0
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
会员中心
创作中心
发布
  • 发文章

  • 发资料

  • 发帖

  • 提问

  • 发视频

创作活动
TPS53355EVM-743

TPS53355EVM-743

  • 厂商:

    BURR-BROWN(德州仪器)

  • 封装:

    -

  • 描述:

    TPS53355 D-CAP™, Eco-Mode™ DC/DC, Step Down 1, Non-Isolated Outputs Evaluation Board

  • 数据手册
  • 价格&库存
TPS53355EVM-743 数据手册
www.ti.com Table of Contents User’s Guide TPS53355 Step-Down Converter Evaluation Module User's Guide ABSTRACT The TPS53355EVM-743 evaluation module (EVM) allows users to evaluate the TPS53355. The TPS53355 is a D-CAP™ mode, 30-A synchronous buck converter with integrated MOSFETs. It provides a fixed 1.5-V output at up to 30 A from a 12-V input bus. Table of Contents 1 Description.............................................................................................................................................................................. 3 1.1 Typical Applications............................................................................................................................................................3 1.2 Features............................................................................................................................................................................. 3 2 Electrical Performance Specifications................................................................................................................................. 3 3 Schematic................................................................................................................................................................................4 4 Test Setup................................................................................................................................................................................5 4.1 Test Equipment.................................................................................................................................................................. 5 4.2 Recommended Test Setup.................................................................................................................................................6 5 Configurations........................................................................................................................................................................ 7 5.1 Switching Frequency Selection.......................................................................................................................................... 7 5.2 Soft-Start Selection............................................................................................................................................................ 7 5.3 Mode Selection.................................................................................................................................................................. 7 5.4 Enable Selection................................................................................................................................................................ 8 6 Test Procedure........................................................................................................................................................................ 8 6.1 Line/Load Regulation and Efficiency Measurement Procedure......................................................................................... 8 6.2 Control Loop Gain and Phase Measurement Procedure................................................................................................... 8 6.3 Test Point List.....................................................................................................................................................................9 6.4 Equipment Shutdown......................................................................................................................................................... 9 7 Performance Data and Typical Characteristic Curves...................................................................................................... 10 7.1 Efficiency..........................................................................................................................................................................10 7.2 Load Regulation............................................................................................................................................................... 10 7.3 Line Regulation.................................................................................................................................................................11 7.4 Enable Turn-On/Turn-Off..................................................................................................................................................11 7.5 Output Ripple................................................................................................................................................................... 12 7.6 Switching Node................................................................................................................................................................ 12 7.7 Output Transient With Auto-Skip Mode............................................................................................................................13 7.8 Output Transient With FCCM Mode................................................................................................................................. 13 7.9 Output 0.75-V Prebias Turn-On....................................................................................................................................... 14 7.10 Output Overcurrent and Short-Circuit Protection........................................................................................................... 14 7.11 Bode Plot........................................................................................................................................................................15 7.12 Thermal Image............................................................................................................................................................... 16 8 EVM Assembly Drawing and PCB Layout.......................................................................................................................... 17 9 Bill of Materials..................................................................................................................................................................... 21 10 Revision History................................................................................................................................................................. 21 List of Figures Figure 3-1. TPS53355EVM-743 Schematic.................................................................................................................................4 Figure 4-1. Tip and Barrel Measurement for VOUT Ripple..........................................................................................................5 Figure 4-2. TPS53355EVM-743 Recommended Test Setup....................................................................................................... 6 Figure 7-1. Efficiency................................................................................................................................................................. 10 Figure 7-2. Load Regulation...................................................................................................................................................... 10 Figure 7-3. Line Regulation........................................................................................................................................................11 SLUU522A – AUGUST 2011 – REVISED JANUARY 2022 TPS53355 Step-Down Converter Evaluation Module User's Guide Submit Document Feedback Copyright © 2022 Texas Instruments Incorporated 1 Trademarks www.ti.com Figure 7-4. Enable Turn-On....................................................................................................................................................... 11 Figure 7-5. Enable Turn-Off....................................................................................................................................................... 11 Figure 7-6. Output Ripple.......................................................................................................................................................... 12 Figure 7-7. Switching Node....................................................................................................................................................... 12 Figure 7-8. Output Transient From DCM to CCM...................................................................................................................... 13 Figure 7-9. Output Transient From CCM to DCM...................................................................................................................... 13 Figure 7-10. Output Transient With FCCM Mode...................................................................................................................... 13 Figure 7-11. Output 0.75-V Prebias Turn-On.............................................................................................................................14 Figure 7-12. Output Overcurrent Protection.............................................................................................................................. 14 Figure 7-13. Output Short Circuit...............................................................................................................................................14 Figure 7-14. Bode Plot at 12 VIN, 1.5 V/30 A............................................................................................................................. 15 Figure 7-15. Top Board at 12 VIN, 1.5 V/30 A, 25°C Ambient Temperature Without Airflow......................................................16 Figure 8-1. TPS53355EVM-743 Top Layer Assembly Drawing.................................................................................................17 Figure 8-2. TPS53355EVM-743 Bottom Assembly Drawing..................................................................................................... 17 Figure 8-3. TPS53355EVM-743 Top Copper.............................................................................................................................18 Figure 8-4. TPS53355EVM-743 Layer-2 Copper...................................................................................................................... 18 Figure 8-5. TPS53355EVM-743 Layer-3 Copper...................................................................................................................... 19 Figure 8-6. TPS53355EVM-743 Layer-4 Copper...................................................................................................................... 19 Figure 8-7. TPS53355EVM-743 Layer-5 Copper...................................................................................................................... 20 Figure 8-8. TPS53355EVM-743 Bottom Layer Copper............................................................................................................. 20 List of Tables Table 2-1. TPS53355EVM-743 Electrical Performance Specifications........................................................................................3 Table 5-1. Switching Frequency Selection...................................................................................................................................7 Table 5-2. Soft-Start Time Selection............................................................................................................................................ 7 Table 5-3. MODE Selection......................................................................................................................................................... 7 Table 5-4. Enable Selection......................................................................................................................................................... 8 Table 6-1. Test Point Functions....................................................................................................................................................9 Table 9-1. The EVM Components List According to the Schematic Shown in Figure 3-1......................................................... 21 Trademarks D-CAP™ is a trademark of Texas Instruments. All trademarks are the property of their respective owners. 2 TPS53355 Step-Down Converter Evaluation Module User's Guide SLUU522A – AUGUST 2011 – REVISED JANUARY 2022 Submit Document Feedback Copyright © 2022 Texas Instruments Incorporated www.ti.com Description 1 Description The TPS53355EVM-743 is designed to use a regulated 12-V bus to produce a regulated 1.5-V output at up to 30 A of load current. The TPS53355EVM-743 is designed to demonstrate the TPS53355 in a typical, low-voltage application while providing a number of test points to evaluate the performance of the TPS53355. 1.1 Typical Applications • • • Server/storage Workstations and desktops Telecommunication infrastructure 1.2 Features The TPS53355EVM-743 features: • 30-ADC, steady-state output current • Supports prebias output voltage start-up • J5 for selectable switching frequency setting • J4 for selectable soft-start time • J2 for enable function • J6 for auto-skip and forced CCM selection • Convenient test points for probing critical waveforms 2 Electrical Performance Specifications Table 2-1. TPS53355EVM-743 Electrical Performance Specifications Parameters Test Conditions Min Typ Max 8 12 14 Units Input Characteristics Voltage range VIN Maximum input current VIN = 8 V, IO = 30 A No load input current VIN = 14 V, IO = 0 A with auto-skip mode 6.3 V A 1 mA Output Characteristics Output voltage VOUT Output voltage regulation Output voltage ripple Line regulation (VIN = 8 V – 14 V) Load regulation (VIN = 12 V, IO = 0 A – 30 A) VIN = 12 V, IO = 30 A 1.5 V 0.1 % 1 % 20 Output load current 0 Output overcurrent mVpp 30 A 34 A 500 kHz Systems Characteristics Switching frequency Peak efficiency VIN = 12 V, 1.5 V/10 A 91.87 Ful-load efficiency VIN = 12 V, 1.5V/30 A 89.46 % 25 °C Operating temperature % Note Jumpers are set to default locations; see Section 5 of this user’s guide. SLUU522A – AUGUST 2011 – REVISED JANUARY 2022 TPS53355 Step-Down Converter Evaluation Module User's Guide Submit Document Feedback Copyright © 2022 Texas Instruments Incorporated 3 Schematic www.ti.com FCCM AUTOSKIP 970 kHz 750 kHz 850 kHz 2.8ms SS 5.6ms SS 400 kHz 500 kHz 650 kHz 0.7ms SS 1.4ms SS 250 kHz 300 kHz + + + 3 Schematic Figure 3-1. TPS53355EVM-743 Schematic 4 TPS53355 Step-Down Converter Evaluation Module User's Guide SLUU522A – AUGUST 2011 – REVISED JANUARY 2022 Submit Document Feedback Copyright © 2022 Texas Instruments Incorporated www.ti.com Test Setup 4 Test Setup 4.1 Test Equipment Voltage Source: The input voltage source VIN must be a 0-V to 14-V variable DC source capable of supplying 10 ADC. Connect VIN to J1 as shown in Figure 4-2. Multimeters: • V1: VIN at TP1 (VIN) and TP2 (GND). • V2: VOUT at TP5 (VOUT) and TP7 (GND). • A1: VIN input current Output Load: The output load must be an electronic constant resistance mode load capable of 0 Adc to 30 Adc at 1.5 V. Oscilloscope: A digital or analog oscilloscope can be used to measure the output ripple. The oscilloscope must be set for the following: • • • • • 1-MΩ impedance 20-MHz bandwidth AC coupling 2-µs/division horizontal resolution 50-mV/division vertical resolution Test points TP5 and TP7 can be used to measure the output ripple voltage by placing the oscilloscope probe tip through TP5 and holding the ground barrel on TP7 as shown in Figure 4-1. Using a leaded ground connection may induce additional noise due to the large ground loop. Metal Ground Barrel Probe Tip TP5 TP7 Figure 4-1. Tip and Barrel Measurement for VOUT Ripple Fan: Some of the components in this EVM can approach temperatures of 60°C during operation. A small fan capable of 200–400 LFM is recommended to reduce component temperatures while the EVM is operating. Only probe the EVM when the fan is running. Recommended Wire Gauge: 1. VIN to J1 (12-V input): The recommended wire size is 1× AWG 14 per input connection, with the total length of wire less than four feet (2-foot input, 2-foot return). 2. J3 to LOAD: The minimum recommended wire size is 2× AWG 14, with the total length of wire less than four feet (2-foot output, 2-foot return) SLUU522A – AUGUST 2011 – REVISED JANUARY 2022 TPS53355 Step-Down Converter Evaluation Module User's Guide Submit Document Feedback Copyright © 2022 Texas Instruments Incorporated 5 Test Setup www.ti.com 4.2 Recommended Test Setup FAN TEXAS INSTRUMENTS DC + Source Vin + V1 - V2 A1 Load - Figure 4-2. TPS53355EVM-743 Recommended Test Setup Figure 4-2 is the recommended test setup to evaluate the TPS53355EVM-743. Working at an ESD workstation, ensure that any wrist straps, bootstraps, or mats are connected referencing the user to earth ground before power is applied to the EVM. Input Connections: 1. Prior to connecting the dc input source VIN, it is advisable to limit the source current from VIN to 10 A maximum. Ensure that VIN is initially set to 0 V and connected as shown in Figure 4-2. 2. Connect a voltmeter V1 at TP1 (VIN) and TP2 (GND) to measure the input voltage. 3. Connect a current meter A1 to measure the input current. Output Connections: 1. Connect the load to J3, and set Load to constant resistance mode to sink 0 ADC before VIN is applied. 2. Connect a voltmeter V2 at TP5 (VOUT) and TP7 (GND) to measure the output voltage. Other Connections: Place a fan as shown in Figure 4-2, and turn it on, making sure that air is flowing across the EVM. 6 TPS53355 Step-Down Converter Evaluation Module User's Guide SLUU522A – AUGUST 2011 – REVISED JANUARY 2022 Submit Document Feedback Copyright © 2022 Texas Instruments Incorporated www.ti.com Configurations 5 Configurations All jumper selections must be made prior to applying power to the EVM. Users can configure this EVM per the following configurations. 5.1 Switching Frequency Selection The switching frequency can be set by J5. Default setting: 500 kHz Table 5-1. Switching Frequency Selection Jumper Set to Resistor (RF) Connections (kΩ) Switching Frequency (kHz) Top (1–2 pin shorted) 0 250 Second (3–4 pin shorted) 187 300 Third (5–6 pin shorted) 619 400 Fourth (7–8 pin shorted) Open 500 Fifth (9–10 pin shorted) 866 650 Sixth (11–12 pin shorted) 309 750 Seventh (13–14 pin shorted) 124 850 Bottom (15–16 pin shorted) 0 970 5.2 Soft-Start Selection The soft-start time can be set by J4. Default setting: 1.4 ms Table 5-2. Soft-Start Time Selection Jumper Set to RMODE Connections (kΩ) Soft-Start Time (ms) Top (1–2 pin shorted) 39.2 0.7 Second (3–4 pin shorted) 100 1.4 Third (5–6 pin shorted) 200 2.8 Bottom (7–8 pin shorted) 475 5.6 5.3 Mode Selection The MODE can be set by J6. Default setting: Auto Skip Table 5-3. MODE Selection Jumper Set to MODE Selection Top (1–2 pin shorted) Auto Skip Bottom (7–8 pin shorted) Forced CCM SLUU522A – AUGUST 2011 – REVISED JANUARY 2022 TPS53355 Step-Down Converter Evaluation Module User's Guide Submit Document Feedback Copyright © 2022 Texas Instruments Incorporated 7 Configurations www.ti.com 5.4 Enable Selection The controller can be enabled and disabled by J2. Default setting: Jumper shorts on J2 to disable the controller Table 5-4. Enable Selection Jumper Set to Enable Selection Jumper shorts on J2 Disable the controller No jumper shorts on J2 Enable the controller 6 Test Procedure 6.1 Line/Load Regulation and Efficiency Measurement Procedure 1. 2. 3. 4. 5. 6. 7. 8. 9. 10. 11. 12. Set up the EVM as described in Section 4 and Figure 4-2. Ensure the load is set to constant resistance mode and to sink 0 ADC. Ensure that all jumpers configuration settings are per Section 5. Ensure that the jumper provided in the EVM shorts on J2 before VIN is applied. Increase VIN from 0 V to 12 V. Use V1 to measure input voltage. Remove the jumper on J2 to enable the controller. Use V2 to measure VOUT voltage. Vary the load from 0 ADC to 30 ADC; VOUT must remain in load regulation. Vary VIN from 8 V to 14 V; VOUT must remain in line regulation. Put the jumper on J2 to disable the controller. Decrease the load to 0 A. Decrease VIN to 0 V. 6.2 Control Loop Gain and Phase Measurement Procedure The TPS53355EVM-743 contains a 10-Ω series resistor in the feedback loop for loop response analysis. 1. Set up the EVM as described in Section 4 and Figure 4-2. 2. Connect isolation transformer to test points marked TP10 and TP11. 3. Connect input signal amplitude measurement probe (channel A) to TP10. Connect output signal amplitude measurement probe (channel B) to TP11. 4. Connect ground lead of channel A and channel B to TP12. 5. Inject an approximate 40-mV or less signal through the isolation transformer. 6. Sweep the frequency from 100 Hz to 1 MHz with 10-Hz or lower post filter. The control loop gain and phase margin can be measured. 7. Disconnect isolation transformer from bode-plot test points before making other measurements (Signal injection into feedback can interfere with accuracy of other measurements). 8 TPS53355 Step-Down Converter Evaluation Module User's Guide SLUU522A – AUGUST 2011 – REVISED JANUARY 2022 Submit Document Feedback Copyright © 2022 Texas Instruments Incorporated www.ti.com Test Procedure 6.3 Test Point List Table 6-1. Test Point Functions Test Points Name Description TP1 VIN Controller input TP2 GND Ground TP3 GND Ground TP4 EN Enable TP5 VOUT Output voltage TP6 LL Switching node TP7 GND Ground TP8 PGOOD Power Good TP9 VREG 5-V LDO output TP10 CHA Input A for loop injection TP11 CHB Input B for loop injection TP12 GND GND 6.4 Equipment Shutdown 1. Shut down Load. 2. Shut down Load. 3. Shut down fan. SLUU522A – AUGUST 2011 – REVISED JANUARY 2022 TPS53355 Step-Down Converter Evaluation Module User's Guide Submit Document Feedback Copyright © 2022 Texas Instruments Incorporated 9 Performance Data and Typical Characteristic Curves www.ti.com 7 Performance Data and Typical Characteristic Curves Figure 7-1 through Figure 7-15 present typical performance curves for TPS53355EVM-743. 7.1 Efficiency 100 12 Vin auto skip 90 8 Vin auto skip 80 70 Efficiency - % 14 Vin auto skip 60 8 Vin FCCM 50 12 Vin FCCM 40 30 14 Vin FCCM 20 10 0 0.001 0.01 0.1 1 10 100 IO - Output Current - A Figure 7-1. Efficiency 7.2 Load Regulation 1.53 1.52 VO - Output Voltage - V 14 Vin auto skip 1.51 14 Vin FCCM 12 Vin FCCM 1.5 8 Vin auto skip 1.49 8 Vin FCCM 12 Vin auto skip 1.48 1.47 0 5 10 15 20 IO - Output Current - A 25 30 Figure 7-2. Load Regulation 10 TPS53355 Step-Down Converter Evaluation Module User's Guide SLUU522A – AUGUST 2011 – REVISED JANUARY 2022 Submit Document Feedback Copyright © 2022 Texas Instruments Incorporated www.ti.com Performance Data and Typical Characteristic Curves 7.3 Line Regulation 1.53 1.52 VO - Output Voltage - V IO = 0 A auto-skip IO = 0 A FCCM 1.51 1.5 IO = 30 A 1.49 1.48 1.47 8 9 10 11 12 VI - Input Voltage - V 13 14 Figure 7-3. Line Regulation 7.4 Enable Turn-On/Turn-Off TPS5335EVM Enable Start Up Test condition: 12 Vin, 1.5 V/30 A Auto Skip Mode TPS5335EVM Enable Shut Down Test condition: 12 Vin, 1.5 V/30 A Auto Skip Mode CH1: EN CH1: EN CH2: 1.5 Vout CH3: PGOOD Figure 7-4. Enable Turn-On CH2: 1.5 Vout CH3: PGOOD Figure 7-5. Enable Turn-Off SLUU522A – AUGUST 2011 – REVISED JANUARY 2022 TPS53355 Step-Down Converter Evaluation Module User's Guide Submit Document Feedback Copyright © 2022 Texas Instruments Incorporated 11 Performance Data and Typical Characteristic Curves www.ti.com 7.5 Output Ripple TPS5335EVM Output Ripple Test condition: 12 Vin, 1.5 V/30 A Auto Skip Mode V1: V2: DV: CH1: 1.5 Vout 2.4 mV -9.6 mV -12.0 mV Figure 7-6. Output Ripple 7.6 Switching Node TPS5335EVM Switching Node Test condition: 12 Vin, 1.5 V/30 A Auto Skip Mode CH1: LL Figure 7-7. Switching Node 12 TPS53355 Step-Down Converter Evaluation Module User's Guide SLUU522A – AUGUST 2011 – REVISED JANUARY 2022 Submit Document Feedback Copyright © 2022 Texas Instruments Incorporated www.ti.com Performance Data and Typical Characteristic Curves 7.7 Output Transient With Auto-Skip Mode TPS5335EVM Output Transient from DCM to CCM Test condition: 12 Vin, 0 A -15 A Auto Skip Mode TPS5335EVM Output Transient from CCM to DCM Test condition: 12 Vin, 1.5 V/15 A-0 A Auto Skip Mode CH1: 1.5 Vout CH1: 1.5 Vout CH4: Output Current CH4: Output Current Figure 7-8. Output Transient From DCM to CCM Figure 7-9. Output Transient From CCM to DCM 7.8 Output Transient With FCCM Mode TPS5335EVM Output Transient from 0 A to 15 A Test condition: 12 Vin, 1.5 V/0 A-15 A FCCM Mode CH1: 1.5 Vout CH4: output Current Figure 7-10. Output Transient With FCCM Mode SLUU522A – AUGUST 2011 – REVISED JANUARY 2022 TPS53355 Step-Down Converter Evaluation Module User's Guide Submit Document Feedback Copyright © 2022 Texas Instruments Incorporated 13 Performance Data and Typical Characteristic Curves www.ti.com 7.9 Output 0.75-V Prebias Turn-On TPS5335EVM 0.75 V Pre-bias Enable Start up Test condition: 12 Vin, 1.5 V/0 A FCCM Mode CH1: EN CH2: 1.5 Vout CH3: PGOOD Figure 7-11. Output 0.75-V Prebias Turn-On 7.10 Output Overcurrent and Short-Circuit Protection TPS53355EVM Over Current Protection Test Condition: 12 Vin OCP TPS53355EVM Short Circuit Protection Test Condition: 12 Vin, 1.5 V Short Circuit Ch1: 1.5 Vout Ch1: 1.5 Vout Ch2: LL Ch2: LL Ch3: PGOOD Ch3: PGOOD Figure 7-12. Output Overcurrent Protection 14 TPS53355 Step-Down Converter Evaluation Module User's Guide Figure 7-13. Output Short Circuit SLUU522A – AUGUST 2011 – REVISED JANUARY 2022 Submit Document Feedback Copyright © 2022 Texas Instruments Incorporated www.ti.com Performance Data and Typical Characteristic Curves 7.11 Bode Plot Figure 7-14. Bode Plot at 12 VIN, 1.5 V/30 A SLUU522A – AUGUST 2011 – REVISED JANUARY 2022 TPS53355 Step-Down Converter Evaluation Module User's Guide Submit Document Feedback Copyright © 2022 Texas Instruments Incorporated 15 Performance Data and Typical Characteristic Curves www.ti.com 7.12 Thermal Image Figure 7-15. Top Board at 12 VIN, 1.5 V/30 A, 25°C Ambient Temperature Without Airflow 16 TPS53355 Step-Down Converter Evaluation Module User's Guide SLUU522A – AUGUST 2011 – REVISED JANUARY 2022 Submit Document Feedback Copyright © 2022 Texas Instruments Incorporated www.ti.com EVM Assembly Drawing and PCB Layout 8 EVM Assembly Drawing and PCB Layout The following illustrations (Figure 8-1 through Figure 8-8) show the design of the TPS53355EVM-743 printedcircuit board. The EVM was designed using a 6-layer, 2-oz copper circuit board. TEXAS INSTRUMENTS Figure 8-1. TPS53355EVM-743 Top Layer Assembly Drawing Figure 8-2. TPS53355EVM-743 Bottom Assembly Drawing SLUU522A – AUGUST 2011 – REVISED JANUARY 2022 TPS53355 Step-Down Converter Evaluation Module User's Guide Submit Document Feedback Copyright © 2022 Texas Instruments Incorporated 17 EVM Assembly Drawing and PCB Layout www.ti.com Figure 8-3. TPS53355EVM-743 Top Copper Figure 8-4. TPS53355EVM-743 Layer-2 Copper 18 TPS53355 Step-Down Converter Evaluation Module User's Guide SLUU522A – AUGUST 2011 – REVISED JANUARY 2022 Submit Document Feedback Copyright © 2022 Texas Instruments Incorporated www.ti.com EVM Assembly Drawing and PCB Layout Figure 8-5. TPS53355EVM-743 Layer-3 Copper Figure 8-6. TPS53355EVM-743 Layer-4 Copper SLUU522A – AUGUST 2011 – REVISED JANUARY 2022 TPS53355 Step-Down Converter Evaluation Module User's Guide Submit Document Feedback Copyright © 2022 Texas Instruments Incorporated 19 EVM Assembly Drawing and PCB Layout www.ti.com Figure 8-7. TPS53355EVM-743 Layer-5 Copper Figure 8-8. TPS53355EVM-743 Bottom Layer Copper 20 TPS53355 Step-Down Converter Evaluation Module User's Guide SLUU522A – AUGUST 2011 – REVISED JANUARY 2022 Submit Document Feedback Copyright © 2022 Texas Instruments Incorporated www.ti.com Bill of Materials 9 Bill of Materials Table 9-1. The EVM Components List According to the Schematic Shown in Figure 3-1 QTY REFDES DESCRIPTION MFR PART NUMBER 4 C1, C2, C3, C4 Capacitor, Ceramic, 22 μF, 16 V, X5R, 20%, 1210 MURATA GRM32ER61C226KE20L 5 C12, C13, C14, C15, C16 Capacitor, Ceramic, 100 μF, 6.3 V, X5R, 20%, 1210 MURATA GRM32ER60J107ME20L 1 C10 Capacitor, Ceramic, 2.2 nF, 50 V, X7R, 20%, 0603 STD STD 1 C11 Capacitor, Ceramic, 0.022 μF, 50 V, X7R, 20%, 0603 STD STD 1 C19 Capacitor, Ceramic, 1000 pF, 50 V, X7R, 20%, 0603 STD STD 2 C5, C9 Capacitor, Ceramic, 0.1 μF, 50 V, X7R, 20%, 0603 STD STD 1 C6 Capacitor, Aluminum, 100 μF, 16 VDC, 20%, Code D8 Panasonic EEEFP1C101AP 1 C7 Capacitor, Ceramic, 4.7 μF, 25 V, X5R, 20%, 0805 STD STD 1 C8 Capacitor, Ceramic, 1 μF, 50 V, X7R, 20%, 0603 STD STD 1 L1 Inductor, SMT, 0.44 μH, 30 A, 0.0032 Ω, 0.530 inch × 0.510 inch Pulse PA0513-441NLT 1 R1 Resistor, Chip, 147 k, 1/16W, 1%, 0603 STD STD 1 R11 Resistor, Chip, 10, 1/16W, 1%, 0603 STD STD 1 R12 Resistor, Chip, 10.0 k, 1/16W, 1%, 0603 STD STD 1 R13 Resistor, Chip, 39.2 k, 1/16W, 1%, 0603 STD STD 1 R14 Resistor, Chip, 187 k, 1/16W, 1%, 0603 STD STD 1 R16 Resistor, Chip, 619 k, 1/16W, 1%, 0603 STD STD 1 R19 Resistor, Chip, 475 k, 1/16W, 1%, 0603 STD STD 1 R2 Resistor, Chip, 0, 1/16W, 1%, 0603 STD STD 1 R20 Resistor, Chip, 866 k, 1/16W, 1%, 0603 STD STD 1 R21 Resistor, Chip, 309 k, 1/16W, 1%, 0603 STD STD 1 R22 Resistor, Chip, 124 k, 1/16W, 1%, 0603 STD STD 2 R3, R1 Resistor, Chip, 200 k, 1/16W, 1%, 0603 STD STD 3 7 R5, R9, R15 Resistor, Chip, 100 k, 1/16W, 5%, 0603 STD STD 1 R4 Resistor, Chip, 1.00 k, 1/16W, 1%, 0603 STD STD 1 R6 Resistor, Chip, 2.05, 1/16W, 1%, 0603 STD STD 2 R7, R10 Resistor, Chip, 14.7k, 1/16W, 1%, 0603 STD STD 1 R8 Resistor, Chip, 3.01, 1/16W, 1%, 0805 STD STD 1 U1 IC, 30-A Synchronous Buck converter with integrated MOSFETs, DQP-22 TI TPS53355DQP 10 Revision History NOTE: Page numbers for previous revisions may differ from page numbers in the current version. Changes from Revision * (August 2011) to Revision A (January 2022) Page • Updated the numbering format for tables, figures, and cross-references throughout the document. ................3 • Updated the user's guide title............................................................................................................................. 3 SLUU522A – AUGUST 2011 – REVISED JANUARY 2022 TPS53355 Step-Down Converter Evaluation Module User's Guide Submit Document Feedback Copyright © 2022 Texas Instruments Incorporated 21 IMPORTANT NOTICE AND DISCLAIMER TI PROVIDES TECHNICAL AND RELIABILITY DATA (INCLUDING DATA SHEETS), DESIGN RESOURCES (INCLUDING REFERENCE DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND OTHER RESOURCES “AS IS” AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS AND IMPLIED, INCLUDING WITHOUT LIMITATION ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT OF THIRD PARTY INTELLECTUAL PROPERTY RIGHTS. These resources are intended for skilled developers designing with TI products. You are solely responsible for (1) selecting the appropriate TI products for your application, (2) designing, validating and testing your application, and (3) ensuring your application meets applicable standards, and any other safety, security, regulatory or other requirements. These resources are subject to change without notice. TI grants you permission to use these resources only for development of an application that uses the TI products described in the resource. Other reproduction and display of these resources is prohibited. No license is granted to any other TI intellectual property right or to any third party intellectual property right. TI disclaims responsibility for, and you will fully indemnify TI and its representatives against, any claims, damages, costs, losses, and liabilities arising out of your use of these resources. TI’s products are provided subject to TI’s Terms of Sale or other applicable terms available either on ti.com or provided in conjunction with such TI products. TI’s provision of these resources does not expand or otherwise alter TI’s applicable warranties or warranty disclaimers for TI products. TI objects to and rejects any additional or different terms you may have proposed. IMPORTANT NOTICE Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265 Copyright © 2022, Texas Instruments Incorporated
TPS53355EVM-743 价格&库存

很抱歉,暂时无法提供与“TPS53355EVM-743”相匹配的价格&库存,您可以联系我们找货

免费人工找货