0
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
创作中心
发布
  • 发文章

  • 发资料

  • 发帖

  • 提问

  • 发视频

创作活动
TPIC0107BDWP

TPIC0107BDWP

  • 厂商:

    BURR-BROWN(德州仪器)

  • 封装:

    SOIC20

  • 描述:

    IC MOTOR DRVR 6V-18V 20SOPWRPAD

  • 数据手册
  • 价格&库存
TPIC0107BDWP 数据手册
          SLIS067A − NOVEMBER 1998 − REVISED APRIL 2002 D Dedicated PWM Input Port D Optimized for Reversible Operation of DWP PACKAGE (TOP VIEW) Motors GNDS VCC DIR VCC OUT1 OUT1 GND PWM GND GNDS D Two Input Control Lines for Reduced D D D D Microcontroller Overhead Internal Current Shutdown of 5 A 40 V Load Dump Rating Integrated Fault Protection and Diagnostics CMOS Compatible Schmitt Trigger Inputs for High Noise Immunity description 1 20 2 19 3 18 4 17 5 16 6 15 7 14 8 13 9 12 10 11 GNDS VCC STATUS2 VCC OUT2 OUT2 GND STATUS1 GND GNDS The TPIC0107B is a PWM control intelligent H-bridge designed specifically for dc motor applications. The device provides forward, reverse, and brake modes of operation. A logic supply voltage of 5 V is internally derived from VCC. The TPIC0107B has an extremely low rDS(on), 280 mΩ typical, to minimize system power dissipation. The direction control (DIR) and PWM control (PWM) inputs greatly simplify the microcontroller overhead requirement. The PWM input can be driven from a dedicated PWM port while the DIR input is driven as a simple low speed toggle. The TPIC0107B provides protection against over-voltage, over-current, over-temperature, and cross conduction faults. Fault diagnostics can be obtained by monitoring the STATUS1 and STATUS2 terminals and the two input control lines. STATUS1 is an open-drain output suitable for wired-or connection. STATUS2 is a push-pull output that provides a latched status output. Under-voltage protection ensures that the outputs, OUT1 and OUT2, will be disabled when VCC is less than the under-voltage detection voltage V(UVCC). The TPIC0107B is designed using TI’s LinBiCMOS process. LinBiCMOS allows the integration of low power CMOS structures, precision bipolar cells, and low impedance DMOS transistors. The TPIC0107B is offered in a 20-pin thermally enhanced small-outline package (DWP) and is characterized for operation over the operating case temperature of −40°C to 125°C. FUNCTION TABLE DIR PWM OUT1 OUT2 0 0 HS HS Brake, both HSDs turned on hard 0 1 HS LS Motor turns counter clockwise 1 0 HS HS Brake, both HSDs turned on hard 1 1 LS HS Motor turns clockwise MODE Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet. LinBiCMOS is a trademark of Texas Instruments Incorporated. Copyright  2002, Texas Instruments Incorporated      !"   #!$% &"' &!   #" #" (" "  ") !" && *+' &! #", &"  ""%+ %!&" ",  %% #""' POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 1           SLIS067A − NOVEMBER 1998 − REVISED APRIL 2002 block diagram VCC OverCurrent Protection HSD PWM OverVoltage Detection Logic DIR STATUS1 STATUS2 DMOS Driver 5V Reg. Charge Pump (2 MHz) UnderVoltage Detection DMOS Driver OUT2 OUT1 OpenCircuit Detect OverTemperature Detection Load-Dump Protection DMOS Driver DMOS Driver OverCurrent Protection LSD GND Terminal Functions TERMINAL NAME NO. I/O DESCRIPTION DIR 3 I Direction control input GND 7, 9, 12, 14 I Power ground GNDS 1, 10, 11, 20 I Substrate ground OUT1 5, 6 O Half-H output. DMOS output OUT2 15, 16 O Half-H output. DMOS output PWM 8 I PWM control input STATUS1 13 O Status output STATUS2 18 O Latched status output 2, 4, 17, 19 I Supply voltage VCC NOTE: It is mandatory that all four ground terminals plus at least one substrate terminal are connected to the system ground. Use all VCC and OUT terminals. 2 POST OFFICE BOX 655303 • DALLAS, TEXAS 75265           SLIS067A − NOVEMBER 1998 − REVISED APRIL 2002 schematics of inputs and outputs STATUS1 STATUS2 DIR/PWM absolute maximum ratings over operating case temperature range (unless otherwise noted)† Power supply voltage range, VCC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . −0.3 V to 33 V Logic input voltage range, VIN . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . −0.3 V to 7 V Load dump (for 400 ms, TC = 25°C) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40 V Status output voltage range, VO(status) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . −0.3 V to 7 V Continuous power dissipation, TC = 25°C . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1.29 W Storage temperature range, Tstg . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . −55°C to 150°C Maximum junction temperature, TJ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 150°C † Stresses beyond those listed under “absolute maximum ratings” may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under “recommended operating conditions” is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability. DISSIPATION RATING TABLE TA ≤ 25°C POWER RATING DERATING FACTOR ABOVE TA = 25°C TA = 70°C POWER RATING TA = 125°C POWER RATING 1.29 W 0.0104 W/°C 0.82 W 0.25 W recommended operating conditions MIN Supply voltage, VCC Operating case temperature, TC Switching frequency, fPWM POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 MAX UNIT 6 18 V −40 125 °C 2 kHz 3           SLIS067A − NOVEMBER 1998 − REVISED APRIL 2002 electrical characteristics over recommended operating case temperature range and VCC = 5 V to 6 V (unless otherwise noted) PARAMETER rDS(on) TEST CONDITIONS Static drain-source on-resistance (per transistor) I(BR) = 1 A MIN TYP MAX TJ = 25°C TJ = 150°C 550 LSD TJ = 25°C TJ = 150°C 600 HSD 850 870 Under voltage detection on VCC, switch off voltage See Note 1 5 V V(UVCC(ON)) V(STL) Under voltage detection on VCC, switch on voltage See Note 1 5.2 V STATUS low output voltage 0.8 V V(ST2H) I(ST(OFF)) STATUS2 high output voltage IO = 100 µA, See Note 1 IO = 20 µA, See Note 1 STATUS output leakage current V(ST) = 5 V, See Note 1 VIL VIH Low level logic input voltage High level logic input voltage ∆VI IIH Hysteresis of input voltage 0.3 3 100 mΩ Open circuit detection current VIH = 3.5 V 40 mΩ I(QCD) V(UVCC(OFF)) High level logic input current 10 UNIT mA 5.4 V 5 µA −0.3 0.5 V 3.6 7 V 2 V 10 50 µA NOTE 1: The device functions according to the function table for VCC between V(UVCC) and 5 V (no parameters specified). STATUS outputs are not defined for VCC less than V(UVCC). 4 POST OFFICE BOX 655303 • DALLAS, TEXAS 75265           SLIS067A − NOVEMBER 1998 − REVISED APRIL 2002 electrical characteristics over recommended operating case temperature and supply voltage ranges (unless otherwise noted) (see Note 2) PARAMETER TEST CONDITIONS Static drain-source on-resistance (per transistor) IBR = 1 A TYP TJ = 25°C TJ = 150°C VCC = 6 V to 9 V VCC = 9 V to 18 V 400 TJ = 25°C VCC = 6 V to 9 V VCC = 9 V to 18 V 280 TJ = 150°C VCC = 6 V to 9 V VCC = 9 V to 18 V LSD rDS(on) MIN VCC = 6 V to 9 V VCC = 9 V to 18 V HSD MAX 280 340 620 430 340 640 10 400 560 40 100 Open circuit detection current Static thermal shutdown temperature See Notes 3 and 4 140 TSDD Dynamic thermal shutdown temperature See Notes 3 and 5 160 4.8 7.5 ICS Current shutdown limit VCC = 6 V to 9 V VCC = 9 V to 18 V 5 7.5 I(CON) Continuous bridge current TJ = 125°C, Operating lifetime 10,000 hours, (see Figure 1) V(OVCC) V(STL) Over voltage detection on VCC V(ST2H) I(ST(OFF)) STATUS2 high output voltage IO = 100 µA IO = 20 µA STATUS output leakage current V(ST) = 5 V VIL VIH Low level logic input voltage High level logic input voltage ∆VI IIH Hysteresis of input voltage 0.3 mA °C 3.9 VIH = 3.5 V mΩ °C 27 High level logic input current mΩ 560 I(QCD) TSDS STATUS low output voltage UNIT 380 A 3 A 36 V 0.8 V 5.4 V 5 µA −0.3 0.8 V 3.6 7 V 2 V 10 50 µA NOTES: 2. The device functions according to the function table for VCC between 18 V and V(OVCC), but only up to a maximum supply voltage of 33 V (no parameters specified). Exposure beyond 18 V for extended periods may affect device reliability. 3. Exposure beyond absolute-maximum-rated condition of junction temperature may affect device reliability. 4. No temperature gradient between DMOS transistor and temperature sensor. 5. With temperature gradient between DMOS transistor and temperature sensor in a typical application (DMOS transistor as heat source). switching characteristics over recommended operating case temperature and supply voltage ranges (unless otherwise noted) PARAMETER TEST CONDITIONS MIN TYP High-side driver turn-on time tout(on) 100 Low-side driver turn-on time VDS(on)20,000 h 3A 125°C >10,000 h POST OFFICE BOX 655303 • DALLAS, TEXAS 75265           SLIS067A − NOVEMBER 1998 − REVISED APRIL 2002 PARAMETER MEASUREMENT INFORMATION operating wave forms DIR (Low) PWM STATUS1 STATUS2 OUT1 (High) OUT2 Open Circuit 10 mA (min.) for a period >1 ms (min.), the fault flags are set. However, the output transistors will not be disabled. † All limits mentioned are typical values unless otherwise noted. ‡ If a short circuit occurs (i.e., the over-current detection circuitry is activated) at a supply voltage higher than 16.5 V and a junction temperature higher than 90°C, damage to the device may occur. POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 9           SLIS067A − NOVEMBER 1998 − REVISED APRIL 2002 PRINCIPLES OF OPERATION DIAGNOSTICS TABLE (see Note 6) DIR PWM OUT1 OUT2 STATUS1† STATUS2 Normal operation 0 0 1 1 0 1 0 1 HS HS HS LS HS LS HS HS 1 1 1 1 1 1 1 1 Open circuit between OUT1 and OUT2 0 0 1 1 0 1 0 1 HS HS HS LS HS LS HS HS 1 0 1 0 1 0 1 0 Short circuit from OUT1 to OUT2 (see Notes 7 and 8) 0 1 1 1 X X X X 0 0 0 0 Short circuit from OUT1 to GND (see Notes 7 and 8) 0 1 0 0 0 1 X X X X X X 0 0 0 0 0 0 Short circuit from OUT2 to GND (see Notes 7 and 8) 0 1 1 0 0 1 X X X X X X 0 0 0 0 0 0 Short circuit from OUT1 to VCC (see Notes 7 and 8) 1 1 X X 0 0 Short circuit from OUT2 to VCC (see Notes 7 and 8) 0 1 X X 0 0 Over temperature 0 0 1 1 0 1 0 1 Z Z Z Z Z Z Z Z 0 0 0 0 0 0 0 0 FLAG † When wired with a pull-up resistor SYMBOL VALUE 0 Logic low 1 Logic high HS High-side MOSFET conducting LS Low-side MOSFET conducting Z No output transistors conducting X Voltage level undefined NOTES: 6. All input combinations not stated result in STATUS output = 1. 7. STATUS1 active for a minimum of 3 µs. 8. STATUS2 active until an input is toggled. 10 POST OFFICE BOX 655303 • DALLAS, TEXAS 75265           SLIS067A − NOVEMBER 1998 − REVISED APRIL 2002 TYPICAL CHARACTERISTICS VCC = 9.18 V 300 200 100 0 −40 −20 0 20 40 60 80 100 120 140 r DS(on) − Static Drain-Source On-Resistance − m Ω STATIC-DRAIN-SOURCE ON-RESISTANCE vs SUPPLY VOLTAGE 400 600 HSD, TJ = 125°C 500 LSD, TJ = 125°C 400 300 HSD, TJ = 25°C LSD, TJ = 25°C 200 100 0 0 5 TJ − Junction Temperature − °C 10 15 20 25 VCC − Supply Voltage − V Figure 6 Figure 7 OUTPUT STAGE TURN-ON TIME vs JUNCTION TEMPERATURE 20 t out(on) − Output Stage Turn-On Time − µ s r DS(on) − Static Drain-Source On-Resistance − m Ω STATIC DRAIN-SOURCE ON-RESISTANCE vs JUNCTION TEMPERATURE 15 HSD, VCC = 13.2 V 10 LSD, VCC = 13.2 V 5 0 −40 −20 0 20 40 60 80 100 TJ − Junction Temperature − °C 120 140 Figure 8 POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 11           SLIS067A − NOVEMBER 1998 − REVISED APRIL 2002 APPLICATION INFORMATION 5V VCC 100 kΩ VCC DIR PWM OUT1 TPIC0107B STATUS1 M 100 nF 47 µF† OUT2 STATUS2 GND GNDS CONTROL DIAGNOSTIC Microcontroller † Necessary for isolating supply voltage or interruption (e.g., 47 µF). NOTE: If a STATUS output is not connected to the appropriate microcontroller input, it shall remain unconnected. 12 POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 PACKAGE OPTION ADDENDUM www.ti.com 11-Dec-2008 PACKAGING INFORMATION Orderable Device Status (1) Package Type Package Drawing Pins Package Eco Plan (2) Qty TPIC0107BDWP OBSOLETE SO Power PAD DWP 20 TBD Call TI Call TI TPIC0107BDWPG4 OBSOLETE SO Power PAD DWP 20 TBD Call TI Call TI TPIC0107BDWPRG4 OBSOLETE SO Power PAD DWP 20 TBD Call TI Call TI Lead/Ball Finish MSL Peak Temp (3) (1) The marketing status values are defined as follows: ACTIVE: Product device recommended for new designs. LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect. NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design. PREVIEW: Device has been announced but is not in production. Samples may or may not be available. OBSOLETE: TI has discontinued the production of the device. (2) Eco Plan - The planned eco-friendly classification: Pb-Free (RoHS), Pb-Free (RoHS Exempt), or Green (RoHS & no Sb/Br) - please check http://www.ti.com/productcontent for the latest availability information and additional product content details. TBD: The Pb-Free/Green conversion plan has not been defined. Pb-Free (RoHS): TI's terms "Lead-Free" or "Pb-Free" mean semiconductor products that are compatible with the current RoHS requirements for all 6 substances, including the requirement that lead not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, TI Pb-Free products are suitable for use in specified lead-free processes. Pb-Free (RoHS Exempt): This component has a RoHS exemption for either 1) lead-based flip-chip solder bumps used between the die and package, or 2) lead-based die adhesive used between the die and leadframe. The component is otherwise considered Pb-Free (RoHS compatible) as defined above. Green (RoHS & no Sb/Br): TI defines "Green" to mean Pb-Free (RoHS compatible), and free of Bromine (Br) and Antimony (Sb) based flame retardants (Br or Sb do not exceed 0.1% by weight in homogeneous material) (3) MSL, Peak Temp. -- The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature. Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release. In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis. Addendum-Page 1 IMPORTANT NOTICE Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, modifications, enhancements, improvements, and other changes to its products and services at any time and to discontinue any product or service without notice. Customers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. All products are sold subject to TI’s terms and conditions of sale supplied at the time of order acknowledgment. TI warrants performance of its hardware products to the specifications applicable at the time of sale in accordance with TI’s standard warranty. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where mandated by government requirements, testing of all parameters of each product is not necessarily performed. TI assumes no liability for applications assistance or customer product design. Customers are responsible for their products and applications using TI components. To minimize the risks associated with customer products and applications, customers should provide adequate design and operating safeguards. TI does not warrant or represent that any license, either express or implied, is granted under any TI patent right, copyright, mask work right, or other TI intellectual property right relating to any combination, machine, or process in which TI products or services are used. Information published by TI regarding third-party products or services does not constitute a license from TI to use such products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI. Reproduction of TI information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. Reproduction of this information with alteration is an unfair and deceptive business practice. TI is not responsible or liable for such altered documentation. Information of third parties may be subject to additional restrictions. Resale of TI products or services with statements different from or beyond the parameters stated by TI for that product or service voids all express and any implied warranties for the associated TI product or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements. TI products are not authorized for use in safety-critical applications (such as life support) where a failure of the TI product would reasonably be expected to cause severe personal injury or death, unless officers of the parties have executed an agreement specifically governing such use. Buyers represent that they have all necessary expertise in the safety and regulatory ramifications of their applications, and acknowledge and agree that they are solely responsible for all legal, regulatory and safety-related requirements concerning their products and any use of TI products in such safety-critical applications, notwithstanding any applications-related information or support that may be provided by TI. Further, Buyers must fully indemnify TI and its representatives against any damages arising out of the use of TI products in such safety-critical applications. TI products are neither designed nor intended for use in military/aerospace applications or environments unless the TI products are specifically designated by TI as military-grade or "enhanced plastic." Only products designated by TI as military-grade meet military specifications. Buyers acknowledge and agree that any such use of TI products which TI has not designated as military-grade is solely at the Buyer's risk, and that they are solely responsible for compliance with all legal and regulatory requirements in connection with such use. TI products are neither designed nor intended for use in automotive applications or environments unless the specific TI products are designated by TI as compliant with ISO/TS 16949 requirements. Buyers acknowledge and agree that, if they use any non-designated products in automotive applications, TI will not be responsible for any failure to meet such requirements. Following are URLs where you can obtain information on other Texas Instruments products and application solutions: Products Applications Amplifiers amplifier.ti.com Audio www.ti.com/audio Data Converters dataconverter.ti.com Automotive www.ti.com/automotive DLP® Products www.dlp.com Communications and Telecom www.ti.com/communications DSP dsp.ti.com Computers and Peripherals www.ti.com/computers Clocks and Timers www.ti.com/clocks Consumer Electronics www.ti.com/consumer-apps Interface interface.ti.com Energy www.ti.com/energy Logic logic.ti.com Industrial www.ti.com/industrial Power Mgmt power.ti.com Medical www.ti.com/medical Microcontrollers microcontroller.ti.com Security www.ti.com/security RFID www.ti-rfid.com Space, Avionics & Defense www.ti.com/space-avionics-defense RF/IF and ZigBee® Solutions www.ti.com/lprf Video and Imaging www.ti.com/video Wireless www.ti.com/wireless-apps Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265 Copyright © 2010, Texas Instruments Incorporated
TPIC0107BDWP 价格&库存

很抱歉,暂时无法提供与“TPIC0107BDWP”相匹配的价格&库存,您可以联系我们找货

免费人工找货