0
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
会员中心
创作中心
发布
  • 发文章

  • 发资料

  • 发帖

  • 提问

  • 发视频

创作活动
TMS470R1A384PZQ

TMS470R1A384PZQ

  • 厂商:

    BURR-BROWN(德州仪器)

  • 封装:

    LQFP100

  • 描述:

    IC MCU 16BIT 384KB FLASH 100LQFP

  • 数据手册
  • 价格&库存
TMS470R1A384PZQ 数据手册
TMS470R1A384 www.ti.com ......................................................................................................................................................... SPNS110E – AUGUST 2005 – REVISED MAY 2008 16/32-Bit RISC Flash Microcontroller FEATURES 1 • High-Performance Static CMOS Technology • TMS470R1x 16/32-Bit RISC Core (ARM7TDMI™) – 24-MHz System Clock (48-MHz Pipeline) – Independent 16/32-Bit Instruction Set – Open Architecture With Third-Party Support – Built-In Debug Module • Integrated Memory – 384K-Byte Program Flash – Three Banks With 18 Contiguous Sectors – 32K-Byte Static RAM (SRAM) • Operating Features – Core Supply Voltage (VCC): 1.71 V to 2.05 V – I/O Supply Voltage (VCCIO): 3.0 V to 3.6 V – Low-Power Modes: STANDBY and HALT – Extended Industrial Temperature Range • 470+ System Module – 32-Bit Address Space Decoding – Bus Supervision for Memory/Peripherals – Analog Watchdog (AWD) Timer – Enhanced Real-Time Interrupt (RTI) – Interrupt Expansion Module (IEM) – System Integrity and Failure Detection • Direct Memory Access (DMA) Controller – 32 Control Packets and 16 Channels • Zero-Pin Phase-Locked Loop (ZPLL)-Based Clock Module With Prescaler – Multiply-by-4 or -8 Internal ZPLL Option – ZPLL Bypass Mode • Expansion Bus Module (EBM) (PGE Package) – Supports 8- and 16-Bit Expansion Bus Memory Interface Mappings – 40 I/O Expansion Bus Pins • Ten Communication Interfaces: – Two Serial Peripheral Interfaces (SPIs) – 255 Programmable Baud Rates 23 • • • • • • • – Two Serial Communication Interfaces (SCIs) – 224 Selectable Baud Rates – Asynchronous/Isosynchronous Modes – Two Standard CAN Controllers (SCC) – 16-Mailbox Capacity – Fully Compliant With CAN Protocol, Version 2.0B – Class II Serial Interface B (C2SIb) – Normal 10.4 Kbps and 4X Mode 41.6 Kbps – Three Inter-Integrated Circuit (I2C) Modules (See I2C Notes in TMS470R1A384 Silicon Errata, Literature Number SPNZ148) – Multi-Master and Slave Interfaces – Up to 400 Kbps (Fast Mode) – 7- and 10-Bit Address Capability High-End Timer (HET) – 12 Programmable I/O Channels: – 12 High-Resolution Pins – High-Resolution Share Feature (XOR) – High-End Timer RAM – 64-Instruction Capacity External Clock Prescale (ECP) Module – Programmable Low-Frequency External Clock (CLK) 12-Channel 10-Bit Multi-Buffered Analog-to-Digital Converter (MibADC) – 32-Word FIFO Buffer – Single- or Continuous-Conversion Modes – 1.55-µs Minimum Sample/Conversion Time – Calibration Mode and Self-Test Features 55 Dedicated General-Purpose I/O (GIO) Pins and 39 Additional Peripheral I/Os (PGE) 14 Dedicated General-Purpose I/O (GIO) Pins and 39 Additional Peripheral I/Os (PZ) Flexible Interrupt Handling Eight External Interrupts 1 2 3 Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet. ARM7TDMI is a trademark of Advanced RISC Machines Limited (ARM). All other trademarks are the property of their respective owners. PRODUCTION DATA information is current as of publication date. Products conform to specifications per the terms of the Texas Instruments standard warranty. Production processing does not necessarily include testing of all parameters. Copyright © 2005–2008, Texas Instruments Incorporated TMS470R1A384 SPNS110E – AUGUST 2005 – REVISED MAY 2008 ......................................................................................................................................................... www.ti.com • • On-Chip Scan-Base Emulation Logic, IEEE Standard 1149.1(1) (JTAG) Test-Access Port 144-Pin Plastic Low-Profile Quad Flatpack (PGE Suffix) • (1) 100-Pin Plastic Low-Profile Quad Flatpack (PZ Suffix) The test-access port is compatible with the IEEE Standard 1149.1-1990, IEEE Standard Test-Access Port and Boundary Scan Architecture specification. Boundary scan is not supported on this device. 108 107 106 105 104 103 102 101 100 99 98 97 96 95 94 93 92 91 90 89 88 87 86 85 84 83 82 81 80 79 78 77 76 75 74 73 ADIN[5] ADIN[6] ADIN[7] ADIN[8] ADIN[9] ADIN[10] ADIN[11] ADEVT GIOF[7] GIOF[6] GIOA[5]/INT[5] PLLDIS GIOF[5] I2C2SCL I2C2SDA GIOF[4] VCC VSS GIOF[3] GIOF[2] I2C1SCL I2C1SDA VCCIO VSS CAN1STX CAN1SRX GIOF[1] CLKOUT GIOF[0] GIOA[7]/INT[7] GIOA[6]/INT[6] GIOE[7] TCK TDO TDI HET[0] TMS470R1A384 144-Pin PGE Package (Top View) (Without Expansion Bus) 72 71 70 69 68 67 66 65 64 63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 HET[1] HET[2] GIOE[6] VCCIO VSS GIOE[5] HET[3] HET[4] GIOE[4] HET[5] SPI2SCS GIOE[3] SPI2ENA SPI2SIMO GIOE[2] SPI2SOMI SPI2CLK CAN2STX CAN2SRX VCC VSS SCI2CLK SCI2RX SCI2TX SCI1CLK GIOE[1] SCI1RX SCI1TX GIOE[0] GIOB[0] GIOD[0] GIOH[1] GIOH[2] GIOD[1] GIOH[3] GIOH[4] SPI1SCS SPI1ENA GIOG[4] SPI1CLK SPI1SIMO GIOG[3] SPI1SOMI GIOG[2] HET[6] GIOG[1] HET[7] HET[8] VCC VSS HET[18] TMS2 TMS HET[20] HET[22] GIOG[0] C2SILPN C2SIRX GIOD[5] C2SITX VCCIO VSS GIOD[4] I2C3SCL I2C3SDA GIOD[3] VCC OSCOUT OSCIN VSS GIOD[2] AWD 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 ADREFHI ADREFLO VCCAD VSSAD ADIN[4] ADIN[3] ADIN[2] ADIN[1] ADIN[0] PORRST GIOC[4] GIOC[3] RST VSS VCC TEST GIOH[5] GIOC[2] GIOA[4]/INT[4] GIOC[1] VSS VCC VCCP FLTP2 GIOA[3]/INT[3] GIOA[2]/INT[2] GIOC[0] GIOA[1]/INT[1]/ECLK VCCIO VSS GIOH[0] GIOG[7] GIOA[0]/INT[0] GIOG[6] GIOG[5] TRST 2 Submit Documentation Feedback Copyright © 2005–2008, Texas Instruments Incorporated Product Folder Link(s): TMS470R1A384 TMS470R1A384 www.ti.com ......................................................................................................................................................... SPNS110E – AUGUST 2005 – REVISED MAY 2008 108 107 106 105 104 103 102 101 100 99 98 97 96 95 94 93 92 91 90 89 88 87 86 85 84 83 82 81 80 79 78 77 76 75 74 73 ADIN[5] ADIN[6] ADIN[7] ADIN[8] ADIN[9] ADIN[10] ADIN[11] ADEVT EBADDR[13]/EBDATA[15] EBADDR[12]/EBDATA[14] GIOA[5]/INT[5] PLLDIS EBADDR[11]/EBDATA[13] I2C2SCL I2C2SDA EBADDR[10]/EBDATA[12] VCC VSS EBADDR[9]/EBDATA[11] EBADDR[8]/EBDATA[10] I2C1SCL I2C1SDA VCCIO VSS CAN1STX CAN1SRX EBADDR[7]/EBDATA[9] CLKOUT EBADDR[6]/EBDATA[8] GIOA[7]/INT[7] GIOA[6]/INT[6] EBDATA[7] TCK TDO TDI HET[0] TMS470R1A384 144-Pin PGE Package (Top View) (with Expansion Bus) 72 71 70 69 68 67 66 65 64 63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 HET[1] HET[2] EBDATA[6] VCCIO VSS EBDATA[5] HET[3] HET[4] EBDATA[4] HET[5] SPI2SCS EBDATA[3] SPI2ENA SPI2SIMO EBDATA[2] SPI2SOMI SPI2CLK CAN2STX CAN2SRX VCC VSS SCI2CLK SCI2RX SCI2TX SCI1CLK EBDATA[1] SCI1RX SCI1TX EBDATA[0] EBDMAREQ[0] EBADDR[0] EBADDR[23]/EBADDR[15] EBADDR[24]/EBADDR[16] EBADDR[1] EBADDR[25]/EBADDR[17] EBADDR[26]/EBADDR[18] SPI1SCS SPI1ENA EBADDR[18]/EBADDR[10] SPI1CLK SPI1SIMO EBADDR[17]/EBADDR[9] SPI1SOMI EBADDR[16]/EBADDR[8] HET[6] EBADDR[15]/EBADDR[7] HET[7] HET[8] VCC VSS HET[18] TMS2 TMS HET[20] HET[22] EBADDR[14]/EBADDR[6] C2SILPN C2SIRX EBADDR[5] C2SITX VCCIO VSS EBADDR[4] I2C3SCL I2C3SDA EBADDR[3] VCC OSCOUT OSCIN VSS EBADDR[2] AWD 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 ADREFHI ADREFLO VCCAD VSSAD ADIN[4] ADIN[3] ADIN[2] ADIN[1] ADIN[0] PORRST EBCS[6] EBCS[5] RST VSS VCC TEST EBHOLD EBWR[1] GIOA[4]/INT[4] EBWR[0] VSS VCC VCCP FLTP2 GIOA[3]/INT[3] GIOA[2]/INT[2] EBOE GIOA[1]/INT[1]/ECLK VCCIO VSS EBADDR[22]/EBADDR[14] EBADDR[21]/EBADDR[13] GIOA[0]/INT[0] EBADDR[20]/EBADDR[12] EBADDR[19]/EBADDR[11] TRST Submit Documentation Feedback Copyright © 2005–2008, Texas Instruments Incorporated Product Folder Link(s): TMS470R1A384 3 TMS470R1A384 SPNS110E – AUGUST 2005 – REVISED MAY 2008 ......................................................................................................................................................... www.ti.com 75 74 73 72 71 70 69 68 67 66 65 64 63 62 61 60 59 58 57 56 55 54 53 52 51 ADIN[5] ADIN[6] ADIN[7] ADIN[8] ADIN[9] ADIN[10] ADIN[11] ADEVT GIOA[5]/INT[5] PLLDIS I2C2SCL I2C2SDA VCC VSS I2C1SCL I2C1SDA CAN1STX CAN1SRX CLKOUT GIOA[7]/INT[7] GIOA[6]/INT[6] TCK TDO TDI HET[0] TMS470R1A384 100-Pin PZ Package (Top View) 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32 31 30 29 28 27 26 HET[1] HET[2] VCCIO VSS HET[3] HET[4] HET[5] SPI2SCS SPI2ENA SPI2SIMO SPI2SOMI SPI2CLK CAN2STX CAN2SRX SCI2CLK SCI2RX SCI2TX SCI1CLK SCI1RX SCI1TX GIOB[0] GIOH[1] GIOH[2] GIOH[3] GIOH[4] SPI1SCS SPI1ENA SPI1CLK SPI1SIMO SPI1SOMI HET[6] HET[7] HET[8] HET[18] TMS2 TMS HET[20] HET[22] C2SILPN C2SIRX C2SITX VCCIO VSS I2CSCL I2C3SDA VCC OSCOUT OSCIN VSS AWD 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 ADREFHI ADREFLO VCCAD VSSAD ADIN[4] ADIN[3] ADIN[2] ADIN[1] ADIN[0] PORRST RST TEST GIOH[5] GIOA[4]/INT[4] VSS VCC VCCP FLTP2 GIOA[3]/INT[3] GIOA[2]/INT[2] GIOA[1]/INT[1]/ECLK VCCIO VSS GIOA[0]/INT[0] TRST 4 Submit Documentation Feedback Copyright © 2005–2008, Texas Instruments Incorporated Product Folder Link(s): TMS470R1A384 TMS470R1A384 www.ti.com ......................................................................................................................................................... SPNS110E – AUGUST 2005 – REVISED MAY 2008 DESCRIPTION The TMS470R1A384 (1) devices are members of the Texas Instruments TMS470R1x family of general-purpose 16/32-bit reduced instruction set computer (RISC) microcontrollers. The A384 microcontroller offers high performance utilizing the high-speed ARM7TDMI 16/32-bit RISC central processing unit (CPU), resulting in a high instruction throughput while maintaining greater code efficiency. The ARM7TDMI 16/32-bit RISC CPU views memory as a linear collection of bytes numbered upwards from zero. The A384 utilizes the big-endian format where the most significant byte of a word is stored at the lowest-numbered byte and the least significant byte at the highest-numbered byte. High-end embedded control applications demand more performance from their controllers while maintaining low costs. The A384 RISC core architecture offers solutions to these performance and cost demands while maintaining low power consumption. The A384 devices contain the following: • ARM7TDMI 16/32-bit RISC CPU • TMS470R1x system module (SYS) with 470+ enhancements • 384K-byte flash • 32K-byte SRAM • Zero-pin phase-locked loop (ZPLL) clock module • Analog watchdog (AWD) timer • Enhanced real-time interrupt (RTI) module • Interrupt expansion module (IEM) • Two serial peripheral interface (SPI) modules • Two serial communications interface (SCI) modules • Two standard CAN controllers (SCC) • Three inter-integrated circuit (I2C) modules • Class II serial interface B (C2SIb) module • 10-bit multi-buffered analog-to-digital converter (MibADC), with 12 input channels • High-end timer (HET) controlling 12 I/Os • External clock prescale (ECP) • Expansion bus module (EBM) • Up to 87 I/O pins and 1 input-only pin (PGE suffix only), up to 51 I/O pins and 1 input-only pin (PZ suffix only) The functions performed by the 470+ system module (SYS) include: • Address decoding • Memory protection • Memory and peripherals bus supervision • Reset and abort exception management • Prioritization for all internal interrupt sources • Device clock control • Parallel signature analysis (PSA) The enhanced real-time interrupt (RTI) module on the A384 has the option to be driven by the oscillator clock. This data sheet includes device-specific information such as memory and peripheral select assignment, interrupt priority, and a device memory map. For a more detailed functional description of the SYS module, see the TMS470R1x System Module Reference Guide (literature number SPNU189). The A384 memory includes general-purpose SRAM supporting single-cycle read/write accesses in byte, half-word, and word modes. The flash memory on this device is a nonvolatile, electrically erasable and programmable memory implemented with a 32-bit-wide data bus interface. The flash operates with a system clock frequency of up to 24 MHz. When in pipeline mode, the flash operates with a system clock frequency of up to 48 MHz. For more detailed information on the flash, see the Flash section of this data sheet and the TMS470R1x F05 Flash Reference Guide (literature number SPNU213). (1) Throughout the remainder of this document, the TMS470R1A384 is referred to as either the full device name or as A384. Submit Documentation Feedback Copyright © 2005–2008, Texas Instruments Incorporated Product Folder Link(s): TMS470R1A384 5 TMS470R1A384 SPNS110E – AUGUST 2005 – REVISED MAY 2008 ......................................................................................................................................................... www.ti.com The A384 device has ten communication interfaces: two SPIs, two SCIs, two SCCs, a C2SI, and three I2Cs. The SPI provides a convenient method of serial interaction for high-speed communications between similar shift-register type devices. The SCI is a full-duplex, serial I/O interface intended for asynchronous communication between the CPU and other peripherals using the standard non-return-to-zero (NRZ) format. The SCC uses a serial, multimaster communication protocol that efficiently supports distributed real-time control with robust communication rates of up to 1 megabit per second (Mbps). The SCC is ideal for applications operating in noisy and harsh environments (e.g., industrial fields) that require reliable serial communication or multiplexed wiring. The C2SIb allows the A384 to transmit and receive messages on a class II network following an SAE J1850 (2) standard. The I2C module is a multi-master communication module providing an interface between the A384 microcontroller and an I2C-compatible device via the I2C serial bus. The I2C supports both 100 Kbps and 400 Kbps speeds. For more detailed functional information on the SPI, SCI, and CAN peripherals, see the specific reference guides (literature numbers SPNU195, SPNU196, and SPNU197). For more detailed functional information on the I2C, see the TMS470R1x Inter-Integrated Circuit (I2C) Reference Guide (literature number SPNU223). For more detailed functional information on the C2SI, see the TMS470R1x Class II Serial Interface B (C2SIb) Reference Guide (literature number SPNU214). The HET is an advanced intelligent timer that provides sophisticated timing functions for real-time applications. The timer is software-controlled, using a reduced instruction set, with a specialized timer micromachine and an attached I/O port. The HET can be used for compare, capture, or general-purpose I/O. It is especially well suited for applications requiring multiple sensor information and drive actuators with complex and accurate time pulses. The HET used in this device is the high-end timer lite. It has fewer I/Os than the usual 32 in a standard HET. For more detailed functional information on the HET, see the TMS470R1x High-End Timer (HET) Reference Guide (literature number SPNU199). The A384 HET peripheral contains the XOR-share feature. This feature allows two adjacent HET high- resolution channels to be XORed together, making it possible to output smaller pulses than a standard HET. For more detailed information on the HET XOR-share feature, see the TMS470R1x High-End Timer (HET) Reference Guide (literature number SPNU199). The A384 device has one 10-bit-resolution sample-and-hold MibADC. Each of the MibADC channels can be converted individually or can be grouped by software for sequential conversion sequences. There are three separate groupings, two of which can be triggered by an external event. Each sequence can be converted once when triggered or configured for continuous conversion mode. For more detailed functional information on the MibADC, see the TMS470R1x Multi-Buffered Analog-to-Digital Converter (MibADC) Reference Guide (literature number SPNU206). The zero-pin phase-locked loop (ZPLL) clock module contains a phase-locked loop, a clock-monitor circuit, a clock-enable circuit, and a prescaler (with prescale values of 1–8). The function of the ZPLL is to multiply the external frequency reference to a higher frequency for internal use. The ZPLL provides ACLK to the system (SYS) module. The SYS module subsequently provides system clock (SYSCLK), real-time interrupt clock (RTICLK), CPU clock (MCLK), and peripheral interface clock (ICLK) to all other A384 device modules. For more detailed functional information on the ZPLL, see the TMS470R1x Zero-Pin Phase-Locked Loop (ZPLL) Clock Module Reference Guide (literature number SPNU212). NOTE: ACLK should not be confused with the MibADC internal clock, ADCLK. ACLK is the continuous system clock from an external resonator/crystal reference. The expansion bus module (EBM) is a stand-alone module that supports the multiplexing of the GIO functions and the expansion bus interface. For more information on the EBM, see the TMS470R1x Expansion Bus Module (EBM) Reference Guide (literature number SPNU222). The A384 device also has an external clock prescaler (ECP) module that, when enabled, outputs a continuous external clock (ECLK) on a specified GIO pin. The ECLK frequency is a user-programmable ratio of the peripheral interface clock (ICLK) frequency. For more detailed functional information on the ECP, see the TMS470R1x External Clock Prescaler (ECP) Reference Guide (literature number SPNU202). (2) 6 SAE Standard J1850 Class B Data Communication Network Interface. Submit Documentation Feedback Copyright © 2005–2008, Texas Instruments Incorporated Product Folder Link(s): TMS470R1A384 TMS470R1A384 www.ti.com ......................................................................................................................................................... SPNS110E – AUGUST 2005 – REVISED MAY 2008 Device Characteristics The A384 device is a derivative of the F05 system emulation device SE470R1VB8AD. Table 1 identifies all the characteristics of the A384 device except the SYSTEM and CPU, which are generic. Table 1. Device Characteristics CHARACTERISTICS TMS470R1A384 DEVICE DESCRIPTION COMMENTS MEMORY For the number of memory selects on this device, see Table 3, TMS470R1A384 Memory Selection Assignment. Internal Memory Pipeline/non-pipeline 384K-byte flash 32K-byte SRAM Flash is pipeline capable. The A384 RAM is implemented in one 16K-byte array selected by two memory-select signals (see Table 3, TMS470R1A384 Memory Selection Assignment). PERIPHERALS For the device-specific interrupt priority configurations, see Table 6, Interrupt Priority (IEM and CIM). For the 1K-byte peripheral address ranges and their peripheral selects, see Table 4, A384 Peripherals, System Module, and Flash Base Addresses. CLOCK ZPLL Zero-pin PLL has no external loop filter pins. Expansion Bus EBM Expansion bus module with 40 pins. Supports 8- and 16-bit memories, PGE package only. See Table 7 for details. General-Purpose I/Os 55 I/O (PGE suffix) 14 I/O (PZ suffix) ECP Yes SCI 2 (3-pin) CAN (HECC and/or SCC) 2 SCC SPI (5 pin, 4 pin, or 3 pin) 2 (5-pin) C2SIb 1 I2C 3 HET with XOR Share HET RAM MibADC 12 I/O In the PGE package, Port A has 8 external pins; Port B has only 1 external pin; Ports C, D, E, F, and G each have 8 external pins; and Port H has 6 external pins. In the PZ package, Port A has 8 external pins, Port B has 1 external pin, and Port H has 5 external pins. Two standard CAN controllers The high-resolution (HR) Share feature allows even-numbered HR pins to share the next higher odd-numbered HR pin structures. This HR sharing is independent of whether or not the odd pin is available externally. If an odd pin is available externally and shared, then the odd pin can only be used as a general-purpose I/O. For more information on HR SHARE, see the TMS470R1x High-End Timer (HET) Reference Guide (literature number SPNU199). 64-instruction capacity 10-bit 12-channel 64-word FIFO Core Voltage 1.8 V I/O Voltage 3.3 V Pins 144/100 Packages PGE/PZ Both the logic and registers for a full 16-channel MibADC are present. Submit Documentation Feedback Copyright © 2005–2008, Texas Instruments Incorporated Product Folder Link(s): TMS470R1A384 7 TMS470R1A384 SPNS110E – AUGUST 2005 – REVISED MAY 2008 ......................................................................................................................................................... www.ti.com Functional Block Diagram External Pins OSCIN FLASH (384K Byte) 3 Banks 18 Sectors VCCP FLTP2 RAM (32K Bytes) ZPLL OSCOUT Crystal External Pins PLLDIS ADIN[11:0] CPU Address/Data Bus MibADC 32−Word FIFO ADEVT ADREFHI ADREFLO VCCAD VSSAD TRST HET 64 Words Expansion Address/Data Bus TMS470R1x CPU TCK TDI TDO TMS TMS2 RST TMS470R1x System Module AWD TEST PORRST CLKOUT DMA Controller 16 Channels Interrupt Expansion Module (IEM) SCC1 SCC2 HET[0:8;18,20,22] CAN1STX CAN1SRX CAN2STX CAN2SRX SCI1CLK SCI1 SCI1TX SCI1RX SCI2CLK SCI2 SCI2TX SCI2RX I2C3 I2C2 C2SI SPI2 SPI1 GIO/EBM(A) ECP 8 I2C3SCL I2C2SDA I2C2SCL I2C1SDA I2C1SCL GIOH[5,0](A) GIOF[7:0] (A) GIOG[7:0] (A) GIOE[7:0](A) GIOD[5:0] (A) GIOB[0] GIOC[5:0] (A) GIOA[0]/INT[0] GIOA[7:2]/INT[7:2] GIOA[1]/INT[1]/ECLK SPI1CLK SPI1SOMI SPI1SIMO SPI1SCS SPI1ENA SPI2CLK SPI2SOMI SPI2SIMO SPI2SCS SPI2ENA C2SILPN C2SITX A. C2SIRX I2C1 I2C3SDA GIOC[4:0], GIOD[5:0], GIOE[5:0], GIOF[7:0], and GIOH[0], which are multiplexed with EBM, are not available on the PZ package. See Table 7 for EBM-to-GIO mapping. Submit Documentation Feedback Copyright © 2005–2008, Texas Instruments Incorporated Product Folder Link(s): TMS470R1A384 TMS470R1A384 www.ti.com ......................................................................................................................................................... SPNS110E – AUGUST 2005 – REVISED MAY 2008 Table 2. Terminal Functions TERMINAL NAME PZ PGE HET[0] 51 73 HET[1] 50 72 HET[2] 49 71 HET[3] 46 66 HET[4] 45 65 HET[5] 44 63 HET[6] 6 9 HET[7] 7 11 HET[8] 8 12 HET[18] 9 15 HET[20] 12 18 HET[22] 13 19 CAN1SRX 58 83 CAN1STX 59 CAN2SRX 37 CAN2STX 38 INPUT VOLTAGE (1) (2) OUTPUT CURRENT (3) INTERNAL PULLUP/ PULLDOWN DESCRIPTION HIGH-END TIMER (HET) 3.3 V Timer input capture or output compare. The HET[8:0,18,20,22] applicable pins can be programmed as general-purpose input/output (GIO) pins. All are high-resolution pins. The high-resolution (HR) SHARE feature allows even HR pins to share the next higher odd HR pin structures. This HR sharing is independent of whether or not the odd pin is available externally. If an odd pin is available externally and shared, then the odd pin can only be used as a general-purpose I/O. For more information on HR SHARE, see the TMS470R1x High-End Timer (HET) Reference Guide (literature number SPNU199). 2 mA STANDARD CAN CONTROLLER (SCC) 5-V tolerant 4 mA SCC1 receive pin or GIO pin 84 3.3 V 2 mA SCC1 transmit pin or GIO pin 54 5-V tolerant 4 mA SCC2 receive pin or GIO pin 55 3.3 V 2 mA SCC 2 transmit pin or GIO pin CLASS II SERIAL INTERFACE (C2SIB) C2SILPN 14 21 3.3 V 2 mA C2SIb module loopback enable pin or GIO pin C2SIRX 15 22 5-V tolerant 4 mA C2SIb module receive data input pin or GIO pin C2SITX 16 24 3.3 V 2 mA C2SIb module transmit data output pin or GIO pin GIOA[0]/INT[0] 99 141 GIOA[1]/INT[1]/ECLK 96 136 GIOA[2]/INT[2] 95 134 GIOA[3]/INT[3] 94 133 GIOA[4]/INT[4] 89 127 GIOA[5]/INT[5] 67 98 GIOA[6]/INT[6] 55 78 GIOA[7]/INT[7] 56 79 GIOB[0]/DMAREQ[0] GENERAL-PURPOSE I/O (GIO) 30 43 GIOC[0]/EBOE - 135 GIOC[1]/EBWR[0] - 128 GIOC[2]/EBWR[1] - 126 GIOC[3]/EBCS[5] - 120 GIOC[4]/EBCS[6] - 119 (1) (2) (3) 5-V tolerant 3.3 V 4 mA General-purpose input/output pins. GIOA[7:0]/INT[7:0] are interrupt-capable pins. GIOA[1]/INT[1]/ECLK pin is multiplexed with the external clock-out function of the external clock prescale (ECP) module. 2 mA GIOB[0], GIOC[4:0], GIOD[5:0], GIOE[7:0:], GIOF[7:0], GIOG[7:0], and GIOH[5:0] are multiplexed with the expansion bus module. See Table 7. IPD (20 µA) PWR = power, GND = ground, REF = reference voltage, NC = no connect All I/O pins, except RST, are configured as inputs while PORRST is low and immediately after PORRST goes high. IPD = internal pulldown, IPU = internal pullup (all internal pullups and pulldowns are active on input pins, independent of the PORRST state.) Submit Documentation Feedback Copyright © 2005–2008, Texas Instruments Incorporated Product Folder Link(s): TMS470R1A384 9 TMS470R1A384 SPNS110E – AUGUST 2005 – REVISED MAY 2008 ......................................................................................................................................................... www.ti.com Table 2. Terminal Functions (continued) TERMINAL NAME PZ PGE INPUT VOLTAGE (1) (2) OUTPUT CURRENT (3) INTERNAL PULLUP/ PULLDOWN DESCRIPTION GENERAL-PURPOSE I/O (GIO) (CONTINUED) GIOD[0]/EBADDR[0] - 42 GIOD[1]/EBADDR[1] - 39 GIOD[2]/EBADDR[2] - 35 GIOD[3]/EBADDR[3] - 30 GIOD[4]/EBADDR[4] - 27 GIOD[5]/EBADDR[5] - 23 GIOE[0]/EBDATA[0] - 44 GIOE[1]/EBDATA[1] - 47 GIOE[2]/EBDATA[2] - 58 GIOE[3]/EBDATA[3] - 61 GIOE[4]/EBDATA[4] - 64 GIOE[5]/EBDATA[5] - 67 GIOE[6]/EBDATA[6] - 70 GIOE[7]/EBDATA[7] - 77 GIOF[0]/EBADDR[6]/ EBDATA[8] - 80 GIOF[1]/EBADDR[7]/ EBDATA[9] - 82 GIOF[2]/EBADDR[8]/ EBDATA[10] - 89 GIOF[3]/EBADDR[9]/ EBDATA[11] - 90 GIOF[4]/EBADDR[10]/ EBDATA[12] - 93 GIOF[5]/EBADDR[11]/ EBDATA[13] - 96 GIOF[6]/EBADDR[12]/ EBDATA[14] - 99 GIOF[7]/EBADDR[13]/ EBDATA[15] - 100 GIOG[0]/EBADDR[14]/ EBADDR[6] - 20 GIOG[1]/EBADDR[15]/ EBADDR[7] - 10 GIOG[2]/EBADDR[16]/ EBADDR[8] - 8 GIOG[3]/EBADDR[17]/ EBADDR[9] - 6 10 3.3 V 2 mA IPD (20 µA) Submit Documentation Feedback GIOB[0], GIOC[4:0], GIOD[5:0], GIOE[7:0:], GIOF[7:0], GIOG[7:0], AND GIOH[5:0] are multiplexed with the expansion bus module. See Table 7. Copyright © 2005–2008, Texas Instruments Incorporated Product Folder Link(s): TMS470R1A384 TMS470R1A384 www.ti.com ......................................................................................................................................................... SPNS110E – AUGUST 2005 – REVISED MAY 2008 Table 2. Terminal Functions (continued) TERMINAL NAME PZ PGE INPUT VOLTAGE (1) (2) OUTPUT CURRENT (3) INTERNAL PULLUP/ PULLDOWN DESCRIPTION GENERAL-PURPOSE I/O (GIO) (CONTINUED) GIOG[4]/EBADDR[18]/ EBADDR[10] - 3 GIOG[5]/EBADDR[19]/ EBADDR[11] - 143 GIOG[6]/EBADDR[20]/ EBADDR[12] - 142 GIOG[7]/EBADDR[21]/ EBADDR[13] - 140 GIOH[0]/EBADDR[22]/ EBADDR[14] - 139 GIOH[1]/EBADDR[23]/ EBADDR[15] 29 41 GIOH[2]/EBADDR[24]/ EBADDR[16] 28 40 GIOH[3]/EBADDR[25]/ EBADDR[17] 27 38 GIOH[4]/EBADDR[26]/ EBADDR[18] 26 37 GIOH[5]/EBHOLD 88 125 3.3 V 2 mA IPD (20 µA) GIOB[0], GIOC[4:0], GIOD[5:0], GIOE[7:0:], GIOF[7:0], GIOG[7:0], AND GIOH[5:0] are multiplexed with the expansion bus module. See Table 7. MULTI-BUFFERED ANALOG-TO-DIGITAL CONVERTER (MibADC) ADEVT 68 101 ADIN[0] 84 117 ADIN[1] 83 116 ADIN[2] 82 115 ADIN[3] 81 114 ADIN[4] 80 113 ADIN[5] 75 108 ADIN[6] 74 107 ADIN[7] 73 106 ADIN[8] 72 105 ADIN[9] 71 104 ADIN[10] 70 103 ADIN[11] 69 102 ADREFHI 76 109 ADREFLO 77 VCCAD 78 VSSAD 79 3.3 V 2 mA 3.3 V MibADC event input. Can be programmed as a GIO pin. MibADC analog input pins 3.3-V REF MibADC module high-voltage reference input 110 GND REF MibADC module low-voltage reference input 111 3.3-V PWR MibADC analog supply voltage 112 GND MibADC analog ground reference Submit Documentation Feedback Copyright © 2005–2008, Texas Instruments Incorporated Product Folder Link(s): TMS470R1A384 11 TMS470R1A384 SPNS110E – AUGUST 2005 – REVISED MAY 2008 ......................................................................................................................................................... www.ti.com Table 2. Terminal Functions (continued) TERMINAL NAME PZ PGE INPUT VOLTAGE (1) (2) OUTPUT CURRENT (3) INTERNAL PULLUP/ PULLDOWN DESCRIPTION SERIAL PERIPHERAL INTERFACE 1 (SPI1) SPI1CLK 3 4 SPI1 clock. SPI1CLK can be programmed as a GIO pin. SPI1ENA 2 2 SPI1 chip enable. Can be programmed as a GIO pin. SPI1SCS 1 1 SPI1SIMO 4 5 SPI1 data stream. Slave in/master out. Can be programmed as a GIO pin. SPI1SOMI 5 7 SPI1 data stream. Slave out/master in. Can be programmed as a GIO pin. 5-V tolerant SPI1 slave chip select. Can be programmed as a GIO pin. 4 mA SERIAL PERIPHERAL INTERFACE 2 (SPI2) SPI2CLK 39 56 SPI2 clock. Can be programmed as a GIO pin. SPI2ENA 42 60 SPI2 chip enable. Can be programmed as a GIO pin. SPI2SCS 43 62 SPI2SIMO 41 59 SPI2 data stream. Slave in/master out. Can be programmed as a GIO pin. SPI2SOMI 40 57 SPI2 data stream. Slave out/master in. Can be programmed as a GIO pin. I2C1SDA 60 87 I2C1 serial data pin or GIO pin I2C1SCL 61 88 I2C1 serial clock pin or GIO pin I2C2SDA 64 94 I2C2SCL 65 95 I2C3SDA 20 29 I2C3SCL 19 28 5-V tolerant SPI2 slave chip select. Can be programmed as a GIO pin. 4 mA INTER-INTEGRATED CIRCUIT (I2C) 5-V tolerant I2C2 serial data pin or GIO pin 4 mA I2C2 serial clock pin or GIO pin I2C3 serial data pin or GIO pin I2C3 serial clock pin or GIO pin ZERO-PIN PHASE-LOCKED LOOP (ZPLL) OSCIN 23 33 OSCOUT 22 32 PLLDIS 66 97 1.8 V Crystal connection pin or external clock input 2 mA 3.3 V External crystal connection pin IPD (20 µA) Enable/disable the ZPLL. The ZPLL can be bypassed and the oscillator becomes the system clock. SERIAL COMMUNICATIONS INTERFACE 1 (SCI1) SCI1CLK 33 48 3.3 V 2 mA SCI1 clock. SCI1CLK can be programmed as a GIO pin. SCI1RX 32 46 5-V tolerant 4 mA SCI1 data receive. SCI1RX can be programmed as a GIO pin. SCI1TX 31 45 3.3 V 2 mA SCI1 data transmit. SCI1TX can be programmed as a GIO pin. SERIAL COMMUNICATIONS INTERFACE 2 (SCI2) SCI2CLK 36 51 3.3 V 2 mA SCI2 clock. SCI2CLK can be programmed as a GIO pin. SCI2RX 35 50 5-V tolerant 4 mA SCI2 data receive. SCI2RX can be programmed as a GIO pin. SCI2TX 34 49 3.3 V 2 mA SCI2 data transmit. SCI2TX can be programmed as a GIO pin. 12 Submit Documentation Feedback Copyright © 2005–2008, Texas Instruments Incorporated Product Folder Link(s): TMS470R1A384 TMS470R1A384 www.ti.com ......................................................................................................................................................... SPNS110E – AUGUST 2005 – REVISED MAY 2008 Table 2. Terminal Functions (continued) TERMINAL NAME PZ PGE INPUT VOLTAGE (1) (2) OUTPUT CURRENT (3) INTERNAL PULLUP/ PULLDOWN DESCRIPTION SYSTEM MODULE (SYS) CLKOUT 57 81 3.3 V PORRST 85 118 3.3 V RST 86 121 3.3 V Bidirectional clock out. CLKOUT can be programmed as a GIO pin or the output of SYSCLK, ICLK, or MCLK. 4 mA 4 mA IPD (20 µA) Input master chip power-up reset. External VCC monitor circuitry must assert a power-on reset. IPU (20 µA) Bidirectional reset. The internal circuitry can assert a reset, and an external system reset can assert a device reset. On this pin, the output buffer is implemented as an open drain (drives low only). To ensure an external reset is not arbitrarily generated, TI recommends that an external pullup resistor be connected to this pin. WATCHDOG/REAL-TIME INTERRUPT (WD/RTI) AWD 25 36 3.3 V Analog watchdog reset. The AWD pin provides a system reset if the WD KEY is not written in time by the system, providing an external RC network circuit is connected. If the user is not using AWD, TI recommends that this pin be connected to ground or pulled down to ground by an external resistor. For more details on the external RC network circuit, see the TMS470R1x System Module Reference Guide (literature number SPNU189). 4 mA TEST/DEBUG (T/D) TCK 54 76 2 mA IPD (20 µA) Test clock. TCK controls the test hardware (JTAG). TDI 52 74 2 mA IPU (20 µA) Test data in. TDI inputs serial data to the test instruction register, test data register, and programmable test address (JTAG). IPD (20 µA) Test data out. TDO outputs serial data from the test instruction register, test data register, identification register, and programmable test address (JTAG). IPD (20 µA) Test enable. Reserved for internal use only. TI recommends that this pin be connected to ground or pulled down to ground by an external resistor. TDO 53 75 4 mA TEST 87 124 3.3 V TMS 11 17 2 mA IPU (20 µA) Serial input for controlling the state of the CPU test access port (TAP) controller (JTAG). TMS2 10 16 2 mA IPU (20 µA) Serial input for controlling the second TAP. TI recommends that this pin be connected to VCCIO or pulled up to VCCIO by an external resistor. TRST 100 144 IPD (20 µA) Test hardware reset to TAP1 and TAP2. IEEE Std 1149.1 (JTAG) Boundary-Scan Logic. TI recommends that this pin be pulled down to ground by an external resistor. Submit Documentation Feedback Copyright © 2005–2008, Texas Instruments Incorporated Product Folder Link(s): TMS470R1A384 13 TMS470R1A384 SPNS110E – AUGUST 2005 – REVISED MAY 2008 ......................................................................................................................................................... www.ti.com Table 2. Terminal Functions (continued) TERMINAL NAME PZ PGE INPUT VOLTAGE (1) (2) OUTPUT CURRENT (3) INTERNAL PULLUP/ PULLDOWN DESCRIPTION FLASH FLTP2 93 132 NC NC VCCP 92 131 3.3-V PWR 21 13 63 31 91 53 - 92 - 123 - 130 17 25 48 69 - 86 97 137 Flash test pad 2. For proper operation, this pin must not be connected [no connect (NC)]. Flash external pump voltage (3.3 V) SUPPLY VOLTAGE CORE (1.8 V) VCC 1.8-V PWR Core logic supply voltage SUPPLY VOLTAGE DIGITAL I/O (3.3 V) VCCIO 3.3-V PWR Digital I/O supply voltage SUPPLY GROUND CORE VSS 14 90 14 98 26 - 34 - 52 - 68 47 85 - 91 62 122 24 129 18 138 GND Submit Documentation Feedback Core supply ground reference Copyright © 2005–2008, Texas Instruments Incorporated Product Folder Link(s): TMS470R1A384 TMS470R1A384 www.ti.com ......................................................................................................................................................... SPNS110E – AUGUST 2005 – REVISED MAY 2008 TMS470R1A384 DEVICE-SPECIFIC INFORMATION Memory Memory (4G Bytes) 0xFFFF_FFFF 0xFFF8_0000 0xFFF7_FFFF SYSTEM with PSA, CIM, RTI, DEC, DMA, MMC System Module Control Registers (512K Bytes) IEM Reserved Peripheral Control Registers (512K Bytes) 0xFFF0_0000 0xFFEF_FFFF 0xFFE8_C000 0xFFE8_BFFF 0xFFE8_8000 0xFFE8_7FFF 0xFFE8_4021 0xFFE8_4020 0xFFE8_4000 Reserved HET Reserved SPI1 Reserved SCI2 SCI1 Reserved MibADC ECP Reserved EBM GIO Reserved SCC2 Reserved SCC1 Reserved SCC2 RAM Reserved SCC1 RAM Reserved I2C3 I2C2 I2C1 Reserved SPI2 Reserved C2SIb Reserved Reserved Flash Control Registers Reserved MPU Control Registers Reserved (1 MByte) 0xFFE0_0000 0x7FFF_FFFF RAM (32K Bytes) Program and Data Area FLASH (384K Bytes) 3 Banks 18 Sectors HET RAM (1K Bytes) 0x0000_0024 0x0000_0023 Exception, Interrupt, and Reset Vectors 0x0000_0000 Reserved FIQ IRQ Reserved Data Abort Prefetch Abort Software Interrupt Undefined Instruction Reset 0xFFFF_FFFF 0xFFFF_FD00 0xFFFF_FC00 0xFFF8_0000 0xFFF7_FC00 0xFFF7_F800 0xFFF7_F500 0xFFF7_F400 0xFFF7_F000 0xFFF7_EF00 0xFFF7_ED00 0xFFF7_EC00 0xFFF7_E200 0xFFF7_E000 0xFFF7_DE00 0xFFF7_DC00 0xFFF7_DA00 0xFFF7_D900 0xFFF7_D800 0xFFF7_D400 0xFFF7_C800 0xFFF0_0000 0x0000_0023 0x0000_0020 0x0000_001C 0x0000_0018 0x0000_0014 0x0000_0010 0x0000_000C 0x0000_0008 0x0000_0004 0x0000_0000 A. Memory addresses are configurable by the system (SYS) module within the range of 0x0000_0000 to 0xFFE0_0000. B. The CPU registers are not a part of the memory map. Figure 1. TMS470R1A384 Memory Map Submit Documentation Feedback Copyright © 2005–2008, Texas Instruments Incorporated Product Folder Link(s): TMS470R1A384 15 TMS470R1A384 SPNS110E – AUGUST 2005 – REVISED MAY 2008 ......................................................................................................................................................... www.ti.com Memory Selects Memory selects allow the user to address memory arrays (i.e., flash, RAM, and HET RAM) at user-defined addresses. Each memory select has its own set (low and high) of memory base address registers (MFBAHRx and MFBALRx) that, together, define the array's starting (base) address, block size, and protection. The base address of each memory select is configurable to any memory address boundary that is a multiple of the decoded block size. For more information on how to control and configure these memory select registers, see the bus structure and memory sections of the TMS470R1x System Module Reference Guide (literature number SPNU189). For the memory selection assignments and the memory selected, see Table 3. Table 3. TMS470R1A384 Memory Selection Assignment (1) (2) MEMORY SELECT MEMORY SELECTED (ALL INTERNAL) 0 (fine) FLASH 1 (fine) FLASH 2 (fine) RAM MEMORY SIZE (1) 384K 32K (2) MPU MEMORY BASE ADDRESS REGISTER NO MFBAHR0 and MFBALR0 NO MFBAHR1 and MFBALR1 YES MFBAHR2 and MFBALR2 STATIC MEM CTL REGISTER 3 (fine) RAM YES MFBAHR3 and MFBALR3 4 (fine) HET RAM 1K NO MFBAHR4 and MFBALR4 SMCR1 5 (fine) CS[5]/GIOC[3] 4MB (x8) 1MB (x16) NO MCBAHR2 and MCBALR2 SMCR5 6 (fine) CS[6]/GIOC[4] 4MB (x8) 1MB (x16) NO MCBAHR3 and MCBALR3 SMCR6 x8 refers to size of memory in 8-bits; x16 refers to size of memory in 16-bits. The starting addresses for both RAM memory-select signals cannot be offset from each other by a multiple of the user-defined block size in the memory-base address register. RAM The A384 device contains 32K-bytes of internal static RAM configurable by the SYS module to be addressed within the range of 0x0000_0000 to 0xFFE0_0000. This A384 RAM is implemented in one 32K-byte array selected by two memory-select signals. NOTE: This A384 configuration imposes an additional constraint on the memory map for RAM; the starting addresses for both RAM memory selects cannot be offset from each other by the multiples of the size of the physical RAM (i.e., 32K bytes for the A384 device). The A384 RAM is addressed through memory selects 2 and 3. The RAM can be protected by the memory protection unit (MPU) portion of the SYS module, allowing the user finer blocks of memory protection than is allowed by the memory selects. The MPU is ideal for protecting an operating system while allowing access to the current task. For more detailed information on the MPU portion of the SYS module and memory protection, see the memory section of the TMS470R1x System Module Reference Guide (literature number SPNU189). 16 Submit Documentation Feedback Copyright © 2005–2008, Texas Instruments Incorporated Product Folder Link(s): TMS470R1A384 TMS470R1A384 www.ti.com ......................................................................................................................................................... SPNS110E – AUGUST 2005 – REVISED MAY 2008 F05 Flash The F05 flash memory is a nonvolatile electrically erasable and programmable memory implemented with a 32-bit-wide data bus interface. The F05 flash has an external state machine for programming and erase functions. See the Flash Read and Flash Program and Erase sections. Flash Protection Keys The A384 device provides flash protection keys. These four 32-bit protection keys prevent program/erase/compaction operations from occurring until after the four protection keys have been matched by the CPU loading the correct user keys into the FMPKEY control register. The protection keys on the A384 are located in the last 4 words of the first 8K sector. For more detailed information on the flash protection keys and the FMPKEY control register, see the "Optional Quadruple Protection Keys" and "Programming the Protection Keys" portions of the TMS470R1x F05 Flash Reference Guide (literature number SPNU213). Flash Read The A384 flash memory is configurable by the SYS module to be addressed within the range of 0x0000_0000 to 0xFFE0_0000. The flash is addressed through memory selects 0 and 1. NOTE: The flash external pump voltage (VCCP) is required for all operations (program, erase, and read). Flash Pipeline Mode When in pipeline mode, the flash operates with a system clock frequency of up to 48 MHz (versus a system clock frequency of 24 MHz in normal mode). Flash in pipeline mode is capable of accessing 64-bit words and provides two 32-bit pipelined words to the CPU. Also, in pipeline mode the flash can be read with no wait states when memory addresses are contiguous (after the initial 1- or 2-wait-state reads). NOTE: After a system reset, pipeline mode is disabled (FMREGOPT[0] = 0). In other words, the A384 device powers up and comes out of reset in non-pipeline mode. Furthermore, setting the flash configuration mode bit (GBLCTRL[4]) overrides pipeline mode. Submit Documentation Feedback Copyright © 2005–2008, Texas Instruments Incorporated Product Folder Link(s): TMS470R1A384 17 TMS470R1A384 SPNS110E – AUGUST 2005 – REVISED MAY 2008 ......................................................................................................................................................... www.ti.com Flash Program and Erase The A384 device flash contains three 128K-byte memory arrays (or banks), for a total of 384K-bytes of flash, and consists of 18 sectors. These 18 sectors are sized as follows: SECTOR NO. SEGMENT LOW ADDRESS HIGH ADDRESS 0 8K Bytes 0x0000_0000 0x0000_1FFF 1 8K Bytes 0x0000_2000 0x0000_3FFF 2 16K Bytes 0x0000_4000 0x0000_7FFF 3 16K Bytes 0x0000_8000 0x0000_BFFF 4 16K Bytes 0x0000_C000 0x0000_FFFF 5 16K Bytes 0x0001_0000 0x0001_3FFF 6 16K Bytes 0x0001_4000 0x0001_7FFF 7 16K Bytes 0x0001_8000 0x0001_BFFF 8 8K Bytes 0x0001_C000 0x0001_DFFF 9 8K bytes 0x0001_E000 0x0001_FFFF 0 32K Bytes 0x0002_0000 0x0002_7FFF 1 32K Bytes 0x0002_8000 0x0002_FFFF 2 32K Bytes 0x0003_0000 0x0003_7FFF 3 32K Bytes 0x0003_8000 0x0003_FFFF 0 32K Bytes 0x0004_0000 0x0004_7FFF 1 32K Bytes 0x0004_8000 0x0004_FFFF 2 32K Bytes 0x0005_0000 0x0005_7FFF 3 32K Bytes 0x0005_8000 0x0005_FFFF MEMORY ARRAYS (OR BANKS) BANK0 (128K Bytes) BANK1 (128K Bytes) BANK2 (128K Bytes) The minimum size for an erase operation is one sector. The maximum size for a program operation is one 16-bit word. NOTE: The flash external pump voltage (VCCP) is required for all operations (program, erase, and read). Execution can occur from one bank while programming/erasing any or all sectors of another bank. However, execution cannot occur from any sector within a bank that is being programmed or erased. NOTE: When the OTP sector is enabled, the rest of the flash memory is disabled. The OTP memory can only be read or programmed from code executed out of RAM. For more detailed information on flash program and erase operations, see the TMS470R1x F05 Flash Reference Guide (literature number SPNU213). HET RAM The A384 device contains HET RAM. The HET RAM has a 64-instruction capability. The HET RAM is configurable by the SYS module to be addressed within the range of 0x0000_0000 to 0xFFE0_0000. The HET RAM is addressed through memory select 4. Peripheral Selects and Base Addresses The A384 device uses 10 of the 16 peripheral selects to decode the base addresses of the peripherals. These peripheral selects are fixed and transparent to the user because they are part of the decoding scheme used by the SYS module. Control registers for the peripherals, SYS module, and flash begin at the base addresses shown in Table 4. 18 Submit Documentation Feedback Copyright © 2005–2008, Texas Instruments Incorporated Product Folder Link(s): TMS470R1A384 TMS470R1A384 www.ti.com ......................................................................................................................................................... SPNS110E – AUGUST 2005 – REVISED MAY 2008 Table 4. A384 Peripherals, System Module, and Flash Base Addresses CONNECTING MODULE ADDRESS RANGE BASE ADDRESS ENDING ADDRESS PERIPHERAL SELECTS SYSTEM 0xFFFF_FFCC 0x FFFF_FFFF N/A Reserved 0xFFFF_FF60 0xFFFF_FFCB N/A PSA 0xFFFF_FF40 0xFFFF_FF5F N/A CIM 0xFFFF_FF20 0xFFFF_FF3F N/A RTI 0xFFFF_FF00 0xFFFF_FF1F N/A DMA 0xFFFF_FE80 0xFFFF_FEFF N/A DEC 0xFFFF_FE00 0xFFFF_FE7F N/A MMC 0xFFFF_FD00 0xFFFF_FD7F N/A IEM 0xFFFF_FC00 0xFFFF_FCFF N/A Reserved 0xFFFF_FB00 0xFFFF_FBFF N/A Reserved 0xFFFF_FA00 0xFFFF_FAFF N/A DMA CMD BUFFER 0xFFFF_F800 0xFFFF_F9FF N/A Reserved 0xFFF8_0000 0xFFFF_F7FF N/A HET 0xFFF7_FC00 0xFFF7_FFFF PS[0] SPI1 0xFFF7_F800 0xFFF7_FBFF PS[1] SCI2 0XFFF7_F500 0XFFF7_F7FF SCI1 0xFFF7_F400 0xFFF7_F4FF MibADC 0xFFF7_F000 0xFFF7_F3FF ECP 0xFFF7_EF00 0xFFF7_EFFF Reserved 0xFFF7_EE00 0xFFF7_EEFF EBM 0xFFF7_ED00 0xFFF7_EDFF GIO 0xFFF7_EC00 0xFFF7_ECFF Reserved 0xFFF7_E400 0xFFF7_EBFF Reserved 0xFFF7_E300 0xFFF7_E3FF SCC2 0xFFF7_E200 0xFFF7_E2FF Reserved 0xFFF7_E100 0xFFF7_E1FF SCC1 0xFFF7_E000 0xFFF7_E0FF Reserved 0xFFF7_DF00 0xFFF7_DFFF SCC2 RAM 0xFFF7_DE00 0xFFF7_DEFF Reserved 0xFFF7_DD00 0xFFF7_DDFF SCC1 RAM 0xFFF7_DC00 0xFFF7_DCFF Reserved 0xFFF7_DB00 0xFFF7_DBFF I2C3 0xFFF7_DA00 0xFFF7_DAFF I2C2 0xFFF7_D900 0xFFF7_D9FF PS[2] PS[3] PS[4] PS[5]–PS[6] PS[7] PS[8] PS[9] I2C1 0xFFF7_D800 0xFFF7_D8FF SPI2 0xFFF7_D400 0xFFF7_D7FF PS[10] Reserved 0xFFF7_CC00 0xFFF7_D3FF PS[11]–PS[12] C2SIb 0xFFF7_C800 0xFFF7_CBFF PS[13] Reserved 0xFFF7_C000 0xFFF7_C7FF PS[14]–PS[15] Reserved 0xFFF0_0000 0xFFF7_BFFF N/A Flash Control Registers 0xFFE8_8000 0xFFE8_BFFF N/A MPU Control Registers 0xFFE8_4000 0xFFE8_4023 N/A Submit Documentation Feedback Copyright © 2005–2008, Texas Instruments Incorporated Product Folder Link(s): TMS470R1A384 19 TMS470R1A384 SPNS110E – AUGUST 2005 – REVISED MAY 2008 ......................................................................................................................................................... www.ti.com Direct Memory Access (DMA) The DMA controller transfers data to and from any specified location in the A384 memory map (except for restricted memory locations like the system control registers area). The DMA manages up to 16 channels, and supports data transfer for both on-chip and off-chip memories and peripherals. The DMA controller is connected to both the CPU and peripheral buses, enabling these data transfers to occur in parallel with CPU activity and, thus, maximizing overall system performance. Although the DMA controller has two possible configurations for the A384 device, the DMA controller configuration is 32 control packets and 16 channels. For the A384 DMA request hardwired configuration, see Table 5. Table 5. DMA Request Lines Connections (1) MODULES DMA REQUEST INTERRUPT SOURCES EBM Expansion bus DMA request EBDMAREQ0 DMAREQ[0] SPI1 SPI1 end-receive SPI1DMA0 DMAREQ[1] SPI1 SPI1 end-transmit SPI1DMA1 DMAREQ[2] I2C1 I2C1 read I2C1DMA0 DMAREQ[3] SCI1 SCI1 end-receive SCI1DMA0 DMAREQ[4] SCI1 SCI1 end-transmit SCI1DMA1 DMAREQ[5] I2C1 I2C1 write I2C1DMA1 DMAREQ[6] SPI2 SPI2 end-receive SPI2DMA0 DMAREQ[7] SPI2 SPI2 end-transmit SPI2DMA1 DMAREQ[8] I2C2/C2SIb I2C2 read/C2SIb end-receive I2C2DMA0/C2SIDMA0 DMAREQ[9] I2C2/C2SIb I2C2 write/C2SIb end-transmit I2C2DMA1/C2SIDMA1 DMAREQ[10] I2C3 I2C3 read I2C3DMA0 DMAREQ[11] I2C3 I2C3 write I2C3DMA1 DMAREQ[12] Reserved (1) DMA CHANNEL DMAREQ[13] SCI2/SPI3 SCI2 end-receive SCI2DMA0 DMAREQ[14] SCI2/SPI3 SCI2 end-transmit SCI2DMA1 DMAREQ[15] For DMA channels with more than one assigned request source (I2C2/C2SIb), only one of the sources listed can be the DMA request generator in a given application. The device has software control to ensure that there are no conflicts between requesting modules. Each channel has two control packets attached to it, allowing the DMA to continuously load RAM and generate periodic interrupts so that the data can be read by the CPU. The control packets allow for the interrupt enable, and the channels determine the priority level of the interrupt. DMA transfers occur in one of two modes: • Non-request mode (used when transferring from memory to memory) • Request mode (used when transferring from memory to peripheral) For more detailed functional information on the DMA controller, see the TMS470R1x Direct Memory Access (DMA) Controller Reference Guide (literature number SPNU194). 20 Submit Documentation Feedback Copyright © 2005–2008, Texas Instruments Incorporated Product Folder Link(s): TMS470R1A384 TMS470R1A384 www.ti.com ......................................................................................................................................................... SPNS110E – AUGUST 2005 – REVISED MAY 2008 Interrupt Priority (IEM to CIM) Interrupt requests originating from the A384 peripheral modules (i.e., SPI1 or SPI2, SCI1 or SCI2, RTI, etc.) are assigned to channels within the 48-channel interrupt expansion module (IEM) where, via programmable register mapping, these channels are then mapped to the 32-channel central interrupt manager (CIM) portion of the SYS module. Programming multiple interrupt sources in the IEM to the same CIM channel effectively shares the CIM channel between sources. The CIM request channels are maskable so that individual channels can be selectively disabled. All interrupt requests can be programmed in the CIM to be of either type: • Fast interrupt request (FIQ) • Normal interrupt request (IRQ) The CIM prioritizes interrupts. The precedences of request channels decrease with ascending channel order in the CIM [0 (highest) and 31 (lowest) priority]. For IEM-to-CIM default mapping, channel priorities, and their associated modules, see Table 6. Table 6. Interrupt Priority (IEM and CIM) MODULES INTERRUPT SOURCES DEFAULT CIM INTERRUPT LEVEL/CHANNEL IEM CHANNEL SPI1 SPI1 end-transfer/overrun 0 0 RTI COMP2 interrupt 1 1 RTI COMP1 interrupt 2 2 RTI TAP interrupt 3 3 SPI2 SPI2 end-transfer/overrun 4 4 GIO GIO interrupt A 5 5 6 6 Reserved HET HET interrupt 1 7 7 I2C1 I2C1 interrupt 8 8 SCI1 or SCI2 error interrupt 9 9 SCI1 SCI1 receive interrupt 10 10 C2SIb SCI1/SCI2 C2SIb interrupt 11 11 I2C2 I2C2 interrupt 12 12 SCC2 SCC2 interrupt A 13 13 SCC1 SCC1 interrupt A 14 14 Reserved 15 15 MibADC end event conversion 16 16 SCI2 SCI2 receive interrupt 17 17 DMA DMA interrupt 0 18 18 I2C3 I2C3 interrupt 19 19 SCI1 SCI1 transmit interrupt 20 20 SW interrupt (SSI) 21 21 22 22 HET interrupt 2 23 23 SCC2 SCC2 interrupt B 24 24 SCC1 SCC1 interrupt B 25 25 SCI2 SCI2 transmit interrupt 26 26 MibADC end group1 conversion 27 27 DMA DMA Interrupt 1 28 28 GIO GIO interrupt B 29 29 MibADC end group2 conversion 30 30 31 31 MibADC System Reserved HET MibADC MibADC Reserved Submit Documentation Feedback Copyright © 2005–2008, Texas Instruments Incorporated Product Folder Link(s): TMS470R1A384 21 TMS470R1A384 SPNS110E – AUGUST 2005 – REVISED MAY 2008 ......................................................................................................................................................... www.ti.com Table 6. Interrupt Priority (IEM and CIM) (continued) DEFAULT CIM INTERRUPT LEVEL/CHANNEL IEM CHANNEL Reserved 31 32 Reserved 31 33 Reserved 31 34 Reserved 31 35 Reserved 31 36 Reserved 31 37 Reserved 31 38 Reserved 31 39 Reserved 31 40 Reserved 31 41 Reserved 31 42 Reserved 31 43 Reserved 31 44 Reserved 31 45 Reserved 31 46 Reserved 31 47 MODULES INTERRUPT SOURCES For more detailed functional information on the IEM, see the TMS470R1x Interrupt Expansion Module (IEM) Reference Guide (literature number SPNU211). For more detailed functional information on the CIM, see the TMS470R1x System Module Reference Guide (literature number SPNU189). 22 Submit Documentation Feedback Copyright © 2005–2008, Texas Instruments Incorporated Product Folder Link(s): TMS470R1A384 TMS470R1A384 www.ti.com ......................................................................................................................................................... SPNS110E – AUGUST 2005 – REVISED MAY 2008 Expansion Bus Module (EBM) The expansion bus module (EBM) is a standalone module used to bond out both general-purpose input/output pins and expansion bus interface pins. The module supports 8- and 16-bit expansion bus memory interface mappings, as well as mapping of the following expansion bus signals: • 22-bit address bus (EBADDR[21:0]) for x8, 19-bit address bus (EBADDR[18:0]) for x16 • 8- or 16-bit data bus (EBDATA[7:0]or EBDATA[15:0]) • Two write strobes (EBWR[1:0]) • Two memory chip selects (EBCS[6:5]) • One output enable (EBOE) • One external hold signal for interfacing to slow memories (EBHOLD) Table 7 shows the multiplexing of I/O signals with the expansion bus interface signals. The mapping of these pins varies depending on the memory mode. Table 7. Expansion Bus Multiplex Mapping (1) EXPANSION BUS MODULE PINS (2) GIO (1) (2) x8 x16 GIOB[0] EBDMAREQ[0] EBDMAREQ[0] GIOC[0] EBOE EBOE GIOC[2:1] EBWR[1:0] EBWR[1:0] GIOC[4:3] EBCS[6:5] EBCS[6:5] GIOD[5:0] EBADDR[5:0] EBADDR[5:0] GIOE[7:0] EBDATA[7:0] EBDATA[7:0] GIOF[7:0] EBADDR[13:6] EBDATA[15:8] GIOG[7:0] EBADDR[21:14] EBADDR[13:6] GIOH[4:0] – EBADDR[18:14] GIOH[5] EBHOLD EBHOLD These mappings are controlled by the EBM mux control registers B–H (EBMXCRB–EBMXCRH) and the EBM control register 1 (EBMCR1). For GPIO functions, use GIODIRx, GIODINx, GIODOUTx, GIODSETx, and GIODCLRx. For more detailed information, see the TMS470R1x General-Purpose Input/Output (GIO) Reference Guide (literature number SPNU192) and the TMS470R1x Expansion Bus Module (EBM) Reference Guide (literature number SPNU222). x8 refers to size of memory in 8-bits; x16 refers to size of memory in 16-bits. Table 8 lists the names of the expansion bus interface signals and their functions. Table 8. Expansion Bus Pins PIN DESCRIPTION EBDMAREQ Expansion bus DMA request EBOE Expansion bus output enable EBWR Expansion bus write strobe. EBWR[1] controls EBDATA[15:8] and EBWR[0] controls EBDATA[7:0]. EBCS Expansion bus chip select EBADDR Expansion bus address EBDATA Expansion bus data EBHOLD Expansion bus hold: an external device connected to the expansion bus may assert this signal to add wait states to an expansion bus transaction. Submit Documentation Feedback Copyright © 2005–2008, Texas Instruments Incorporated Product Folder Link(s): TMS470R1A384 23 TMS470R1A384 SPNS110E – AUGUST 2005 – REVISED MAY 2008 ......................................................................................................................................................... www.ti.com MibADC The multi-buffered analog-to-digital converter (MibADC) accepts an analog signal and converts the signal to a 10-bit digital value. The A384 MibADC module can function in two modes: compatibility mode, where its programmer's model is compatible with the TMS470R1x ADC module and its digital results are stored in digital result registers; or in buffered mode, where the digital result registers are replaced with three FIFO buffers, one for each conversion group [event, group1 (G1), and group2 (G2)]. In buffered mode, the MibADC buffers can be serviced by interrupts or by the DMA. NOTE: The MibADC on this device does not support the DMA. MibADC Event Trigger Enhancements The MibADC includes two major enhancements over the event-triggering capability of the TMS470R1x ADC. • Both group1 and the event group can be configured for event-triggered operation, providing up to two event-triggered groups. • The trigger source and polarity can be selected individually for both group1 and the event group from the options identified in Table 9. Table 9. MibADC Event Hookup Configuration EVENT NO. SOURCE SELECT BITS FOR G1 OR EVENT (G1SRC[1:0] OR EVSRC[1:0]) SIGNAL PIN NAME EVENT1 00 ADEVT EVENT2 01 HET18 EVENT3 10 Reserved EVENT4 11 Reserved For group1, these event-triggered selections are configured via the group1 source select bits (G1SRC[1:0]) in the AD event source register (ADEVTSRC[5:4]). For the event group, these event-triggered selections are configured via the event group source select bits (EVSRC[1:0]) in the AD event source register (ADEVTSRC[1:0]). For more detailed functional information on the MibADC, see the TMS470R1x Multi-Buffered Analog-to-Digital Converter (MibADC) Reference Guide (literature number SPNU206). 24 Submit Documentation Feedback Copyright © 2005–2008, Texas Instruments Incorporated Product Folder Link(s): TMS470R1A384 TMS470R1A384 www.ti.com ......................................................................................................................................................... SPNS110E – AUGUST 2005 – REVISED MAY 2008 JTAG Interface There are two main test access ports (TAPs) on the device: • TMS470R1x CPU TAP • Device TAP for factory test Some of the JTAG pins are shared among these two TAPs. The connection is shown in Figure 2. TMS470R1x CPU TCK TCK TRST TRST TMS TMS TDI TDI TDO TDO Factory Test TCK TRST TMS2 TMS TDI TDO Figure 2. JTAG Interface Submit Documentation Feedback Copyright © 2005–2008, Texas Instruments Incorporated Product Folder Link(s): TMS470R1A384 25 TMS470R1A384 SPNS110E – AUGUST 2005 – REVISED MAY 2008 ......................................................................................................................................................... www.ti.com Documentation Support Extensive documentation supports all of the TMS470 microcontroller family generation of devices. The types of documentation available include data sheets with design specifications, complete user's guides for all devices and development support tools, and hardware and software applications. Useful reference documentation includes: • Bulletin – TMS470 Microcontroller Family Product Bulletin (literature number SPNB086) • User's Guides – TMS470R1x System Module Reference Guide (literature number SPNU189) – TMS470R1x General Purpose Input/Output (GIO) Reference Guide (literature number SPNU192) – TMS470R1x Direct Memory Access (DMA) Controller Reference Guide (literature number SPNU194) – TMS470R1x Serial Peripheral Interface (SPI) Reference Guide (literature number SPNU195) – TMS470R1x Serial Communication Interface (SCI) Reference Guide (literature number SPNU196) – TMS470R1x Controller Area Network (CAN) Reference Guide (literature number SPNU197) – TMS470R1x High End Timer (HET) Reference Guide (literature number SPNU199) – TMS470R1x External Clock Prescale (ECP) Reference Guide (literature number SPNU202) – TMS470R1x MultiBuffered Analog to Digital (MibADC) Reference Guide (literature number SPNU206) – TMS470R1x Zero Pin Phase-Locked Loop (ZPLL) Clock Module Reference Guide (literature number SPNU212) – TMS470R1x F05 Flash Reference Guide (literature number SPNU213) – TMS470R1x Class II Serial Interface B (C2SIb) Reference Guide (literature number SPNU214) – TMS470R1x Class II Serial Interface A (C2SIa) Reference Guide (literature number SPNU218) – TMS470R1x JTAG Security Module (JSM) Reference Guide (literature number SPNU245) – TMS470R1x Memory Security Module (MSM) Reference Guide (literature number SPNU246) – TMS470 Peripherals Overview Reference Guide (literature number SPNU248) • Errata Sheet – TMS470R1A384 TMS470 Microcontrollers Silicon Errata (literature number SPNZ148) 26 Submit Documentation Feedback Copyright © 2005–2008, Texas Instruments Incorporated Product Folder Link(s): TMS470R1A384 TMS470R1A384 www.ti.com ......................................................................................................................................................... SPNS110E – AUGUST 2005 – REVISED MAY 2008 Device and Development-Support Tool Nomenclature To designate the stages in the product development cycle, TI assigns prefixes to the part numbers of all DSP devices and support tools. Each DSP commercial family member has one of three prefixes: TMX, TMP, or TMS (e.g., TMS470R1A384). Texas Instruments recommends two of three possible prefix designators for its support tools: TMDX and TMDS. These prefixes represent evolutionary stages of product development from engineering prototypes (TMX/TMDX) through fully qualified production devices/tools (TMS/TMDS). Device development evolutionary flow: TMX Experimental device that is not necessarily representative of the final device's electrical specifications TMP Final silicon die that conforms to the device's electrical specifications but has not completed quality and reliability verification TMS Fully qualified production device Support tool development evolutionary flow: TMDX Development-support product that has not yet completed Texas Instruments internal qualification testing. TMDS Fully qualified development-support product TMX and TMP devices and TMDX development-support tools are shipped against the following disclaimer: "Developmental product is intended for internal evaluation purposes." TMS devices and TMDS development-support tools have been characterized fully, and the quality and reliability of the device have been demonstrated fully. TI's standard warranty applies. Predictions show that prototype devices (TMX or TMP) have a greater failure rate than the standard production devices. Texas Instruments recommends that these devices not be used in any production system because their expected end-use failure rate still is undefined. Only qualified production devices are to be used. Figure 3 illustrates the numbering and symbol nomenclature for the TMS470R1x family. Submit Documentation Feedback Copyright © 2005–2008, Texas Instruments Incorporated Product Folder Link(s): TMS470R1A384 27 TMS470R1A384 SPNS110E – AUGUST 2005 – REVISED MAY 2008 ......................................................................................................................................................... www.ti.com TMS 470 R1 A 384 Pxx T OPTIONS PREFIX TMS = Fully Qualified Device FAMILY 470 = TMS470 RISC − Embedded Microcontroller Family TEMPERATURE RANGE T = −40°C to 105°C Q = −40°C to 125°C PACKAGE TYPE PGE = 144-pin Low-Profile Quad Flatpack (LQFP) PZ = 100-pin Low-Profile Quad Flatpack (LQFP) ARCHITECTURE R1 = ARM7TDM1 CPU DEVICE TYPE A With 384K-Bytes Flash Memory: 48-MHz Frequency 1.8-V Core, 3.3-V I/O Flash Program Memory ZPLL Clock 1K-Byte Static RAM 1K-Byte HET RAM (64 Instructions) AWD RTI 10-Bit 12-Input MibADC Two SPI Modules Two SCI Modules C2SIb Two CAN [SCC] Three I2Cs HET, 12 Channels ECP EBM DMA Controller REVISION CHANGE Blank = Original FLASH MEMORY 384 = 384K-Byte Flash Memory Figure 3. TMS470R1x Family Nomenclature 28 Submit Documentation Feedback Copyright © 2005–2008, Texas Instruments Incorporated Product Folder Link(s): TMS470R1A384 TMS470R1A384 www.ti.com ......................................................................................................................................................... SPNS110E – AUGUST 2005 – REVISED MAY 2008 Device Identification Code Register The device identification code register identifies the silicon version, the technology family (TF), a ROM or flash device, and an assigned device-specific part number (see Figure 4). The A384 device identification code register value is 0x096F. Figure 4. TMS470 Device ID Bit Allocation Register [offset = FFFF_FFF0h] 31 16 Reserved 15 12 VERSION 11 10 TF R/F 9 3 2 1 0 PART NUMBER 1 1 1 R-K R-1 R-1 R-1 R-K R-K R-K LEGEND: R = Read only, -K = Value constant after RESET; -n = Value after RESET Table 10. TMS470 Device ID Bit Allocation Register Field Descriptions Bit Field Value Description 31–16 Reserved Reads are undefined and writes have no effect. 15–12 VERSION Silicon version (revision) bits These bits identify the silicon version of the device. Initial device version numbers start at 0000. TF Technology family bit This bit distinguishes the technology family core power supply: 11 10 0 3.3 V for F10/C10 devices 1 1.8 V for F05/C05 devices R/F ROM/flash bit This bit distinguishes between ROM and flash devices: 0 Flash device 1 ROM device 9–3 PART NUMBER Device-specific part number bits These bits identify the assigned device-specific part number. The assigned device-specific part number for the A384 device is 0101101. 2–0 1 Mandatory High Bits 2, 1, and 0 are tied high by default. Submit Documentation Feedback Copyright © 2005–2008, Texas Instruments Incorporated Product Folder Link(s): TMS470R1A384 29 TMS470R1A384 SPNS110E – AUGUST 2005 – REVISED MAY 2008 ......................................................................................................................................................... www.ti.com Device Electrical Specifications and Timing Parameters Absolute Maximum Ratings over operating free-air temperature range (1) VCC (2) Supply voltage range: –0.5 V to 2.5 V (2) Supply voltage range: VCCIO , VCCAD , VCCP (flash pump) Input voltage range: All 5 V- tolerant input pins –0.5 V to 6.0 V All other input pins –0.5 V to 4.1 V Input clamp current, IIK: –0.5 V to 4.1 V All 5-V tolerant pins, PORRST, TRST, TEST, and TCK (VI < 0) Operating free-air temperature range, TA –20 mA (3) ADIN[0:11] (VI < 0 or VI > VCCAD) ±10 mA All other pins (VI < 0 or VI > VCCAD) ±20 mA T version –40°C to 105°C Q version –40°C to 125°C Operating junction temperature range, TJ –40°C to 150°C Storage temperature range, Tstg –40°C to 150°C (1) (2) (3) Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability. All voltage values are with respect to their associated grounds. These pins do not have an internal clamp diode to a positive supply voltage. Device Recommended Operating Conditions (1) MIN NOM VCC Digital logic supply voltage (Core) VCCIO Digital logic supply voltage (I/O) 3 VCCAD MibADC supply voltage VCCP Flash pump supply voltage VSS Digital logic supply ground VSSAD MibADC supply ground TA Operating free-air temperature TJ Operating junction temperature (1) 30 MAX 1.71 UNIT 2.05 V 3.3 3.6 V 3 3.3 3.6 V 3 3.3 3.6 V 0 V –0.1 0.1 T version –40 105 Q version –40 125 –40 150 V °C °C All voltages are with respect to VSS, except VCCAD, which is with respect to VSSAD. Submit Documentation Feedback Copyright © 2005–2008, Texas Instruments Incorporated Product Folder Link(s): TMS470R1A384 TMS470R1A384 www.ti.com ......................................................................................................................................................... SPNS110E – AUGUST 2005 – REVISED MAY 2008 Electrical Characteristics over recommended operating free-air temperature range (1) PARAMETER Vhys TEST CONDITIONS Input hysteresis Low-level input voltage VIL High-level input voltage VIH OSCIN only –0.3 0.35 VCC 2 VCCIO + 0.3 0.65 VCC VCC + 0.3 1.35 1.8 All inputs except OSCIN OSCIN only RDSON Drain to source on resistance AWD only VOL Low-level output voltage (4) VOH High-level output voltage (4) IIC Input clamp current (I/O pins) (5) (3) VOL – 0.35 V at IOL = 4 mA IOL = IOL MAX 0.2 VCCIO IOL = 3 mA 0.4 0.8 VCCIO IOH = 250 µA 2.7 VI < VSSIO – 0.3 or VI > VCCIO + 0.3 –2 IIL Pulldown VI = VSS –1 1 IIH Pulldown VI = VCCIO 5 40 IIL Pullup VI = VSS –40 –5 IIH Pullup VI = VCCIO –1 1 All other pins No pullup or pulldown –1 1 VI = VSS –1 1 All other 3.3 V I/O (6) –1 1 0.5 20 1 40 VOL = VOL MAX All other 3.3 V I/O (6) (4) (5) (6) mA µA µA 2 mA –4 VOH = VOH MIN 5 V tolerant (1) (2) (3) V 4 RST, CLKOUT, TDO High-level output current V 4 5-V tolerant IOH 2 VI = 5 V RST, CLKOUT, AWD, TDO IOL V V VI = VCCIO VI = 5.5 V V 90 IOH = IOH MIN Input current (5-V tolerant input pins) UNIT V 0.8 AWD only Low-level output current MAX –0.3 Input threshold voltage II TYP All inputs (2) except OSCIN Vth Input current (3.3-V input pins) MIN 0.15 –2 mA –4 Source currents (out of the device) are negative, while sink currents (into the device) are positive. This does not apply to the PORRST pin. For PORRST exceptions, see the RST and PORRST Timings section. These values help to determine the external RC network circuit. For more details, see the TMS470R1x System Module Reference Guide (literature number SPNU189). VOL and VOH are linear with respect to the amount of load current (IOL/IOH) applied. Parameter does not apply to input-only or output-only pins. The 2-mA buffers on this device are called zero-dominant buffers. If two of these buffers are shorted together and one is outputting a low level and the other is outputting a high level, the resulting value is always low. Submit Documentation Feedback Copyright © 2005–2008, Texas Instruments Incorporated Product Folder Link(s): TMS470R1A384 31 TMS470R1A384 SPNS110E – AUGUST 2005 – REVISED MAY 2008 ......................................................................................................................................................... www.ti.com Electrical Characteristics (continued) over recommended operating free-air temperature range PARAMETER VCC digital supply current (operating mode) VCC digital supply current (standby mode) (7) ICC VCC digital supply current (halt mode) (7) ICCIO ICCAD ICCP TEST CONDITIONS MIN TYP MAX SYSCLK = 24 MHz, ICLK = 15 MHz, VCC = 2.05 V 90 SYSCLK = 48 MHz, ICLK = 24 MHz, VCC = 2.05 V 115 OSCIN = 4 MHz, VCC = 2.05 V UNIT mA T version (105°C) 1 Q version (125°C) 1.25 mA 30°C version, VCC = 2.05 V 30 T version (105°C), VCC = 2.05 V 365 Q version (125°C), VCC = 2.05 V 550 µA VCCIO digital supply current (operating mode) No DC load, VCCIO = 3.6 V (8) 10 mA VCCIO digital supply current (standby mode) No DC load, VCCIO = 3.6 V (8) 15 µA (8) VCCIO digital supply current (halt mode) No DC load, VCCIO = 3.6 V 5 µA VCCAD supply current (operating mode) All frequencies, VCCAD = 3.6 V 25 mA VCCAD supply current (standby mode) No DC load, VCCAD = 3.6 V (8) 10 µA VCCAD supply current (halt mode) VCCAD = 3.6 V 5 µA VCCP = 3.6 V read operation 25 mA VCCP = 3.6 V program and erase 70 mA VCCP = 3.6 V standby mode operation (7) 10 µA VCCP = 3.6 V halt mode operation (7) 5 µA VCCP pump supply current CI Input capacitance 2 pF CO Output capacitance 3 pF (7) (8) 32 For flash banks/pumps in sleep mode. I/O pins configured as inputs or outputs with no load. All pulldown inputs ≤ 0.2 V. All pullup inputs ≥ VCCIO – 0.2 V. Submit Documentation Feedback Copyright © 2005–2008, Texas Instruments Incorporated Product Folder Link(s): TMS470R1A384 TMS470R1A384 www.ti.com ......................................................................................................................................................... SPNS110E – AUGUST 2005 – REVISED MAY 2008 Parameter Measurement Information IOL Tester Pin Electronics 50 Ω V LOAD Output Under Test CL I OH Where: IOL = IOH = VLOAD = CL = IOL MAX for the respective pin (A) IOH MIN for the respective pin(A) 1.5 V 150-pF typical load-circuit capacitance(B) A. For these values, see the "Electrical Characteristics over Recommended Operating Free-Air Temperature Range" table. B. All timing parameters measured using an external load capacitance of 150 pF unless otherwise noted. Figure 5. Test Load Circuit Submit Documentation Feedback Copyright © 2005–2008, Texas Instruments Incorporated Product Folder Link(s): TMS470R1A384 33 TMS470R1A384 SPNS110E – AUGUST 2005 – REVISED MAY 2008 ......................................................................................................................................................... www.ti.com Timing Parameter Symbology Timing parameter symbols have been created in accordance with JEDEC Standard 100. To shorten the symbols, some of the pin names and other related terminology have been abbreviated as follows: CM Compaction, CMPCT RD Read CO CLKOUT RST Reset, RST ER Erase RX SCInRX ICLK Interface clock S Slave mode M Master mode SCC SCInCLK OSC, OSCI OSCIN SIMO SPInSIMO OSCO OSCOUT SOMI SPInSOMI P Program, PROG SPC SPInCLK R Ready SYS System clock R0 Read margin 0, RDMRGN0 TX SCInTX R1 Read margin 1, RDMRGN1 Lowercase subscripts and their meanings are: a access time r rise time c cycle time (period) su setup time d delay time t transition time f fall time v valid time h hold time w pulse duration (width) The following additional letters are used with these meanings: H High X Unknown, changing, or don't care level L Low Z High impedance V Valid 34 Submit Documentation Feedback Copyright © 2005–2008, Texas Instruments Incorporated Product Folder Link(s): TMS470R1A384 TMS470R1A384 www.ti.com ......................................................................................................................................................... SPNS110E – AUGUST 2005 – REVISED MAY 2008 External Reference Resonator/Crystal Oscillator Clock Option The oscillator is enabled by connecting the appropriate fundamental 4-20 MHz resonator/crystal and load capacitors across the external OSCIN and OSCOUT pins as shown in Figure 6a. The oscillator is a single-stage inverter held in bias by an integrated bias resistor. This resistor is disabled during leakage test measurement and HALT mode. TI strongly encourages each customer to submit samples of the device to the resonator/crystal vendors for validation. The vendors are equipped to determine what load capacitors will best tune their resonator/crystal to the microcontroller device for optimum start-up and operation over temperature/voltage extremes. An external oscillator source can be used by connecting a 1.8-V clock signal to the OSCIN pin and leaving the OSCOUT pin unconnected (open) as shown in Figure 6b. OSCIN C1(A) OSCOUT C2(A) Crystal OSCIN External Clock Signal (toggling 0-1.8 V) (a) A. OSCOUT (b) The values of C1 and C2 should be provided by the resonator/crystal vendor. Figure 6. Crystal/Clock Connection Submit Documentation Feedback Copyright © 2005–2008, Texas Instruments Incorporated Product Folder Link(s): TMS470R1A384 35 TMS470R1A384 SPNS110E – AUGUST 2005 – REVISED MAY 2008 ......................................................................................................................................................... www.ti.com ZPLL AND CLOCK SPECIFICATIONS Timing Requirements for ZPLL Circuits Enabled or Disabled MIN TYP MAX UNIT 4 20 MHz f(OSC) Input clock frequency tc(OSC) Cycle time, OSCIN 50 ns tw(OSCIL) Pulse duration, OSCIN low 15 ns tw(OSCIH) Pulse duration, OSCIN high 15 ns f(OSCRST) (1) OSC FAIL frequency (1) 53 kHz Causes a device reset (specifically a clock reset) by setting the RST OSC FAIL (GLBCTRL.15) and the OSC FAIL flag (GLBSTAT.1) bits equal to 1. For more detailed information on these bits and device resets, see the TMS470R1x System Module Reference Guide (literature number SPNU189). Switching Characteristics Over Recommended Operating Conditions for Clocks (1) (2) TEST CONDITIONS (3) PARAMETER MAX UNIT Pipeline mode enabled MIN 48 MHz Pipeline mode disabled f(SYS) System clock frequency (4) 24 MHz f(CONFIG) System clock frequency - flash config mode 24 MHz f(ICLK) Interface clock frequency 24 MHz f(ECLK) External clock output frequency for ECP module 24 MHz Pipeline mode enabled 20.8 ns Pipeline mode disabled 41.6 ns tc(SYS) Cycle time, system clock tc(CONFIG) Cycle time, system clock - flash config mode 41.6 ns tc(ICLK) Cycle time, interface clock 41.6 ns tc(ECLK) Cycle time, ECP module external clock output 41.6 ns (1) (2) (3) (4) 36 f(SYS) = M × f(OSC)/R, where M = {8}, R = {1,2,3,4,5,6,7,8} when PLLDIS = 0. R is the system-clock divider determined by the CLKDIVPRE [2:0] bits in the global control register (GLBCTRL[2:0]) and M is the PLL multiplier determined by the MULT4 bit also in the GLBCTRL register (GLBCTRL.3). f(SYS) = f(OSC)/R, where R = {1,2,3,4,5,6,7,8} when PLLDIS = 1. f(ICLK) = f(SYS)/X, where X = {1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16}. X is the interface clock divider ratio determined by the PCR0[4:1] bits in the SYS module. f(ECLK) = f(ICLK)/N, where N = {1 to 256}. N is the ECP prescale value defined by the ECPCTRL[7:0] register bits in the ECP module. Pipeline mode enabled or disabled is determined by the ENPIPE bit (FMREGOPT.0). Flash Vread must be set to 5 V to achieve maximum system clock frequency. Submit Documentation Feedback Copyright © 2005–2008, Texas Instruments Incorporated Product Folder Link(s): TMS470R1A384 TMS470R1A384 www.ti.com ......................................................................................................................................................... SPNS110E – AUGUST 2005 – REVISED MAY 2008 Switching Characteristics Over Recommended Operating Conditions for External Clocks (1) (2) (3) (see Figure 7 and Figure 8) PARAMETER tw(COL) TEST CONDITIONS Pulse duration, CLKOUT low 0.5tc(SYS) - tf ICLK: X is even or 1 (5) 0.5tc(ICLK) - tf ICLK: X is odd and not 1 (5) tw(COH) Pulse duration, CLKOUT high MIN SYSCLK or MCLK (4) tw(EOH) Pulse duration, ECLK low Pulse duration, ECLK high 0.5tc(SYS) - tr ICLK: X is even or 1 (5) 0.5tc(ICLK) - tr (1) (2) (3) (4) (5) ns ns 0.5tc(ICLK) - 0.5tc(SYS) - tr N is even and X is even or odd 0.5tc(ECLK) - tf N is odd and X is even 0.5tc(ECLK) - tf N is odd and X is odd and not 1 0.5tc(ECLK) + 0.5tc(SYS) - tf N is even and X is even or odd 0.5tc(ECLK) - tr N is odd and X is even 0.5tc(ECLK) - tr N is odd and X is odd and not 1 UNIT 0.5tc(ICLK) + 0.5tc(SYS) - tf SYSCLK or MCLK (4) ICLK: X is odd and not 1 (5) tw(EOL) MAX ns ns 0.5tc(ECLK) - 0.5tc(SYS) - tr X = {1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16}. X is the interface clock divider ratio determined by the PCR0[4:1] bits in the SYS module. N = {1 to 256}. N is the ECP prescale value defined by the ECPCTRL[7:0] register bits in the ECP module. CLKOUT/ECLK pulse durations (low/high) are a function of the OSCIN pulse durations when PLLDIS is active. Clock source bits are selected as either SYSCLK (CLKCNTL[6:5] = 11 binary) or MCLK (CLKCNTL[6:5] = 10 binary). Clock source bits are selected as ICLK (CLKCNTL[6:5] = 01 binary). tw(COH) CLKOUT tw(COL) Figure 7. CLKOUT Timing Diagram tw(EOH) ECLK tw(EOL) Figure 8. ECLK Timing Diagram Submit Documentation Feedback Copyright © 2005–2008, Texas Instruments Incorporated Product Folder Link(s): TMS470R1A384 37 TMS470R1A384 SPNS110E – AUGUST 2005 – REVISED MAY 2008 ......................................................................................................................................................... www.ti.com RST AND PORRST TIMINGS Timing Requirements for PORRST (see Figure 9) MIN MAX UNIT VCCPORL VCC low supply level when PORRST must be active during power up VCCPORH VCC high supply level when PORRST must remain active during power up and become active during power down VCCIOPORL VCCIO low supply level when PORRST must be active during power up VCCIOPORH VCCIO high supply level when PORRST must remain active during power up and become active during power down VIL Low-level input voltage after VCCIO > VCCIOPORH VIL(PORRST) Low-level input voltage of PORRST before V CCIO > VCCIOPORL tsu(PORRST)r Setup time, PORRST active before VCCIO > VCCIOPORL during power up 0 ms tsu(VCCIO)r Setup time, VCCIO > VCCIOPORL before VCC > VCCPORL 0 ms th(PORRST)r Hold time, PORRST active after VCC > VCCPORH 1 ms tsu(PORRST)f Setup time, PORRST active before VCC ≤ VCCPORH during power down 8 µs th(PORRST)rio Hold time, PORRST active after VCC > VCCIOPORH 1 ms th(PORRST)d Hold time, PORRST active after VCC < VCCPORL 0 ms tsu(PORRST)fio Setup time, PORRST active before VCC ≤ VCCIOPORH during power down 0 ns tsu(VCCIO)f Setup time, VCC < VCCPORL before VCCIO < VCCIOPORL 0 ns V CCP /VCCIO V CC V CCIOPORH th(PORRST)rio V CCPORH V CC VCCP/VCCIO PORRST V V 1.1 2.75 V V 0.5 V V V CCIOPORH V CCIO tsu(VCCIO)f V CC tsu(PORRST)f V CCPORH tsu(PORRST)fio tsu(PORRST)f V CCPORL th(PORRST)r tsu(VCCIO)r V CCIOPORL V CCPORL th(PORRST)d tsu(PORRST)r V IL(PORRST) 1.5 0.2 VCCIO th(PORRST)r V CCIOPORL 0.6 V IL VIL VIL V IL V IL(PORRST) NOTE: VCCIO > 1.1 V before VCC > 0.6 V Figure 9. PORRST Timing Diagram Switching Characteristics Over Recommended Operating Conditions for RST (1) PARAMETER tv(RST) tfsu (1) 38 MIN Valid time, RST active after PORRST inactive 4112tc(OSC) Valid time, RST active (all others) 8tc(SYS) Flash start-up time, from RST inactive to fetch of first instruction from flash (flash pump stabilization time) 360tc(OSC) MAX UNIT ns ns Specified values do NOT include rise/fall times. For rise and fall timings, see the "Switching Characteristics for Output Timings versus Load Capacitance" table. Submit Documentation Feedback Copyright © 2005–2008, Texas Instruments Incorporated Product Folder Link(s): TMS470R1A384 TMS470R1A384 www.ti.com ......................................................................................................................................................... SPNS110E – AUGUST 2005 – REVISED MAY 2008 JTAG SCAN INTERFACE TIMING (JTAG Clock Specification 10-MHz and 50-pF Load on TDO Output) MIN MAX UNIT tc(JTAG) Cycle time, JTAG low and high period 50 ns tsu(TDI/TMS - TCKr) Setup time, TDI, TMS before TCK rise (TCKr) 15 ns th(TCKr ns Hold time, TDI, TMS after TCKr 15 th(TCKf -TDO) Hold time, TDO after TCKf 10 td(TCKf -TDO) Delay time, TDO valid after TCK fall (TCKf) -TDI/TMS) ns 45 ns                                Figure 10. JTAG Scan Timings Submit Documentation Feedback Copyright © 2005–2008, Texas Instruments Incorporated Product Folder Link(s): TMS470R1A384 39 TMS470R1A384 SPNS110E – AUGUST 2005 – REVISED MAY 2008 ......................................................................................................................................................... www.ti.com OUTPUT TIMINGS Switching Characteristics for Output Timings versus Load Capacitance (CL) (see Figure 11) PARAMETER tr tf tr tf tr tf Rise time, AWD, CLKOUT, RST, TD0/GIOC[6] Fall time, AWD, CLKOUT, TDO/GIOC[6] Rise time, 4-mA 5-V tolerant pins Fall time, 4-mA 5-V tolerant pins Rise time, all other output pins Fall time, all other output pins MIN MAX CL = 15 pF 2.5 8 CL = 50 pF 5 14 CL = 100 pF 9 23 CL = 150 pF 13 32 CL = 15 pF 2.5 8 CL = 50 pF 5 14 CL = 100 pF 9 23 CL = 150 pF 13 32 CL = 15 pF 3 10 CL = 50 pF 3.5 12 CL = 100 pF 7 21 CL = 150 pF 9 28 CL = 15 pF 2 8 CL = 50 pF 2.5 9 CL = 100 pF 8 25 CL = 150 pF 11 35 CL = 15 pF 2.5 10 CL = 50 pF 6.0 25 CL = 100 pF 12 45 CL = 150 pF 18 65 CL = 15 pF 3 10 CL = 50 pF 8.5 25 CL = 100 pF 16 45 CL = 150 pF 23 65 tr ns ns ns ns ns ns tf 80% Output UNIT VCC 80% 20% 20% 0 Figure 11. CMOS-Level Outputs 40 Submit Documentation Feedback Copyright © 2005–2008, Texas Instruments Incorporated Product Folder Link(s): TMS470R1A384 TMS470R1A384 www.ti.com ......................................................................................................................................................... SPNS110E – AUGUST 2005 – REVISED MAY 2008 INPUT TIMINGS Timing Requirements for Input Timings (1) (see Figure 12) MIN tpw (1) Input minimum pulse width MAX UNIT tc(ICLK) + 10 ns tc(ICLK) = interface clock cycle time = 1/f(ICLK) tpw Input 80% V CC 80% 20% 20% 0 Figure 12. CMOS-Level Inputs FLASH TIMINGS Timing Requirements for Program Flash (1) MIN TYP MAX UNIT 4 16 200 µs 3 10 s tprog(16-bit) Half word (16-bit) programming time tprog(Total) 384K-byte programming time (2) terase(sector) Sector erase time twec Write/erase cycles at TA = –40°C to 125°C tfp(RST) Flash pump settling time from RST to SLEEP 72tc(SYS) tfp(SLEEP) Initial flash pump settling time from SLEEP to STANDBY 72tc(SYS) tfp(STANDBY) Initial flash pump settling time from STANDBY to ACTIVE 36tc(SYS) (1) (2) 1.7 50000 s cycles ns For more detailed information on the flash core sectors, see the flash program and erase section of this data sheet. The 384K-byte programming time includes overhead of state machine. Submit Documentation Feedback Copyright © 2005–2008, Texas Instruments Incorporated Product Folder Link(s): TMS470R1A384 41 TMS470R1A384 SPNS110E – AUGUST 2005 – REVISED MAY 2008 ......................................................................................................................................................... www.ti.com SPIn MASTER MODE TIMING PARAMETERS SPIn Master Mode External Timing Parameters (CLOCK PHASE = 0, SPInCLK = output, SPInSIMO = output, and SPInSOMI = input) (1) (2) (3) (see Figure 13) NO. 1 2 (5) 3 (5) 4 (5) 5 (5) 6 (5) 7 (5) (1) (2) (3) (4) (5) MIN MAX UNIT 100 256tc(ICLK) ns Pulse duration, SPInCLK high (clock polarity = 0) 0.5tc(SPC)M - tr 0.5tc(SPC)M + 5 tw(SPCL)M Pulse duration, SPInCLK low (clock polarity = 1) 0.5tc(SPC)M - tf 0.5tc(SPC)M + 5 tw(SPCL)M Pulse duration, SPInCLK low (clock polarity = 0) 0.5tc(SPC)M - tf 0.5tc(SPC)M + 5 tw(SPCH)M Pulse duration, SPInCLK high (clock polarity = 1) 0.5tc(SPC)M - tr 0.5tc(SPC)M + 5 td(SPCH-SIMO)M Delay time, SPInCLK high to SPInSIMO valid (clock polarity = 0) 10 td(SPCL-SIMO)M Delay time, SPInCLK low to SPInSIMO valid (clock polarity = 1) 10 tv(SPCL-SIMO)M Valid time, SPInSIMO data valid after SPInCLK low (clock polarity = 0) tc(SPC)M - 5 - tf tv(SPCH-SIMO)M Valid time, SPInSIMO data valid after SPInCLK high (clock polarity = 1) tc(SPC)M - 5 - tr tsu(SOMI-SPCL)M Setup time, SPInSOMI before SPInCLK low (clock polarity = 0) 6 tsu(SOMI-SPCH)M Setup time, SPInSOMI before SPInCLK high (clock polarity = 1) 6 tv(SPCL-SOMI)M Valid time, SPInSOMI data valid after SPInCLK low (clock polarity = 0) 4 tv(SPCH-SOMI)M Valid time, SPInSOMI data valid after SPInCLK high (clock polarity = 1) 4 tc(SPC)M Cycle time, SPInCLK (4) tw(SPCH)M ns ns ns ns ns ns The MASTER bit (SPInCTRL2.3) is set and the CLOCK PHASE bit (SPInCTRL2.0) is cleared. tc(ICLK) = interface clock cycle time = 1/f(ICLK) For rise and fall timings, see the "Switching Characteristics for Output Timings versus Load Capacitance" table. When the SPI is in master mode, the following must be true: For PS values from 1 to 255: tc(SPC)M ≥(PS +1)tc(ICLK) ≥ 100 ns, where PS is the prescale value set in the SPInCTL1[12:5] register bits. For PS values of 0: tc(SPC)M = 2tc(ICLK) ≥ 100 ns. The active edge of the SPInCLK signal referenced is controlled by the CLOCK POLARITY bit (SPInCTRL2[1]). 1 SPInCLK (clock polarity = 0) 2 3 SPInCLK (clock polarity = 1) 4 5 SPInSIMO Master Out Data Is Valid 6 7 SPInSOMI Master In Data Must Be Valid Figure 13. SPIn Master Mode External Timing (CLOCK PHASE = 0) 42 Submit Documentation Feedback Copyright © 2005–2008, Texas Instruments Incorporated Product Folder Link(s): TMS470R1A384 TMS470R1A384 www.ti.com ......................................................................................................................................................... SPNS110E – AUGUST 2005 – REVISED MAY 2008 SPIn Master Mode External Timing Parameters (CLOCK PHASE = 1, SPInCLK = output, SPInSIMO = output, and SPInSOMI = input) (1) (2) (3) (see Figure 14) NO. 1 2 (5) 3 (5) 4 (5) 5 (5) 6 (5) 7 (5) (1) (2) (3) (4) (5) MIN MAX UNIT 100 256tc(ICLK) ns Pulse duration, SPInCLK high (clock polarity = 0) 0.5tc(SPC)M - tr 0.5tc(SPC)M + 5 tw(SPCL)M Pulse duration, SPInCLK low (clock polarity = 1) 0.5tc(SPC)M - tf 0.5tc(SPC)M + 5 tw(SPCL)M Pulse duration, SPInCLK low (clock polarity = 0) 0.5tc(SPC)M - tf 0.5tc(SPC)M + 5 tw(SPCH)M Pulse duration, SPInCLK high (clock polarity = 1) 0.5tc(SPC)M - tr 0.5tc(SPC)M + 5 tv(SIMO-SPCH)M Valid time, SPInCLK high after SPInSIMO data valid (clock polarity = 0) 0.5tc(SPC)M - 10 tv(SIMO-SPCL)M Valid time, SPInCLK low after SPInSIMO data valid (clock polarity = 1) 0.5tc(SPC)M - 10 tv(SPCH-SIMO)M Valid time, SPInSIMO data valid after SPInCLK high (clock polarity = 0) 0.5tc(SPC)M - 5 - tr tv(SPCL-SIMO)M Valid time, SPInSIMO data valid after SPInCLK low (clock polarity = 1) 0.5tc(SPC)M - 5 - tf tsu(SOMI-SPCH)M Setup time, SPInSOMI before SPInCLK high (clock polarity = 0) 6 tsu(SOMI-SPCL)M Setup time, SPInSOMI before SPInCLK low (clock polarity = 1) 6 tv(SPCH-SOMI)M Valid time, SPInSOMI data valid after SPInCLK high (clock polarity = 0) 4 tv(SPCL-SOMI)M Valid time, SPInSOMI data valid after SPInCLK low (clock polarity = 1) 4 tc(SPC)M Cycle time, SPInCLK (4) tw(SPCH)M ns ns ns ns ns ns The MASTER bit (SPInCTRL2.3) is set and the CLOCK PHASE bit (SPInCTRL2.0) is set. tc(ICLK) = interface clock cycle time = 1/f(ICLK) For rise and fall timings, see the "Switching Characteristics for Output Timings versus Load Capacitance" table. When the SPI is in master mode, the following must be true: For PS values from 1 to 255: tc(SPC)M ≥ (PS +1)tc(ICLK) ≥ 100 ns, where PS is the prescale value set in the SPInCTL1[12:5] register bits. For PS values of 0: tc(SPC)M = 2tc(ICLK) ≥ 100 ns. The active edge of the SPInCLK signal referenced is controlled by the CLOCK POLARITY bit (SPInCTRL2[1]). 1 SPInCLK (clock polarity = 0) 2 3 SPInCLK (clock polarity = 1) 4 5 SPInSIMO Master Out Data Is Valid Data Valid 6 7 SPInSOMI Master In Data Must Be Valid Figure 14. SPIn Master Mode External Timing (CLOCK PHASE = 1) Submit Documentation Feedback Copyright © 2005–2008, Texas Instruments Incorporated Product Folder Link(s): TMS470R1A384 43 TMS470R1A384 SPNS110E – AUGUST 2005 – REVISED MAY 2008 ......................................................................................................................................................... www.ti.com SPIn SLAVE MODE TIMING PARAMETERS SPIn Slave Mode External Timing Parameters (CLOCK PHASE = 0, SPInCLK = input, SPInSIMO = input, and SPInSOMI = output) (1) (2) (3) (4) (see Figure 15) NO. 1 2 (6) 3 (6) MIN MAX UNIT 100 256tc(ICLK) ns Pulse duration, SPInCLK high (clock polarity = 0) 0.5tc(SPC)S - 0.25tc(ICLK) 0.5tc(SPC)S + 0.25tc(ICLK) tw(SPCL)S Pulse duration, SPInCLK low (clock polarity = 1) 0.5tc(SPC)S - 0.25tc(ICLK) 0.5tc(SPC)S + 0.25tc(ICLK) tw(SPCL)S Pulse duration, SPInCLK low (clock polarity = 0) 0.5tc(SPC)S - 0.25tc(ICLK) 0.5tc(SPC)S + 0.25tc(ICLK) tw(SPCH)S Pulse duration, SPInCLK high (clock polarity = 1) 0.5tc(SPC)S - 0.25tc(ICLK) 0.5tc(SPC)S + 0.25tc(ICLK) td(SPCH-SOMI)S Delay time, SPInCLK high to SPInSOMI valid (clock polarity = 0) 6 + tr td(SPCL-SOMI)S Delay time, SPInCLK low to SPInSOMI valid (clock polarity = 1) 6 + tf tv(SPCH-SOMI)S Valid time, SPInSOMI data valid after SPInCLK high (clock polarity = 0) tc(SPC)S - 6 - tr tv(SPCL-SOMI)S Valid time, SPInSOMI data valid after SPInCLK low (clock polarity = 1) tc(SPC)S - 6 - tf tsu(SIMO-SPCL)S Setup time, SPInSIMO before SPInCLK low (clock polarity = 0) 6 tsu(SIMO-SPCH)S Setup time, SPInSIMO before SPInCLK high (clock polarity = 1) 6 tv(SPCL-SIMO)S Valid time, SPInSIMO data valid after SPInCLK low (clock polarity = 0) 6 tv(SPCH-SIMO)S Valid time, SPInSIMO data valid after SPInCLK high (clock polarity = 1) 6 tc(SPC)S Cycle time, SPInCLK (5) tw(SPCH)S (6) 4 5 (6) 6(6) (6) 7 (1) (2) (3) (4) (5) (6) ns ns ns ns ns ns The MASTER bit (SPInCTRL2.3) is cleared and the CLOCK PHASE bit (SPInCTRL2.0) is cleared. If the SPI is in slave mode, the following must be true: tc(SPC)S ≥ (PS + 1) tc(ICLK), where PS = prescale value set in SPInCTL1[12:5]. For rise and fall timings, see the "Switching Characteristics for Output Timings versus Load Capacitance" table. tc(ICLK) = interface clock cycle time = 1/f(ICLK) When the SPIn is in slave mode, the following must be true: For PS values from 1 to 255: tc(SPC)S ≥ (PS +1)tc(ICLK) ≥ 100 ns, where PS is the prescale value set in the SPInCTL1[12:5] register bits. For PS values of 0: tc(SPC)S = 2tc(ICLK) ≥ 100 ns. The active edge of the SPInCLK signal referenced is controlled by the CLOCK POLARITY bit (SPInCTRL2[1]). 1 SPInCLK (clock polarity = 0) 2 3 SPInCLK (clock polarity = 1) 4 55 SPInSOMI SPISOMI Data Is Valid 6 7 SPInSIMO SPISIMO Data Must Be Valid Figure 15. SPIn Slave Mode External Timing (CLOCK PHASE = 0) 44 Submit Documentation Feedback Copyright © 2005–2008, Texas Instruments Incorporated Product Folder Link(s): TMS470R1A384 TMS470R1A384 www.ti.com ......................................................................................................................................................... SPNS110E – AUGUST 2005 – REVISED MAY 2008 SPIn Slave Mode External Timing Parameters (CLOCK PHASE = 1, SPInCLK = input, SPInSIMO = input, and SPInSOMI = output) (1) (2) (3) (4) (see Figure 16) NO. 1 2 (6) 3 (6) MIN MAX UNIT 100 256tc(ICLK) ns Pulse duration, SPInCLK high (clock polarity = 0) 0.5tc(SPC)S - 0.25tc(ICLK) 0.5tc(SPC)S + 0.25tc(ICLK) tw(SPCL)S Pulse duration, SPInCLK low (clock polarity = 1) 0.5tc(SPC)S - 0.25tc(ICLK) 0.5tc(SPC)S + 0.25tc(ICLK) tw(SPCL)S Pulse duration, SPInCLK low (clock polarity = 0) 0.5tc(SPC)S - 0.25tc(ICLK) 0.5tc(SPC)S + 0.25tc(ICLK) tw(SPCH)S Pulse duration, SPInCLK high (clock polarity = 1) 0.5tc(SPC)S - 0.25tc(ICLK) 0.5tc(SPC)S + 0.25tc(ICLK) tv(SOMI-SPCH)S Valid time, SPInCLK high after SPInSOMI data valid (clock polarity = 0) 0.5tc(SPC)S - 6 - tr tv(SOMI-SPCL)S Valid time, SPInCLK low after SPInSOMI data valid (clock polarity = 1) 0.5tc(SPC)S - 6 - tf tv(SPCH-SOMI)S Valid time, SPInSOMI data valid after SPInCLK high (clock polarity = 0) 0.5tc(SPC)S - 6 - tr tv(SPCL-SOMI)S Valid time, SPInSOMI data valid after SPInCLK low (clock polarity = 1) 0.5tc(SPC)S - 6 - tf tsu(SIMO-SPCH)S Setup time, SPInSIMO before SPInCLK high (clock polarity = 0) 6 tsu(SIMO-SPCL)S Setup time, SPInSIMO before SPInCLK low (clock polarity = 1) 6 tv(SPCH-SIMO)S Valid time, SPInSIMO data valid after SPInCLK high (clock polarity = 0) 6 tv(SPCL-SIMO)S Valid time, SPInSIMO data valid after SPInCLK low (clock polarity = 1) 6 tc(SPC)S Cycle time, SPInCLK (5) tw(SPCH)S (6) 4 (6) 5 (6) 6 (6) 7 (1) (2) (3) (4) (5) (6) ns ns ns ns ns ns The MASTER bit (SPInCTRL2.3) is cleared and the CLOCK PHASE bit (SPInCTRL2.0) is set. If the SPI is in slave mode, the following must be true: tc(SPC)S ≥ (PS + 1) tc(ICLK), where PS = prescale value set in SPInCTL1[12:5]. For rise and fall timings, see the "Switching Characteristics for Output Timings versus Load Capacitance" table. tc(ICLK) = interface clock cycle time = 1/f(ICLK) When the SPIn is in slave mode, the following must be true: For PS values from 1 to 255: tc(SPC)S ≥ (PS +1)tc(ICLK) ≥ 100 ns, where PS is the prescale value set in the SPInCTL1[12:5] register bits. For PS values of 0: tc(SPC)S = 2tc(ICLK) ≥ 100 ns. The active edge of the SPInCLK signal referenced is controlled by the CLOCK POLARITY bit (SPInCTRL2[1]). 1 SPInCLK (clock polarity = 0) 2 3 SPInCLK (clock polarity = 1) 4 5 SPInSOMI SPISOMI Data Is Valid Data Valid 6 7 SPInSIMO SPISIMO Data Must Be Valid Figure 16. SPIn Slave Mode External Timing (CLOCK PHASE = 1) Submit Documentation Feedback Copyright © 2005–2008, Texas Instruments Incorporated Product Folder Link(s): TMS470R1A384 45 TMS470R1A384 SPNS110E – AUGUST 2005 – REVISED MAY 2008 ......................................................................................................................................................... www.ti.com SCIn ISOSYNCHRONOUS MODE TIMINGS INTERNAL CLOCK Timing Requirements for Internal Clock SCIn Isosynchronous Mode (1) (2) (3) (see Figure 17) (BAUD + 1) IS EVEN OR BAUD = 0 (BAUD + 1) IS ODD AND BAUD ≠ 0 UNIT MIN MAX MIN MAX 2tc(ICLK) 224 tc(ICLK) 3tc(ICLK) (224 -1) tc(ICLK) ns tc(SCC) Cycle time, SCInCLK tw(SCCL) Pulse duration, SCInCLK low 0.5tc(SCC) - tf 0.5tc(SCC) + 5 0.5tc(SCC) + 0.5tc(ICLK) - tf 0.5tc(SCC) + 0.5tc(ICLK) ns tw(SCCH) Pulse duration, SCInCLK high 0.5tc(SCC) - tr 0.5tc(SCC) + 5 0.5tc(SCC) - 0.5tc(ICLK) - tr 0.5tc(SCC) - 0.5tc(ICLK) ns td(SCCH-TXV) Delay time, SCInCLK high to SCInTX valid 10 ns tv(TX) Valid time, SCInTX data after SCInCLK low tc(SCC) - 10 tc(SCC) - 10 ns tsu(RX-SCCL) Setup time, SCInRX before SCInCLK low tc(ICLK) + tf + 20 tc(ICLK) + tf + 20 ns tv(SCCL-RX) Valid time, SCInRX data after SCInCLK low -tc(ICLK) + tf + 20 - tc(ICLK) + tf + 20 ns (1) (2) (3) 10 BAUD = 24-bit concatenated value formed by the SCI[H,M,L]BAUD registers. tc(ICLK) = interface clock cycle time = 1/f(ICLK) For rise and fall timings, see the "Switching Characteristics for Output Timings versus Load Capacitance" table. tc(SCC) tw(SCCL) tw(SCCH) SCICLK tv(TX) td(SCCHĆTXV) Data Valid SCITX tsu(RXĆSCCL) SCIRX A. tv(SCCLĆRX) Data Valid Data transmission/reception characteristics for isosynchronous mode with internal clocking are similar to the asynchronous mode. Data transmission occurs on the SCICLK rising edge, and data reception occurs on the SCICLK falling edge. Figure 17. SCIn Isosynchronous Mode Timing Diagram for Internal Clock 46 Submit Documentation Feedback Copyright © 2005–2008, Texas Instruments Incorporated Product Folder Link(s): TMS470R1A384 TMS470R1A384 www.ti.com ......................................................................................................................................................... SPNS110E – AUGUST 2005 – REVISED MAY 2008 SCIn ISOSYNCHRONOUS MODE TIMINGS EXTERNAL CLOCK Timing Requirements for External Clock SCIn Isosynchronous Mode (1) (2) (see Figure 18) MIN MAX UNIT tc(SCC) Cycle time, SCInCLK (3) tw(SCCH) Pulse duration, SCInCLK high 0.5tc(SCC) - 0.25tc(ICLK) 0.5tc(SCC) + 0.25tc(ICLK) ns tw(SCCL) Pulse duration, SCInCLK low 0.5tc(SCC) - 0.25tc(ICLK) 0.5tc(SCC) + 0.25tc(ICLK) ns td(SCCH-TXV) Delay time, SCInCLK high to SCInTX valid 2tc(ICLK) + 12 + tr ns tv(TX) Valid time, SCInTX data after SCInCLK low tsu(RX-SCCL) Setup time, SCInRX before SCInCLK low tv(SCCL-RX) Valid time, SCInRX data after SCInCLK low (1) (2) (3) 8tc(ICLK) ns 2tc(SCC) -10 ns 0 ns 2tc(ICLK) + 10 ns tc(ICLK) = interface clock cycle time = 1/f(ICLK) For rise and fall timings, see the "Switching Characteristics for Output Timings versus Load Capacitance" table. When driving an external SCInCLK, the following must be true: tc(SCC) ≥ 8tc(ICLK). tc(SCC) tw(SCCH) tw(SCCL) SCICLK tv(TX) td(SCCHĆTXV) Data Valid SCITX tsu(RXĆSCCL) SCIRX A. tv(SCCLĆRX) Data Valid Data transmission / reception characteristics for isosynchronous mode with external clocking are similar to the asynchronous mode. Data transmission occurs on the SCICLK rising edge, and data reception occurs on the SCICLK falling edge. Figure 18. SCIn Isosynchronous Mode Timing Diagram for External Clock Submit Documentation Feedback Copyright © 2005–2008, Texas Instruments Incorporated Product Folder Link(s): TMS470R1A384 47 TMS470R1A384 SPNS110E – AUGUST 2005 – REVISED MAY 2008 ......................................................................................................................................................... www.ti.com I2C TIMING Table 11 below assumes testing over recommended operating conditions. Table 11. I2C Signals (SDA and SCL) Switching Characteristics (1) STANDARD MODE PARAMETER MIN MAX 150 FAST MODE MIN MAX 75 150 UNIT tc(I2CCLK) Cycle time, I2C module clock 75 tc(SCL) Cycle time, SCL 10 2.5 µs tsu(SCLH-SDAL) Setup time, SCL high before SDA low (for a repeated START condition) 4.7 0.6 µs th(SCLL-SDAL) Hold time, SCL low after SDA low (for a repeated START condition) 4 0.6 µs tw(SCLL) Pulse duration, SCL low 4.7 1.3 µs tw(SCLH) Pulse duration, SCL high 4 0.6 µs tsu(SDA-SCLH) Setup time, SDA valid before SCL high 250 100 th(SDA-SCLL) Hold time, SDA valid after SCL low tw(SDAH) Pulse duration, SDA high between STOP and START conditions 4.7 1.3 tsu(SCLH-SDAH) Setup time, SCL high before SDA high (for STOP condition) 4.0 0.6 tw(SP) Pulse duration, spike (must be suppressed) Cb (3) Capacitive load for each bus line (1) (2) (3) 0 3.45 (2) For I2C bus devices 0 0 400 ns ns 0.9 µs µs µs 50 ns 400 pF The I2C pins SDA and SCL do not feature fail-safe I/O buffers. These pins could potentially draw current when the device is powered down. The maximum th(SDA-SCLL) for I2C bus devices needs to be met only if the device does not stretch the low period (tw(SCLL)) of the SCL signal. Cb = The total capacitance of one bus line in pF. SDA tw(SDAH) tw(SP) tsu(SDA−SCLH) tr(SCL) tw(SCLL) tsu(SCLH−SDAH) tw(SCLH) SCL tf(SCL) tc(SCL) th(SCLL−SDAL) th(SDA−SCLL) tsu(SCLH−SDAL) th(SCLL−SDAL) Stop Start Repeated Stop A. A device must internally provide a hold time of at least 300 ns for the SDA signal (referred to the VIHmin of the SCL signal) to bridge the undefined region of the falling edge of SCL. B. The maximum th(SDA-SCLL) needs only be met if the device does not stretch the LOW period (tw(SCLL)) of the SCL signal. C. A fast-mode I2C-bus device can be used in a standard-mode I2C-bus system, but the requirement tsu(SDA-SCLH) ≥ 250 ns must then be met. This will automatically be the case if the device does not stretch the LOW period of the SCL signal. If such a device does stretch the LOW period of the SCL signal, it must output the next data bit to the SDA line tr max + tsu(SDA-SCLH). D. Cb = total capacitance of one bus line in pF. If mixed with HS=mode devices, faster fall-times are allowed. Figure 19. I2C Timings 48 Submit Documentation Feedback Copyright © 2005–2008, Texas Instruments Incorporated Product Folder Link(s): TMS470R1A384 TMS470R1A384 www.ti.com ......................................................................................................................................................... SPNS110E – AUGUST 2005 – REVISED MAY 2008 STANDARD CAN CONTROLLER (SCC) MODE TIMINGS Dynamic Characteristics for the CANSTX and CANSRX Pins PARAMETER td(CANSTX) Delay time, transmit shift register to CANSTX pin td(CANSRX) Delay time, CANSRX pin to receive shift register (1) MIN (1) MAX UNIT 15 ns 5 ns These values do not include the rise/fall times of the output buffer. EXPANSION BUS MODULE TIMING Expansion Bus Timing Parameters, -40°C ≤ TJ ≤ 150°C, 3.0 V ≤ VCC ≤ 3.6 V (see Figure 20 and Figure 21) MIN MAX 20.8 UNIT tc(CO) Cycle time, CLKOUT td(COH-EBADV) Delay time, CLKOUT high to EBADDR valid 21.4 ns th(COH-EBADIV) Hold time, EBADDR invalid after CLKOUT high 12.4 ns td(COH-EBOE) Delay time, CLKOUT high to EBOE fall 11.4 ns th(COH-EBOEH) Hold time, EBOE rise after CLKOUT high 11.4 ns td(COL-EBWR) Delay time, CLKOUT low to write strobe (EBWR) low 11.3 ns th(COL-EBWRH) Hold time, EBWR high after CLKOUT low 11.6 ns tsu(EBRDATV-COH) Setup time, EBDATA valid before CLKOUT high (READ) (1) th(COH-EBRDATIV) Hold time, EBDATA invalid after CLKOUT high (READ) 15.2 (2) td(COL-EBWDATV) Delay time, CLKOUT low to EBDATA valid (WRITE) th(COL-EBWDATIV) Hold time, EBDATA invalid after CLKOUT low (WRITE) ns ns (-14.7) ns 16.1 ns 14.7 ns SECONDARY TIMES td(COH-EBCS0) Delay, CLKOUT high to EBCS0 fall 13.6 ns th(COH-EBCS0H) Hold, EBCS0 rise after CLKOUT high 13.2 ns tsu(COH-EBHOLDL) Setup time, EBHOLD low to CLKOUT high (1) tsu(COH-EBHOLDH) (1) (2) Setup time, EBHOLD high to CLKOUT high (1) 10.9 ns 10.5 ns Setup time is the minimum time under worst case conditions. Data with less setup time does not work. Valid after CLKOUT goes low for write cycles. Submit Documentation Feedback Copyright © 2005–2008, Texas Instruments Incorporated Product Folder Link(s): TMS470R1A384 49 TMS470R1A384 SPNS110E – AUGUST 2005 – REVISED MAY 2008 ......................................................................................................................................................... www.ti.com tc(CO) CLKOUT th(COH-EBADIV) td(COH-EBADV) Valid EBADDR tsu(EBRDATV-COH) th(COH-EBRDATIV) Valid EBDATA th(COH-EBOEH) td(COH-EBOE) EBOE td(COH-EBCS0) th(COH-EBCS0H) EBCS0 tsu(COH-EBHOLDH) tsu(COH-EBHOLDL) EBHOLD 1 Hold State Figure 20. Expansion Memory Signal Timing - Reads 50 Submit Documentation Feedback Copyright © 2005–2008, Texas Instruments Incorporated Product Folder Link(s): TMS470R1A384 TMS470R1A384 www.ti.com ......................................................................................................................................................... SPNS110E – AUGUST 2005 – REVISED MAY 2008 tc(CO) CLKOUT th(COH-EBADIV) td(COH-EBADV) Valid EBADDR th(COL-EBWDATIV) td(COL-EBWDATV) Valid EBDATA th(COL-EBWRH) td(COL-EBWR) EBWR td(COH-EBCS0) td(COH-EBCS0) EBCS0 tsu(COH-EBHOLDH) tsu(COH-EBHOLDL) EBHOLD 1 Hold State Figure 21. Expansion Memory Signal Timing - Writes Submit Documentation Feedback Copyright © 2005–2008, Texas Instruments Incorporated Product Folder Link(s): TMS470R1A384 51 TMS470R1A384 SPNS110E – AUGUST 2005 – REVISED MAY 2008 ......................................................................................................................................................... www.ti.com CLASS 2 SERIAL INTERFACE B (C2SIb) VARIABLE PULSE WIDTH (VPW) MODULATION VPW Timing Requirements See Figure 22. NORMAL MODE (10.4 KBPS) PARAMETER SOF TX Long Pulse EOD NB EOF Break TX RX UNIT MIN MAX MIN MAX MIN MAX MIN MAX 192 208 163 239 48 52 41 60 ns 60 68 34 96 14 18 9 24 ns 122 134 97 163 30 34 24 41 ns End of data 193 207 164 239 48 52 41 60 ns Normalization bit (long) 122 134 97 163 30 34 24 41 Normalization bit (short) 60 68 34 96 14 18 9 24 End of frame 271 289 240 320 67 73 60 80 Short 290 - 239 - 290 - 60 - Long 758 - 239 - 758 - 60 - Start of frame Short Pulse 4X MODE (41.6 KBPS) RX Low = 0 High = 1 Low = 0 High = 1 ns ns ns IDLE EOF EOD MSbyte IDLE SOF MSbit 6 5 4 3 2 1 0, LSbit 0 1 1 1 0 0 0 0 = 70h Data Figure 22. C2SIb Timing Diagram 52 Submit Documentation Feedback Copyright © 2005–2008, Texas Instruments Incorporated Product Folder Link(s): TMS470R1A384 TMS470R1A384 www.ti.com ......................................................................................................................................................... SPNS110E – AUGUST 2005 – REVISED MAY 2008 HIGH-END TIMER (HET) TIMINGS Minimum PWM Output Pulse Width: This is equal to one high resolution clock period (HRP). The HRP is defined by the 6-bit high resolution prescale factor (hr), which is user defined, giving prescale factors of 1 to 64, with a linear increment of codes. Therefore, the minimum PWM output pulse width = HRP(min) = hr(min)/SYSCLK = 1/SYSCLK For example, for a SYSCLK of 30 MHz, the minimum PWM output pulse width = 1/30 = 33.33ns Minimum Input Pulses that Can Be Captured: The input pulse width must be greater or equal to the low resolution clock period (LRP), i.e., the HET loop (the HET program must fit within the LRP). The LRP is defined by the 3-bit loop-resolution prescale factor (lr), which is user defined, with a power of 2 increment of codes. That is, the value of lr can be 1, 2, 4, 8, 16, or 32. Therefore, the minimum input pulse width = LRP(min) = hr(min) * lr(min)/SYSCLK = 1 * 1/SYSCLK For example, with a SYSCLK of 30 MHz, the minimum input pulse width = 1 * 1/30 = 33.33 ns NOTE: Once the input pulse width is greater than LRP, the resolution of the measurement is still HRP. (That is, the captured value gives the number of HRP clocks inside the pulse.) Abbreviations: hr = HET high resolution divide rate = 1, 2, 3,...63, 64 lr = HET low resolution divide rate = 1, 2, 4, 8, 16, 32 High resolution clock period = HRP = hr/SYSCLK Loop resolution clock period = LRP = hr*lr/SYSCLK Submit Documentation Feedback Copyright © 2005–2008, Texas Instruments Incorporated Product Folder Link(s): TMS470R1A384 53 TMS470R1A384 SPNS110E – AUGUST 2005 – REVISED MAY 2008 ......................................................................................................................................................... www.ti.com MULTI-BUFFERED A-TO-D CONVERTER (MibADC) The multi-buffered A-to-D converter (MibADC) has a separate power bus for its analog circuitry that enhances the A-to-D performance by preventing digital switching noise on the logic circuitry, which could be present on VSS and VCC, from coupling into the A-to-D analog stage. All A-to-D specifications are given with respect to ADREFLO unless otherwise noted. Resolution 10 bits (1024 values) Monotonic Assured 00h to 3FFh [00 for VAI ≤ ADREFLO; 3FFh for VAI ≥ ADREFHI] Output conversion code Table 12. MibADC Recommended Operating Conditions (1) MIN MAX UNIT ADREFHI A-to-D high-voltage reference source VSSAD VCCAD V ADREFLO A-to-D low-voltage reference source VSSAD VCCAD V VAI Analog input voltage VSSAD– 0.3 VCCAD + 0.3 V –2 2 mA (2) Analog input clamp current (VAI < VSSAD – 0.3 or VAI > VCCAD + 0.3) IAIC (1) (2) For VCCAD and VSSAD recommended operating conditions, see the "Device Recommended Operating Conditions" table. Input currents into any ADC input channel outside the specified limits could affect conversion results of other channels. Table 13. Operating Characteristics Over Full Ranges of Recommended Operating Conditions (1) (2) PARAMETER Ri DESCRIPTION/CONDITIONS Analog input resistance Conversion Analog input capacitance See Figure 23. IAIL Analog input leakage current See Figure 23. IADREFHI ADREFHI input current ADREFHI = 3.6 V, ADREFLO = VSSAD CR Conversion range over which specified accuracy is maintained ADREFHI - ADREFLO EDNL Differential nonlinearity error EINL E TOT 54 TYP 250 Ci (1) (2) MIN See Figure 23. Sampling -1 3 MAX UNIT 500 Ω 10 pF 30 pF 1 µA 5 mA 3.6 V Difference between the actual step width and the ideal value. See Figure 24. ±2 LSB Integral nonlinearity error Maximum deviation from the best straight line through the MibADC. MibADC transfer characteristics, excluding the quantization error. See Figure 25. ±2 LSB Total error/absolute accuracy Maximum value of the difference between an analog value and the ideal midstep value. See Figure 26. ±2 LSB VCCAD = ADREFHI 1 LSB = (ADREFHI - ADREFLO)/210 for the MibADC Submit Documentation Feedback Copyright © 2005–2008, Texas Instruments Incorporated Product Folder Link(s): TMS470R1A384 TMS470R1A384 www.ti.com ......................................................................................................................................................... SPNS110E – AUGUST 2005 – REVISED MAY 2008 External Rs MibADC Input Pin Ri Sample Switch Sample Capacitor Parasitic Capacitance V src R leak Ci Figure 23. MibADC Input Equivalent Circuit Multi-Buffer ADC Timing Requirements MIN NOM MAX UNIT 0.05 µs 1 µs 0.55 µs tc(ADCLK) Cycle time, MibADC clock td(SH) Delay time, sample and hold time td(C) Delay time, conversion time td(SHC) (1) Delay time, total sample/hold and conversion time 1.55 µs (1) This is the minimum sample/hold and conversion time that can be achieved. These parameters are dependent on many factors; for more details, see the TMS470R1x Multi-Buffered Analog-to-Digital Converter (MibADC) Reference Guide (literature number SPNU206). The differential nonlinearity error shown in Figure 24 (sometimes referred to as differential linearity) is the difference between an actual step width and the ideal value of 1 LSB.      !       !           A. 1 LSB = (ADREFHI - ADREFLO)/210 Figure 24. Differential Nonlinearity (DNL) Submit Documentation Feedback Copyright © 2005–2008, Texas Instruments Incorporated Product Folder Link(s): TMS470R1A384 55 TMS470R1A384 SPNS110E – AUGUST 2005 – REVISED MAY 2008 ......................................................................................................................................................... www.ti.com The integral nonlinearity error shown in Figure 25 (sometimes referred to as linearity error) is the deviation of the values on the actual transfer function from a straight line. 0 ... 111 0 ... 110 Ideal Transition 0 ... 101 Actual Transition 0 ... 100 At Transition 011/100 (ć 1/2 LSB) 0 ... 011 0 ... 010 End-Point Lin. Error 0 ... 001 At Transition 001/010 (ć 1/4 LSB) 0 ... 000 0 1 2 3 4 5 6 7 Analog Input Value (LSB) A. 1 LSB = (ADREFHI - ADREFLO)/210 Figure 25. Integral Nonlinearity (INL) Error The absolute accuracy or total error of an MibADC as shown in Figure 26 is the maximum value of the difference between an analog value and the ideal midstep value.                             A.      1 LSB = (ADREFHI - ADREFLO)/210 Figure 26. Absolute Accuracy (Total) Error 56 Submit Documentation Feedback Copyright © 2005–2008, Texas Instruments Incorporated Product Folder Link(s): TMS470R1A384 TMS470R1A384 www.ti.com ......................................................................................................................................................... SPNS110E – AUGUST 2005 – REVISED MAY 2008 PGE Thermal Resistance Characteristics PARAMETER °C/W RθJA 43 RθJC 5 PZ Thermal Resistance Characteristics PARAMETER °C/W RθJA 48 RθJC 5 Submit Documentation Feedback Copyright © 2005–2008, Texas Instruments Incorporated Product Folder Link(s): TMS470R1A384 57 TMS470R1A384 SPNS110E – AUGUST 2005 – REVISED MAY 2008 ......................................................................................................................................................... www.ti.com Revision History This revision history highlights the changes made to the device-specific datasheet SPNS110. Table 14. Revision History SPNS110D to SPNS110E Corrected the device-specific part number from 0100001 to 0101101 in Table 10. SPNS110C to SPNS110D Removed reference to GIOH[5:0] in Terminal Functions table. Changed Output Current for AWD terminal from 8 mA to 4 mA in Terminal Functions table. Changed beginning address for Peripheral Control Registers to 0xFFF0_0000 in Figure 1. Changed register value in Device Identification Code Register Changed unit for "VCC digital supply current (standby mode)" from µA to mA in Electrical Characteristics. SPNS110B to SPNS110C Removed references to digital watchdog (DWD) on page 5. SPNS110A to SPNS110B Revised the Family Nomenclature drawing to add Q version of the temperature range. Revised "Absolute Maximum Ratings" table to add Q version of the temperature range. Revised "Device Recommended Operating Conditions" table to add Q version of the temperature range. Revised "Electrical Characteristics" table to add T and Q temperature versions to ICC specification. Changed T version ICC, standby mode, max to 1. Added Q version ICC standby mode, max of 1.25. Changed T version ICC, halt mode, max to 365. Added Q version ICC halt mode, max of 550. Added note to PORRST Timing Diagram. Changed TA range to –40°C to 125°C on twec in "Timing Requirements for Program Flash" table. Added twec MIN value of 50000 and deleted TYP value in "Timing Requirements for Program Flash" table. Changed terase(sector) TYP value to 1.7 and removed MAX value in "Timing Requirements for Program Flash" table. SPNS110 to SPNS110A Corrected max value for ICC standby and halt modes in Electrical Characteristics table. 58 Submit Documentation Feedback Copyright © 2005–2008, Texas Instruments Incorporated Product Folder Link(s): TMS470R1A384 PACKAGE OPTION ADDENDUM www.ti.com 10-Dec-2020 PACKAGING INFORMATION Orderable Device Status (1) Package Type Package Pins Package Drawing Qty Eco Plan (2) Lead finish/ Ball material MSL Peak Temp Op Temp (°C) (3) Device Marking (4/5) (6) TMS470R1A384PGET NRND LQFP PGE 144 60 RoHS & Green NIPDAU Level-3-260C-168 HR 470R1A384PGET TMS TMS470R1A384PZ-T NRND LQFP PZ 100 90 RoHS & Green NIPDAU Level-3-260C-168 HR 470R1A384PZ-T TMS (1) The marketing status values are defined as follows: ACTIVE: Product device recommended for new designs. LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect. NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design. PREVIEW: Device has been announced but is not in production. Samples may or may not be available. OBSOLETE: TI has discontinued the production of the device. (2) RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may reference these types of products as "Pb-Free". RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption. Green: TI defines "Green" to mean the content of Chlorine (Cl) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of
TMS470R1A384PZQ 价格&库存

很抱歉,暂时无法提供与“TMS470R1A384PZQ”相匹配的价格&库存,您可以联系我们找货

免费人工找货