www.ti.com
Table of Contents
User’s Guide
TPS54020 SWIFT™ Step-Down Converter Evaluation
Module User's Guide
ABSTRACT
This user's guide contains background information for the TPS54020 as well as support documentation for the
TPS54020EVM-082 evaluation module (EVM). Also included are the performance specifications, the schematic,
and the bill of materials.
Table of Contents
1 Introduction.............................................................................................................................................................................2
1.1 Background........................................................................................................................................................................ 2
1.2 Performance Specification Summary.................................................................................................................................2
1.3 Modifications...................................................................................................................................................................... 3
2 Test Setup and Results.......................................................................................................................................................... 4
2.1 Input / Output Connections................................................................................................................................................ 4
2.2 Efficiency............................................................................................................................................................................5
2.3 Output Voltage Load Regulation........................................................................................................................................ 6
2.4 Output Voltage Line Regulation......................................................................................................................................... 6
2.5 Load Transient................................................................................................................................................................... 6
2.6 Control Loop Response..................................................................................................................................................... 7
2.7 Output Voltage Ripple........................................................................................................................................................ 7
2.8 Input Voltage Ripple........................................................................................................................................................... 8
2.9 Start Up.............................................................................................................................................................................. 8
2.10 Pre-Bias Start Up............................................................................................................................................................. 9
2.11 Hiccup Mode Current Limit............................................................................................................................................... 9
3 Board Layout.........................................................................................................................................................................10
3.1 Layout.............................................................................................................................................................................. 10
4 Schematic and Bill of Materials...........................................................................................................................................14
4.1 Schematic........................................................................................................................................................................ 14
4.2 Bill of Materials.................................................................................................................................................................15
5 Revision History................................................................................................................................................................... 15
List of Figures
Figure 2-1. EVM Efficiency at 25°C............................................................................................................................................. 5
Figure 2-2. TPS54020EVM-082 Load Regulation....................................................................................................................... 6
Figure 2-3. TPS54020EVM-082 Line Regulation........................................................................................................................ 6
Figure 2-4. TPS54020EVM-082 Transient Response................................................................................................................. 7
Figure 2-5. TPS54020EVM-082 Loop Bode Response...............................................................................................................7
Figure 2-6. TPS54020EVM-082 Output Ripple........................................................................................................................... 7
Figure 2-7. TPS54020EVM-082 Input Ripple.............................................................................................................................. 8
Figure 2-8. TPS54020EVM-082 Start Up with VIN ......................................................................................................................8
Figure 2-9. TPS54020EVM-082 Start Up with EN.......................................................................................................................8
Figure 2-10. TPS54020EVM-082 Pre-Bias Startup..................................................................................................................... 9
Figure 2-11. TPS54020EVM-082 Hiccup Mode Current Limit..................................................................................................... 9
Figure 3-1. TPS54020EVM-082 Top Side Copper.....................................................................................................................10
Figure 3-2. TPS54020EVM-082 Internal 1 Copper.................................................................................................................... 11
Figure 3-3. TPS54020EVM-082 Internal 2 Copper.................................................................................................................... 11
Figure 3-4. TPS54020EVM-082 Bottom Side Copper............................................................................................................... 12
Figure 3-5. TPS54020EVM-082 Top Side Component Placement............................................................................................12
Figure 3-6. TPS54020EVM-082 Bottom Side Component Placement...................................................................................... 13
Figure 4-1. TPS54020EVM-082 Schematic...............................................................................................................................14
SLVU777A – SEPTEMBER 2012 – REVISED NOVEMBER 2021
TPS54020 SWIFT™ Step-Down Converter Evaluation Module User's Guide
Submit Document Feedback
Copyright © 2021 Texas Instruments Incorporated
1
Trademarks
www.ti.com
List of Tables
Table 1-1. Input Voltage and Output Current Summary...............................................................................................................2
Table 1-2. Performance Specifications........................................................................................................................................ 2
Table 1-3. Output Voltage Examples with R10 of 2.55 kΩ........................................................................................................... 3
Table 2-1. EVM Connectors and Test Points............................................................................................................................... 4
Table 4-1. TPS54020EVM-082 Bill of Materials.........................................................................................................................15
Trademarks
All trademarks are the property of their respective owners.
1 Introduction
1.1 Background
The TPS54020 dc/dc converter is designed to provide up to 10-A output current. The TPS54020 implements
split-input power rails with separate input voltage inputs for the power stage and control circuitry. The power
stage input (PVIN) is rated for 1.6 V to 17 V whereas the control input (VIN) is rated for 4.5 V to 17 V. This
EVM provides connections for both inputs but is designed and tested using the PVIN connected to VIN. The
rated input voltage and output current range for the EVM are given in Table 1-1. This EVM is designed to
demonstrate the small printed-circuit-board areas that can be achieved when designing with the TPS54020
regulator. The switching frequency is externally set by a resistor at a nominal 500 kHz. The high-side and
low-side MOSFETs are incorporated inside the TPS54020 package along with the gate-drive circuitry. The low
drain-to-source ON resistance of the MOSFET allows the TPS54020 to achieve high efficiencies and helps
keep the junction temperature low at high output currents. The compensation components are external to the
integrated circuit (IC), and an external divider allows for an adjustable output voltage. Additionally, the TPS54020
provides adjustable slow start and undervoltage lockout inputs. The absolute maximum input voltage is 20 V for
the EVM, but the recommended maximum input voltage of 17 V should not be exceeded.
Table 1-1. Input Voltage and Output Current Summary
EVM
INPUT VOLTAGE RANGE
OUTPUT CURRENT RANGE
TPS54020EVM-082
VIN = 8 V to 17 V (VIN start voltage = 7.5 V)
0 A to 10 A
1.2 Performance Specification Summary
A summary of the EVM performance specifications is provided in Table 1-2. Specifications are given for an input
voltage of VIN = 12 V and an output voltage of 1.8 V, unless otherwise specified. This EVM is designed and
tested for VIN = 8 V to 17 V with the VIN and PVIN pins connect together with the jumper J2. The ambient
temperature is 25°C for all measurements, unless otherwise noted.
Table 1-2. Performance Specifications
SPECIFICATION
TEST CONDITIONS
VIN voltage range (PVIN = VIN)
MIN
TYP
MAX
UNIT
8
12
17
V
VIN start voltage
7.5
V
VIN stop voltage
7.1
V
Output voltage set point
1.8
Output current range
VIN = 8 V to 17 V
Line regulation
IO = 5 A, VIN = 8 V to 17 V
±0.3%
Load regulation
VIN = 12 V, IO = 0 A to 10 A
±0.5%
IO = 2.5 A to 47.5 A
Load transient response
IO = 47.5 A to 2.5 A
2
0
V
10
A
Voltage change
–150
mV
Recovery time
200
µS
Voltage change
150
mV
Recovery time
200
µS
Loop bandwidth
VIN = 12 V, IO = 1.9 A
30
kHz
Phase margin
VIN = 12 V , IO = 1.9 A
60
Degrees
Input ripple voltage
IO = 10 A
300
mVpp
Output ripple voltage
IO = 6 A
18
mVpp
TPS54020 SWIFT™ Step-Down Converter Evaluation Module User's Guide
SLVU777A – SEPTEMBER 2012 – REVISED NOVEMBER 2021
Submit Document Feedback
Copyright © 2021 Texas Instruments Incorporated
www.ti.com
Introduction
Table 1-2. Performance Specifications (continued)
SPECIFICATION
TEST CONDITIONS
MIN
TYP
MAX
UNIT
Output rise time
26
mS
Operating frequency
500
kHz
Peak efficiency
TPS54020EVM-082, VIN = 12 V, IO = 5 A
89%
1.3 Modifications
These EVMs are designed to provide access to the features of the TPS54020. Some modifications can be made
to this module.
1.3.1 Output Voltage Setpoint
The output voltage is set by the resistor divider network of R7 and R10. The lower divider resistor R10 should
not be modified and should remain at 2.55 kΩ. To change the output voltage of the EVM, it is necessary to
change the value of resistor R7. Changing the value of R7 changes the output voltage between 0.6 V and 5 V.
The value of R7 for a specific output voltage is calculated using Equation 1.
(Vout - Vref )´ R10
R7 =
Vref
(1)
Table 1-3 lists the R7 values for some common output voltages. Note that VIN must then be within a range so
that the minimum on time is greater than 150 ns. The values given in Table 1-3 show both the ideal required
values and the closest E96 standard values.
Table 1-3. Output Voltage Examples with R10 of 2.55 kΩ
DESIRED VOUT
IDEAL R7
CLOSEST E96 MATCH
RESULTING VOUT
1.8
5.100 kΩ
5.11 kΩ
1.802
2.5
8.075 kΩ
8.06 kΩ
2.496
3.3
11.475 kΩ
11.5 kΩ
3.306
5.0
18.700 kΩ
18.7 kΩ
5.000
1.3.2 Slow-Start Time
The slow-start time is adjusted by changing the value of C14. Use Equation 2 to calculate the required value of
C14 for a desired slow-start time.
T ´I
C14 = SS SS
Vref
(2)
Where:
TSS = desired slow start time
ISS = slow start charging current = 2.3-µA nominal
VREF = 0.6-V reference voltage
The EVM is set for a slow-start time of approximately 26 ms using C14 = 0.1 μF.
1.3.3 Adjustable UVLO
The undervoltage lockout (UVLO) is adjusted externally using R6 and R11. The EVM is set for a start voltage of
7.5 V and a stop voltage of 7.1 V using R6 = 69.8 kΩ and R11 = 13.3 kΩ. Use Equation 3 and Equation 4 to
calculate required resistor values for different start and stop voltages.
spacer
SLVU777A – SEPTEMBER 2012 – REVISED NOVEMBER 2021
TPS54020 SWIFT™ Step-Down Converter Evaluation Module User's Guide
Submit Document Feedback
Copyright © 2021 Texas Instruments Incorporated
3
Introduction
www.ti.com
UVLO Top Resistor
æ VEN falling ö
VStart ´ ç
÷ - VStop
ç VEN rising ÷
è
ø
R6 =
æ
VEN falling ö
Ip ´ ç 1 ÷ +I
ç
VEN rising ÷ø h
è
(3)
spacer
UVLO Bottom Resistor
R11 =
R6 ´ VEN falling
(
VStop - VEN falling + R6 ´ Ip + Ih
)
(4)
Where:
Variable
Description
Nominal Value
VStart
Desired start voltage
As desired, but must be greater than 4.4 V
VStop
Desired stop voltage
As desired, but must be greater than 4.2 V
VEN falling
Enable pin stop threshold voltage
1.17-V nominal
VEN rising
Enable pin start threshold voltage
1.21-V nominal
Ip
Enable pin source current while OFF
1.15-µA nominal
Ih
Enable pin hysteresis current
2.15-µA nominal
1.3.4 Input Voltage Rails
The EVM is designed to accommodate different input voltage levels for the power stage and control logic. For
most applications, the PVIN and VIN inputs are connected together using a jumper across J2. When VIN is
connected to PVIN, only 1 input voltage is required and is supplied at J1. If desired, these two input voltage rails
may be separated by removing the jumper across J2. Two input voltages must then be provided at both J1 and
J4.
2 Test Setup and Results
This section describes how to properly connect, set up, and use the EVM. The section also includes test results
typical for the EVM and includes efficiency, output voltage regulation, load transients, loop response, output
ripple, input ripple, and start-up.
2.1 Input / Output Connections
The EVM is provided with input/output connectors and test points as shown in Table 2-1. A power supply
capable of supplying 5 A must be connected to J1, and a pair of 20-AWG wires is recommended. The jumper
across J2 must be in place across pins 1 and 2. See Section 1.3.4 for split-input voltage rail operation. The load
must be connected to J3 and a pair of 20-AWG wires is recommended. The load must be capable of drawing 10
A at 1.8 V. Wire lengths should be minimized to reduce losses in the wires. Test-point TP1 provides a place to
monitor the PVIN input voltages with TP6 providing a convenient ground reference. TP5 is used to monitor the
output voltage with TP8 as the ground reference.
Table 2-1. EVM Connectors and Test Points
Reference Designator
4
Function
J1
PVIN input voltage connector. (See Table 1-1 for VIN range.)
J2
PVIN to VIN jumper. Shunt SH1 is normally connected from pin 1 to pin 2 to tie VIN to PVIN for common rail
voltage operation.
J3
VOUT, 1.8 V at 10-A maximum.
J4
VIN input voltage connector. Not normally used.
J5
2-pin header for enable. Connect EN to ground to disable, open to enable.
J6
2-pin header used to for sequencing via the slow start voltage.
TPS54020 SWIFT™ Step-Down Converter Evaluation Module User's Guide
SLVU777A – SEPTEMBER 2012 – REVISED NOVEMBER 2021
Submit Document Feedback
Copyright © 2021 Texas Instruments Incorporated
www.ti.com
Test Setup and Results
Table 2-1. EVM Connectors and Test Points (continued)
Reference Designator
Function
TP1
Test point for PVIN.
TP2
Test point for Power Good. Biased from VOUT.
TP3
Test point for SYNC OUT. In RT mode, this is a clock output. In SYNC mode, this is a digital input.
TP4
Test point for VIN.
TP5
Test point for VOUT.
TP6
Test point for PGND, near input.
TP7
Test point for PH, or Switch Node.
TP8
Test point for PGND, near output.
TP9
Test point between voltage divider network and output. Used for loop response measurements.
TP10
Test point for ENABLE.
TP11
Test point for the timing resistor RT and Clock.
TP12
Test point for slow start.
TP13
Test point for AGND.
TP14
Test point for AGND.
2.2 Efficiency
The efficiency of this EVM peaks at a load current between 3 A and 6 A and then decreases as the load current
increases toward full load. Figure 2-1 shows the efficiency for the EVM at an ambient temperature of 25°C.
100
Temp = 25°C
95
Efficiency (%)
90
85
80
75
70
65
VIN = 5 V
VIN = 12 V
VIN = 17 V
60
55
50
0
1
2
3
4
5
6
7
Output Current (A)
8
9
10
G006
Figure 2-1. EVM Efficiency at 25°C
The efficiency is lower at higher ambient temperatures, due to temperature variation in the drain-to-source
resistance RDS_ON of the internal MOSFETs.
SLVU777A – SEPTEMBER 2012 – REVISED NOVEMBER 2021
TPS54020 SWIFT™ Step-Down Converter Evaluation Module User's Guide
Submit Document Feedback
Copyright © 2021 Texas Instruments Incorporated
5
Test Setup and Results
www.ti.com
2.3 Output Voltage Load Regulation
Figure 2-2 shows the load regulation for the EVM.
1.84
Temp = 25°C
1.835
VOUT (V)
1.83
1.825
1.82
1.815
1.81
VIN = 5 V
VIN = 12 V
VIN = 17 V
1.805
1.8
0
1
2
3
4
5
6
7
Output Current (A)
8
9
10
G007
Figure 2-2. TPS54020EVM-082 Load Regulation
2.4 Output Voltage Line Regulation
Figure 2-3 shows the line regulation for the TPS54020EVM-082.
1.84
Temp = 25°C
Output Voltage (V)
1.835
1.83
1.825
1.82
1.815
VOUT = 0.1 A
VOUT = 1 A
VOUT = 5 A
VOUT = 1 0 A
1.81
1.805
1.8
5
6
7
8
9
10 11 12 13
Input Voltage (V)
14
15
16
17
G008
Figure 2-3. TPS54020EVM-082 Line Regulation
2.5 Load Transient
Figure 2-4 shows the EVM response to load transients. The current step is from 0 A to 4.7 A with an input
voltage of 5 V. The transient was applied by switching in a real resistor load. The current step slew rate is
approximately 50 A/μs. Total peak-to-peak voltage variation is as shown, including ripple and noise on the
output.
6
Parameter
Description
Bottom Trace
Output current switching between 2.5 A and 7.5 A, 2.5 A/div
Top trace
Output voltage, AC coupled, at 100 mV/div
Time Scale
200 µs/div
Conditions
Input voltage = 12 V, temperature = 25°C
TPS54020 SWIFT™ Step-Down Converter Evaluation Module User's Guide
SLVU777A – SEPTEMBER 2012 – REVISED NOVEMBER 2021
Submit Document Feedback
Copyright © 2021 Texas Instruments Incorporated
www.ti.com
Test Setup and Results
VOUT = 100 mV/div AC coupled
IOUT = 2.5 A /div 2.5 A to 7.5 A switching
Time = 200 ms/div
Figure 2-4. TPS54020EVM-082 Transient Response
2.6 Control Loop Response
Figure 2-5 shows the EVM control loop response characteristics. Gain and phase plots are shown for VIN voltage
of 12 V and a constant resistance load current of 5 A.
150
Mag
Phase
Gain (dB)
40
120
30
90
20
60
10
30
0
0
−10
−30
−20
−60
−30
100
1k
10k
Frequency (Hz)
100k
Phase (°)
50
−90
Figure 2-5. TPS54020EVM-082 Loop Bode Response
2.7 Output Voltage Ripple
Figure 2-6 shows the TPS54020EVM-082 output voltage ripple. The output current is the rated full load of 10 A
and VIN = 12 V. The ripple voltage is measured directly across the output capacitors.
PH node = 5 V/div
VOUT = 20 mV/div AC coupled
Time = 1 µs/div
Figure 2-6. TPS54020EVM-082 Output Ripple
SLVU777A – SEPTEMBER 2012 – REVISED NOVEMBER 2021
TPS54020 SWIFT™ Step-Down Converter Evaluation Module User's Guide
Submit Document Feedback
Copyright © 2021 Texas Instruments Incorporated
7
Test Setup and Results
www.ti.com
2.8 Input Voltage Ripple
Figure 2-7 shows the EVM input voltage ripple. The output current is the rated full load of 10 A and VIN = 12 V.
The ripple voltage is measured directly across the input capacitors.
PH node = 5 V/div
VIN = 200 mV/div AC coupled
Time = 1 µs/div
Figure 2-7. TPS54020EVM-082 Input Ripple
2.9 Start Up
Figure 2-8 and Figure 2-9 show the start-up waveforms for the EVM. In Figure 2-8, the output voltage ramps up
as soon as the input voltage reaches the UVLO threshold as set by the R6 and R11 resistor divider network. In
Figure 2-9, the input voltage is initially applied and the output is inhibited by using a jumper at J5 to tie EN to
GND. When the jumper is removed, EN is released. When the EN voltage reaches the enable threshold voltage,
the start-up sequence begins and the output voltage ramps up to the externally set value of 1.8 V. The input
voltage for these plots is 12 V and the load is 10-A resistive load.
VIN = 5 V/div
IOUT = 2 A/div
VOUT = 500 mV/div
Time = 5 ms/div
Figure 2-8. TPS54020EVM-082 Start Up with VIN
VIN = 5 V/div
IOUT = 2 A/div
VOUT = 500 mV/div
EN = 2 V/div
Time = 5 ms/div
Figure 2-9. TPS54020EVM-082 Start Up with EN
8
TPS54020 SWIFT™ Step-Down Converter Evaluation Module User's Guide
SLVU777A – SEPTEMBER 2012 – REVISED NOVEMBER 2021
Submit Document Feedback
Copyright © 2021 Texas Instruments Incorporated
www.ti.com
Test Setup and Results
2.10 Pre-Bias Start Up
The TPS54020 is designed to start up into a pre-biased output. The output voltage is not discharged to ground
at the beginning of the slow-start sequence, but only starts to increase towards regulation once the slow start
voltage reaches the pre-bias bus voltage. Figure 2-10 shows the start-up waveform with the output voltage
pre-biased to 1 V.
VIN = 5 V/div
PH node = 10 V/div
VOUT = 500 mV/div with
1 V pre-bias
EN = 2 V/div
Time = 5 ms/div
Figure 2-10. TPS54020EVM-082 Pre-Bias Startup
2.11 Hiccup Mode Current Limit
The EVM features hiccup mode current limit. When an overcurrent event occurs, the device shuts down and
restarts. Figure 2-11 shows the hiccup restart sequence in an over current condition.
IOUT = 5 A/div
PH node = 10 V/div
VOUT = 500 mV/div
Time = 20 ms/div
Figure 2-11. TPS54020EVM-082 Hiccup Mode Current Limit
SLVU777A – SEPTEMBER 2012 – REVISED NOVEMBER 2021
TPS54020 SWIFT™ Step-Down Converter Evaluation Module User's Guide
Submit Document Feedback
Copyright © 2021 Texas Instruments Incorporated
9
Board Layout
www.ti.com
3 Board Layout
This section provides a description of the EVM board layout and layer illustrations.
3.1 Layout
The board layout for the EVM is shown in Figure 3-1 through Figure 3-6. The top-side layer of the EVM is laid
out in a manner typical of a user application. All 4 layers (top, bottom, and 2 internal) are 2-oz copper.
The top layer contains the main power traces for PVIN, VIN, VOUT and VPHASE. Also on the top layer are
connections for several analog pins of the TPS54020 and a large area filled with PGND. The two internal layers
are the same and contain mostly power planes, including PGND, VOUT, PVIN and VPHASE. The bottom layer
contains the remainder of the analog circuit connections, plus power planes similar to the internal layers. The
top-side power and ground planes are connected to the bottom and internal power and ground planes with
multiple vias placed around the board including several vias directly under the TPS54020 device to provide a
thermal path from the top-side power planes to the other layer power planes.
The input decoupling capacitor C4 and bootstrap capacitor C5 are both located as close to the IC as possible.
Additionally, the voltage set-point resistor divider components are kept close to the IC. The location of the
connection to the voltage divider network at R5 defines the point of regulation, which is the copper VOUT trace
at the output connector J3. For the TPS54020, an additional input bulk capacitor is included to effectively reduce
the source impedance from the input supply to the switcher. Critical analog circuits such as the voltage setpoint
divider, frequency set resistor, slow-start capacitor, and compensation components are terminated to analog
ground (AGND) using a ground trace that is separate from the power ground plane.
Figure 3-1. TPS54020EVM-082 Top Side Copper
10
TPS54020 SWIFT™ Step-Down Converter Evaluation Module User's Guide
SLVU777A – SEPTEMBER 2012 – REVISED NOVEMBER 2021
Submit Document Feedback
Copyright © 2021 Texas Instruments Incorporated
www.ti.com
Board Layout
Figure 3-2. TPS54020EVM-082 Internal 1 Copper
Figure 3-3. TPS54020EVM-082 Internal 2 Copper
SLVU777A – SEPTEMBER 2012 – REVISED NOVEMBER 2021
TPS54020 SWIFT™ Step-Down Converter Evaluation Module User's Guide
Submit Document Feedback
Copyright © 2021 Texas Instruments Incorporated
11
Board Layout
www.ti.com
Figure 3-4. TPS54020EVM-082 Bottom Side Copper
Figure 3-5. TPS54020EVM-082 Top Side Component Placement
12
TPS54020 SWIFT™ Step-Down Converter Evaluation Module User's Guide
SLVU777A – SEPTEMBER 2012 – REVISED NOVEMBER 2021
Submit Document Feedback
Copyright © 2021 Texas Instruments Incorporated
www.ti.com
Board Layout
Figure 3-6. TPS54020EVM-082 Bottom Side Component Placement
SLVU777A – SEPTEMBER 2012 – REVISED NOVEMBER 2021
TPS54020 SWIFT™ Step-Down Converter Evaluation Module User's Guide
Submit Document Feedback
Copyright © 2021 Texas Instruments Incorporated
13
Schematic and Bill of Materials
www.ti.com
4 Schematic and Bill of Materials
This section presents the EVM schematic and bill of materials.
4.1 Schematic
Figure 4-1 shows the schematic for the EVM.
NOTES:
1
DO NOT INSTALL
2
ILIM_SEL
9.4 A: INSTALL R2 = 500 kΩ
12.75 A: INSTALL R2 = short
15 A: REMOVE R2
3
HICCUP_SEL
CYCLE-CYCLE: INSTALL R1
16384 CYCLES: REMOVE R1
4
R6 and R11 yield Von = 7.5 V Voff = 7.1 V
Figure 4-1. TPS54020EVM-082 Schematic
14
TPS54020 SWIFT™ Step-Down Converter Evaluation Module User's Guide
SLVU777A – SEPTEMBER 2012 – REVISED NOVEMBER 2021
Submit Document Feedback
Copyright © 2021 Texas Instruments Incorporated
www.ti.com
Schematic and Bill of Materials
4.2 Bill of Materials
Table 4-1 presents the bill of materials for the EVM.
Table 4-1. TPS54020EVM-082 Bill of Materials
Count RefDes
Value
Description
Size
Part Number
Mfr
1
C1
68 µF
Capacitor, aluminum, 25 V, ±20%
0.260 × 0.276 in
EEE-FK1E680P
Panasonic
5
C2, C5, C10, C13,
C14
0.1 µF
Capacitor, ceramic, 25 V, X7R, 10%
603
Std
Std
2
C3, C4
22 µF
Capacitor, ceramic, 25 V, X5R, 10%
1210
Std
Std
1
C6
4.7 µF
Capacitor, ceramic, 25 V, X5R, 10%
805
Std
Std
3
C7, C8, C9
100 µF
Capacitor, ceramic, 6.3 V, X5R, 20%
1210
Std
Std
0
C11
820 pF
Capacitor, ceramic, 50 V, X7R, 10%
603
Std
Std
1
C12
22 nF
Capacitor, ceramic, 16 V, X7R, 10%
603
Std
Std
1
C15
220 pF
Capacitor, ceramic, 50 V, X7R, 10%
603
Std
Std
2
J1, J3
ED120/2DS
Terminal block, 2 pin, 15 A, 5.1 mm
0.40 × 0.35 in
ED120/2DS
OST
1
J2
PEC03SAAN
Header, male 3 pin, 100-mil spacing
0.100 in × 3
PEC03SAAN
Sullins
1
J4
ED555/2DS
Terminal block, 2 pin, 6 A, 3.5 mm
0.27 × 0.25 in
ED555/2DS
OST
2
J5, J6
PEC02SAAN
Header, male 2 pin, 100-mil spacing,
0.100 in × 2
PEC02SAAN
Sullins
1
L1
1.1 µH
Inductor, power choke, 20 ±%
6.9 × 7 mm
744314110
IND_744314110
0
R1
0
Resistor, chip, 1/16W, 1%
603
Std
Std
0
R2
0
Resistor, chip, 1/16W, 1%
603
Std
Std
1
R3
33.1
Resistor, chip, 1/16W, 1%
603
Std
Std
3
R4
10k
Resistor, chip, 1/16W, 1%
603
Std
Std
1
R7
5.11k
Resistor, chip, 1/16W, 1%
604
Std
Std
1
R5
49.9
Resistor, chip, 1/16W, 1%
603
Std
Std
1
R6
69.8k
Resistor, chip, 1/16W, 1%
603
Std
Std
1
R8
20.0k
Resistor, chip, 1/16W, 1%
603
Std
Std
1
R9
100k
Resistor, chip, 1/16W, 1%
603
Std
Std
1
R10
2.55k
Resistor, chip, 1/16W, 1%
603
Std
Std
1
R11
13.3k
Resistor, chip, 1/16W, 1%
603
Std
Std
0
R12
20.0k
Resistor, chip, 1/16W, 1%
603
Std
Std
1
R13
3.01k
Resistor, chip, 1/16W, 1%
603
Std
Std
1
Shunt1
NA
Shunt, 100-mil, black
0.100 in
929950-00
3M
2
TP1, TP5
5010
Test point, red, thru hole
0.125 × 0.125 in
5010
Keystone
6
TP2, TP3, TP4,
TP10, TP11, TP12
5012
Test point, white, thru hole
0.125 × 0.125 in
5012
Keystone
4
TP6, TP8, TP13,
TP14
5011
Test point, black, thru hole
0.125 × 0.125 in
5011
Keystone
2
TP7, TP9
5013
Test point, orange, thru hole
0.125 x 0.125 in
5013
Keystone
1
U1
IC, 4.5 V–17 V input, 10-A sync. step down
TPS54020RUW
SWIFT converter
QFN
TPS54020RUW
TPS54020RUW
1
—
PWR082
Any
PCB, 3.0 in × 2.0 in × 0.062 in
Note 1. This assembly is ESD sensitive. Observe ESD precautions.
5 Revision History
NOTE: Page numbers for previous revisions may differ from page numbers in the current version.
Changes from Revision * (September 2012) to Revision A (November 2021)
Page
• Updated the numbering format for tables, figures, and cross-references throughout the document. ................2
• Updated the user's guide title............................................................................................................................. 2
SLVU777A – SEPTEMBER 2012 – REVISED NOVEMBER 2021
TPS54020 SWIFT™ Step-Down Converter Evaluation Module User's Guide
Submit Document Feedback
Copyright © 2021 Texas Instruments Incorporated
15
IMPORTANT NOTICE AND DISCLAIMER
TI PROVIDES TECHNICAL AND RELIABILITY DATA (INCLUDING DATA SHEETS), DESIGN RESOURCES (INCLUDING REFERENCE
DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND OTHER RESOURCES “AS IS”
AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS AND IMPLIED, INCLUDING WITHOUT LIMITATION ANY
IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT OF THIRD
PARTY INTELLECTUAL PROPERTY RIGHTS.
These resources are intended for skilled developers designing with TI products. You are solely responsible for (1) selecting the appropriate
TI products for your application, (2) designing, validating and testing your application, and (3) ensuring your application meets applicable
standards, and any other safety, security, regulatory or other requirements.
These resources are subject to change without notice. TI grants you permission to use these resources only for development of an
application that uses the TI products described in the resource. Other reproduction and display of these resources is prohibited. No license
is granted to any other TI intellectual property right or to any third party intellectual property right. TI disclaims responsibility for, and you
will fully indemnify TI and its representatives against, any claims, damages, costs, losses, and liabilities arising out of your use of these
resources.
TI’s products are provided subject to TI’s Terms of Sale or other applicable terms available either on ti.com or provided in conjunction with
such TI products. TI’s provision of these resources does not expand or otherwise alter TI’s applicable warranties or warranty disclaimers for
TI products.
TI objects to and rejects any additional or different terms you may have proposed. IMPORTANT NOTICE
Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265
Copyright © 2022, Texas Instruments Incorporated