0
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
会员中心
创作中心
发布
  • 发文章

  • 发资料

  • 发帖

  • 提问

  • 发视频

创作活动
TPS53353EVM-744

TPS53353EVM-744

  • 厂商:

    BURR-BROWN(德州仪器)

  • 封装:

    Module

  • 描述:

    TPS53353 D-CAP™, Eco-Mode™ DC/DC, Step Down 1, Non-Isolated Outputs Evaluation Board

  • 数据手册
  • 价格&库存
TPS53353EVM-744 数据手册
www.ti.com Table of Contents User’s Guide TPS53353 Step-Down Converter Evaluation Module User's Guide ABSTRACT The TPS53353EVM-744 evaluation module (EVM) demonstrates the TPS53353. The TPS53353 is a D-CAP™ mode, 20-A, synchronous buck converter with integrated MOSFETs. It provides a fixed 1.5-V output at up to 20 A from a 12-V input bus. Table of Contents 1 Description.............................................................................................................................................................................. 2 1.1 Typical Application............................................................................................................................................................. 2 1.2 Features............................................................................................................................................................................. 2 2 Electrical Performance Specifications................................................................................................................................. 2 3 Schematic................................................................................................................................................................................3 4 Test Setup................................................................................................................................................................................3 4.1 Test Equipment.................................................................................................................................................................. 3 4.2 Recommended Test Setup.................................................................................................................................................5 5 Configurations........................................................................................................................................................................ 6 5.1 Switching Frequency Selection.......................................................................................................................................... 6 5.2 Soft-Start Selection............................................................................................................................................................ 6 5.3 Mode Selection.................................................................................................................................................................. 6 5.4 Enable Selection................................................................................................................................................................ 6 6 Test Procedure........................................................................................................................................................................ 7 6.1 Line and Load Regulation and Efficiency Measurement Procedure.................................................................................. 7 6.2 Control Loop Gain and Phase Measurement Procedure................................................................................................... 7 6.3 Test Point List.....................................................................................................................................................................7 6.4 Equipment Shutdown......................................................................................................................................................... 7 7 Performance Data and Typical Characteristic Curves........................................................................................................ 8 7.1 Efficiency............................................................................................................................................................................8 7.2 Load Regulation................................................................................................................................................................. 8 7.3 Load Regulation................................................................................................................................................................. 8 7.4 Enable Turn-On/ Turn-Off...................................................................................................................................................9 7.5 Output Ripple..................................................................................................................................................................... 9 7.6 Switching Node.................................................................................................................................................................. 9 7.7 Output Transient With Auto-Skip Mode............................................................................................................................10 7.8 Output Transient With FCCM Mode................................................................................................................................. 10 7.9 Output 0.75-V Prebias Turn-On....................................................................................................................................... 10 7.10 Output Overcurrent and Short-Circuit Protection............................................................................................................11 7.11 Bode Plot........................................................................................................................................................................ 11 7.12 Thermal Image............................................................................................................................................................... 12 8 EVM Assembly Drawing and PCB Layout.......................................................................................................................... 13 9 Bill of Materials..................................................................................................................................................................... 17 10 Revision History................................................................................................................................................................. 17 Trademarks D-CAP™ is a trademark of Texas Instruments. All trademarks are the property of their respective owners. SLUU521A – AUGUST 2011 – REVISED NOVEMBER 2021 TPS53353 Step-Down Converter Evaluation Module User's Guide Submit Document Feedback Copyright © 2021 Texas Instruments Incorporated 1 Description www.ti.com 1 Description The TPS53353EVM-744 is designed to use a regulated 12-V bus to produce a regulated 1.5-V output at up to 20 A of load current. The TPS53353EVM-744 is designed to demonstrate the TPS53353 in a typical low-voltage application while providing a number of test points to evaluate the performance of the TPS53353. 1.1 Typical Application • • • Server/storage Workstations and desktops Telecommunication infrastructure 1.2 Features The TPS53353EVM-744 features: • 20-Adc, steady-state output current • Support prebias output voltage start-up • J5 for selectable switching frequency setting • J4 for selectable soft-start time • J2 for enable function • J6 for auto-skip and forced CCM selection • Convenient test points for probing critical waveforms 2 Electrical Performance Specifications Table 2-1. TPS53353EVM-744 Electrical Performance Specifications PARAMETER TEST CONDITIONS MIN TYP MAX 8 12 14 UNITS Input Characteristics Voltage range VIN Maximum input current VIN = 8 V, IO = 20 A No-load input current VIN = 14 V, IO = 0 A with auto-skip mode 4.1 V A 1 mA Output Characteristics Output voltage VOUT Output voltage regulation Output voltage ripple 1.5 Line regulation (VIN = 8 V – 14 V) V 0.1 Load regulation (VIN = 12 V, IO = 0 A – 20 A) % 1 VIN = 12 V, IO = 20 A 20 Output load current 0 Output overcurrent mVpp 20 A 26 A 500 kHz Systems Characteristics Switching frequency Peak efficiency VIN = 12 V, 1.5 V/10 A 91.87 Full-load efficiency VIN = 12 V, 1.5 V/20 A 91.38 % 25 °C Operating temperature % Note Jumpers are set at the factory to default locations; for details, see Section 5 of this user’s guide. 2 TPS53353 Step-Down Converter Evaluation Module User's Guide SLUU521A – AUGUST 2011 – REVISED NOVEMBER 2021 Submit Document Feedback Copyright © 2021 Texas Instruments Incorporated www.ti.com Schematic 3 Schematic Figure 3-1. TPS53353EVM-744 Schematic 4 Test Setup 4.1 Test Equipment Voltage Source: The input voltage source VIN must be a 0-V to 14-V variable DC source capable of supplying 10 ADC. Connect VIN to J1 as shown in Figure 4-2. SLUU521A – AUGUST 2011 – REVISED NOVEMBER 2021 TPS53353 Step-Down Converter Evaluation Module User's Guide Submit Document Feedback Copyright © 2021 Texas Instruments Incorporated 3 Test Setup www.ti.com Multimeters: • V1: VIN at TP1 (VIN) and TP2 (GND) • V2: VOUT at TP5 (VOUT) and TP7 (GND) • A1: VIN input current Output Load: The output load should be an electronic constant resistance mode load capable of 0 ADC–30 ADC at 1.5 V. Oscilloscope: A digital or analog oscilloscope can be used to measure the output ripple. The oscilloscope must be set for the following: • • • • • 1-MΩ impedance 20-MHz bandwidth AC coupling 2-µs/division horizontal resolution 50-mV/division vertical resolution Test points TP5 and TP7 can be used to measure the output ripple voltage by placing the oscilloscope probe tip through TP5 and holding the ground barrel on TP7 as shown in Figure 4-1. Using a leaded ground connection may induce additional noise due to the large ground loop. Figure 4-1. Tip and Barrel Measurement for VOUT Ripple Fan: Some of the components in this EVM can approach temperatures of 60°C during operation. A small fan capable of 200–400 LFM is recommended to reduce component temperatures while the EVM is operating. The EVM must not be probed while the fan is not running. Recommended Wire Gauge: 1. VIN to J1 (12-V input): The recommended wire size is 1× AWG 14 per input connection, with the total length of wire less than four feet (2-foot input, 2-foot return). 2. J3 to LOAD: The minimum recommended wire size is 2× AWG 14, with the total length of wire less than four feet (2-foot input, 2-foot return). 4 TPS53353 Step-Down Converter Evaluation Module User's Guide SLUU521A – AUGUST 2011 – REVISED NOVEMBER 2021 Submit Document Feedback Copyright © 2021 Texas Instruments Incorporated www.ti.com Test Setup 4.2 Recommended Test Setup Figure 4-2. TPS53353EVM-744 Recommended Test Setup Figure 4-2 is the recommended test setup to evaluate the TPS53353EVM-744. Working at an ESD workstation, make sure that any wrist straps, bootstraps or mats are connected referencing the user to earth ground before power is applied to the EVM. Input Connections: 1. Before connecting the DC input source VIN, it is advisable to limit the source current from VIN to 10-A maximum. Ensure that VIN is initially set to 0 V and connected as shown in Figure 4-2. 2. Connect a voltmeter V1 at TP1 (VIN) and TP2 (GND) to measure the input voltage. 3. Connect a current meter A1 to measure the input current. Output Connections: 1. Connect the load to J3, and set the load to constant resistance mode to sink 0 A before VIN is applied. 2. Connect a voltmeter V2 at TP5 (VOUT) and TP7 (GND) to measure the output voltage. Other Connections: Place a fan as shown in Figure 4-2, and turn it on, ensuring that air is flowing across the EVM. SLUU521A – AUGUST 2011 – REVISED NOVEMBER 2021 TPS53353 Step-Down Converter Evaluation Module User's Guide Submit Document Feedback Copyright © 2021 Texas Instruments Incorporated 5 Configurations www.ti.com 5 Configurations All jumper selections must be made prior to applying power to the EVM. Users can configure this EVM per the following configurations. 5.1 Switching Frequency Selection Use J5 to set the switching frequency. Default setting: 500 kHz Table 5-1. Switching Frequency Selection RESISTOR (RF) CONNECTIONS (kΩ) SWITCHING FREQUENCY (kHz) Top (1–2 pin shorted) 0 250 Second (3–4 pin shorted) 187 300 JUMPER SET TO Third (5–6 pin shorted) 619 400 Fourth (7–8 pin shorted) Open 500 Fifth (9–10 pin shorted) 866 650 Sixth (11–12 pin shorted) 309 750 Seventh (13–14 pin shorted) 124 850 Bottom (15–16 pin shorted) 0 970 5.2 Soft-Start Selection Use J4 to set the soft-start time. Default setting: 1.4 ms Table 5-2. Soft-Start Time Selection JUMPER SET TO RMODE CONNECTIONS (kΩ) SOFT-START TIME (ms) Top (1–2 pin shorted) 39.2 0.7 Second (3–4 pin shorted) 100 1.4 Third (5–6 pin shorted) 200 2.8 Fourth (7–8 pin shorted) 475 5.6 5.3 Mode Selection Use J6 to set the MODE pin. Default setting: Auto Skip Table 5-3. MODE Selection JUMPER SET TO RMODE CONNECTIONS (Ω) Top (1–2 pin shorted) Auto Skip Second (3–4 pin shorted) Forced CCM 5.4 Enable Selection Use J2 to enable and disable the controller. Default setting: Jumper shorts on J2 to disable the controller Table 5-4. Enable Selection 6 JUMPER SET TO ENABLE SELECTION Jumper shorts on J2 Disable the controller No Jumper shorts on J2 Enable the controller TPS53353 Step-Down Converter Evaluation Module User's Guide SLUU521A – AUGUST 2011 – REVISED NOVEMBER 2021 Submit Document Feedback Copyright © 2021 Texas Instruments Incorporated www.ti.com Test Procedure 6 Test Procedure 6.1 Line and Load Regulation and Efficiency Measurement Procedure 1. 2. 3. 4. 5. 6. 7. 8. 9. 10. 11. 12. Set up the EVM as described in Section 4 and Figure 4-2. Ensure that the load is set to constant resistance mode and to sink 0 ADC. Ensure that all jumpers configuration settings are per Section 5. Ensure that the jumper provided in the EVM shorts on J2 before VIN is applied. Increase VIN from 0 V to 12 V, using V1 to measure input voltage. Remove the jumper on J2 to enable the controller. Use V2 to measure VOUT voltage. Vary the load from 0 ADC to 20 ADC; VOUT must remain in load regulation. Vary VIN from 8 V to 14 V; VOUT must remain in line regulation. Put the jumper on J2 to disable the controller. Decrease the load to 0 A. Decrease VIN to 0 V. 6.2 Control Loop Gain and Phase Measurement Procedure The TPS53353EVM-744 contains a 10-Ω series resistor in the feedback loop for loop response analysis. 1. Set up EVM as described in Section 4 and Figure 4-2. 2. Connect a isolation transformer to test points marked TP10 and TP11. 3. Connect input signal amplitude measurement probe (channel A) to TP10. Connect a output signal amplitude measurement probe (channel B) to TP11. 4. Connect ground lead of channel A and channel B to TP12. 5. Inject approximately 40 mV or less signal through the isolation transformer. 6. Sweep the frequency from 100 Hz to 1 MHz with a 10-Hz or lower post filter. The control loop gain and phase margin can be measured. 7. Disconnect isolation transformer from bode plot test points before making other measurements (signal injection into feedback can interfere with accuracy of other measurements). 6.3 Test Point List Table 6-1. Test Point Functions TEST POINTS NAME DESCRIPTION TP1 VIN Controller input TP2 GND Ground TP3 GND Ground TP4 EN Enable TP5 VOUT Output voltage TP6 LL Switching node TP7 GND Ground TP8 PGOOD Power Good TP9 VREG 5-V LDO output TP10 CHA Input A for loop injection TP11 CHB Input B for loop injection TP12 GND GND 6.4 Equipment Shutdown 1. Shut down the load. 2. Shut down VIN. 3. Shut down the fan. SLUU521A – AUGUST 2011 – REVISED NOVEMBER 2021 TPS53353 Step-Down Converter Evaluation Module User's Guide Submit Document Feedback Copyright © 2021 Texas Instruments Incorporated 7 Performance Data and Typical Characteristic Curves www.ti.com 7 Performance Data and Typical Characteristic Curves Figure 7-1 through Figure 7-15 present typical performance curves for TPS53353EVM-744. 7.1 Efficiency 100 f = 500 kHz VOUT = 1.5 V 90 Efficiency (%) 80 70 60 50 VIN = 8 V, Auto Skip VIN = 12 V, Auto Skip VIN = 14 V, Auto Skip VIN = 8 V, FCCM VIN = 12 V, FCCM VIN = 14 V, FCCM 40 30 20 10 0 0.001 0.01 0.1 1 Output Current (A) 10 100 G001 Figure 7-1. Efficiency 7.2 Load Regulation 1.53 VIN = 8 V, Auto Skip VIN = 12 V, Auto Skip VIN = 14 V, Auto Skip VIN = 8 V, FCCM VIN = 12 V, FCCM VIN = 14 V, FCCM Output Voltage (V) 1.52 1.51 1.50 1.49 1.48 f = 500 kHz 1.47 0 5 10 Output Current (A) 15 20 G002 Figure 7-2. Load Regulation 7.3 Load Regulation 1.53 f = 500 kHz Output Voltage (V) 1.52 1.51 1.50 1.49 IOUT = 0 A, Auto Skip IOUT = 0 A, FCCM IOUT = 20 A 1.48 1.47 8 9 10 11 12 Input Voltage (V) 13 14 G003 Figure 7-3. Line Regulation 8 TPS53353 Step-Down Converter Evaluation Module User's Guide SLUU521A – AUGUST 2011 – REVISED NOVEMBER 2021 Submit Document Feedback Copyright © 2021 Texas Instruments Incorporated www.ti.com Performance Data and Typical Characteristic Curves 7.4 Enable Turn-On/ Turn-Off Figure 7-5. Enable Turn-Off Figure 7-4. Enable Turn-On 7.5 Output Ripple Figure 7-6. Output Ripple 7.6 Switching Node Figure 7-7. Switching Node SLUU521A – AUGUST 2011 – REVISED NOVEMBER 2021 TPS53353 Step-Down Converter Evaluation Module User's Guide Submit Document Feedback Copyright © 2021 Texas Instruments Incorporated 9 Performance Data and Typical Characteristic Curves www.ti.com 7.7 Output Transient With Auto-Skip Mode Figure 7-8. Output Transient From DCM to CCM Figure 7-9. Output Transient From CCM to DCM 7.8 Output Transient With FCCM Mode Figure 7-10. Output Transient With FCCM Mode 7.9 Output 0.75-V Prebias Turn-On Figure 7-11. Output 0.75-V Prebias Turn-On 10 TPS53353 Step-Down Converter Evaluation Module User's Guide SLUU521A – AUGUST 2011 – REVISED NOVEMBER 2021 Submit Document Feedback Copyright © 2021 Texas Instruments Incorporated www.ti.com Performance Data and Typical Characteristic Curves 7.10 Output Overcurrent and Short-Circuit Protection TPS53355EVM Over Current Protection Test Condition: 12 Vin OCP TPS53355EVM Over Current Protection Test Condition: 12 Vin, 1.5 V Short Circuit Ch1: 1.5 Vout Ch1: 1.5 Vout Ch2: LL Ch2: LL Ch3: PGOOD Ch3: PGOOD Figure 7-12. Output Overcurrent Protection Figure 7-13. Output Short Circuit 7.11 Bode Plot Figure 7-14. Bode Plot at 12 VIN, 1.5 V/20 A SLUU521A – AUGUST 2011 – REVISED NOVEMBER 2021 TPS53353 Step-Down Converter Evaluation Module User's Guide Submit Document Feedback Copyright © 2021 Texas Instruments Incorporated 11 Performance Data and Typical Characteristic Curves www.ti.com 7.12 Thermal Image Figure 7-15. Top Board at 12 VIN, 1.5 V/20 A, 25°C Ambient Temperature Without Airflow 12 TPS53353 Step-Down Converter Evaluation Module User's Guide SLUU521A – AUGUST 2011 – REVISED NOVEMBER 2021 Submit Document Feedback Copyright © 2021 Texas Instruments Incorporated www.ti.com EVM Assembly Drawing and PCB Layout 8 EVM Assembly Drawing and PCB Layout The following figures (Figure 8-1 through Figure 8-8) show the design of the TPS53353EVM-744 printed-circuit board (PCB). The EVM was designed using a 6-layer, 2-oz copper, PCB. Figure 8-1. TPS53353EVM-744 Top Layer Assembly Drawing Figure 8-2. TPS53353EVM-744 Bottom Assembly Drawing SLUU521A – AUGUST 2011 – REVISED NOVEMBER 2021 TPS53353 Step-Down Converter Evaluation Module User's Guide Submit Document Feedback Copyright © 2021 Texas Instruments Incorporated 13 EVM Assembly Drawing and PCB Layout www.ti.com Figure 8-3. TPS53353EVM-744 Top Copper Figure 8-4. TPS53353EVM-744 Layer-2 Copper 14 TPS53353 Step-Down Converter Evaluation Module User's Guide SLUU521A – AUGUST 2011 – REVISED NOVEMBER 2021 Submit Document Feedback Copyright © 2021 Texas Instruments Incorporated www.ti.com EVM Assembly Drawing and PCB Layout Figure 8-5. TPS53353EVM-744 Layer-3 Copper Figure 8-6. TPS53353EVM-744 Layer-4 Copper SLUU521A – AUGUST 2011 – REVISED NOVEMBER 2021 TPS53353 Step-Down Converter Evaluation Module User's Guide Submit Document Feedback Copyright © 2021 Texas Instruments Incorporated 15 EVM Assembly Drawing and PCB Layout www.ti.com Figure 8-7. TPS53353EVM-744 Layer-5 Copper Figure 8-8. TPS53353EVM-744 Bottom Layer Copper 16 TPS53353 Step-Down Converter Evaluation Module User's Guide SLUU521A – AUGUST 2011 – REVISED NOVEMBER 2021 Submit Document Feedback Copyright © 2021 Texas Instruments Incorporated www.ti.com Bill of Materials 9 Bill of Materials Table 9-1. TPS53353EVM-744 Bill of Materials QTY REFDES DESCRIPTION MFR PART NUMBER 4 C1–C4 Capacitor, Ceramic, 22 μF, 16 V, X5R, 20%, 1210 MURATA GRM32ER61C226KE20L 5 C12–C16 Capacitor, Ceramic, 100 μF, 6.3 V, X5R, 20%, 1210 MURATA GRM32ER60J107ME20L 1 C10 Capacitor, Ceramic, 2.2 nF, 50 V, X7R, 20%, 0603 STD STD 1 C11 Capacitor, Ceramic, 0.022 μF, 50V, X7R, 20%, 0603 STD STD 1 C19 Capacitor, Ceramic, 1000 pF, 50 V, X7R, 20%, 0603 STD STD 2 C5, C9 Capacitor, Ceramic, 0.1 μF, 50 V, X7R, 20%, 0603 STD STD 1 C6 Capacitor, Aluminum, 100 μF, 16 VDC, 20%, Code D8 Panasonic EEEFP1C101AP 1 C7 Capacitor, Ceramic, 4.7 μF, 25 V, X5R, 20%, 0805 STD STD 1 C8 Capacitor, Ceramic, 1 μF, 50 V, X7R, 20%, 0603 STD STD 1 L1 Inductor, SMT, 0.44 μH, 30 A, 0.0032 Ω, 0.53” x 0.510” Pulse PA0513-441NLT 1 R1 Resistor, Chip, 110 k, 1/16W, 1%, 0603 STD STD 1 R11 Resistor, Chip, 10, 1/16W, 1%, 0603 STD STD 1 R12 Resistor, Chip, 10.0 k, 1/16W, 1%, 0603 STD STD 1 R13 Resistor, Chip, 39.2 k, 1/16W, 1%, 0603 STD STD 1 R14 Resistor, Chip, 187 k, 1/16W, 1%, 0603 STD STD 1 R16 Resistor, Chip, 619 k, 1/16W, 1%, 0603 STD STD 1 R19 Resistor, Chip, 475 k, 1/16W, 1%, 0603 STD STD 1 R2 Resistor, Chip, 0, 1/16W, 1%, 0603 STD STD 1 R20 Resistor, Chip, 866 k, 1/16W, 1%, 0603 STD STD 1 R21 Resistor, Chip, 309 k, 1/16W, 1%, 0603 STD STD 1 R22 Resistor, Chip, 124 k, 1/16W, 1%, 0603 STD STD 2 R3, R17 Resistor, Chip, 200 k, 1/16W, 1%, 0603 STD STD 3 R5, R9, R15 Resistor, Chip, 100 k, 1/16W, 5%, 0603 STD STD 1 R4 Resistor, Chip, 1.00 k, 1/16W, 1%, 0603 STD STD 1 R6 Resistor, Chip, 2.05, 1/16W, 1%, 0603 STD STD 2 R7, R10 Resistor, Chip, 14.7 k, 1/16W, 1%, 0603 STD STD 1 R8 Resistor, Chip, 3.01, 1/16W, 1%, 0805 STD STD 1 U1 IC, 20-A synchronous buck converter with integrated MOSFETs, DQP-22 TI TPS53353DQP 10 Revision History NOTE: Page numbers for previous revisions may differ from page numbers in the current version. Changes from Revision * (August 2011) to Revision A (November 2021) Page • Updated the numbering format for tables, figures, and cross-references throughout the document. ................2 • Updated the user's guide title............................................................................................................................. 2 • Edited user's guide for clarity..............................................................................................................................2 SLUU521A – AUGUST 2011 – REVISED NOVEMBER 2021 TPS53353 Step-Down Converter Evaluation Module User's Guide Submit Document Feedback Copyright © 2021 Texas Instruments Incorporated 17 IMPORTANT NOTICE AND DISCLAIMER TI PROVIDES TECHNICAL AND RELIABILITY DATA (INCLUDING DATA SHEETS), DESIGN RESOURCES (INCLUDING REFERENCE DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND OTHER RESOURCES “AS IS” AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS AND IMPLIED, INCLUDING WITHOUT LIMITATION ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT OF THIRD PARTY INTELLECTUAL PROPERTY RIGHTS. These resources are intended for skilled developers designing with TI products. You are solely responsible for (1) selecting the appropriate TI products for your application, (2) designing, validating and testing your application, and (3) ensuring your application meets applicable standards, and any other safety, security, regulatory or other requirements. These resources are subject to change without notice. TI grants you permission to use these resources only for development of an application that uses the TI products described in the resource. Other reproduction and display of these resources is prohibited. No license is granted to any other TI intellectual property right or to any third party intellectual property right. TI disclaims responsibility for, and you will fully indemnify TI and its representatives against, any claims, damages, costs, losses, and liabilities arising out of your use of these resources. TI’s products are provided subject to TI’s Terms of Sale or other applicable terms available either on ti.com or provided in conjunction with such TI products. TI’s provision of these resources does not expand or otherwise alter TI’s applicable warranties or warranty disclaimers for TI products. TI objects to and rejects any additional or different terms you may have proposed. IMPORTANT NOTICE Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265 Copyright © 2022, Texas Instruments Incorporated
TPS53353EVM-744 价格&库存

很抱歉,暂时无法提供与“TPS53353EVM-744”相匹配的价格&库存,您可以联系我们找货

免费人工找货
TPS53353EVM-744
  •  国内价格 香港价格
  • 1+561.146341+70.18655

库存:3