TMS320F28030, TMS320F28030-Q1, TMS320F28031, TMS320F28031-Q1, TMS320F28032
TMS320F28032-Q1, TMS320F28033, TMS320F28033-Q1, TMS320F28034, TMS320F28034-Q1
TMS320F28035, TMS320F28035-Q1
SPRS584P – APRIL 2009 – REVISED JUNE 2021
TMS320F2803x Real-Time Microcontrollers
1 Features
•
•
•
•
•
•
•
•
•
•
•
•
•
High-efficiency 32-bit CPU (TMS320C28x)
– 60 MHz (16.67-ns cycle time)
– 16 × 16 and 32 × 32 MAC operations
– 16 × 16 dual MAC
– Harvard bus architecture
– Atomic operations
– Fast interrupt response and processing
– Unified memory programming model
– Code-efficient (in C/C++ and Assembly)
Programmable Control Law Accelerator (CLA)
– 32-bit floating-point math accelerator
– Executes code independently of the main CPU
Endianness: Little endian
JTAG boundary scan support
– IEEE Standard 1149.1-1990 Standard Test
Access Port and Boundary Scan Architecture
Low cost for both device and system:
– Single 3.3-V supply
– No power sequencing requirement
– Integrated power-on reset and brown-out reset
– Low power
– No analog support pins
Clocking:
– Two internal zero-pin oscillators
– On-chip crystal oscillator and external clock
input
– Watchdog timer module
– Missing clock detection circuitry
Up to 45 individually programmable, multiplexed
GPIO pins with input filtering
Peripheral Interrupt Expansion (PIE) block that
supports all peripheral interrupts
Three 32-bit CPU timers
Independent 16-bit timer in each Enhanced Pulse
Width Modulator (ePWM)
•
•
•
•
•
On-chip memory
– Flash, SARAM, OTP, Boot ROM available
Code-security module
128-bit security key and lock
– Protects secure memory blocks
– Prevents firmware reverse engineering
Serial port peripherals
– One Serial Communications Interface (SCI)
Universal Asynchronous Receiver/Transmitter
(UART) module
– Two Serial Peripheral Interface (SPI) modules
– One Inter-Integrated-Circuit (I2C) module
– One Local Interconnect Network (LIN) module
– One Enhanced Controller Area Network
(eCAN) module
Enhanced control peripherals
– ePWM
– High-Resolution PWM (HRPWM)
– Enhanced Capture (eCAP) module
– High-Resolution Input Capture (HRCAP)
module
– Enhanced Quadrature Encoder Pulse (eQEP)
module
– Analog-to-Digital Converter (ADC)
– On-chip temperature sensor
– Comparator
Advanced emulation features
– Analysis and breakpoint functions
– Real-time debug through hardware
Package options
– 56-Pin RSH Very Thin Quad Flatpack (No lead)
(VQFN)
– 64-Pin PAG Thin Quad Flatpack (TQFP)
– 80-Pin PN Low-Profile Quad Flatpack (LQFP)
Temperature options
– T: –40°C to 105°C
– S: –40°C to 125°C
– Q: –40°C to 125°C
(AEC Q100 qualification for automotive
applications)
An IMPORTANT NOTICE at the end of this data sheet addresses availability, warranty, changes, use in safety-critical applications,
intellectual property matters and other important disclaimers. PRODUCTION DATA.
TMS320F28030, TMS320F28030-Q1, TMS320F28031, TMS320F28031-Q1, TMS320F28032
TMS320F28032-Q1, TMS320F28033, TMS320F28033-Q1, TMS320F28034, TMS320F28034-Q1
TMS320F28035, TMS320F28035-Q1
SPRS584P – APRIL 2009 – REVISED JUNE 2021
2 Applications
•
•
•
•
•
•
•
•
•
•
•
•
Air conditioner outdoor unit
Door operator drive control
DC/DC converter
Inverter & motor control
On-board (OBC) & wireless charger
Automated sorting equipment
Textile machine
Welding machine
AC charging (pile) station
DC charging (pile) station
EV charging station power module
Wireless vehicle charging module
•
•
•
•
•
•
•
•
•
•
•
•
•
www.ti.com
Energy storage power conversion system (PCS)
Micro inverter
Solar power optimizer
String inverter
AC drive control module
Linear motor segment controller
Servo drive power stage module
AC-input BLDC motor drive
DC-input BLDC motor drive
Industrial AC-DC
Three phase UPS
Merchant network & server PSU
Merchant telecom rectifiers
3 Description
C2000™ 32-bit microcontrollers are optimized for processing, sensing, and actuation to improve closed-loop
performance in real-time control applications such as industrial motor drives; solar inverters and digital power;
electrical vehicles and transportation; motor control; and sensing and signal processing. The C2000 line includes
the Premium performance MCUs and the Entry performance MCUs.
The F2803x family of microcontrollers provides the power of the C28x core and Control Law Accelerator (CLA)
coupled with highly integrated control peripherals in low pin-count devices. This family is code-compatible with
previous C28x-based code, and also provides a high level of analog integration.
An internal voltage regulator allows for single-rail operation. Enhancements have been made to the HRPWM
to allow for dual-edge control (frequency modulation). Analog comparators with internal 10-bit references have
been added and can be routed directly to control the PWM outputs. The ADC converts from 0 to 3.3-V fixed
full-scale range and supports ratio-metric VREFHI/VREFLO references. The ADC interface has been optimized for
low overhead and latency.
To learn more about the C2000 MCUs, visit the C2000™ real-time control MCUs page.
2
Submit Document Feedback
Copyright © 2021 Texas Instruments Incorporated
Product Folder Links: TMS320F28030 TMS320F28030-Q1 TMS320F28031 TMS320F28031-Q1
TMS320F28032 TMS320F28032-Q1 TMS320F28033 TMS320F28033-Q1 TMS320F28034 TMS320F28034-Q1
TMS320F28035 TMS320F28035-Q1
TMS320F28030, TMS320F28030-Q1, TMS320F28031, TMS320F28031-Q1, TMS320F28032
TMS320F28032-Q1, TMS320F28033, TMS320F28033-Q1, TMS320F28034, TMS320F28034-Q1
TMS320F28035, TMS320F28035-Q1
www.ti.com
SPRS584P – APRIL 2009 – REVISED JUNE 2021
Device Information
PART NUMBER(1)
PACKAGE
BODY SIZE
TMS320F28035PN
LQFP (80)
12.0 mm × 12.0 mm
TMS320F28034PN
LQFP (80)
12.0 mm × 12.0 mm
TMS320F28033PN
LQFP (80)
12.0 mm × 12.0 mm
TMS320F28032PN
LQFP (80)
12.0 mm × 12.0 mm
TMS320F28031PN
LQFP (80)
12.0 mm × 12.0 mm
TMS320F28030PN
LQFP (80)
12.0 mm × 12.0 mm
TMS320F28035PAG
TQFP (64)
10.0 mm × 10.0 mm
TMS320F28034PAG
TQFP (64)
10.0 mm × 10.0 mm
TMS320F28033PAG
TQFP (64)
10.0 mm × 10.0 mm
TMS320F28032PAG
TQFP (64)
10.0 mm × 10.0 mm
TMS320F28031PAG
TQFP (64)
10.0 mm × 10.0 mm
TMS320F28030PAG
TQFP (64)
10.0 mm × 10.0 mm
TMS320F28035RSH
VQFN (56)
7.0 mm × 7.0 mm
TMS320F28034RSH
VQFN (56)
7.0 mm × 7.0 mm
TMS320F28033RSH
VQFN (56)
7.0 mm × 7.0 mm
TMS320F28032RSH
VQFN (56)
7.0 mm × 7.0 mm
TMS320F28031RSH
VQFN (56)
7.0 mm × 7.0 mm
TMS320F28030RSH
VQFN (56)
7.0 mm × 7.0 mm
(1)
For more information on these devices, see Mechanical, Packaging, and Orderable Information.
Copyright © 2021 Texas Instruments Incorporated
Submit Document Feedback
Product Folder Links: TMS320F28030 TMS320F28030-Q1 TMS320F28031 TMS320F28031-Q1
TMS320F28032 TMS320F28032-Q1 TMS320F28033 TMS320F28033-Q1 TMS320F28034 TMS320F28034-Q1
TMS320F28035 TMS320F28035-Q1
3
TMS320F28030, TMS320F28030-Q1, TMS320F28031, TMS320F28031-Q1, TMS320F28032
TMS320F28032-Q1, TMS320F28033, TMS320F28033-Q1, TMS320F28034, TMS320F28034-Q1
TMS320F28035, TMS320F28035-Q1
www.ti.com
SPRS584P – APRIL 2009 – REVISED JUNE 2021
3.1 Functional Block Diagram
The Functional Block Diagram shows the functional block diagram for the device.
Memory Bus
M0
SARAM 1K × 16
(0-wait)
M1
SARAM 1K × 16
(0-wait)
OTP 1K × 16
Secure
SARAM
4K/6K/8K × 16
(CLA Only on
28033 and 28035)
(0-wait)
Secure
Code
Security
Module
Boot-ROM
8K × 16
(0-wait)
FLASH
16K/32K/64K × 16
Secure
OTP/Flash
Wrapper
PSWD
CLA Bus
Memory Bus
CLA
TRST
COMP1A
COMP1B
COMP2A
COMP2B
COMP3A
COMP3B
COMP
C28x
32-Bit CPU
3 External Interrupts
PIE
CPU Timer 0
AIO
CPU Timer 1
MUX
CPU Timer 2
GPIO
Mux
XCLKIN
X1
X2
LPM Wakeup
OSC1,
OSC2,
Ext,
PLL,
LPM,
WD
XRS
ADC
A7:0
Memory Bus
POR/
BOR
B7:0
32-Bit Peripheral Bus
(CLA-Accessible)
eCAN
(32-mail
box)
eQEP
EQE PxI
EQEPxS
EQ EPxB
EQ EPxA
ECA Px
LINA T X
L IN A RX
EPWMSYNCO
EPW MxB
TZx
From
COMP1OUT,
COMP2OUT,
COMP3OUT
HRCAP
HRCAPx
eCAP
CA N TXx
LIN
HRPWM
EPW MxA
SC L x
SDA x
SPIC LK x
VREG
32-Bit Peripheral Bus
ePWM
I2C
(4L FIFO)
SPISTEx
SPISOMIx
SPI
(4L FIFO)
SPISIMO x
SCIR XDx
SC IT XD x
SCI
(4L FIFO)
EPWMSYNCI
16-Bit Peripheral Bus
C AN R Xx
MUX
32-Bit Peripheral Bus
(CLA-Accessible)
COMP1OUT
COMP2OUT
COMP3OUT
GPIO
TCK
TDI
TMS
TDO
GPIO MUX
A.
Not all peripheral pins are available at the same time due to multiplexing.
Figure 3-1. Functional Block Diagram
4
Submit Document Feedback
Copyright © 2021 Texas Instruments Incorporated
Product Folder Links: TMS320F28030 TMS320F28030-Q1 TMS320F28031 TMS320F28031-Q1
TMS320F28032 TMS320F28032-Q1 TMS320F28033 TMS320F28033-Q1 TMS320F28034 TMS320F28034-Q1
TMS320F28035 TMS320F28035-Q1
TMS320F28030, TMS320F28030-Q1, TMS320F28031, TMS320F28031-Q1, TMS320F28032
TMS320F28032-Q1, TMS320F28033, TMS320F28033-Q1, TMS320F28034, TMS320F28034-Q1
TMS320F28035, TMS320F28035-Q1
www.ti.com
SPRS584P – APRIL 2009 – REVISED JUNE 2021
Table of Contents
1 Features............................................................................1
2 Applications..................................................................... 2
3 Description.......................................................................2
3.1 Functional Block Diagram........................................... 4
4 Revision History.............................................................. 5
5 Device Comparison......................................................... 6
5.1 Related Products........................................................ 8
6 Pin Configuration and Functions...................................9
6.1 Pin Diagrams.............................................................. 9
6.2 Signal Descriptions................................................... 12
7 Specifications................................................................ 20
7.1 Absolute Maximum Ratings...................................... 20
7.2 ESD Ratings – Automotive....................................... 20
7.3 ESD Ratings – Commercial...................................... 21
7.4 Recommended Operating Conditions.......................21
7.5 Power Consumption Summary................................. 22
7.6 Electrical Characteristics...........................................26
7.7 Thermal Resistance Characteristics......................... 27
7.8 Thermal Design Considerations................................29
7.9 JTAG Debug Probe Connection Without Signal
Buffering for the MCU..................................................29
7.10 Parameter Information............................................ 31
7.11 Test Load Circuit..................................................... 31
7.12 Power Sequencing..................................................32
7.13 Clock Specifications................................................35
7.14 Flash Timing............................................................39
8 Detailed Description......................................................41
8.1 Overview................................................................... 41
8.2 Memory Maps........................................................... 49
8.3 Register Maps...........................................................56
8.4 Device Emulation Registers......................................58
8.5 VREG/BOR/POR...................................................... 59
8.6 System Control......................................................... 61
8.7 Low-power Modes Block...........................................69
8.8 Interrupts...................................................................70
8.9 Peripherals................................................................75
9 Applications, Implementation, and Layout............... 143
9.1 TI Reference Design............................................... 143
10 Device and Documentation Support........................144
10.1 Device and Development Support Tool
Nomenclature............................................................ 144
10.2 Tools and Software............................................... 145
10.3 Documentation Support........................................ 146
10.4 Support Resources............................................... 147
10.5 Trademarks........................................................... 147
10.6 Electrostatic Discharge Caution............................147
10.7 Glossary................................................................147
11 Mechanical, Packaging, and Orderable
Information.................................................................. 148
11.1 Packaging Information.......................................... 148
4 Revision History
Changes from March 3, 2021 to June 11, 2021 (from Revision O (March 2021) to Revision P
(June 2021))
Page
• Table 5-1, Device Comparison: Added device numbers to Temperature options section...................................6
• Section 7.1, Absolute Maximum Ratings: Restored table.................................................................................20
• Section 7.2, ESD Ratings – Automotive: Updated device numbers................................................................. 20
• Section 7.3, ESD Ratings – Commercial: Updated table..................................................................................21
• Section 8.1.10, Security: Updated section........................................................................................................44
• Section 10.2, Tools and Software: Updated Software Tools section...............................................................145
• Section 10.3, Documentation Support: Updated section................................................................................ 146
Changes from June 24, 2020 to March 2, 2021 (from Revision N (June 2020) to Revision O
(March 2021))
Page
• Device Comparison: Updated part numebrs.......................................................................................................6
• Updated/Changed "Device Comparison" table to include UART compatibility for SCI.......................................6
• Signal Description: Updated VREGENZ description........................................................................................ 12
• Updated/Changed "emulator" to "JTAG debug probe" and updated reprograming note.................................. 44
• Updated/changed watchdog termonology........................................................................................................ 46
• Device and Development Support Tool Nomenclature: Updated Device Nomenclature image to show -Q1 part
number............................................................................................................................................................144
Copyright © 2021 Texas Instruments Incorporated
Submit Document Feedback
Product Folder Links: TMS320F28030 TMS320F28030-Q1 TMS320F28031 TMS320F28031-Q1
TMS320F28032 TMS320F28032-Q1 TMS320F28033 TMS320F28033-Q1 TMS320F28034 TMS320F28034-Q1
TMS320F28035 TMS320F28035-Q1
5
TMS320F28030, TMS320F28030-Q1, TMS320F28031, TMS320F28031-Q1, TMS320F28032
TMS320F28032-Q1, TMS320F28033, TMS320F28033-Q1, TMS320F28034, TMS320F28034-Q1
TMS320F28035, TMS320F28035-Q1
www.ti.com
SPRS584P – APRIL 2009 – REVISED JUNE 2021
5 Device Comparison
Table 5-1 lists the features of the TMS320F2803x devices.
Table 5-1. Device Comparison
FEATURE
28030
28030-Q1
(60 MHz)
TYPE
(1)
80Pin
PN
LQFP
Package Type
645680Pin
Pin
Pin
PAG
RSH
PN
TQFP VQFN LQFP
28032
28032-Q1
(60 MHz)
645680Pin
Pin
Pin
PAG
RSH
PN
TQFP VQFN LQFP
28033
28033-Q1
(60 MHz)
645680Pin
Pin
Pin
PAG
RSH
PN
TQFP VQFN LQFP
28034
28034-Q1
(60 MHz)
645680Pin
Pin
Pin
PAG
RSH
PN
TQFP VQFN LQFP
28035
28035-Q1
(60 MHz)
645680Pin
Pin
Pin
PAG
RSH
PN
TQFP VQFN LQFP
6456Pin
Pin
PAG
RSH
TQFP VQFN
Instruction cycle
–
16.67 ns
16.67 ns
16.67 ns
16.67 ns
16.67 ns
16.67 ns
Control Law Accelerator
(CLA)
0
No
No
No
Yes
No
Yes
On-chip flash (16-bit word)
–
16K
32K
32K
32K
64K
64K
On-chip SARAM (16-bit
word)
–
6K
8K
10K
10K
10K
10K
Code security for on-chip
flash/SARAM/OTP blocks
–
Yes
Yes
Yes
Yes
Yes
Yes
Boot ROM (8K x 16)
–
Yes
Yes
Yes
Yes
Yes
Yes
One-time programmable
(OTP) ROM (16-bit word)
–
1K
1K
1K
1K
1K
1K
ePWM channels
1
eCAP inputs
0
eQEP modules
0
1
1
1
1
1
1
Watchdog timer
–
Yes
Yes
Yes
Yes
Yes
Yes
14
12
Conversion
Time
12-Bit
ADC
Channels
3
8
14
1
MSPS
12
8
14
1
12
8
14
1
12
8
14
1
12
8
14
1
12
2.0
2.0
4.6
4.6
4.6
4.6
500.00 ns
216.67 ns
216.67 ns
216.67 ns
216.67 ns
16
Temperature
Sensor
14
13
16
14
13
16
14
13
16
14
13
16
14
8
1
500.00 ns
Dual Sampleand-Hold
13
16
14
Yes
Yes
Yes
Yes
Yes
Yes
13
Yes
Yes
Yes
Yes
Yes
Yes
32-Bit CPU timers
–
3
3
3
3
3
3
High-resolution ePWM
Channels
1
–
–
7
6
4
7
6
4
7
6
4
7
6
4
High-resolution Capture
(HRCAP) Modules
0
–
–
2
2
–
2
2
–
2
2
–
2
2
–
Comparators with
Integrated DACs
0
3
3
3
3
3
3
Inter-integrated circuit
(I2C)
0
1
1
1
1
1
1
Enhanced Controller Area
Network (eCAN)
0
1
1
1
1
1
1
Local Interconnect
Network (LIN)
0
1
1
1
1
1
1
Serial Communications
Interface (SCI) (UART
Compatible)
1
Serial Communications
Interface (SCI)
0
I/O pins
(shared)
6
28031
28031-Q1
(60 MHz)
GPIO
–
AIO
–
2
1
1
2
1
45
33
6
1
1
2
1
26
45
33
6
1
1
2
1
26
45
33
6
1
1
2
1
26
45
33
6
1
1
2
1
26
45
33
1
1
26
45
6
33
26
6
External interrupts
–
3
3
3
3
3
3
Supply voltage (nominal)
–
3.3 V
3.3 V
3.3 V
3.3 V
3.3 V
3.3 V
Submit Document Feedback
1
Copyright © 2021 Texas Instruments Incorporated
Product Folder Links: TMS320F28030 TMS320F28030-Q1 TMS320F28031 TMS320F28031-Q1
TMS320F28032 TMS320F28032-Q1 TMS320F28033 TMS320F28033-Q1 TMS320F28034 TMS320F28034-Q1
TMS320F28035 TMS320F28035-Q1
TMS320F28030, TMS320F28030-Q1, TMS320F28031, TMS320F28031-Q1, TMS320F28032
TMS320F28032-Q1, TMS320F28033, TMS320F28033-Q1, TMS320F28034, TMS320F28034-Q1
TMS320F28035, TMS320F28035-Q1
www.ti.com
SPRS584P – APRIL 2009 – REVISED JUNE 2021
Table 5-1. Device Comparison (continued)
FEATURE
(1)
80Pin
PN
LQFP
T: –40°C to
105°C
Temperat
S: –40°C to
ure
125°C
options
Q: –40°C to
125°C(2)
(2)
28031
28031-Q1
(60 MHz)
28032
28032-Q1
(60 MHz)
28033
28033-Q1
(60 MHz)
28034
28034-Q1
(60 MHz)
28035
28035-Q1
(60 MHz)
645680Pin
Pin
Pin
PAG
RSH
PN
TQFP VQFN LQFP
645680Pin
Pin
Pin
PAG
RSH
PN
TQFP VQFN LQFP
645680Pin
Pin
Pin
PAG
RSH
PN
TQFP VQFN LQFP
645680Pin
Pin
Pin
PAG
RSH
PN
TQFP VQFN LQFP
645680Pin
Pin
Pin
PAG
RSH
PN
TQFP VQFN LQFP
6456Pin
Pin
PAG
RSH
TQFP VQFN
–
28030
28031
28032
28033
28034
28035
–
28030
28031
28032
28033
28034
28035
Package Type
(1)
28030
28030-Q1
(60 MHz)
TYPE
–
28030-Q1
–
28031-Q1
–
28032-Q1
–
28033-Q1
–
28034-Q1
–
28035-Q1
–
A type change represents a major functional feature difference in a peripheral module. Within a peripheral type, there may be minor
differences between devices that do not affect the basic functionality of the module. These device-specific differences are listed in the
C2000 Real-Time Control Peripherals Reference Guide and in the TMS320F2803x Real-Time Microcontrollers Technical Reference
Manual.
The letter Q refers to AEC Q100 qualification for automotive applications.
Copyright © 2021 Texas Instruments Incorporated
Submit Document Feedback
Product Folder Links: TMS320F28030 TMS320F28030-Q1 TMS320F28031 TMS320F28031-Q1
TMS320F28032 TMS320F28032-Q1 TMS320F28033 TMS320F28033-Q1 TMS320F28034 TMS320F28034-Q1
TMS320F28035 TMS320F28035-Q1
7
TMS320F28030, TMS320F28030-Q1, TMS320F28031, TMS320F28031-Q1, TMS320F28032
TMS320F28032-Q1, TMS320F28033, TMS320F28033-Q1, TMS320F28034, TMS320F28034-Q1
TMS320F28035, TMS320F28035-Q1
SPRS584P – APRIL 2009 – REVISED JUNE 2021
www.ti.com
5.1 Related Products
For information about similar products, see the following links:
TMS320F2802x Real-Time Microcontrollers
The F2802x series offers the lowest pin-count and Flash memory size options. InstaSPIN-FOC™ versions are
available.
TMS320F2803x Real-Time Microcontrollers
The F2803x series increases the pin-count and memory size options. The F2803x series also introduces the
parallel control law accelerator (CLA) option.
TMS320F2805x Real-Time Microcontrollers
The F2805x series is similar to the F2803x series but adds on-chip programmable gain amplifiers (PGAs).
InstaSPIN-FOC and InstaSPIN-MOTION™ versions are available.
TMS320F2806x Real-Time Microcontrollers
The F2806x series is the first to include a floating-point unit (FPU). The F2806x series also increases the
pin-count, memory size options, and the quantity of peripherals. InstaSPIN-FOC™ and InstaSPIN-MOTION™
versions are available.
TMS320F2807x Real-Time Microcontrollers
The F2807x series offers the most performance, largest pin counts, flash memory sizes, and peripheral options.
The F2807x series includes the latest generation of accelerators, ePWM peripherals, and analog technology.
TMS320F28004x Real-Time Microcontrollers
The F28004x series is a reduced version of the F2807x series with the latest generational enhancements. The
F28004x series is the best roadmap option for those using the F2806x series. InstaSPIN-FOC and configurable
logic block (CLB) versions are available.
8
Submit Document Feedback
Copyright © 2021 Texas Instruments Incorporated
Product Folder Links: TMS320F28030 TMS320F28030-Q1 TMS320F28031 TMS320F28031-Q1
TMS320F28032 TMS320F28032-Q1 TMS320F28033 TMS320F28033-Q1 TMS320F28034 TMS320F28034-Q1
TMS320F28035 TMS320F28035-Q1
TMS320F28030, TMS320F28030-Q1, TMS320F28031, TMS320F28031-Q1, TMS320F28032
TMS320F28032-Q1, TMS320F28033, TMS320F28033-Q1, TMS320F28034, TMS320F28034-Q1
TMS320F28035, TMS320F28035-Q1
www.ti.com
SPRS584P – APRIL 2009 – REVISED JUNE 2021
6 Pin Configuration and Functions
6.1 Pin Diagrams
42
41
40
39
38
37
36
35
34
33
32
31
30
29
GPIO35/TDI
GPIO37/TDO
GPIO38/TCK/XCLKIN
GPIO19/XCLKIN/SPISTEA/LINRXA/ECAP1
VDD
VSS
X1
X2
GPIO6/EPWM4A/EPWMSYNCI/EPWMSYNCO
GPIO7/EPWM4B/SCIRXDA
GPIO12/TZ1/SCITXDA
GPIO16/SPISIMOA/TZ2
GPIO17/SPISOMIA/TZ3
GPIO18/SPICLKA/LINTXA/XCLKOUT
Figure 6-1 shows the 56-pin RSH Very Thin Quad Flatpack (No Lead) (VQFN) pin assignments. Figure 6-2
shows the 64-pin PAG Thin Quad Flatpack (TQFP) pin assignments. Figure 6-3 shows the 80-pin PN LowProfile Quad Flatpack (LQFP) pin assignments.
43
44
45
46
47
48
49
50
51
52
53
54
55
56
28
27
26
25
24
23
22
21
20
19
18
17
16
15
GPIO28/SCIRXDA/SDAA/TZ2
TEST2
VDDIO
VSS
GPIO29/SCITXDA/SCLA/TZ3
GPIO30/CANRXA
GPIO31/CANTXA
ADCINB7
ADCINB6/COMP3B/AIO14
ADCINB4/COMP2B/AIO12
ADCINB3
ADCINB2/COMP1B/AIO10
ADCINB1
VSSA/VREFLO
GPIO22/EQEP1S/LINTXA 1
GPIO23/EQEP1I/LINRXA 2
VDD 3
VSS 4
XRS 5
TRST 6
ADCINA7 7
ADCINA6/COMP3A/AIO6 8
ADCINA4/COMP2A/AIO4 9
ADCINA3 10
ADCINA2/COMP1A/AIO2 11
ADCINA1 12
ADCINA0/VREFHI 13
VDDA 14
GPIO36/TMS
GPIO5/EPWM3B/SPISIMOA/ECAP1
GPIO4/EPWM3A
GPIO3/EPWM2B/SPISOMIA/COMP2OUT
GPIO2/EPWM2A
GPIO1/EPWM1B/COMP1OUT
GPIO0/EPWM1A
VDDIO
VSS
VDD
VREGENZ
GPIO34/COMP2OUT/COMP3OUT
GPIO20/EQEP1A/COMP1OUT
GPIO21/EQEP1B/COMP2OUT
A.
B.
C.
This figure shows the top view of the 56-pin RSH package. Shading denotes that the terminals are actually on the bottom side of the
package. See Section 11 for the 56-pin RSH mechanical drawing.
Pin 13: VREFHI and ADCINA0 share the same pin on the 56-pin RSH device and their use is mutually exclusive to one another.
Pin 15: VREFLO is always connected to VSSA on the 56-pin RSH device.
Figure 6-1. 2803x 56-Pin RSH VQFN (Top View)
Copyright © 2021 Texas Instruments Incorporated
Submit Document Feedback
Product Folder Links: TMS320F28030 TMS320F28030-Q1 TMS320F28031 TMS320F28031-Q1
TMS320F28032 TMS320F28032-Q1 TMS320F28033 TMS320F28033-Q1 TMS320F28034 TMS320F28034-Q1
TMS320F28035 TMS320F28035-Q1
9
TMS320F28030, TMS320F28030-Q1, TMS320F28031, TMS320F28031-Q1, TMS320F28032
TMS320F28032-Q1, TMS320F28033, TMS320F28033-Q1, TMS320F28034, TMS320F28034-Q1
TMS320F28035, TMS320F28035-Q1
www.ti.com
32
31
30
29
28
27
26
25
24
23
22
21
20
19
18
17
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
GPIO28/SCIRXDA/SDAA/TZ2
GPIO9/EPWM5B/LINTXA/HRCAP1
TEST2
VDDIO
VSS
GPIO29/SCITXDA/SCLA/TZ3
GPIO30/CANRXA
GPIO31/CANTXA
ADCINB7
ADCINB6/COMP3B/AIO14
ADCINB4/COMP2B/AIO12
ADCINB3
ADCINB2/COMP1B/AIO10
ADCINB1
ADCINB0
VSSA/VREFLO
A.
B.
VDDA
ADCINA7
ADCINA6/COMP3A/AIO6
ADCINA4/COMP2A/AIO4
ADCINA3
ADCINA2/COMP1A/AIO2
ADCINA1
ADCINA0/VREFHI
GPIO22/EQEP1S/LINTXA
GPIO32/SDAA/EPWMSYNCI/ADCSOCAO
GPIO33/SCLA/EPWMSYNCO/ADCSOCBO
GPIO23/EQEP1I/LINRXA
VDD
VSS
XRS
TRST
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
GPIO11/EPWM6B/LINRXA/HRCAP2
GPIO5/EPWM3B/SPSIMOA/ECAP1
GPIO4/EPWM3A
GPIO10/EPWM6A/ADCSOCBO
GPIO3/EPWM2B/SPISOMIA/COMP2OUT
GPIO2/EPWM2A
GPIO1/EPWM1B/COMP1OUT
GPIO0/EPWM1A
VDDIO
VSS
VDD
VREGENZ
GPIO34/COMP2OUT/COMP3OUT
GPIO20/EQEP1A/COMP1OUT
GPIO21/EQEP1B/COMP2OUT
GPIO24/ECAP1
40
39
38
37
36
35
34
33
48
47
46
45
44
43
42
41
GPIO36/TMS
GPIO35/TDI
GPIO37/TDO
GPIO38/TCK/XCLKIN
GPIO19/XCLKIN/SPISTEA/LINRXA/ECAP1
VDD
VSS
X1
X2
GPIO6/EPWM4A/EPWMSYNCI/EPWMSYNCO
GPIO7/EPWM4B/SCIRXDA
GPIO12/TZ1/SCITXDA
GPIO16/SPISIMOA/TZ2
GPIO8/EPWM5A/ADCSOCAO
GPIO17/SPISOMIA/TZ3
GPIO18/SPICLKA/LINTXA/XCLKOUT
SPRS584P – APRIL 2009 – REVISED JUNE 2021
Pin 15: VREFHI and ADCINA0 share the same pin on the 64-pin PAG device and their use is mutually exclusive to one another.
Pin 17: VREFLO is always connected to VSSA on the 64-pin PAG device.
Figure 6-2. 2803x 64-Pin PAG TQFP (Top View)
10
Submit Document Feedback
Copyright © 2021 Texas Instruments Incorporated
Product Folder Links: TMS320F28030 TMS320F28030-Q1 TMS320F28031 TMS320F28031-Q1
TMS320F28032 TMS320F28032-Q1 TMS320F28033 TMS320F28033-Q1 TMS320F28034 TMS320F28034-Q1
TMS320F28035 TMS320F28035-Q1
GPIO8/EPWM5A/ADCSOCAO
GPIO17/SPISOMIA/TZ3
GPIO18/SPICLKA/LINTXA/XCLKOUT
43
42
41
GPIO44
GPIO25/SPISOMIB
46
44
GPIO16/SPISIMOA/TZ2
47
45
GPIO41/EPWM7B
GPIO12/TZ1/SCITXDA/SPISIMOB
48
GPIO6/EPWM4A/EPWMSYNCI/EPWMSYNCO
GPIO7/EPWM4B/SCIRXDA
50
49
X1
X2
VSS
51
VDD
54
53
52
GPIO39
GPIO19/XCLKIN/SPISTEA/LINRXA/ECAP1
56
57
55
GPIO37/TDO
GPIO38/TCK/XCLKIN
58
GPIO36/TMS
GPIO35/TDI
60
SPRS584P – APRIL 2009 – REVISED JUNE 2021
59
www.ti.com
TMS320F28030, TMS320F28030-Q1, TMS320F28031, TMS320F28031-Q1, TMS320F28032
TMS320F28032-Q1, TMS320F28033, TMS320F28033-Q1, TMS320F28034, TMS320F28034-Q1
TMS320F28035, TMS320F28035-Q1
GPIO11/EPWM6B/LINRXA/HRCAP2
61
40
GPIO28/SCIRXDA/SDAA/TZ2
GPIO5/EPWM3B/SPISIMOA/ECAP1
62
39
GPIO9/EPWM5B/LINTXA/HRCAP1
GPIO4/EPWM3A
63
38
TEST2
GPIO40/EPWM7A
64
37
GPIO26/HRCAP1/SPICLKB
GPIO10/EPWM6A/ADCSOCBO
65
36
VDDIO
GPIO3/EPWM2B/SPISOMIA/COMP2OUT
66
35
VSS
GPIO2/EPWM2A
67
34
GPIO29/SCITXDA/SCLA/TZ3
GPIO1/EPWM1B/COMP1OUT
68
33
GPIO30/CANRXA
GPIO0/EPWM1A
69
32
GPIO31/CANTXA
VDDIO
70
31
GPIO27/HRCAP2/SPISTEB
18
19
20
VREFHI
VDDA
17
ADCINA1
ADCINA0
15
16
ADCINA3
ADCINA2/COMP1A/AIO2
VSSA
13
21
14
80
ADCINA5
VREFLO
GPIO24/ECAP1/SPISIMOB
ADCINA4/COMP2A/AIO4
22
11
79
12
ADCINB0
GPIO21/EQEP1B/COMP2OUT
ADCINA7
23
ADCINA6/COMP3A/AIO6
78
10
ADCINB1
GPIO20/EQEP1A/COMP1OUT
TRST
24
9
77
XRS
ADCINB2/COMP1B/AIO10
GPIO14/TZ3/LINTXA/SPICLKB
7
25
8
76
VSS
ADCINB3
GPIO13/TZ2/SPISOMIB
VDD
26
5
75
6
ADCINB4/COMP2B/AIO12
GPIO15/TZ1/LINRXA/SPISTEB
GPIO42/COMP1OUT
27
GPIO43/COMP2OUT
74
3
ADCINB5
GPIO34/COMP2OUT/COMP3OUT
4
28
GPIO23/EQEP1I/LINRXA
73
GPIO33/SCLA/EPWMSYNCO/ADCSOCBO
ADCINB6/COMP3B/AIO14
VREGENZ
1
ADCINB7
29
2
30
72
GPIO22/EQEP1S/LINTXA
71
GPIO32/SDAA/EPWMSYNCI/ADCSOCAO
VSS
VDD
Figure 6-3. 2803x 80-Pin PN LQFP (Top View)
Copyright © 2021 Texas Instruments Incorporated
Submit Document Feedback
Product Folder Links: TMS320F28030 TMS320F28030-Q1 TMS320F28031 TMS320F28031-Q1
TMS320F28032 TMS320F28032-Q1 TMS320F28033 TMS320F28033-Q1 TMS320F28034 TMS320F28034-Q1
TMS320F28035 TMS320F28035-Q1
11
TMS320F28030, TMS320F28030-Q1, TMS320F28031, TMS320F28031-Q1, TMS320F28032
TMS320F28032-Q1, TMS320F28033, TMS320F28033-Q1, TMS320F28034, TMS320F28034-Q1
TMS320F28035, TMS320F28035-Q1
SPRS584P – APRIL 2009 – REVISED JUNE 2021
www.ti.com
6.2 Signal Descriptions
Section 6.2.1 describes the signals. With the exception of the JTAG pins, the GPIO function is the default at
reset, unless otherwise mentioned. The peripheral signals that are listed under them are alternate functions.
Some peripheral functions may not be available in all devices. See Table 5-1 for details. Inputs are not 5-V
tolerant. All GPIO pins are I/O/Z and have an internal pullup, which can be selectively enabled/disabled on a
per-pin basis. This feature only applies to the GPIO pins. The pullups on the PWM pins are not enabled at reset.
The pullups on other GPIO pins are enabled upon reset. The AIO pins do not have an internal pullup.
Note
When the on-chip VREG is used, the GPIO19, GPIO34, GPIO35, GPIO36, GPIO37, and GPIO38 pins
could glitch during power up. This potential glitch will finish before the boot mode pins are read and
will not affect boot behavior. If glitching is unacceptable in an application, 1.8 V could be supplied
externally. Alternatively, adding a current-limiting resistor (for example, 470 Ω) in series with these pins
and any external driver could be considered to limit the potential for degradation to the pin and/or
external circuitry. There is no power-sequencing requirement when using an external 1.8-V supply.
However, if the 3.3-V transistors in the level-shifting output buffers of the I/O pins are powered before
the 1.8-V transistors, it is possible for the output buffers to turn on, causing a glitch to occur on the pin
during power up. To avoid this behavior, power the VDD pins before or with the VDDIO pins, ensuring
that the VDD pins have reached 0.7 V before the VDDIO pins reach 0.7 V.
6.2.1 Signal Descriptions
TERMINAL
NAME
PN
PAG
RSH
PIN NO. PIN NO. PIN NO.
I/O/Z(1)
DESCRIPTION
JTAG
TRST
10
8
6
I
JTAG test reset with internal pulldown. TRST, when driven high, gives the scan
system control of the operations of the device. If this signal is not connected or
driven low, the device operates in its functional mode, and the test reset signals
are ignored. NOTE: TRST is an active high test pin and must be maintained
low at all times during normal device operation. An external pulldown resistor is
required on this pin. The value of this resistor should be based on drive strength
of the debugger pods applicable to the design. A 2.2-kΩ resistor generally
offers adequate protection. Because this is application-specific, TI recommends
validating each target board for proper operation of the debugger and the
application. (↓)
TCK
See GPIO38
I
See GPIO38. JTAG test clock with internal pullup. (↑)
TMS
See GPIO36
I
See GPIO36. JTAG test-mode select (TMS) with internal pullup. This serial
control input is clocked into the TAP controller on the rising edge of TCK. (↑)
TDI
See GPIO35
I
See GPIO35. JTAG test data input (TDI) with internal pullup. TDI is clocked into
the selected register (instruction or data) on a rising edge of TCK. (↑)
TDO
See GPIO37
O/Z
See GPIO37. JTAG scan out, test data output (TDO). The contents of the
selected register (instruction or data) are shifted out of TDO on the falling edge of
TCK. (8 mA drive)
FLASH
TEST2
12
38
30
Submit Document Feedback
27
I/O
Test Pin. Reserved for TI. Must be left unconnected.
Copyright © 2021 Texas Instruments Incorporated
Product Folder Links: TMS320F28030 TMS320F28030-Q1 TMS320F28031 TMS320F28031-Q1
TMS320F28032 TMS320F28032-Q1 TMS320F28033 TMS320F28033-Q1 TMS320F28034 TMS320F28034-Q1
TMS320F28035 TMS320F28035-Q1
TMS320F28030, TMS320F28030-Q1, TMS320F28031, TMS320F28031-Q1, TMS320F28032
TMS320F28032-Q1, TMS320F28033, TMS320F28033-Q1, TMS320F28034, TMS320F28034-Q1
TMS320F28035, TMS320F28035-Q1
www.ti.com
SPRS584P – APRIL 2009 – REVISED JUNE 2021
TERMINAL
NAME
PN
PAG
RSH
PIN NO. PIN NO. PIN NO.
I/O/Z(1)
DESCRIPTION
CLOCK
XCLKOUT
XCLKIN
See GPIO18
–
See GPIO19 and GPIO38
O/Z
See GPIO18. Output clock derived from SYSCLKOUT. XCLKOUT is either
the same frequency, one-half the frequency, or one-fourth the frequency of
SYSCLKOUT. This is controlled by bits 1:0 (XCLKOUTDIV) in the XCLK register.
At reset, XCLKOUT = SYSCLKOUT/4. The XCLKOUT signal can be turned off
by setting XCLKOUTDIV to 3. The mux control for GPIO18 must also be set to
XCLKOUT for this signal to propogate to the pin.
I
See GPIO19 and GPIO38. External oscillator input. Pin source for the clock is
controlled by the XCLKINSEL bit in the XCLK register, GPIO38 is the default
selection. This pin feeds a clock from an external 3.3-V oscillator. In this case,
the X1 pin, if available, must be tied to GND and the on-chip crystal oscillator
must be disabled through bit 14 in the CLKCTL register. If a crystal/resonator is
used, the XCLKIN path must be disabled by bit 13 in the CLKCTL register.
NOTE: Designs that use the GPIO38/TCK/XCLKIN pin to supply an external
clock for normal device operation may need to incorporate some hooks to
disable this path during debug using the JTAG connector. This is to prevent
contention with the TCK signal, which is active during JTAG debug sessions. The
zero-pin internal oscillators may be used during this time to clock the device.
X1
52
41
36
I
On-chip 1.8-V crystal-oscillator input. To use this oscillator, a quartz crystal or
a ceramic resonator must be connected across X1 and X2. In this case, the
XCLKIN path must be disabled by bit 13 in the CLKCTL register. If this pin is not
used, it must be tied to GND. (I)
X2
51
40
35
O
On-chip crystal-oscillator output. A quartz crystal or a ceramic resonator must be
connected across X1 and X2. If X2 is not used, it must be left unconnected. (O)
RESET
XRS
9
7
5
I/O
Device Reset (in) and Watchdog Reset (out). These devices have a built-in
power-on reset (POR) and brown-out reset (BOR) circuitry. During a power-on or
brown-out condition, this pin is driven low by the device. An external circuit may
also drive this pin to assert a device reset. This pin is also driven low by the MCU
when a watchdog reset occurs. During watchdog reset, the XRS pin is driven low
for the watchdog reset duration of 512 OSCCLK cycles. A resistor with a value
from 2.2 kΩ to 10 kΩ should be placed between XRS and VDDIO. If a capacitor is
placed between XRS and VSS for noise filtering, it should be 100 nF or smaller.
These values will allow the watchdog to properly drive the XRS pin to VOL
within 512 OSCCLK cycles when the watchdog reset is asserted. Regardless
of the source, a device reset causes the device to terminate execution. The
program counter points to the address contained at the location 0x3F FFC0.
When reset is deactivated, execution begins at the location designated by the
program counter. The output buffer of this pin is an open-drain device with an
internal pullup. (↑) If this pin is driven by an external device, it should be done
using an open-drain device.
ADC, COMPARATOR, ANALOG I/O
ADCINA7
11
9
7
ADCINA6
COMP3A
12
10
8
AIO6
ADCINA5
13
–
–
14
11
9
15
12
10
16
13
11
AIO4
ADCINA3
ADC Group A, Channel 6 input
I
Comparator Input 3A
AIO2
ADC Group A, Channel 5 input
I
ADC Group A, Channel 4 input
I
Comparator Input 2A
Digital AIO 4
I
ADC Group A, Channel 3 input
I
ADC Group A, Channel 2 input
I
Comparator Input 1A
I/O
Copyright © 2021 Texas Instruments Incorporated
Digital AIO 6
I
I/O
ADCINA2
COMP1A
ADC Group A, Channel 7 input
I
I/O
ADCINA4
COMP2A
I
Digital AIO 2
Submit Document Feedback
Product Folder Links: TMS320F28030 TMS320F28030-Q1 TMS320F28031 TMS320F28031-Q1
TMS320F28032 TMS320F28032-Q1 TMS320F28033 TMS320F28033-Q1 TMS320F28034 TMS320F28034-Q1
TMS320F28035 TMS320F28035-Q1
13
TMS320F28030, TMS320F28030-Q1, TMS320F28031, TMS320F28031-Q1, TMS320F28032
TMS320F28032-Q1, TMS320F28033, TMS320F28033-Q1, TMS320F28034, TMS320F28034-Q1
TMS320F28035, TMS320F28035-Q1
SPRS584P – APRIL 2009 – REVISED JUNE 2021
www.ti.com
TERMINAL
NAME
ADCINA1
ADCINA0
PN
PAG
RSH
PIN NO. PIN NO. PIN NO.
17
18
14
15
12
13
I/O/Z(1)
DESCRIPTION
I
ADC Group A, Channel 1 input
I
ADC Group A, Channel 0 input.
NOTE: VREFHI and ADCINA0 share the same pin on the 64-pin PAG device and
their use is mutually exclusive to one another.
NOTE: VREFHI and ADCINA0 share the same pin on the 56-pin RSH device and
their use is mutually exclusive to one another.
VREFHI
19
15
13
I
ADC External Reference High – only used when in ADC external reference
mode. See Section 8.9.2.1, ADC.
NOTE: VREFHI and ADCINA0 share the same pin on the 64-pin PAG device and
their use is mutually exclusive to one another.
NOTE: VREFHI and ADCINA0 share the same pin on the 56-pin RSH device and
their use is mutually exclusive to one another.
ADCINB7
30
24
21
I
ADC Group B, Channel 7 input
I
ADC Group B, Channel 6 input
29
23
20
I
Comparator Input 3B
28
–
–
27
22
19
ADCINB6
COMP3B
AIO14
ADCINB5
I/O
ADCINB4
COMP2B
AIO12
ADCINB3
COMP1B
ADC Group B, Channel 5 input
I
ADC Group B, Channel 4 input
I
Comparator Input 2B
I/O
26
21
18
ADCINB2
25
20
17
AIO10
Digital AIO 14
I
Digital AIO12
I
ADC Group B, Channel 3 input
I
ADC Group B, Channel 2 input
I
Comparator Input 1B
I/O
Digital AIO 10
ADCINB1
24
19
16
I
ADC Group B, Channel 1 input
ADCINB0
23
18
–
I
ADC Group B, Channel 0 input
VREFLO
22
17
15
I
ADC External Reference Low.
NOTE: VREFLO is always connected to VSSA on the 64-pin PAG device and on
the 56-pin RSH device.
VDDA
20
16
14
Analog Power Pin. Tie with a 2.2-μF capacitor (typical) close to the pin.
VSSA
21
17
15
Analog Ground Pin.
NOTE: VREFLO is always connected to VSSA on the 64-pin PAG device and on
the 56-pin RSH device.
7
5
3
54
43
38
72
59
52
36
29
26
70
57
50
CPU AND I/O POWER
VDD
VDDIO
VSS
14
8
6
4
35
28
25
53
42
37
71
58
51
Submit Document Feedback
CPU and Logic Digital Power Pins. When using internal VREG, place one 1.2-µF
capacitor between each VDD pin and ground. Higher value capacitors may be
used.
Digital I/O Buffers and Flash Memory Power Pin. Single supply source when
VREG is enabled. Place a decoupling capacitor on each pin. The exact value
should be determined by the system voltage regulation solution.
Digital Ground Pins
Copyright © 2021 Texas Instruments Incorporated
Product Folder Links: TMS320F28030 TMS320F28030-Q1 TMS320F28031 TMS320F28031-Q1
TMS320F28032 TMS320F28032-Q1 TMS320F28033 TMS320F28033-Q1 TMS320F28034 TMS320F28034-Q1
TMS320F28035 TMS320F28035-Q1
TMS320F28030, TMS320F28030-Q1, TMS320F28031, TMS320F28031-Q1, TMS320F28032
TMS320F28032-Q1, TMS320F28033, TMS320F28033-Q1, TMS320F28034, TMS320F28034-Q1
TMS320F28035, TMS320F28035-Q1
www.ti.com
SPRS584P – APRIL 2009 – REVISED JUNE 2021
TERMINAL
PN
PAG
RSH
PIN NO. PIN NO. PIN NO.
NAME
I/O/Z(1)
DESCRIPTION
VOLTAGE REGULATOR CONTROL SIGNAL
VREGENZ
73
60
53
I
Internal voltage regulator (VREG) enable with internal pulldown. Tie directly to
VSS (low) to enable the internal 1.8-V VREG. Tie directly to VDDIO (high) to
disable the VREG and use an external 1.8-V supply.
GPIO AND PERIPHERAL SIGNALS (2)
GPIO0
I/O/Z
EPWM1A
69
–
56
49
–
GPIO1
O
Enhanced PWM1 Output A and HRPWM channel
–
–
–
–
I/O/Z
EPWM1B
68
–
55
48
COMP1OUT
O
I/O/Z
EPWM2A
67
–
54
47
General-purpose input/output 1
Enhanced PWM1 Output B
–
O
GPIO2
General-purpose input/output 0
O
Direct output of Comparator 1
General-purpose input/output 2
Enhanced PWM2 Output A and HRPWM channel
–
–
–
GPIO3
I/O/Z
EPWM2B
66
SPISOMIA
53
46
COMP2OUT
GPIO4
Enhanced PWM2 Output B
I/O
SPI-A slave out, master in
O
Direct output of Comparator 2
I/O/Z
EPWM3A
63
–
51
45
General-purpose input/output 3
O
O
General-purpose input/output 4
Enhanced PWM3 output A and HRPWM channel
–
–
–
GPIO5
I/O/Z
EPWM3B
62
SPISIMOA
50
44
General-purpose input/output 5
O
Enhanced PWM3 output B
I/O
SPI-A slave in, master out
ECAP1
I/O
Enhanced Capture input/output 1
GPIO6
I/O/Z
EPWM4A
50
EPWMSYNCI
39
34
EPWMSYNCO
GPIO7
EPWM4B
SCIRXDA
Enhanced PWM4 output A and HRPWM channel
I
External ePWM sync pulse input
O
External ePWM sync pulse output
I/O/Z
49
38
33
Enhanced PWM4 output B
I
SCI-A receive data
–
GPIO8
–
General-purpose input/output 7
O
–
EPWM5A
General-purpose input/output 6
O
I/O/Z
43
35
–
ADCSOCAO
O
Enhanced PWM5 output A and HRPWM channel
–
O
Copyright © 2021 Texas Instruments Incorporated
General-purpose input/output 8
ADC start-of-conversion A
Submit Document Feedback
Product Folder Links: TMS320F28030 TMS320F28030-Q1 TMS320F28031 TMS320F28031-Q1
TMS320F28032 TMS320F28032-Q1 TMS320F28033 TMS320F28033-Q1 TMS320F28034 TMS320F28034-Q1
TMS320F28035 TMS320F28035-Q1
15
TMS320F28030, TMS320F28030-Q1, TMS320F28031, TMS320F28031-Q1, TMS320F28032
TMS320F28032-Q1, TMS320F28033, TMS320F28033-Q1, TMS320F28034, TMS320F28034-Q1
TMS320F28035, TMS320F28035-Q1
SPRS584P – APRIL 2009 – REVISED JUNE 2021
www.ti.com
TERMINAL
NAME
PN
PAG
RSH
PIN NO. PIN NO. PIN NO.
GPIO9
EPWM5B
I/O/Z(1)
I/O/Z
DESCRIPTION
General-purpose input/output 9
O
Enhanced PWM5 output B
O
LIN transmit A
HRCAP1
I
High-resolution input capture 1
GPIO10
I/O/Z
LINTXA
EPWM6A
–
39
65
31
52
–
–
ADCSOCBO
General-purpose input/output 10
Enhanced PWM6 output A and HRPWM channel
–
O
GPIO11
EPWM6B
O
I/O/Z
ADC start-of-conversion B
General-purpose input/output 11
O
Enhanced PWM6 output B
I
LIN receive A
HRCAP2
I
High-resolution input capture 2
GPIO12
I/O/Z
LINRXA
61
49
–
TZ1
SCITXDA
47
37
32
SPISIMOB
GPIO13
TZ2
–
–
SPISOMIB
LINTXA
77
–
–
GPIO15
LINRXA
75
–
–
46
36
31
SPISOMIA
34
TZ3
30
SPI-B slave out, master in
General-purpose input/output 14
Trip zone input 3
O
LIN transmit
I/O
SPI-B clock input/output
General-purpose input/output 15
I
Trip zone input 1
I
LIN receive
I/O
SPI-B slave transmit enable input/output
General-purpose input/output 16
SPI-A slave in, master out
–
I/O
Trip Zone input 2
General-purpose input/output 17
SPI-A slave out, master in
–
I
Submit Document Feedback
Trip Zone input 2
I
I/O/Z
42
General-purpose input/output 13
–
I
GPIO17
16
I
I/O/Z
TZ2
–
SPI-B slave in, master out.
NOTE: SPI-B is available only in the PN package.
I/O
GPIO16
–
I/O
I/O/Z
SPISTEB
SPISIMOA
SCI-A transmit data
I/O/Z
SPICLKB
TZ1
Trip Zone input 1
I/O
GPIO14
TZ3
I
O
I/O/Z
76
–
General-purpose input/output 12
Trip zone input 3
Copyright © 2021 Texas Instruments Incorporated
Product Folder Links: TMS320F28030 TMS320F28030-Q1 TMS320F28031 TMS320F28031-Q1
TMS320F28032 TMS320F28032-Q1 TMS320F28033 TMS320F28033-Q1 TMS320F28034 TMS320F28034-Q1
TMS320F28035 TMS320F28035-Q1
TMS320F28030, TMS320F28030-Q1, TMS320F28031, TMS320F28031-Q1, TMS320F28032
TMS320F28032-Q1, TMS320F28033, TMS320F28033-Q1, TMS320F28034, TMS320F28034-Q1
TMS320F28035, TMS320F28035-Q1
www.ti.com
SPRS584P – APRIL 2009 – REVISED JUNE 2021
TERMINAL
NAME
PN
PAG
RSH
PIN NO. PIN NO. PIN NO.
GPIO18
I/O/Z(1)
I/O/Z
DESCRIPTION
General-purpose input/output 18
SPICLKA
I/O
SPI-A clock input/output
LINTXA
O
LIN transmit
XCLKOUT
O/Z
Output clock derived from SYSCLKOUT. XCLKOUT is either the same
frequency, one-half the frequency, or one-fourth the frequency of SYSCLKOUT.
This is controlled by bits 1:0 (XCLKOUTDIV) in the XCLK register. At reset,
XCLKOUT = SYSCLKOUT/4. The XCLKOUT signal can be turned off by setting
XCLKOUTDIV to 3. The mux control for GPIO18 must also be set to XCLKOUT
for this signal to propogate to the pin.
GPIO19
I/O/Z
General-purpose input/output 19
41
33
29
External Oscillator Input. The path from this pin to the clock block is not gated
by the mux function of this pin. Care must be taken not to enable this path for
clocking if it is being used for the other periperhal functions
XCLKIN
55
44
39
SPISTEA
I/O
SPI-A slave transmit enable input/output
LINRXA
I
ECAP1
I/O
Enhanced Capture input/output 1
GPIO20
I/O/Z
General-purpose input/output 20
EQEP1A
I
–
78
62
55
COMP1OUT
EQEP1B
–
I/O/Z
79
63
56
COMP2OUT
EQEP1S
–
I
I/O/Z
1
1
1
I/O
O
GPIO23
I/O/Z
EQEP1I
I/O
–
4
2
LINRXA
General-purpose input/output 21
Enhanced QEP1 input B
Direct output of Comparator 2
General-purpose input/output 22
Enhanced QEP1 strobe
–
LINTXA
4
Direct output of Comparator 1
–
O
GPIO22
Enhanced QEP1 input A
–
O
GPIO21
LIN receive
LIN transmit
General-purpose input/output 23
Enhanced QEP1 index
–
I
LIN receive
GPIO24
–
I/O/Z
General-purpose input/output 24
ECAP1
See
GPIO5
and
GPIO19
I/O
Enhanced Capture input/output 1
80
64
–
–
SPISIMOB
I/O
GPIO25
–
–
I/O/Z
44
–
–
I/O
Copyright © 2021 Texas Instruments Incorporated
General-purpose input/output 25
–
–
SPISOMIB
SPI-B slave in, master out.
NOTE: SPI-B is available only in the PN and RSH packages.
SPI-B slave out, master in
Submit Document Feedback
Product Folder Links: TMS320F28030 TMS320F28030-Q1 TMS320F28031 TMS320F28031-Q1
TMS320F28032 TMS320F28032-Q1 TMS320F28033 TMS320F28033-Q1 TMS320F28034 TMS320F28034-Q1
TMS320F28035 TMS320F28035-Q1
17
TMS320F28030, TMS320F28030-Q1, TMS320F28031, TMS320F28031-Q1, TMS320F28032
TMS320F28032-Q1, TMS320F28033, TMS320F28033-Q1, TMS320F28034, TMS320F28034-Q1
TMS320F28035, TMS320F28035-Q1
SPRS584P – APRIL 2009 – REVISED JUNE 2021
www.ti.com
TERMINAL
PN
PAG
RSH
PIN NO. PIN NO. PIN NO.
NAME
GPIO26
I/O/Z(1)
I/O/Z
HRCAP1
37
–
–
–
SPICLKB
I
GPIO27
I/O/Z
HRCAP2
I
–
–
–
SPISTEB
I/O/Z
SCIRXDA
40
SDAA
32
28
TZ2
I
I/OD
I
GPIO29
I/O/Z
SCITXDA
34
SCLA
27
24
TZ3
O
I/OD
I
GPIO30
I/O/Z
CANRXA
I
33
–
26
23
High-resolution input capture 1
SPI-B clock input/output
General-purpose input/output 27
High-resolution input capture 2
–
I/O
GPIO28
General-purpose input/output 26
–
I/O
31
DESCRIPTION
SPI-B slave transmit enable input/output
General-purpose input/output 28
SCI receive data
I2C data open-drain bidirectional port
Trip zone input 2
General-purpose input/output 29
SCI transmit data
I2C clock open-drain bidirectional port
Trip zone input 3
General-purpose input/output 30
CAN receive
–
–
–
GPIO31
I/O/Z
CANTXA
O
32
–
25
22
General-purpose input/output 31
CAN transmit
–
–
–
GPIO32
SDAA
2
EPWMSYNCI
2
–
ADCSOCAO
I/O/Z
General-purpose input/output 32
I/OD
I2C data open-drain bidirectional port
I
Enhanced PWM external sync pulse input
O
ADC start-of-conversion A
GPIO33
I/O/Z
General-Purpose Input/Output 33
SCLA
I/OD
I2C clock open-drain bidirectional port
EPWMSYNCO
3
3
–
ADCSOCBO
GPIO34
COMP2OUT
–
74
61
54
O
59
47
42
60
48
43
I
I/O/Z
Submit Document Feedback
General-Purpose Input/Output 34
Direct output of Comparator 2
–
I/O/Z
GPIO36
18
ADC start-of-conversion B
O
GPIO35
TMS
Enhanced PWM external synch pulse output
O
I/O/Z
COMP3OUT
TDI
O
I
Direct output of Comparator 3
General-Purpose Input/Output 35
JTAG test data input (TDI) with internal pullup. TDI is clocked into the selected
register (instruction or data) on a rising edge of TCK
General-Purpose Input/Output 36
JTAG test-mode select (TMS) with internal pullup. This serial control input is
clocked into the TAP controller on the rising edge of TCK.
Copyright © 2021 Texas Instruments Incorporated
Product Folder Links: TMS320F28030 TMS320F28030-Q1 TMS320F28031 TMS320F28031-Q1
TMS320F28032 TMS320F28032-Q1 TMS320F28033 TMS320F28033-Q1 TMS320F28034 TMS320F28034-Q1
TMS320F28035 TMS320F28035-Q1
TMS320F28030, TMS320F28030-Q1, TMS320F28031, TMS320F28031-Q1, TMS320F28032
TMS320F28032-Q1, TMS320F28033, TMS320F28033-Q1, TMS320F28034, TMS320F28034-Q1
TMS320F28035, TMS320F28035-Q1
www.ti.com
SPRS584P – APRIL 2009 – REVISED JUNE 2021
TERMINAL
NAME
PN
PAG
RSH
PIN NO. PIN NO. PIN NO.
GPIO37
58
TDO
46
41
GPIO38
TCK
XCLKIN
57
45
40
I/O/Z(1)
I/O/Z
General-Purpose Input/Output 37
O/Z
JTAG scan out, test data output (TDO). The contents of the selected register
(instruction or data) are shifted out of TDO on the falling edge of TCK (8 mA
drive)
I/O/Z
General-Purpose Input/Output 38
I
JTAG test clock with internal pullup
I
External Oscillator Input. The path from this pin to the clock block is not gated
by the mux function of this pin. Care must be taken to not enable this path for
clocking if it is being used for the other functions.
–
–
GPIO39
–
I/O/Z
56
–
–
–
–
GPIO40
EPWM7A
–
I/O/Z
64
–
–
O
Enhanced PWM7 output A and HRPWM channel
–
GPIO41
EPWM7B
–
I/O/Z
48
–
–
O
General-Purpose Input/Output 41
Enhanced PWM7 output B
–
–
–
GPIO42
–
I/O/Z
5
–
–
–
I/O/Z
6
–
–
O
GPIO43
–
I/O/Z
45
–
–
–
General-Purpose Input/Output 43
–
O
GPIO44
Direct output of Comparator 1
–
–
COMP2OUT
General-Purpose Input/Output 42
–
–
COMP1OUT
(1)
(2)
General-Purpose Input/Output 40
–
–
–
General-Purpose Input/Output 39
–
–
–
–
DESCRIPTION
Direct output of Comparator 2
General-Purpose Input/Output 44
–
–
–
I = Input, O = Output, Z = High Impedance, OD = Open Drain, ↑ = Pullup, ↓ = Pulldown
The GPIO function (shown in bold italics) is the default at reset. The peripheral signals that are listed under them are alternate
functions. For JTAG pins that have the GPIO functionality multiplexed, the input path to the GPIO block is always valid. The output
path from the GPIO block and the path to the JTAG block from a pin is enabled/disabled based on the condition of the TRST signal.
See the System Control chapter in the TMS320F2803x Real-Time Microcontrollers Technical Reference Manual for details.
Copyright © 2021 Texas Instruments Incorporated
Submit Document Feedback
Product Folder Links: TMS320F28030 TMS320F28030-Q1 TMS320F28031 TMS320F28031-Q1
TMS320F28032 TMS320F28032-Q1 TMS320F28033 TMS320F28033-Q1 TMS320F28034 TMS320F28034-Q1
TMS320F28035 TMS320F28035-Q1
19
TMS320F28030, TMS320F28030-Q1, TMS320F28031, TMS320F28031-Q1, TMS320F28032
TMS320F28032-Q1, TMS320F28033, TMS320F28033-Q1, TMS320F28034, TMS320F28034-Q1
TMS320F28035, TMS320F28035-Q1
www.ti.com
SPRS584P – APRIL 2009 – REVISED JUNE 2021
7 Specifications
7.1 Absolute Maximum Ratings
over operating free-air temperature range (unless otherwise noted)(1) (2)
MIN
MAX
VDDIO (I/O and Flash) with respect to VSS
–0.3
4.6
VDD with respect to VSS
–0.3
2.5
VDDA with respect to VSSA
–0.3
4.6
VIN (3.3 V)
–0.3
4.6
VIN (X1)
–0.3
2.5
VO
–0.3
4.6
Digital/analog input (per pin), IIK
(VIN < VSS or VIN > VDDIO)(3)
–20
20
Analog input (per pin), IIKANALOG
(VIN < VSSA or VIN > VDDA)
–20
20
Total for all inputs, IIKTOTAL
(VIN < VSS/VSSA or VIN > VDDIO/VDDA)
–20
20
Output clamp current
IOK (VO < 0 or VO > VDDIO)
–20
20
mA
Junction temperature(4)
TJ
–40
150
°C
Tstg
–65
150
°C
Supply voltage
Analog voltage
Input voltage
Output voltage
Input clamp current
Storage
(1)
(2)
(3)
(4)
temperature(4)
UNIT
V
V
V
V
mA
Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings
only, and functional operation of the device at these or any other conditions beyond those indicated under Section 7.4 is not implied.
Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.
All voltage values are with respect to VSS, unless otherwise noted.
Continuous clamp current per pin is ±2 mA. Do not operate in this condition continuously as VDDIO/VDDA voltage may internally rise and
impact other electrical specifications.
Long-term high-temperature storage or extended use at maximum temperature conditions may result in a reduction of overall device
life. For additional information, see Semiconductor and IC Package Thermal Metrics; Calculating Useful Lifetimes of Embedded
Processors; and Calculating FIT for a Mission Profile.
7.2 ESD Ratings – Automotive
VALUE
UNIT
TMS320F2803x-Q1 in 80-pin PN package
Human body model (HBM), per AEC Q100-002(1)
V(ESD)
Electrostatic discharge
Charged device model (CDM), per AEC Q100-011
All pins
±2000
All pins except corner pins
±500
V
Corner pins on 80-pin PN:
1, 20, 21, 40, 41, 60, 61,
80
±750
All pins
±2000
All pins except corner pins
±500
Corner pins on 64-pin
PAG: 1, 16, 17, 32, 33,
48, 49, 64
±750
TMS320F2803x-Q1 in 64-pin PAG package
Human body model (HBM), per AEC Q100-002(1)
V(ESD)
(1)
20
Electrostatic discharge
Charged device model (CDM), per AEC Q100-011
V
AEC Q100-002 indicates HBM stressing is done in accordance with the ANSI/ESDA/JEDEC JS-001 specification.
Submit Document Feedback
Copyright © 2021 Texas Instruments Incorporated
Product Folder Links: TMS320F28030 TMS320F28030-Q1 TMS320F28031 TMS320F28031-Q1
TMS320F28032 TMS320F28032-Q1 TMS320F28033 TMS320F28033-Q1 TMS320F28034 TMS320F28034-Q1
TMS320F28035 TMS320F28035-Q1
TMS320F28030, TMS320F28030-Q1, TMS320F28031, TMS320F28031-Q1, TMS320F28032
TMS320F28032-Q1, TMS320F28033, TMS320F28033-Q1, TMS320F28034, TMS320F28034-Q1
TMS320F28035, TMS320F28035-Q1
www.ti.com
SPRS584P – APRIL 2009 – REVISED JUNE 2021
7.3 ESD Ratings – Commercial
VALUE
UNIT
TMS320F2803x in 80-pin PN package
V(ESD)
Electrostatic discharge
Human-body model (HBM), per ANSI/ESDA/JEDEC JS-001(1)
±2000
Charged-device model (CDM), per JEDEC specification JESD22-C101
or ANSI/ESDA/JEDEC JS-002(2)
±500
V
TMS320F2803x in 64-pin PAG package
V(ESD)
Electrostatic discharge
Human-body model (HBM), per ANSI/ESDA/JEDEC JS-001(1)
±2000
Charged-device model (CDM), per JEDEC specification JESD22-C101
or ANSI/ESDA/JEDEC JS-002(2)
±500
V
TMS320F2803x in 56-pin RSH package
V(ESD)
(1)
(2)
Electrostatic discharge
Human-body model (HBM), per ANSI/ESDA/JEDEC JS-001(1)
±2000
Charged-device model (CDM), per JEDEC specification JESD22-C101
or ANSI/ESDA/JEDEC JS-002(2)
±500
V
JEDEC document JEP155 states that 500-V HBM allows safe manufacturing with a standard ESD control process.
JEDEC document JEP157 states that 250-V CDM allows safe manufacturing with a standard ESD control process.
7.4 Recommended Operating Conditions
MIN
NOM
MAX
UNIT
Device supply voltage, I/O, VDDIO
2.97
3.3
3.63
V
Device supply voltage CPU, VDD (When internal VREG is
disabled and 1.8 V is supplied externally)
1.71
1.8
1.995
V
2.97
3.3
Supply ground, VSS
0
Analog supply voltage, VDDA
Analog ground, VSSA
0
Device clock frequency (system clock)
Ambient temperature, TA
Junction temperature, TJ
(1)
V
60
2
VDDIO + 0.3
V
VSS – 0.3
0.8
V
All GPIO/AIO pins
–4
mA
Group 2(1)
–8
mA
All GPIO/AIO pins
4
mA
Group 2(1)
8
mA
Low-level input voltage, VIL (3.3 V)
Low-level output sink current, VOL = VOL(MAX), IOL
V
2
High-level input voltage, VIH (3.3 V)
High-level output source current, VOH = VOH(MIN) , IOH
V
3.63
T version
–40
105
S version
–40
125
Q version
(AEC Q100 qualification)
–40
125
–40
150
MHz
°C
°C
Group 2 pins are as follows: GPIO16, GPIO17, GPIO18, GPIO19, GPIO28, GPIO29, GPIO36, GPIO37
Copyright © 2021 Texas Instruments Incorporated
Submit Document Feedback
Product Folder Links: TMS320F28030 TMS320F28030-Q1 TMS320F28031 TMS320F28031-Q1
TMS320F28032 TMS320F28032-Q1 TMS320F28033 TMS320F28033-Q1 TMS320F28034 TMS320F28034-Q1
TMS320F28035 TMS320F28035-Q1
21
TMS320F28030, TMS320F28030-Q1, TMS320F28031, TMS320F28031-Q1, TMS320F28032
TMS320F28032-Q1, TMS320F28033, TMS320F28033-Q1, TMS320F28034, TMS320F28034-Q1
TMS320F28035, TMS320F28035-Q1
www.ti.com
SPRS584P – APRIL 2009 – REVISED JUNE 2021
7.5 Power Consumption Summary
7.5.1 TMS320F2803x Current Consumption at 60-MHz SYSCLKOUT
VREG ENABLED
MODE
IDDIO (1)
TEST CONDITIONS
VREG DISABLED
IDDA (2)
IDDIO (1)
IDD
IDDA (2)
TYP(3)
MAX
TYP(3)
MAX
TYP(3)
MAX
TYP(3)
MAX
TYP(3)
MAX
114 mA(7)
135 mA(7)
14 mA
18 mA
101 mA(7)
120 mA(7)
14 mA
18 mA
14 mA
18 mA
The following peripheral clocks
are enabled:
Operational
(Flash)
•
ePWM1/2/3/4/5/6/7
•
eCAP1
•
eQEP1
•
eCAN
•
LIN
•
CLA
•
HRPWM
•
SCI-A
•
SPI-A/B
•
ADC
•
I2C
•
COMP1/2/3
•
CPU-TIMER0/1/2
All PWM pins are toggled at
60 kHz.
All I/O pins are left
unconnected.(4) (6)
Code is running out of flash
with 2 wait states.
XCLKOUT is turned off.
IDLE
Flash is powered down.
XCLKOUT is turned off.
All peripheral clocks are turned
off.
13 mA
23 mA
10 μA
15 μA
13 mA
24 mA
120 μA
400 μA
10 μA
15 μA
STANDBY
Flash is powered down.
Peripheral clocks are off.
4 mA
9 mA
10 μA
15 μA
4 mA
7 mA
120 μA
400 μA
10 μA
15 μA
HALT
Flash is powered down.
Peripheral clocks are off.
Input clock is disabled.(5)
46 μA
10 μA
15 μA
30 μA
10 μA
15 μA
(1)
(2)
(3)
(4)
(5)
(6)
(7)
22
24 μA
IDDIO current is dependent on the electrical loading on the I/O pins.
To realize the IDDA currents shown for IDLE, STANDBY, and HALT, clock to the ADC module must be turned off explicitly by writing to
the PCLKCR0 register.
The TYP numbers are applicable over room temperature and nominal voltage.
The following is done in a loop:
• Data is continuously transmitted out of SPI-A/B, SCI-A, eCAN, LIN, and I2C ports.
• The hardware multiplier is exercised.
• Watchdog is reset.
• ADC is performing continuous conversion.
• COMP1/2 are continuously switching voltages.
• GPIO17 is toggled.
If a quartz crystal or ceramic resonator is used as the clock source, the HALT mode shuts down the on-chip crystal oscillator.
CLA is continuously performing polynomial calculations.
For F2803x devices that do not have CLA, subtract the IDD current number for CLA (see Table 7-1) from the IDD (VREG disabled)/IDDIO
(VREG enabled) current numbers shown in Section 7.5.1 for operational mode.
Submit Document Feedback
Copyright © 2021 Texas Instruments Incorporated
Product Folder Links: TMS320F28030 TMS320F28030-Q1 TMS320F28031 TMS320F28031-Q1
TMS320F28032 TMS320F28032-Q1 TMS320F28033 TMS320F28033-Q1 TMS320F28034 TMS320F28034-Q1
TMS320F28035 TMS320F28035-Q1
www.ti.com
TMS320F28030, TMS320F28030-Q1, TMS320F28031, TMS320F28031-Q1, TMS320F28032
TMS320F28032-Q1, TMS320F28033, TMS320F28033-Q1, TMS320F28034, TMS320F28034-Q1
TMS320F28035, TMS320F28035-Q1
SPRS584P – APRIL 2009 – REVISED JUNE 2021
Note
The peripheral - I/O multiplexing implemented in the device prevents all available peripherals from
being used at the same time. This is because more than one peripheral function may share an I/O
pin. It is, however, possible to turn on the clocks to all the peripherals at the same time, although such
a configuration is not useful. If this is done, the current drawn by the device will be more than the
numbers specified in the current consumption tables.
Copyright © 2021 Texas Instruments Incorporated
Submit Document Feedback
Product Folder Links: TMS320F28030 TMS320F28030-Q1 TMS320F28031 TMS320F28031-Q1
TMS320F28032 TMS320F28032-Q1 TMS320F28033 TMS320F28033-Q1 TMS320F28034 TMS320F28034-Q1
TMS320F28035 TMS320F28035-Q1
23
TMS320F28030, TMS320F28030-Q1, TMS320F28031, TMS320F28031-Q1, TMS320F28032
TMS320F28032-Q1, TMS320F28033, TMS320F28033-Q1, TMS320F28034, TMS320F28034-Q1
TMS320F28035, TMS320F28035-Q1
SPRS584P – APRIL 2009 – REVISED JUNE 2021
www.ti.com
7.5.2 Reducing Current Consumption
The 2803x devices incorporate a method to reduce the device current consumption. Because each peripheral
unit has an individual clock-enable bit, significant reduction in current consumption can be achieved by turning
off the clock to any peripheral module that is not used in a given application. Furthermore, any one of the
three low-power modes could be taken advantage of to reduce the current consumption even further. Table 7-1
indicates the typical reduction in current consumption achieved by turning off the clocks.
Table 7-1. Typical Current Consumption by Various
Peripherals (at 60 MHz)
(1)
(2)
(3)
PERIPHERAL
MODULE(1) (3)
IDD CURRENT
REDUCTION (mA)
ADC
2(2)
I2C
3
ePWM
2
eCAP
2
eQEP
2
SCI
2
SPI
2
COMP/DAC
1
HRPWM
3
HRCAP
3
CPU-TIMER
1
Internal zero-pin oscillator
0.5
CAN
2.5
LIN
1.5
CLA
20
All peripheral clocks (except CPU Timer clock) are disabled
upon reset. Writing to/reading from peripheral registers is
possible only after the peripheral clocks are turned on.
This number represents the current drawn by the digital portion
of the ADC module. Turning off the clock to the ADC module
results in the elimination of the current drawn by the analog
portion of the ADC (IDDA) as well.
For peripherals with multiple instances, the current quoted is per
module. For example, the 2 mA value quoted for ePWM is for
one ePWM module.
Note
IDDIO current consumption is reduced by 15 mA (typical) when XCLKOUT is turned off.
Note
The baseline IDD current (current when the core is executing a dummy loop with no peripherals
enabled) is 40 mA, typical. To arrive at the IDD current for a given application, the current-drawn by the
peripherals (enabled by that application) must be added to the baseline IDD current.
Following are other methods to reduce power consumption further:
• The flash module may be powered down if code is run off SARAM. This results in a current reduction of
18 mA (typical) in the VDD rail and 13 mA (typical) in the VDDIO rail.
• Savings in IDDIO may be realized by disabling the pullups on pins that assume an output function.
• To realize the lowest VDDA current consumption in a low-power mode, see the respective analog chapter
of the TMS320F2803x Real-Time Microcontrollers Technical Reference Manual to ensure each module is
powered down as well.
24
Submit Document Feedback
Copyright © 2021 Texas Instruments Incorporated
Product Folder Links: TMS320F28030 TMS320F28030-Q1 TMS320F28031 TMS320F28031-Q1
TMS320F28032 TMS320F28032-Q1 TMS320F28033 TMS320F28033-Q1 TMS320F28034 TMS320F28034-Q1
TMS320F28035 TMS320F28035-Q1
TMS320F28030, TMS320F28030-Q1, TMS320F28031, TMS320F28031-Q1, TMS320F28032
TMS320F28032-Q1, TMS320F28033, TMS320F28033-Q1, TMS320F28034, TMS320F28034-Q1
TMS320F28035, TMS320F28035-Q1
www.ti.com
SPRS584P – APRIL 2009 – REVISED JUNE 2021
7.5.3 Current Consumption Graphs (VREG Enabled)
Operational Current vs Frequency
140
Operational Current (mA)
120
100
80
60
40
20
0
0
10
20
30
40
50
60
70
60
70
SYSCLKOUT (MHz)
IDDIO
IDDA
Figure 7-1. Typical Operational Current Versus Frequency (F2803x)
Operational Power vs Frequency
Operational Power (mW)
500
450
400
350
300
250
200
0
10
20
30
40
50
SYSCLKOUT (MHz)
Figure 7-2. Typical Operational Power Versus Frequency (F2803x)
Copyright © 2021 Texas Instruments Incorporated
Submit Document Feedback
Product Folder Links: TMS320F28030 TMS320F28030-Q1 TMS320F28031 TMS320F28031-Q1
TMS320F28032 TMS320F28032-Q1 TMS320F28033 TMS320F28033-Q1 TMS320F28034 TMS320F28034-Q1
TMS320F28035 TMS320F28035-Q1
25
TMS320F28030, TMS320F28030-Q1, TMS320F28031, TMS320F28031-Q1, TMS320F28032
TMS320F28032-Q1, TMS320F28033, TMS320F28033-Q1, TMS320F28034, TMS320F28034-Q1
TMS320F28035, TMS320F28035-Q1
www.ti.com
SPRS584P – APRIL 2009 – REVISED JUNE 2021
Typical CLA operational current vs SYSCLKOUT
CLA operational IDDIO current (mA)
25
20
15
10
5
0
10
15
20
25
30
35
40
45
50
55
60
SYSCLKOUT (MHz)
Figure 7-3. Typical CLA Operational Current Versus SYSCLKOUT
7.6 Electrical Characteristics
over recommended operating conditions (unless otherwise noted)(1)
PARAMETER
VOH
High-level output voltage
VOL
Low-level output voltage
IIL
Input current
(low level)
IIH
Input current
(high level)
TEST CONDITIONS
IOH = IOH MAX
MIN
IOH = 50 μA
V
0.4
All GPIO
–80
–140
–205
XRS pin
–230
–300
–375
Pin with pullup
enabled
VDDIO = 3.3 V, VIN = 0 V
Pin with pulldown
enabled
VDDIO = 3.3 V, VIN = 0 V
±2
Pin with pullup
enabled
VDDIO = 3.3 V, VIN = VDDIO
±2
Pin with pulldown
enabled
VDDIO = 3.3 V, VIN = VDDIO
CI
Input capacitance
VDDIO BOR trip point
V
μA
μA
Output current, pullup or pulldown
VO = VDDIO or 0 V
disabled
28
50
80
±2
2
Falling VDDIO
2.50
VDDIO BOR hysteresis
26
MAX UNIT
VDDIO – 0.2
IOL = IOL MAX
IOZ
(1)
TYP
2.4
2.78
pF
2.96
35
Supervisor reset release delay
time
Time after BOR/POR/OVR event is removed to XRS
release
VREG VDD output
Internal VREG on
400
V
mV
800
1.9
μA
μs
V
When the on-chip VREG is used, its output is monitored by the POR/BOR circuit, which will reset the device should the core voltage
(VDD) go out of range.
Submit Document Feedback
Copyright © 2021 Texas Instruments Incorporated
Product Folder Links: TMS320F28030 TMS320F28030-Q1 TMS320F28031 TMS320F28031-Q1
TMS320F28032 TMS320F28032-Q1 TMS320F28033 TMS320F28033-Q1 TMS320F28034 TMS320F28034-Q1
TMS320F28035 TMS320F28035-Q1
TMS320F28030, TMS320F28030-Q1, TMS320F28031, TMS320F28031-Q1, TMS320F28032
TMS320F28032-Q1, TMS320F28033, TMS320F28033-Q1, TMS320F28034, TMS320F28034-Q1
TMS320F28035, TMS320F28035-Q1
www.ti.com
SPRS584P – APRIL 2009 – REVISED JUNE 2021
7.7 Thermal Resistance Characteristics
7.7.1 PN Package
°C/W(1)
AIR FLOW (lfm)(2)
RΘJC
Junction-to-case thermal resistance
14.2
N/A
RΘJB
Junction-to-board thermal resistance
21.9
N/A
RΘJA
(High k PCB)
PsiJT
PsiJB
(1)
(2)
Junction-to-free air thermal resistance
Junction-to-package top
Junction-to-board
49.9
0
38.3
150
36.7
250
34.4
500
0.8
0
1.18
150
1.34
250
1.62
500
21.6
0
20.7
150
20.5
250
20.1
500
These values are based on a JEDEC defined 2S2P system (with the exception of the Theta JC [RΘJC] value, which is based on
a JEDEC defined 1S0P system) and will change based on environment as well as application. For more information, see these
EIA/JEDEC standards:
• JESD51-2, Integrated Circuits Thermal Test Method Environmental Conditions - Natural Convection (Still Air)
• JESD51-3, Low Effective Thermal Conductivity Test Board for Leaded Surface Mount Packages
• JESD51-7, High Effective Thermal Conductivity Test Board for Leaded Surface Mount Packages
• JESD51-9, Test Boards for Area Array Surface Mount Package Thermal Measurements
lfm = linear feet per minute
Copyright © 2021 Texas Instruments Incorporated
Submit Document Feedback
Product Folder Links: TMS320F28030 TMS320F28030-Q1 TMS320F28031 TMS320F28031-Q1
TMS320F28032 TMS320F28032-Q1 TMS320F28033 TMS320F28033-Q1 TMS320F28034 TMS320F28034-Q1
TMS320F28035 TMS320F28035-Q1
27
TMS320F28030, TMS320F28030-Q1, TMS320F28031, TMS320F28031-Q1, TMS320F28032
TMS320F28032-Q1, TMS320F28033, TMS320F28033-Q1, TMS320F28034, TMS320F28034-Q1
TMS320F28035, TMS320F28035-Q1
www.ti.com
SPRS584P – APRIL 2009 – REVISED JUNE 2021
7.7.2 PAG Package
°C/W(1)
AIR FLOW (lfm)(2)
RΘJC
Junction-to-case thermal resistance
7.6
N/A
RΘJB
Junction-to-board thermal resistance
31.3
N/A
RΘJA
(High k PCB)
PsiJT
PsiJB
(1)
(2)
28
Junction-to-free air thermal resistance
Junction-to-package top
Junction-to-board
56.5
0
44.7
150
42.9
250
40.3
500
0.15
0
0.42
150
0.51
250
0.67
500
31.1
0
29.7
150
29.2
250
28.4
500
These values are based on a JEDEC defined 2S2P system (with the exception of the Theta JC [RΘJC] value, which is based on
a JEDEC defined 1S0P system) and will change based on environment as well as application. For more information, see these
EIA/JEDEC standards:
• JESD51-2, Integrated Circuits Thermal Test Method Environmental Conditions - Natural Convection (Still Air)
• JESD51-3, Low Effective Thermal Conductivity Test Board for Leaded Surface Mount Packages
• JESD51-7, High Effective Thermal Conductivity Test Board for Leaded Surface Mount Packages
• JESD51-9, Test Boards for Area Array Surface Mount Package Thermal Measurements
lfm = linear feet per minute
Submit Document Feedback
Copyright © 2021 Texas Instruments Incorporated
Product Folder Links: TMS320F28030 TMS320F28030-Q1 TMS320F28031 TMS320F28031-Q1
TMS320F28032 TMS320F28032-Q1 TMS320F28033 TMS320F28033-Q1 TMS320F28034 TMS320F28034-Q1
TMS320F28035 TMS320F28035-Q1
TMS320F28030, TMS320F28030-Q1, TMS320F28031, TMS320F28031-Q1, TMS320F28032
TMS320F28032-Q1, TMS320F28033, TMS320F28033-Q1, TMS320F28034, TMS320F28034-Q1
TMS320F28035, TMS320F28035-Q1
www.ti.com
SPRS584P – APRIL 2009 – REVISED JUNE 2021
7.7.3 RSH Package
°C/W(1)
AIR FLOW (lfm)(2)
RΘJC
Junction-to-case thermal resistance
14.7
N/A
RΘJB
Junction-to-board thermal resistance
9.2
N/A
RΘJA
(High k PCB)
PsiJT
PsiJB
(1)
(2)
Junction-to-free air thermal resistance
Junction-to-package top
Junction-to-board
34.8
0
23.6
150
22.3
250
20.5
500
0.24
0
0.36
150
0.43
250
0.56
500
9.2
0
8.8
150
8.9
250
8.8
500
These values are based on a JEDEC defined 2S2P system (with the exception of the Theta JC [RΘJC] value, which is based on
a JEDEC defined 1S0P system) and will change based on environment as well as application. For more information, see these
EIA/JEDEC standards:
• JESD51-2, Integrated Circuits Thermal Test Method Environmental Conditions - Natural Convection (Still Air)
• JESD51-3, Low Effective Thermal Conductivity Test Board for Leaded Surface Mount Packages
• JESD51-7, High Effective Thermal Conductivity Test Board for Leaded Surface Mount Packages
• JESD51-9, Test Boards for Area Array Surface Mount Package Thermal Measurements
lfm = linear feet per minute
7.8 Thermal Design Considerations
Based on the end application design and operational profile, the IDD and IDDIO currents could vary. Systems
that exceed the recommended maximum power dissipation in the end product may require additional thermal
enhancements. Ambient temperature (TA) varies with the end application and product design. The critical factor
that affects reliability and functionality is TJ, the junction temperature, not the ambient temperature. Hence, care
should be taken to keep TJ within the specified limits. Tcase should be measured to estimate the operating
junction temperature TJ. Tcase is normally measured at the center of the package top-side surface. The thermal
application report Semiconductor and IC Package Thermal Metrics helps to understand the thermal metrics and
definitions.
7.9 JTAG Debug Probe Connection Without Signal Buffering for the MCU
Figure 7-4 shows the connection between the MCU and JTAG header for a single-processor configuration. If
the distance between the JTAG header and the MCU is greater than 6 inches, the emulation signals must be
buffered. If the distance is less than 6 inches, buffering is typically not needed. Figure 7-4 shows the simpler,
no-buffering situation. For the pullup/pulldown resistor values, see Section 6.2, Signal Descriptions.
Copyright © 2021 Texas Instruments Incorporated
Submit Document Feedback
Product Folder Links: TMS320F28030 TMS320F28030-Q1 TMS320F28031 TMS320F28031-Q1
TMS320F28032 TMS320F28032-Q1 TMS320F28033 TMS320F28033-Q1 TMS320F28034 TMS320F28034-Q1
TMS320F28035 TMS320F28035-Q1
29
TMS320F28030, TMS320F28030-Q1, TMS320F28031, TMS320F28031-Q1, TMS320F28032
TMS320F28032-Q1, TMS320F28033, TMS320F28033-Q1, TMS320F28034, TMS320F28034-Q1
TMS320F28035, TMS320F28035-Q1
www.ti.com
SPRS584P – APRIL 2009 – REVISED JUNE 2021
6 inches or less
VDDIO
VDDIO
13
14
2
TRST
1
TMS
3
TDI
7
TDO
11
TCK
9
EMU0
PD
EMU1
TRST
GND
TMS
GND
TDI
GND
TDO
GND
TCK
GND
5
4
6
8
10
12
TCK_RET
MCU
JTAG Header
A.
See Figure 8-44 for JTAG/GPIO multiplexing.
Figure 7-4. JTAG Debug Probe Connection Without Signal Buffering for the MCU
Note
The 2803x devices do not have EMU0/EMU1 pins. For designs that have a JTAG Header onboard,
the EMU0/EMU1 pins on the header must be tied to VDDIO through a 4.7-kΩ (typical) resistor.
30
Submit Document Feedback
Copyright © 2021 Texas Instruments Incorporated
Product Folder Links: TMS320F28030 TMS320F28030-Q1 TMS320F28031 TMS320F28031-Q1
TMS320F28032 TMS320F28032-Q1 TMS320F28033 TMS320F28033-Q1 TMS320F28034 TMS320F28034-Q1
TMS320F28035 TMS320F28035-Q1
TMS320F28030, TMS320F28030-Q1, TMS320F28031, TMS320F28031-Q1, TMS320F28032
TMS320F28032-Q1, TMS320F28033, TMS320F28033-Q1, TMS320F28034, TMS320F28034-Q1
TMS320F28035, TMS320F28035-Q1
www.ti.com
SPRS584P – APRIL 2009 – REVISED JUNE 2021
7.10 Parameter Information
7.10.1 Timing Parameter Symbology
Timing parameter symbols used are created in accordance with JEDEC Standard 100. To shorten the symbols,
some of the pin names and other related terminology have been abbreviated as follows:
Lowercase subscripts and their
meanings:
Letters and symbols and their
meanings:
a
access time
H
High
c
cycle time (period)
L
Low
d
delay time
V
Valid
f
fall time
X
Unknown, changing, or don't care level
h
hold time
Z
High impedance
r
rise time
su
setup time
t
transition time
v
valid time
w
pulse duration (width)
7.10.2 General Notes on Timing Parameters
All output signals from the 28x devices (including XCLKOUT) are derived from an internal clock such that all
output transitions for a given half-cycle occur with a minimum of skewing relative to each other.
The signal combinations shown in the following timing diagrams may not necessarily represent actual cycles. For
actual cycle examples, see the appropriate cycle description section of this document.
7.11 Test Load Circuit
This test load circuit is used to measure all switching characteristics provided in this document.
Tester Pin Electronics
42 W
Data Sheet Timing Reference Point
3.5 nH
Transmission Line
(A)
Output
Under
Test
Z0 = 50 W
4.0 pF
A.
B.
Device Pin
1.85 pF
(B)
Input requirements in this data sheet are tested with an input slew rate of < 4 Volts per nanosecond (4 V/ns) at the device pin.
The data sheet provides timing at the device pin. For output timing analysis, the tester pin electronics and its transmission line effects
must be taken into account. A transmission line with a delay of 2 ns or longer can be used to produce the desired transmission line
effect. The transmission line is intended as a load only. It is not necessary to add or subtract the transmission line delay (2 ns or longer)
from the data sheet timing.
Figure 7-5. 3.3-V Test Load Circuit
Copyright © 2021 Texas Instruments Incorporated
Submit Document Feedback
Product Folder Links: TMS320F28030 TMS320F28030-Q1 TMS320F28031 TMS320F28031-Q1
TMS320F28032 TMS320F28032-Q1 TMS320F28033 TMS320F28033-Q1 TMS320F28034 TMS320F28034-Q1
TMS320F28035 TMS320F28035-Q1
31
TMS320F28030, TMS320F28030-Q1, TMS320F28031, TMS320F28031-Q1, TMS320F28032
TMS320F28032-Q1, TMS320F28033, TMS320F28033-Q1, TMS320F28034, TMS320F28034-Q1
TMS320F28035, TMS320F28035-Q1
www.ti.com
SPRS584P – APRIL 2009 – REVISED JUNE 2021
7.12 Power Sequencing
There is no power sequencing requirement needed to ensure the device is in the proper state after reset or to
prevent the I/Os from glitching during power up/down (GPIO19, GPIO34–38 do not have glitch-free I/Os). No
voltage larger than a diode drop (0.7 V) above VDDIO should be applied to any digital pin (for analog pins, this
value is 0.7 V above VDDA) before powering up the device. Voltages applied to pins on an unpowered device can
bias internal p-n junctions in unintended ways and produce unpredictable results.
VDDIO, VDDA
(3.3 V)
VDD (1.8 V)
INTOSC1
tINTOSCST
X1/X2
tOSCST
(B)
(A)
XCLKOUT
User-code dependent
tw(RSL1)
XRS
(D)
Address/data valid, internal boot-ROM code execution phase
Address/Data/
Control
(Internal)
td(EX)
th(boot-mode)(C)
Boot-Mode
Pins
User-code execution phase
User-code dependent
GPIO pins as input
Peripheral/GPIO function
Based on boot code
Boot-ROM execution starts
(E)
I/O Pins
GPIO pins as input (state depends on internal PU/PD)
User-code dependent
A.
B.
C.
D.
E.
Upon power up, SYSCLKOUT is OSCCLK/4. Because the XCLKOUTDIV bits in the XCLK register come up with a reset state of 0,
SYSCLKOUT is further divided by 4 before it appears at XCLKOUT. XCLKOUT = OSCCLK/16 during this phase.
Boot ROM configures the DIVSEL bits for /1 operation. XCLKOUT = OSCCLK/4 during this phase. XCLKOUT will not be visible at the
pin until explicitly configured by user code.
After reset, the boot ROM code samples Boot Mode pins. Based on the status of the Boot Mode pin, the boot code branches to
destination memory or boot code function. If boot ROM code executes after power-on conditions (in debugger environment), the boot
code execution time is based on the current SYSCLKOUT speed. The SYSCLKOUT will be based on user environment and could be
with or without PLL enabled.
Using the XRS pin is optional due to the on-chip power-on reset (POR) circuitry.
The internal pullup/pulldown will take effect when BOR is driven high.
Figure 7-6. Power-on Reset
32
Submit Document Feedback
Copyright © 2021 Texas Instruments Incorporated
Product Folder Links: TMS320F28030 TMS320F28030-Q1 TMS320F28031 TMS320F28031-Q1
TMS320F28032 TMS320F28032-Q1 TMS320F28033 TMS320F28033-Q1 TMS320F28034 TMS320F28034-Q1
TMS320F28035 TMS320F28035-Q1
TMS320F28030, TMS320F28030-Q1, TMS320F28031, TMS320F28031-Q1, TMS320F28032
TMS320F28032-Q1, TMS320F28033, TMS320F28033-Q1, TMS320F28034, TMS320F28034-Q1
TMS320F28035, TMS320F28035-Q1
www.ti.com
SPRS584P – APRIL 2009 – REVISED JUNE 2021
7.12.1 Reset ( XRS) Timing Requirements
MIN
th(boot-mode)
Hold time for boot-mode pins
tw(RSL2)
Pulse duration, XRS low on warm reset
MAX
UNIT
1000tc(SCO)
cycles
32tc(OSCCLK)
cycles
7.12.2 Reset ( XRS) Switching Characteristics
over recommended operating conditions (unless otherwise noted)
PARAMETER
TEST CONDITIONS
tw(RSL1)
Pulse duration, XRS driven by device
tw(WDRS)
Pulse duration, reset pulse generated by
watchdog
td(EX)
Delay time, address/data valid after XRS high
tINTOSCST
Start-up time, internal zero-pin oscillator
tOSCST
(1)
(1)
MIN
TYP
MAX
UNIT
600
On-chip crystal-oscillator start-up time
μs
512tc(OSCCLK)
cycles
32tc(OSCCLK)
cycles
1
3
μs
10
ms
Dependent on crystal/resonator and board design.
INTOSC1
X1/X2
XCLKOUT
User-Code Dependent
tw(RSL2)
XRS
Address/Data/
Control
(Internal)
td(EX)
User-Code Execution
Boot-ROM Execution Starts
Boot-Mode
Pins
User-Code Execution Phase
Peripheral/GPIO Function
GPIO Pins as Input
th(boot-mode)(A)
Peripheral/GPIO Function
User-Code Execution Starts
I/O Pins
User-Code Dependent
GPIO Pins as Input (State Depends on Internal PU/PD)
User-Code Dependent
A.
After reset, the Boot ROM code samples BOOT Mode pins. Based on the status of the Boot Mode pin, the boot code branches to
destination memory or boot code function. If Boot ROM code executes after power-on conditions (in debugger environment), the Boot
code execution time is based on the current SYSCLKOUT speed. The SYSCLKOUT will be based on user environment and could be
with or without PLL enabled.
Figure 7-7. Warm Reset
Copyright © 2021 Texas Instruments Incorporated
Submit Document Feedback
Product Folder Links: TMS320F28030 TMS320F28030-Q1 TMS320F28031 TMS320F28031-Q1
TMS320F28032 TMS320F28032-Q1 TMS320F28033 TMS320F28033-Q1 TMS320F28034 TMS320F28034-Q1
TMS320F28035 TMS320F28035-Q1
33
TMS320F28030, TMS320F28030-Q1, TMS320F28031, TMS320F28031-Q1, TMS320F28032
TMS320F28032-Q1, TMS320F28033, TMS320F28033-Q1, TMS320F28034, TMS320F28034-Q1
TMS320F28035, TMS320F28035-Q1
SPRS584P – APRIL 2009 – REVISED JUNE 2021
www.ti.com
Figure 7-8 shows an example for the effect of writing into PLLCR register. In the first phase, PLLCR = 0x0004
and SYSCLKOUT = OSCCLK x 2. The PLLCR is then written with 0x0008. Right after the PLLCR register is
written, the PLL lock-up phase begins. During this phase, SYSCLKOUT = OSCCLK/2. After the PLL lock-up is
complete, SYSCLKOUT reflects the new operating frequency, OSCCLK x 4.
OSCCLK
Write to PLLCR
SYSCLKOUT
OSCCLK * 2
(Current CPU
Frequency)
OSCCLK/2
(CPU frequency while PLL is stabilizing
with the desired frequency. This period
(PLL lock-up time tp) is 1 ms long.)
OSCCLK * 4
(Changed CPU frequency)
Figure 7-8. Example of Effect of Writing Into PLLCR Register
34
Submit Document Feedback
Copyright © 2021 Texas Instruments Incorporated
Product Folder Links: TMS320F28030 TMS320F28030-Q1 TMS320F28031 TMS320F28031-Q1
TMS320F28032 TMS320F28032-Q1 TMS320F28033 TMS320F28033-Q1 TMS320F28034 TMS320F28034-Q1
TMS320F28035 TMS320F28035-Q1
www.ti.com
TMS320F28030, TMS320F28030-Q1, TMS320F28031, TMS320F28031-Q1, TMS320F28032
TMS320F28032-Q1, TMS320F28033, TMS320F28033-Q1, TMS320F28034, TMS320F28034-Q1
TMS320F28035, TMS320F28035-Q1
SPRS584P – APRIL 2009 – REVISED JUNE 2021
7.13 Clock Specifications
7.13.1 Device Clock Table
This section provides the timing requirements and switching characteristics for the various clock options
available on the 2803x MCUs. Section 7.13.1.1 lists the cycle times of various clocks.
7.13.1.1 2803x Clock Table and Nomenclature (60-MHz Devices)
MIN
tc(SCO), Cycle time
SYSCLKOUT
Frequency
tc(LCO), Cycle time
LSPCLK(1)
tc(ADCCLK), Cycle time
(1)
(2)
MAX
UNIT
16.67
500
ns
2
60
MHz
60
MHz
60
MHz
16.67
66.67(2)
15(2)
Frequency
ADC clock
NOM
ns
16.67
ns
Frequency
Lower LSPCLK will reduce device power consumption.
This is the default reset value if SYSCLKOUT = 60 MHz.
Copyright © 2021 Texas Instruments Incorporated
Submit Document Feedback
Product Folder Links: TMS320F28030 TMS320F28030-Q1 TMS320F28031 TMS320F28031-Q1
TMS320F28032 TMS320F28032-Q1 TMS320F28033 TMS320F28033-Q1 TMS320F28034 TMS320F28034-Q1
TMS320F28035 TMS320F28035-Q1
35
TMS320F28030, TMS320F28030-Q1, TMS320F28031, TMS320F28031-Q1, TMS320F28032
TMS320F28032-Q1, TMS320F28033, TMS320F28033-Q1, TMS320F28034, TMS320F28034-Q1
TMS320F28035, TMS320F28035-Q1
www.ti.com
SPRS584P – APRIL 2009 – REVISED JUNE 2021
7.13.1.2 Device Clocking Requirements/Characteristics
MIN
On-chip oscillator (X1/X2 pins)
(Crystal/Resonator)
tc(OSC), Cycle time
External oscillator/clock source
(XCLKIN pin) — PLL Enabled
tc(CI), Cycle time (C8)
External oscillator/clock source
(XCLKIN pin) — PLL Disabled
tc(CI), Cycle time (C8)
Limp mode SYSCLKOUT
(with /2 enabled)
Frequency
MAX
UNIT
50
200
ns
5
20
MHz
33.3
200
ns
5
30
MHz
33.33
250
ns
4
30
MHz
Frequency range
Frequency
PLL lock time(1)
36
Frequency
tc(XCO), Cycle time (C1)
XCLKOUT
(1)
Frequency
NOM
1 to 5
MHz
66.67
2000
0.5
15
MHz
1
ms
tp
ns
The PLLLOCKPRD register must be updated based on the number of OSCCLK cycles. If the zero-pin internal oscillators (10 MHz) are
used as the clock source, then the PLLLOCKPRD register must be written with a value of 10,000 (minimum).
Submit Document Feedback
Copyright © 2021 Texas Instruments Incorporated
Product Folder Links: TMS320F28030 TMS320F28030-Q1 TMS320F28031 TMS320F28031-Q1
TMS320F28032 TMS320F28032-Q1 TMS320F28033 TMS320F28033-Q1 TMS320F28034 TMS320F28034-Q1
TMS320F28035 TMS320F28035-Q1
TMS320F28030, TMS320F28030-Q1, TMS320F28031, TMS320F28031-Q1, TMS320F28032
TMS320F28032-Q1, TMS320F28033, TMS320F28033-Q1, TMS320F28034, TMS320F28034-Q1
TMS320F28035, TMS320F28035-Q1
www.ti.com
SPRS584P – APRIL 2009 – REVISED JUNE 2021
7.13.1.3 Internal Zero-Pin Oscillator (INTOSC1/INTOSC2) Characteristics
PARAMETER
MIN
TYP
MAX
UNIT
30°C(1) (2)
Frequency
10.000
MHz
Internal zero-pin oscillator 2 (INTOSC2) at 30°C(1) (2)
Frequency
10.000
MHz
Step size (coarse trim)
55
kHz
Step size (fine trim)
14
kHz
drift(3)
3.03
Internal zero-pin oscillator 1 (INTOSC1) at
Temperature
Voltage (VDD) drift(3)
(1)
(2)
(3)
4.85
175
kHz/°C
Hz/mV
Oscillator frequency will vary over temperature, see Figure 7-9. To compensate for oscillator temperature drift, see the Oscillator
Compensation Guide and C2000Ware.
Frequency range ensured only when VREG is enabled, VREGENZ = VSS.
Output frequency of the internal oscillators follows the direction of both the temperature gradient and voltage (VDD) gradient. For
example:
•
•
Increase in temperature will cause the output frequency to increase per the temperature coefficient.
Decrease in voltage (VDD) will cause the output frequency to decrease per the voltage coefficient.
Zero-Pin Oscillator Frequency Movement With Temperature
10.6
10.5
Output Frequency (MHz)
10.4
10.3
10.2
10.1
10
9.9
9.8
9.7
9.6
–40
–30
–20
–10
Typical
0
10
20
30
40
50
60
70
80
90
100
110
120
Temperature (°C)
Max
Figure 7-9. Zero-Pin Oscillator Frequency Movement With Temperature
Copyright © 2021 Texas Instruments Incorporated
Submit Document Feedback
Product Folder Links: TMS320F28030 TMS320F28030-Q1 TMS320F28031 TMS320F28031-Q1
TMS320F28032 TMS320F28032-Q1 TMS320F28033 TMS320F28033-Q1 TMS320F28034 TMS320F28034-Q1
TMS320F28035 TMS320F28035-Q1
37
TMS320F28030, TMS320F28030-Q1, TMS320F28031, TMS320F28031-Q1, TMS320F28032
TMS320F28032-Q1, TMS320F28033, TMS320F28033-Q1, TMS320F28034, TMS320F28034-Q1
TMS320F28035, TMS320F28035-Q1
www.ti.com
SPRS584P – APRIL 2009 – REVISED JUNE 2021
7.13.2 Clock Requirements and Characteristics
7.13.2.1 XCLKIN Timing Requirements – PLL Enabled
NO.
MIN
MAX
C9
tf(CI)
Fall time, XCLKIN
C10
tr(CI)
Rise time, XCLKIN
C11
tw(CIL)
Pulse duration, XCLKIN low as a percentage of tc(OSCCLK)
45%
55%
C12
tw(CIH)
Pulse duration, XCLKIN high as a percentage of tc(OSCCLK)
45%
55%
MIN
MAX
UNIT
6
ns
6
ns
7.13.2.2 XCLKIN Timing Requirements – PLL Disabled
NO.
Up to 20 MHz
6
20 MHz to 30 MHz
2
Up to 20 MHz
6
20 MHz to 30 MHz
2
C9
tf(Cl)
Fall time, XCLKIN
C10
tr(CI)
Rise time, XCLKIN
C11
tw(CIL)
Pulse duration, XCLKIN low as a percentage of
tc(OSCCLK)
45%
55%
C12
tw(CIH)
Pulse duration, XCLKIN high as a percentage of
tc(OSCCLK)
45%
55%
UNIT
ns
ns
The possible configuration modes are shown in Table 8-17.
7.13.2.3 XCLKOUT Switching Characteristics (PLL Bypassed or Enabled)
over recommended operating conditions (unless otherwise noted)(1) (2)
NO.
(1)
(2)
PARAMETER
MIN
MAX
UNIT
C3
tf(XCO)
Fall time, XCLKOUT
5
ns
C4
tr(XCO)
Rise time, XCLKOUT
5
ns
C5
tw(XCOL)
Pulse duration, XCLKOUT low
H–2
H+2
ns
C6
tw(XCOH)
Pulse duration, XCLKOUT high
H–2
H+2
ns
A load of 40 pF is assumed for these parameters.
H = 0.5tc(XCO)
C10
C9
C8
XCLKIN(A)
C1
C6
C3
C4
C5
XCLKOUT(B)
A.
B.
The relationship of XCLKIN to XCLKOUT depends on the divide factor chosen. The waveform relationship shown is intended to
illustrate the timing parameters only and may differ based on actual configuration.
XCLKOUT configured to reflect SYSCLKOUT.
Figure 7-10. Clock Timing
38
Submit Document Feedback
Copyright © 2021 Texas Instruments Incorporated
Product Folder Links: TMS320F28030 TMS320F28030-Q1 TMS320F28031 TMS320F28031-Q1
TMS320F28032 TMS320F28032-Q1 TMS320F28033 TMS320F28033-Q1 TMS320F28034 TMS320F28034-Q1
TMS320F28035 TMS320F28035-Q1
TMS320F28030, TMS320F28030-Q1, TMS320F28031, TMS320F28031-Q1, TMS320F28032
TMS320F28032-Q1, TMS320F28033, TMS320F28033-Q1, TMS320F28034, TMS320F28034-Q1
TMS320F28035, TMS320F28035-Q1
www.ti.com
SPRS584P – APRIL 2009 – REVISED JUNE 2021
7.14 Flash Timing
7.14.1 Flash/OTP Endurance for T Temperature Material
ERASE/PROGRAM
TEMPERATURE(1)
Nf
Flash endurance for the array (write/erase cycles)
0°C to 105°C (ambient)
NOTP
OTP endurance for the array (write cycles)
0°C to 30°C (ambient)
(1)
MIN
TYP
20000
50000
MAX
UNIT
cycles
1
write
Write/erase operations outside of the temperature ranges indicated are not specified and may affect the endurance numbers.
7.14.2 Flash/OTP Endurance for S Temperature Material
ERASE/PROGRAM
TEMPERATURE(1)
Nf
Flash endurance for the array (write/erase cycles)
0°C to 125°C (ambient)
NOTP
OTP endurance for the array (write cycles)
0°C to 30°C (ambient)
(1)
MIN
TYP
20000
50000
MAX
UNIT
cycles
1
write
Write/erase operations outside of the temperature ranges indicated are not specified and may affect the endurance numbers.
7.14.3 Flash/OTP Endurance for Q Temperature Material
ERASE/PROGRAM
TEMPERATURE(1)
Nf
Flash endurance for the array (write/erase cycles)
–40°C to 125°C (ambient)
NOTP
OTP endurance for the array (write cycles)
–40°C to 30°C (ambient)
(1)
MIN
TYP
20000
50000
MAX
UNIT
cycles
1
write
Write/erase operations outside of the temperature ranges indicated are not specified and may affect the endurance numbers.
7.14.4 Flash Parameters at 60-MHz SYSCLKOUT
PARAMETER
Program Time(1)
TEST
CONDITIONS
TYP
MAX
8K Sector
250
2000(2)
ms
4K Sector
125
2000(2)
ms
16-Bit Word
Erase Time(3)
IDDP
(4)
IDDIOP (4)
IDDIOP
(1)
(2)
(3)
(4)
(4)
MIN
UNIT
50
8K Sector
2
12(2)
μs
4K Sector
2
12(2)
s
VDD current consumption during Erase/Program cycle
VREG
disabled
80
mA
60
mA
VDDIO current consumption during Erase/Program cycle VREG
enabled
120
mA
VDDIO current consumption during Erase/Program cycle
Program time is at the maximum device frequency. The programming time indicated in this table is applicable only when all the
required code/data is available in the device RAM, ready for programming. Program time includes overhead of the flash state machine
but does not include the time to transfer the following into RAM:
• the code that uses flash API to program the flash
• the Flash API itself
• Flash data to be programmed
Maximum flash parameter mentioned are for the first 100 program and erase cycles.
The on-chip flash memory is in an erased state when the device is shipped from TI. As such, erasing the flash memory is not required
prior to programming, when programming the device for the first time. However, the erase operation is needed on all subsequent
programming operations.
Typical parameters as seen at room temperature including function call overhead, with all peripherals off. It is important to maintain
a stable power supply during the entire flash programming process. It is conceivable that device current consumption during flash
programming could be higher than normal operating conditions. The power supply used should ensure VMIN on the supply rails at
all times, as specified in the Recommended Operating Conditions of the data sheet. Any brown-out or interruption to power during
erasing/programming could potentially corrupt the password locations and lock the device permanently. Powering a target board
(during flash programming) through the USB port is not recommended, as the port may be unable to respond to the power demands
placed during the programming process.
Copyright © 2021 Texas Instruments Incorporated
Submit Document Feedback
Product Folder Links: TMS320F28030 TMS320F28030-Q1 TMS320F28031 TMS320F28031-Q1
TMS320F28032 TMS320F28032-Q1 TMS320F28033 TMS320F28033-Q1 TMS320F28034 TMS320F28034-Q1
TMS320F28035 TMS320F28035-Q1
39
TMS320F28030, TMS320F28030-Q1, TMS320F28031, TMS320F28031-Q1, TMS320F28032
TMS320F28032-Q1, TMS320F28033, TMS320F28033-Q1, TMS320F28034, TMS320F28034-Q1
TMS320F28035, TMS320F28035-Q1
www.ti.com
SPRS584P – APRIL 2009 – REVISED JUNE 2021
7.14.5 Flash/OTP Access Timing
PARAMETER
MIN
MAX
UNIT
ta(fp)
Paged Flash access time
40
ns
ta(fr)
Random Flash access time
40
ns
ta(OTP)
OTP access time
60
ns
7.14.6 Flash Data Retention Duration
PARAMETER
tretention
TEST CONDITIONS
Data retention duration
TJ = 55°C
MIN
MAX
15
UNIT
years
Table 7-2. Minimum Required Flash/OTP Wait States at Different Frequencies
(1)
SYSCLKOUT
(MHz)
SYSCLKOUT
(ns)
PAGE
WAIT STATE(1)
RANDOM
WAIT STATE(1)
OTP
WAIT STATE
60
16.67
2
2
3
55
18.18
2
2
3
50
20
1
1
2
45
22.22
1
1
2
40
25
1
1
2
35
28.57
1
1
2
30
33.33
1
1
1
25
40
0
1
1
Random wait state must be ≥ 1.
The equations to compute the Flash page wait state and random wait state in Table 7-2 are as follows:
ù
éæ t a( f · p ) ö
÷ - 1ú round up to the next highest integer
Flash Page Wait State = êç
úû
êëçè t c (SCO ) ÷ø
éæ t a(f ×r) ö ù
÷ - 1ú round up to the next highest integer, or 1, whichever is larger
Flash Random Wait State = êç
êëçè t c(SCO) ÷ø úû
The equation to compute the OTP wait state in Table 7-2 is as follows:
éæ t a(OTP) ö ù
÷ - 1ú round up to the next highest integer, or 1, whichever is larger
OTP Wait State = êç
ç
÷
ëêè t c(SCO) ø ûú
40
Submit Document Feedback
Copyright © 2021 Texas Instruments Incorporated
Product Folder Links: TMS320F28030 TMS320F28030-Q1 TMS320F28031 TMS320F28031-Q1
TMS320F28032 TMS320F28032-Q1 TMS320F28033 TMS320F28033-Q1 TMS320F28034 TMS320F28034-Q1
TMS320F28035 TMS320F28035-Q1
TMS320F28030, TMS320F28030-Q1, TMS320F28031, TMS320F28031-Q1, TMS320F28032
TMS320F28032-Q1, TMS320F28033, TMS320F28033-Q1, TMS320F28034, TMS320F28034-Q1
TMS320F28035, TMS320F28035-Q1
www.ti.com
SPRS584P – APRIL 2009 – REVISED JUNE 2021
8 Detailed Description
8.1 Overview
8.1.1 CPU
The 2803x (C28x) family is a member of the TMS320C2000™ microcontroller (MCU) platform. The C28x-based
controllers have the same 32-bit fixed-point architecture as existing C28x MCUs. It is a very efficient C/C++
engine, enabling users to develop not only their system control software in a high-level language, but also
enabling development of math algorithms using C/C++. The device is as efficient at MCU math tasks as it is at
system control tasks that typically are handled by microcontroller devices. This efficiency removes the need for
a second processor in many systems. The 32 × 32-bit MAC 64-bit processing capabilities enable the controller
to handle higher numerical resolution problems efficiently. Add to this the fast interrupt response with automatic
context save of critical registers, resulting in a device that is capable of servicing many asynchronous events
with minimal latency. The device has an 8-level-deep protected pipeline with pipelined memory accesses. This
pipelining enables it to execute at high speeds without resorting to expensive high-speed memories. Special
branch-look-ahead hardware minimizes the latency for conditional discontinuities. Special store conditional
operations further improve performance.
8.1.2 Control Law Accelerator (CLA)
The C28x control law accelerator is a single-precision (32-bit) floating-point unit that extends the capabilities of
the C28x CPU by adding parallel processing. The CLA is an independent processor with its own bus structure,
fetch mechanism, and pipeline. Eight individual CLA tasks, or routines, can be specified. Each task is started
by software or a peripheral such as the ADC, an ePWM, or CPU Timer 0. The CLA executes one task at
a time to completion. When a task completes the main CPU is notified by an interrupt to the PIE and the
CLA automatically begins the next highest-priority pending task. The CLA can directly access the ADC Result
registers and the ePWM+HRPWM registers. Dedicated message RAMs provide a method to pass additional
data between the main CPU and the CLA.
8.1.3 Memory Bus (Harvard Bus Architecture)
As with many MCU-type devices, multiple buses are used to move data between the memories and peripherals
and the CPU. The memory bus architecture contains a program read bus, data read bus, and data write bus.
The program read bus consists of 22 address lines and 32 data lines. The data read and write buses consist
of 32 address lines and 32 data lines each. The 32-bit-wide data buses enable single cycle 32-bit operations.
The multiple bus architecture, commonly termed Harvard Bus, enables the C28x to fetch an instruction, read a
data value and write a data value in a single cycle. All peripherals and memories attached to the memory bus
prioritize memory accesses. Generally, the priority of memory bus accesses can be summarized as follows:
Highest:
Data Writes
(Simultaneous data and program writes cannot occur on the memory bus.)
Program Writes
(Simultaneous data and program writes cannot occur on the memory bus.)
Data Reads
Lowest:
Program Reads
(Simultaneous program reads and fetches cannot occur on the
memory bus.)
Fetches
(Simultaneous program reads and fetches cannot occur on the
memory bus.)
8.1.4 Peripheral Bus
To enable migration of peripherals between various Texas Instruments (TI) MCU family of devices, the devices
adopt a peripheral bus standard for peripheral interconnect. The peripheral bus bridge multiplexes the various
buses that make up the processor Memory Bus into a single bus consisting of 16 address lines and 16
or 32 data lines and associated control signals. Three versions of the peripheral bus are supported. One
version supports only 16-bit accesses (called peripheral frame 2). Another version supports both 16- and 32-bit
accesses (called peripheral frame 1). The third version supports CLA access and both 16- and 32-bit accesses
(called peripheral frame 3).
Copyright © 2021 Texas Instruments Incorporated
Submit Document Feedback
Product Folder Links: TMS320F28030 TMS320F28030-Q1 TMS320F28031 TMS320F28031-Q1
TMS320F28032 TMS320F28032-Q1 TMS320F28033 TMS320F28033-Q1 TMS320F28034 TMS320F28034-Q1
TMS320F28035 TMS320F28035-Q1
41
TMS320F28030, TMS320F28030-Q1, TMS320F28031, TMS320F28031-Q1, TMS320F28032
TMS320F28032-Q1, TMS320F28033, TMS320F28033-Q1, TMS320F28034, TMS320F28034-Q1
TMS320F28035, TMS320F28035-Q1
SPRS584P – APRIL 2009 – REVISED JUNE 2021
www.ti.com
8.1.5 Real-Time JTAG and Analysis
The devices implement the standard IEEE 1149.1 (IEEE Standard 1149.1-1990 Standard Test Access Port
and Boundary Scan Architecture) JTAG interface for in-circuit based debug. Additionally, the devices support
real-time mode of operation allowing modification of the contents of memory, peripheral, and register locations
while the processor is running and executing code and servicing interrupts. The user can also single step
through non-time-critical code while enabling time-critical interrupts to be serviced without interference. The
device implements the real-time mode in hardware within the CPU. This is a feature unique to the 28x family of
devices, requiring no software monitor. Additionally, special analysis hardware is provided that allows setting of
hardware breakpoint or data/address watch-points and generating various user-selectable break events when a
match occurs.
8.1.6 Flash
The F28035/34 devices contain 64K × 16 of embedded flash memory, segregated into eight 8K × 16 sectors.
The F28033/32/31 devices contain 32K × 16 of embedded flash memory, segregated into eight 4K × 16 sectors.
The F28030 device contains 16K × 16 of embedded flash memory, segregated into four 4K × 16 sectors. All
devices also contain a single 1K × 16 of OTP memory at address range 0x3D 7800 to 0x3D 7BFF. The user can
individually erase, program, and validate a flash sector while leaving other sectors untouched. However, it is not
possible to use one sector of the flash or the OTP to execute flash algorithms that erase/program other sectors.
Special memory pipelining is provided to enable the flash module to achieve higher performance. The flash/OTP
is mapped to both program and data space; therefore, it can be used to execute code or store data information.
Addresses 0x3F 7FF0 to 0x3F 7FF5 are reserved for data variables and should not contain program code.
Note
The Flash and OTP wait states can be configured by the application. This allows applications running
at slower frequencies to configure the flash to use fewer wait states.
Flash effective performance can be improved by enabling the flash pipeline mode in the Flash options
register. With this mode enabled, effective performance of linear code execution will be much faster
than the raw performance indicated by the wait-state configuration alone. The exact performance gain
when using the Flash pipeline mode is application-dependent.
For more information on the Flash options, Flash wait state, and OTP wait-state registers, see
the System Control chapter in the TMS320F2803x Real-Time Microcontrollers Technical Reference
Manual.
8.1.7 M0, M1 SARAMs
All devices contain these two blocks of single access memory, each 1K × 16 in size. The stack pointer points
to the beginning of block M1 on reset. The M0 and M1 blocks, like all other memory blocks on C28x devices,
are mapped to both program and data space. Hence, the user can use M0 and M1 to execute code or for data
variables. The partitioning is performed within the linker. The C28x device presents a unified memory map to the
programmer. This makes for easier programming in high-level languages.
8.1.8 L0 SARAM, and L1, L2, and L3 DPSARAMs
The device contains up to 8K × 16 of single-access RAM. To ascertain the exact size for a given device, see
the device-specific memory map figures in Section 8.2. This block is mapped to both program and data space.
Block L0 is 2K in size and is dual mapped to both program and data space. Blocks L1 and L2 are both 1K in size
and are shared with the CLA which can ultilize these blocks for its data space. Block L3 is 4K (2K on the 28031
device) in size and is shared with the CLA which can ultilize this block for its program space. DPSARAM refers
to the dual-port configuration of these blocks.
42
Submit Document Feedback
Copyright © 2021 Texas Instruments Incorporated
Product Folder Links: TMS320F28030 TMS320F28030-Q1 TMS320F28031 TMS320F28031-Q1
TMS320F28032 TMS320F28032-Q1 TMS320F28033 TMS320F28033-Q1 TMS320F28034 TMS320F28034-Q1
TMS320F28035 TMS320F28035-Q1
TMS320F28030, TMS320F28030-Q1, TMS320F28031, TMS320F28031-Q1, TMS320F28032
TMS320F28032-Q1, TMS320F28033, TMS320F28033-Q1, TMS320F28034, TMS320F28034-Q1
TMS320F28035, TMS320F28035-Q1
www.ti.com
SPRS584P – APRIL 2009 – REVISED JUNE 2021
8.1.9 Boot ROM
The Boot ROM is factory-programmed with bootloader software. The Boot ROM uses the boot-mode-select
GPIO pins to determine what boot mode to use upon power up. The user can select to boot normally to
application code, to download new software from an external connection, or to select boot software that is
programmed in the internal Flash/ROM. The Boot ROM also contains standard tables, such as SIN/COS
waveforms, for use in math-related algorithms. The boot-ROM content, and hence the checksum value, may
vary for different silicon revisions. For details, see the Boot ROM chapter in the TMS320F2803x Real-Time
Microcontrollers Technical Reference Manual.
Table 8-1. Boot Mode Selection
MODE
GPIO37/TDO
GPIO34/COMP2OUT/
COMP3OUT
TRST
3
1
1
0
GetMode
2
1
0
0
Wait (see Section 8.1.10 for description)
1
0
1
0
SCI
0
0
0
0
Parallel IO
EMU
x
x
1
Emulation Boot
MODE
8.1.9.1 Emulation Boot
When the JTAG debug probe is connected, the GPIO37/TDO pin cannot be used for boot mode selection. In
this case, the boot ROM detects that a JTAG debug probe is connected and uses the contents of two reserved
SARAM locations in the PIE vector table to determine the boot mode. If the content of either location is invalid,
then the Wait boot option is used. All boot mode options can be accessed in emulation boot.
8.1.9.2 GetMode
The default behavior of the GetMode option is to boot to flash. This behavior can be changed to another boot
option by programming two locations in the OTP. If the content of either OTP location is invalid, then boot to flash
is used. One of the following loaders can be specified: SCI, SPI, I2C, CAN, or OTP.
8.1.9.3 Peripheral Pins Used by the Bootloader
Table 8-2 shows which GPIO pins are used by each peripheral bootloader. Refer to the GPIO mux table to see if
these conflict with any of the peripherals you would like to use in your application.
Table 8-2. Peripheral Bootload Pins
BOOTLOADER
PERIPHERAL LOADER PINS
SCI
SCIRXDA (GPIO28)
SCITXDA (GPIO29)
Parallel Boot
Data (GPIO31,30,5:0)
28x Control (AIO6)
Host Control (AIO12)
SPI
SPISIMOA (GPIO16)
SPISOMIA (GPIO17)
SPICLKA (GPIO18)
SPISTEA (GPIO19)
I2C
SDAA (GPIO32)
SCLA (GPIO33)
CAN
CANRXA (GPIO30)
CANTXA (GPIO31)
Copyright © 2021 Texas Instruments Incorporated
Submit Document Feedback
Product Folder Links: TMS320F28030 TMS320F28030-Q1 TMS320F28031 TMS320F28031-Q1
TMS320F28032 TMS320F28032-Q1 TMS320F28033 TMS320F28033-Q1 TMS320F28034 TMS320F28034-Q1
TMS320F28035 TMS320F28035-Q1
43
TMS320F28030, TMS320F28030-Q1, TMS320F28031, TMS320F28031-Q1, TMS320F28032
TMS320F28032-Q1, TMS320F28033, TMS320F28033-Q1, TMS320F28034, TMS320F28034-Q1
TMS320F28035, TMS320F28035-Q1
SPRS584P – APRIL 2009 – REVISED JUNE 2021
www.ti.com
8.1.10 Security
The devices support high levels of security to protect the user firmware from being reverse engineered. The
security features a 128-bit password (hardcoded for 16 wait states), which the user programs into the flash.
One code security module (CSM) is used to protect the flash/OTP and the L0/L1 SARAM blocks. The security
feature prevents unauthorized users from examining the memory contents through the JTAG port or trying to
boot-load some undesirable software that would export the secure memory contents. To enable access to the
secure blocks, the user must write the correct 128-bit KEY value that matches the value stored in the password
locations within the Flash.
In addition to the CSM, the emulation code security logic (ECSL) has been implemented to prevent unauthorized
users from stepping through secure code. Any code or data access to flash, user OTP, or Lx memory while
the JTAG debug probe is connected will trip the ECSL and break the debug probe connection. To allow debug
of secure code, while maintaining the CSM protection against secure memory reads, the user must write the
correct value into the lower 64 bits of the KEY register (KEY0–KEY3), which matches the value stored in
the lower 64 bits of the password locations (PWL0–PWL3) within the flash. Dummy reads of all 128 bits of
the password in the flash must still be performed. If the lower 64 bits of the password locations are all ones
(unprogrammed), then the KEY value does not need to match. During debug of secure code, operations like
single-stepping is possible. However, the actual contents of the secure memory cannot be seen in the CCS
window.
When power is applied to a secure device that is connected to a JTAG debug probe, the CPU will start executing
and may execute an instruction that performs an access to a protected area. If this happens, the ECSL will trip
and cause the JTAG circuitry to be deactivated. Under this condition, a host (such as a computer running CCS or
flash programing software) would not be able to establish connection with the device.
The solution is to use the Wait boot option. In this mode, code loops around a software breakpoint to allow a
JTAG debug probe to be connected without tripping security. The user can then exit this mode once the JTAG
debug probe is connected by using one of the emulation boot options as described in the Boot ROM chapter
in the TMS320F2803x Real-Time Microcontrollers Technical Reference Manual. These devices do not support a
hardware wait-in-reset mode.
If reprogramming of a secure device via JTAG is desired, it is important to put in the needed hooks in the board
design to be able to put the device in Wait boot mode upon power-up. Otherwise, ECSL may deactivate the
JTAG circuitry and prevent connection to the device, as mentioned earlier.
•
•
•
Note
When the code-security passwords are programmed, all addresses from 0x3F7F80 to 0x3F7FF5
cannot be used as program code or data. These locations must be programmed to 0x0000.
If reprogramming of a secure device via JTAG may be needed in future, it is important to design
the board in such a way that the device could be put in Wait boot mode upon power-up (when
reprogramming is warranted). Otherwise, ECSL may deactivate the JTAG circuitry and prevent
connection to the device, as mentioned earlier. If reconfiguring the device for Wait boot mode in
the field is not practical, some mechanism must be implemented in the firmware to detect when a
firmware update is warranted. Code could then branch to the desired bootloader in the bootROM. It
could also branch to the Wait bootmode, at which point the JTAG debug probe could be connected,
device unsecured and programming accomplished through JTAG itself.
If the code security feature is not used, addresses 0x3F7F80 to 0x3F7FEF may be used for code
or data. Addresses 0x3F7FF0 to 0x3F7FF5 are reserved for data and should not contain program
code.
The 128-bit password (at 0x3F 7FF8 to 0x3F 7FFF) must not be programmed to zeros. Doing so
would permanently lock the device.
44
Submit Document Feedback
Copyright © 2021 Texas Instruments Incorporated
Product Folder Links: TMS320F28030 TMS320F28030-Q1 TMS320F28031 TMS320F28031-Q1
TMS320F28032 TMS320F28032-Q1 TMS320F28033 TMS320F28033-Q1 TMS320F28034 TMS320F28034-Q1
TMS320F28035 TMS320F28035-Q1
TMS320F28030, TMS320F28030-Q1, TMS320F28031, TMS320F28031-Q1, TMS320F28032
TMS320F28032-Q1, TMS320F28033, TMS320F28033-Q1, TMS320F28034, TMS320F28034-Q1
TMS320F28035, TMS320F28035-Q1
www.ti.com
SPRS584P – APRIL 2009 – REVISED JUNE 2021
Code Security Module Disclaimer
THE CODE SECURITY MODULE (CSM) INCLUDED ON THIS DEVICE WAS DESIGNED TO
PASSWORD PROTECT THE DATA STORED IN THE ASSOCIATED MEMORY (EITHER ROM
OR FLASH) AND IS WARRANTED BY TEXAS INSTRUMENTS (TI), IN ACCORDANCE WITH ITS
STANDARD TERMS AND CONDITIONS, TO CONFORM TO TI'S PUBLISHED SPECIFICATIONS
FOR THE WARRANTY PERIOD APPLICABLE FOR THIS DEVICE.
TI DOES NOT, HOWEVER, WARRANT OR REPRESENT THAT THE CSM CANNOT BE
COMPROMISED OR BREACHED OR THAT THE DATA STORED IN THE ASSOCIATED MEMORY
CANNOT BE ACCESSED THROUGH OTHER MEANS. MOREOVER, EXCEPT AS SET FORTH
ABOVE, TI MAKES NO WARRANTIES OR REPRESENTATIONS CONCERNING THE CSM OR
OPERATION OF THIS DEVICE, INCLUDING ANY IMPLIED WARRANTIES OF MERCHANTABILITY
OR FITNESS FOR A PARTICULAR PURPOSE.
IN NO EVENT SHALL TI BE LIABLE FOR ANY CONSEQUENTIAL, SPECIAL, INDIRECT,
INCIDENTAL, OR PUNITIVE DAMAGES, HOWEVER CAUSED, ARISING IN ANY WAY OUT OF
YOUR USE OF THE CSM OR THIS DEVICE, WHETHER OR NOT TI HAS BEEN ADVISED OF THE
POSSIBILITY OF SUCH DAMAGES. EXCLUDED DAMAGES INCLUDE, BUT ARE NOT LIMITED
TO LOSS OF DATA, LOSS OF GOODWILL, LOSS OF USE OR INTERRUPTION OF BUSINESS OR
OTHER ECONOMIC LOSS.
8.1.11 Peripheral Interrupt Expansion (PIE) Block
The PIE block serves to multiplex numerous interrupt sources into a smaller set of interrupt inputs. The PIE
block can support up to 96 peripheral interrupts. On the F2803x, 56 of the possible 96 interrupts are used by
peripherals. The 96 interrupts are grouped into blocks of 8 and each group is fed into 1 of 12 CPU interrupt lines
(INT1 to INT12). Each of the 96 interrupts is supported by its own vector stored in a dedicated RAM block that
can be overwritten by the user. The vector is automatically fetched by the CPU on servicing the interrupt. It takes
8 CPU clock cycles to fetch the vector and save critical CPU registers. Hence the CPU can quickly respond to
interrupt events. Prioritization of interrupts is controlled in hardware and software. Each individual interrupt can
be enabled/disabled within the PIE block.
8.1.12 External Interrupts (XINT1–XINT3)
The devices support three masked external interrupts (XINT1–XINT3). Each of the interrupts can be selected
for negative, positive, or both negative and positive edge triggering and can also be enabled/disabled. These
interrupts also contain a 16-bit free running up counter, which is reset to zero when a valid interrupt edge is
detected. This counter can be used to accurately time stamp the interrupt. There are no dedicated pins for the
external interrupts. XINT1, XINT2, and XINT3 interrupts can accept inputs from GPIO0–GPIO31 pins.
8.1.13 Internal Zero Pin Oscillators, Oscillator, and PLL
The device can be clocked by either of the two internal zero-pin oscillators, an external oscillator, or by a crystal
attached to the on-chip oscillator circuit . A PLL is provided supporting up to 12 input-clock-scaling ratios. The
PLL ratios can be changed on-the-fly in software, enabling the user to scale back on operating frequency if lower
power operation is desired. Refer to Section 7, Electrical Specifications, for timing details. The PLL block can be
set in bypass mode.
8.1.14 Watchdog
Each device contains two watchdogs: CPU watchdog that monitors the core and NMI watchdog that is a missing
clock-detect circuit. The user software must regularly reset the CPU watchdog counter within a certain time
frame; otherwise, the CPU watchdog generates a reset to the processor. The CPU watchdog can be disabled if
necessary. The NMI watchdog engages only in case of a clock failure and can either generate an interrupt or a
device reset.
Copyright © 2021 Texas Instruments Incorporated
Submit Document Feedback
Product Folder Links: TMS320F28030 TMS320F28030-Q1 TMS320F28031 TMS320F28031-Q1
TMS320F28032 TMS320F28032-Q1 TMS320F28033 TMS320F28033-Q1 TMS320F28034 TMS320F28034-Q1
TMS320F28035 TMS320F28035-Q1
45
TMS320F28030, TMS320F28030-Q1, TMS320F28031, TMS320F28031-Q1, TMS320F28032
TMS320F28032-Q1, TMS320F28033, TMS320F28033-Q1, TMS320F28034, TMS320F28034-Q1
TMS320F28035, TMS320F28035-Q1
SPRS584P – APRIL 2009 – REVISED JUNE 2021
www.ti.com
8.1.15 Peripheral Clocking
The clocks to each individual peripheral can be enabled/disabled to reduce power consumption when a
peripheral is not in use. Additionally, the system clock to the serial ports (except I2C) can be scaled relative
to the CPU clock.
8.1.16 Low-power Modes
The devices are full static CMOS devices. Three low-power modes are provided:
IDLE:
Place CPU in low-power mode. Peripheral clocks may be turned off selectively and only
those peripherals that must function during IDLE are left operating. An enabled interrupt
from an active peripheral or the watchdog timer will wake the processor from IDLE mode.
STANDBY:
Turns off clock to CPU and peripherals. This mode leaves the oscillator and PLL functional.
An external interrupt event will wake the processor and the peripherals. Execution begins
on the next valid cycle after detection of the interrupt event
HALT:
This mode basically shuts down the device and places it in the lowest possible power
consumption mode. If the internal zero-pin oscillators are used as the clock source, the
HALT mode turns them off, by default. To keep these oscillators from shutting down, the
INTOSCnHALTI bits in CLKCTL register may be used. The zero-pin oscillators may thus
be used to clock the CPU watchdog in this mode. If the on-chip crystal oscillator is used
as the clock source, it is shut down in this mode. A reset or an external signal (through a
GPIO pin) or the CPU watchdog can wake the device from this mode.
The CPU clock (OSCCLK) and watchdog clock source should be from the same clock source before attempting
to put the device into HALT or STANDBY.
46
Submit Document Feedback
Copyright © 2021 Texas Instruments Incorporated
Product Folder Links: TMS320F28030 TMS320F28030-Q1 TMS320F28031 TMS320F28031-Q1
TMS320F28032 TMS320F28032-Q1 TMS320F28033 TMS320F28033-Q1 TMS320F28034 TMS320F28034-Q1
TMS320F28035 TMS320F28035-Q1
TMS320F28030, TMS320F28030-Q1, TMS320F28031, TMS320F28031-Q1, TMS320F28032
TMS320F28032-Q1, TMS320F28033, TMS320F28033-Q1, TMS320F28034, TMS320F28034-Q1
TMS320F28035, TMS320F28035-Q1
www.ti.com
SPRS584P – APRIL 2009 – REVISED JUNE 2021
8.1.17 Peripheral Frames 0, 1, 2, 3 (PFn)
The device segregates peripherals into four sections. The mapping of peripherals is as follows:
PF0:
PF1:
PF2:
PF3:
PIE:
PIE Interrupt Enable and Control Registers Plus PIE Vector Table
Flash:
Flash Waitstate Registers
Timers:
CPU-Timers 0, 1, 2 Registers
CSM:
Code Security Module KEY Registers
ADC:
ADC Result Registers
CLA
Control Law Accelrator Registers and Message RAMs
GPIO:
GPIO MUX Configuration and Control Registers
eCAN:
Enhanced Control Area Network Configuration and Control Registers
LIN:
Local Interconnect Network Configuration and Control Registers
eCAP:
Enhanced Capture Module and Registers
eQEP:
Enhanced Quadrature Encoder Pulse Module and Registers
HRCAP:
High-Resolution Capture Module and Registers
SYS:
System Control Registers
SCI:
Serial Communications Interface (SCI) Control and RX/TX Registers
SPI:
Serial Port Interface (SPI) Control and RX/TX Registers
ADC:
ADC Status, Control, and Configuration Registers
I2C:
Inter-Integrated Circuit Module and Registers
XINT:
External Interrupt Registers
ePWM:
Enhanced Pulse Width Modulator Module and Registers
HRPWM:
High-Resolution Pulse-Width Modulator Registers
Comparators:
Comparator Modules
8.1.18 General-Purpose Input/Output (GPIO) Multiplexer
Most of the peripheral signals are multiplexed with general-purpose input/output (GPIO) signals. This enables
the user to use a pin as GPIO if the peripheral signal or function is not used. On reset, GPIO pins are configured
as inputs. The user can individually program each pin for GPIO mode or peripheral signal mode. For specific
inputs, the user can also select the number of input qualification cycles. This is to filter unwanted noise glitches.
The GPIO signals can also be used to bring the device out of specific low-power modes.
8.1.19 32-Bit CPU-Timers (0, 1, 2)
CPU-Timers 0, 1, and 2 are identical 32-bit timers with presettable periods and with 16-bit clock prescaling.
The timers have a 32-bit count-down register, which generates an interrupt when the counter reaches zero. The
counter is decremented at the CPU clock speed divided by the prescale value setting. When the counter reaches
zero, it is automatically reloaded with a 32-bit period value.
CPU-Timer 0 is for general use and is connected to the PIE block. CPU-Timer 1 is also for general use and can
be connected to INT13 of the CPU. CPU-Timer 2 is reserved for DSP/BIOS. It is connected to INT14 of the CPU.
If DSP/BIOS is not being used, CPU-Timer 2 is available for general use.
CPU-Timer 2 can be clocked by any one of the following:
• SYSCLKOUT (default)
• Internal zero-pin oscillator 1 (INTOSC1)
• Internal zero-pin oscillator 2 (INTOSC2)
• External clock source
Copyright © 2021 Texas Instruments Incorporated
Submit Document Feedback
Product Folder Links: TMS320F28030 TMS320F28030-Q1 TMS320F28031 TMS320F28031-Q1
TMS320F28032 TMS320F28032-Q1 TMS320F28033 TMS320F28033-Q1 TMS320F28034 TMS320F28034-Q1
TMS320F28035 TMS320F28035-Q1
47
TMS320F28030, TMS320F28030-Q1, TMS320F28031, TMS320F28031-Q1, TMS320F28032
TMS320F28032-Q1, TMS320F28033, TMS320F28033-Q1, TMS320F28034, TMS320F28034-Q1
TMS320F28035, TMS320F28035-Q1
SPRS584P – APRIL 2009 – REVISED JUNE 2021
www.ti.com
8.1.20 Control Peripherals
The devices support the following peripherals that are used for embedded control and communication:
ePWM:
The enhanced PWM peripheral supports independent/complementary PWM generation,
adjustable dead-band generation for leading/trailing edges, latched/cycle-by-cycle trip
mechanism. Some of the PWM pins support the HRPWM high resolution duty and
period features. The type 1 module found on 2803x devices also supports increased
dead-band resolution, enhanced SOC and interrupt generation, and advanced
triggering including trip functions based on comparator outputs.
eCAP:
The enhanced capture peripheral uses a 32-bit time base and registers up to four
programmable events in continuous/one-shot capture modes.
This peripheral can also be configured to generate an auxiliary PWM signal.
eQEP:
The enhanced QEP peripheral uses a 32-bit position counter, supports low-speed
measurement using capture unit and high-speed measurement using a 32-bit unit timer.
This peripheral has a watchdog timer to detect motor stall and input error detection logic
to identify simultaneous edge transition in QEP signals.
ADC:
The ADC block is a 12-bit converter. It has up to 16 single-ended channels pinned
out, depending on the device. It contains two sample-and-hold units for simultaneous
sampling.
Comparator:
Each comparator block consists of one analog comparator along with an internal 10-bit
reference for supplying one input of the comparator.
HRCAP:
The high-resolution capture peripheral operates in normal capture mode through a
16-bit counter clocked off of the HCCAPCLK or in high-resolution capture mode by
utilizing built-in calibration logic in conjunction with a TI-supplied calibration library.
8.1.21 Serial Port Peripherals
The devices support the following serial communication peripherals:
48
SPI:
The SPI is a high-speed, synchronous serial I/O port that allows a serial bit stream
of programmed length (1 to 16 bits) to be shifted into and out of the device at a
programmable bit-transfer rate. Normally, the SPI is used for communications between
the MCU and external peripherals or another processor. Typical applications include
external I/O or peripheral expansion through devices such as shift registers, display
drivers, and ADCs. Multidevice communications are supported by the master/slave
operation of the SPI. The SPI contains a 4-level receive and transmit FIFO for reducing
interrupt servicing overhead.
SCI:
The serial communications interface is a two-wire asynchronous serial port, commonly
known as UART. The SCI contains a 4-level receive and transmit FIFO for reducing
interrupt servicing overhead.
I2C:
The inter-integrated circuit (I2C) module provides an interface between an MCU
and other devices compliant with Philips Semiconductors Inter-IC bus ( I2C-bus®)
specification version 2.1 and connected by way of an I2C-bus. External components
attached to this 2-wire serial bus can transmit/receive up to 8-bit data to/from the MCU
through the I2C module. The I2C contains a 4-level receive and transmit FIFO for
reducing interrupt servicing overhead.
eCAN:
This is the enhanced version of the CAN peripheral. It supports 32 mailboxes, time
stamping of messages, and is compliant with ISO11898-1 (CAN 2.0B).
LIN:
LIN 1.3 or 2.0 compatible peripheral. Can also be configured as additional SCI port
Submit Document Feedback
Copyright © 2021 Texas Instruments Incorporated
Product Folder Links: TMS320F28030 TMS320F28030-Q1 TMS320F28031 TMS320F28031-Q1
TMS320F28032 TMS320F28032-Q1 TMS320F28033 TMS320F28033-Q1 TMS320F28034 TMS320F28034-Q1
TMS320F28035 TMS320F28035-Q1
TMS320F28030, TMS320F28030-Q1, TMS320F28031, TMS320F28031-Q1, TMS320F28032
TMS320F28032-Q1, TMS320F28033, TMS320F28033-Q1, TMS320F28034, TMS320F28034-Q1
TMS320F28035, TMS320F28035-Q1
www.ti.com
SPRS584P – APRIL 2009 – REVISED JUNE 2021
8.2 Memory Maps
In Figure 8-1 through Figure 8-4, the following apply:
• Memory blocks are not to scale.
• Peripheral Frame 0, Peripheral Frame 1, Peripheral Frame 2, and Peripheral Frame 3 memory maps are
restricted to data memory only. A user program cannot access these memory maps in program space.
• Protected means the order of Write-followed-by-Read operations is preserved rather than the pipeline order.
• Certain memory ranges are EALLOW protected against spurious writes after configuration.
• Locations 0x3D7C80 to 0x3D7CC0 contain the internal oscillator and ADC calibration routines. These
locations are not programmable by the user.
Copyright © 2021 Texas Instruments Incorporated
Submit Document Feedback
Product Folder Links: TMS320F28030 TMS320F28030-Q1 TMS320F28031 TMS320F28031-Q1
TMS320F28032 TMS320F28032-Q1 TMS320F28033 TMS320F28033-Q1 TMS320F28034 TMS320F28034-Q1
TMS320F28035 TMS320F28035-Q1
49
TMS320F28030, TMS320F28030-Q1, TMS320F28031, TMS320F28031-Q1, TMS320F28032
TMS320F28032-Q1, TMS320F28033, TMS320F28033-Q1, TMS320F28034, TMS320F28034-Q1
TMS320F28035, TMS320F28035-Q1
SPRS584P – APRIL 2009 – REVISED JUNE 2021
Data Space
Prog Space
0x00 0000
M0 Vector RAM (Enabled if VMAP = 0)
0x00 0040
M0 SARAM (1K ´ 16, 0-Wait)
0x00 0400
0x00 0800
0x00 0D00
0x00 0E00
M1 SARAM (1K ´ 16, 0-Wait)
Peripheral Frame 0
PIE Vector - RAM
(256 ´ 16)
(Enabled if
VMAP = 1,
ENPIE = 1)
Reserved
Peripheral Frame 0
0x00 1400
CLA Registers
0x00 1480
CLA-to-CPU Message RAM
0x00 1500
CPU-to-CLA Message RAM
0x00 1580
Peripheral Frame 0
0x00 2000
Reserved
0x00 6000
Peripheral Frame 1
(1K ´ 16, Protected)
0x00 6400
Peripheral Frame 3
(1.5K ´ 16, Protected)
0x00 6A00
Peripheral Frame 1
(1.5K ´ 16, Protected)
0x00 7000
Peripheral Frame 2
(4K ´ 16, Protected)
Reserved
0x00 8000
L0 SARAM (2K ´ 16)
(0-Wait, Secure Zone + ECSL, Dual-Mapped)
0x00 8800
L1 DPSARAM (1K ´ 16)
(0-Wait, Secure Zone + ECSL, CLA Data RAM 0)
0x00 8C00
L2 DPSARAM (1K ´ 16)
(0-Wait, Secure Zone + ECSL, CLA Data RAM 1)
0x00 9000
L3 DPSARAM (4K ´ 16)
(0-Wait, Secure Zone + ECSL, CLA Prog RAM)
0x00 A000
Reserved
0x3D 7800
User OTP (1K ´ 16, Secure Zone + ECSL)
0x3D 7C00
0x3D 7C80
0x3D 7CC0
0x3D 7CE0
0x3D 7E80
www.ti.com
Reserved
Calibration Data
Get_mode function
Reserved
PARTID
Calibration Data
0x3D 7EB0
Reserved
0x3E 8000
0x3F 7FF8
0x3F 8000
0x3F 8800
0x3F E000
0x3F FFC0
A.
B.
FLASH
(64K ´ 16, 8 Sectors, Secure Zone + ECSL)
128-Bit Password
L0 SARAM (2K ´ 16)
(0-Wait, Secure Zone + ECSL, Dual-Mapped)
Reserved
Boot ROM (8K ´ 16, 0-Wait)
Vector (32 Vectors, Enabled if VMAP = 1)
CLA-specific registers and RAM apply to the 28035 device only.
Memory locations 0x3D7E80-0x3D7EAF are reserved in TMX silicon.
Figure 8-1. 28034/28035 Memory Map
50
Submit Document Feedback
Copyright © 2021 Texas Instruments Incorporated
Product Folder Links: TMS320F28030 TMS320F28030-Q1 TMS320F28031 TMS320F28031-Q1
TMS320F28032 TMS320F28032-Q1 TMS320F28033 TMS320F28033-Q1 TMS320F28034 TMS320F28034-Q1
TMS320F28035 TMS320F28035-Q1
www.ti.com
TMS320F28030, TMS320F28030-Q1, TMS320F28031, TMS320F28031-Q1, TMS320F28032
TMS320F28032-Q1, TMS320F28033, TMS320F28033-Q1, TMS320F28034, TMS320F28034-Q1
TMS320F28035, TMS320F28035-Q1
SPRS584P – APRIL 2009 – REVISED JUNE 2021
Data Space
Prog Space
0x00 0000
M0 Vector RAM (Enabled if VMAP = 0)
0x00 0040
M0 SARAM (1K ´ 16, 0-Wait)
0x00 0400
0x00 0800
0x00 0D00
0x00 0E00
M1 SARAM (1K ´ 16, 0-Wait)
Peripheral Frame 0
PIE Vector - RAM
(256 ´ 16)
(Enabled if
VMAP = 1,
ENPIE = 1)
Reserved
Peripheral Frame 0
0x00 1400
CLA Registers
0x00 1480
CLA-to-CPU Message RAM
0x00 1500
CPU-to-CLA Message RAM
0x00 1580
Peripheral Frame 0
0x00 2000
Reserved
0x00 6000
Peripheral Frame 1
(1K ´ 16, Protected)
0x00 6400
Peripheral Frame 3
(1.5K ´ 16, Protected)
0x00 6A00
Peripheral Frame 1
(1.5K ´ 16, Protected)
0x00 7000
Peripheral Frame 2
(4K ´ 16, Protected)
Reserved
0x00 8000
L0 SARAM (2K ´ 16)
(0-Wait, Secure Zone + ECSL, Dual-Mapped)
0x00 8800
L1 DPSARAM (1K ´ 16)
(0-Wait, Secure Zone + ECSL, CLA Data RAM 0)
0x00 8C00
L2 DPSARAM (1K ´ 16)
(0-Wait, Secure Zone + ECSL, CLA Data RAM 1)
0x00 9000
L3 DPSARAM (4K ´ 16)
(0-Wait, Secure Zone + ECSL, CLA Prog RAM)
0x00 A000
Reserved
0x3D 7800
User OTP (1K ´ 16, Secure Zone + ECSL)
0x3D 7C00
0x3D 7C80
0x3D 7CC0
0x3D 7CE0
0x3D 7E80
Reserved
Calibration Data
Get_mode function
Reserved
PARTID
Calibration Data
0x3D 7EB0
Reserved
0x3F 0000
0x3F 7FF8
0x3F 8000
A.
B.
FLASH
(32K ´ 16, 8 Sectors, Secure Zone + ECSL)
128-Bit Password
L0 SARAM (2K ´ 16)
(0-Wait, Secure Zone + ECSL, Dual-Mapped)
0x3F 8800
Reserved
0x3F E000
Boot ROM (8K ´ 16, 0-Wait)
0x3F FFC0
Vector (32 Vectors, Enabled if VMAP = 1)
CLA-specific registers and RAM apply to the 28033 device only.
Memory locations 0x3D7E80-0x3D7EAF are reserved in TMX silicon.
Figure 8-2. 28032/28033 Memory Map
Copyright © 2021 Texas Instruments Incorporated
Submit Document Feedback
Product Folder Links: TMS320F28030 TMS320F28030-Q1 TMS320F28031 TMS320F28031-Q1
TMS320F28032 TMS320F28032-Q1 TMS320F28033 TMS320F28033-Q1 TMS320F28034 TMS320F28034-Q1
TMS320F28035 TMS320F28035-Q1
51
TMS320F28030, TMS320F28030-Q1, TMS320F28031, TMS320F28031-Q1, TMS320F28032
TMS320F28032-Q1, TMS320F28033, TMS320F28033-Q1, TMS320F28034, TMS320F28034-Q1
TMS320F28035, TMS320F28035-Q1
SPRS584P – APRIL 2009 – REVISED JUNE 2021
Data Space
Prog Space
0x00 0000
M0 Vector RAM (Enabled if VMAP = 0)
0x00 0040
M0 SARAM (1K ´ 16, 0-Wait)
0x00 0400
0x00 0800
0x00 0D00
0x00 0E00
M1 SARAM (1K ´ 16, 0-Wait)
Peripheral Frame 0
PIE Vector - RAM
(256 ´ 16)
(Enabled if
VMAP = 1,
ENPIE = 1)
Reserved
Peripheral Frame 0
0x00 2000
Reserved
0x00 6000
Peripheral Frame 1
(1K ´ 16, Protected)
0x00 6400
Peripheral Frame 3
(1.5K ´ 16, Protected)
0x00 6A00
Peripheral Frame 1
(1.5K ´ 16, Protected)
0x00 7000
Peripheral Frame 2
(4K ´ 16, Protected)
Reserved
0x00 8000
L0 SARAM (2K ´ 16)
(0-Wait, Secure Zone + ECSL, Dual-Mapped)
0x00 8800
L1 DPSARAM (1K ´ 16)
(0-Wait, Secure Zone + ECSL, CLA Data RAM 0)
0x00 8C00
L2 DPSARAM (1K ´ 16)
(0-Wait, Secure Zone + ECSL, CLA Data RAM 1)
0x00 9000
L3 DPSARAM (2K ´ 16)
(0-Wait, Secure Zone + ECSL, CLA Prog RAM)
0x00 9800
Reserved
0x3D 7800
User OTP (1K ´ 16, Secure Zone + ECSL)
0x3D 7C00
0x3D 7C80
0x3D 7CC0
0x3D 7CE0
0x3D 7E80
www.ti.com
Reserved
Calibration Data
Get_mode function
Reserved
PARTID
Calibration Data
0x3D 7EB0
Reserved
0x3F 0000
0x3F 7FF8
0x3F 8000
128-Bit Password
L0 SARAM (2K ´ 16)
(0-Wait, Secure Zone + ECSL, Dual-Mapped)
0x3F 8800
Reserved
0x3F E000
Boot ROM (8K ´ 16, 0-Wait)
0x3F FFC0
A.
FLASH
(32K ´ 16, 8 Sectors, Secure Zone + ECSL)
Vector (32 Vectors, Enabled if VMAP = 1)
Memory locations 0x3D7E80-0x3D7EAF are reserved in TMX silicon.
Figure 8-3. 28031 Memory Map
52
Submit Document Feedback
Copyright © 2021 Texas Instruments Incorporated
Product Folder Links: TMS320F28030 TMS320F28030-Q1 TMS320F28031 TMS320F28031-Q1
TMS320F28032 TMS320F28032-Q1 TMS320F28033 TMS320F28033-Q1 TMS320F28034 TMS320F28034-Q1
TMS320F28035 TMS320F28035-Q1
www.ti.com
TMS320F28030, TMS320F28030-Q1, TMS320F28031, TMS320F28031-Q1, TMS320F28032
TMS320F28032-Q1, TMS320F28033, TMS320F28033-Q1, TMS320F28034, TMS320F28034-Q1
TMS320F28035, TMS320F28035-Q1
SPRS584P – APRIL 2009 – REVISED JUNE 2021
Data Space
Prog Space
0x00 0000
M0 Vector RAM (Enabled if VMAP = 0)
0x00 0040
M0 SARAM (1K ´ 16, 0-Wait)
0x00 0400
0x00 0800
0x00 0D00
0x00 0E00
M1 SARAM (1K ´ 16, 0-Wait)
Peripheral Frame 0
PIE Vector - RAM
(256 ´ 16)
(Enabled if
VMAP = 1,
ENPIE = 1)
Reserved
Peripheral Frame 0
0x00 2000
Reserved
0x00 6000
Peripheral Frame 1
(1K ´ 16, Protected)
0x00 6400
Peripheral Frame 3
(1.5K ´ 16, Protected)
0x00 6A00
Peripheral Frame 1
(1.5K ´ 16, Protected)
0x00 7000
Peripheral Frame 2
(4K ´ 16, Protected)
Reserved
0x00 8000
L0 SARAM (2K ´ 16)
(0-Wait, Secure Zone + ECSL, Dual-Mapped)
0x00 8800
L1 DPSARAM (1K ´ 16)
(0-Wait, Secure Zone + ECSL, CLA Data RAM 0)
0x00 8C00
L2 DPSARAM (1K ´ 16)
(0-Wait, Secure Zone + ECSL, CLA Data RAM 1)
0x00 9000
Reserved
0x00 A000
Reserved
0x3D 7800
User OTP (1K ´ 16, Secure Zone + ECSL)
0x3D 7C00
0x3D 7C80
0x3D 7CC0
0x3D 7CE0
0x3D 7E80
Reserved
Calibration Data
Get_mode function
Reserved
PARTID
Calibration Data
0x3D 7EB0
Reserved
0x3F 4000
0x3F 7FF8
0x3F 8000
128-Bit Password
L0 SARAM (2K ´ 16)
(0-Wait, Secure Zone + ECSL, Dual-Mapped)
0x3F 8800
Reserved
0x3F E000
Boot ROM (8K ´ 16, 0-Wait)
0x3F FFC0
A.
FLASH
(16K ´ 16, 4 Sectors, Secure Zone + ECSL)
Vector (32 Vectors, Enabled if VMAP = 1)
Memory locations 0x3D7E80-0x3D7EAF are reserved in TMX silicon.
Figure 8-4. 28030 Memory Map
Copyright © 2021 Texas Instruments Incorporated
Submit Document Feedback
Product Folder Links: TMS320F28030 TMS320F28030-Q1 TMS320F28031 TMS320F28031-Q1
TMS320F28032 TMS320F28032-Q1 TMS320F28033 TMS320F28033-Q1 TMS320F28034 TMS320F28034-Q1
TMS320F28035 TMS320F28035-Q1
53
TMS320F28030, TMS320F28030-Q1, TMS320F28031, TMS320F28031-Q1, TMS320F28032
TMS320F28032-Q1, TMS320F28033, TMS320F28033-Q1, TMS320F28034, TMS320F28034-Q1
TMS320F28035, TMS320F28035-Q1
SPRS584P – APRIL 2009 – REVISED JUNE 2021
www.ti.com
Table 8-3. Addresses of Flash Sectors in F28034/28035
ADDRESS RANGE
PROGRAM AND DATA SPACE
0x3E 8000 to 0x3E 9FFF
Sector H (8K × 16)
0x3E A000 to 0x3E BFFF
Sector G (8K × 16)
0x3E C000 to 0x3E DFFF
Sector F (8K × 16)
0x3E E000 to 0x3E FFFF
Sector E (8K × 16)
0x3F 0000 to 0x3F 1FFF
Sector D (8K × 16)
0x3F 2000 to 0x3F 3FFF
Sector C (8K × 16)
0x3F 4000 to 0x3F 5FFF
Sector B (8K × 16)
0x3F 6000 to 0x3F 7F7F
Sector A (8K × 16)
0x3F 7F80 to 0x3F 7FF5
Program to 0x0000 when using the
Code Security Module
0x3F 7FF6 to 0x3F 7FF7
Boot-to-Flash Entry Point
(program branch instruction here)
0x3F 7FF8 to 0x3F 7FFF
Security Password (128-Bit)
(Do not program to all zeros)
Table 8-4. Addresses of Flash Sectors in F28031/28032/28033
ADDRESS RANGE
PROGRAM AND DATA SPACE
0x3F 0000 to 0x3F 0FFF
Sector H (4K × 16)
0x3F 1000 to 0x3F 1FFF
Sector G (4K × 16)
0x3F 2000 to 0x3F 2FFF
Sector F (4K × 16)
0x3F 3000 to 0x3F 3FFF
Sector E (4K × 16)
0x3F 4000 to 0x3F 4FFF
Sector D (4K × 16)
0x3F 5000 to 0x3F 5FFF
Sector C (4K × 16)
0x3F 6000 to 0x3F 6FFF
Sector B (4K × 16)
0x3F 7000 to 0x3F 7F7F
Sector A (4K × 16)
0x3F 7F80 to 0x3F 7FF5
Program to 0x0000 when using the
Code Security Module
0x3F 7FF6 to 0x3F 7FF7
Boot-to-Flash Entry Point
(program branch instruction here)
0x3F 7FF8 to 0x3F 7FFF
Security Password (128-Bit)
(Do not program to all zeros)
Table 8-5. Addresses of Flash Sectors in F28030
54
ADDRESS RANGE
PROGRAM AND DATA SPACE
0x3F 4000 to 0x3F 4FFF
Sector D (4K × 16)
0x3F 5000 to 0x3F 5FFF
Sector C (4K × 16)
0x3F 6000 to 0x3F 6FFF
Sector B (4K × 16)
0x3F 7000 to 0x3F 7F7F
Sector A (4K × 16)
0x3F 7F80 to 0x3F 7FF5
Program to 0x0000 when using the
Code Security Module
0x3F 7FF6 to 0x3F 7FF7
Boot-to-Flash Entry Point
(program branch instruction here)
0x3F 7FF8 to 0x3F 7FFF
Security Password (128-Bit)
(Do not program to all zeros)
Submit Document Feedback
Copyright © 2021 Texas Instruments Incorporated
Product Folder Links: TMS320F28030 TMS320F28030-Q1 TMS320F28031 TMS320F28031-Q1
TMS320F28032 TMS320F28032-Q1 TMS320F28033 TMS320F28033-Q1 TMS320F28034 TMS320F28034-Q1
TMS320F28035 TMS320F28035-Q1
TMS320F28030, TMS320F28030-Q1, TMS320F28031, TMS320F28031-Q1, TMS320F28032
TMS320F28032-Q1, TMS320F28033, TMS320F28033-Q1, TMS320F28034, TMS320F28034-Q1
TMS320F28035, TMS320F28035-Q1
www.ti.com
•
•
SPRS584P – APRIL 2009 – REVISED JUNE 2021
Note
When the code-security passwords are programmed, all addresses from 0x3F 7F80 to 0x3F 7FF5
cannot be used as program code or data. These locations must be programmed to 0x0000.
If the code security feature is not used, addresses 0x3F 7F80 to 0x3F 7FEF may be used for code
or data. Addresses 0x3F 7FF0 to 0x3F 7FF5 are reserved for data and should not contain program
code.
Table 8-6 shows how to handle these memory locations.
Table 8-6. Impact of Using the Code Security Module
FLASH
ADDRESS
CODE SECURITY ENABLED
0x3F 7F80 to 0x3F 7FEF
Fill with 0x0000
0x3F 7FF0 to 0x3F 7FF5
CODE SECURITY DISABLED
Application code and data
Reserved for data only
Peripheral Frame 1, Peripheral Frame 2, and Peripheral Frame 3 are grouped together to enable these blocks
to be write/read peripheral block protected. The protected mode makes sure that all accesses to these blocks
happen as written. Because of the pipeline, a write immediately followed by a read to different memory locations,
will appear in reverse order on the memory bus of the CPU. This can cause problems in certain peripheral
applications where the user expected the write to occur first (as written). The CPU supports a block protection
mode where a region of memory can be protected so that operations occur as written (the penalty is extra cycles
are added to align the operations). This mode is programmable and by default, it protects the selected zones.
The wait states for the various spaces in the memory map area are listed in Table 8-7.
Table 8-7. Wait States
AREA
WAIT STATES (CPU)
COMMENTS
M0 and M1 SARAMs
0-wait
Peripheral Frame 0
0-wait
Peripheral Frame 1
0-wait (writes)
Cycles can be extended by peripheral generated ready.
2-wait (reads)
Back-to-back write operations to Peripheral Frame 1 registers will incur
a 1-cycle stall (1-cycle delay).
0-wait (writes)
Fixed. Cycles cannot be extended by the peripheral.
Peripheral Frame 2
Fixed
2-wait (reads)
Peripheral Frame 3
0-wait (writes)
Assumes no conflict between CPU and CLA.
2-wait (reads)
Cycles can be extended by peripheral-generated ready.
L0 SARAM
0-wait data and program
Assumes no CPU conflicts
L1 SARAM
0-wait data and program
Assumes no CPU conflicts
L2 SARAM
0-wait data and program
Assumes no CPU conflicts
L3 SARAM
0-wait data and program
Assumes no CPU conflicts
OTP
FLASH
Programmable
Programmed through the Flash registers.
1-wait minimum
1-wait is minimum number of wait states allowed.
Programmable
Programmed through the Flash registers.
0-wait Paged min
1-wait Random min
Random ≥ Paged
FLASH Password
Boot-ROM
16-wait fixed
Wait states of password locations are fixed.
0-wait
Copyright © 2021 Texas Instruments Incorporated
Submit Document Feedback
Product Folder Links: TMS320F28030 TMS320F28030-Q1 TMS320F28031 TMS320F28031-Q1
TMS320F28032 TMS320F28032-Q1 TMS320F28033 TMS320F28033-Q1 TMS320F28034 TMS320F28034-Q1
TMS320F28035 TMS320F28035-Q1
55
TMS320F28030, TMS320F28030-Q1, TMS320F28031, TMS320F28031-Q1, TMS320F28032
TMS320F28032-Q1, TMS320F28033, TMS320F28033-Q1, TMS320F28034, TMS320F28034-Q1
TMS320F28035, TMS320F28035-Q1
www.ti.com
SPRS584P – APRIL 2009 – REVISED JUNE 2021
8.3 Register Maps
The devices contain four peripheral register spaces. The spaces are categorized as follows:
Peripheral Frame 0: These are peripherals that are mapped directly to the CPU memory bus.
See Table 8-8.
Peripheral Frame 1: These are peripherals that are mapped to the 32-bit peripheral bus. See Table
8-9.
Peripheral Frame 2: These are peripherals that are mapped to the 16-bit peripheral bus. See Table
8-10.
Peripheral Frame 3: These are peripherals that are mapped to the 32-bit peripheral bus and are
accessible by the CLA. See Table 8-11.
Table 8-8. Peripheral Frame 0 Registers
NAME(1)
ADDRESS RANGE
SIZE (×16)
EALLOW PROTECTED(2)
Device Emulation Registers
0x00 0880 to 0x00 0984
261
Yes
System Power Control Registers
0x00 0985 to 0x00 0987
3
Yes
FLASH
Registers(3)
0x00 0A80 to 0x00 0ADF
96
Yes
0x00 0AE0 to 0x00 0AEF
16
Yes
ADC registers (0 wait read only)
0x00 0B00 to 0x00 0B0F
16
No
CPU–TIMER0/1/2 Registers
0x00 0C00 to 0x00 0C3F
64
No
PIE Registers
0x00 0CE0 to 0x00 0CFF
32
No
PIE Vector Table
0x00 0D00 to 0x00 0DFF
256
No
CLA Registers
0x00 1400 to 0x00 147F
128
Yes
CLA to CPU Message RAM (CPU writes ignored)
0x00 1480 to 0x00 14FF
128
NA
CPU to CLA Message RAM (CLA writes ignored)
0x00 1500 to 0x00 157F
128
NA
Code Security Module Registers
(1)
(2)
(3)
Registers in Frame 0 support 16-bit and 32-bit accesses.
If registers are EALLOW protected, then writes cannot be performed until the EALLOW instruction is executed. The EDIS instruction
disables writes to prevent stray code or pointers from corrupting register contents.
The Flash Registers are also protected by the Code Security Module (CSM).
Table 8-9. Peripheral Frame 1 Registers
NAME
ADDRESS RANGE
SIZE (×16)
EALLOW PROTECTED
0x00 6000 to 0x00 61FF
512
(1)
eCAP1 registers
0x00 6A00 to 0x00 6A1F
32
No
HRCAP1 registers
0x00 6AC0 to 0x00 6ADF
32
(1)
HRCAP2 registers
0x00 6AE0 to 0x00 6AFF
32
(1)
eQEP1 registers
0x00 6B00 to 0x00 6B3F
64
(1)
LIN-A registers
0x00 6C00 to 0x00 6C7F
128
(1)
GPIO registers
0x00 6F80 to 0x00 6FFF
128
(1)
eCAN-A registers
(1)
56
Some registers are EALLOW protected. For more information, see the TMS320F2803x Real-Time Microcontrollers Technical
Reference Manual.
Submit Document Feedback
Copyright © 2021 Texas Instruments Incorporated
Product Folder Links: TMS320F28030 TMS320F28030-Q1 TMS320F28031 TMS320F28031-Q1
TMS320F28032 TMS320F28032-Q1 TMS320F28033 TMS320F28033-Q1 TMS320F28034 TMS320F28034-Q1
TMS320F28035 TMS320F28035-Q1
TMS320F28030, TMS320F28030-Q1, TMS320F28031, TMS320F28031-Q1, TMS320F28032
TMS320F28032-Q1, TMS320F28033, TMS320F28033-Q1, TMS320F28034, TMS320F28034-Q1
TMS320F28035, TMS320F28035-Q1
www.ti.com
SPRS584P – APRIL 2009 – REVISED JUNE 2021
Table 8-10. Peripheral Frame 2 Registers
NAME
ADDRESS RANGE
SIZE (×16)
EALLOW PROTECTED
System Control Registers
0x00 7010 to 0x00 702F
32
Yes
SPI-A Registers
0x00 7040 to 0x00 704F
16
No
SCI-A Registers
0x00 7050 to 0x00 705F
16
No
NMI Watchdog Interrupt Registers
0x00 7060 to 0x00 706F
16
Yes
External Interrupt Registers
0x00 7070 to 0x00 707F
16
Yes
ADC Registers
0x00 7100 to 0x00 717F
128
(1)
I2C-A Registers
0x00 7900 to 0x00 793F
64
(1)
SPI-B Registers
0x00 7740 to 0x00 774F
16
No
(1)
Some registers are EALLOW protected. For more information, see the TMS320F2803x Real-Time Microcontrollers Technical
Reference Manual.
Table 8-11. Peripheral Frame 3 Registers
NAME
ADDRESS RANGE
SIZE (×16)
EALLOW PROTECTED
Comparator 1 registers
0x00 6400 to 0x00 641F
32
(1)
Comparator 2 registers
0x00 6420 to 0x00 643F
32
(1)
Comparator 3 registers
0x00 6440 to 0x00 645F
32
(1)
ePWM1 + HRPWM1 registers
0x00 6800 to 0x00 683F
64
(1)
ePWM2 + HRPWM2 registers
0x00 6840 to 0x00 687F
64
(1)
ePWM3 + HRPWM3 registers
0x00 6880 to 0x00 68BF
64
(1)
ePWM4 + HRPWM4 registers
0x00 68C0 to 0x00 68FF
64
(1)
ePWM5 + HRPWM5 registers
0x00 6900 to 0x00 693F
64
(1)
ePWM6 + HRPWM6 registers
0x00 6940 to 0x00 697F
64
(1)
ePWM7 + HRPWM7 registers
0x00 6980 to 0x00 69BF
64
(1)
(1)
Some registers are EALLOW protected. For more information, see the TMS320F2803x Real-Time Microcontrollers Technical
Reference Manual.
Copyright © 2021 Texas Instruments Incorporated
Submit Document Feedback
Product Folder Links: TMS320F28030 TMS320F28030-Q1 TMS320F28031 TMS320F28031-Q1
TMS320F28032 TMS320F28032-Q1 TMS320F28033 TMS320F28033-Q1 TMS320F28034 TMS320F28034-Q1
TMS320F28035 TMS320F28035-Q1
57
TMS320F28030, TMS320F28030-Q1, TMS320F28031, TMS320F28031-Q1, TMS320F28032
TMS320F28032-Q1, TMS320F28033, TMS320F28033-Q1, TMS320F28034, TMS320F28034-Q1
TMS320F28035, TMS320F28035-Q1
www.ti.com
SPRS584P – APRIL 2009 – REVISED JUNE 2021
8.4 Device Emulation Registers
These registers are used to control the protection mode of the C28x CPU and to monitor some critical device
signals. The registers are defined in Table 8-12 .
Table 8-12. Device Emulation Registers
NAME
DEVICECNF
PARTID(1)
CLASSID
REVID
ADDRESS
RANGE
SIZE (x16)
0x0880
0x0881
2
Device Configuration Register
0x3D 7E80
1
Part ID Register
0x0882
0x0883
1
1
EALLOW
PROTECTED
DESCRIPTION
Class ID Register
Revision ID
Register
Yes
TMS320F28035PN
0x00BF
TMS320F28035PAG
0x00BE
TMS320F28035RSH
0x00BD
TMS320F28034PN
0x00BB
TMS320F28034PAG
0x00BA
TMS320F28034RSH
0x00B9
TMS320F28033PN
0x00B7
TMS320F28033PAG
0x00B6
TMS320F28033RSH
0x00B5
TMS320F28032PN
0x00B3
TMS320F28032PAG
0x00B2
TMS320F28032RSH
0x00B1
TMS320F28031PN
0x00AF
TMS320F28031PAG
0x00AE
TMS320F28031RSH
0x00AD
TMS320F28030PN
0x00AB
TMS320F28030PAG
0x00AA
TMS320F28030RSH
0x00A9
TMS320F28035
0x00BF
TMS320F28034
0x00BB
TMS320F28033
0x00B7
TMS320F28032
0x00B3
TMS320F28031
0x00AF
TMS320F28030
0x00AB
0x0000 - Silicon Rev. 0 - TMS
No
No
No
0x0001 - Silicon Rev. A - TMS
(1)
58
For TMS320F2803x devices, the PARTID register location differs from the TMS320F2802x devices' location of 0x3D7FFF.
Submit Document Feedback
Copyright © 2021 Texas Instruments Incorporated
Product Folder Links: TMS320F28030 TMS320F28030-Q1 TMS320F28031 TMS320F28031-Q1
TMS320F28032 TMS320F28032-Q1 TMS320F28033 TMS320F28033-Q1 TMS320F28034 TMS320F28034-Q1
TMS320F28035 TMS320F28035-Q1
TMS320F28030, TMS320F28030-Q1, TMS320F28031, TMS320F28031-Q1, TMS320F28032
TMS320F28032-Q1, TMS320F28033, TMS320F28033-Q1, TMS320F28034, TMS320F28034-Q1
TMS320F28035, TMS320F28035-Q1
www.ti.com
SPRS584P – APRIL 2009 – REVISED JUNE 2021
8.5 VREG/BOR/POR
Although the core and I/O circuitry operate on two different voltages, these devices have an on-chip voltage
regulator (VREG) to generate the VDD voltage from the VDDIO supply. This eliminates the cost and space of a
second external regulator on an application board. Additionally, internal power-on reset (POR) and brown-out
reset (BOR) circuits monitor both the VDD and VDDIO rails during power-up and run mode.
8.5.1 On-chip Voltage Regulator (VREG)
A linear regulator generates the core voltage (VDD) from the VDDIO supply. Therefore, although capacitors are
required on each V DD pin to stabilize the generated voltage, power need not be supplied to these pins to operate
the device. Conversely, the VREG can be disabled, should power or redundancy be the primary concern of the
application.
8.5.1.1 Using the On-chip VREG
To use the on-chip VREG, the VREGENZ pin should be tied low and the appropriate recommended operating
voltage should be supplied to the VDDIO and VDDA pins. In this case, the VDD voltage needed by the core logic
will be generated by the VREG. Each VDD pin requires on the order of 1.2 μF (minimum) capacitance for proper
regulation of the VREG. These capacitors should be located as close as possible to the VDD pins. Driving an
external load with the internal VREG is not supported.
8.5.1.2 Disabling the On-chip VREG
To conserve power, it is also possible to disable the on-chip VREG and supply the core logic voltage to the VDD
pins with a more efficient external regulator. To enable this option, the VREGENZ pin must be tied high.
Copyright © 2021 Texas Instruments Incorporated
Submit Document Feedback
Product Folder Links: TMS320F28030 TMS320F28030-Q1 TMS320F28031 TMS320F28031-Q1
TMS320F28032 TMS320F28032-Q1 TMS320F28033 TMS320F28033-Q1 TMS320F28034 TMS320F28034-Q1
TMS320F28035 TMS320F28035-Q1
59
TMS320F28030, TMS320F28030-Q1, TMS320F28031, TMS320F28031-Q1, TMS320F28032
TMS320F28032-Q1, TMS320F28033, TMS320F28033-Q1, TMS320F28034, TMS320F28034-Q1
TMS320F28035, TMS320F28035-Q1
www.ti.com
SPRS584P – APRIL 2009 – REVISED JUNE 2021
8.5.2 On-chip Power-On Reset (POR) and Brown-Out Reset (BOR) Circuit
Two on-chip supervisory circuits, the power-on reset (POR) and the brown-out reset (BOR) remove the burden
of monitoring the VDD and VDDIO supply rails from the application board. The purpose of the POR is to create
a clean reset throughout the device during the entire power-up procedure. The trip point is a looser, lower trip
point than the BOR, which watches for dips in the VDD or VDDIO rail during device operation. The POR function
is present on both VDD and VDDIO rails at all times. After initial device power-up, the BOR function is present on
VDDIO at all times, and on VDD when the internal VREG is enabled ( VREGENZ pin is tied low). Both functions
tie the XRS pin low when one of the voltages is below their respective trip point. VDD BOR and overvoltage
trip points are outside of the recommended operating voltages. Proper device operation cannot be ensured. If
overvoltage or undervoltage conditions affecting the system is a concern for an application, an external voltage
supervisor should be added. Figure 8-5 shows the VREG, POR, and BOR. To disable both the VDD and VDDIO
BOR functions, a bit is provided in the BORCFG register. For details, see the System Control chapter in the
TMS320F2803x Real-Time Microcontrollers Technical Reference Manual.
In
I/O Pin
Out
(Force Hi-Z When High)
DIR (0 = Input, 1 = Output)
Internal
Weak PU
SYSRS
SYSCLKOUT
Deglitch
Filter
Sync RS
WDRST
MCLKRS
PLL
+
Clocking
Logic
XRS
Pin
C28
Core
JTAG
TCK
Detect
Logic
VREGHALT
(A)
WDRST
(B)
PBRS
A.
B.
POR/BOR
Generating
Module
On-Chip
Voltage
Regulator
(VREG)
VREGENZ
WDRST is the reset signal from the CPU watchdog.
PBRS is the reset signal from the POR/BOR module.
Figure 8-5. VREG + POR + BOR + Reset Signal Connectivity
60
Submit Document Feedback
Copyright © 2021 Texas Instruments Incorporated
Product Folder Links: TMS320F28030 TMS320F28030-Q1 TMS320F28031 TMS320F28031-Q1
TMS320F28032 TMS320F28032-Q1 TMS320F28033 TMS320F28033-Q1 TMS320F28034 TMS320F28034-Q1
TMS320F28035 TMS320F28035-Q1
TMS320F28030, TMS320F28030-Q1, TMS320F28031, TMS320F28031-Q1, TMS320F28032
TMS320F28032-Q1, TMS320F28033, TMS320F28033-Q1, TMS320F28034, TMS320F28034-Q1
TMS320F28035, TMS320F28035-Q1
www.ti.com
SPRS584P – APRIL 2009 – REVISED JUNE 2021
8.6 System Control
This section describes the oscillator and clocking mechanisms, the watchdog function and the low-power modes.
Table 8-13. PLL, Clocking, Watchdog, and Low-Power Mode Registers
NAME
DESCRIPTION(1)
ADDRESS
SIZE (x16)
BORCFG
0x00 0985
1
BOR Configuration Register
XCLK
0x00 7010
1
XCLKOUT Control
PLLSTS
0x00 7011
1
PLL Status Register
CLKCTL
0x00 7012
1
Clock Control Register
PLLLOCKPRD
0x00 7013
1
PLL Lock Period
INTOSC1TRIM
0x00 7014
1
Internal Oscillator 1 Trim Register
INTOSC2TRIM
0x00 7016
1
Internal Oscillator 2 Trim Register
PCLKCR2
0x00 7019
1
Peripheral Clock Control Register 2
LOSPCP
0x00 701B
1
Low-Speed Peripheral Clock Prescaler Register
PCLKCR0
0x00 701C
1
Peripheral Clock Control Register 0
PCLKCR1
0x00 701D
1
Peripheral Clock Control Register 1
LPMCR0
0x00 701E
1
Low-Power Mode Control Register 0
PCLKCR3
0x00 7020
1
Peripheral Clock Control Register 3
PLLCR
0x00 7021
1
PLL Control Register
SCSR
0x00 7022
1
System Control and Status Register
WDCNTR
0x00 7023
1
Watchdog Counter Register
WDKEY
0x00 7025
1
Watchdog Reset Key Register
WDCR
0x00 7029
1
Watchdog Control Register
(1)
All registers in this table are EALLOW protected.
Copyright © 2021 Texas Instruments Incorporated
Submit Document Feedback
Product Folder Links: TMS320F28030 TMS320F28030-Q1 TMS320F28031 TMS320F28031-Q1
TMS320F28032 TMS320F28032-Q1 TMS320F28033 TMS320F28033-Q1 TMS320F28034 TMS320F28034-Q1
TMS320F28035 TMS320F28035-Q1
61
TMS320F28030, TMS320F28030-Q1, TMS320F28031, TMS320F28031-Q1, TMS320F28032
TMS320F28032-Q1, TMS320F28033, TMS320F28033-Q1, TMS320F28034, TMS320F28034-Q1
TMS320F28035, TMS320F28035-Q1
www.ti.com
SPRS584P – APRIL 2009 – REVISED JUNE 2021
Figure 8-6 shows the various clock domains that are discussed. Figure 8-7 shows the various clock sources
(both internal and external) that can provide a clock for device operation.
SYSCLKOUT
LOSPCP
(System Ctrl Regs)
PCLKCR0/1/2/3
(System Ctrl Regs)
Clock Enables
I/O
CLKIN
LSPCLK
SPI-A, SPI-B, SCI-A
Clock Enables
I/O
C28x Core
eCAN-A, LIN-A
Peripheral
Registers
PF2
/2
Peripheral
Registers
PF1
Peripheral
Registers
PF1
Peripheral
Registers
PF3
Peripheral
Registers
PF2
Clock Enables
GPIO
Mux
I/O
eCAP1, eQEP1, HRCAP1/2
Clock Enables
I/O
ePWM1/.../7, HRPWM1/.../7
Clock Enables
I/O
I2C-A
Clock Enables
16 Ch
ADC
Registers
PF2
PF0
Analog
GPIO
Mux
Clock Enables
6
A.
12-Bit ADC
COMP1/2/3
COMP
Registers
PF3
CLKIN is the clock into the CPU. It is passed out of the CPU as SYSCLKOUT (that is, CLKIN is the same frequency as SYSCLKOUT).
Figure 8-6. Clock and Reset Domains
62
Submit Document Feedback
Copyright © 2021 Texas Instruments Incorporated
Product Folder Links: TMS320F28030 TMS320F28030-Q1 TMS320F28031 TMS320F28031-Q1
TMS320F28032 TMS320F28032-Q1 TMS320F28033 TMS320F28033-Q1 TMS320F28034 TMS320F28034-Q1
TMS320F28035 TMS320F28035-Q1
www.ti.com
A.
B.
TMS320F28030, TMS320F28030-Q1, TMS320F28031, TMS320F28031-Q1, TMS320F28032
TMS320F28032-Q1, TMS320F28033, TMS320F28033-Q1, TMS320F28034, TMS320F28034-Q1
TMS320F28035, TMS320F28035-Q1
SPRS584P – APRIL 2009 – REVISED JUNE 2021
Register loaded from TI OTP-based calibration function.
See Section 8.6.4 for details on missing clock detection.
Figure 8-7. Clock Tree
Copyright © 2021 Texas Instruments Incorporated
Submit Document Feedback
Product Folder Links: TMS320F28030 TMS320F28030-Q1 TMS320F28031 TMS320F28031-Q1
TMS320F28032 TMS320F28032-Q1 TMS320F28033 TMS320F28033-Q1 TMS320F28034 TMS320F28034-Q1
TMS320F28035 TMS320F28035-Q1
63
TMS320F28030, TMS320F28030-Q1, TMS320F28031, TMS320F28031-Q1, TMS320F28032
TMS320F28032-Q1, TMS320F28033, TMS320F28033-Q1, TMS320F28034, TMS320F28034-Q1
TMS320F28035, TMS320F28035-Q1
www.ti.com
SPRS584P – APRIL 2009 – REVISED JUNE 2021
8.6.1 Internal Zero Pin Oscillators
The F2803x devices contain two independent internal zero pin oscillators. By default both oscillators are turned
on at power up, and internal oscillator 1 is the default clock source at this time. For power savings, unused
oscillators may be powered down by the user. The center frequency of these oscillators is determined by their
respective oscillator trim registers, written to in the calibration routine as part of the boot ROM execution. See
Section 7, Electrical Specifications, for more information on these oscillators.
8.6.2 Crystal Oscillator Option
The on-chip crystal oscillator X1 and X2 pins are 1.8-V level signals and must never have 3.3-V level signals
applied to them. If a system 3.3-V external oscillator is to be used as a clock source, it should be connected to
the XCLKIN pin only. The X1 pin is not intended to be used as a single-ended clock input, it should be used with
X2 and a crystal.
The typical specifications for the external quartz crystal (fundamental mode, parallel resonant) are listed in Table
8-14. Furthermore, ESR range = 30 to 150 Ω. For Table 8-14, Cshunt should be less than or equal to 5 pF.
Table 8-14. Typical Specifications for External Quartz Crystal
FREQUENCY (MHz)
Rd (Ω)
CL1 (pF)
CL2 (pF)
5
2200
18
18
10
470
15
15
15
0
15
15
20
0
12
12
XCLKIN/GPIO19/38
Turn off
XCLKIN path
in CLKCTL
register
X1
X2
Rd
Crystal
CL1
CL2
Figure 8-8. Using the On-chip Crystal Oscillator
Note
1. CL1 and CL2 are the total capacitance of the circuit board and components excluding the IC and
crystal. The value is usually approximately twice the value of the crystal's load capacitance.
2. The load capacitance of the crystal is described in the crystal specifications of the manufacturers.
3. TI recommends that customers have the resonator/crystal vendor characterize the operation of
their device with the MCU chip. The resonator/crystal vendor has the equipment and expertise
to tune the tank circuit. The vendor can also advise the customer regarding the proper tank
component values that will produce proper start-up and stability over the entire operating range.
64
Submit Document Feedback
Copyright © 2021 Texas Instruments Incorporated
Product Folder Links: TMS320F28030 TMS320F28030-Q1 TMS320F28031 TMS320F28031-Q1
TMS320F28032 TMS320F28032-Q1 TMS320F28033 TMS320F28033-Q1 TMS320F28034 TMS320F28034-Q1
TMS320F28035 TMS320F28035-Q1
TMS320F28030, TMS320F28030-Q1, TMS320F28031, TMS320F28031-Q1, TMS320F28032
TMS320F28032-Q1, TMS320F28033, TMS320F28033-Q1, TMS320F28034, TMS320F28034-Q1
TMS320F28035, TMS320F28035-Q1
www.ti.com
SPRS584P – APRIL 2009 – REVISED JUNE 2021
XCLKIN/GPIO19/38
X1
X2
NC
External Clock Signal
(Toggling 0−VDDIO)
Figure 8-9. Using a 3.3-V External Oscillator
8.6.3 PLL-Based Clock Module
The devices have an on-chip, PLL-based clock module. This module provides all the necessary clocking signals
for the device, as well as control for low-power mode entry. The PLL has a 4-bit ratio control PLLCR[DIV] to
select different CPU clock rates. The watchdog module should be disabled before writing to the PLLCR register.
It can be re-enabled (if need be) after the PLL module has stabilized, which takes
1 ms. The input clock and PLLCR[DIV] bits should be chosen in such a way that the output frequency of the PLL
(VCOCLK) is at least 50 MHz.
Table 8-15. PLL Settings
PLLCR[DIV] VALUE(2) (3)
(1)
(2)
(3)
SYSCLKOUT (CLKIN)
PLLSTS[DIVSEL] = 0 or
1(1)
PLLSTS[DIVSEL] = 2
PLLSTS[DIVSEL] = 3
0000 (PLL bypass)
OSCCLK/4 (Default)(2)
OSCCLK/2
OSCCLK
0001
(OSCCLK * 1)/4
(OSCCLK * 1)/2
(OSCCLK * 1)/1
0010
(OSCCLK * 2)/4
(OSCCLK * 2)/2
(OSCCLK * 2)/1
0011
(OSCCLK * 3)/4
(OSCCLK * 3)/2
(OSCCLK * 3)/1
0100
(OSCCLK * 4)/4
(OSCCLK * 4)/2
(OSCCLK * 4)/1
0101
(OSCCLK * 5)/4
(OSCCLK * 5)/2
(OSCCLK * 5)/1
0110
(OSCCLK * 6)/4
(OSCCLK * 6)/2
(OSCCLK * 6)/1
0111
(OSCCLK * 7)/4
(OSCCLK * 7)/2
(OSCCLK * 7)/1
1000
(OSCCLK * 8)/4
(OSCCLK * 8)/2
(OSCCLK * 8)/1
1001
(OSCCLK * 9)/4
(OSCCLK * 9)/2
(OSCCLK * 9)/1
1010
(OSCCLK * 10)/4
(OSCCLK * 10)/2
(OSCCLK * 10)/1
1011
(OSCCLK * 11)/4
(OSCCLK * 11)/2
(OSCCLK * 11)/1
1100
(OSCCLK * 12)/4
(OSCCLK * 12)/2
(OSCCLK * 12)/1
By default, PLLSTS[DIVSEL] is configured for /4. (The boot ROM changes this to /1.) PLLSTS[DIVSEL] must be 0 before writing to the
PLLCR and should be changed only after PLLSTS[PLLLOCKS] = 1.
The PLL control register (PLLCR) and PLL Status Register (PLLSTS) are reset to their default state by the XRS signal or a watchdog
reset only. A reset issued by the debugger or the missing clock detect logic has no effect.
This register is EALLOW protected. See the System Control chapter in the TMS320F2803x Real-Time Microcontrollers Technical
Reference Manual for more information.
Table 8-16. CLKIN Divide Options
Copyright © 2021 Texas Instruments Incorporated
PLLSTS [DIVSEL]
CLKIN DIVIDE
0
/4
1
/4
2
/2
3
/1
Submit Document Feedback
Product Folder Links: TMS320F28030 TMS320F28030-Q1 TMS320F28031 TMS320F28031-Q1
TMS320F28032 TMS320F28032-Q1 TMS320F28033 TMS320F28033-Q1 TMS320F28034 TMS320F28034-Q1
TMS320F28035 TMS320F28035-Q1
65
TMS320F28030, TMS320F28030-Q1, TMS320F28031, TMS320F28031-Q1, TMS320F28032
TMS320F28032-Q1, TMS320F28033, TMS320F28033-Q1, TMS320F28034, TMS320F28034-Q1
TMS320F28035, TMS320F28035-Q1
www.ti.com
SPRS584P – APRIL 2009 – REVISED JUNE 2021
The PLL-based clock module provides four modes of operation:
• INTOSC1 (Internal Zero-pin Oscillator 1): This is the on-chip internal oscillator 1. This can provide the clock
for the Watchdog block, core and CPU-Timer 2
• INTOSC2 (Internal Zero-pin Oscillator 2): This is the on-chip internal oscillator 2. This can provide the clock
for the Watchdog block, core and CPU-Timer 2. Both INTOSC1 and INTOSC2 can be independently chosen
for the Watchdog block, core and CPU-Timer 2.
• Crystal/Resonator Operation: The on-chip (crystal) oscillator enables the use of an external crystal/
resonator attached to the device to provide the time base. The crystal/resonator is connected to the X1/X2
pins. Some devices may not have the X1/X2 pins. See Section 6.2.1 for details.
• External Clock Source Operation: If the on-chip (crystal) oscillator is not used, this mode allows it to be
bypassed. The device clocks are generated from an external clock source input on the XCLKIN pin. The
XCLKIN is multiplexed with GPIO19 or GPIO38 pin. The XCLKIN input can be selected as GPIO19 or
GPIO38 through the XCLKINSEL bit in XCLK register. The CLKCTL[XCLKINOFF] bit disables this clock input
(forced low). If the clock source is not used or the respective pins are used as GPIOs, the user should disable
at boot time.
Before changing clock sources, ensure that the target clock is present. If a clock is not present, then that clock
source must be disabled (using the CLKCTL register) before switching clocks.
Table 8-17. Possible PLL Configuration Modes
REMARKS
PLLSTS[DIVSEL]
CLKIN AND
SYSCLKOUT
PLL Off
Invoked by the user setting the PLLOFF bit in the PLLSTS register. The PLL
block is disabled in this mode. This can be useful to reduce system noise and for
low-power operation. The PLLCR register must first be set to 0x0000 (PLL Bypass)
before entering this mode. The CPU clock (CLKIN) is derived directly from the
input clock on either X1/X2, X1 or XCLKIN.
0, 1
2
3
OSCCLK/4
OSCCLK/2
OSCCLK/1
PLL Bypass
PLL Bypass is the default PLL configuration upon power-up or after an external
reset ( XRS). This mode is selected when the PLLCR register is set to 0x0000
or while the PLL locks to a new frequency after the PLLCR register has been
modified. In this mode, the PLL is bypassed but the PLL is not turned off.
0, 1
2
3
OSCCLK/4
OSCCLK/2
OSCCLK/1
PLL Enable
Achieved by writing a nonzero value n into the PLLCR register. Upon writing to the
PLLCR the device will switch to PLL Bypass mode until the PLL locks.
0, 1
2
3
OSCCLK * n/4
OSCCLK * n/2
OSCCLK * n/1
PLL MODE
8.6.4 Loss of Input Clock (NMI Watchdog Function)
The 2803x devices may be clocked from either one of the internal zero-pin oscillators (INTOSC1/INTOSC2), the
on-chip crystal oscillator, or from an external clock input. Regardless of the clock source, in PLL-enabled and
PLL-bypass mode, if the input clock to the PLL vanishes, the PLL will issue a limp-mode clock at its output. This
limp-mode clock continues to clock the CPU and peripherals at a typical frequency of 1–5 MHz.
When the limp mode is activated, a CLOCKFAIL signal is generated that is latched as an NMI interrupt.
Depending on how the NMIRESETSEL bit has been configured, a reset to the device can be fired immediately
or the NMI watchdog counter can issue a reset when it overflows. In addition to this, the Missing Clock Status
(MCLKSTS) bit is set. The NMI interrupt could be used by the application to detect the input clock failure and
initiate necessary corrective action such as switching over to an alternative clock source (if available) or initiate a
shut-down procedure for the system.
If the software does not respond to the clock-fail condition, the NMI watchdog triggers a reset after a
preprogrammed time interval. Figure 8-10 shows the interrupt mechanisms involved.
66
Submit Document Feedback
Copyright © 2021 Texas Instruments Incorporated
Product Folder Links: TMS320F28030 TMS320F28030-Q1 TMS320F28031 TMS320F28031-Q1
TMS320F28032 TMS320F28032-Q1 TMS320F28033 TMS320F28033-Q1 TMS320F28034 TMS320F28034-Q1
TMS320F28035 TMS320F28035-Q1
TMS320F28030, TMS320F28030-Q1, TMS320F28031, TMS320F28031-Q1, TMS320F28032
TMS320F28032-Q1, TMS320F28033, TMS320F28033-Q1, TMS320F28034, TMS320F28034-Q1
TMS320F28035, TMS320F28035-Q1
www.ti.com
SPRS584P – APRIL 2009 – REVISED JUNE 2021
NMIFLG[NMINT]
NMIFLGCLR[NMINT]
Clear
Latch
Set Clear
XRS
NMINT
Generate
Interrupt
Pulse
When
Input = 1
1
0
NMIFLG[CLOCKFAIL]
Clear
Latch
Clear Set
0
NMIFLGCLR[CLOCKFAIL]
CLOCKFAIL
SYNC?
SYSCLKOUT
NMICFG[CLOCKFAIL]
XRS
NMIFLGFRC[CLOCKFAIL]
SYSCLKOUT
SYSRS
NMIWDPRD[15:0]
NMIWDCNT[15:0]
NMI Watchdog
NMIRS
See System
Control Section
Figure 8-10. NMI Watchdog
8.6.5 CPU Watchdog Module
The CPU watchdog module on the 2803x device is similar to the one used on the 281x/280x/283xx devices.
This module generates an output pulse, 512 oscillator clocks wide (OSCCLK), whenever the 8-bit watchdog up
counter has reached its maximum value. To prevent this, the user must disable the counter or the software must
periodically write a 0x55 + 0xAA sequence into the watchdog key register that resets the watchdog counter.
Figure 8-11 shows the various functional blocks within the watchdog module.
Normally, when the input clocks are present, the CPU watchdog counter decrements to initiate a CPU watchdog
reset or WDINT interrupt. However, when the external input clock fails, the CPU watchdog counter stops
decrementing (that is, the watchdog counter does not change with the limp-mode clock).
Note
The CPU watchdog is different from the NMI watchdog. It is the legacy watchdog that is present in all
28x devices.
Note
Applications in which the correct CPU operating frequency is absolutely critical should implement a
mechanism by which the MCU will be held in reset, should the input clocks ever fail. For example,
an R-C circuit may be used to trigger the XRS pin of the MCU, should the capacitor ever get fully
charged. An I/O pin may be used to discharge the capacitor on a periodic basis to prevent it from
getting fully charged. Such a circuit would also help in detecting failure of the flash memory.
Copyright © 2021 Texas Instruments Incorporated
Submit Document Feedback
Product Folder Links: TMS320F28030 TMS320F28030-Q1 TMS320F28031 TMS320F28031-Q1
TMS320F28032 TMS320F28032-Q1 TMS320F28033 TMS320F28033-Q1 TMS320F28034 TMS320F28034-Q1
TMS320F28035 TMS320F28035-Q1
67
TMS320F28030, TMS320F28030-Q1, TMS320F28031, TMS320F28031-Q1, TMS320F28032
TMS320F28032-Q1, TMS320F28033, TMS320F28033-Q1, TMS320F28034, TMS320F28034-Q1
TMS320F28035, TMS320F28035-Q1
SPRS584P – APRIL 2009 – REVISED JUNE 2021
A.
www.ti.com
The WDRST signal is driven low for 512 OSCCLK cycles.
Figure 8-11. CPU Watchdog Module
The WDINT signal enables the watchdog to be used as a wakeup from IDLE/STANDBY mode.
In STANDBY mode, all peripherals are turned off on the device. The only peripheral that remains functional is
the CPU watchdog. This module will run off OSCCLK. The WDINT signal is fed to the LPM block so that it can
wake the device from STANDBY (if enabled). See Section 8.7, Low-power Modes Block, for more details.
In IDLE mode, the WDINT signal can generate an interrupt to the CPU, through the PIE, to take the CPU out of
IDLE mode.
In HALT mode, the CPU watchdog can be used to wake up the device through a device reset.
68
Submit Document Feedback
Copyright © 2021 Texas Instruments Incorporated
Product Folder Links: TMS320F28030 TMS320F28030-Q1 TMS320F28031 TMS320F28031-Q1
TMS320F28032 TMS320F28032-Q1 TMS320F28033 TMS320F28033-Q1 TMS320F28034 TMS320F28034-Q1
TMS320F28035 TMS320F28035-Q1
TMS320F28030, TMS320F28030-Q1, TMS320F28031, TMS320F28031-Q1, TMS320F28032
TMS320F28032-Q1, TMS320F28033, TMS320F28033-Q1, TMS320F28034, TMS320F28034-Q1
TMS320F28035, TMS320F28035-Q1
www.ti.com
SPRS584P – APRIL 2009 – REVISED JUNE 2021
8.7 Low-power Modes Block
Table 8-18 summarizes the various modes.
Table 8-18. Low-power Modes
EXIT(1)
MODE
LPMCR0(1:0)
OSCCLK
CLKIN
SYSCLKOUT
IDLE
00
On
On
On
XRS, CPU watchdog interrupt, any
enabled interrupt
STANDBY
01
On
(CPU watchdog still running)
Off
Off
XRS, CPU watchdog interrupt, GPIO
Port A signal, debugger(2)
1X
Off
(on-chip crystal oscillator and PLL
turned off, zero-pin oscillator and
CPU watchdog state dependent
on user code.)
Off
Off
XRS, GPIO Port A signal, debugger(2),
CPU watchdog
HALT(3)
(1)
(2)
(3)
The EXIT column lists which signals or under what conditions the low-power mode is exited. A low signal, on any of the signals, exits
the low-power condition. This signal must be kept low long enough for an interrupt to be recognized by the device. Otherwise, the
low-power mode will not be exited and the device will go back into the indicated low-power mode.
The JTAG port can still function even if the CPU clock (CLKIN) is turned off.
The WDCLK must be active for the device to go into HALT mode.
The various low-power modes operate as follows:
IDLE Mode:
This mode is exited by any enabled interrupt that is recognized by the processor.
The LPM block performs no tasks during this mode as long as the LPMCR0(LPM)
bits are set to 0,0.
STANDBY Mode:
Any GPIO port A signal (GPIO[31:0]) can wake the device from STANDBY mode.
The user must select which signal(s) will wake the device in the GPIOLPMSEL
register. The selected signal(s) are also qualified by the OSCCLK before waking
the device. The number of OSCCLKs is specified in the LPMCR0 register.
HALT Mode:
CPU watchdog, XRS, and any GPIO port A signal (GPIO[31:0]) can wake the
device from HALT mode. The user selects the signal in the GPIOLPMSEL
register.
Note
The low-power modes do not affect the state of the output pins (PWM pins included). They will be
in whatever state the code left them in when the IDLE instruction was executed. See the System
Control chapter in the TMS320F2803x Real-Time Microcontrollers Technical Reference Manual for
more details.
Copyright © 2021 Texas Instruments Incorporated
Submit Document Feedback
Product Folder Links: TMS320F28030 TMS320F28030-Q1 TMS320F28031 TMS320F28031-Q1
TMS320F28032 TMS320F28032-Q1 TMS320F28033 TMS320F28033-Q1 TMS320F28034 TMS320F28034-Q1
TMS320F28035 TMS320F28035-Q1
69
TMS320F28030, TMS320F28030-Q1, TMS320F28031, TMS320F28031-Q1, TMS320F28032
TMS320F28032-Q1, TMS320F28033, TMS320F28033-Q1, TMS320F28034, TMS320F28034-Q1
TMS320F28035, TMS320F28035-Q1
www.ti.com
SPRS584P – APRIL 2009 – REVISED JUNE 2021
8.8 Interrupts
Figure 8-12 shows how the various interrupt sources are multiplexed.
Peripherals
2
(SPI, SCI, ePWM, I C, HRPWM, HRCAP,
eCAP, ADC, eQEP, CLA, LIN, eCAN)
WDINT
WAKEINT
Sync
Watchdog
LPMINT
Low Power Modes
XINT1
Interrupt Control
MUX
SYSCLKOUT
XINT1
C28
Core
GPIOXINT1SEL(4:0)
ADC
XINT2
XINT2SOC
MUX
PIE
INT1
to
INT12
Up to 96 Interrupts
XINT1CR(15:0)
XINT1CTR(15:0)
XINT2
Interrupt Control
XINT2CR(15:0)
XINT2CTR(15:0)
GPIOXINT2SEL(4:0)
MUX
GPIO0.int
XINT3
XINT3
Interrupt Control
XINT3CR(15:0)
GPIO
MUX
GPIO31.int
XINT3CTR(15:0)
GPIOXINT3SEL(4:0)
TINT0
INT13
TINT1
INT14
TINT2
NMI
CPU TIMER 0
CPU TIMER 1
CPU TIMER 2
NMI interrupt with watchdog function
(See the NMI Watchdog section.)
CPUTMR2CLK
CLOCKFAIL
NMIRS
System Control
(See the System
Control section.)
Figure 8-12. External and PIE Interrupt Sources
70
Submit Document Feedback
Copyright © 2021 Texas Instruments Incorporated
Product Folder Links: TMS320F28030 TMS320F28030-Q1 TMS320F28031 TMS320F28031-Q1
TMS320F28032 TMS320F28032-Q1 TMS320F28033 TMS320F28033-Q1 TMS320F28034 TMS320F28034-Q1
TMS320F28035 TMS320F28035-Q1
TMS320F28030, TMS320F28030-Q1, TMS320F28031, TMS320F28031-Q1, TMS320F28032
TMS320F28032-Q1, TMS320F28033, TMS320F28033-Q1, TMS320F28034, TMS320F28034-Q1
TMS320F28035, TMS320F28035-Q1
www.ti.com
SPRS584P – APRIL 2009 – REVISED JUNE 2021
Eight PIE block interrupts are grouped into one CPU interrupt. In total, 12 CPU interrupt groups, with 8 interrupts
per group equals 96 possible interrupts. Table 8-19 shows the interrupts used by 2803x devices.
The TRAP #VectorNumber instruction transfers program control to the interrupt service routine corresponding
to the vector specified. The TRAP #0 instruction attempts to transfer program control to the address pointed to
by the reset vector. The PIE vector table does not, however, include a reset vector. Therefore, the TRAP #0
instruction should not be used when the PIE is enabled. Doing so will result in undefined behavior.
When the PIE is enabled, the TRAP #1 to TRAP #12 instructions will transfer program control to the interrupt
service routine corresponding to the first vector within the PIE group. For example: the TRAP #1 instruction
fetches the vector from INT1.1, the TRAP #2 instruction fetches the vector from INT2.1, and so forth.
IFR[12:1]
IER[12:1]
INTM
INT1
INT2
1
CPU
MUX
0
INT11
INT12
(Flag)
INTx
INTx.1
INTx.2
INTx.3
INTx.4
INTx.5
INTx.6
INTx.7
INTx.8
MUX
PIEACKx
(Enable/Flag)
Global
Enable
(Enable)
(Enable)
(Flag)
PIEIERx[8:1]
PIEIFRx[8:1]
From
Peripherals
or
External
Interrupts
Figure 8-13. Multiplexing of Interrupts Using the PIE Block
Copyright © 2021 Texas Instruments Incorporated
Submit Document Feedback
Product Folder Links: TMS320F28030 TMS320F28030-Q1 TMS320F28031 TMS320F28031-Q1
TMS320F28032 TMS320F28032-Q1 TMS320F28033 TMS320F28033-Q1 TMS320F28034 TMS320F28034-Q1
TMS320F28035 TMS320F28035-Q1
71
TMS320F28030, TMS320F28030-Q1, TMS320F28031, TMS320F28031-Q1, TMS320F28032
TMS320F28032-Q1, TMS320F28033, TMS320F28033-Q1, TMS320F28034, TMS320F28034-Q1
TMS320F28035, TMS320F28035-Q1
www.ti.com
SPRS584P – APRIL 2009 – REVISED JUNE 2021
In Table 8-19, out of 96 possible interrupts, some interrupts are not used. These interrupts are reserved for
future devices. These interrupts can be used as software interrupts if they are enabled at the PIEIFRx level,
provided none of the interrupts within the group is being used by a peripheral. Otherwise, interrupts coming in
from peripherals may be lost by accidentally clearing their flag while modifying the PIEIFR. To summarize, there
are two safe cases when the reserved interrupts could be used as software interrupts:
1. No peripheral within the group is asserting interrupts.
2. No peripheral interrupts are assigned to the group (for example, PIE group 7).
Table 8-19. PIE MUXed Peripheral Interrupt Vector Table
INT1.y
INT2.y
INT3.y
INT4.y
INT5.y
INT6.y
INT7.y
INT8.y
INT9.y
INT10.y
INT11.y
INT12.y
72
INTx.8
INTx.7
INTx.6
INTx.5
INTx.4
INTx.3
INTx.2
INTx.1
WAKEINT
TINT0
ADCINT9
XINT2
XINT1
Reserved
ADCINT2
ADCINT1
(LPM/WD)
(TIMER 0)
(ADC)
Ext. int. 2
Ext. int. 1
–
(ADC)
(ADC)
0xD4E
0xD4C
0xD4A
0xD48
0xD46
0xD44
0xD42
0xD40
Reserved
EPWM7_TZINT
EPWM6_TZINT
EPWM5_TZINT
EPWM4_TZINT
EPWM3_TZINT
EPWM2_TZINT
EPWM1_TZINT
–
(ePWM7)
(ePWM6)
(ePWM5)
(ePWM4)
(ePWM3)
(ePWM2)
(ePWM1)
0xD5E
0xD5C
0xD5A
0xD58
0xD56
0xD54
0xD52
0xD50
Reserved
EPWM7_INT
EPWM6_INT
EPWM5_INT
EPWM4_INT
EPWM3_INT
EPWM2_INT
EPWM1_INT
(ePWM1)
–
(ePWM7)
(ePWM6)
(ePWM5)
(ePWM4)
(ePWM3)
(ePWM2)
0xD6E
0xD6C
0xD6A
0xD68
0xD66
0xD64
0xD62
0xD60
HRCAP2_INT
HRCAP1_INT
Reserved
Reserved
Reserved
Reserved
Reserved
ECAP1_INT
(HRCAP2)
(HRCAP1)
–
–
–
–
–
(eCAP1)
0xD7E
0xD7C
0xD7A
0xD78
0xD76
0xD74
0xD72
0xD70
Reserved
Reserved
Reserved
Reserved
Reserved
Reserved
Reserved
EQEP1_INT
(eQEP1)
–
–
–
–
–
–
–
0xD8E
0xD8C
0xD8A
0xD88
0xD86
0xD84
0xD82
0xD80
Reserved
Reserved
Reserved
Reserved
SPITXINTB
SPIRXINTB
SPITXINTA
SPIRXINTA
(SPI-A)
–
–
–
–
(SPI-B)
(SPI-B)
(SPI-A)
0xD9E
0xD9C
0xD9A
0xD98
0xD96
0xD94
0xD92
0xD90
Reserved
Reserved
Reserved
Reserved
Reserved
Reserved
Reserved
Reserved
–
–
–
–
–
–
–
–
0xDAE
0xDAC
0xDAA
0xDA8
0xDA6
0xDA4
0xDA2
0xDA0
Reserved
Reserved
Reserved
Reserved
Reserved
Reserved
I2CINT2A
I2CINT1A
–
–
–
–
–
–
(I2C-A)
(I2C-A)
0xDBE
0xDBC
0xDBA
0xDB8
0xDB6
0xDB4
0xDB2
0xDB0
Reserved
Reserved
ECAN1_INTA
ECAN0_INTA
LIN1_INTA
LIN0_INTA
SCITXINTA
SCIRXINTA
(SCI-A)
–
–
(CAN-A)
(CAN-A)
(LIN-A)
(LIN-A)
(SCI-A)
0xDCE
0xDCC
0xDCA
0xDC8
0xDC6
0xDC4
0xDC2
0xDC0
ADCINT8
ADCINT7
ADCINT6
ADCINT5
ADCINT4
ADCINT3
ADCINT2
ADCINT1
(ADC)
(ADC)
(ADC)
(ADC)
(ADC)
(ADC)
(ADC)
(ADC)
0xDDE
0xDDC
0xDDA
0xDD8
0xDD6
0xDD4
0xDD2
0xDD0
CLA1_INT8
CLA1_INT7
CLA1_INT6
CLA1_INT5
CLA1_INT4
CLA1_INT3
CLA1_INT2
CLA1_INT1
(CLA)
(CLA)
(CLA)
(CLA)
(CLA)
(CLA)
(CLA)
(CLA)
0xDEE
0xDEC
0xDEA
0xDE8
0xDE6
0xDE4
0xDE2
0xDE0
LUF
LVF
Reserved
Reserved
Reserved
Reserved
Reserved
XINT3
(CLA)
(CLA)
–
–
–
–
–
Ext. Int. 3
0xDFE
0xDFC
0xDFA
0xDF8
0xDF6
0xDF4
0xDF2
0xDF0
Submit Document Feedback
Copyright © 2021 Texas Instruments Incorporated
Product Folder Links: TMS320F28030 TMS320F28030-Q1 TMS320F28031 TMS320F28031-Q1
TMS320F28032 TMS320F28032-Q1 TMS320F28033 TMS320F28033-Q1 TMS320F28034 TMS320F28034-Q1
TMS320F28035 TMS320F28035-Q1
TMS320F28030, TMS320F28030-Q1, TMS320F28031, TMS320F28031-Q1, TMS320F28032
TMS320F28032-Q1, TMS320F28033, TMS320F28033-Q1, TMS320F28034, TMS320F28034-Q1
TMS320F28035, TMS320F28035-Q1
www.ti.com
SPRS584P – APRIL 2009 – REVISED JUNE 2021
Table 8-20. PIE Configuration and Control Registers
NAME
DESCRIPTION(1)
ADDRESS
SIZE (x16)
PIECTRL
0x0CE0
1
PIE, Control Register
PIEACK
0x0CE1
1
PIE, Acknowledge Register
PIEIER1
0x0CE2
1
PIE, INT1 Group Enable Register
PIEIFR1
0x0CE3
1
PIE, INT1 Group Flag Register
PIEIER2
0x0CE4
1
PIE, INT2 Group Enable Register
PIEIFR2
0x0CE5
1
PIE, INT2 Group Flag Register
PIEIER3
0x0CE6
1
PIE, INT3 Group Enable Register
PIEIFR3
0x0CE7
1
PIE, INT3 Group Flag Register
PIEIER4
0x0CE8
1
PIE, INT4 Group Enable Register
PIEIFR4
0x0CE9
1
PIE, INT4 Group Flag Register
PIEIER5
0x0CEA
1
PIE, INT5 Group Enable Register
PIEIFR5
0x0CEB
1
PIE, INT5 Group Flag Register
PIEIER6
0x0CEC
1
PIE, INT6 Group Enable Register
PIEIFR6
0x0CED
1
PIE, INT6 Group Flag Register
PIEIER7
0x0CEE
1
PIE, INT7 Group Enable Register
PIEIFR7
0x0CEF
1
PIE, INT7 Group Flag Register
PIEIER8
0x0CF0
1
PIE, INT8 Group Enable Register
PIEIFR8
0x0CF1
1
PIE, INT8 Group Flag Register
PIEIER9
0x0CF2
1
PIE, INT9 Group Enable Register
PIEIFR9
0x0CF3
1
PIE, INT9 Group Flag Register
PIEIER10
0x0CF4
1
PIE, INT10 Group Enable Register
PIEIFR10
0x0CF5
1
PIE, INT10 Group Flag Register
PIEIER11
0x0CF6
1
PIE, INT11 Group Enable Register
PIEIFR11
0x0CF7
1
PIE, INT11 Group Flag Register
PIEIER12
0x0CF8
1
PIE, INT12 Group Enable Register
PIEIFR12
0x0CF9
1
PIE, INT12 Group Flag Register
Reserved
0x0CFA –
0x0CFF
6
Reserved
(1)
The PIE configuration and control registers are not protected by EALLOW mode. The PIE vector
table is protected.
Copyright © 2021 Texas Instruments Incorporated
Submit Document Feedback
Product Folder Links: TMS320F28030 TMS320F28030-Q1 TMS320F28031 TMS320F28031-Q1
TMS320F28032 TMS320F28032-Q1 TMS320F28033 TMS320F28033-Q1 TMS320F28034 TMS320F28034-Q1
TMS320F28035 TMS320F28035-Q1
73
TMS320F28030, TMS320F28030-Q1, TMS320F28031, TMS320F28031-Q1, TMS320F28032
TMS320F28032-Q1, TMS320F28033, TMS320F28033-Q1, TMS320F28034, TMS320F28034-Q1
TMS320F28035, TMS320F28035-Q1
www.ti.com
SPRS584P – APRIL 2009 – REVISED JUNE 2021
8.8.1 External Interrupts
Table 8-21. External Interrupt Registers
NAME
ADDRESS
SIZE (x16)
DESCRIPTION
XINT1CR
0x00 7070
1
XINT1 configuration register
XINT2CR
0x00 7071
1
XINT2 configuration register
XINT3CR
0x00 7072
1
XINT3 configuration register
XINT1CTR
0x00 7078
1
XINT1 counter register
XINT2CTR
0x00 7079
1
XINT2 counter register
XINT3CTR
0x00 707A
1
XINT3 counter register
Each external interrupt can be enabled/disabled or qualified using positive, negative, or both positive and
negative edge. For more information, see the System Control chapter in the TMS320F2803x Real-Time
Microcontrollers Technical Reference Manual.
8.8.1.1 External Interrupt Electrical Data/Timing
8.8.1.1.1 External Interrupt Timing Requirements
MIN
tw(INT) (1) (2) Pulse duration, INT input low/high
(1)
(2)
MAX
UNIT
Synchronous
1tc(SCO)
cycles
With qualifier
1tc(SCO) + tw(IQSW)
cycles
For an explanation of the input qualifier parameters, see Section 8.9.15.1.2.1.
This timing is applicable to any GPIO pin configured for ADCSOC functionality.
8.8.1.1.2 External Interrupt Switching Characteristics
over recommended operating conditions (unless otherwise noted)
PARAMETER
td(INT) (1)
(1)
Delay time, INT low/high to interrupt-vector fetch
MIN
MAX
UNIT
tw(IQSW) + 12tc(SCO)
cycles
For an explanation of the input qualifier parameters, see Section 8.9.15.1.2.1.
tw(INT)
XINT1, XINT2, XINT3
td(INT)
Address bus
(internal)
Interrupt Vector
Figure 8-14. External Interrupt Timing
74
Submit Document Feedback
Copyright © 2021 Texas Instruments Incorporated
Product Folder Links: TMS320F28030 TMS320F28030-Q1 TMS320F28031 TMS320F28031-Q1
TMS320F28032 TMS320F28032-Q1 TMS320F28033 TMS320F28033-Q1 TMS320F28034 TMS320F28034-Q1
TMS320F28035 TMS320F28035-Q1
TMS320F28030, TMS320F28030-Q1, TMS320F28031, TMS320F28031-Q1, TMS320F28032
TMS320F28032-Q1, TMS320F28033, TMS320F28033-Q1, TMS320F28034, TMS320F28034-Q1
TMS320F28035, TMS320F28035-Q1
www.ti.com
SPRS584P – APRIL 2009 – REVISED JUNE 2021
8.9 Peripherals
8.9.1 Control Law Accelerator (CLA) Overview
The control law accelerator extends the capabilities of the C28x CPU by adding parallel processing. Time-critical
control loops serviced by the CLA can achieve low ADC sample to output delay. Thus, the CLA enables faster
system response and higher frequency control loops. Utilizing the CLA for time-critical tasks frees up the main
CPU to perform other system and communication functions concurently. The following is a list of major features
of the CLA.
• Clocked at the same rate as the main CPU (SYSCLKOUT).
• An independent architecture allowing CLA algorithm execution independent of the main C28x CPU.
– Complete bus architecture:
• Program address bus and program data bus
• Data address bus, data read bus, and data write bus
– Independent eight-stage pipeline.
– 12-bit program counter (MPC)
– Four 32-bit result registers (MR0–MR3)
– Two 16-bit auxillary registers (MAR0, MAR1)
– Status register (MSTF)
• Instruction set includes:
– IEEE single-precision (32-bit) floating-point math operations
– Floating-point math with parallel load or store
– Floating-point multiply with parallel add or subtract
– 1/X and 1/sqrt(X) estimations
– Data type conversions.
– Conditional branch and call
– Data load/store operations
• The CLA program code can consist of up to eight tasks or interrupt service routines.
– The start address of each task is specified by the MVECT registers.
– No limit on task size as long as the tasks fit within the CLA program memory space.
– One task is serviced at a time through to completion. There is no nesting of tasks.
– Upon task completion, a task-specific interrupt is flagged within the PIE.
– When a task finishes, the next highest-priority pending task is automatically started.
• Task trigger mechanisms:
– C28x CPU through the IACK instruction
– Task1 to Task7: the corresponding ADC or ePWM module interrupt. For example:
• Task1: ADCINT1 or EPWM1_INT
• Task2: ADCINT2 or EPWM2_INT
• Task7: ADCINT7 or EPWM7_INT
– Task8: ADCINT8 or by CPU Timer 0.
• Memory and Shared Peripherals:
– Two dedicated message RAMs for communication between the CLA and the main CPU.
– The C28x CPU can map CLA program and data memory to the main CPU space or CLA space.
– The CLA has direct access to the ADC Result registers, comparator registers, and the ePWM+HRPWM
registers.
For more information on the CLA, see the Control Law Accelerator (CLA) chapter in the TMS320F2803x
Real-Time Microcontrollers Technical Reference Manual.
Copyright © 2021 Texas Instruments Incorporated
Submit Document Feedback
Product Folder Links: TMS320F28030 TMS320F28030-Q1 TMS320F28031 TMS320F28031-Q1
TMS320F28032 TMS320F28032-Q1 TMS320F28033 TMS320F28033-Q1 TMS320F28034 TMS320F28034-Q1
TMS320F28035 TMS320F28035-Q1
75
TMS320F28030, TMS320F28030-Q1, TMS320F28031, TMS320F28031-Q1, TMS320F28032
TMS320F28032-Q1, TMS320F28033, TMS320F28033-Q1, TMS320F28034, TMS320F28034-Q1
TMS320F28035, TMS320F28035-Q1
www.ti.com
SPRS584P – APRIL 2009 – REVISED JUNE 2021
IACK
Peripheral Interrupts
CLA Control
Registers
MPERINT1
to
MPERINT8
CPU Timer 0
MIFR
MIOVF
MICLR
MICLROVF
MIFRC
MIER
MIRUN
MPISRCSEL1
CLA Program Address Bus
CLA
Program
Memory
CLA Program Data Bus
Main CPU BUS
Map to CLA or
CPU Space
SYSCLKOUT
CLAENCLK
SYSRS
INT11
INT12
PIE
MMEMCFG
Main CPU Read/Write Data Bus
CLA
Data
Memory
Map to CLA or
CPU Space
MCTL
MPC(12)
MSTF(32)
MR0(32)
MR1(32)
MR2(32)
MR3(32)
MAR0(32)
MAR1(32)
Main
28x
CPU
LVF
LUF
MVECT1
MVECT2
MVECT3
MVECT4
MVECT5
MVECT6
MVECT7
MVECT8
CLA Execution
Registers
Main CPU Read Data Bus
CLA_INT1 to CLA_INT8
CLA
Shared
Message
RAMs
MEALLOW
CLA Data Read Address Bus
CLA Data Read Data Bus
CLA Data Write Address Bus
CLA Data Bus
EPWM1_INT to
EPWM8_INT
INT
Main CPU Bus
ADCINT1 to
ADCINT8
ADC
Result
Registers
ePWM
and
HRPWM
Registers
CLA Data Write Data Bus
Comparator
Registers
Figure 8-15. CLA Block Diagram
76
Submit Document Feedback
Copyright © 2021 Texas Instruments Incorporated
Product Folder Links: TMS320F28030 TMS320F28030-Q1 TMS320F28031 TMS320F28031-Q1
TMS320F28032 TMS320F28032-Q1 TMS320F28033 TMS320F28033-Q1 TMS320F28034 TMS320F28034-Q1
TMS320F28035 TMS320F28035-Q1
TMS320F28030, TMS320F28030-Q1, TMS320F28031, TMS320F28031-Q1, TMS320F28032
TMS320F28032-Q1, TMS320F28033, TMS320F28033-Q1, TMS320F28034, TMS320F28034-Q1
TMS320F28035, TMS320F28035-Q1
www.ti.com
SPRS584P – APRIL 2009 – REVISED JUNE 2021
Table 8-22. CLA Control Registers
CLA1
ADDRESS
SIZE (x16)
EALLOW
PROTECTED
MVECT1
0x1400
1
Yes
CLA Interrupt/Task 1 Start Address
MVECT2
0x1401
1
Yes
CLA Interrupt/Task 2 Start Address
MVECT3
0x1402
1
Yes
CLA Interrupt/Task 3 Start Address
MVECT4
0x1403
1
Yes
CLA Interrupt/Task 4 Start Address
MVECT5
0x1404
1
Yes
CLA Interrupt/Task 5 Start Address
MVECT6
0x1405
1
Yes
CLA Interrupt/Task 6 Start Address
MVECT7
0x1406
1
Yes
CLA Interrupt/Task 7 Start Address
MVECT8
0x1407
1
Yes
CLA Interrupt/Task 8 Start Address
MCTL
0x1410
1
Yes
CLA Control Register
MMEMCFG
0x1411
1
Yes
CLA Memory Configure Register
MPISRCSEL1
0x1414
2
Yes
Peripheral Interrupt Source Select Register 1
MIFR
0x1420
1
Yes
Interrupt Flag Register
MIOVF
0x1421
1
Yes
Interrupt Overflow Register
MIFRC
0x1422
1
Yes
Interrupt Force Register
MICLR
0x1423
1
Yes
Interrupt Clear Register
MICLROVF
0x1424
1
Yes
Interrupt Overflow Clear Register
MIER
0x1425
1
Yes
Interrupt Enable Register
MIRUN
0x1426
1
Yes
Interrupt RUN Register
MIPCTL
0x1427
1
Yes
Interrupt Priority Control Register
MPC(2)
0x1428
1
–
CLA Program Counter
MAR0(2)
0x142A
1
–
CLA Aux Register 0
MAR1(2)
0x142B
1
–
CLA Aux Register 1
MSTF(2)
0x142E
2
–
CLA STF Register
MR0(2)
0x1430
2
–
CLA R0H Register
MR1(2)
0x1434
2
–
CLA R1H Register
MR2(2)
0x1438
2
–
CLA R2H Register
MR3(2)
0x143C
2
–
CLA R3H Register
REGISTER NAME
(1)
(2)
DESCRIPTION(1)
All registers in this table are CSM protected
The main C28x CPU has read only access to this register for debug purposes. The main CPU cannot perform CPU or debugger writes
to this register.
Table 8-23. CLA Message RAM
ADDRESS RANGE
SIZE (x16)
0x1480 – 0x14FF
128
CLA to CPU Message RAM
0x1500 – 0x157F
128
CPU to CLA Message RAM
Copyright © 2021 Texas Instruments Incorporated
DESCRIPTION
Submit Document Feedback
Product Folder Links: TMS320F28030 TMS320F28030-Q1 TMS320F28031 TMS320F28031-Q1
TMS320F28032 TMS320F28032-Q1 TMS320F28033 TMS320F28033-Q1 TMS320F28034 TMS320F28034-Q1
TMS320F28035 TMS320F28035-Q1
77
TMS320F28030, TMS320F28030-Q1, TMS320F28031, TMS320F28031-Q1, TMS320F28032
TMS320F28032-Q1, TMS320F28033, TMS320F28033-Q1, TMS320F28034, TMS320F28034-Q1
TMS320F28035, TMS320F28035-Q1
www.ti.com
SPRS584P – APRIL 2009 – REVISED JUNE 2021
8.9.2 Analog Block
A 12-bit ADC core is implemented that has different timings than the 12-bit ADC used on F280x/F2833x. The
ADC wrapper is modified to incorporate the new timings and also other enhancements to improve the timing
control of start of conversions. Figure 8-16 shows the interaction of the analog module with the rest of the
F2803x system.
For more information on the ADC, see the Analog-to-Digital Converter and Comparator chapter in the
TMS320F2803x Real-Time Microcontrollers Technical Reference Manual.
56-Pin
64-Pin
80-Pin
VDDA
VDDA
(3.3 V) VDDA
(Agnd) VSSA
VREFLO
VREFLO VSSA
Tied To
VSSA VREFLO
Interface Reference
Diff
VREFHI VREFHI
Tied To
A0
A0
A1
A2
A2
A3
A3
A4
A4
A5
A6
A6
A7
A7
B0
B0
B1
B1
B2
B2
B3
B3
B4
B4
B5
B6
B6
B7
B7
Signal Pinout
A1
B1
A2
Simultaneous Sampling Channels
A1
VREFHI
A0
B0
B2
COMP1OUT
AIO2
AIO10
10-Bit
DAC
Comp1
A3
B3
A4
B4
ADC
COMP2OUT
AIO4
AIO12
10-Bit
DAC
Comp2
B5
Temperature Sensor
A5
A6
B6
COMP3OUT
AIO6
AIO14
10-Bit
DAC
Comp3
A7
B7
Figure 8-16. Analog Pin Configurations
78
Submit Document Feedback
Copyright © 2021 Texas Instruments Incorporated
Product Folder Links: TMS320F28030 TMS320F28030-Q1 TMS320F28031 TMS320F28031-Q1
TMS320F28032 TMS320F28032-Q1 TMS320F28033 TMS320F28033-Q1 TMS320F28034 TMS320F28034-Q1
TMS320F28035 TMS320F28035-Q1
TMS320F28030, TMS320F28030-Q1, TMS320F28031, TMS320F28031-Q1, TMS320F28032
TMS320F28032-Q1, TMS320F28033, TMS320F28033-Q1, TMS320F28034, TMS320F28034-Q1
TMS320F28035, TMS320F28035-Q1
www.ti.com
SPRS584P – APRIL 2009 – REVISED JUNE 2021
8.9.2.1 Analog-to-Digital Converter (ADC)
8.9.2.1.1 Features
The core of the ADC contains a single 12-bit converter fed by two sample-and-hold circuits. The sampleand-hold circuits can be sampled simultaneously or sequentially. These, in turn, are fed by a total of up to
16 analog input channels. The converter can be configured to run with an internal band-gap reference to
create true-voltage based conversions or with a pair of external voltage references (VREFHI/VREFLO) to create
ratiometric-based conversions.
Contrary to previous ADC types, this ADC is not sequencer-based. It is easy for the user to create a series of
conversions from a single trigger. However, the basic principle of operation is centered around the configurations
of individual conversions, called SOCs, or Start-Of-Conversions.
Functions of the ADC module include:
• 12-bit ADC core with built-in dual sample-and-hold (S/H)
• Simultaneous sampling or sequential sampling modes
• Full range analog input: 0 V to 3.3 V fixed, or VREFHI/VREFLO ratiometric. The digital value of the input analog
voltage is derived by:
– Internal Reference (VREFLO = VSSA. VREFHI must not exceed VDDA when using either internal or external
reference modes.)
Digital Value = 0,
Digital Value = 4096 ´
when input £ 0 V
Input Analog Voltage - VREFLO
3.3
Digital Value = 4095,
when 0 V < input < 3.3 V
when input ³ 3.3 V
– External Reference (VREFHI/VREFLO connected to external references. VREFHI must not exceed VDDA when
using either internal or external reference modes.)
when input £ 0 V
Digital Value = 0,
Digital Value = 4096 ´
Input Analog Voltage - VREFLO
VREFHI - VREFLO
Digital Value = 4095,
•
•
•
•
•
when 0 V < input < VREFHI
when input ³ VREFHI
Up to 16-channel, multiplexed inputs
16 SOCs, configurable for trigger, sample window, and channel
16 result registers (individually addressable) to store conversion values
Multiple trigger sources
– S/W – software immediate start
– ePWM 1–7
– GPIO XINT2
– CPU Timers 0/1/2
– ADCINT1/2
9 flexible PIE interrupts, can configure interrupt request after any conversion
Copyright © 2021 Texas Instruments Incorporated
Submit Document Feedback
Product Folder Links: TMS320F28030 TMS320F28030-Q1 TMS320F28031 TMS320F28031-Q1
TMS320F28032 TMS320F28032-Q1 TMS320F28033 TMS320F28033-Q1 TMS320F28034 TMS320F28034-Q1
TMS320F28035 TMS320F28035-Q1
79
TMS320F28030, TMS320F28030-Q1, TMS320F28031, TMS320F28031-Q1, TMS320F28032
TMS320F28032-Q1, TMS320F28033, TMS320F28033-Q1, TMS320F28034, TMS320F28034-Q1
TMS320F28035, TMS320F28035-Q1
www.ti.com
SPRS584P – APRIL 2009 – REVISED JUNE 2021
Table 8-24. ADC Configuration and Control Registers
ADDRESS
SIZE
(x16)
EALLOW
PROTECTE
D
ADCCTL1
0x7100
1
Yes
Control 1 Register
ADCCTL2
0x7101
1
Yes
Control 2 Register
ADCINTFLG
0x7104
1
No
Interrupt Flag Register
ADCINTFLGCLR
0x7105
1
No
Interrupt Flag Clear Register
ADCINTOVF
0x7106
1
No
Interrupt Overflow Register
ADCINTOVFCLR
0x7107
1
No
Interrupt Overflow Clear Register
INTSEL1N2
0x7108
1
Yes
Interrupt 1 and 2 Selection Register
INTSEL3N4
0x7109
1
Yes
Interrupt 3 and 4 Selection Register
INTSEL5N6
0x710A
1
Yes
Interrupt 5 and 6 Selection Register
INTSEL7N8
0x710B
1
Yes
Interrupt 7 and 8 Selection Register
INTSEL9N10
0x710C
1
Yes
Interrupt 9 Selection Register (reserved Interrupt 10 Selection)
SOCPRICTL
0x7110
1
Yes
SOC Priority Control Register
ADCSAMPLEMODE
0x7112
1
Yes
Sampling Mode Register
ADCINTSOCSEL1
0x7114
1
Yes
Interrupt SOC Selection 1 Register (for 8 channels)
ADCINTSOCSEL2
0x7115
1
Yes
Interrupt SOC Selection 2 Register (for 8 channels)
ADCSOCFLG1
0x7118
1
No
SOC Flag 1 Register (for 16 channels)
ADCSOCFRC1
0x711A
1
No
SOC Force 1 Register (for 16 channels)
ADCSOCOVF1
0x711C
1
No
SOC Overflow 1 Register (for 16 channels)
REGISTER NAME
ADCSOCOVFCLR1
DESCRIPTION
0x711E
1
No
SOC Overflow Clear 1 Register (for 16 channels)
0x7120 –
0x712F
1
Yes
SOC0 Control Register to SOC15 Control Register
0x7140
1
Yes
Reference Trim Register
ADCOFFTRIM
0x7141
1
Yes
Offset Trim Register
COMPHYSTCTL
0x714C
1
Yes
Comparator Hysteresis Control Register
ADCREV
0x714F
1
No
Revision Register
ADCSOC0CTL to
ADCSOC15CTL
ADCREFTRIM
Table 8-25. ADC Result Registers (Mapped to PF0)
REGISTER NAME
ADCRESULT0 to ADCRESULT15
80
Submit Document Feedback
ADDRESS
SIZE
(x16)
EALLOW
PROTECTED
0xB00 to 0xB0F
1
No
DESCRIPTION
ADC Result 0 Register to ADC Result 15
Register
Copyright © 2021 Texas Instruments Incorporated
Product Folder Links: TMS320F28030 TMS320F28030-Q1 TMS320F28031 TMS320F28031-Q1
TMS320F28032 TMS320F28032-Q1 TMS320F28033 TMS320F28033-Q1 TMS320F28034 TMS320F28034-Q1
TMS320F28035 TMS320F28035-Q1
TMS320F28030, TMS320F28030-Q1, TMS320F28031, TMS320F28031-Q1, TMS320F28032
TMS320F28032-Q1, TMS320F28033, TMS320F28033-Q1, TMS320F28034, TMS320F28034-Q1
TMS320F28035, TMS320F28035-Q1
www.ti.com
SPRS584P – APRIL 2009 – REVISED JUNE 2021
0-Wait
Result
Registers
PF0 (CPU)
PF2 (CPU)
SYSCLKOUT
ADCENCLK
ADCINT 1
PIE
ADCINT 9
TINT 0
ADCTRIG 1
TINT 1
ADCTRIG 2
AIO
MUX
ADC
Channels
ADC
Core
12-Bit
TINT 2
ADCTRIG 3
XINT 2SOC
ADCTRIG 4
ADCTRIG 5
ADCTRIG 6
ADCTRIG 7
ADCTRIG 8
ADCTRIG 9
ADCTRIG 10
ADCTRIG 11
ADCTRIG 12
ADCTRIG 13
ADCTRIG 14
ADCTRIG 15
ADCTRIG 16
ADCTRIG 17
ADCTRIG 18
CPUTIMER 0
CPUTIMER 1
CPUTIMER 2
XINT 2
SOCA 1
SOCB 1
EPWM 1
SOCA 2
SOCB 2
EPWM 2
SOCA 3
SOCB 3
EPWM 3
SOCA 4
SOCB 4
EPWM 4
SOCA 5
SOCB 5
EPWM 5
SOCA 6
SOCB 6
EPWM 6
SOCA 7
SOCB 7
EPWM 7
Figure 8-17. ADC Connections
ADC Connections if the ADC is Not Used
TI recommends keeping the connections for the analog power pins, even if the ADC is not used. Following is a
summary of how the ADC pins should be connected, if the ADC is not used in an application:
• VDDA – Connect to VDDIO
• VSSA – Connect to VSS
• VREFLO – Connect to VSS
• ADCINAn, ADCINBn, VREFHI – Connect to VSSA
When the ADC module is used in an application, unused ADC input pins should be connected to analog ground
(VSSA).
Note
Unused ADCIN pins that are multiplexed with AIO function should not be directly connected to analog
ground. They should be grounded through a 1-kΩ resistor. This is to prevent an errant code from
configuring these pins as AIO outputs and driving grounded pins to a logic-high state.
When the ADC is not used, be sure that the clock to the ADC module is not turned on to realize power savings.
Copyright © 2021 Texas Instruments Incorporated
Submit Document Feedback
Product Folder Links: TMS320F28030 TMS320F28030-Q1 TMS320F28031 TMS320F28031-Q1
TMS320F28032 TMS320F28032-Q1 TMS320F28033 TMS320F28033-Q1 TMS320F28034 TMS320F28034-Q1
TMS320F28035 TMS320F28035-Q1
81
TMS320F28030, TMS320F28030-Q1, TMS320F28031, TMS320F28031-Q1, TMS320F28032
TMS320F28032-Q1, TMS320F28033, TMS320F28033-Q1, TMS320F28034, TMS320F28034-Q1
TMS320F28035, TMS320F28035-Q1
www.ti.com
SPRS584P – APRIL 2009 – REVISED JUNE 2021
8.9.2.1.2 ADC Start-of-Conversion Electrical Data/Timing
8.9.2.1.2.1 External ADC Start-of-Conversion Switching Characteristics
over recommended operating conditions (unless otherwise noted)
PARAMETER
tw(ADCSOCL)
MIN
Pulse duration, ADCSOCxO low
MAX
32tc(HCO)
UNIT
cycles
tw(ADCSOCL)
ADCSOCAO
or
ADCSOCBO
Figure 8-18. ADCSOCAO or ADCSOCBO Timing
82
Submit Document Feedback
Copyright © 2021 Texas Instruments Incorporated
Product Folder Links: TMS320F28030 TMS320F28030-Q1 TMS320F28031 TMS320F28031-Q1
TMS320F28032 TMS320F28032-Q1 TMS320F28033 TMS320F28033-Q1 TMS320F28034 TMS320F28034-Q1
TMS320F28035 TMS320F28035-Q1
TMS320F28030, TMS320F28030-Q1, TMS320F28031, TMS320F28031-Q1, TMS320F28032
TMS320F28032-Q1, TMS320F28033, TMS320F28033-Q1, TMS320F28034, TMS320F28034-Q1
TMS320F28035, TMS320F28035-Q1
www.ti.com
SPRS584P – APRIL 2009 – REVISED JUNE 2021
8.9.2.1.3 On-Chip Analog-to-Digital Converter (ADC) Electrical Data/Timing
8.9.2.1.3.1 ADC Electrical Characteristics
PARAMETER
MIN
TYP
MAX
UNIT
DC SPECIFICATIONS
Resolution
12
Bits
ADC clock
60-MHz device
0.001
60
MHz
Sample Window
28035/34/33/32
7
64
24
64
ADC
Clocks
INL (Integral nonlinearity) at ADC Clock ≤ 30 MHz(1)
–4
4
LSB
DNL (Differential nonlinearity) at ADC Clock ≤ 30 MHz,
no missing codes
–1
1
LSB
28031/30
ACCURACY
Offset error (2)
Executing a single selfrecalibration(3)
–20
0
20
Executing periodic selfrecalibration(4)
–4
0
4
LSB
Overall gain error with internal reference
–60
60
LSB
Overall gain error with external reference
–40
40
LSB
Channel-to-channel offset variation
–4
4
LSB
Channel-to-channel gain variation
–4
4
LSB
ADC temperature coefficient with internal reference
–50
ppm/°C
ADC temperature coefficient with external reference
–20
ppm/°C
VREFLO
–100
µA
VREFHI
100
µA
ANALOG INPUT
Analog input voltage with internal reference
0
3.3
V
Analog input voltage with external reference
VREFLO
VREFHI
V
VSSA
0.66
V
2.64
VDDA
1.98
VDDA
VREFLO input voltage(5)
VREFHI input
voltage(6)
with VREFLO = VSSA
Input capacitance
Input leakage current
(1)
(2)
(3)
(4)
(5)
(6)
V
5
pF
±2
μA
INL will degrade when the ADC input voltage goes above VDDA.
1 LSB has the weighted value of full-scale range (FSR)/4096. FSR is 3.3 V with internal reference and VREFHI - VREFLO for external
reference.
For more details, see the TMS320F2803x Real-Time MCUs Silicon Errata.
Periodic self-recalibration will remove system-level and temperature dependencies on the ADC zero offset error. This can be
performed as needed in the application without sacrificing an ADC channel by using the procedure listed in the "ADC Zero Offset
Calibration" section of the Analog-to-Digital Converter and Comparator chapter in the TMS320F2803x Real-Time Microcontrollers
Technical Reference Manual.
VREFLO is always connected to VSSA on the 64-pin PAG device.
VREFHI must not exceed VDDA when using either internal or external reference modes. Because VREFHI is tied to ADCINA0 on the
64-pin PAG device, the input signal on ADCINA0 must not exceed VDDA.
Copyright © 2021 Texas Instruments Incorporated
Submit Document Feedback
Product Folder Links: TMS320F28030 TMS320F28030-Q1 TMS320F28031 TMS320F28031-Q1
TMS320F28032 TMS320F28032-Q1 TMS320F28033 TMS320F28033-Q1 TMS320F28034 TMS320F28034-Q1
TMS320F28035 TMS320F28035-Q1
83
TMS320F28030, TMS320F28030-Q1, TMS320F28031, TMS320F28031-Q1, TMS320F28032
TMS320F28032-Q1, TMS320F28033, TMS320F28033-Q1, TMS320F28034, TMS320F28034-Q1
TMS320F28035, TMS320F28035-Q1
www.ti.com
SPRS584P – APRIL 2009 – REVISED JUNE 2021
8.9.2.1.3.2 ADC Power Modes
ADC OPERATING MODE
IDDA
UNITS
Mode A – Operating Mode
ADC Clock Enabled
Band gap On (ADCBGPWD = 1)
Reference On (ADCREFPWD = 1)
ADC Powered Up (ADCPWDN = 1)
CONDITIONS
13
mA
Mode B – Quick Wake Mode
ADC Clock Enabled
Band gap On (ADCBGPWD = 1)
Reference On (ADCREFPWD = 1)
ADC Powered Up (ADCPWDN = 0)
4
mA
Mode C – Comparator-Only Mode
ADC Clock Enabled
Band gap On (ADCBGPWD = 1)
Reference On (ADCREFPWD = 0)
ADC Powered Up (ADCPWDN = 0)
1.5
mA
Mode D – Off Mode
ADC Clock Enabled
Band gap On (ADCBGPWD = 0)
Reference On (ADCREFPWD = 0)
ADC Powered Up (ADCPWDN = 0)
0.075
mA
8.9.2.1.3.3 Internal Temperature Sensor
8.9.2.1.3.3.1 Temperature Sensor Coefficient
PARAMETER(1)
MIN
TSLOPE
Degrees C of temperature movement per measured ADC LSB change
of the temperature sensor
TOFFSET
ADC output at 0°C of the temperature sensor
(1)
(2)
(3)
TYP
MAX
0.18(2) (3)
UNIT
°C/LSB
1750
LSB
The temperature sensor slope and offset are given in terms of ADC LSBs using the internal reference of the ADC. Values must be
adjusted accordingly in external reference mode to the external reference voltage.
Output of the temperature sensor (in terms of LSBs) is sign-consistent with the direction of the temperature movement. Increasing
temperatures will give increasing ADC values relative to an initial value; decreasing temperatures will give decreasing ADC values
relative to an initial value.
ADC temperature coeffieicient is accounted for in this specification
8.9.2.1.3.4 ADC Power-Up Control Bit Timing
8.9.2.1.3.4.1 ADC Power-Up Delays
PARAMETER(1)
td(PWD)
(1)
Delay time for the ADC to be stable after power up
MIN
MAX
1
UNIT
ms
Timings maintain compatibility to the ADC module. The 2803x ADC supports driving all 3 bits at the same time td(PWD) ms before first
conversion.
ADCPWDN/
ADCBGPWD/
ADCREFPWD/
ADCENABLE
td(PWD)
Request for ADC
Conversion
Figure 8-19. ADC Conversion Timing
84
Submit Document Feedback
Copyright © 2021 Texas Instruments Incorporated
Product Folder Links: TMS320F28030 TMS320F28030-Q1 TMS320F28031 TMS320F28031-Q1
TMS320F28032 TMS320F28032-Q1 TMS320F28033 TMS320F28033-Q1 TMS320F28034 TMS320F28034-Q1
TMS320F28035 TMS320F28035-Q1
TMS320F28030, TMS320F28030-Q1, TMS320F28031, TMS320F28031-Q1, TMS320F28032
TMS320F28032-Q1, TMS320F28033, TMS320F28033-Q1, TMS320F28034, TMS320F28034-Q1
TMS320F28035, TMS320F28035-Q1
www.ti.com
SPRS584P – APRIL 2009 – REVISED JUNE 2021
Rs
Source
Signal
ADCIN
Ron
3.4 kW
Switch
Cp
5 pF
ac
Ch
1.6 pF
28x DSP
Typical Values of the Input Circuit Components:
Switch Resistance (Ron): 3.4 k W
Sampling Capacitor (Ch): 1.6 pF
Parasitic Capacitance (Cp): 5 pF
Source Resistance (Rs): 50 W
Figure 8-20. ADC Input Impedance Model
Copyright © 2021 Texas Instruments Incorporated
Submit Document Feedback
Product Folder Links: TMS320F28030 TMS320F28030-Q1 TMS320F28031 TMS320F28031-Q1
TMS320F28032 TMS320F28032-Q1 TMS320F28033 TMS320F28033-Q1 TMS320F28034 TMS320F28034-Q1
TMS320F28035 TMS320F28035-Q1
85
TMS320F28030, TMS320F28030-Q1, TMS320F28031, TMS320F28031-Q1, TMS320F28032
TMS320F28032-Q1, TMS320F28033, TMS320F28033-Q1, TMS320F28034, TMS320F28034-Q1
TMS320F28035, TMS320F28035-Q1
www.ti.com
SPRS584P – APRIL 2009 – REVISED JUNE 2021
8.9.2.1.3.5 ADC Sequential and Simultaneous Timings
Analog Input
SOC0 Sample
Window
0
2
SOC1 Sample
Window
9
15
SOC2 Sample
Window
22
24
37
ADCCLK
ADCCTL 1.INTPULSEPOS
ADCSOCFLG 1.SOC0
ADCSOCFLG 1.SOC1
ADCSOCFLG 1.SOC2
S/H Window Pulse to Core
SOC0
ADCRESULT 0
SOC1
2 ADCCLKs
SOC2
Result 0 Latched
ADCRESULT 1
EOC0 Pulse
EOC1 Pulse
ADCINTFLG .ADCINTx
Minimum
7 ADCCLKs
Conversion 0
13 ADC Clocks
6
ADCCLKs
Minimum
7 ADCCLKs
1 ADCCLK
Conversion 1
13 ADC Clocks
Figure 8-21. Timing Example for Sequential Mode / Late Interrupt Pulse
86
Submit Document Feedback
Copyright © 2021 Texas Instruments Incorporated
Product Folder Links: TMS320F28030 TMS320F28030-Q1 TMS320F28031 TMS320F28031-Q1
TMS320F28032 TMS320F28032-Q1 TMS320F28033 TMS320F28033-Q1 TMS320F28034 TMS320F28034-Q1
TMS320F28035 TMS320F28035-Q1
www.ti.com
TMS320F28030, TMS320F28030-Q1, TMS320F28031, TMS320F28031-Q1, TMS320F28032
TMS320F28032-Q1, TMS320F28033, TMS320F28033-Q1, TMS320F28034, TMS320F28034-Q1
TMS320F28035, TMS320F28035-Q1
SPRS584P – APRIL 2009 – REVISED JUNE 2021
Analog Input
SOC0 Sample
Window
0
2
SOC1 Sample
Window
9
15
SOC2 Sample
Window
22
24
37
ADCCLK
ADCCTL1.INTPULSEPOS
ADCSOCFLG 1.SOC0
ADCSOCFLG 1.SOC1
ADCSOCFLG 1.SOC2
S/H Window Pulse to Core
SOC0
SOC1
SOC2
Result 0 Latched
ADCRESULT 0
ADCRESULT 1
EOC0 Pulse
EOC1 Pulse
EOC2 Pulse
ADCINTFLG .ADCINTx
Minimum
7 ADCCLKs
Conversion 0
13 ADC Clocks
6
ADCCLKs
Minimum
7 ADCCLKs
2 ADCCLKs
Conversion 1
13 ADC Clocks
Figure 8-22. Timing Example for Sequential Mode / Early Interrupt Pulse
Copyright © 2021 Texas Instruments Incorporated
Submit Document Feedback
Product Folder Links: TMS320F28030 TMS320F28030-Q1 TMS320F28031 TMS320F28031-Q1
TMS320F28032 TMS320F28032-Q1 TMS320F28033 TMS320F28033-Q1 TMS320F28034 TMS320F28034-Q1
TMS320F28035 TMS320F28035-Q1
87
TMS320F28030, TMS320F28030-Q1, TMS320F28031, TMS320F28031-Q1, TMS320F28032
TMS320F28032-Q1, TMS320F28033, TMS320F28033-Q1, TMS320F28034, TMS320F28034-Q1
TMS320F28035, TMS320F28035-Q1
SPRS584P – APRIL 2009 – REVISED JUNE 2021
www.ti.com
Analog Input A
SOC0 Sample
A Window
SOC2 Sample
A Window
Analog Input B
SOC0 Sample
B Window
0
2
SOC2 Sample
B Window
9
22
24
37
50
ADCCLK
ADCCTL1.INTPULSEPOS
ADCSOCFLG 1.SOC0
ADCSOCFLG 1.SOC1
ADCSOCFLG 1.SOC2
S/H Window Pulse to Core
SOC0 (A/B)
ADCRESULT 0
SOC2 (A/B)
2 ADCCLKs
Result 0 (A) Latched
ADCRESULT 1
Result 0 (B) Latched
ADCRESULT 2
EOC0 Pulse
1 ADCCLK
EOC1 Pulse
EOC2 Pulse
ADCINTFLG .ADCINTx
Minimum
7 ADCCLKs
Conversion 0 (A)
13 ADC Clocks
19
ADCCLKs
Conversion 0 (B)
13 ADC Clocks
2 ADCCLKs
Minimum
7 ADCCLKs
Conversion 1 (A)
13 ADC Clocks
Figure 8-23. Timing Example for Simultaneous Mode / Late Interrupt Pulse
88
Submit Document Feedback
Copyright © 2021 Texas Instruments Incorporated
Product Folder Links: TMS320F28030 TMS320F28030-Q1 TMS320F28031 TMS320F28031-Q1
TMS320F28032 TMS320F28032-Q1 TMS320F28033 TMS320F28033-Q1 TMS320F28034 TMS320F28034-Q1
TMS320F28035 TMS320F28035-Q1
TMS320F28030, TMS320F28030-Q1, TMS320F28031, TMS320F28031-Q1, TMS320F28032
TMS320F28032-Q1, TMS320F28033, TMS320F28033-Q1, TMS320F28034, TMS320F28034-Q1
TMS320F28035, TMS320F28035-Q1
www.ti.com
SPRS584P – APRIL 2009 – REVISED JUNE 2021
Analog Input A
SOC0 Sample
A Window
SOC2 Sample
A Window
SOC0 Sample
B Window
SOC2 Sample
B Window
Analog Input B
0
9
2
22 24
37
50
ADCCLK
ADCCTL1.INTPULSEPOS
ADCSOCFLG1.SOC0
ADCSOCFLG1.SOC1
ADCSOCFLG1.SOC2
S/H Window Pulse to Core
SOC0 (A/B)
SOC2 (A/B)
2 ADCCLKs
ADCRESULT 0
Result 0 (A) Latched
Result 0 (B) Latched
ADCRESULT 1
ADCRESULT 2
EOC0 Pulse
EOC1 Pulse
EOC2 Pulse
ADCINTFLG.ADCINTx
Minimum
7 ADCCLKs
Conversion 0 (A)
13 ADC Clocks
19
ADCCLKs
Conversion 0 (B)
13 ADC Clocks
Minimum
7 ADCCLKs
2 ADCCLKs
Conversion 1 (A)
13 ADC Clocks
Figure 8-24. Timing Example for Simultaneous Mode / Early Interrupt Pulse
Copyright © 2021 Texas Instruments Incorporated
Submit Document Feedback
Product Folder Links: TMS320F28030 TMS320F28030-Q1 TMS320F28031 TMS320F28031-Q1
TMS320F28032 TMS320F28032-Q1 TMS320F28033 TMS320F28033-Q1 TMS320F28034 TMS320F28034-Q1
TMS320F28035 TMS320F28035-Q1
89
TMS320F28030, TMS320F28030-Q1, TMS320F28031, TMS320F28031-Q1, TMS320F28032
TMS320F28032-Q1, TMS320F28033, TMS320F28033-Q1, TMS320F28034, TMS320F28034-Q1
TMS320F28035, TMS320F28035-Q1
www.ti.com
SPRS584P – APRIL 2009 – REVISED JUNE 2021
8.9.2.2 ADC MUX
To COMPy A or B input
To ADC Channel X
Logic implemented in GPIO MUX block
AIOx Pin
SYSCLK
AIOxIN
1
AIOxINE
AIODAT Reg
(Read)
SYNC
0
AIODAT Reg
(Latch)
AIOxDIR
(1 = Input,
0 = Output)
AIOMUX 1 Reg
AIOSET,
AIOCLEAR,
AIOTOGGLE
Regs
AIODIR Reg
(Latch)
1
(0 = Input, 1 = Output)
0
0
Figure 8-25. AIOx Pin Multiplexing
The ADC channel and Comparator functions are always available. The digital I/O function is available only when
the respective bit in the AIOMUX1 register is 0. In this mode, reading the AIODAT register reflects the actual pin
state.
The digital I/O function is disabled when the respective bit in the AIOMUX1 register is 1. In this mode, reading
the AIODAT register reflects the output latch of the AIODAT register and the input digital I/O buffer is disabled to
prevent analog signals from generating noise.
On reset, the digital function is disabled. If the pin is used as an analog input, users should keep the AIO function
disabled for that pin.
90
Submit Document Feedback
Copyright © 2021 Texas Instruments Incorporated
Product Folder Links: TMS320F28030 TMS320F28030-Q1 TMS320F28031 TMS320F28031-Q1
TMS320F28032 TMS320F28032-Q1 TMS320F28033 TMS320F28033-Q1 TMS320F28034 TMS320F28034-Q1
TMS320F28035 TMS320F28035-Q1
TMS320F28030, TMS320F28030-Q1, TMS320F28031, TMS320F28031-Q1, TMS320F28032
TMS320F28032-Q1, TMS320F28033, TMS320F28033-Q1, TMS320F28034, TMS320F28034-Q1
TMS320F28035, TMS320F28035-Q1
www.ti.com
SPRS584P – APRIL 2009 – REVISED JUNE 2021
8.9.2.3 Comparator Block
Figure 8-26 shows the interaction of the Comparator modules with the rest of the system.
COMP x A
COMP x B
+
COMP
-
GPIO
MUX
COMP x
+
DAC x
Wrapper
AIO
MUX
TZ1/2/3
ePWM
COMPxOUT
DAC
Core
10-Bit
Figure 8-26. Comparator Block Diagram
Table 8-26. Comparator Control Registers
REGISTER
NAME
COMP1
ADDRESS
COMP2
ADDRESS
COMP3
ADDRESS
SIZE
(x16)
EALLOW
PROTECTED
COMPCTL
0x6400
0x6420
0x6440
1
Yes
Comparator Control Register
COMPSTS
0x6402
0x6422
0x6442
1
No
Comparator Status Register
DACCTL
0x6404
0x6424
0x6444
1
Yes
DAC Control Register
DACVAL
0x6406
0x6426
0x6446
1
No
DAC Value Register
RAMPMAXREF_
ACTIVE
0x6408
0x6428
0x6448
1
No
Ramp Generator Maximum Reference
(Active) Register
RAMPMAXREF_
SHDW
0x640A
0x642A
0x644A
1
No
Ramp Generator Maximum Reference
(Shadow) Register
RAMPDECVAL_
ACTIVE
0x640C
0x642C
0x644C
1
No
Ramp Generator Decrement Value
(Active) Register
RAMPDECVAL_
SHDW
0x640E
0x642E
0x644E
1
No
Ramp Generator Decrement Value
(Shadow) Register
RAMPSTS
0x6410
0x6430
0x6450
1
No
Ramp Generator Status Register
Copyright © 2021 Texas Instruments Incorporated
DESCRIPTION
Submit Document Feedback
Product Folder Links: TMS320F28030 TMS320F28030-Q1 TMS320F28031 TMS320F28031-Q1
TMS320F28032 TMS320F28032-Q1 TMS320F28033 TMS320F28033-Q1 TMS320F28034 TMS320F28034-Q1
TMS320F28035 TMS320F28035-Q1
91
TMS320F28030, TMS320F28030-Q1, TMS320F28031, TMS320F28031-Q1, TMS320F28032
TMS320F28032-Q1, TMS320F28033, TMS320F28033-Q1, TMS320F28034, TMS320F28034-Q1
TMS320F28035, TMS320F28035-Q1
www.ti.com
SPRS584P – APRIL 2009 – REVISED JUNE 2021
8.9.2.3.1 On-Chip Comparator/DAC Electrical Data/Timing
8.9.2.3.1.1 Electrical Characteristics of the Comparator/DAC
PARAMETER
MIN
TYP
MAX
UNITS
Comparator
Comparator Input Range
VSSA – VDDA
V
Comparator response time to PWM Trip Zone (Async)
30
ns
Input Offset
±5
mV
35
mV
Input Hysteresis(1)
DAC
DAC Output Range
VSSA – VDDA
DAC resolution
DAC settling time
bits
See Figure 8-27
DAC Gain
–1.5%
DAC Offset
10
Monotonic
Yes
INL
(1)
V
10
mV
±3
LSB
Hysteresis on the comparator inputs is achieved with a Schmidt trigger configuration. This results in an effective 100-kΩ feedback
resistance between the output of the comparator and the noninverting input of the comparator. There is an option to disable the
hysteresis and, with it, the feedback resistance; see the Analog-to-Digital Converter and Comparator chapter in the TMS320F2803x
Real-Time Microcontrollers Technical Reference Manual for more information on this option if needed in your system.
1100
1000
900
800
Settling Time (ns)
700
600
500
400
300
200
100
0
0
50
100
150
200
250
300
350
400
450
500
DAC Step Size (Codes)
DAC Accuracy
15 Codes
7 Codes
3 Codes
1 Code
Figure 8-27. DAC Settling Time
92
Submit Document Feedback
Copyright © 2021 Texas Instruments Incorporated
Product Folder Links: TMS320F28030 TMS320F28030-Q1 TMS320F28031 TMS320F28031-Q1
TMS320F28032 TMS320F28032-Q1 TMS320F28033 TMS320F28033-Q1 TMS320F28034 TMS320F28034-Q1
TMS320F28035 TMS320F28035-Q1
TMS320F28030, TMS320F28030-Q1, TMS320F28031, TMS320F28031-Q1, TMS320F28032
TMS320F28032-Q1, TMS320F28033, TMS320F28033-Q1, TMS320F28034, TMS320F28034-Q1
TMS320F28035, TMS320F28035-Q1
www.ti.com
SPRS584P – APRIL 2009 – REVISED JUNE 2021
8.9.3 Detailed Descriptions
Integral Nonlinearity
Integral nonlinearity refers to the deviation of each individual code from a line drawn from zero to full scale. The
point used as zero occurs one-half LSB before the first code transition. The full-scale point is defined as level
one-half LSB beyond the last code transition. The deviation is measured from the center of each particular code
to the true straight line between these two points.
Differential Nonlinearity
An ideal ADC exhibits code transitions that are exactly 1 LSB apart. DNL is the deviation from this ideal value. A
differential nonlinearity error of less than ±1 LSB ensures no missing codes.
Zero Offset
The major carry transition should occur when the analog input is at zero volts. Zero error is defined as the
deviation of the actual transition from that point.
Gain Error
The first code transition should occur at an analog value one-half LSB above negative full scale. The last
transition should occur at an analog value one and one-half LSB below the nominal full scale. Gain error is the
deviation of the actual difference between first and last code transitions and the ideal difference between first
and last code transitions.
Signal-to-Noise Ratio + Distortion (SINAD)
SINAD is the ratio of the rms value of the measured input signal to the rms sum of all other spectral components
below the Nyquist frequency, including harmonics but excluding dc. The value for SINAD is expressed in
decibels.
Effective Number of Bits (ENOB)
For a sine wave, SINAD can be expressed in terms of the number of bits. Using the following formula,
(SINAD - 1.76)
N=
6.02
it is possible to get a measure of performance expressed as N, the effective number of
bits. Thus, effective number of bits for a device for sine wave inputs at a given input frequency can be calculated
directly from its measured SINAD.
Total Harmonic Distortion (THD)
THD is the ratio of the rms sum of the first nine harmonic components to the rms value of the measured input
signal and is expressed as a percentage or in decibels.
Spurious Free Dynamic Range (SFDR)
SFDR is the difference in dB between the rms amplitude of the input signal and the peak spurious signal.
Copyright © 2021 Texas Instruments Incorporated
Submit Document Feedback
Product Folder Links: TMS320F28030 TMS320F28030-Q1 TMS320F28031 TMS320F28031-Q1
TMS320F28032 TMS320F28032-Q1 TMS320F28033 TMS320F28033-Q1 TMS320F28034 TMS320F28034-Q1
TMS320F28035 TMS320F28035-Q1
93
TMS320F28030, TMS320F28030-Q1, TMS320F28031, TMS320F28031-Q1, TMS320F28032
TMS320F28032-Q1, TMS320F28033, TMS320F28033-Q1, TMS320F28034, TMS320F28034-Q1
TMS320F28035, TMS320F28035-Q1
SPRS584P – APRIL 2009 – REVISED JUNE 2021
www.ti.com
8.9.4 Serial Peripheral Interface (SPI) Module
The device includes the four-pin serial peripheral interface (SPI) module. Up to two SPI modules are available.
The SPI is a high-speed, synchronous serial I/O port that allows a serial bit stream of programmed length (1
to 16 bits) to be shifted into and out of the device at a programmable bit-transfer rate. Normally, the SPI is
used for communications between the MCU and external peripherals or another processor. Typical applications
include external I/O or peripheral expansion through devices such as shift registers, display drivers, and ADCs.
Multidevice communications are supported by the master/slave operation of the SPI.
The SPI module features include:
• Four external pins:
– SPISOMI: SPI slave-output/master-input pin
– SPISIMO: SPI slave-input/master-output pin
– SPISTE: SPI slave transmit-enable pin
– SPICLK: SPI serial-clock pin
Note
All four pins can be used as GPIO if the SPI module is not used.
•
Two operational modes: master and slave
Baud rate: 125 different programmable rates.
Baud rate =
LSPCLK
(SPIBRR + 1)
when SPIBRR = 3 to 127
LSPCLK
when SPIBRR = 0, 1, 2
4
Data word length: 1 to 16 data bits
Four clocking schemes (controlled by clock polarity and clock phase bits) include:
– Falling edge without phase delay: SPICLK active-high. SPI transmits data on the falling edge of the
SPICLK signal and receives data on the rising edge of the SPICLK signal.
– Falling edge with phase delay: SPICLK active-high. SPI transmits data one half-cycle ahead of the falling
edge of the SPICLK signal and receives data on the falling edge of the SPICLK signal.
– Rising edge without phase delay: SPICLK inactive-low. SPI transmits data on the rising edge of the
SPICLK signal and receives data on the falling edge of the SPICLK signal.
– Rising edge with phase delay: SPICLK inactive-low. SPI transmits data one half-cycle ahead of the rising
edge of the SPICLK signal and receives data on the rising edge of the SPICLK signal.
Simultaneous receive and transmit operation (transmit function can be disabled in software)
Transmitter and receiver operations are accomplished through either interrupt-driven or polled algorithms.
Nine SPI module control registers: In control register frame beginning at address 7040h.
Baud rate =
•
•
•
•
•
Note
All registers in this module are 16-bit registers that are connected to Peripheral Frame 2. When a
register is accessed, the register data is in the lower byte (7–0), and the upper byte (15–8) is read
as zeros. Writing to the upper byte has no effect.
94
Submit Document Feedback
Copyright © 2021 Texas Instruments Incorporated
Product Folder Links: TMS320F28030 TMS320F28030-Q1 TMS320F28031 TMS320F28031-Q1
TMS320F28032 TMS320F28032-Q1 TMS320F28033 TMS320F28033-Q1 TMS320F28034 TMS320F28034-Q1
TMS320F28035 TMS320F28035-Q1
www.ti.com
TMS320F28030, TMS320F28030-Q1, TMS320F28031, TMS320F28031-Q1, TMS320F28032
TMS320F28032-Q1, TMS320F28033, TMS320F28033-Q1, TMS320F28034, TMS320F28034-Q1
TMS320F28035, TMS320F28035-Q1
SPRS584P – APRIL 2009 – REVISED JUNE 2021
Enhanced feature:
• 4-level transmit/receive FIFO
• Delayed transmit control
• Bidirectional 3 wire SPI mode support
• Audio data receive support through SPISTE inversion
The SPI port operation is configured and controlled by the registers listed in Table 8-27 and Table 8-28.
Table 8-27. SPI-A Registers
NAME
DESCRIPTION(1)
ADDRESS
SIZE (x16)
EALLOW PROTECTED
SPICCR
0x7040
1
No
SPI-A Configuration Control Register
SPICTL
0x7041
1
No
SPI-A Operation Control Register
SPISTS
0x7042
1
No
SPI-A Status Register
SPIBRR
0x7044
1
No
SPI-A Baud Rate Register
SPIRXEMU
0x7046
1
No
SPI-A Receive Emulation Buffer Register
SPIRXBUF
0x7047
1
No
SPI-A Serial Input Buffer Register
SPITXBUF
0x7048
1
No
SPI-A Serial Output Buffer Register
SPIDAT
0x7049
1
No
SPI-A Serial Data Register
SPIFFTX
0x704A
1
No
SPI-A FIFO Transmit Register
SPIFFRX
0x704B
1
No
SPI-A FIFO Receive Register
SPIFFCT
0x704C
1
No
SPI-A FIFO Control Register
SPIPRI
0x704F
1
No
SPI-A Priority Control Register
(1)
Registers in this table are mapped to Peripheral Frame 2. This space only allows 16-bit accesses. 32-bit accesses produce undefined
results.
Table 8-28. SPI-B Registers
NAME
DESCRIPTION(1)
ADDRESS
SIZE (x16)
EALLOW PROTECTED
SPICCR
0x7740
1
No
SPI-B Configuration Control Register
SPICTL
0x7741
1
No
SPI-B Operation Control Register
SPISTS
0x7742
1
No
SPI-B Status Register
SPIBRR
0x7744
1
No
SPI-B Baud Rate Register
SPIRXEMU
0x7746
1
No
SPI-B Receive Emulation Buffer Register
SPIRXBUF
0x7747
1
No
SPI-B Serial Input Buffer Register
SPITXBUF
0x7748
1
No
SPI-B Serial Output Buffer Register
SPIDAT
0x7749
1
No
SPI-B Serial Data Register
SPIFFTX
0x774A
1
No
SPI-B FIFO Transmit Register
SPIFFRX
0x774B
1
No
SPI-B FIFO Receive Register
SPIFFCT
0x774C
1
No
SPI-B FIFO Control Register
SPIPRI
0x774F
1
No
SPI-B Priority Control Register
(1)
Registers in this table are mapped to Peripheral Frame 2. This space only allows 16-bit accesses. 32-bit accesses produce undefined
results.
For more information on the SPI, see the Serial Peripheral Interface (SPI) chapter in the TMS320F2803x
Real-Time Microcontrollers Technical Reference Manual.
Copyright © 2021 Texas Instruments Incorporated
Submit Document Feedback
Product Folder Links: TMS320F28030 TMS320F28030-Q1 TMS320F28031 TMS320F28031-Q1
TMS320F28032 TMS320F28032-Q1 TMS320F28033 TMS320F28033-Q1 TMS320F28034 TMS320F28034-Q1
TMS320F28035 TMS320F28035-Q1
95
TMS320F28030, TMS320F28030-Q1, TMS320F28031, TMS320F28031-Q1, TMS320F28032
TMS320F28032-Q1, TMS320F28033, TMS320F28033-Q1, TMS320F28034, TMS320F28034-Q1
TMS320F28035, TMS320F28035-Q1
www.ti.com
SPRS584P – APRIL 2009 – REVISED JUNE 2021
Figure 8-28 is a block diagram of the SPI in slave mode.
SPIFFENA
SPIFFTX.14
Receiver
Overrun Flag
RX FIFO Registers
SPISTS.7
Overrun
INT ENA
SPICTL.4
SPIRXBUF
RX FIFO _0
RX FIFO _1
-----
SPIINT
RX FIFO Interrupt
RX FIFO _3
RX Interrupt
Logic
16
SPIRXBUF
Buffer Register
SPIFFOVF
FLAG
SPIFFRX.15
To CPU
TX FIFO Registers
SPITXBUF
TX FIFO _3
SPITX
16
16
TX Interrupt
Logic
TX FIFO Interrupt
----TX FIFO _1
TX FIFO _0
SPI INT
ENA
SPI INT FLAG
SPITXBUF
Buffer Register
SPISTS.6
SPICTL.0
TRIWIRE
SPIPRI.0
16
M
M
SPIDAT
Data Register
TW
S
S
SPIDAT.15 - 0
SW1
SPISIMO
M TW
M
TW
SPISOMI
S
S
STEINV
SW2
SPIPRI.1
Talk
STEINV
SPICTL.1
SPISTE
State Control
Master/Slave
SPICCR.3 - 0
SPI Char
3
2
SW3
0
1
M
SPI Bit Rate
S
SPIBRR.6 - 0
LSPCLK
6
A.
SPICTL.2
S
5
4
3
2
1
0
Clock
Polarity
Clock
Phase
SPICCR.6
SPICTL.3
SPICLK
M
SPISTE is driven low by the master for a slave device.
Figure 8-28. SPI Module Block Diagram (Slave Mode)
96
Submit Document Feedback
Copyright © 2021 Texas Instruments Incorporated
Product Folder Links: TMS320F28030 TMS320F28030-Q1 TMS320F28031 TMS320F28031-Q1
TMS320F28032 TMS320F28032-Q1 TMS320F28033 TMS320F28033-Q1 TMS320F28034 TMS320F28034-Q1
TMS320F28035 TMS320F28035-Q1
TMS320F28030, TMS320F28030-Q1, TMS320F28031, TMS320F28031-Q1, TMS320F28032
TMS320F28032-Q1, TMS320F28033, TMS320F28033-Q1, TMS320F28034, TMS320F28034-Q1
TMS320F28035, TMS320F28035-Q1
www.ti.com
SPRS584P – APRIL 2009 – REVISED JUNE 2021
8.9.4.1 SPI Master Mode Electrical Data/Timing
Section 8.9.4.1.1 lists the master mode timing (clock phase = 0) and Section 8.9.4.1.2 lists the master mode
timing (clock phase = 1). Figure 8-29 and Figure 8-30 show the timing waveforms.
8.9.4.1.1 SPI Master Mode External Timing (Clock Phase = 0)
1
(1)
(2)
(3)
(4)
(5)
BRR EVEN
PARAMETER(1) (2) (3) (4) (5)
NO.
tc(SPC)M
Cycle time, SPICLK
2
tw(SPC1)M
Pulse duration, SPICLK first
pulse
3
tw(SPC2)M
Pulse duration, SPICLK second
pulse
4
td(SIMO)M
Delay time, SPICLK to
SPISIMO valid
5
tv(SIMO)M
Valid time, SPISIMO valid after
SPICLK
8
tsu(SOMI)M
Setup time, SPISOMI before
SPICLK
9
th(SOMI)M
Hold time, SPISOMI valid after
SPICLK
23
td(SPC)M
24
td(STE)M
BRR ODD
MIN
MAX
MIN
MAX
4tc(LSPCLK)
128tc(LSPCLK)
UNIT
5tc(LSPCLK)
127tc(LSPCLK)
ns
0.5tc(SPC)M – 10
0.5tc(SPC)M + 0.5tc(LSPCLK)
0.5tc(SPC)M + 10
– 10
0.5tc(SPC)M +
0.5tc(LSPCLK) + 10
ns
0.5tc(SPC)M – 10
0.5tc(SPC)M + 10
0.5tc(SPC)M – 0.5tc(LSPCLK)
– 10
0.5tc(SPC)M –
0.5tc(LSPCLK) + 10
ns
10
ns
10
0.5tc(SPC)M – 10
0.5tc(SPC)M – 0.5tc(LSPCLK)
– 10
ns
26
26
ns
0
0
ns
Delay time, SPISTE active to
SPICLK
1.5tc(SPC)M –
3tc(SYSCLK) – 10
1.5tc(SPC)M –
3tc(SYSCLK) – 10
ns
Delay time, SPICLK to SPISTE
inactive
0.5tc(SPC)M – 10
0.5tc(SPC)M – 0.5tc(LSPCLK)
– 10
ns
The MASTER / SLAVE bit (SPICTL.2) is set and the CLOCK PHASE bit (SPICTL.3) is cleared.
tc(SPC) = SPI clock cycle time = LSPCLK/4 or LSPCLK/(SPIBRR +1)
tc(LCO) = LSPCLK cycle time
Internal clock prescalers must be adjusted such that the SPI clock speed is limited to the following SPI clock rate:
Master mode transmit 25-MHz MAX, master mode receive 12.5-MHz MAX
Slave mode transmit 12.5-MAX, slave mode receive 12.5-MHz MAX.
The active edge of the SPICLK signal referenced is controlled by the clock polarity bit (SPICCR.6).
1
SPICLK
(clock polarity = 0)
2
3
SPICLK
(clock polarity = 1)
4
5
SPISIMO
Master Out Data Is Valid
8
9
Master In Data
Must Be Valid
SPISOMI
23
24
SPISTE
Figure 8-29. SPI Master Mode External Timing (Clock Phase = 0)
Copyright © 2021 Texas Instruments Incorporated
Submit Document Feedback
Product Folder Links: TMS320F28030 TMS320F28030-Q1 TMS320F28031 TMS320F28031-Q1
TMS320F28032 TMS320F28032-Q1 TMS320F28033 TMS320F28033-Q1 TMS320F28034 TMS320F28034-Q1
TMS320F28035 TMS320F28035-Q1
97
TMS320F28030, TMS320F28030-Q1, TMS320F28031, TMS320F28031-Q1, TMS320F28032
TMS320F28032-Q1, TMS320F28033, TMS320F28033-Q1, TMS320F28034, TMS320F28034-Q1
TMS320F28035, TMS320F28035-Q1
www.ti.com
SPRS584P – APRIL 2009 – REVISED JUNE 2021
8.9.4.1.2 SPI Master Mode External Timing (Clock Phase = 1)
1
(1)
(2)
(3)
(4)
(5)
BRR EVEN
PARAMETER(1) (2) (3) (4) (5)
NO.
BRR ODD
MIN
MAX
4tc(LSPCLK)
UNIT
MIN
MAX
128tc(LSPCLK)
5tc(LSPCLK)
127tc(LSPCLK)
ns
0.5tc(SPC)M –
0.5tc(LSPCLK) + 10
ns
0.5tc(SPC)M +
0.5tc(LSPCLK) + 10
ns
tc(SPC)M
Cycle time, SPICLK
2
tw(SPC1)M
Pulse duration, SPICLK first
pulse
0.5tc(SPC)M – 10
0.5tc(SPC)M + 10
0.5tc(SPC)M –
0.5tc(LSPCLK) – 10
3
tw(SPC2)M
Pulse duration, SPICLK second
pulse
0.5tc(SPC)M – 10
0.5tc(SPC)M + 10
0.5tc(SPC)M +
0.5tc(LSPCLK) – 10
6
td(SIMO)M
Delay time, SPISIMO valid to
SPICLK
0.5tc(SPC)M – 10
0.5tc(SPC)M +
0.5tc(LSPCLK) – 10
ns
7
tv(SIMO)M
Valid time, SPISIMO valid after
SPICLK
0.5tc(SPC)M – 10
0.5tc(SPC)M –
0.5tc(LSPCLK) – 10
ns
10
tsu(SOMI)M
Setup time, SPISOMI before
SPICLK
26
26
ns
11
th(SOMI)M
Hold time, SPISOMI valid after
SPICLK
0
0
ns
23
td(SPC)M
Delay time, SPISTE active to
SPICLK
2tc(SPC)M –
3tc(SYSCLK) – 10
2tc(SPC)M –
3tc(SYSCLK) – 10
ns
24
td(STE)M
Delay time, SPICLK to SPISTE
inactive
0.5tc(SPC) – 10
0.5tc(SPC) –
0.5tc(LSPCLK) – 10
ns
The MASTER/SLAVE bit (SPICTL.2) is set and the CLOCK PHASE bit (SPICTL.3) is set.
tc(SPC) = SPI clock cycle time = LSPCLK/4 or LSPCLK/(SPIBRR + 1)
Internal clock prescalers must be adjusted such that the SPI clock speed is limited to the following SPI clock rate:
Master mode transmit 25 MHz MAX, master mode receive 12.5 MHz MAX
Slave mode transmit 12.5 MHz MAX, slave mode receive 12.5 MHz MAX.
tc(LCO) = LSPCLK cycle time
The active edge of the SPICLK signal referenced is controlled by the CLOCK POLARITY bit (SPICCR.6).
1
SPICLK
(clock polarity = 0)
2
3
SPICLK
(clock polarity = 1)
6
7
Master Out Data Is Valid
SPISIMO
10
11
Master In Data Must
Be Valid
SPISOMI
24
23
SPISTE
Figure 8-30. SPI Master Mode External Timing (Clock Phase = 1)
98
Submit Document Feedback
Copyright © 2021 Texas Instruments Incorporated
Product Folder Links: TMS320F28030 TMS320F28030-Q1 TMS320F28031 TMS320F28031-Q1
TMS320F28032 TMS320F28032-Q1 TMS320F28033 TMS320F28033-Q1 TMS320F28034 TMS320F28034-Q1
TMS320F28035 TMS320F28035-Q1
TMS320F28030, TMS320F28030-Q1, TMS320F28031, TMS320F28031-Q1, TMS320F28032
TMS320F28032-Q1, TMS320F28033, TMS320F28033-Q1, TMS320F28034, TMS320F28034-Q1
TMS320F28035, TMS320F28035-Q1
www.ti.com
SPRS584P – APRIL 2009 – REVISED JUNE 2021
8.9.4.2 SPI Slave Mode Electrical Data/Timing
Section 8.9.4.2.1 lists the slave mode timing (clock phase = 0) and Section 8.9.4.2.2 lists the slave mode timing
(clock phase = 1). Figure 8-31 and Figure 8-32 show the timing waveforms.
8.9.4.2.1 SPI Slave Mode External Timing (Clock Phase = 0)
PARAMETER(1) (2) (4) (3) (5)
NO.
12
tc(SPC)S
Cycle time, SPICLK
13
tw(SPC1)S
14
tw(SPC2)S
15
td(SOMI)S
Delay time, SPICLK to SPISOMI valid
16
tv(SOMI)S
Valid time, SPISOMI data valid after SPICLK
19
tsu(SIMO)S
20
th(SIMO)S
25
26
(1)
(2)
(3)
(4)
(5)
MIN
MAX
UNIT
4tc(SYSCLK)
ns
Pulse duration, SPICLK first pulse
2tc(SYSCLK) – 1
ns
Pulse duration, SPICLK second pulse
2tc(SYSCLK) – 1
ns
21
ns
0
ns
Setup time, SPISIMO valid before SPICLK
1.5tc(SYSCLK)
ns
Hold time, SPISIMO data valid after SPICLK
1.5tc(SYSCLK)
ns
tsu(STE)S
Setup time, SPISTE active before SPICLK
1.5tc(SYSCLK)
ns
th(STE)S
Hold time, SPISTE inactive after SPICLK
1.5tc(SYSCLK)
ns
The MASTER / SLAVE bit (SPICTL.2) is cleared and the CLOCK PHASE bit (SPICTL.3) is cleared.
tc(SPC) = SPI clock cycle time = LSPCLK/4 or LSPCLK/(SPIBRR + 1)
tc(LCO) = LSPCLK cycle time
Internal clock prescalers must be adjusted such that the SPI clock speed is limited to the following SPI clock rate:
Master mode transmit 25-MHz MAX, master mode receive 12.5-MHz MAX
Slave mode transmit 12.5-MHz MAX, slave mode receive 12.5-MHz MAX.
The active edge of the SPICLK signal referenced is controlled by the CLOCK POLARITY bit (SPICCR.6).
12
SPICLK
(clock polarity = 0)
13
14
SPICLK
(clock polarity = 1)
15
SPISOMI
16
SPISOMI Data Is Valid
19
20
SPISIMO Data
Must Be Valid
SPISIMO
25
26
SPISTE
Figure 8-31. SPI Slave Mode External Timing (Clock Phase = 0)
Copyright © 2021 Texas Instruments Incorporated
Submit Document Feedback
Product Folder Links: TMS320F28030 TMS320F28030-Q1 TMS320F28031 TMS320F28031-Q1
TMS320F28032 TMS320F28032-Q1 TMS320F28033 TMS320F28033-Q1 TMS320F28034 TMS320F28034-Q1
TMS320F28035 TMS320F28035-Q1
99
TMS320F28030, TMS320F28030-Q1, TMS320F28031, TMS320F28031-Q1, TMS320F28032
TMS320F28032-Q1, TMS320F28033, TMS320F28033-Q1, TMS320F28034, TMS320F28034-Q1
TMS320F28035, TMS320F28035-Q1
www.ti.com
SPRS584P – APRIL 2009 – REVISED JUNE 2021
8.9.4.2.2 SPI Slave Mode External Timing (Clock Phase = 1)
PARAMETER(1) (2) (3) (4)
NO.
MIN
12
tc(SPC)S
Cycle time, SPICLK
13
tw(SPC1)S
14
tw(SPC2)S
17
td(SOMI)S
Delay time, SPICLK to SPISOMI valid
18
tv(SOMI)S
Valid time, SPISOMI data valid after SPICLK
21
tsu(SIMO)S
22
th(SIMO)S
25
26
(1)
(2)
(3)
(4)
MAX
UNIT
4tc(SYSCLK)
ns
Pulse duration, SPICLK first pulse
2tc(SYSCLK) – 1
ns
Pulse duration, SPICLK second pulse
2tc(SYSCLK) – 1
ns
21
ns
0
ns
Setup time, SPISIMO valid before SPICLK
1.5tc(SYSCLK)
ns
Hold time, SPISIMO data valid after SPICLK
1.5tc(SYSCLK)
ns
tsu(STE)S
Setup time, SPISTE active before SPICLK
1.5tc(SYSCLK)
ns
th(STE)S
Hold time, SPISTE inactive after SPICLK
1.5tc(SYSCLK)
ns
The MASTER / SLAVE bit (SPICTL.2) is cleared and the CLOCK PHASE bit (SPICTL.3) is cleared.
tc(SPC) = SPI clock cycle time = LSPCLK/4 or LSPCLK/(SPIBRR + 1)
Internal clock prescalers must be adjusted such that the SPI clock speed is limited to the following SPI clock rate:
Master mode transmit 25-MHz MAX, master mode receive 12.5-MHz MAX
Slave mode transmit 12.5-MHz MAX, slave mode receive 12.5-MHz MAX.
The active edge of the SPICLK signal referenced is controlled by the CLOCK POLARITY bit (SPICCR.6).
12
SPICLK
(clock polarity = 0)
13
14
SPICLK
(clock polarity = 1)
17
SPISOMI
Data Valid
SPISOMI Data Is Valid
Data Valid
18
21
22
SPISIMO Data
Must Be Valid
SPISIMO
26
25
SPISTE
Figure 8-32. SPI Slave Mode External Timing (Clock Phase = 1)
100
Submit Document Feedback
Copyright © 2021 Texas Instruments Incorporated
Product Folder Links: TMS320F28030 TMS320F28030-Q1 TMS320F28031 TMS320F28031-Q1
TMS320F28032 TMS320F28032-Q1 TMS320F28033 TMS320F28033-Q1 TMS320F28034 TMS320F28034-Q1
TMS320F28035 TMS320F28035-Q1
www.ti.com
TMS320F28030, TMS320F28030-Q1, TMS320F28031, TMS320F28031-Q1, TMS320F28032
TMS320F28032-Q1, TMS320F28033, TMS320F28033-Q1, TMS320F28034, TMS320F28034-Q1
TMS320F28035, TMS320F28035-Q1
SPRS584P – APRIL 2009 – REVISED JUNE 2021
8.9.5 Serial Communications Interface (SCI) Module
The devices include one serial communications interface (SCI) module (SCI-A). The SCI module supports digital
communications between the CPU and other asynchronous peripherals that use the standard nonreturn-to-zero
(NRZ) format. The SCI receiver and transmitter are double-buffered, and each has its own separate enable and
interrupt bits. Both can be operated independently or simultaneously in the full-duplex mode. To ensure data
integrity, the SCI checks received data for break detection, parity, overrun, and framing errors. The bit rate is
programmable to over 65000 different speeds through a 16-bit baud-select register.
Features of each SCI module include:
• Two external pins:
– SCITXD: SCI transmit-output pin
– SCIRXD: SCI receive-input pin
Note
Both pins can be used as GPIO if not used for SCI.
– Baud rate programmable to 64K different rates:
•
•
•
•
•
•
•
•
Baud rate =
LSPCLK
(BRR + 1) * 8
when BRR ¹ 0
Baud rate =
LSPCLK
16
when BRR = 0
Data-word format
– One start bit
– Data-word length programmable from 1 to 8 bits
– Optional even/odd/no parity bit
– One or 2 stop bits
Four error-detection flags: parity, overrun, framing, and break detection
Two wake-up multiprocessor modes: idle-line and address bit
Half- or full-duplex operation
Double-buffered receive and transmit functions
Transmitter and receiver operations can be accomplished through interrupt-driven or polled algorithms with
status flags.
– Transmitter: TXRDY flag (transmitter-buffer register is ready to receive another character) and TX EMPTY
flag (transmitter-shift register is empty)
– Receiver: RXRDY flag (receiver-buffer register is ready to receive another character), BRKDT flag (break
condition occurred), and RX ERROR flag (monitoring four interrupt conditions)
Separate enable bits for transmitter and receiver interrupts (except BRKDT)
NRZ (nonreturn-to-zero) format
Note
All registers in this module are 8-bit registers that are connected to Peripheral Frame 2. When a
register is accessed, the register data is in the lower byte (7–0), and the upper byte (15–8) is read
as zeros. Writing to the upper byte has no effect.
Enhanced features:
• Auto baud-detect hardware logic
• 4-level transmit/receive FIFO
Copyright © 2021 Texas Instruments Incorporated
Submit Document Feedback
Product Folder Links: TMS320F28030 TMS320F28030-Q1 TMS320F28031 TMS320F28031-Q1
TMS320F28032 TMS320F28032-Q1 TMS320F28033 TMS320F28033-Q1 TMS320F28034 TMS320F28034-Q1
TMS320F28035 TMS320F28035-Q1
101
TMS320F28030, TMS320F28030-Q1, TMS320F28031, TMS320F28031-Q1, TMS320F28032
TMS320F28032-Q1, TMS320F28033, TMS320F28033-Q1, TMS320F28034, TMS320F28034-Q1
TMS320F28035, TMS320F28035-Q1
SPRS584P – APRIL 2009 – REVISED JUNE 2021
www.ti.com
The SCI port operation is configured and controlled by the registers listed in Table 8-29.
Table 8-29. SCI-A Registers
ADDRESS
SIZE (x16)
EALLOW
PROTECTED
SCICCRA
0x7050
1
No
SCI-A Communications Control Register
SCICTL1A
0x7051
1
No
SCI-A Control Register 1
SCIHBAUDA
0x7052
1
No
SCI-A Baud Register, High Bits
SCILBAUDA
0x7053
1
No
SCI-A Baud Register, Low Bits
SCICTL2A
0x7054
1
No
SCI-A Control Register 2
SCIRXSTA
0x7055
1
No
SCI-A Receive Status Register
SCIRXEMUA
0x7056
1
No
SCI-A Receive Emulation Data Buffer Register
SCIRXBUFA
0x7057
1
No
SCI-A Receive Data Buffer Register
SCITXBUFA
0x7059
1
No
SCI-A Transmit Data Buffer Register
SCIFFTXA(2)
0x705A
1
No
SCI-A FIFO Transmit Register
SCIFFRXA(2)
0x705B
1
No
SCI-A FIFO Receive Register
SCIFFCTA(2)
0x705C
1
No
SCI-A FIFO Control Register
SCIPRIA
0x705F
1
No
SCI-A Priority Control Register
NAME(1)
(1)
(2)
DESCRIPTION
Registers in this table are mapped to Peripheral Frame 2 space. This space only allows 16-bit accesses. 32-bit accesses produce
undefined results.
These registers are new registers for the FIFO mode.
For more information on the SCI, see the Serial Communications Interface (SCI) chapter in the TMS320F2803x
Real-Time Microcontrollers Technical Reference Manual.
Figure 8-33 shows the SCI module block diagram.
102
Submit Document Feedback
Copyright © 2021 Texas Instruments Incorporated
Product Folder Links: TMS320F28030 TMS320F28030-Q1 TMS320F28031 TMS320F28031-Q1
TMS320F28032 TMS320F28032-Q1 TMS320F28033 TMS320F28033-Q1 TMS320F28034 TMS320F28034-Q1
TMS320F28035 TMS320F28035-Q1
TMS320F28030, TMS320F28030-Q1, TMS320F28031, TMS320F28031-Q1, TMS320F28032
TMS320F28032-Q1, TMS320F28033, TMS320F28033-Q1, TMS320F28034, TMS320F28034-Q1
TMS320F28035, TMS320F28035-Q1
www.ti.com
SPRS584P – APRIL 2009 – REVISED JUNE 2021
TXENA
SCICTL1.1
TXSHF
Register
Frame
Format and Mode
SCITXD
8
Parity
Even/Odd
0
TXEMPTY
1
SCICCR.6
SCICTL2.6
8
Enable
TX FIFO_0
SCICCR.5
88
TX FIFO_1
TX Interrupt
Logic
TX FIFO Interrupts
TXINT
To CPU
TX FIFO_N
TXINTENA
8
0
TXWAKE
SCICTL2.0
TXRDY
1
SCICTL2.7
SCICTL1.3
SCI TX Interrupt Select Logic
8
WUT
Transmit Data
Buffer Register
SCITXBUF.7-0
Auto Baud Detect Logic
RXENA
LSPCLK
Baud Rate
MSB/LSB
Registers
SCICTL1.0
RXSHF
Register
SCIHBAUD.15-8
SCIRXD
RXWAKE
8
SCILBAUD.7-0
SCIRXST.1
0
1
8
SCIFFENA
RX FIFO_0
SCIFFTX.14
8
RX FIFO_1
RX FIFO Interrupts
RX Interrupt
Logic
RXINT
To CPU
RX FIFO_N
RXFFOVF
8
0
SCIFFRX.15
1
RXBKINTENA
SCICTL2.1
RXRDY
SCIRXST.6
RXENA
BRKDT
SCICTL1.0
RXERRINTENA
SCIRXST.5
8
SCICTL1.6
SCI RX Interrupt Select Logic
SCIRXST.5-2
Receive Data
Buffer Register
SCIRXBUF.7-0
BRKDT
FE OE PE
RXERROR
SCIRXST.7
Figure 8-33. Serial Communications Interface (SCI) Module Block Diagram
Copyright © 2021 Texas Instruments Incorporated
Submit Document Feedback
Product Folder Links: TMS320F28030 TMS320F28030-Q1 TMS320F28031 TMS320F28031-Q1
TMS320F28032 TMS320F28032-Q1 TMS320F28033 TMS320F28033-Q1 TMS320F28034 TMS320F28034-Q1
TMS320F28035 TMS320F28035-Q1
103
TMS320F28030, TMS320F28030-Q1, TMS320F28031, TMS320F28031-Q1, TMS320F28032
TMS320F28032-Q1, TMS320F28033, TMS320F28033-Q1, TMS320F28034, TMS320F28034-Q1
TMS320F28035, TMS320F28035-Q1
SPRS584P – APRIL 2009 – REVISED JUNE 2021
www.ti.com
8.9.6 Local Interconnect Network (LIN)
The device contains one LIN controller. The LIN standard is based on the SCI (UART) serial data link format.
The LIN module can be configured to work as a SCI as well.
The LIN module has the following features:
• Compatible to LIN 1.3 or 2.0 protocols
• Two external pins: LINRX and LINTX
• Multibuffered receive and transmit units
• Identification masks for message filtering
• Automatic master header generation
– Programmable sync break field
– Sync field
– Identifier field
• Slave automatic synchronization
– Sync break detection
– Optional baudrate update
– Synchronization validation
• 231 programmable transmission rates with 7 fractional bits
• Wakeup on LINRX dominant level from transceiver
• Automatic wakeup support
– Wakeup signal generation
– Expiration times on wakeup signals
• Automatic bus idle detection
• Error detection
– Bit error
– Bus error
– No-response error
– Checksum error
– Sync field error
– Parity error
• 2 Interrupt lines with priority encoding for:
– Receive
– Transmit
– ID, error and status
Note
The 2803x devices have passed LIN 2.0 conformance tests (master and slave). Contact TI for details.
For more information on the LIN, see the Local Interconnect Network (LIN) Module chapter in the
TMS320F2803x Real-Time Microcontrollers Technical Reference Manual.
104
Submit Document Feedback
Copyright © 2021 Texas Instruments Incorporated
Product Folder Links: TMS320F28030 TMS320F28030-Q1 TMS320F28031 TMS320F28031-Q1
TMS320F28032 TMS320F28032-Q1 TMS320F28033 TMS320F28033-Q1 TMS320F28034 TMS320F28034-Q1
TMS320F28035 TMS320F28035-Q1
TMS320F28030, TMS320F28030-Q1, TMS320F28031, TMS320F28031-Q1, TMS320F28032
TMS320F28032-Q1, TMS320F28033, TMS320F28033-Q1, TMS320F28034, TMS320F28034-Q1
TMS320F28035, TMS320F28035-Q1
www.ti.com
SPRS584P – APRIL 2009 – REVISED JUNE 2021
The registers in Table 8-30 configure and control the operation of the LIN module.
Table 8-30. LIN-A Registers
NAME(1)
ADDRESS
SIZE (x16)
SCIGCR0
0x6C00
2
Global Control Register 0
SCIGCR1
0x6C02
2
Global Control Register 1
SCIGCR2
0x6C04
2
Global Control Register 2
SCISETINT
0x6C06
2
Interrupt Enable Register
SCICLEARINT
0x6C08
2
Interrupt Disable Register
SCISETINTLVL
0x6C0A
2
Set Interrupt Level Register
SCICLEARINTLVL
0x6C0C
2
Clear Interrupt Level Register
SCIFLR
0x6C0E
2
Flag Register
SCIINTVECT0
0x6C10
2
Interrupt Vector Offset Register 0
SCIINTVECT1
0x6C12
2
Interrupt Vector Offset Register 1
SCIFORMAT
0x6C14
2
Length Control register
BRSR
0x6C16
2
Baud Rate Selection Register
SCIED
0x6C18
2
Emulation buffer register
SCIRD
0x6C1A
2
Receiver data buffer register
SCITD
0x6C1C
2
Transmit data buffer register
Reserved
0x6C1E
4
RSVD
SIPIO2
0x6C22
2
Pin control register 2
Reserved
0x6C24
10
RSVD
LINCOMP
0x6C30
2
Compare register
LINRD0
0x6C32
2
Receive data register 0
LINRD1
0x6C34
2
Receive data register 1
LINMASK
0x6C36
2
Acceptance mask register
LINID
0x6C38
2
Register containing ID- byte, ID-SlaveTask byte, and ID
received fields.
LINTD0
0x6C3A
2
Transmit Data Register 0
LINTD1
0x6C3C
2
Transmit Data Register 1
MBRSR
0x6C3E
2
Baud Rate Selection Register
Reserved
0x6C40
8
RSVD
IODFTCTRL
0x6C48
2
IODFT for BLIN
(1)
DESCRIPTION
Some registers and some bits in other registers are EALLOW-protected. For more details, see the Local Interconnect Network (LIN)
Module chapter in the TMS320F2803x Real-Time Microcontrollers Technical Reference Manual.
Copyright © 2021 Texas Instruments Incorporated
Submit Document Feedback
Product Folder Links: TMS320F28030 TMS320F28030-Q1 TMS320F28031 TMS320F28031-Q1
TMS320F28032 TMS320F28032-Q1 TMS320F28033 TMS320F28033-Q1 TMS320F28034 TMS320F28034-Q1
TMS320F28035 TMS320F28035-Q1
105
TMS320F28030, TMS320F28030-Q1, TMS320F28031, TMS320F28031-Q1, TMS320F28032
TMS320F28032-Q1, TMS320F28033, TMS320F28033-Q1, TMS320F28034, TMS320F28034-Q1
TMS320F28035, TMS320F28035-Q1
SPRS584P – APRIL 2009 – REVISED JUNE 2021
www.ti.com
Figure 8-34 shows the LIN module block diagram.
READ DATA BUS
WRITE DATA BUS
ADDRESS BUS
CHECKSUM
CALCULATOR
INTERFACE
ID PARTY
CHECKER
BIT
MONITOR
TXRX ERROR
DETECTOR (TED)
TIMEOUT
CONTROL
COUNTER
LINRX/
SCIRX
COMPARE
LINTX/
SCITX
FSM
MASK
FILTER
SYNCHRONIZER
8 RECEIVE
BUFFERS
8 TRANSMIT
BUFFERS
Figure 8-34. LIN Block Diagram
106
Submit Document Feedback
Copyright © 2021 Texas Instruments Incorporated
Product Folder Links: TMS320F28030 TMS320F28030-Q1 TMS320F28031 TMS320F28031-Q1
TMS320F28032 TMS320F28032-Q1 TMS320F28033 TMS320F28033-Q1 TMS320F28034 TMS320F28034-Q1
TMS320F28035 TMS320F28035-Q1
www.ti.com
TMS320F28030, TMS320F28030-Q1, TMS320F28031, TMS320F28031-Q1, TMS320F28032
TMS320F28032-Q1, TMS320F28033, TMS320F28033-Q1, TMS320F28034, TMS320F28034-Q1
TMS320F28035, TMS320F28035-Q1
SPRS584P – APRIL 2009 – REVISED JUNE 2021
8.9.7 Enhanced Controller Area Network (eCAN) Module
The CAN module (eCAN-A) has the following features:
• Fully compliant with ISO11898-1 (CAN 2.0B)
• Supports data rates up to 1 Mbps
• Thirty-two mailboxes, each with the following properties:
– Configurable as receive or transmit
– Configurable with standard or extended identifier
– Has a programmable receive mask
– Supports data and remote frame
– Composed of 0 to 8 bytes of data
– Uses a 32-bit time stamp on receive and transmit message
– Protects against reception of new message
– Holds the dynamically programmable priority of transmit message
– Employs a programmable interrupt scheme with two interrupt levels
– Employs a programmable alarm on transmission or reception time-out
• Low-power mode
• Programmable wake-up on bus activity
• Automatic reply to a remote request message
• Automatic retransmission of a frame in case of loss of arbitration or error
• 32-bit local network time counter synchronized by a specific message (communication in conjunction with
mailbox 16)
• Self-test mode
– Operates in a loopback mode receiving its own message. A "dummy" acknowledge is provided, thereby
eliminating the need for another node to provide the acknowledge bit.
Note
For a SYSCLKOUT of 60 MHz, the smallest bit rate possible is 4.6875 kbps.
The F2803x CAN has passed the conformance test per ISO/DIS 16845. Contact TI for test report and
exceptions.
For information on using the CAN module with the on-chip zero-pin oscillators, see MCU CAN Module Operation
Using the On-Chip Zero-Pin Oscillator.
For more information on the CAN, see the Controller Area Network (CAN) chapter in the TMS320F2803x
Real-Time Microcontrollers Technical Reference Manual.
Copyright © 2021 Texas Instruments Incorporated
Submit Document Feedback
Product Folder Links: TMS320F28030 TMS320F28030-Q1 TMS320F28031 TMS320F28031-Q1
TMS320F28032 TMS320F28032-Q1 TMS320F28033 TMS320F28033-Q1 TMS320F28034 TMS320F28034-Q1
TMS320F28035 TMS320F28035-Q1
107
TMS320F28030, TMS320F28030-Q1, TMS320F28031, TMS320F28031-Q1, TMS320F28032
TMS320F28032-Q1, TMS320F28033, TMS320F28033-Q1, TMS320F28034, TMS320F28034-Q1
TMS320F28035, TMS320F28035-Q1
www.ti.com
SPRS584P – APRIL 2009 – REVISED JUNE 2021
eCAN0INT
eCAN1INT
Controls Address
Data
Enhanced CAN Controller
32
Message Controller
Mailbox RAM
(512 Bytes)
Memory Management
Unit
32-Message Mailbox
of 4 ´ 32-Bit Words
32
CPU Interface,
Receive Control Unit,
Timer Management Unit
32
eCAN Memory
(512 Bytes)
Registers and
Message Objects Control
32
eCAN Protocol Kernel
Receive Buffer
Transmit Buffer
Control Buffer
Status Buffer
SN65HVD23x
3.3-V CAN Transceiver
CAN Bus
Figure 8-35. eCAN Block Diagram and Interface Circuit
Table 8-31. 3.3-V eCAN Transceivers
PART NUMBER
SUPPLY
VOLTAGE
LOW-POWER
MODE
SLOPE
CONTROL
VREF
OTHER
TA
SN65HVD230
3.3 V
Standby
Adjustable
Yes
–
–40°C to 85°C
SN65HVD230Q
3.3 V
Standby
Adjustable
Yes
–
–40°C to 125°C
SN65HVD231
3.3 V
Sleep
Adjustable
Yes
–
–40°C to 85°C
SN65HVD231Q
3.3 V
Sleep
Adjustable
Yes
–
–40°C to 125°C
SN65HVD232
3.3 V
None
None
None
–
–40°C to 85°C
SN65HVD232Q
3.3 V
None
None
None
–
–40°C to 125°C
SN65HVD233
3.3 V
Standby
Adjustable
None
Diagnostic Loopback
–40°C to 125°C
SN65HVD234
3.3 V
Standby and Sleep
Adjustable
None
–
–40°C to 125°C
SN65HVD235
3.3 V
Standby
Adjustable
None
Autobaud Loopback
–40°C to 125°C
ISO1050
3–5.5 V
None
None
None
Built-in Isolation
Low Prop Delay
Thermal Shutdown
Failsafe Operation
Dominant Time-Out
–55°C to 105°C
108
Submit Document Feedback
Copyright © 2021 Texas Instruments Incorporated
Product Folder Links: TMS320F28030 TMS320F28030-Q1 TMS320F28031 TMS320F28031-Q1
TMS320F28032 TMS320F28032-Q1 TMS320F28033 TMS320F28033-Q1 TMS320F28034 TMS320F28034-Q1
TMS320F28035 TMS320F28035-Q1
TMS320F28030, TMS320F28030-Q1, TMS320F28031, TMS320F28031-Q1, TMS320F28032
TMS320F28032-Q1, TMS320F28033, TMS320F28033-Q1, TMS320F28034, TMS320F28034-Q1
TMS320F28035, TMS320F28035-Q1
www.ti.com
SPRS584P – APRIL 2009 – REVISED JUNE 2021
eCAN-A Control and Status Registers
Mailbox Enable - CANME
Mailbox Direction - CANMD
Transmission Request Set - CANTRS
Transmission Request Reset - CANTRR
Transmission Acknowledge - CANTA
Abort Acknowledge - CANAA
eCAN-A Memory (512 Bytes)
6000h
Received Message Pending - CANRMP
Control and Status Registers
603Fh
6040h
607Fh
6080h
60BFh
60C0h
60FFh
Received Message Lost - CANRML
Remote Frame Pending - CANRFP
Local Acceptance Masks (LAM)
(32 ´ 32-Bit RAM)
Global Acceptance Mask - CANGAM
Message Object Time Stamps (MOTS)
(32 ´ 32-Bit RAM)
Bit-Timing Configuration - CANBTC
Master Control - CANMC
Error and Status - CANES
Message Object Time-Out (MOTO)
(32 ´ 32-Bit RAM)
Transmit Error Counter - CANTEC
Receive Error Counter - CANREC
Global Interrupt Flag 0 - CANGIF0
Global Interrupt Mask - CANGIM
Global Interrupt Flag 1 - CANGIF1
eCAN-A Memory RAM (512 Bytes)
6100h-6107h
Mailbox 0
6108h-610Fh
Mailbox 1
6110h-6117h
Mailbox 2
6118h-611Fh
Mailbox 3
6120h-6127h
Mailbox 4
Mailbox Interrupt Mask - CANMIM
Mailbox Interrupt Level - CANMIL
Overwrite Protection Control - CANOPC
TX I/O Control - CANTIOC
RX I/O Control - CANRIOC
Time Stamp Counter - CANTSC
Time-Out Control - CANTOC
Time-Out Status - CANTOS
61E0h-61E7h
Mailbox 28
61E8h-61EFh
Mailbox 29
61F0h-61F7h
Mailbox 30
61F8h-61FFh
Mailbox 31
Reserved
Message Mailbox (16 Bytes)
61E8h-61E9h
Message Identifier - MSGID
61EAh-61EBh
Message Control - MSGCTRL
61ECh-61EDh
Message Data Low - MDL
61EEh-61EFh
Message Data High - MDH
Figure 8-36. eCAN-A Memory Map
Note
If the eCAN module is not used in an application, the RAM available (LAM, MOTS, MOTO, and
mailbox RAM) can be used as general-purpose RAM. The CAN module clock should be enabled for
this.
Copyright © 2021 Texas Instruments Incorporated
Submit Document Feedback
Product Folder Links: TMS320F28030 TMS320F28030-Q1 TMS320F28031 TMS320F28031-Q1
TMS320F28032 TMS320F28032-Q1 TMS320F28033 TMS320F28033-Q1 TMS320F28034 TMS320F28034-Q1
TMS320F28035 TMS320F28035-Q1
109
TMS320F28030, TMS320F28030-Q1, TMS320F28031, TMS320F28031-Q1, TMS320F28032
TMS320F28032-Q1, TMS320F28033, TMS320F28033-Q1, TMS320F28034, TMS320F28034-Q1
TMS320F28035, TMS320F28035-Q1
SPRS584P – APRIL 2009 – REVISED JUNE 2021
www.ti.com
The CAN registers listed in Table 8-32 are used by the CPU to configure and control the CAN controller and
the message objects. eCAN control registers only support 32-bit read/write operations. Mailbox RAM can be
accessed as 16 bits or 32 bits. 32-bit accesses are aligned to an even boundary.
Table 8-32. CAN Register Map
eCAN-A
ADDRESS
SIZE (x32)
CANME
0x6000
1
Mailbox enable
CANMD
0x6002
1
Mailbox direction
CANTRS
0x6004
1
Transmit request set
CANTRR
0x6006
1
Transmit request reset
CANTA
0x6008
1
Transmission acknowledge
CANAA
0x600A
1
Abort acknowledge
CANRMP
0x600C
1
Receive message pending
CANRML
0x600E
1
Receive message lost
CANRFP
0x6010
1
Remote frame pending
CANGAM
0x6012
1
Global acceptance mask
CANMC
0x6014
1
Master control
CANBTC
0x6016
1
Bit-timing configuration
CANES
0x6018
1
Error and status
CANTEC
0x601A
1
Transmit error counter
CANREC
0x601C
1
Receive error counter
CANGIF0
0x601E
1
Global interrupt flag 0
CANGIM
0x6020
1
Global interrupt mask
CANGIF1
0x6022
1
Global interrupt flag 1
CANMIM
0x6024
1
Mailbox interrupt mask
CANMIL
0x6026
1
Mailbox interrupt level
CANOPC
0x6028
1
Overwrite protection control
CANTIOC
0x602A
1
TX I/O control
CANRIOC
0x602C
1
RX I/O control
CANTSC
0x602E
1
Time stamp counter (Reserved in SCC mode)
CANTOC
0x6030
1
Time-out control (Reserved in SCC mode)
CANTOS
0x6032
1
Time-out status (Reserved in SCC mode)
REGISTER NAME(1)
(1)
110
DESCRIPTION
These registers are mapped to Peripheral Frame 1.
Submit Document Feedback
Copyright © 2021 Texas Instruments Incorporated
Product Folder Links: TMS320F28030 TMS320F28030-Q1 TMS320F28031 TMS320F28031-Q1
TMS320F28032 TMS320F28032-Q1 TMS320F28033 TMS320F28033-Q1 TMS320F28034 TMS320F28034-Q1
TMS320F28035 TMS320F28035-Q1
www.ti.com
TMS320F28030, TMS320F28030-Q1, TMS320F28031, TMS320F28031-Q1, TMS320F28032
TMS320F28032-Q1, TMS320F28033, TMS320F28033-Q1, TMS320F28034, TMS320F28034-Q1
TMS320F28035, TMS320F28035-Q1
SPRS584P – APRIL 2009 – REVISED JUNE 2021
8.9.8 Inter-Integrated Circuit (I2C)
The device contains one I2C Serial Port. Figure 8-37 shows how the I2C peripheral module interfaces within the
device.
The I2C module has the following features:
• Compliance with the Philips Semiconductors I2C-bus specification (version 2.1):
– Support for 1-bit to 8-bit format transfers
– 7-bit and 10-bit addressing modes
– General call
– START byte mode
– Support for multiple master-transmitters and slave-receivers
– Support for multiple slave-transmitters and master-receivers
– Combined master transmit/receive and receive/transmit mode
– Data transfer rate of from 10 kbps up to 400 kbps (I2C Fast-mode rate)
• One 4-word receive FIFO and one 4-word transmit FIFO
• One interrupt that can be used by the CPU. This interrupt can be generated as a result of one of the following
conditions:
– Transmit-data ready
– Receive-data ready
– Register-access ready
– No-acknowledgment received
– Arbitration lost
– Stop condition detected
– Addressed as slave
• An additional interrupt that can be used by the CPU when in FIFO mode
• Module enable/disable capability
• Free data format mode
For more information on the I2C, see the Inter-Integrated Circuit Module (I2C) chapter in the TMS320F2803x
Real-Time Microcontrollers Technical Reference Manual.
Copyright © 2021 Texas Instruments Incorporated
Submit Document Feedback
Product Folder Links: TMS320F28030 TMS320F28030-Q1 TMS320F28031 TMS320F28031-Q1
TMS320F28032 TMS320F28032-Q1 TMS320F28033 TMS320F28033-Q1 TMS320F28034 TMS320F28034-Q1
TMS320F28035 TMS320F28035-Q1
111
TMS320F28030, TMS320F28030-Q1, TMS320F28031, TMS320F28031-Q1, TMS320F28032
TMS320F28032-Q1, TMS320F28033, TMS320F28033-Q1, TMS320F28034, TMS320F28034-Q1
TMS320F28035, TMS320F28035-Q1
SPRS584P – APRIL 2009 – REVISED JUNE 2021
www.ti.com
I2C Module
I2CXSR
I2CDXR
TX FIFO
FIFO Interrupt to
CPU/PIE
SDA
RX FIFO
Peripheral Bus
I2CRSR
SCL
I2CDRR
Clock
Synchronizer
Control/Status
Registers
CPU
Prescaler
Noise Filters
Interrupt to
CPU/PIE
I2C INT
Arbitrator
A.
B.
The I2C registers are accessed at the SYSCLKOUT rate. The internal timing and signal waveforms of the I2C port are also at the
SYSCLKOUT rate.
The clock enable bit (I2CAENCLK) in the PCLKCRO register turns off the clock to the I2C port for low-power operation. Upon reset,
I2CAENCLK is clear, which indicates the peripheral internal clocks are off.
Figure 8-37. I2C Peripheral Module Interfaces
The registers in Table 8-33 configure and control the I2C port operation.
Table 8-33. I2C-A Registers
ADDRESS
EALLOW
PROTECTED
I2COAR
0x7900
No
I2C own address register
I2CIER
0x7901
No
I2C interrupt enable register
I2CSTR
0x7902
No
I2C status register
I2CCLKL
0x7903
No
I2C clock low-time divider register
I2CCLKH
0x7904
No
I2C clock high-time divider register
I2CCNT
0x7905
No
I2C data count register
I2CDRR
0x7906
No
I2C data receive register
I2CSAR
0x7907
No
I2C slave address register
I2CDXR
0x7908
No
I2C data transmit register
I2CMDR
0x7909
No
I2C mode register
I2CISRC
0x790A
No
I2C interrupt source register
I2CPSC
0x790C
No
I2C prescaler register
I2CFFTX
0x7920
No
I2C FIFO transmit register
I2CFFRX
0x7921
No
I2C FIFO receive register
I2CRSR
–
No
I2C receive shift register (not accessible to the CPU)
I2CXSR
–
No
I2C transmit shift register (not accessible to the CPU)
NAME
112
Submit Document Feedback
DESCRIPTION
Copyright © 2021 Texas Instruments Incorporated
Product Folder Links: TMS320F28030 TMS320F28030-Q1 TMS320F28031 TMS320F28031-Q1
TMS320F28032 TMS320F28032-Q1 TMS320F28033 TMS320F28033-Q1 TMS320F28034 TMS320F28034-Q1
TMS320F28035 TMS320F28035-Q1
TMS320F28030, TMS320F28030-Q1, TMS320F28031, TMS320F28031-Q1, TMS320F28032
TMS320F28032-Q1, TMS320F28033, TMS320F28033-Q1, TMS320F28034, TMS320F28034-Q1
TMS320F28035, TMS320F28035-Q1
www.ti.com
SPRS584P – APRIL 2009 – REVISED JUNE 2021
8.9.8.1 I2C Electrical Data/Timing
Section 8.9.8.1.1 shows the I2C timing requirements. Section 8.9.8.1.2 shows the I2C switching characteristics.
8.9.8.1.1 I2C Timing Requirements
MIN
MAX
UNIT
th(SDA-SCL)START
Hold time, START condition, SCL fall delay
after SDA fall
0.6
µs
tsu(SCL-SDA)START
Setup time, Repeated START, SCL rise
before SDA fall delay
0.6
µs
th(SCL-DAT)
Hold time, data after SCL fall
0
µs
tsu(DAT-SCL)
Setup time, data before SCL rise
tr(SDA)
Rise time, SDA
Input tolerance
20
300
ns
tr(SCL)
Rise time, SCL
Input tolerance
20
300
ns
tf(SDA)
Fall time, SDA
Input tolerance
11.4
300
ns
tf(SCL)
Fall time, SCL
Input tolerance
11.4
300
ns
tsu(SCL-SDA)STOP
Setup time, STOP condition, SCL rise before
SDA rise delay
100
ns
0.6
µs
8.9.8.1.2 I2C Switching Characteristics
over recommended operating conditions (unless otherwise noted)
PARAMETER
TEST CONDITIONS
MIN
I2C clock module frequency is from 7 MHz to
12 MHz and I2C prescaler and clock divider
registers are configured appropriately.
MAX
UNIT
400
kHz
fSCL
SCL clock frequency
Vil
Low level input voltage
Vih
High level input voltage
Vhys
Input hysteresis
Vol
Low level output voltage
3-mA sink current
tLOW
Low period of SCL clock
I2C clock module frequency is from 7 MHz to
12 MHz and I2C prescaler and clock divider
registers are configured appropriately.
1.3
μs
tHIGH
High period of SCL clock
I2C clock module frequency is from 7 MHz to
12 MHz and I2C prescaler and clock divider
registers are configured appropriately.
0.6
μs
lI
Input current with an input voltage from
0.1 VDDIO to 0.9 VDDIO MAX
Copyright © 2021 Texas Instruments Incorporated
0.3 VDDIO
0.7 VDDIO
V
0.05 VDDIO
0
–10
V
V
0.4
10
V
μA
Submit Document Feedback
Product Folder Links: TMS320F28030 TMS320F28030-Q1 TMS320F28031 TMS320F28031-Q1
TMS320F28032 TMS320F28032-Q1 TMS320F28033 TMS320F28033-Q1 TMS320F28034 TMS320F28034-Q1
TMS320F28035 TMS320F28035-Q1
113
TMS320F28030, TMS320F28030-Q1, TMS320F28031, TMS320F28031-Q1, TMS320F28032
TMS320F28032-Q1, TMS320F28033, TMS320F28033-Q1, TMS320F28034, TMS320F28034-Q1
TMS320F28035, TMS320F28035-Q1
www.ti.com
SPRS584P – APRIL 2009 – REVISED JUNE 2021
8.9.9 Enhanced PWM Modules (ePWM1/2/3/4/5/6/7)
The devices contain up to seven enhanced PWM Modules (ePWM). Figure 8-38 shows a block diagram of
multiple ePWM modules. Figure 8-39 shows the signal interconnections with the ePWM. For more details,
see the Enhanced Pulse Width Modulator (ePWM) chapter in the TMS320F2803x Real-Time Microcontrollers
Technical Reference Manual.
Table 8-34 and Table 8-35 show the complete ePWM register set per module.
EPWMSYNCI
EPWM1SYNCI
EPWM1B
EPWM1TZINT
EPWM1
Module
EPWM1INT
EPWM2TZINT
PIE
TZ1 to TZ3
TZ4
EPWM2INT
TZ5
EPWMxTZINT
TZ6
EPWMxINT
EQEP1ERR
(A)
CLOCKFAIL
EMUSTOP
EPWM1ENCLK
TBCLKSYNC
eCAPI
EPWM1SYNCO
EPWM1SYNCO
EPWM2SYNCI
COMPOUT1
COMPOUT2
TZ1 to TZ3
EPWM2B
EPWM2
Module
COMP
TZ4
TZ5
TZ6
EQEP1ERR
(A)
EPWM1A
H
R
P
W
M
CLOCKFAIL
EMUSTOP
EPWM2ENCLK
TBCLKSYNC
EPWM2A
EPWMxA
G
P
I
O
ADC
Peripheral Bus
EPWM2SYNCO
SOCA1
SOCB1
SOCA2
M
U
X
EPWMxB
EPWMxSYNCI
SOCB2
SOCAx
TZ1 to TZ3
EPWMx
Module
SOCBx
TZ4
TZ5
TZ6
EQEP1ERR
(A)
EQEP1ERR
CLOCKFAIL
EMUSTOP
eQEP1
EPWMxENCLK
TBCLKSYNC
System Control
C28x CPU
SOCA1
SOCA2
SPCAx
Pulse Stretch
(32 SYSCLKOUT Cycles, Active-Low Output)
ADCSOCAO
SOCB1
SOCB2
SPCBx
Pulse Stretch
(32 SYSCLKOUT Cycles, Active-Low Output)
ADCSOCBO
Copyright © 2017, Texas Instruments Incorporated
A.
This signal exists only on devices with an eQEP1 module.
Figure 8-38. ePWM
114
Submit Document Feedback
Copyright © 2021 Texas Instruments Incorporated
Product Folder Links: TMS320F28030 TMS320F28030-Q1 TMS320F28031 TMS320F28031-Q1
TMS320F28032 TMS320F28032-Q1 TMS320F28033 TMS320F28033-Q1 TMS320F28034 TMS320F28034-Q1
TMS320F28035 TMS320F28035-Q1
TMS320F28030, TMS320F28030-Q1, TMS320F28031, TMS320F28031-Q1, TMS320F28032
TMS320F28032-Q1, TMS320F28033, TMS320F28033-Q1, TMS320F28034, TMS320F28034-Q1
TMS320F28035, TMS320F28035-Q1
www.ti.com
SPRS584P – APRIL 2009 – REVISED JUNE 2021
Table 8-34. ePWM1–ePWM4 Control and Status Registers
ePWM1
ePWM2
ePWM3
ePWM4
SIZE (x16) /
#SHADOW
TBCTL
0x6800
0x6840
0x6880
0x68C0
1/0
Time Base Control Register
TBSTS
0x6801
0x6841
0x6881
0x68C1
1/0
Time Base Status Register
TBPHSHR
0x6802
0x6842
0x6882
0x68C2
1/0
Time Base Phase HRPWM Register
TBPHS
0x6803
0x6843
0x6883
0x68C3
1/0
Time Base Phase Register
TBCTR
0x6804
0x6844
0x6884
0x68C4
1/0
Time Base Counter Register
TBPRD
0x6805
0x6845
0x6885
0x68C5
1/1
Time Base Period Register Set
TBPRDHR
0x6806
0x6846
0x6886
0x68C6
1/1
Time Base Period High Resolution Register(1)
CMPCTL
0x6807
0x6847
0x6887
0x68C7
1/0
Counter Compare Control Register
CMPAHR
0x6808
0x6848
0x6888
0x68C8
1/1
Time Base Compare A HRPWM Register
CMPA
0x6809
0x6849
0x6889
0x68C9
1/1
Counter Compare A Register Set
CMPB
0x680A
0x684A
0x688A
0x68CA
1/1
Counter Compare B Register Set
AQCTLA
0x680B
0x684B
0x688B
0x68CB
1/0
Action Qualifier Control Register For Output A
AQCTLB
0x680C
0x684C
0x688C
0x68CC
1/0
Action Qualifier Control Register For Output B
AQSFRC
0x680D
0x684D
0x688D
0x68CD
1/0
Action Qualifier Software Force Register
AQCSFRC
0x680E
0x684E
0x688E
0x68CE
1/1
Action Qualifier Continuous S/W Force
Register Set
DBCTL
0x680F
0x684F
0x688F
0x68CF
1/1
Dead-Band Generator Control Register
DBRED
0x6810
0x6850
0x6890
0x68D0
1/0
Dead-Band Generator Rising Edge Delay
Count Register
DBFED
0x6811
0x6851
0x6891
0x68D1
1/0
Dead-Band Generator Falling Edge Delay
Count Register
TZSEL
0x6812
0x6852
0x6892
0x68D2
1/0
Trip Zone Select Register(1)
TZDCSEL
0x6813
0x6853
0x6893
0x98D3
1/0
Trip Zone Digital Compare Register
TZCTL
0x6814
0x6854
0x6894
0x68D4
1/0
Trip Zone Control Register(1)
TZEINT
0x6815
0x6855
0x6895
0x68D5
1/0
Trip Zone Enable Interrupt Register(1)
TZFLG
0x6816
0x6856
0x6896
0x68D6
1/0
Trip Zone Flag Register (1)
TZCLR
0x6817
0x6857
0x6897
0x68D7
1/0
Trip Zone Clear Register(1)
TZFRC
0x6818
0x6858
0x6898
0x68D8
1/0
Trip Zone Force Register(1)
ETSEL
0x6819
0x6859
0x6899
0x68D9
1/0
Event Trigger Selection Register
ETPS
0x681A
0x685A
0x689A
0x68DA
1/0
Event Trigger Prescale Register
ETFLG
0x681B
0x685B
0x689B
0x68DB
1/0
Event Trigger Flag Register
ETCLR
0x681C
0x685C
0x689C
0x68DC
1/0
Event Trigger Clear Register
ETFRC
0x681D
0x685D
0x689D
0x68DD
1/0
Event Trigger Force Register
PCCTL
0x681E
0x685E
0x689E
0x68DE
1/0
PWM Chopper Control Register
HRCNFG
0x6820
0x6860
0x68A0
0x68E0
1/0
HRPWM Configuration Register(1)
HRPWR
0x6821
-
-
-
1/0
HRPWM Power Register
HRMSTEP
0x6826
-
-
-
1/0
HRPWM MEP Step Register
HRPCTL
0x6828
0x6868
0x68A8
0x68E8
1/0
High resolution Period Control Register(1)
NAME
TBPRDHRM
0x682A
0x686A
0x68AA
0x68EA
DESCRIPTION
1/
W(2)
Time Base Period HRPWM Register Mirror
W(2)
Time Base Period Register Mirror
TBPRDM
0x682B
0x686B
0x68AB
0x68EB
1/
CMPAHRM
0x682C
0x686C
0x68AC
0x68EC
1 / W(2)
Compare A HRPWM Register Mirror
CMPAM
0x682D
0x686D
0x68AD
0x68ED
1 / W(2)
Compare A Register Mirror
DCTRIPSEL
0x6830
0x6870
0x68B0
0x68F0
1/0
Digital Compare Trip Select Register (1)
DCACTL
0x6831
0x6871
0x68B1
0x68F1
1/0
Digital Compare A Control Register(1)
DCBCTL
0x6832
0x6872
0x68B2
0x68F2
1/0
Digital Compare B Control Register(1)
DCFCTL
0x6833
0x6873
0x68B3
0x68F3
1/0
Digital Compare Filter Control Register(1)
Copyright © 2021 Texas Instruments Incorporated
Submit Document Feedback
Product Folder Links: TMS320F28030 TMS320F28030-Q1 TMS320F28031 TMS320F28031-Q1
TMS320F28032 TMS320F28032-Q1 TMS320F28033 TMS320F28033-Q1 TMS320F28034 TMS320F28034-Q1
TMS320F28035 TMS320F28035-Q1
115
TMS320F28030, TMS320F28030-Q1, TMS320F28031, TMS320F28031-Q1, TMS320F28032
TMS320F28032-Q1, TMS320F28033, TMS320F28033-Q1, TMS320F28034, TMS320F28034-Q1
TMS320F28035, TMS320F28035-Q1
www.ti.com
SPRS584P – APRIL 2009 – REVISED JUNE 2021
Table 8-34. ePWM1–ePWM4 Control and Status Registers (continued)
ePWM1
ePWM2
ePWM3
ePWM4
SIZE (x16) /
#SHADOW
DCCAPCT
0x6834
0x6874
0x68B4
0x68F4
1/0
Digital Compare Capture Control Register(1)
DCFOFFSET
0x6835
0x6875
0x68B5
0x68F5
1/1
Digital Compare Filter Offset Register
DCFOFFSETCN
T
0x6836
0x6876
0x68B6
0x68F6
1/0
Digital Compare Filter Offset Counter Register
DCFWINDOW
0x6837
0x6877
0x68B7
0x68F7
1/0
Digital Compare Filter Window Register
DCFWINDOWCN
T
0x6838
0x6878
0x68B8
0x68F8
1/0
Digital Compare Filter Window Counter
Register
DCCAP
0x6839
0x6879
0x68B9
0x68F9
1/1
Digital Compare Counter Capture Register
NAME
(1)
(2)
116
DESCRIPTION
Registers that are EALLOW protected.
W = Write to shadow register
Submit Document Feedback
Copyright © 2021 Texas Instruments Incorporated
Product Folder Links: TMS320F28030 TMS320F28030-Q1 TMS320F28031 TMS320F28031-Q1
TMS320F28032 TMS320F28032-Q1 TMS320F28033 TMS320F28033-Q1 TMS320F28034 TMS320F28034-Q1
TMS320F28035 TMS320F28035-Q1
TMS320F28030, TMS320F28030-Q1, TMS320F28031, TMS320F28031-Q1, TMS320F28032
TMS320F28032-Q1, TMS320F28033, TMS320F28033-Q1, TMS320F28034, TMS320F28034-Q1
TMS320F28035, TMS320F28035-Q1
www.ti.com
SPRS584P – APRIL 2009 – REVISED JUNE 2021
Table 8-35. ePWM5–ePWM7 Control and Status Registers
ePWM5
ePWM6
ePWM7
SIZE (x16) /
#SHADOW
TBCTL
0x6900
0x6940
0x6980
1/0
Time Base Control Register
TBSTS
0x6901
0x6941
0x6981
1/0
Time Base Status Register
TBPHSHR
0x6902
0x6942
0x6982
1/0
Time Base Phase HRPWM Register
TBPHS
0x6903
0x6943
0x6983
1/0
Time Base Phase Register
TBCTR
0x6904
0x6944
0x6984
1/0
Time Base Counter Register
TBPRD
0x6905
0x6945
0x6985
1/1
Time Base Period Register Set
TBPRDHR
0x6906
0x6946
0x6986
1/1
Time Base Period High Resolution Register(1)
CMPCTL
0x6907
0x6947
0x6987
1/0
Counter Compare Control Register
CMPAHR
0x6908
0x6948
0x6988
1/1
Time Base Compare A HRPWM Register
CMPA
0x6909
0x6949
0x6989
1/1
Counter Compare A Register Set
CMPB
0x690A
0x694A
0x698A
1/1
Counter Compare B Register Set
AQCTLA
0x690B
0x694B
0x698B
1/0
Action Qualifier Control Register For Output A
AQCTLB
0x690C
0x694C
0x698C
1/0
Action Qualifier Control Register For Output B
AQSFRC
0x690D
0x694D
0x698D
1/0
Action Qualifier Software Force Register
AQCSFRC
0x690E
0x694E
0x698E
1/1
Action Qualifier Continuous S/W Force Register Set
DBCTL
0x690F
0x694F
0x698F
1/1
Dead-Band Generator Control Register
DBRED
0x6910
0x6950
0x6990
1/0
Dead-Band Generator Rising Edge Delay Count
Register
DBFED
0x6911
0x6951
0x6991
1/0
Dead-Band Generator Falling Edge Delay Count
Register
TZSEL
0x6912
0x6952
0x6992
1/0
Trip Zone Select Register(1)
TZDCSEL
0x6913
0x6953
0x6993
1/0
Trip Zone Digital Compare Register
TZCTL
0x6914
0x6954
0x6994
1/0
Trip Zone Control Register(1)
TZEINT
0x6915
0x6955
0x6995
1/0
Trip Zone Enable Interrupt Register(1)
TZFLG
0x6916
0x6956
0x6996
1/0
Trip Zone Flag Register (1)
TZCLR
0x6917
0x6957
0x6997
1/0
Trip Zone Clear Register(1)
TZFRC
0x6918
0x6958
0x6998
1/0
Trip Zone Force Register(1)
NAME
DESCRIPTION
ETSEL
0x6919
0x6959
0x6999
1/0
Event Trigger Selection Register
ETPS
0x691A
0x695A
0x699A
1/0
Event Trigger Prescale Register
ETFLG
0x691B
0x695B
0x699B
1/0
Event Trigger Flag Register
ETCLR
0x691C
0x695C
0x699C
1/0
Event Trigger Clear Register
ETFRC
0x691D
0x695D
0x699D
1/0
Event Trigger Force Register
PCCTL
0x691E
0x695E
0x699E
1/0
PWM Chopper Control Register
HRCNFG
0x6920
0x6960
0x69A0
1/0
HRPWM Configuration Register(1)
HRPWR
-
-
-
1/0
HRPWM Power Register
HRMSTEP
-
-
-
1/0
HRPWM MEP Step Register
HRPCTL
0x6928
0x6968
0x69A8
1/0
High resolution Period Control Register(1)
TBPRDHRM
0x692A
0x696A
0x69AA
1 / W(2)
Time Base Period HRPWM Register Mirror
TBPRDM
0x692B
0x696B
0x69AB
1 / W(2)
Time Base Period Register Mirror
W(2)
CMPAHRM
0x692C
0x696C
0x69AC
1/
CMPAM
0x692D
0x696D
0x69AD
1 / W(2)
DCTRIPSEL
0x6930
0x6970
0x69B0
1/0
Digital Compare Trip Select Register (1)
DCACTL
0x6931
0x6971
0x69B1
1/0
Digital Compare A Control Register(1)
DCBCTL
0x6932
0x6972
0x69B2
1/0
Digital Compare B Control Register(1)
DCFCTL
0x6933
0x6973
0x69B3
1/0
Digital Compare Filter Control Register(1)
Copyright © 2021 Texas Instruments Incorporated
Compare A HRPWM Register Mirror
Compare A Register Mirror
Submit Document Feedback
Product Folder Links: TMS320F28030 TMS320F28030-Q1 TMS320F28031 TMS320F28031-Q1
TMS320F28032 TMS320F28032-Q1 TMS320F28033 TMS320F28033-Q1 TMS320F28034 TMS320F28034-Q1
TMS320F28035 TMS320F28035-Q1
117
TMS320F28030, TMS320F28030-Q1, TMS320F28031, TMS320F28031-Q1, TMS320F28032
TMS320F28032-Q1, TMS320F28033, TMS320F28033-Q1, TMS320F28034, TMS320F28034-Q1
TMS320F28035, TMS320F28035-Q1
SPRS584P – APRIL 2009 – REVISED JUNE 2021
www.ti.com
Table 8-35. ePWM5–ePWM7 Control and Status Registers (continued)
ePWM5
ePWM6
ePWM7
SIZE (x16) /
#SHADOW
DCCAPCT
0x6934
0x6974
0x69B4
1/0
Digital Compare Capture Control Register(1)
DCFOFFSET
0x6935
0x6975
0x69B5
1/1
Digital Compare Filter Offset Register
DCFOFFSETCNT
0x6936
0x6976
0x69B6
1/0
Digital Compare Filter Offset Counter Register
DCFWINDOW
0x6937
0x6977
0x69B7
1/0
Digital Compare Filter Window Register
DCFWINDOWCNT
0x6938
0x6978
0x69B8
1/0
Digital Compare Filter Window Counter Register
DCCAP
0x6939
0x6979
0x69B9
1/1
Digital Compare Counter Capture Register
NAME
(1)
(2)
118
DESCRIPTION
Registers that are EALLOW protected.
W = Write to shadow register
Submit Document Feedback
Copyright © 2021 Texas Instruments Incorporated
Product Folder Links: TMS320F28030 TMS320F28030-Q1 TMS320F28031 TMS320F28031-Q1
TMS320F28032 TMS320F28032-Q1 TMS320F28033 TMS320F28033-Q1 TMS320F28034 TMS320F28034-Q1
TMS320F28035 TMS320F28035-Q1
TMS320F28030, TMS320F28030-Q1, TMS320F28031, TMS320F28031-Q1, TMS320F28032
TMS320F28032-Q1, TMS320F28033, TMS320F28033-Q1, TMS320F28034, TMS320F28034-Q1
TMS320F28035, TMS320F28035-Q1
www.ti.com
SPRS584P – APRIL 2009 – REVISED JUNE 2021
Time-Base (TB)
CTR=ZERO
TBPRD Shadow (24)
TBPRD Active (24)
Sync
In/Out
Select
Mux
CTR=CMPB
TBPRDHR (8)
Disabled
EPWMxSYNCO
8
CTR=PRD
TBCTL[SYNCOSEL]
TBCTL[PHSEN]
Counter
Up/Down
(16 Bit)
TBCTL[SWFSYNC]
(Software Forced
Sync)
CTR=ZERO
TCBNT
Active (16)
CTR_Dir
CTR=PRD
CTR=ZERO
CTR=PRD or ZERO
CTR=CMPA
TBPHSHR (8)
16
8
TBPHS Active (24)
Phase
Control
CTR=CMPB
CTR_Dir
DCAEVT1.soc
DCBEVT1.soc
CTR=CMPA
EPWMxSYNCI
DCAEVT1.sync
DCBEVT1.sync
(A)
EPWMxINT
Event
Trigger
and
Interrupt
(ET)
EPWMxSOCA
EPWMxSOCB
EPWMxSOCA
ADC
(A)
EPWMxSOCB
Action
Qualifier
(AQ)
CMPAHR (8)
16
High-resolution PWM (HRPWM)
CMPA Active (24)
CMPA Shadow (24)
Dead
Band
(DB)
CTR=CMPB
16
EPWMxA
EPWMA
PWM
Chopper
(PC)
Trip
Zone
(TZ)
EPWMxB
EPWMB
EPWMxTZINT
CMPB Active (16)
TZ1 to TZ3
CMPB Shadow (16)
CTR=ZERO
DCAEVT1.inter
DCBEVT1.inter
DCAEVT2.inter
DCBEVT2.inter
EMUSTOP
CLOCKFAIL
EQEP1ERR
(B)
DCAEVT1.force
DCAEVT2.force
DCBEVT1.force
DCBEVT2.force
A.
B.
(A)
(A)
(A)
(A)
These events are generated by the Type 1 ePWM digital compare (DC) submodule based on the levels of the COMPxOUT and TZ
signals.
This signal exists only on devices with an eQEP1 module.
Figure 8-39. ePWM Submodules Showing Critical Internal Signal Interconnections
Copyright © 2021 Texas Instruments Incorporated
Submit Document Feedback
Product Folder Links: TMS320F28030 TMS320F28030-Q1 TMS320F28031 TMS320F28031-Q1
TMS320F28032 TMS320F28032-Q1 TMS320F28033 TMS320F28033-Q1 TMS320F28034 TMS320F28034-Q1
TMS320F28035 TMS320F28035-Q1
119
TMS320F28030, TMS320F28030-Q1, TMS320F28031, TMS320F28031-Q1, TMS320F28032
TMS320F28032-Q1, TMS320F28033, TMS320F28033-Q1, TMS320F28034, TMS320F28034-Q1
TMS320F28035, TMS320F28035-Q1
www.ti.com
SPRS584P – APRIL 2009 – REVISED JUNE 2021
8.9.9.1 ePWM Electrical Data/Timing
PWM refers to PWM outputs on ePWM1–7. Section 8.9.9.1.1 shows the PWM timing requirements and Section
8.9.9.1.2, switching characteristics.
8.9.9.1.1 ePWM Timing Requirements
MIN
Asynchronous
tw(SYCIN) (1)
Sync input pulse width
(1)
UNIT
cycles
2tc(SCO)
cycles
1tc(SCO) + tw(IQSW)
cycles
Synchronous
With input qualifier
MAX
2tc(SCO)
For an explanation of the input qualifier parameters, see Section 8.9.15.1.2.1.
8.9.9.1.2 ePWM Switching Characteristics
over recommended operating conditions (unless otherwise noted)
PARAMETER
tw(PWM)
Pulse duration, PWMx output high/low
tw(SYNCOUT)
Sync output pulse width
td(PWM)tza
Delay time, trip input active to PWM forced high
Delay time, trip input active to PWM forced low
td(TZ-PWM)HZ
Delay time, trip input active to PWM Hi-Z
TEST CONDITIONS
MIN
MAX
33.33
UNIT
ns
8tc(SCO)
cycles
no pin load
25
ns
20
ns
8.9.9.2 Trip-Zone Input Timing
8.9.9.2.1 Trip-Zone Input Timing Requirements
MIN
Asynchronous
tw(TZ) (1)
Pulse duration, TZx input low
(1)
UNIT
cycles
2tc(TBCLK)
cycles
2tc(TBCLK) + tw(IQSW)
cycles
Synchronous
With input qualifier
MAX
2tc(TBCLK)
For an explanation of the input qualifier parameters, see Section 8.9.15.1.2.1.
SYSCLK
tw(TZ)
(A)
TZ
td(TZ-PWM)HZ
(B)
PWM
A.
B.
TZ - TZ1, TZ2, TZ3 , TZ4, TZ5, TZ6
PWM refers to all the PWM pins in the device. The state of the PWM pins after TZ is taken high depends on the PWM recovery
software.
Figure 8-40. PWM Hi-Z Characteristics
120
Submit Document Feedback
Copyright © 2021 Texas Instruments Incorporated
Product Folder Links: TMS320F28030 TMS320F28030-Q1 TMS320F28031 TMS320F28031-Q1
TMS320F28032 TMS320F28032-Q1 TMS320F28033 TMS320F28033-Q1 TMS320F28034 TMS320F28034-Q1
TMS320F28035 TMS320F28035-Q1
www.ti.com
TMS320F28030, TMS320F28030-Q1, TMS320F28031, TMS320F28031-Q1, TMS320F28032
TMS320F28032-Q1, TMS320F28033, TMS320F28033-Q1, TMS320F28034, TMS320F28034-Q1
TMS320F28035, TMS320F28035-Q1
SPRS584P – APRIL 2009 – REVISED JUNE 2021
8.9.10 High-Resolution PWM (HRPWM)
This module combines multiple delay lines in a single module and a simplified calibration system by using a
dedicated calibration delay line. For each ePWM module there is one HR delay line.
The HRPWM module offers PWM resolution (time granularity) that is significantly better than what can be
achieved using conventionally derived digital PWM methods. The key points for the HRPWM module are:
• Significantly extends the time resolution capabilities of conventionally derived digital PWM
• This capability can be used in both single edge (duty cycle and phase-shift control) as well as dual edge
control for frequency/period modulation.
• Finer time granularity control or edge positioning is controlled through extensions to the Compare A and
Phase registers of the ePWM module.
• HRPWM capabilities, when available on a particular device, are offered only on the A signal path of an
ePWM module (that is, on the EPWMxA output). EPWMxB output has conventional PWM capabilities.
Note
The minimum SYSCLKOUT frequency allowed for HRPWM is 60 MHz.
Note
When dual-edge high-resolution is enabled (high-resolution period mode), the PWMxB output is not
available for use.
For more information on the HRPWM, see the High-Resolution Pulse Width Modulator (HRPWM) chapter in the
TMS320F2803x Real-Time Microcontrollers Technical Reference Manual.
8.9.10.1 HRPWM Electrical Data/Timing
Section 8.9.10.1.1 shows the high-resolution PWM switching characteristics.
8.9.10.1.1 High-Resolution PWM Characteristics
PARAMETER(1)
Micro Edge Positioning (MEP) step size(2)
(1)
(2)
MIN
TYP
150
MAX UNIT
310
ps
The HRPWM operates at a minimum SYSCLKOUT frequency of 60 MHz.
The MEP step size will be largest at high temperature and minimum voltage on VDD. MEP step size will increase with higher
temperature and lower voltage and decrease with lower temperature and higher voltage.
Applications that use the HRPWM feature should use MEP Scale Factor Optimizer (SFO) estimation software functions. See the TI
software libraries for details of using SFO function in end applications. SFO functions help to estimate the number of MEP steps per
SYSCLKOUT period dynamically while the HRPWM is in operation.
Copyright © 2021 Texas Instruments Incorporated
Submit Document Feedback
Product Folder Links: TMS320F28030 TMS320F28030-Q1 TMS320F28031 TMS320F28031-Q1
TMS320F28032 TMS320F28032-Q1 TMS320F28033 TMS320F28033-Q1 TMS320F28034 TMS320F28034-Q1
TMS320F28035 TMS320F28035-Q1
121
TMS320F28030, TMS320F28030-Q1, TMS320F28031, TMS320F28031-Q1, TMS320F28032
TMS320F28032-Q1, TMS320F28033, TMS320F28033-Q1, TMS320F28034, TMS320F28034-Q1
TMS320F28035, TMS320F28035-Q1
www.ti.com
SPRS584P – APRIL 2009 – REVISED JUNE 2021
8.9.11 Enhanced Capture Module (eCAP1)
SYNC
The device contains an enhanced capture (eCAP) module. Figure 8-41 shows a functional block diagram of a
module.
SYNCIn
CTRPHS
(phase register−32 bit)
SYNCOut
TSCTR
(counter−32 bit)
APWM mode
OVF
RST
CTR_OVF
Delta−mode
CTR [0−31]
PRD [0−31]
CMP [0−31]
PWM
compare
logic
32
CTR=PRD
CTR [0−31]
CTR=CMP
32
32
CAP1
(APRD active)
APRD
shadow
32
LD
LD1
MODE SELECT
PRD [0−31]
Polarity
select
32
CMP [0−31]
32
CAP2
(ACMP active)
32
LD
LD2
Polarity
select
Event
qualifier
ACMP
shadow
32
CAP3
(APRD shadow)
LD
32
CAP4
(ACMP shadow)
LD
eCAPx
Event
Prescale
Polarity
select
LD3
LD4
Polarity
select
4
Capture events
4
CEVT[1:4]
to PIE
Interrupt
Trigger
and
Flag
control
CTR_OVF
Continuous /
Oneshot
Capture Control
CTR=PRD
CTR=CMP
Copyright © 2017, Texas Instruments Incorporated
Figure 8-41. eCAP Functional Block Diagram
The eCAP module is clocked at the SYSCLKOUT rate.
The clock enable bits (ECAP1 ENCLK) in the PCLKCR1 register turn off the eCAP module individually (for
low-power operation). Upon reset, ECAP1ENCLK is set to low, indicating that the peripheral clock is off.
122
Submit Document Feedback
Copyright © 2021 Texas Instruments Incorporated
Product Folder Links: TMS320F28030 TMS320F28030-Q1 TMS320F28031 TMS320F28031-Q1
TMS320F28032 TMS320F28032-Q1 TMS320F28033 TMS320F28033-Q1 TMS320F28034 TMS320F28034-Q1
TMS320F28035 TMS320F28035-Q1
www.ti.com
TMS320F28030, TMS320F28030-Q1, TMS320F28031, TMS320F28031-Q1, TMS320F28032
TMS320F28032-Q1, TMS320F28033, TMS320F28033-Q1, TMS320F28034, TMS320F28034-Q1
TMS320F28035, TMS320F28035-Q1
SPRS584P – APRIL 2009 – REVISED JUNE 2021
Table 8-36. eCAP Control and Status Registers
NAME
eCAP1
SIZE (x16)
TSCTR
0x6A00
2
Time-Stamp Counter
CTRPHS
0x6A02
2
Counter Phase Offset Value Register
CAP1
0x6A04
2
Capture 1 Register
CAP2
0x6A06
2
Capture 2 Register
CAP3
0x6A08
2
Capture 3 Register
CAP4
EALLOW PROTECTED
DESCRIPTION
0x6A0A
2
Capture 4 Register
Reserved
0x6A0C to 0x6A12
8
Reserved
ECCTL1
0x6A14
1
Capture Control Register 1
ECCTL2
0x6A15
1
Capture Control Register 2
ECEINT
0x6A16
1
Capture Interrupt Enable Register
ECFLG
0x6A17
1
Capture Interrupt Flag Register
ECCLR
0x6A18
1
Capture Interrupt Clear Register
ECFRC
0x6A19
1
Capture Interrupt Force Register
0x6A1A to 0x6A1F
6
Reserved
Reserved
For more information on the eCAP, see the Enhanced Capture (eCAP) Module chapter in the TMS320F2803x
Real-Time Microcontrollers Technical Reference Manual.
8.9.11.1 eCAP Electrical Data/Timing
Section 8.9.11.1.1 shows the eCAP timing requirement and Section 8.9.11.1.2 shows the eCAP switching
characteristics.
8.9.11.1.1 Enhanced Capture (eCAP) Timing Requirement
MIN
Asynchronous
tw(CAP) (1)
Capture input pulse width
(1)
UNIT
cycles
2tc(SCO)
cycles
1tc(SCO) + tw(IQSW)
cycles
Synchronous
With input qualifier
MAX
2tc(SCO)
For an explanation of the input qualifier parameters, see Section 8.9.15.1.2.1.
8.9.11.1.2 eCAP Switching Characteristics
over recommended operating conditions (unless otherwise noted)
PARAMETER
tw(APWM)
Pulse duration, APWMx output high/low
Copyright © 2021 Texas Instruments Incorporated
TEST CONDITIONS
MIN
MAX
20
UNIT
ns
Submit Document Feedback
Product Folder Links: TMS320F28030 TMS320F28030-Q1 TMS320F28031 TMS320F28031-Q1
TMS320F28032 TMS320F28032-Q1 TMS320F28033 TMS320F28033-Q1 TMS320F28034 TMS320F28034-Q1
TMS320F28035 TMS320F28035-Q1
123
TMS320F28030, TMS320F28030-Q1, TMS320F28031, TMS320F28031-Q1, TMS320F28032
TMS320F28032-Q1, TMS320F28033, TMS320F28033-Q1, TMS320F28034, TMS320F28034-Q1
TMS320F28035, TMS320F28035-Q1
SPRS584P – APRIL 2009 – REVISED JUNE 2021
www.ti.com
8.9.12 High-Resolution Capture (HRCAP) Module
The High-Resolution Capture (HRCAP) module measures the difference between external pulses with a typical
resolution of 300 ps.
Uses for the HRCAP include:
• Capactive touch applications
• High-resolution period and duty cycle measurements of pulse train cycles
• Instantaneous speed measurements
• Instantaneous frequency measurements
• Voltage measurements across an isolation boundary
• Distance/sonar measurement and scanning
The HRCAP module features include:
• Pulse width capture in either non-high-resolution or high-resolution modes
• Difference (Delta) mode pulse width capture
• Typical high-resolution capture on the order of 300 ps resolution on each edge
• Interrupt on either falling or rising edge
• Continuous mode capture of pulse widths in 2-deep buffer
• Calibration logic for precision high-resolution capture
• All of the above resources are dedicated to a single input pin
• HRCAP calibration software library supplied by TI is used for both calibration and calculating fractional pulse
widths
The HRCAP module includes one capture channel in addition to a high-resolution calibration block, which
connects internally to the last available ePWMxA HRPWM channel when calibrating (that is, if there are eight
ePWMs with HRPWM capability, it will be HRPWM8A).
Each HRCAP channel has the following independent key resources:
• Dedicated input capture pin
• 16-bit HRCAP clock which is either equal to the PLL output frequency (asynchronous to SYSCLK) or equal to
the SYSCLK frequency (synchronous to SYSCLK)
• High-resolution pulse width capture in a 2-deep buffer
HRCAP Calibration Logic
EPWMx
HRCAPxENCLK
EPWMxA
HRPWM
SYSCLK
PLLCLK
PIE
HRCAPx
Module
HRCAP Calibration Signal (Internal)
GPIO
Mux
HRCAPxINTn
HRCAPx
Figure 8-42. HRCAP Functional Block Diagram
124
Submit Document Feedback
Copyright © 2021 Texas Instruments Incorporated
Product Folder Links: TMS320F28030 TMS320F28030-Q1 TMS320F28031 TMS320F28031-Q1
TMS320F28032 TMS320F28032-Q1 TMS320F28033 TMS320F28033-Q1 TMS320F28034 TMS320F28034-Q1
TMS320F28035 TMS320F28035-Q1
TMS320F28030, TMS320F28030-Q1, TMS320F28031, TMS320F28031-Q1, TMS320F28032
TMS320F28032-Q1, TMS320F28033, TMS320F28033-Q1, TMS320F28034, TMS320F28034-Q1
TMS320F28035, TMS320F28035-Q1
www.ti.com
SPRS584P – APRIL 2009 – REVISED JUNE 2021
Table 8-37. HRCAP Registers
NAME
HRCAP1
HRCAP2
SIZE (x16)
HCCTL
0x6AC0
0x6AE0
1
HRCAP Control Register(1)
DESCRIPTION
HCIFR
0x6AC1
0x6AE1
1
HRCAP Interrupt Flag Register
HCICLR
0x6AC2
0x6AE2
1
HRCAP Interrupt Clear Register
HCIFRC
0x6AC3
0x6AE3
1
HRCAP Interrupt Force Register
HCCOUNTER
0x6AC4
0x6AE4
1
HRCAP 16-bit Counter Register
HCCAPCNTRISE0
0x6AD0
0x6AF0
1
HRCAP Capture Counter on Rising Edge 0 Register
HCCAPCNTFALL0
0x6AD2
0x6AF2
1
HRCAP Capture Counter on Falling Edge 0 Register
HCCAPCNTRISE1
0x6AD8
0x6AF8
1
HRCAP Capture Counter on Rising Edge 1 Register
HCCAPCNTFALL1
0x6ADA
0x6AFA
1
HRCAP Capture Counter on Falling Edge 1 Register
(1)
Registers that are EALLOW-protected.
For more information on the HRCAP, see the High Resolution Capture (HRCAP) chapter in the TMS320F2803x
Real-Time Microcontrollers Technical Reference Manual.
8.9.12.1 HRCAP Electrical Data/Timing
8.9.12.1.1 High-Resolution Capture (HRCAP) Timing Requirements
MIN
tc(HCCAPCLK)
Cycle time, HRCAP capture clock
tw(HRCAP)
Pulse width, HRCAP capture
HRCAP step
(1)
(2)
size(2)
NOM
8.333
MAX
10.204
7tc(HCCAPCLK) (1)
UNIT
ns
ns
300
ps
The listed minimum pulse width does not take into account the limitation that all relevant HCCAP registers must be read and RISE/
FALL event flags cleared within the pulse width to ensure valid capture data.
HRCAP step size will increase with low voltage and high temperature and decrease with high voltage and low temperature.
Applications that use the HRCAP in high-resolution mode should use the HRCAP calibration functions to dynamically calibrate for
varying operating conditions.
Copyright © 2021 Texas Instruments Incorporated
Submit Document Feedback
Product Folder Links: TMS320F28030 TMS320F28030-Q1 TMS320F28031 TMS320F28031-Q1
TMS320F28032 TMS320F28032-Q1 TMS320F28033 TMS320F28033-Q1 TMS320F28034 TMS320F28034-Q1
TMS320F28035 TMS320F28035-Q1
125
TMS320F28030, TMS320F28030-Q1, TMS320F28031, TMS320F28031-Q1, TMS320F28032
TMS320F28032-Q1, TMS320F28033, TMS320F28033-Q1, TMS320F28034, TMS320F28034-Q1
TMS320F28035, TMS320F28035-Q1
SPRS584P – APRIL 2009 – REVISED JUNE 2021
www.ti.com
8.9.13 Enhanced Quadrature Encoder Pulse (eQEP)
The device contains one enhanced quadrature encoder pulse (eQEP) module.
Table 8-38. eQEP Control and Status Registers
eQEP1
ADDRESS
eQEP1
SIZE(x16)/
#SHADOW
QPOSCNT
0x6B00
2/0
eQEP Position Counter
QPOSINIT
0x6B02
2/0
eQEP Initialization Position Count
QPOSMAX
0x6B04
2/0
eQEP Maximum Position Count
QPOSCMP
0x6B06
2/1
eQEP Position-compare
QPOSILAT
0x6B08
2/0
eQEP Index Position Latch
QPOSSLAT
0x6B0A
2/0
eQEP Strobe Position Latch
QPOSLAT
0x6B0C
2/0
eQEP Position Latch
QUTMR
0x6B0E
2/0
eQEP Unit Timer
QUPRD
0x6B10
2/0
eQEP Unit Period Register
QWDTMR
0x6B12
1/0
eQEP Watchdog Timer
QWDPRD
0x6B13
1/0
eQEP Watchdog Period Register
QDECCTL
0x6B14
1/0
eQEP Decoder Control Register
QEPCTL
0x6B15
1/0
eQEP Control Register
QCAPCTL
0x6B16
1/0
eQEP Capture Control Register
QPOSCTL
0x6B17
1/0
eQEP Position-compare Control Register
QEINT
0x6B18
1/0
eQEP Interrupt Enable Register
QFLG
0x6B19
1/0
eQEP Interrupt Flag Register
QCLR
0x6B1A
1/0
eQEP Interrupt Clear Register
QFRC
0x6B1B
1/0
eQEP Interrupt Force Register
QEPSTS
0x6B1C
1/0
eQEP Status Register
QCTMR
0x6B1D
1/0
eQEP Capture Timer
QCPRD
0x6B1E
1/0
eQEP Capture Period Register
QCTMRLAT
0x6B1F
1/0
eQEP Capture Timer Latch
QCPRDLAT
0x6B20
1/0
eQEP Capture Period Latch
0x6B21 –
0x6B3F
31/0
NAME
Reserved
REGISTER DESCRIPTION
For more information on the eQEP, see the Enhanced QEP (eQEP) Module chapter in the TMS320F2803x
Real-Time Microcontrollers Technical Reference Manual.
126
Submit Document Feedback
Copyright © 2021 Texas Instruments Incorporated
Product Folder Links: TMS320F28030 TMS320F28030-Q1 TMS320F28031 TMS320F28031-Q1
TMS320F28032 TMS320F28032-Q1 TMS320F28033 TMS320F28033-Q1 TMS320F28034 TMS320F28034-Q1
TMS320F28035 TMS320F28035-Q1
TMS320F28030, TMS320F28030-Q1, TMS320F28031, TMS320F28031-Q1, TMS320F28032
TMS320F28032-Q1, TMS320F28033, TMS320F28033-Q1, TMS320F28034, TMS320F28034-Q1
TMS320F28035, TMS320F28035-Q1
www.ti.com
SPRS584P – APRIL 2009 – REVISED JUNE 2021
Figure 8-43 shows the eQEP functional block diagram.
System Control
Registers
To CPU
EQEPxENCLK
Data Bus
SYSCLKOUT
QCPRD
QCAPCTL
QCTMR
16
16
16
Quadrature
Capture
Unit
(QCAP)
QCTMRLAT
QCPRDLAT
Registers
Used by
Multiple Units
QUTMR
QWDTMR
QUPRD
QWDPRD
32
16
QEPCTL
QEPSTS
UTIME
QFLG
UTOUT
QWDOG
QDECCTL
16
WDTOUT
PIE
EQEPxAIN
QCLK
EQEPxINT
16
QPOSLAT
EQEPxIIN
QI
Position Counter/
Control Unit
(PCCU)
EQEPxB/XDIR
EQEPxIOUT
QS Quadrature
Decoder
PHE
(QDU)
PCSOUT
QPOSSLAT
EQEPxA/XCLK
EQEPxBIN
QDIR
EQEPxIOE
GPIO
MUX
EQEPxSIN
EQEPxSOUT
QPOSILAT
EQEPxSOE
32
32
QPOSCNT
QPOSCMP
EQEPxI
EQEPxS
16
QEINT
QPOSINIT
QFRC
QPOSMAX
QCLR
QPOSCTL
eQEP Peripheral
Copyright © 2017, Texas Instruments Incorporated
Figure 8-43. eQEP Functional Block Diagram
Copyright © 2021 Texas Instruments Incorporated
Submit Document Feedback
Product Folder Links: TMS320F28030 TMS320F28030-Q1 TMS320F28031 TMS320F28031-Q1
TMS320F28032 TMS320F28032-Q1 TMS320F28033 TMS320F28033-Q1 TMS320F28034 TMS320F28034-Q1
TMS320F28035 TMS320F28035-Q1
127
TMS320F28030, TMS320F28030-Q1, TMS320F28031, TMS320F28031-Q1, TMS320F28032
TMS320F28032-Q1, TMS320F28033, TMS320F28033-Q1, TMS320F28034, TMS320F28034-Q1
TMS320F28035, TMS320F28035-Q1
www.ti.com
SPRS584P – APRIL 2009 – REVISED JUNE 2021
8.9.13.1 eQEP Electrical Data/Timing
Section 8.9.13.1.1 shows the eQEP timing requirement and Section 8.9.13.1.2 shows the eQEP switching
characteristics.
8.9.13.1.1 Enhanced Quadrature Encoder Pulse (eQEP) Timing Requirements
MIN
tw(QEPP)
tw(INDEXH)
tw(INDEXL)
tw(STROBH)
tw(STROBL)
(1)
(2)
QEP input period
QEP Index Input High time
QEP Index Input Low time
QEP Strobe High time
QEP Strobe Input Low time
Asynchronous(1)/synchronous
With input qualifier(2)
With input
2[1tc(SCO) + tw(IQSW)]
cycles
2tc(SCO)
cycles
2tc(SCO) +tw(IQSW)
cycles
2tc(SCO)
cycles
2tc(SCO) + tw(IQSW)
cycles
2tc(SCO)
cycles
2tc(SCO) + tw(IQSW)
cycles
2tc(SCO)
cycles
2tc(SCO) +tw(IQSW)
cycles
Asynchronous(1)/synchronous
With input
qualifier(2)
Asynchronous(1)/synchronous
With input
qualifier(2)
Asynchronous(1)/synchronous
With input
qualifier(2)
UNIT
cycles
Asynchronous(1)/synchronous
qualifier(2)
MAX
2tc(SCO)
Refer to the TMS320F2803x Real-Time MCUs Silicon Errata for limitations in the asynchronous mode.
For an explanation of the input qualifier parameters, see Section 8.9.15.1.2.1.
8.9.13.1.2 eQEP Switching Characteristics
over recommended operating conditions (unless otherwise noted)
MAX
UNIT
td(CNTR)xin
Delay time, external clock to counter increment
PARAMETER
4tc(SCO)
cycles
td(PCS-OUT)QEP
Delay time, QEP input edge to position compare sync
output
6tc(SCO)
cycles
128
Submit Document Feedback
TEST CONDITIONS
MIN
Copyright © 2021 Texas Instruments Incorporated
Product Folder Links: TMS320F28030 TMS320F28030-Q1 TMS320F28031 TMS320F28031-Q1
TMS320F28032 TMS320F28032-Q1 TMS320F28033 TMS320F28033-Q1 TMS320F28034 TMS320F28034-Q1
TMS320F28035 TMS320F28035-Q1
TMS320F28030, TMS320F28030-Q1, TMS320F28031, TMS320F28031-Q1, TMS320F28032
TMS320F28032-Q1, TMS320F28033, TMS320F28033-Q1, TMS320F28034, TMS320F28034-Q1
TMS320F28035, TMS320F28035-Q1
www.ti.com
SPRS584P – APRIL 2009 – REVISED JUNE 2021
8.9.14 JTAG Port
On the 2803x device, the JTAG port is reduced to 5 pins ( TRST, TCK, TDI, TMS, TDO). TCK, TDI, TMS
and TDO pins are also GPIO pins. The TRST signal selects either JTAG or GPIO operating mode for the pins
in Figure 8-44. During emulation/debug, the GPIO function of these pins are not available. If the GPIO38/TCK/
XCLKIN pin is used to provide an external clock, an alternate clock source should be used to clock the device
during emulation/debug because this pin will be needed for the TCK function.
Note
In 2803x devices, the JTAG pins may also be used as GPIO pins. Care should be taken in the board
design to ensure that the circuitry connected to these pins do not affect the emulation capabilities of
the JTAG pin function. Any circuitry connected to these pins should not prevent the JTAG debug probe
from driving (or being driven by) the JTAG pins for successful debug.
TRST = 0: JTAG Disabled (GPIO Mode)
TRST = 1: JTAG Mode
TRST
TRST
XCLKIN
GPIO38_in
TCK
TCK/GPIO38
GPIO38_out
C28x
Core
GPIO37_in
TDO/GPIO37
1
0
TDO
GPIO37_out
GPIO36_in
1
TMS/GPIO36
GPIO36_out
1
TMS
0
GPIO35_in
1
TDI/GPIO35
GPIO35_out
1
TDI
0
Figure 8-44. JTAG/GPIO Multiplexing
Copyright © 2021 Texas Instruments Incorporated
Submit Document Feedback
Product Folder Links: TMS320F28030 TMS320F28030-Q1 TMS320F28031 TMS320F28031-Q1
TMS320F28032 TMS320F28032-Q1 TMS320F28033 TMS320F28033-Q1 TMS320F28034 TMS320F28034-Q1
TMS320F28035 TMS320F28035-Q1
129
TMS320F28030, TMS320F28030-Q1, TMS320F28031, TMS320F28031-Q1, TMS320F28032
TMS320F28032-Q1, TMS320F28033, TMS320F28033-Q1, TMS320F28034, TMS320F28034-Q1
TMS320F28035, TMS320F28035-Q1
SPRS584P – APRIL 2009 – REVISED JUNE 2021
www.ti.com
8.9.15 General-Purpose Input/Output (GPIO) MUX
The GPIO MUX can multiplex up to three independent peripheral signals on a single GPIO pin in addition to
providing individual pin bit-banging I/O capability.
The device supports 45 GPIO pins. The GPIO control and data registers are mapped to Peripheral Frame 1
to enable 32-bit operations on the registers (along with 16-bit operations). Table 8-39 shows the GPIO register
mapping.
Table 8-39. GPIO Registers
NAME
ADDRESS
SIZE (x16)
DESCRIPTION
GPIO CONTROL REGISTERS (EALLOW PROTECTED)
GPACTRL
0x6F80
2
GPIO A Control Register (GPIO0 to 31)
GPAQSEL1
0x6F82
2
GPIO A Qualifier Select 1 Register (GPIO0 to 15)
GPAQSEL2
0x6F84
2
GPIO A Qualifier Select 2 Register (GPIO16 to 31)
GPAMUX1
0x6F86
2
GPIO A MUX 1 Register (GPIO0 to 15)
GPAMUX2
0x6F88
2
GPIO A MUX 2 Register (GPIO16 to 31)
GPADIR
0x6F8A
2
GPIO A Direction Register (GPIO0 to 31)
GPAPUD
0x6F8C
2
GPIO A Pullup Disable Register (GPIO0 to 31)
GPBCTRL
0x6F90
2
GPIO B Control Register (GPIO32 to 44)
GPBQSEL1
0x6F92
2
GPIO B Qualifier Select 1 Register (GPIO32 to 44)
GPBMUX1
0x6F96
2
GPIO B MUX 1 Register (GPIO32 to 44)
GPBDIR
0x6F9A
2
GPIO B Direction Register (GPIO32 to 44)
GPBPUD
0x6F9C
2
GPIO B Pullup Disable Register (GPIO32 to 44)
AIOMUX1
0x6FB6
2
Analog, I/O mux 1 register (AIO0 to AIO15)
AIODIR
0x6FBA
2
Analog, I/O Direction Register (AIO0 to AIO15)
GPADAT
0x6FC0
2
GPIO A Data Register (GPIO0 to 31)
GPASET
0x6FC2
2
GPIO A Data Set Register (GPIO0 to 31)
GPACLEAR
0x6FC4
2
GPIO A Data Clear Register (GPIO0 to 31)
GPATOGGLE
0x6FC6
2
GPIO A Data Toggle Register (GPIO0 to 31)
GPBDAT
0x6FC8
2
GPIO B Data Register (GPIO32 to 44)
GPBSET
0x6FCA
2
GPIO B Data Set Register (GPIO32 to 44)
GPBCLEAR
0x6FCC
2
GPIO B Data Clear Register (GPIO32 to 44)
GPBTOGGLE
0x6FCE
2
GPIO B Data Toggle Register (GPIO32 to 44)
AIODAT
0x6FD8
2
Analog I/O Data Register (AIO0 to AIO15)
AIOSET
0x6FDA
2
Analog I/O Data Set Register (AIO0 to AIO15)
AIOCLEAR
0x6FDC
2
Analog I/O Data Clear Register (AIO0 to AIO15)
0x6FDE
2
Analog I/O Data Toggle Register (AIO0 to AIO15)
GPIO DATA REGISTERS (NOT EALLOW PROTECTED)
AIOTOGGLE
GPIO INTERRUPT AND LOW-POWER MODES SELECT REGISTERS (EALLOW PROTECTED)
GPIOXINT1SEL
0x6FE0
1
XINT1 GPIO Input Select Register (GPIO0 to 31)
GPIOXINT2SEL
0x6FE1
1
XINT2 GPIO Input Select Register (GPIO0 to 31)
GPIOXINT3SEL
0x6FE2
1
XINT3 GPIO Input Select Register (GPIO0 to 31)
GPIOLPMSEL
0x6FE8
2
LPM GPIO Select Register (GPIO0 to 31)
Note
There is a two-SYSCLKOUT cycle delay from when the write to the GPxMUXn/AIOMUXn and
GPxQSELn registers occurs to when the action is valid.
130
Submit Document Feedback
Copyright © 2021 Texas Instruments Incorporated
Product Folder Links: TMS320F28030 TMS320F28030-Q1 TMS320F28031 TMS320F28031-Q1
TMS320F28032 TMS320F28032-Q1 TMS320F28033 TMS320F28033-Q1 TMS320F28034 TMS320F28034-Q1
TMS320F28035 TMS320F28035-Q1
TMS320F28030, TMS320F28030-Q1, TMS320F28031, TMS320F28031-Q1, TMS320F28032
TMS320F28032-Q1, TMS320F28033, TMS320F28033-Q1, TMS320F28034, TMS320F28034-Q1
TMS320F28035, TMS320F28035-Q1
www.ti.com
SPRS584P – APRIL 2009 – REVISED JUNE 2021
Table 8-40. GPIOA MUX
DEFAULT AT RESET
PRIMARY I/O
FUNCTION
PERIPHERAL
SELECTION 1(1) (2)
PERIPHERAL
SELECTION 2(1) (2)
PERIPHERAL
SELECTION 3(1) (2)
GPAMUX1 REGISTER
BITS
(GPAMUX1 BITS = 00)
(GPAMUX1 BITS = 01)
(GPAMUX1 BITS = 10)
(GPAMUX1 BITS = 11)
1-0
GPIO0
EPWM1A (O)
Reserved
Reserved
3-2
GPIO1
EPWM1B (O)
Reserved
COMP1OUT (O)
5-4
GPIO2
EPWM2A (O)
Reserved
Reserved
7-6
GPIO3
EPWM2B (O)
SPISOMIA (I/O)
COMP2OUT (O)
9-8
GPIO4
EPWM3A (O)
Reserved
Reserved
11-10
GPIO5
EPWM3B (O)
SPISIMOA (I/O)
ECAP1 (I/O)
13-12
GPIO6
EPWM4A (O)
EPWMSYNCI (I)
EPWMSYNCO (O)
15-14
GPIO7
EPWM4B (O)
SCIRXDA (I)
Reserved
17-16
GPIO8
EPWM5A (O)
Reserved
ADCSOCAO (O)
19-18
GPIO9
EPWM5B (O)
LINTXA (O)
HRCAP1 (I)
21-20
GPIO10
EPWM6A (O)
Reserved
ADCSOCBO (O)
23-22
GPIO11
EPWM6B (O)
LINRXA (I)
HRCAP2 (I)
25-24
GPIO12
TZ1 (I)
SCITXDA (O)
SPISIMOB (I/O)
27-26
GPIO13(3)
TZ2 (I)
Reserved
SPISOMIB (I/O)
29-28
GPIO14(3)
TZ3 (I)
LINTXA (O)
SPICLKB (I/O)
31-30
GPIO15(3)
TZ1 (I)
LINRXA (I)
SPISTEB (I/O)
GPAMUX2 REGISTER
BITS
(GPAMUX2 BITS = 00)
(GPAMUX2 BITS = 01)
(GPAMUX2 BITS = 10)
(GPAMUX2 BITS = 11)
1-0
GPIO16
SPISIMOA (I/O)
Reserved
TZ2 (I)
3-2
GPIO17
SPISOMIA (I/O)
Reserved
TZ3 (I)
5-4
GPIO18
SPICLKA (I/O)
LINTXA (O)
XCLKOUT (O)
7-6
GPIO19/XCLKIN
SPISTEA (I/O)
LINRXA (I)
ECAP1 (I/O)
(1)
(2)
(3)
9-8
GPIO20
EQEP1A (I)
Reserved
COMP1OUT (O)
11-10
GPIO21
EQEP1B (I)
Reserved
COMP2OUT (O)
13-12
GPIO22
EQEP1S (I/O)
Reserved
LINTXA (O)
15-14
GPIO23
EQEP1I (I/O)
Reserved
LINRXA (I)
17-16
GPIO24
ECAP1 (I/O)
Reserved
SPISIMOB (I/O)
19-18
GPIO25(3)
Reserved
Reserved
SPISOMIB (I/O)
21-20
GPIO26(3)
HRCAP1 (I)
Reserved
SPICLKB (I/O)
23-22
GPIO27(3)
HRCAP2 (I)
Reserved
SPISTEB (I/O)
25-24
GPIO28
SCIRXDA (I)
SDAA (I/OD)
TZ2 (I)
27-26
GPIO29
SCITXDA (O)
SCLA (I/OD)
TZ3 (I)
29-28
GPIO30
CANRXA (I)
Reserved
Reserved
31-30
GPIO31
CANTXA (O)
Reserved
Reserved
The word reserved means that there is no peripheral assigned to this GPxMUX1/2 register setting. Should it be selected, the state of
the pin will be undefined and the pin may be driven. This selection is a reserved configuration for future expansion.
I = Input, O = Output, OD = Open Drain
These pins are not available in the 64-pin package.
Copyright © 2021 Texas Instruments Incorporated
Submit Document Feedback
Product Folder Links: TMS320F28030 TMS320F28030-Q1 TMS320F28031 TMS320F28031-Q1
TMS320F28032 TMS320F28032-Q1 TMS320F28033 TMS320F28033-Q1 TMS320F28034 TMS320F28034-Q1
TMS320F28035 TMS320F28035-Q1
131
TMS320F28030, TMS320F28030-Q1, TMS320F28031, TMS320F28031-Q1, TMS320F28032
TMS320F28032-Q1, TMS320F28033, TMS320F28033-Q1, TMS320F28034, TMS320F28034-Q1
TMS320F28035, TMS320F28035-Q1
www.ti.com
SPRS584P – APRIL 2009 – REVISED JUNE 2021
Table 8-41. GPIOB MUX
DEFAULT AT RESET
PRIMARY I/O FUNCTION
PERIPHERAL
SELECTION 1(1)
PERIPHERAL
SELECTION 2(1)
PERIPHERAL
SELECTION 3(1)
GPBMUX1 REGISTER
BITS
(GPBMUX1 BITS = 00)
(GPBMUX1 BITS = 01)
(GPBMUX1 BITS = 10)
(GPBMUX1 BITS = 11)
1-0
GPIO32
SDAA (I/OD)
EPWMSYNCI (I)
ADCSOCAO (O)
3-2
GPIO33
SCLA (I/OD)
EPWMSYNCO (O)
ADCSOCBO (O)
5-4
GPIO34
COMP2OUT (O)
Reserved
COMP3OUT (O)
7-6
GPIO35 (TDI)
Reserved
Reserved
Reserved
(1)
(2)
9-8
GPIO36 (TMS)
Reserved
Reserved
Reserved
11-10
GPIO37 (TDO)
Reserved
Reserved
Reserved
13-12
GPIO38/XCLKIN (TCK)
Reserved
Reserved
Reserved
15-14
GPIO39(2)
Reserved
Reserved
Reserved
17-16
GPIO40(2)
EPWM7A (O)
Reserved
Reserved
19-18
GPIO41(2)
EPWM7B (O)
Reserved
Reserved
21-20
GPIO42(2)
Reserved
Reserved
COMP1OUT (O)
23-22
GPIO43(2)
Reserved
Reserved
COMP2OUT (O)
25-24
GPIO44(2)
Reserved
Reserved
Reserved
27-26
Reserved
Reserved
Reserved
Reserved
29-28
Reserved
Reserved
Reserved
Reserved
31-30
Reserved
Reserved
Reserved
Reserved
I = Input, O = Output, OD = Open Drain
These pins are not available in the 64-pin package.
Table 8-42. Analog MUX for 80-Pin PN Package
DEFAULT AT RESET
(1)
132
AIOx AND PERIPHERAL SELECTION 1(1)
PERIPHERAL SELECTION 2 AND
PERIPHERAL SELECTION 3(1)
AIOMUX1 REGISTER BITS
AIOMUX1 BITS = 0,x
AIOMUX1 BITS = 1,x
1-0
ADCINA0 (I)
ADCINA0 (I)
3-2
ADCINA1 (I)
ADCINA1 (I)
5-4
AIO2 (I/O)
ADCINA2 (I), COMP1A (I)
7-6
ADCINA3 (I)
ADCINA3 (I)
9-8
AIO4 (I/O)
ADCINA4 (I), COMP2A (I)
11-10
ADCINA5 (I)
ADCINA5 (I)
13-12
AIO6 (I/O)
ADCINA6 (I), COMP3A (I)
15-14
ADCINA7 (I)
ADCINA7 (I)
17-16
ADCINB0 (I)
ADCINB0 (I)
19-18
ADCINB1 (I)
ADCINB1 (I)
21-20
AIO10 (I/O)
ADCINB2 (I), COMP1B (I)
23-22
ADCINB3 (I)
ADCINB3 (I)
25-24
AIO12 (I/O)
ADCINB4 (I), COMP2B (I)
27-26
ADCINB5 (I)
ADCINB5 (I)
29-28
AIO14 (I/O)
ADCINB6 (I), COMP3B (I)
31-30
ADCINB7 (I)
ADCINB7 (I)
I = Input, O = Output
Submit Document Feedback
Copyright © 2021 Texas Instruments Incorporated
Product Folder Links: TMS320F28030 TMS320F28030-Q1 TMS320F28031 TMS320F28031-Q1
TMS320F28032 TMS320F28032-Q1 TMS320F28033 TMS320F28033-Q1 TMS320F28034 TMS320F28034-Q1
TMS320F28035 TMS320F28035-Q1
TMS320F28030, TMS320F28030-Q1, TMS320F28031, TMS320F28031-Q1, TMS320F28032
TMS320F28032-Q1, TMS320F28033, TMS320F28033-Q1, TMS320F28034, TMS320F28034-Q1
TMS320F28035, TMS320F28035-Q1
www.ti.com
SPRS584P – APRIL 2009 – REVISED JUNE 2021
Table 8-43. Analog MUX for 56-Pin RSH and 64-Pin PAG Packages
DEFAULT AT RESET
(1)
AIOx AND PERIPHERAL SELECTION 1(1)
PERIPHERAL SELECTION 2 AND
PERIPHERAL SELECTION 3(1)
AIOMUX1 REGISTER BITS
AIOMUX1 BITS = 0,x
AIOMUX1 BITS = 1,x
1-0
ADCINA0 (I), VREFHI (I)
ADCINA0 (I), VREFHI (I)
3-2
ADCINA1 (I)
ADCINA1 (I)
5-4
AIO2 (I/O)
ADCINA2 (I), COMP1A (I)
7-6
ADCINA3 (I)
ADCINA3 (I)
9-8
AIO4 (I/O)
ADCINA4 (I), COMP2A (I)
11-10
–
–
13-12
AIO6 (I/O)
ADCINA6 (I), COMP3A (I)
15-14
ADCINA7 (I)
ADCINA7 (I)
17-16
ADCINB0 (I)
ADCINB0 (I)
19-18
ADCINB1 (I)
ADCINB1 (I)
21-20
AIO10 (I/O)
ADCINB2 (I), COMP1B (I)
23-22
ADCINB3 (I)
ADCINB3 (I)
25-24
AIO12 (I/O)
ADCINB4 (I), COMP2B (I)
27-26
–
–
29-28
AIO14 (I/O)
ADCINB6 (I), COMP3B (I)
31-30
ADCINB7 (I)
ADCINB7 (I)
I = Input, O = Output
The user can select the type of input qualification for each GPIO pin through the GPxQSEL1/2 registers from
four choices:
• Synchronization To SYSCLKOUT Only (GPxQSEL1/2 = 0, 0): This is the default mode of all GPIO pins at
reset and it simply synchronizes the input signal to the system clock (SYSCLKOUT).
• Qualification Using Sampling Window (GPxQSEL1/2 = 0, 1 and 1, 0): In this mode the input signal, after
synchronization to the system clock (SYSCLKOUT), is qualified by a specified number of cycles before the
input is allowed to change.
• The sampling period is specified by the QUALPRD bits in the GPxCTRL register and is configurable in
groups of 8 signals. It specifies a multiple of SYSCLKOUT cycles for sampling the input signal. The sampling
window is either 3-samples or 6-samples wide and the output is only changed when ALL samples are the
same (all 0s or all 1s) as shown in Figure 8-47 (for 6 sample mode).
• No Synchronization (GPxQSEL1/2 = 1,1): This mode is used for peripherals where synchronization is not
required (synchronization is performed within the peripheral).
Due to the multilevel multiplexing that is required on the device, there may be cases where a peripheral input
signal can be mapped to more then one GPIO pin. Also, when an input signal is not selected, the input signal will
default to either a 0 or 1 state, depending on the peripheral.
Copyright © 2021 Texas Instruments Incorporated
Submit Document Feedback
Product Folder Links: TMS320F28030 TMS320F28030-Q1 TMS320F28031 TMS320F28031-Q1
TMS320F28032 TMS320F28032-Q1 TMS320F28033 TMS320F28033-Q1 TMS320F28034 TMS320F28034-Q1
TMS320F28035 TMS320F28035-Q1
133
TMS320F28030, TMS320F28030-Q1, TMS320F28031, TMS320F28031-Q1, TMS320F28032
TMS320F28032-Q1, TMS320F28033, TMS320F28033-Q1, TMS320F28034, TMS320F28034-Q1
TMS320F28035, TMS320F28035-Q1
www.ti.com
SPRS584P – APRIL 2009 – REVISED JUNE 2021
GPIOXINT1SEL
GPIOLMPSEL
GPIOXINT2SEL
LPMCR0
GPIOXINT3SEL
External Interrupt
MUX
Low-Power
Modes Block
Asynchronous
path
PIE
GPxDAT (read)
GPxQSEL1/2
GPxCTRL
GPxPUD
Input
Qualification
Internal
Pullup
00
N/C
01
Peripheral 1 Input
10
Peripheral 2 Input
11
Peripheral 3 Input
GPxTOGGLE
Asynchronous path
GPIOx pin
GPxCLEAR
GPxSET
00
GPxDAT (latch)
Peripheral 1 Output
01
10
Peripheral 2 Output
11
Peripheral 3 Output
High Impedance
Output Control
XRS
= Default at Reset
A.
B.
C.
GPxDIR (latch)
00
0 = Input, 1 = Output
01
Peripheral 1 Output Enable
10
Peripheral 2 Output Enable
11
Peripheral 3 Output Enable
GPxMUX1/2
x stands for the port, either A or B. For example, GPxDIR refers to either the GPADIR and GPBDIR register depending on the particular
GPIO pin selected.
GPxDAT latch/read are accessed at the same memory location.
This is a generic GPIO MUX block diagram. Not all options may be applicable for all GPIO pins. For pin-specific variations, see the
System Control chapter in the TMS320F2803x Real-Time Microcontrollers Technical Reference Manual.
Figure 8-45. GPIO Multiplexing
134
Submit Document Feedback
Copyright © 2021 Texas Instruments Incorporated
Product Folder Links: TMS320F28030 TMS320F28030-Q1 TMS320F28031 TMS320F28031-Q1
TMS320F28032 TMS320F28032-Q1 TMS320F28033 TMS320F28033-Q1 TMS320F28034 TMS320F28034-Q1
TMS320F28035 TMS320F28035-Q1
TMS320F28030, TMS320F28030-Q1, TMS320F28031, TMS320F28031-Q1, TMS320F28032
TMS320F28032-Q1, TMS320F28033, TMS320F28033-Q1, TMS320F28034, TMS320F28034-Q1
TMS320F28035, TMS320F28035-Q1
www.ti.com
SPRS584P – APRIL 2009 – REVISED JUNE 2021
8.9.15.1 GPIO Electrical Data/Timing
8.9.15.1.1 GPIO - Output Timing
8.9.15.1.1.1 General-Purpose Output Switching Characteristics
over recommended operating conditions (unless otherwise noted)
PARAMETER
tr(GPO)
Rise time, GPIO switching low to high
tf(GPO)
Fall time, GPIO switching high to low
tfGPO
Toggling frequency
(1)
MAX
UNIT
All GPIOs
MIN
13(1)
ns
All GPIOs
13(1)
15
ns
MHz
Rise time and fall time vary with electrical loading on I/O pins. Values given in Section 8.9.15.1.1.1 are applicable for a 40-pF load on
I/O pins.
GPIO
t f(GPO)
t r(GPO)
Figure 8-46. General-Purpose Output Timing
Copyright © 2021 Texas Instruments Incorporated
Submit Document Feedback
Product Folder Links: TMS320F28030 TMS320F28030-Q1 TMS320F28031 TMS320F28031-Q1
TMS320F28032 TMS320F28032-Q1 TMS320F28033 TMS320F28033-Q1 TMS320F28034 TMS320F28034-Q1
TMS320F28035 TMS320F28035-Q1
135
TMS320F28030, TMS320F28030-Q1, TMS320F28031, TMS320F28031-Q1, TMS320F28032
TMS320F28032-Q1, TMS320F28033, TMS320F28033-Q1, TMS320F28034, TMS320F28034-Q1
TMS320F28035, TMS320F28035-Q1
www.ti.com
SPRS584P – APRIL 2009 – REVISED JUNE 2021
8.9.15.1.2 GPIO - Input Timing
8.9.15.1.2.1 General-Purpose Input Timing Requirements
MIN
tw(SP)
Sampling period
tw(IQSW)
tw(GPI) (2)
(1)
(2)
UNIT
QUALPRD = 0
1tc(SCO)
cycles
QUALPRD ≠ 0
2tc(SCO) * QUALPRD
cycles
Input qualifier sampling window
tw(SP) *
With input qualifier
(n(1)
– 1)
cycles
2tc(SCO)
cycles
tw(IQSW) + tw(SP) + 1tc(SCO)
cycles
Synchronous mode
Pulse duration, GPIO low/high
MAX
"n" represents the number of qualification samples as defined by GPxQSELn register.
For tw(GPI), pulse width is measured from VIL to VIL for an active low signal and VIH to VIH for an active high signal.
(A)
GPIO Signal
GPxQSELn = 1,0 (6 samples)
1
1
0
0
0
0
0
0
0
1
tw(SP)
0
0
0
1
1
1
1
1
Sampling Window
1
1
1
Sampling Period determined
by GPxCTRL[QUALPRD]
tw(IQSW)
1
[(SYSCLKOUT cycle * 2 * QUALPRD) * 5
(B)
(C)
]
SYSCLKOUT
QUALPRD = 1
(SYSCLKOUT/2)
(D)
Output From
Qualifier
A.
B.
C.
D.
This glitch will be ignored by the input qualifier. The QUALPRD bit field specifies the qualification sampling period. It can vary from 00 to
0xFF. If QUALPRD = 00, then the sampling period is 1 SYSCLKOUT cycle. For any other value "n", the qualification sampling period in
2n SYSCLKOUT cycles (that is, at every 2n SYSCLKOUT cycles, the GPIO pin will be sampled).
The qualification period selected through the GPxCTRL register applies to groups of 8 GPIO pins.
The qualification block can take either three or six samples. The GPxQSELn Register selects which sample mode is used.
In the example shown, for the qualifier to detect the change, the input should be stable for 10 SYSCLKOUT cycles or greater. In other
words, the inputs should be stable for (5 x QUALPRD x 2) SYSCLKOUT cycles. This would ensure 5 sampling periods for detection to
occur. Because external signals are driven asynchronously, an 13-SYSCLKOUT-wide pulse ensures reliable recognition.
Figure 8-47. Sampling Mode
136
Submit Document Feedback
Copyright © 2021 Texas Instruments Incorporated
Product Folder Links: TMS320F28030 TMS320F28030-Q1 TMS320F28031 TMS320F28031-Q1
TMS320F28032 TMS320F28032-Q1 TMS320F28033 TMS320F28033-Q1 TMS320F28034 TMS320F28034-Q1
TMS320F28035 TMS320F28035-Q1
TMS320F28030, TMS320F28030-Q1, TMS320F28031, TMS320F28031-Q1, TMS320F28032
TMS320F28032-Q1, TMS320F28033, TMS320F28033-Q1, TMS320F28034, TMS320F28034-Q1
TMS320F28035, TMS320F28035-Q1
www.ti.com
SPRS584P – APRIL 2009 – REVISED JUNE 2021
8.9.15.1.3 Sampling Window Width for Input Signals
The following section summarizes the sampling window width for input signals for various input qualifier
configurations.
Sampling frequency denotes how often a signal is sampled with respect to SYSCLKOUT.
Sampling frequency = SYSCLKOUT/(2 × QUALPRD), if QUALPRD ≠ 0
Sampling frequency = SYSCLKOUT, if QUALPRD = 0
Sampling period = SYSCLKOUT cycle × 2 × QUALPRD, if QUALPRD ≠ 0
In the above equations, SYSCLKOUT cycle indicates the time period of SYSCLKOUT.
Sampling period = SYSCLKOUT cycle, if QUALPRD = 0
In a given sampling window, either 3 or 6 samples of the input signal are taken to determine the validity of the
signal. This is determined by the value written to GPxQSELn register.
Case 1:
Qualification using 3 samples
Sampling window width = (SYSCLKOUT cycle × 2 × QUALPRD) × 2, if QUALPRD ≠ 0
Sampling window width = (SYSCLKOUT cycle) × 2, if QUALPRD = 0
Case 2:
Qualification using 6 samples
Sampling window width = (SYSCLKOUT cycle × 2 × QUALPRD) × 5, if QUALPRD ≠ 0
Sampling window width = (SYSCLKOUT cycle) × 5, if QUALPRD = 0
SYSCLK
GPIOxn
tw(GPI)
Figure 8-48. General-Purpose Input Timing
VDDIO
> 1 MS
2 pF
VSS
VSS
Figure 8-49. Input Resistance Model for a GPIO Pin With an Internal Pullup
Copyright © 2021 Texas Instruments Incorporated
Submit Document Feedback
Product Folder Links: TMS320F28030 TMS320F28030-Q1 TMS320F28031 TMS320F28031-Q1
TMS320F28032 TMS320F28032-Q1 TMS320F28033 TMS320F28033-Q1 TMS320F28034 TMS320F28034-Q1
TMS320F28035 TMS320F28035-Q1
137
TMS320F28030, TMS320F28030-Q1, TMS320F28031, TMS320F28031-Q1, TMS320F28032
TMS320F28032-Q1, TMS320F28033, TMS320F28033-Q1, TMS320F28034, TMS320F28034-Q1
TMS320F28035, TMS320F28035-Q1
www.ti.com
SPRS584P – APRIL 2009 – REVISED JUNE 2021
8.9.15.1.4 Low-Power Mode Wakeup Timing
Section 8.9.15.1.4.1 shows the timing requirements, Section 8.9.15.1.4.2 shows the switching characteristics,
and Figure 8-50 shows the timing diagram for IDLE mode.
8.9.15.1.4.1 IDLE Mode Timing Requirements
MIN
tw(WAKE-INT)
(1)
Pulse duration, external wake-up signal
Without input qualifier
With input qualifier(1)
MAX
2tc(SCO)
UNIT
cycles
5tc(SCO) + tw(IQSW)
For an explanation of the input qualifier parameters, see Section 8.9.15.1.2.1.
8.9.15.1.4.2 IDLE Mode Switching Characteristics
over recommended operating conditions (unless otherwise noted)
PARAMETER
TEST CONDITIONS
Delay time, external wake signal to program execution resume
•
td(WAKE-IDLE)
•
•
(1)
(2)
Wake up from Flash
Without input qualifier
–
With input qualifier(2)
Flash module in active state
Wake up from Flash
Without input qualifier
–
With input qualifier(2)
Flash module in sleep state
Wake up from SARAM
MIN
MAX
(1)
Without input qualifier
With input qualifier(2)
UNIT
cycles
20tc(SCO)
20tc(SCO) + tw(IQSW)
cycles
1050tc(SCO)
1050tc(SCO) +
tw(IQSW)
20tc(SCO)
20tc(SCO) + tw(IQSW)
cycles
cycles
This is the time taken to begin execution of the instruction that immediately follows the IDLE instruction. Execution of an ISR (triggered
by the wake-up signal) involves additional latency.
For an explanation of the input qualifier parameters, see Section 8.9.15.1.2.1.
td(WAKE−IDLE)
Address/Data
(internal)
XCLKOUT
tw(WAKE−INT)
WAKE INT
A.
B.
(A)(B)
WAKE INT can be any enabled interrupt, WDINT or XRS. After the IDLE instruction is executed, a delay of 5 OSCCLK cycles
(minimum) is needed before the wake-up signal could be asserted.
From the time the IDLE instruction is executed to place the device into low-power mode (LPM), wakeup should not be initiated until at
least 4 OSCCLK cycles have elapsed.
Figure 8-50. IDLE Entry and Exit Timing
138
Submit Document Feedback
Copyright © 2021 Texas Instruments Incorporated
Product Folder Links: TMS320F28030 TMS320F28030-Q1 TMS320F28031 TMS320F28031-Q1
TMS320F28032 TMS320F28032-Q1 TMS320F28033 TMS320F28033-Q1 TMS320F28034 TMS320F28034-Q1
TMS320F28035 TMS320F28035-Q1
TMS320F28030, TMS320F28030-Q1, TMS320F28031, TMS320F28031-Q1, TMS320F28032
TMS320F28032-Q1, TMS320F28033, TMS320F28033-Q1, TMS320F28034, TMS320F28034-Q1
TMS320F28035, TMS320F28035-Q1
www.ti.com
SPRS584P – APRIL 2009 – REVISED JUNE 2021
8.9.15.1.4.3 STANDBY Mode Timing Requirements
MIN
tw(WAKE-INT)
(1)
Pulse duration, external
wake-up signal
Without input qualification
With input qualification(1)
MAX
3tc(OSCCLK)
UNIT
cycles
(2 + QUALSTDBY) * tc(OSCCLK)
QUALSTDBY is a 6-bit field in the LPMCR0 register.
8.9.15.1.4.4 STANDBY Mode Switching Characteristics
over recommended operating conditions (unless otherwise noted)
PARAMETER
td(IDLE-XCOL)
TEST CONDITIONS
Delay time, IDLE instruction
executed to XCLKOUT low
MIN
MAX
UNIT
32tc(SCO)
45tc(SCO)
cycles
Delay time, external wake signal to program execution
resume(1)
•
Wake up from flash
–
td(WAKE-STBY)
•
•
Without input qualifier
Flash module in active state With input qualifier
Wake up from flash
Without input qualifier
–
With input qualifier
Flash module in sleep state
Wake up from SARAM
Without input qualifier
With input qualifier
(1)
cycles
100tc(SCO)
100tc(SCO) + tw(WAKE-INT)
1125tc(SCO)
1125tc(SCO) + tw(WAKE-INT)
100tc(SCO)
100tc(SCO) + tw(WAKE-INT)
cycles
cycles
cycles
This is the time taken to begin execution of the instruction that immediately follows the IDLE instruction. Execution of an ISR (triggered
by the wake-up signal) involves additional latency.
Copyright © 2021 Texas Instruments Incorporated
Submit Document Feedback
Product Folder Links: TMS320F28030 TMS320F28030-Q1 TMS320F28031 TMS320F28031-Q1
TMS320F28032 TMS320F28032-Q1 TMS320F28033 TMS320F28033-Q1 TMS320F28034 TMS320F28034-Q1
TMS320F28035 TMS320F28035-Q1
139
TMS320F28030, TMS320F28030-Q1, TMS320F28031, TMS320F28031-Q1, TMS320F28032
TMS320F28032-Q1, TMS320F28033, TMS320F28033-Q1, TMS320F28034, TMS320F28034-Q1
TMS320F28035, TMS320F28035-Q1
www.ti.com
SPRS584P – APRIL 2009 – REVISED JUNE 2021
(C)
(A)
(B)
Device
Status
(F)
(D)(E)
STANDBY
(G)
STANDBY
Normal Execution
Flushing Pipeline
Wake-up
(H)
Signal
tw(WAKE-INT)
td(WAKE-STBY)
X1/X2 or
XCLKIN
XCLKOUT
td(IDLE−XCOL)
A.
B.
IDLE instruction is executed to put the device into STANDBY mode.
The PLL block responds to the STANDBY signal. SYSCLKOUT is held for the number of cycles indicated below before being turned off:
•
•
•
C.
D.
E.
F.
G.
H.
16 cycles, when DIVSEL = 00 or 01
32 cycles, when DIVSEL = 10
64 cycles, when DIVSEL = 11
This delay enables the CPU pipeline and any other pending operations to flush properly.
Clock to the peripherals are turned off. However, the PLL and watchdog are not shut down. The device is now in STANDBY mode. After
the IDLE instruction is executed, a delay of 5 OSCCLK cycles (minimum) is needed before the wake-up signal could be asserted.
The external wake-up signal is driven active.
The wake-up signal fed to a GPIO pin to wake up the device must meet the minimum pulse width requirement. Furthermore, this signal
must be free of glitches. If a noisy signal is fed to a GPIO pin, the wake-up behavior of the device will not be deterministic and the
device may not exit low-power mode for subsequent wake-up pulses.
After a latency period, the STANDBY mode is exited.
Normal execution resumes. The device will respond to the interrupt (if enabled).
From the time the IDLE instruction is executed to place the device into low-power mode (LPM), wakeup should not be initiated until at
least 4 OSCCLK cycles have elapsed.
Figure 8-51. STANDBY Entry and Exit Timing Diagram
140
Submit Document Feedback
Copyright © 2021 Texas Instruments Incorporated
Product Folder Links: TMS320F28030 TMS320F28030-Q1 TMS320F28031 TMS320F28031-Q1
TMS320F28032 TMS320F28032-Q1 TMS320F28033 TMS320F28033-Q1 TMS320F28034 TMS320F28034-Q1
TMS320F28035 TMS320F28035-Q1
TMS320F28030, TMS320F28030-Q1, TMS320F28031, TMS320F28031-Q1, TMS320F28032
TMS320F28032-Q1, TMS320F28033, TMS320F28033-Q1, TMS320F28034, TMS320F28034-Q1
TMS320F28035, TMS320F28035-Q1
www.ti.com
SPRS584P – APRIL 2009 – REVISED JUNE 2021
8.9.15.1.4.5 HALT Mode Timing Requirements
MIN
MAX
UNIT
tw(WAKE-GPIO)
Pulse duration, GPIO wake-up signal
toscst + 2tc(OSCCLK)
cycles
tw(WAKE-XRS)
Pulse duration, XRS wake-up signal
toscst + 8tc(OSCCLK)
cycles
8.9.15.1.4.6 HALT Mode Switching Characteristics
over recommended operating conditions (unless otherwise noted)
PARAMETER
td(IDLE-XCOL)
Delay time, IDLE instruction executed to XCLKOUT low
tp
PLL lock-up time
MIN
MAX
UNIT
32tc(SCO)
45tc(SCO)
cycles
1
ms
Delay time, PLL lock to program execution resume
•
td(WAKE-HALT)
Wake up from flash
–
•
1125tc(SCO)
cycles
35tc(SCO)
cycles
Flash module in sleep state
Wake up from SARAM
Copyright © 2021 Texas Instruments Incorporated
Submit Document Feedback
Product Folder Links: TMS320F28030 TMS320F28030-Q1 TMS320F28031 TMS320F28031-Q1
TMS320F28032 TMS320F28032-Q1 TMS320F28033 TMS320F28033-Q1 TMS320F28034 TMS320F28034-Q1
TMS320F28035 TMS320F28035-Q1
141
TMS320F28030, TMS320F28030-Q1, TMS320F28031, TMS320F28031-Q1, TMS320F28032
TMS320F28032-Q1, TMS320F28033, TMS320F28033-Q1, TMS320F28034, TMS320F28034-Q1
TMS320F28035, TMS320F28035-Q1
www.ti.com
SPRS584P – APRIL 2009 – REVISED JUNE 2021
(C)
(A)
(F)
(B)
Device
Status
HALT
Flushing Pipeline
(H)
(G)
(D)(E)
HALT
PLL Lock-up Time
Wake-up Latency
Normal
Execution
(I)
GPIOn
td(WAKE−HALT )
tw(WAKE-GPIO)
tp
X1/X2 or
XCLKIN
Oscillator Start-up Time
XCLKOUT
td(IDLE−XCOL)
A.
B.
IDLE instruction is executed to put the device into HALT mode.
The PLL block responds to the HALT signal. SYSCLKOUT is held for the number of cycles indicated below before oscillator is turned off
and the CLKIN to the core is stopped:
•
•
•
C.
D.
E.
F.
G.
H.
I.
16 cycles, when DIVSEL = 00 or 01
32 cycles, when DIVSEL = 10
64 cycles, when DIVSEL = 11
This delay enables the CPU pipeline and any other pending operations to flush properly.
Clocks to the peripherals are turned off and the PLL is shut down. If a quartz crystal or ceramic resonator is used as the clock source,
the internal oscillator is shut down as well. The device is now in HALT mode and consumes absolute minimum power. It is possible
to keep the zero-pin internal oscillators (INTOSC1 and INTOSC2) and the watchdog alive in HALT mode. This is done by writing to
the appropriate bits in the CLKCTL register. After the IDLE instruction is executed, a delay of 5 OSCCLK cycles (minimum) is needed
before the wake-up signal could be asserted.
When the GPIOn pin (used to bring the device out of HALT) is driven low, the oscillator is turned on and the oscillator wake-up
sequence is initiated. The GPIO pin should be driven high only after the oscillator has stabilized. This enables the provision of a clean
clock signal during the PLL lock sequence. Because the falling edge of the GPIO pin asynchronously begins the wake-up procedure,
care should be taken to maintain a low noise environment prior to entering and during HALT mode.
The wake-up signal fed to a GPIO pin to wake up the device must meet the minimum pulse width requirement. Furthermore, this signal
must be free of glitches. If a noisy signal is fed to a GPIO pin, the wake-up behavior of the device will not be deterministic and the
device may not exit low-power mode for subsequent wake-up pulses.
Once the oscillator has stabilized, the PLL lock sequence is initiated, which takes 1 ms.
When CLKIN to the core is enabled, the device will respond to the interrupt (if enabled), after a latency. The HALT mode is now exited.
Normal operation resumes.
From the time the IDLE instruction is executed to place the device into low-power mode (LPM), wakeup should not be initiated until at
least 4 OSCCLK cycles have elapsed.
Figure 8-52. HALT Mode Wakeup Using GPIOn
142
Submit Document Feedback
Copyright © 2021 Texas Instruments Incorporated
Product Folder Links: TMS320F28030 TMS320F28030-Q1 TMS320F28031 TMS320F28031-Q1
TMS320F28032 TMS320F28032-Q1 TMS320F28033 TMS320F28033-Q1 TMS320F28034 TMS320F28034-Q1
TMS320F28035 TMS320F28035-Q1
www.ti.com
TMS320F28030, TMS320F28030-Q1, TMS320F28031, TMS320F28031-Q1, TMS320F28032
TMS320F28032-Q1, TMS320F28033, TMS320F28033-Q1, TMS320F28034, TMS320F28034-Q1
TMS320F28035, TMS320F28035-Q1
SPRS584P – APRIL 2009 – REVISED JUNE 2021
9 Applications, Implementation, and Layout
Note
Information in the following sections is not part of the TI component specification, and TI does not
warrant its accuracy or completeness. TI’s customers are responsible for determining suitability of
components for their purposes. Customers should validate and test their design implementation to
confirm system functionality.
9.1 TI Reference Design
The TI Reference Design Library is a robust reference design library spanning analog, embedded processor,
and connectivity. Created by TI experts to help you jump start your system design, all reference designs include
schematic or block diagrams, BOMs, and design files to speed your time to market. Search and download
designs at the Select TI reference designs page.
Multiple Channels of High Density LED Control for Automotive Headlight Applications
This design, featuring the TMS320F2803x microcontroller, implements a high-efficiency, multichannel DC-DC
LED control system for typically automotive lighting systems. The design support up to six channels of LED
controls, each with a maximum of 1.2-A current driving capabilities. With a 2-stage power topology of boost
and buck, the system can be operated with a wide input DC voltage from 8 V to 20 V, which fits perfectly in
automotive applications.
Automotive Digitally Controlled Boost Power Supply
This TI reference design is an automotive voltage boost converter module. The purpose of this module is to
supply a steady voltage to vehicle electronics by boosting during voltage droop events such as engine crank.
The design is based on the C2000 Real-Time Microcontroller, and will provide up to 400 Watts of power from a
12-V automotive battery system. This solution supports continuous operational input voltage of 6 V to 16 V with
protection against 36-V load dump to provide a stable 12-V output supply with reverse battery protection.
Copyright © 2021 Texas Instruments Incorporated
Submit Document Feedback
Product Folder Links: TMS320F28030 TMS320F28030-Q1 TMS320F28031 TMS320F28031-Q1
TMS320F28032 TMS320F28032-Q1 TMS320F28033 TMS320F28033-Q1 TMS320F28034 TMS320F28034-Q1
TMS320F28035 TMS320F28035-Q1
143
TMS320F28030, TMS320F28030-Q1, TMS320F28031, TMS320F28031-Q1, TMS320F28032
TMS320F28032-Q1, TMS320F28033, TMS320F28033-Q1, TMS320F28034, TMS320F28034-Q1
TMS320F28035, TMS320F28035-Q1
SPRS584P – APRIL 2009 – REVISED JUNE 2021
www.ti.com
10 Device and Documentation Support
10.1 Device and Development Support Tool Nomenclature
To designate the stages in the product development cycle, TI assigns prefixes to the part numbers of all
TMS320™ MCU devices and support tools. Each TMS320 MCU commercial family member has one of three
prefixes: TMX, TMP, or TMS (for example, TMS320F28032). Texas Instruments recommends two of three
possible prefix designators for its support tools: TMDX and TMDS. These prefixes represent evolutionary stages
of product development from engineering prototypes (TMX/TMDX) through fully qualified production devices/
tools (TMS/TMDS).
Device development evolutionary flow:
TMX Experimental device that is not necessarily representative of the final device's electrical specifications and
may not use production assembly flow.
TMP Prototype device that is not necessarily the final silicon die and may not necessarily meet final electrical
specifications.
TMS Production version of the silicon die that is fully qualified.
Support tool development evolutionary flow:
TMDX Development-support product that has not yet completed Texas Instruments internal qualification testing.
TMDS Fully-qualified development-support product.
TMX and TMP devices and TMDX development-support tools are shipped against the following disclaimer:
"Developmental product is intended for internal evaluation purposes."
Production devices and TMDS development-support tools have been characterized fully, and the quality and
reliability of the device have been demonstrated fully. TI's standard warranty applies.
Predictions show that prototype devices (X or P) have a greater failure rate than the standard production
devices. Texas Instruments recommends that these devices not be used in any production system because their
expected end-use failure rate still is undefined. Only qualified production devices are to be used.
TI device nomenclature also includes a suffix with the device family name. This suffix indicates the package
type (for example, PN) and temperature range (for example, T). Figure 10-1 provides a legend for reading the
complete device name for any family member.
For device part numbers and further ordering information, see the TI website (www.ti.com) or contact your TI
sales representative.
For additional description of the device nomenclature markings on the die, see the TMS320F2803x Real-Time
MCUs Silicon Errata.
144
Submit Document Feedback
Copyright © 2021 Texas Instruments Incorporated
Product Folder Links: TMS320F28030 TMS320F28030-Q1 TMS320F28031 TMS320F28031-Q1
TMS320F28032 TMS320F28032-Q1 TMS320F28033 TMS320F28033-Q1 TMS320F28034 TMS320F28034-Q1
TMS320F28035 TMS320F28035-Q1
TMS320F28030, TMS320F28030-Q1, TMS320F28031, TMS320F28031-Q1, TMS320F28032
TMS320F28032-Q1, TMS320F28033, TMS320F28033-Q1, TMS320F28034, TMS320F28034-Q1
TMS320F28035, TMS320F28035-Q1
www.ti.com
A.
SPRS584P – APRIL 2009 – REVISED JUNE 2021
For more information on peripheral, temperature, and package availability for a specific device, see Table 5-1.
Figure 10-1. Device Nomenclature
10.2 Tools and Software
TI offers an extensive line of development tools. Some of the tools and software to evaluate the performance of
the device, generate code, and develop solutions are listed below. To view all available tools and software for
C2000™ real-time control MCUs, visit the C2000 real-time control MCUs – Design & development page.
Development Tools
Code Composer Studio (CCS) Integrated Development Environment (IDE) for C2000 Microcontrollers
Code Composer Studio is an integrated development environment (IDE) that supports TI's Microcontroller
and Embedded Processors portfolio. CCS comprises a suite of tools used to develop and debug embedded
applications. It includes an optimizing C/C++ compiler, source code editor, project build environment, debugger,
profiler, and many other features. The intuitive IDE provides a single user interface taking you through each
step of the application development flow. Familiar tools and interfaces allow users to get started faster than
ever before. CCS combines the advantages of the Eclipse software framework with advanced embedded debug
capabilities from TI resulting in a compelling feature-rich development environment for embedded developers.
Software Tools
powerSUITE - Digital Power Supply Design Software Tools for C2000™ MCUs
powerSUITE is a suite of digital power supply design software tools for Texas Instruments' C2000 real-time
microcontroller (MCU) family. powerSUITE helps power supply engineers drastically reduce development time
as they design digitally-controlled power supplies based on C2000 real-time control MCUs.
C2000Ware for C2000 MCUs
C2000Ware for C2000™ microcontrollers is a cohesive set of development software and documentation
designed to minimize software development time. From device-specific drivers and libraries to device peripheral
examples, C2000Ware provides a solid foundation to begin development and evaluation of your product.
UniFlash Standalone Flash Tool
UniFlash is a standalone tool used to program on-chip flash memory through a GUI, command line, or scripting
interface.
Copyright © 2021 Texas Instruments Incorporated
Submit Document Feedback
Product Folder Links: TMS320F28030 TMS320F28030-Q1 TMS320F28031 TMS320F28031-Q1
TMS320F28032 TMS320F28032-Q1 TMS320F28033 TMS320F28033-Q1 TMS320F28034 TMS320F28034-Q1
TMS320F28035 TMS320F28035-Q1
145
TMS320F28030, TMS320F28030-Q1, TMS320F28031, TMS320F28031-Q1, TMS320F28032
TMS320F28032-Q1, TMS320F28033, TMS320F28033-Q1, TMS320F28034, TMS320F28034-Q1
TMS320F28035, TMS320F28035-Q1
SPRS584P – APRIL 2009 – REVISED JUNE 2021
www.ti.com
C2000 Third-party search tool
TI has partnered with multiple companies to offer a wide range of solutions and services for TI C2000 devices.
These companies can accelerate your path to production using C2000 devices. Download this search tool to
quickly browse third-party details and find the right third-party to meet your needs.
Models
Various models are available for download from the product Tools & Software pages. These include I/O Buffer
Information Specification (IBIS) Models and Boundary-Scan Description Language (BSDL) Models. To view all
available models, visit the Models section of the Tools & Software page for each device.
Training
To help assist design engineers in taking full advantage of the C2000 microcontroller features and performance,
TI has developed a variety of training resources. Utilizing the online training materials and downloadable
hands-on workshops provides an easy means for gaining a complete working knowledge of the C2000
microcontroller family. These training resources have been designed to decrease the learning curve, while
reducing development time, and accelerating product time to market. For more information on the various
training resources, visit the C2000™ real-time control MCUs – Support & training site.
Specific TMS320F2803x hands-on training resources can be found at C2000™ MCU device workshops.
10.3 Documentation Support
To receive notification of documentation updates, navigate to the device product folder on ti.com. Click on
Subscribe to updates to register and receive a weekly digest of any product information that has changed. For
change details, review the revision history included in any revised document.
The current documentation that describes the processor, related peripherals, and other technical collateral is
listed below.
Errata
TMS320F2803x Real-Time MCUs Silicon Errata describes known advisories on silicon and provides
workarounds.
Technical Reference Manual
TMS320F2803x Real-Time Microcontrollers Technical Reference Manual details the integration, the
environment, the functional description, and the programming models for each peripheral and subsystem in
the device.
CPU User's Guides
TMS320C28x CPU and Instruction Set Reference Guide describes the central processing unit (CPU) and
the assembly language instructions of the TMS320C28x fixed-point digital signal processors (DSPs). It also
describes emulation features available on these DSPs.
Peripheral Guides
C2000 Real-Time Control Peripherals Reference Guide describes the peripheral reference guides of the 28x
digital signal processors (DSPs).
Tools Guides
TMS320C28x Assembly Language Tools v21.6.0.LTS User's Guide describes the assembly language tools
(assembler and other tools used to develop assembly language code), assembler directives, macros, common
object file format, and symbolic debugging directives for the TMS320C28x device.
TMS320C28x Optimizing C/C++ Compiler v21.6.0.LTS User's Guide describes the TMS320C28x C/C++
compiler. This compiler accepts ANSI standard C/C++ source code and produces TMS320 DSP assembly
language source code for the TMS320C28x device.
146
Submit Document Feedback
Copyright © 2021 Texas Instruments Incorporated
Product Folder Links: TMS320F28030 TMS320F28030-Q1 TMS320F28031 TMS320F28031-Q1
TMS320F28032 TMS320F28032-Q1 TMS320F28033 TMS320F28033-Q1 TMS320F28034 TMS320F28034-Q1
TMS320F28035 TMS320F28035-Q1
TMS320F28030, TMS320F28030-Q1, TMS320F28031, TMS320F28031-Q1, TMS320F28032
TMS320F28032-Q1, TMS320F28033, TMS320F28033-Q1, TMS320F28034, TMS320F28034-Q1
TMS320F28035, TMS320F28035-Q1
www.ti.com
SPRS584P – APRIL 2009 – REVISED JUNE 2021
Application Reports
Semiconductor Packing Methodology describes the packing methodologies employed to prepare semiconductor
devices for shipment to end users.
Calculating Useful Lifetimes of Embedded Processors provides a methodology for calculating the useful lifetime
of TI embedded processors (EPs) under power when used in electronic systems. It is aimed at general
engineers who wish to determine if the reliability of the TI EP meets the end system reliability requirement.
Semiconductor and IC Package Thermal Metrics describes traditional and new thermal metrics and puts their
application in perspective with respect to system-level junction temperature estimation.
Calculating FIT for a Mission Profile explains how use TI’s reliability de-rating tools to calculate a component
level FIT under power on conditions for a system mission profile.
Oscillator Compensation Guide describes a factory supplied method for compensating the internal oscillators for
frequency drift caused by temperature.
MCU CAN Module Operation Using the On-Chip Zero-Pin Oscillator.
The TMS320F2803x/TMS320F2805x/TMS320F2806x series of microcontrollers have an on-chip zero-pin
oscillator that needs no external components. This application report describes how to use the CAN module
with this oscillator to operate at the maximum bit rate and bus length without the added cost of an external clock
source.
An Introduction to IBIS (I/O Buffer Information Specification) Modeling discusses various aspects of IBIS
including its history, advantages, compatibility, model generation flow, data requirements in modeling the input/
output structures and future trends.
Serial Flash Programming of C2000™ Microcontrollers discusses using a flash kernel and ROM loaders for
serial programming a device.
10.4 Support Resources
TI E2E™ support forums are an engineer's go-to source for fast, verified answers and design help — straight
from the experts. Search existing answers or ask your own question to get the quick design help you need.
Linked content is provided "AS IS" by the respective contributors. They do not constitute TI specifications and do
not necessarily reflect TI's views; see TI's Terms of Use.
10.5 Trademarks
TMS320C2000™, TMS320™, and TI E2E™ are trademarks of Texas Instruments.
I2C-bus® is a registered trademark of NXP B.V. Corporation.
All trademarks are the property of their respective owners.
10.6 Electrostatic Discharge Caution
This integrated circuit can be damaged by ESD. Texas Instruments recommends that all integrated circuits be handled
with appropriate precautions. Failure to observe proper handling and installation procedures can cause damage.
ESD damage can range from subtle performance degradation to complete device failure. Precision integrated circuits may
be more susceptible to damage because very small parametric changes could cause the device not to meet its published
specifications.
10.7 Glossary
TI Glossary
This glossary lists and explains terms, acronyms, and definitions.
Copyright © 2021 Texas Instruments Incorporated
Submit Document Feedback
Product Folder Links: TMS320F28030 TMS320F28030-Q1 TMS320F28031 TMS320F28031-Q1
TMS320F28032 TMS320F28032-Q1 TMS320F28033 TMS320F28033-Q1 TMS320F28034 TMS320F28034-Q1
TMS320F28035 TMS320F28035-Q1
147
TMS320F28030, TMS320F28030-Q1, TMS320F28031, TMS320F28031-Q1, TMS320F28032
TMS320F28032-Q1, TMS320F28033, TMS320F28033-Q1, TMS320F28034, TMS320F28034-Q1
TMS320F28035, TMS320F28035-Q1
SPRS584P – APRIL 2009 – REVISED JUNE 2021
www.ti.com
11 Mechanical, Packaging, and Orderable Information
11.1 Packaging Information
The following pages include mechanical, packaging, and orderable information. This information is the most
current data available for the designated devices. This data is subject to change without notice and revision of
this document. For browser-based versions of this data sheet, refer to the left-hand navigation.
148
Submit Document Feedback
Copyright © 2021 Texas Instruments Incorporated
Product Folder Links: TMS320F28030 TMS320F28030-Q1 TMS320F28031 TMS320F28031-Q1
TMS320F28032 TMS320F28032-Q1 TMS320F28033 TMS320F28033-Q1 TMS320F28034 TMS320F28034-Q1
TMS320F28035 TMS320F28035-Q1
PACKAGE OPTION ADDENDUM
www.ti.com
2-Feb-2022
PACKAGING INFORMATION
Orderable Device
Status
(1)
Package Type Package Pins Package
Drawing
Qty
Eco Plan
(2)
Lead finish/
Ball material
MSL Peak Temp
Op Temp (°C)
Device Marking
(3)
(4/5)
(6)
TMS320F28030PAGQ
ACTIVE
TQFP
PAG
64
160
RoHS & Green
NIPDAU
Level-3-260C-168 HR
-40 to 125
F28030PAGQ
TMS320
TMS320F28030PAGS
ACTIVE
TQFP
PAG
64
160
RoHS & Green
NIPDAU
Level-3-260C-168 HR
-40 to 125
F28030PAGS
TMS320
TMS320F28030PAGT
ACTIVE
TQFP
PAG
64
160
RoHS & Green
NIPDAU
Level-3-260C-168 HR
-40 to 105
F28030PAGT
TMS320
TMS320F28030PNQ
ACTIVE
LQFP
PN
80
119
RoHS & Green
NIPDAU
Level-3-260C-168 HR
-40 to 125
F28030PNQ
TMS320
TMS320F28030PNS
ACTIVE
LQFP
PN
80
119
RoHS & Green
NIPDAU
Level-3-260C-168 HR
-40 to 125
F28030PNS
TMS320
TMS320F28030PNT
ACTIVE
LQFP
PN
80
119
RoHS & Green
NIPDAU
Level-3-260C-168 HR
-40 to 105
F28030PNT
TMS320
TMS320F28030RSHS
ACTIVE
VQFN
RSH
56
260
RoHS & Green
NIPDAU
Level-3-260C-168 HR
-40 to 125
F28030RSHS
S320 980
TMS320F28030RSHT
ACTIVE
VQFN
RSH
56
260
RoHS & Green
NIPDAU
Level-3-260C-168 HR
-40 to 105
F28030RSHT
S320 980
TMS320F28031PAGQ
ACTIVE
TQFP
PAG
64
160
RoHS & Green
NIPDAU
Level-3-260C-168 HR
-40 to 125
F28031PAGQ
TMS320
TMS320F28031PAGS
ACTIVE
TQFP
PAG
64
160
RoHS & Green
NIPDAU
Level-3-260C-168 HR
-40 to 125
F28031PAGS
TMS320
TMS320F28031PAGT
ACTIVE
TQFP
PAG
64
160
RoHS & Green
NIPDAU
Level-3-260C-168 HR
-40 to 105
F28031PAGT
TMS320
TMS320F28031PNQ
ACTIVE
LQFP
PN
80
119
RoHS & Green
NIPDAU
Level-3-260C-168 HR
-40 to 125
F28031PNQ
TMS320
TMS320F28031PNS
ACTIVE
LQFP
PN
80
119
RoHS & Green
NIPDAU
Level-3-260C-168 HR
-40 to 125
F28031PNS
TMS320
TMS320F28031PNT
ACTIVE
LQFP
PN
80
119
RoHS & Green
NIPDAU
Level-3-260C-168 HR
-40 to 105
F28031PNT
TMS320
TMS320F28031RSHS
ACTIVE
VQFN
RSH
56
260
RoHS & Green
NIPDAU
Level-3-260C-168 HR
-40 to 125
F28031RSHS
S320 980
TMS320F28032PAGQ
ACTIVE
TQFP
PAG
64
160
RoHS & Green
NIPDAU
Level-3-260C-168 HR
-40 to 125
F28032PAGQ
TMS320
TMS320F28032PAGS
ACTIVE
TQFP
PAG
64
160
RoHS & Green
NIPDAU
Level-3-260C-168 HR
-40 to 125
F28032PAGS
Addendum-Page 1
Samples
PACKAGE OPTION ADDENDUM
www.ti.com
Orderable Device
2-Feb-2022
Status
(1)
Package Type Package Pins Package
Drawing
Qty
Eco Plan
(2)
Lead finish/
Ball material
MSL Peak Temp
Op Temp (°C)
Device Marking
(3)
(4/5)
(6)
TMS320
TMS320F28032PAGT
ACTIVE
TQFP
PAG
64
160
RoHS & Green
NIPDAU
Level-3-260C-168 HR
-40 to 105
F28032PAGT
TMS320
TMS320F28032PNQ
ACTIVE
LQFP
PN
80
119
RoHS & Green
NIPDAU
Level-3-260C-168 HR
-40 to 125
F28032PNQ
TMS320
TMS320F28032PNS
ACTIVE
LQFP
PN
80
119
RoHS & Green
NIPDAU
Level-3-260C-168 HR
-40 to 125
F28032PNS
TMS320
TMS320F28032PNT
ACTIVE
LQFP
PN
80
119
RoHS & Green
NIPDAU
Level-3-260C-168 HR
-40 to 105
F28032PNT
TMS320
TMS320F28032PNTR
ACTIVE
LQFP
PN
80
1000
RoHS & Green
NIPDAU
Level-3-260C-168 HR
-40 to 105
F28032PNT
TMS320
TMS320F28032RSHS
ACTIVE
VQFN
RSH
56
260
RoHS & Green
NIPDAU
Level-3-260C-168 HR
-40 to 125
F28032RSHS
S320 980
TMS320F28032RSHT
ACTIVE
VQFN
RSH
56
260
RoHS & Green
NIPDAU
Level-3-260C-168 HR
-40 to 105
F28032RSHT
S320 980
TMS320F28033P1PAGS
ACTIVE
TQFP
PAG
64
160
RoHS & Green
NIPDAU
Level-3-260C-168 HR
-40 to 125
F28033PAGS
TMS320
TMS320F28033PAGQ
ACTIVE
TQFP
PAG
64
160
RoHS & Green
NIPDAU
Level-3-260C-168 HR
-40 to 125
F28033PAGQ
TMS320
TMS320F28033PAGS
ACTIVE
TQFP
PAG
64
160
RoHS & Green
NIPDAU
Level-3-260C-168 HR
-40 to 125
F28033PAGS
TMS320
TMS320F28033PAGT
ACTIVE
TQFP
PAG
64
160
RoHS & Green
NIPDAU
Level-3-260C-168 HR
-40 to 105
F28033PAGT
TMS320
TMS320F28033PNQ
ACTIVE
LQFP
PN
80
119
RoHS & Green
NIPDAU
Level-3-260C-168 HR
-40 to 125
F28033PNQ
TMS320
TMS320F28033PNS
ACTIVE
LQFP
PN
80
119
RoHS & Green
NIPDAU
Level-3-260C-168 HR
-40 to 125
F28033PNS
TMS320
TMS320F28033PNT
ACTIVE
LQFP
PN
80
119
RoHS & Green
NIPDAU
Level-3-260C-168 HR
-40 to 105
F28033PNT
TMS320
TMS320F28033RSHS
ACTIVE
VQFN
RSH
56
260
RoHS & Green
NIPDAU
Level-3-260C-168 HR
-40 to 125
F28033RSHS
S320 980
TMS320F28033RSHT
ACTIVE
VQFN
RSH
56
260
RoHS & Green
NIPDAU
Level-3-260C-168 HR
-40 to 105
F28033RSHT
S320 980
TMS320F28034PAGQ
ACTIVE
TQFP
PAG
64
160
RoHS & Green
NIPDAU
Level-3-260C-168 HR
-40 to 125
F28034PAGQ
TMS320
Addendum-Page 2
Samples
PACKAGE OPTION ADDENDUM
www.ti.com
Orderable Device
2-Feb-2022
Status
(1)
Package Type Package Pins Package
Drawing
Qty
Eco Plan
(2)
Lead finish/
Ball material
MSL Peak Temp
Op Temp (°C)
Device Marking
(3)
(4/5)
(6)
TMS320F28034PAGQR
ACTIVE
TQFP
PAG
64
1500
RoHS & Green
NIPDAU
Level-3-260C-168 HR
-40 to 125
F28034PAGQ
TMS320
TMS320F28034PAGS
ACTIVE
TQFP
PAG
64
160
RoHS & Green
NIPDAU
Level-3-260C-168 HR
-40 to 125
F28034PAGS
TMS320
TMS320F28034PAGT
ACTIVE
TQFP
PAG
64
160
RoHS & Green
NIPDAU
Level-3-260C-168 HR
-40 to 105
F28034PAGT
TMS320
TMS320F28034PNQ
ACTIVE
LQFP
PN
80
119
RoHS & Green
NIPDAU
Level-3-260C-168 HR
-40 to 125
F28034PNQ
TMS320
TMS320F28034PNS
ACTIVE
LQFP
PN
80
119
RoHS & Green
NIPDAU
Level-3-260C-168 HR
-40 to 125
F28034PNS
TMS320
TMS320F28034PNT
ACTIVE
LQFP
PN
80
119
RoHS & Green
NIPDAU
Level-3-260C-168 HR
-40 to 105
F28034PNT
TMS320
TMS320F28034PNTR
ACTIVE
LQFP
PN
80
1000
RoHS & Green
NIPDAU
Level-3-260C-168 HR
-40 to 105
F28034PNT
TMS320
TMS320F28034RSHS
ACTIVE
VQFN
RSH
56
260
RoHS & Green
NIPDAU
Level-3-260C-168 HR
-40 to 125
F28034RSHS
S320 980
TMS320F28034RSHT
ACTIVE
VQFN
RSH
56
260
RoHS & Green
NIPDAU
Level-3-260C-168 HR
-40 to 105
F28034RSHT
S320 980
TMS320F28035PAGQ
ACTIVE
TQFP
PAG
64
160
RoHS & Green
NIPDAU
Level-3-260C-168 HR
-40 to 125
F28035PAGQ
TMS320
TMS320F28035PAGS
ACTIVE
TQFP
PAG
64
160
RoHS & Green
NIPDAU
Level-3-260C-168 HR
-40 to 125
F28035PAGS
TMS320
TMS320F28035PAGT
ACTIVE
TQFP
PAG
64
160
RoHS & Green
NIPDAU
Level-3-260C-168 HR
-40 to 105
F28035PAGT
TMS320
TMS320F28035PAGTR
ACTIVE
TQFP
PAG
64
1500
RoHS & Green
NIPDAU
Level-3-260C-168 HR
-40 to 105
F28035PAGT
TMS320
TMS320F28035PNQ
ACTIVE
LQFP
PN
80
119
RoHS & Green
NIPDAU
Level-3-260C-168 HR
-40 to 125
F28035PNQ
TMS320
TMS320F28035PNQR
ACTIVE
LQFP
PN
80
1000
RoHS & Green
NIPDAU
Level-3-260C-168 HR
-40 to 125
F28035PNQ
TMS320
TMS320F28035PNS
ACTIVE
LQFP
PN
80
119
RoHS & Green
NIPDAU
Level-3-260C-168 HR
-40 to 125
F28035PNS
TMS320
TMS320F28035PNT
ACTIVE
LQFP
PN
80
119
RoHS & Green
NIPDAU
Level-3-260C-168 HR
-40 to 105
F28035PNT
TMS320
TMS320F28035PNTR
ACTIVE
LQFP
PN
80
1000
RoHS & Green
NIPDAU
Level-3-260C-168 HR
-40 to 105
F28035PNT
Addendum-Page 3
Samples
PACKAGE OPTION ADDENDUM
www.ti.com
Orderable Device
2-Feb-2022
Status
(1)
Package Type Package Pins Package
Drawing
Qty
Eco Plan
(2)
Lead finish/
Ball material
MSL Peak Temp
Op Temp (°C)
Device Marking
(3)
(4/5)
(6)
TMS320
TMS320F28035RSHS
ACTIVE
VQFN
RSH
56
260
RoHS & Green
NIPDAU
Level-3-260C-168 HR
-40 to 125
F28035RSHS
S320 980
TMS320F28035RSHT
ACTIVE
VQFN
RSH
56
260
RoHS & Green
NIPDAU
Level-3-260C-168 HR
-40 to 105
F28035RSHT
S320 980
(1)
The marketing status values are defined as follows:
ACTIVE: Product device recommended for new designs.
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.
OBSOLETE: TI has discontinued the production of the device.
(2)
RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance
do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may
reference these types of products as "Pb-Free".
RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.
Green: TI defines "Green" to mean the content of Chlorine (Cl) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of