Block, for more details. In IDLE mode, the WDINT signal can generate an interrupt to the CPU, through the PIE, to take the CPU out of IDLE mode. In HALT mode, this feature cannot be used because the oscillator (and PLL) are turned off and hence so is the WATCHDOG. Copyright © 2022 Texas Instruments Incorporated Submit Document Feedback Product Folder Links: TMS320F28335 TMS320F28335-Q1 TMS320F28334 TMS320F28333 TMS320F28332 TMS320F28235 TMS320F28235-Q1 TMS320F28234 TMS320F28234-Q1 TMS320F28232 TMS320F28232-Q1 179 TMS320F28335, TMS320F28335-Q1, TMS320F28334, TMS320F28333 TMS320F28332, TMS320F28235, TMS320F28235-Q1 TMS320F28234, TMS320F28234-Q1, TMS320F28232, TMS320F28232-Q1 www.ti.com SPRS439Q – JUNE 2007 – REVISED AUGUST 2022 8.7 Low-Power Modes Block The low-power modes on the 2833x/2823x devices are similar to the 240x devices. Table 8-39 summarizes the various modes. Table 8-39. Low-Power Modes EXIT(1) MODE LPMCR0(1:0) OSCCLK CLKIN SYSCLKOUT IDLE 00 On On On(2) XRS, watchdog interrupt, any enabled interrupt, XNMI STANDBY 01 On (watchdog still running) Off Off XRS, watchdog interrupt, GPIO Port A signal, debugger(3), XNMI HALT 1X Off (oscillator and PLL turned off, watchdog not functional) Off Off XRS, GPIO port A signal, XNMI, debugger(3) (1) (2) (3) The EXIT column lists which signals or under what conditions the low-power mode will be exited. A low signal, on any of the signals, will exit the low power condition. This signal must be kept low long enough for an interrupt to be recognized by the device. Otherwise, the IDLE mode will not be exited and the device will go back into the indicated low-power mode. The IDLE mode on the C28x behaves differently than on the 24x/240x. On the C28x, the clock output from the CPU (SYSCLKOUT) is still functional while on the 24x/240x the clock is turned off. On the C28x, the JTAG port can still function even if the CPU clock (CLKIN) is turned off. The various low-power modes operate as follows: IDLE mode: This mode is exited by any enabled interrupt or an XNMI that is recognized by the processor. The LPM block performs no tasks during this mode as long as the LPMCR0(LPM) bits are set to 0,0. STANDBY mode: Any GPIO port A signal (GPIO[31:0]) can wake the device from STANDBY mode. The user must select which signal(s) will wake the device in the GPIOLPMSEL register. The selected signal(s) are also qualified by the OSCCLK before waking the device. The number of OSCCLKs is specified in the LPMCR0 register. HALT mode: Only the XRS and any GPIO port A signal (GPIO[31:0]) can wake the device from HALT mode. The user selects the signal in the GPIOLPMSEL register. Note The low-power modes do not affect the state of the output pins (PWM pins included). They will be in whatever state the code left them in when the IDLE instruction was executed. See the System Control and Interrupts chapter of the TMS320x2833x, TMS320x2823x Real-Time Microcontrollers Technical Reference Manual for more details. 180 Submit Document Feedback Copyright © 2022 Texas Instruments Incorporated Product Folder Links: TMS320F28335 TMS320F28335-Q1 TMS320F28334 TMS320F28333 TMS320F28332 TMS320F28235 TMS320F28235-Q1 TMS320F28234 TMS320F28234-Q1 TMS320F28232 TMS320F28232-Q1 TMS320F28335, TMS320F28335-Q1, TMS320F28334, TMS320F28333 TMS320F28332, TMS320F28235, TMS320F28235-Q1 TMS320F28234, TMS320F28234-Q1, TMS320F28232, TMS320F28232-Q1 www.ti.com SPRS439Q – JUNE 2007 – REVISED AUGUST 2022 9 Applications, Implementation, and Layout Note Information in the following applications sections is not part of the TI component specification, and TI does not warrant its accuracy or completeness. TI’s customers are responsible for determining suitability of components for their purposes, as well as validating and testing their design implementation to confirm system functionality. 9.1 TI Reference Design The TI Reference Design Library is a robust reference design library spanning analog, embedded processor, and connectivity. Created by TI experts to help you jump start your system design, all reference designs include schematic or block diagrams, BOMs, and design files to speed your time to market. Search and download other TI reference designs at Select TI reference designs. EtherCAT Interface for High Performance MCU Reference Design This reference design demonstrates how to connect a C2000 Delfino MCU to an EtherCAT® ET1100 slave controller. The interface supports both de-multiplexed address/data buses for maximum bandwidth and minimum latency and a SPI mode for low pin-count EtherCAT communication. The slave controller offloads the processing of 100Mbps Ethernet-based fieldbus communication, thereby eliminating CPU overhead for these tasks. C2000 Resolver to Digital Conversion Kit This is a motherboard-style Resolver to Digital conversion kit used to experiment with various C2000 microcontrollers for software-based resolver to digital conversion using on-chip ADCs. The Resolver Kit also allows interface to resolvers and inverter control processor. Copyright © 2022 Texas Instruments Incorporated Submit Document Feedback Product Folder Links: TMS320F28335 TMS320F28335-Q1 TMS320F28334 TMS320F28333 TMS320F28332 TMS320F28235 TMS320F28235-Q1 TMS320F28234 TMS320F28234-Q1 TMS320F28232 TMS320F28232-Q1 181 TMS320F28335, TMS320F28335-Q1, TMS320F28334, TMS320F28333 TMS320F28332, TMS320F28235, TMS320F28235-Q1 TMS320F28234, TMS320F28234-Q1, TMS320F28232, TMS320F28232-Q1 www.ti.com SPRS439Q – JUNE 2007 – REVISED AUGUST 2022 10 Device and Documentation Support TI offers an extensive line of development tools. Tools and software to evaluate the performance of the device, generate code, and develop solutions are listed below. 10.1 Getting Started and Next Steps This section gives a brief overview of the steps to take when first developing for a C28x device. For more detail on each of these steps, see the following: • • • Start development with our C2000™ real-time microcontrollers C2000 real-time microcontrollers – Motor control C2000 real-time microcontrollers – Solar & digital power The Getting Started With C2000™ Real-Time Control Microcontrollers (MCUs) Getting Started Guide covers all aspects of development with C2000 devices from hardware to support resources. In addition to key reference documents, each section provides relevant links and resources to further expand on the information covered. 10.2 Device and Development Support Tool Nomenclature To designate the stages in the product development cycle, TI assigns prefixes to the part numbers of all TMS320™ MCU devices and support tools. Each TMS320™ commercial family member has one of three prefixes: TMX, TMP, or TMS (for example, TMS320F28335). Texas Instruments recommends two of three possible prefix designators for its support tools: TMDX and TMDS. These prefixes represent evolutionary stages of product development from engineering prototypes (TMX/TMDX) through fully qualified production devices/ tools (TMS/TMDS). Device development evolutionary flow: TMX Experimental device that is not necessarily representative of the final device's electrical specifications and may not use production assembly flow. TMP Prototype device that is not necessarily the final silicon die and may not necessarily meet final electrical specifications. TMS Production version of the silicon die that is fully qualified. Support tool development evolutionary flow: TMDX Development-support product that has not yet completed Texas Instruments internal qualification testing. TMDS Fully-qualified development-support product. TMX and TMP devices and TMDX development-support tools are shipped against the following disclaimer: "Developmental product is intended for internal evaluation purposes." Production devices and TMDS development-support tools have been characterized fully, and the quality and reliability of the device have been demonstrated fully. TI's standard warranty applies. Predictions show that prototype devices (X or P) have a greater failure rate than the standard production devices. Texas Instruments recommends that these devices not be used in any production system because their expected end-use failure rate still is undefined. Only qualified production devices are to be used. TI device nomenclature also includes a suffix with the device family name. This suffix indicates the package type (for example, ZJZ) and temperature range (for example, A). Figure 10-1 provides a legend for reading the complete device name for any family member. For device part numbers and further ordering information, see the Package Option Addendum at the end of this document, the TI website (www.ti.com), or contact your TI sales representative. For additional description of the device nomenclature markings on the die, see the TMS320F2833x, TMS320F2823x Real-Time MCUs Silicon Errata. 182 Submit Document Feedback Copyright © 2022 Texas Instruments Incorporated Product Folder Links: TMS320F28335 TMS320F28335-Q1 TMS320F28334 TMS320F28333 TMS320F28332 TMS320F28235 TMS320F28235-Q1 TMS320F28234 TMS320F28234-Q1 TMS320F28232 TMS320F28232-Q1 TMS320F28335, TMS320F28335-Q1, TMS320F28334, TMS320F28333 TMS320F28332, TMS320F28235, TMS320F28235-Q1 TMS320F28234, TMS320F28234-Q1, TMS320F28232, TMS320F28232-Q1 www.ti.com SPRS439Q – JUNE 2007 – REVISED AUGUST 2022 Generic Part Number: TMS 320 F 28335 Orderable Part Number: TMS 320 F 28335 -Q1 ZJZ A R PREFIX SHIPPING OPTIONS TMX = experimental device TMP = prototype device TMS = qualified device Blank = Tray R = Tape and Reel QUALIFICATION (in Generic Part Number) DEVICE FAMILY Blank = Non-Automotive -Q1 = Q1 refers to Automotive AEC-Q100 Grade 1 qualification 320 = TMS320 DSP Family TEMPERATURE RANGE (in Orderable Part Number) A = –40°C to 85°C S = –40°C to 125°C Q = –40°C to 85°C TECHNOLOGY F = Flash EEPROM (1.9-V or 1.8-V core, 3.3-V I/O) PACKAGE TYPE(A) PGF = 176-pin LQFP PTP = 176-pin HLQFP ZJZ = 176-ball plastic BGA (Lead-free) ZHH = 179-ball MicroStar BGA™ (Lead-free) ZAY = 179-ball nFBGA (Lead-free) DEVICE 28335 28334 28333 28332 28235 28234 28232 A. LQFP = Low-Profile Quad Flatpack HLQFP = Thermally Enhanced Low Profile Quad Flat Package BGA = Ball Grid Array nFBGA = New Fine Pitch Ball Grid Array Figure 10-1. Example of F2833x, F2823x Device Nomenclature Copyright © 2022 Texas Instruments Incorporated Submit Document Feedback Product Folder Links: TMS320F28335 TMS320F28335-Q1 TMS320F28334 TMS320F28333 TMS320F28332 TMS320F28235 TMS320F28235-Q1 TMS320F28234 TMS320F28234-Q1 TMS320F28232 TMS320F28232-Q1 183 TMS320F28335, TMS320F28335-Q1, TMS320F28334, TMS320F28333 TMS320F28332, TMS320F28235, TMS320F28235-Q1 TMS320F28234, TMS320F28234-Q1, TMS320F28232, TMS320F28232-Q1 www.ti.com SPRS439Q – JUNE 2007 – REVISED AUGUST 2022 10.3 Tools and Software TI offers an extensive line of development tools. Some of the tools and software to evaluate the performance of the device, generate code, and develop solutions are listed below. To view all available tools and software for C2000™ real-time control MCUs, visit the Start development with our C2000™ real-time microcontrollers page. Design Kits and Evaluation Modules C2000 DesignDRIVE Development Kit for Industrial Motor Control DesignDRIVE is a single hardware and software platform that makes it easy to develop and evaluate solutions for many industrial drive, motor control, and servo topologies. DesignDRIVE offers support for a wide variety of motor types, sensing technologies, encoder standards and communications networks, as well as easy expansion to develop with industrial communications and functional safety topologies, thus enabling more comprehensive, integrated drive system solutions. Based on the real-time control architecture of TI’s C2000 microcontrollers (MCUs), DesignDRIVE is ideal for the development of industrial inverter and servo drives used in robotics, computer numerical control machinery (CNC), elevators, materials conveyance and other industrial manufacturing applications. C2000 Delfino MCU F28379D LaunchPad™ development kit LAUNCHXL-F28379D is a low-cost evaluation and development tool for the TMS320F2837xD, TMS320F2837xS, and TMS320F2807x products in the TI MCU LaunchPad™ development kit ecosystem which is compatible with various plug-on BoosterPacks (suggested under the recommended BoosterPack™ Plug-in Modules in the features section below). This extended version of the LaunchPad development kit supports the connection of two BoosterPacks. The LaunchPad development kit provides a standardized and easy to use platform to use while developing your next application. TMS320F28335 Experimenter Kit C2000™ MCU Experimenter Kits provide a robust hardware prototyping platform for real-time, closed loop control development with C2000 microcontrollers. This platform is a great tool to customize and prove-out solutions for many common power electronics applications, including motor control, digital power supplies, solar inverters, digital LED lighting, precision sensing, and more. Software C2000 DesignDRIVE Software for Industrial Drives and Motor Control The DesignDRIVE platform combines software solutions with DesignDRIVE Development Kits to make it easy to develop and evaluate solutions for many industrial drive and servo topologies. DesignDRIVE offers support for a wide variety of motor types, sensing technologies, position sensors and communications networks, including specific examples for vector control of motors, incorporating current, speed and position loops, to help developers jump-start their evaluation and development. Based on the real-time control architecture of TI’s C2000™ microcontrollers (MCUs), DesignDRIVE is ideal for the development of industrial inverter and servo drives used in robotics, computer numerical control machinery (CNC), elevators, materials conveyance and other industrial manufacturing applications. C2000 SafeTI™ 60730 SW Packages The C2000 MCU SafeTI-60730 Software package includes UL-certified, as recognized components, SafeTI™ software packages that help make designing for functional safety consumer applications with TI C2000™ real-time control microcontrollers (MCUs) easier and faster. The software in these SafeTI software packages is UL-certified, as recognized components, to the UL 1998:2008 Class 1 standard, and is compliant with IEC 60730-1:2010 Class B, both of which include home appliances, arc detectors, power converters, power tools, e-bikes, and many others. SafeTI software packages are available for select TI C2000 MCUs and can be embedded in applications using these MCUs to help customers simplify certification for functional safety-compliant consumer devices. Because of the similarity of the two standards, the IEC 60730 software libraries can also help assist customers developing consumer applications compliant with the IEC 60335-1:2010 standard. 184 Submit Document Feedback Copyright © 2022 Texas Instruments Incorporated Product Folder Links: TMS320F28335 TMS320F28335-Q1 TMS320F28334 TMS320F28333 TMS320F28332 TMS320F28235 TMS320F28235-Q1 TMS320F28234 TMS320F28234-Q1 TMS320F28232 TMS320F28232-Q1 TMS320F28335, TMS320F28335-Q1, TMS320F28334, TMS320F28333 TMS320F28332, TMS320F28235, TMS320F28235-Q1 TMS320F28234, TMS320F28234-Q1, TMS320F28232, TMS320F28232-Q1 www.ti.com SPRS439Q – JUNE 2007 – REVISED AUGUST 2022 powerSUITE Digital Power Supply Software Frequency Response Analyzer Tool for C2000™ MCUs The Software Frequency Response Analyzer (SFRA) is one of several tools included in the powerSUITE Digital Power Supply Design Software Tools for C2000™ Microcontrollers. The SFRA includes a software library that enables developers to quickly measure the frequency response of their digital power converter. The SFRA library contains software functions that inject a frequency into the control loop and measure the response of the system using the C2000 MCUs’ on-chip analog to digital converter (ADC). This process provides the plant frequency response characteristics and the open loop gain frequency response of the closed loop system. The user can then view the plant and open loop gain frequency response on a PC-based GUI. All of the frequency response data is exported into a CSV file, or optionally an Excel spreadsheet, which can then be used to design the compensation loop using the Compensation Designer. C2000Ware for C2000 MCUs C2000Ware for C2000™ microcontrollers is a cohesive set of development software and documentation designed to minimize software development time. From device-specific drivers and libraries to device peripheral examples, C2000Ware provides a solid foundation to begin development and evaluation of your product. Development Tools C2000 Gang Programmer The C2000 Gang Programmer is a C2000 device programmer that can program up to eight identical C2000 devices at the same time. The C2000 Gang Programmer connects to a host PC using a standard RS-232 or USB connection and provides flexible programming options that allow the user to fully customize the process. Code Composer Studio™ (CCS) Integrated Development Environment (IDE) for C2000 Microcontrollers Code Composer Studio is an integrated development environment (IDE) that supports TI's Microcontroller and Embedded Processors portfolio. Code Composer Studio comprises a suite of tools used to develop and debug embedded applications. It includes an optimizing C/C++ compiler, source code editor, project build environment, debugger, profiler, and many other features. The intuitive IDE provides a single user interface taking the user through each step of the application development flow. Familiar tools and interfaces allow users to get started faster than ever before. Code Composer Studio combines the advantages of the Eclipse software framework with advanced embedded debug capabilities from TI resulting in a compelling feature-rich development environment for embedded developers. Uniflash Standalone Flash Tool CCS Uniflash is a standalone tool used to program on-chip flash memory on TI MCUs. C2000 Third-party search tool TI has partnered with multiple companies to offer a wide range of solutions and services for TI C2000 devices. These companies can accelerate your path to production using C2000 devices. Download this search tool to quickly browse third-party details and find the right third-party to meet your needs. Models Various models are available for download from the product Design & development pages. These models include I/O Buffer Information Specification (IBIS) Models and Boundary-Scan Description Language (BSDL) Models. To view all available models, visit the Design tools & simulation section of the Design & development page for each device. Training To help assist design engineers in taking full advantage of the C2000 microcontroller features and performance, TI has developed a variety of training resources. Utilizing the online training materials and downloadable hands-on workshops provides an easy means for gaining a complete working knowledge of the C2000 microcontroller family. These training resources have been designed to decrease the learning curve, while reducing development time, and accelerating product time to market. For more information on the various training resources, visit the C2000™ real-time control MCUs – Support & training site. Copyright © 2022 Texas Instruments Incorporated Submit Document Feedback Product Folder Links: TMS320F28335 TMS320F28335-Q1 TMS320F28334 TMS320F28333 TMS320F28332 TMS320F28235 TMS320F28235-Q1 TMS320F28234 TMS320F28234-Q1 TMS320F28232 TMS320F28232-Q1 185 TMS320F28335, TMS320F28335-Q1, TMS320F28334, TMS320F28333 TMS320F28332, TMS320F28235, TMS320F28235-Q1 TMS320F28234, TMS320F28234-Q1, TMS320F28232, TMS320F28232-Q1 www.ti.com SPRS439Q – JUNE 2007 – REVISED AUGUST 2022 10.4 Documentation Support To receive notification of documentation updates, navigate to the device product folder on ti.com. Click on Subscribe to updates to register and receive a weekly digest of any product information that has changed. For change details, review the revision history included in any revised document. The current documentation that describes the processor, related peripherals, and other technical collateral is listed below. Errata TMS320F2833x, TMS320F2823x Real-Time MCUs Silicon Errata describes the advisories and usage notes for different versions of silicon. Technical Reference Manual TMS320x2833x, TMS320x2823x Real-Time Microcontrollers Technical Reference Manual details the integration, the environment, the functional description, and the programming models for each peripheral and subsystem in the TMS320x2833x and TMS320x2823x devices. CPU User's Guides TMS320C28x CPU and Instruction Set Reference Guide describes the central processing unit (CPU) and the assembly language instructions of the TMS320C28x fixed-point digital signal processors (DSPs). It also describes emulation features available on these DSPs. TMS320C28x Extended Instruction Sets Technical Reference Manual describes the architecture, pipeline, and instruction set of the TMU, VCU-II, and FPU accelerators. Peripheral Guides C2000 Real-Time Control MCU Peripherals Reference Guide describes the peripheral reference guides of the 28x digital signal processors (DSPs). Tools Guides TMS320C28x Assembly Language Tools v22.6.0.LTS User’s Guide describes the assembly language tools (assembler and other tools used to develop assembly language code), assembler directives, macros, common object file format, and symbolic debugging directives for the TMS320C28x device. TMS320C28x Optimizing C/C++ Compiler v22.6.0.LTS User’s Guide describes the TMS320C28x C/C++ compiler. This compiler accepts ANSI standard C/C++ source code and produces TMS320 DSP assembly language source code for the TMS320C28x device. TMS320C28x DSP/BIOS 5.x Application Programming Interface (API) Reference Guide describes development using DSP/BIOS. Application Reports The SMT & packaging application notes website lists documentation on TI’s surface mount technology (SMT) and application notes on a variety of packaging-related topics. TMS320x281x to TMS320x2833x or 2823x Migration Overview describes how to migrate from the 281x device design to 2833x or 2823x designs. TMS320x280x to TMS320x2833x or 2823x Migration Overview describes how to migrate from a 280x device design to 2833x or 2823x designs. TMS320C28x FPU Primer provides an overview of the floating-point unit (FPU) in the C2000™ Delfino microcontroller devices. Running an Application from Internal Flash Memory on the TMS320F28xxx DSP covers the requirements needed to properly configure application software for execution from on-chip flash memory. Requirements for both DSP/BIOS and non-DSP/BIOS projects are presented. Example code projects are included. 186 Submit Document Feedback Copyright © 2022 Texas Instruments Incorporated Product Folder Links: TMS320F28335 TMS320F28335-Q1 TMS320F28334 TMS320F28333 TMS320F28332 TMS320F28235 TMS320F28235-Q1 TMS320F28234 TMS320F28234-Q1 TMS320F28232 TMS320F28232-Q1 TMS320F28335, TMS320F28335-Q1, TMS320F28334, TMS320F28333 TMS320F28332, TMS320F28235, TMS320F28235-Q1 TMS320F28234, TMS320F28234-Q1, TMS320F28232, TMS320F28232-Q1 www.ti.com SPRS439Q – JUNE 2007 – REVISED AUGUST 2022 Programming TMS320x28xx and TMS320x28xxx Peripherals in C/C++ explores a hardware abstraction layer implementation to make C/C++ coding easier on 28x DSPs. This method is compared to traditional #define macros and topics of code efficiency and special case registers are also addressed. Using PWM Output as a Digital-to-Analog Converter on a TMS320F280x Microcontroller presents a method for using the on-chip pulse width modulated (PWM) signal generators on the TMS320F280x family of microcontrollers as a digital-to-analog converter (DAC). TMS320F280x Microcontroller USB Connectivity using the TUSB3410 USB-to-UART Bridge Chip presents hardware connections as well as software preparation and operation of the development system using a simple communication echo program. Using the Enhanced Quadrature Encoder Pulse (eQEP) Module in TMS320x280x, 28xxx as a Dedicated Capture provides a guide for the use of the eQEP module as a dedicated capture unit and is applicable to the TMS320x280x, 28xxx family of processors. Using the ePWM Module for 0% - 100% Duty Cycle Control provides a guide for the use of the ePWM module to provide 0% to 100% duty cycle control and is applicable to the TMS320x280x family of processors. TMS320x280x and TMS320F2801x ADC Calibration describes a method for improving the absolute accuracy of the 12-bit ADC found on the TMS320x280x and TMS320F2801x devices. Inherent gain and offset errors affect the absolute accuracy of the ADC. The methods described in this report can improve the absolute accuracy of the ADC to levels better than 0.5%. This application report has an option to download an example program that executes from RAM on the F2808 EzDSP. Online Stack Overflow Detection on the TMS320C28x DSP presents the methodology for online stack overflow detection on the TMS320C28x DSP. C-source code is provided that contains functions for implementing the overflow detection on both DSP/BIOS and non-DSP/BIOS applications. PowerPAD™ Thermally Enhanced Package focuses on the specifics of integrating a PowerPAD™ package into the PCB design. Semiconductor Packing Methodology describes the packing methodologies employed to prepare semiconductor devices for shipment to end users. Calculating Useful Lifetimes of Embedded Processors provides a methodology for calculating the useful lifetime of TI embedded processors (EPs) under power when used in electronic systems. It is aimed at general engineers who wish to determine if the reliability of the TI EP meets the end system reliability requirement. Semiconductor and IC Package Thermal Metrics describes traditional and new thermal metrics and puts their application in perspective with respect to system-level junction temperature estimation. An Introduction to IBIS (I/O Buffer Information Specification) Modeling discusses various aspects of IBIS including its history, advantages, compatibility, model generation flow, data requirements in modeling the input/ output structures and future trends. Serial Flash Programming of C2000™ Microcontrollers discusses using a flash kernel and ROM loaders for serial programming a device. nFBGA Packaging provides technical background on nFBGA packages and explains how to use them to build advanced board layouts. 10.5 Support Resources TI E2E™ support forums are an engineer's go-to source for fast, verified answers and design help — straight from the experts. Search existing answers or ask your own question to get the quick design help you need. Linked content is provided "AS IS" by the respective contributors. They do not constitute TI specifications and do not necessarily reflect TI's views; see TI's Terms of Use. 10.6 Trademarks Code Composer Studio™, DSP/BIOS™, MicroStar BGA™, C2000™, PowerPAD™, TI E2E™, and MicroStar Junior™ are trademarks of Texas Instruments. Copyright © 2022 Texas Instruments Incorporated Submit Document Feedback Product Folder Links: TMS320F28335 TMS320F28335-Q1 TMS320F28334 TMS320F28333 TMS320F28332 TMS320F28235 TMS320F28235-Q1 TMS320F28234 TMS320F28234-Q1 TMS320F28232 TMS320F28232-Q1 187 TMS320F28335, TMS320F28335-Q1, TMS320F28334, TMS320F28333 TMS320F28332, TMS320F28235, TMS320F28235-Q1 TMS320F28234, TMS320F28234-Q1, TMS320F28232, TMS320F28232-Q1 www.ti.com SPRS439Q – JUNE 2007 – REVISED AUGUST 2022 EtherCAT® is a registered trademark of Beckhoff Automation GmbH, Germany. All trademarks are the property of their respective owners. 10.7 Electrostatic Discharge Caution This integrated circuit can be damaged by ESD. Texas Instruments recommends that all integrated circuits be handled with appropriate precautions. Failure to observe proper handling and installation procedures can cause damage. ESD damage can range from subtle performance degradation to complete device failure. Precision integrated circuits may be more susceptible to damage because very small parametric changes could cause the device not to meet its published specifications. 10.8 Glossary TI Glossary 188 This glossary lists and explains terms, acronyms, and definitions. Submit Document Feedback Copyright © 2022 Texas Instruments Incorporated Product Folder Links: TMS320F28335 TMS320F28335-Q1 TMS320F28334 TMS320F28333 TMS320F28332 TMS320F28235 TMS320F28235-Q1 TMS320F28234 TMS320F28234-Q1 TMS320F28232 TMS320F28232-Q1 TMS320F28335, TMS320F28335-Q1, TMS320F28334, TMS320F28333 TMS320F28332, TMS320F28235, TMS320F28235-Q1 TMS320F28234, TMS320F28234-Q1, TMS320F28232, TMS320F28232-Q1 www.ti.com SPRS439Q – JUNE 2007 – REVISED AUGUST 2022 11 Mechanical, Packaging, and Orderable Information 11.1 Package Redesign Details Explanation The devices in the MicroStar BGA™ packaging were redesigned using a laminate nFBGA package. This nFBGA package offers data-sheet-equivalent electrical performance. It is also footprint-equivalent to the MicroStar BGA. For more details, refer to the nFBGA Packaging Application Report. Use the new package designator in place of the discontinued package designator throughout the document (see Table 11-1). The PACKAGE OPTION ADDENDUM at the end of this data sheet will reflect the new package designator. See the updated nFBGA package drawings at the end of this data sheet. Table 11-1. Package Designator OLD PACKAGE DESIGNATOR NEW PACKAGE DESIGNATOR ZHH ZAY Reason for Discontinuance Due to an equipment End-Of-Life notice from our substrate supplier, we are phasing out certain MicroStar BGA and MicroStar Junior™ BGA packaging devices and offering a Last Time Buy. These devices have now been converted to an nFBGA package. Devices Affected Table 11-2 describes the devices affected, the old package designator, and the new package designator. Table 11-2. Devices and Nomenclature DEVICE DISCONTINUED MicroStar BGA DEVICE REDESIGNED LAMINATE nFBGA DEVICE TMS320F2823x TMS320F28232ZHHA TMS320F28234ZHHA TMS320F28232ZAYA TMS320F28234ZAYA TMS320F2833x TMS320F28334ZHHA TMS320F28335ZHHA TMS320F28334ZAYA TMS320F28335ZAYA 11.2 Packaging Information The following pages include mechanical, packaging, and orderable information. This information is the most current data available for the designated devices. This data is subject to change without notice and revision of this document. For browser-based versions of this data sheet, refer to the left-hand navigation. To learn more about TI packaging, visit the Packaging website. Copyright © 2022 Texas Instruments Incorporated Submit Document Feedback Product Folder Links: TMS320F28335 TMS320F28335-Q1 TMS320F28334 TMS320F28333 TMS320F28332 TMS320F28235 TMS320F28235-Q1 TMS320F28234 TMS320F28234-Q1 TMS320F28232 TMS320F28232-Q1 189 PACKAGE OPTION ADDENDUM www.ti.com 26-May-2021 PACKAGING INFORMATION Orderable Device Status (1) Package Type Package Pins Package Drawing Qty Eco Plan (2) Lead finish/ Ball material MSL Peak Temp Op Temp (°C) (3) Device Marking (4/5) (6) TMS320F28232PGFA ACTIVE LQFP PGF 176 40 RoHS & Green NIPDAU Level-3-260C-168 HR -40 to 85 F28232PGFA TMS320 TMS320F28232PTPQ ACTIVE HLQFP PTP 176 40 RoHS & Green NIPDAU Level-4-260C-72 HR -40 to 125 TMS320 F28232PTPQ TMS320F28232PTPS ACTIVE HLQFP PTP 176 40 RoHS & Green NIPDAU Level-4-260C-72 HR -40 to 125 TMS320 F28232PTPS TMS320F28232ZAYA ACTIVE NFBGA ZAY 179 160 RoHS & Green SNAGCU Level-3-260C-168 HR -40 to 85 TMS320 F28232ZAYA TMS320F28234PGFA ACTIVE LQFP PGF 176 40 RoHS & Green NIPDAU Level-3-260C-168 HR -40 to 85 F28234PGFA TMS320 TMS320F28234PTPQ ACTIVE HLQFP PTP 176 40 RoHS & Green NIPDAU Level-4-260C-72 HR -40 to 125 TMS320 F28234PTPQ TMS320F28234PTPS ACTIVE HLQFP PTP 176 40 RoHS & Green NIPDAU Level-4-260C-72 HR -40 to 125 TMS320 F28234PTPS TMS320F28234ZAYA ACTIVE NFBGA ZAY 179 160 RoHS & Green SNAGCU Level-3-260C-168 HR -40 to 85 TMS320 F28234ZAYA TMS320F28234ZJZA ACTIVE BGA ZJZ 176 126 RoHS & Green SNAGCU Level-3-260C-168 HR -40 to 85 320F28234ZJZA TMS TMS320F28234ZJZQ ACTIVE BGA ZJZ 176 126 RoHS & Green SNAGCU Level-3-260C-168 HR -40 to 125 320F28234ZJZQ TMS TMS320F28234ZJZS ACTIVE BGA ZJZ 176 126 RoHS & Green SNAGCU Level-3-260C-168 HR -40 to 125 320F28234ZJZS TMS TMS320F28235PGFA ACTIVE LQFP PGF 176 40 RoHS & Green NIPDAU Level-3-260C-168 HR -40 to 85 F28235PGFA TMS320 TMS320F28235PTPQ ACTIVE HLQFP PTP 176 40 RoHS & Green NIPDAU Level-4-260C-72 HR -40 to 125 TMS320 F28235PTPQ TMS320F28235PTPS ACTIVE HLQFP PTP 176 40 RoHS & Green NIPDAU Level-4-260C-72 HR -40 to 125 TMS320 F28235PTPS TMS320F28235ZJZA ACTIVE BGA ZJZ 176 126 RoHS & Green SNAGCU Level-3-260C-168 HR -40 to 85 320F28235ZJZA TMS TMS320F28235ZJZQ ACTIVE BGA ZJZ 176 126 RoHS & Green SNAGCU Level-3-260C-168 HR -40 to 125 320F28235ZJZQ TMS TMS320F28235ZJZQR ACTIVE BGA ZJZ 176 1000 RoHS & Green SNAGCU Level-3-260C-168 HR -40 to 125 320F28235ZJZQ Addendum-Page 1 Samples PACKAGE OPTION ADDENDUM www.ti.com Orderable Device 26-May-2021 Status (1) Package Type Package Pins Package Drawing Qty Eco Plan (2) Lead finish/ Ball material MSL Peak Temp Op Temp (°C) Device Marking (3) (4/5) (6) TMS TMS320F28235ZJZS ACTIVE BGA ZJZ 176 126 RoHS & Green SNAGCU Level-3-260C-168 HR -40 to 125 320F28235ZJZS TMS TMS320F28332PGFA ACTIVE LQFP PGF 176 40 RoHS & Green NIPDAU Level-3-260C-168 HR -40 to 85 F28332PGFA TMS320 TMS320F28332PTPS ACTIVE HLQFP PTP 176 40 RoHS & Green NIPDAU Level-4-260C-72 HR -40 to 125 TMS320 F28332PTPS TMS320F28333PGFA ACTIVE LQFP PGF 176 40 RoHS & Green NIPDAU Level-3-260C-168 HR -40 to 85 F28333PGFA TMS320 TMS320F28334PGFA ACTIVE LQFP PGF 176 40 RoHS & Green NIPDAU Level-3-260C-168 HR -40 to 85 F28334PGFA TMS320 TMS320F28334PTPS ACTIVE HLQFP PTP 176 40 RoHS & Green NIPDAU Level-4-260C-72 HR TMS320F28334ZAYA ACTIVE NFBGA ZAY 179 160 RoHS & Green SNAGCU Level-3-260C-168 HR -40 to 85 TMS320 F28334ZAYA TMS320F28334ZJZA ACTIVE BGA ZJZ 176 126 RoHS & Green SNAGCU Level-3-260C-168 HR -40 to 85 320F28334ZJZA TMS TMS320F28334ZJZS ACTIVE BGA ZJZ 176 126 RoHS & Green SNAGCU Level-3-260C-168 HR -40 to 125 320F28334ZJZS TMS TMS320F28335PGFA ACTIVE LQFP PGF 176 40 RoHS & Green NIPDAU Level-3-260C-168 HR -40 to 85 F28335PGFA TMS320 TMS320F28335PTPQ ACTIVE HLQFP PTP 176 40 RoHS & Green NIPDAU Level-4-260C-72 HR -40 to 125 TMS320 F28335PTPQ TMS320F28335PTPS ACTIVE HLQFP PTP 176 40 RoHS & Green NIPDAU Level-4-260C-72 HR -40 to 125 TMS320 F28335PTPS TMS320F28335ZAYA ACTIVE NFBGA ZAY 179 160 RoHS & Green SNAGCU Level-3-260C-168 HR -40 to 85 TMS320 F28335ZAYA TMS320F28335ZAYAR ACTIVE NFBGA ZAY 179 1000 RoHS & Green SNAGCU Level-3-260C-168 HR -40 to 85 TMS320 F28335ZAYA TMS320F28335ZJZA ACTIVE BGA ZJZ 176 126 RoHS & Green SNAGCU Level-3-260C-168 HR -40 to 85 320F28335ZJZA TMS TMS320F28335ZJZQ ACTIVE BGA ZJZ 176 126 RoHS & Green SNAGCU Level-3-260C-168 HR -40 to 125 320F28335ZJZQ TMS TMS320F28335ZJZQR ACTIVE BGA ZJZ 176 1000 RoHS & Green SNAGCU Level-3-260C-168 HR -40 to 125 320F28335ZJZQ TMS Addendum-Page 2 TMS320 F28334PTPS Samples PACKAGE OPTION ADDENDUM www.ti.com Orderable Device 26-May-2021 Status (1) Package Type Package Pins Package Drawing Qty Eco Plan (2) Lead finish/ Ball material RoHS & Green SNAGCU MSL Peak Temp Op Temp (°C) Device Marking (3) (4/5) (6) TMS320F28335ZJZS ACTIVE BGA ZJZ 176 126 Level-3-260C-168 HR -40 to 125 320F28335ZJZS TMS (1) The marketing status values are defined as follows: ACTIVE: Product device recommended for new designs. LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect. NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design. PREVIEW: Device has been announced but is not in production. Samples may or may not be available. OBSOLETE: TI has discontinued the production of the device. (2) RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may reference these types of products as "Pb-Free". RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption. Green: TI defines "Green" to mean the content of Chlorine (Cl) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of
TMS320F28235ZJZQ 价格&库存

很抱歉,暂时无法提供与“TMS320F28235ZJZQ”相匹配的价格&库存,您可以联系我们找货

免费人工找货