0
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
会员中心
创作中心
发布
  • 发文章

  • 发资料

  • 发帖

  • 提问

  • 发视频

创作活动
TPS54020EVM-082

TPS54020EVM-082

  • 厂商:

    BURR-BROWN(德州仪器)

  • 封装:

    Module

  • 描述:

    TPS54020 SWIFT™, Eco-Mode™ DC/DC, Step Down 1, Non-Isolated Outputs Evaluation Board

  • 数据手册
  • 价格&库存
TPS54020EVM-082 数据手册
www.ti.com Table of Contents User’s Guide TPS54020 SWIFT™ Step-Down Converter Evaluation Module User's Guide ABSTRACT This user's guide contains background information for the TPS54020 as well as support documentation for the TPS54020EVM-082 evaluation module (EVM). Also included are the performance specifications, the schematic, and the bill of materials. Table of Contents 1 Introduction.............................................................................................................................................................................2 1.1 Background........................................................................................................................................................................ 2 1.2 Performance Specification Summary.................................................................................................................................2 1.3 Modifications...................................................................................................................................................................... 3 2 Test Setup and Results.......................................................................................................................................................... 4 2.1 Input / Output Connections................................................................................................................................................ 4 2.2 Efficiency............................................................................................................................................................................5 2.3 Output Voltage Load Regulation........................................................................................................................................ 6 2.4 Output Voltage Line Regulation......................................................................................................................................... 6 2.5 Load Transient................................................................................................................................................................... 6 2.6 Control Loop Response..................................................................................................................................................... 7 2.7 Output Voltage Ripple........................................................................................................................................................ 7 2.8 Input Voltage Ripple........................................................................................................................................................... 8 2.9 Start Up.............................................................................................................................................................................. 8 2.10 Pre-Bias Start Up............................................................................................................................................................. 9 2.11 Hiccup Mode Current Limit............................................................................................................................................... 9 3 Board Layout.........................................................................................................................................................................10 3.1 Layout.............................................................................................................................................................................. 10 4 Schematic and Bill of Materials...........................................................................................................................................14 4.1 Schematic........................................................................................................................................................................ 14 4.2 Bill of Materials.................................................................................................................................................................15 5 Revision History................................................................................................................................................................... 15 List of Figures Figure 2-1. EVM Efficiency at 25°C............................................................................................................................................. 5 Figure 2-2. TPS54020EVM-082 Load Regulation....................................................................................................................... 6 Figure 2-3. TPS54020EVM-082 Line Regulation........................................................................................................................ 6 Figure 2-4. TPS54020EVM-082 Transient Response................................................................................................................. 7 Figure 2-5. TPS54020EVM-082 Loop Bode Response...............................................................................................................7 Figure 2-6. TPS54020EVM-082 Output Ripple........................................................................................................................... 7 Figure 2-7. TPS54020EVM-082 Input Ripple.............................................................................................................................. 8 Figure 2-8. TPS54020EVM-082 Start Up with VIN ......................................................................................................................8 Figure 2-9. TPS54020EVM-082 Start Up with EN.......................................................................................................................8 Figure 2-10. TPS54020EVM-082 Pre-Bias Startup..................................................................................................................... 9 Figure 2-11. TPS54020EVM-082 Hiccup Mode Current Limit..................................................................................................... 9 Figure 3-1. TPS54020EVM-082 Top Side Copper.....................................................................................................................10 Figure 3-2. TPS54020EVM-082 Internal 1 Copper.................................................................................................................... 11 Figure 3-3. TPS54020EVM-082 Internal 2 Copper.................................................................................................................... 11 Figure 3-4. TPS54020EVM-082 Bottom Side Copper............................................................................................................... 12 Figure 3-5. TPS54020EVM-082 Top Side Component Placement............................................................................................12 Figure 3-6. TPS54020EVM-082 Bottom Side Component Placement...................................................................................... 13 Figure 4-1. TPS54020EVM-082 Schematic...............................................................................................................................14 SLVU777A – SEPTEMBER 2012 – REVISED NOVEMBER 2021 TPS54020 SWIFT™ Step-Down Converter Evaluation Module User's Guide Submit Document Feedback Copyright © 2021 Texas Instruments Incorporated 1 Trademarks www.ti.com List of Tables Table 1-1. Input Voltage and Output Current Summary...............................................................................................................2 Table 1-2. Performance Specifications........................................................................................................................................ 2 Table 1-3. Output Voltage Examples with R10 of 2.55 kΩ........................................................................................................... 3 Table 2-1. EVM Connectors and Test Points............................................................................................................................... 4 Table 4-1. TPS54020EVM-082 Bill of Materials.........................................................................................................................15 Trademarks All trademarks are the property of their respective owners. 1 Introduction 1.1 Background The TPS54020 dc/dc converter is designed to provide up to 10-A output current. The TPS54020 implements split-input power rails with separate input voltage inputs for the power stage and control circuitry. The power stage input (PVIN) is rated for 1.6 V to 17 V whereas the control input (VIN) is rated for 4.5 V to 17 V. This EVM provides connections for both inputs but is designed and tested using the PVIN connected to VIN. The rated input voltage and output current range for the EVM are given in Table 1-1. This EVM is designed to demonstrate the small printed-circuit-board areas that can be achieved when designing with the TPS54020 regulator. The switching frequency is externally set by a resistor at a nominal 500 kHz. The high-side and low-side MOSFETs are incorporated inside the TPS54020 package along with the gate-drive circuitry. The low drain-to-source ON resistance of the MOSFET allows the TPS54020 to achieve high efficiencies and helps keep the junction temperature low at high output currents. The compensation components are external to the integrated circuit (IC), and an external divider allows for an adjustable output voltage. Additionally, the TPS54020 provides adjustable slow start and undervoltage lockout inputs. The absolute maximum input voltage is 20 V for the EVM, but the recommended maximum input voltage of 17 V should not be exceeded. Table 1-1. Input Voltage and Output Current Summary EVM INPUT VOLTAGE RANGE OUTPUT CURRENT RANGE TPS54020EVM-082 VIN = 8 V to 17 V (VIN start voltage = 7.5 V) 0 A to 10 A 1.2 Performance Specification Summary A summary of the EVM performance specifications is provided in Table 1-2. Specifications are given for an input voltage of VIN = 12 V and an output voltage of 1.8 V, unless otherwise specified. This EVM is designed and tested for VIN = 8 V to 17 V with the VIN and PVIN pins connect together with the jumper J2. The ambient temperature is 25°C for all measurements, unless otherwise noted. Table 1-2. Performance Specifications SPECIFICATION TEST CONDITIONS VIN voltage range (PVIN = VIN) MIN TYP MAX UNIT 8 12 17 V VIN start voltage 7.5 V VIN stop voltage 7.1 V Output voltage set point 1.8 Output current range VIN = 8 V to 17 V Line regulation IO = 5 A, VIN = 8 V to 17 V ±0.3% Load regulation VIN = 12 V, IO = 0 A to 10 A ±0.5% IO = 2.5 A to 47.5 A Load transient response IO = 47.5 A to 2.5 A 2 0 V 10 A Voltage change –150 mV Recovery time 200 µS Voltage change 150 mV Recovery time 200 µS Loop bandwidth VIN = 12 V, IO = 1.9 A 30 kHz Phase margin VIN = 12 V , IO = 1.9 A 60 Degrees Input ripple voltage IO = 10 A 300 mVpp Output ripple voltage IO = 6 A 18 mVpp TPS54020 SWIFT™ Step-Down Converter Evaluation Module User's Guide SLVU777A – SEPTEMBER 2012 – REVISED NOVEMBER 2021 Submit Document Feedback Copyright © 2021 Texas Instruments Incorporated www.ti.com Introduction Table 1-2. Performance Specifications (continued) SPECIFICATION TEST CONDITIONS MIN TYP MAX UNIT Output rise time 26 mS Operating frequency 500 kHz Peak efficiency TPS54020EVM-082, VIN = 12 V, IO = 5 A 89% 1.3 Modifications These EVMs are designed to provide access to the features of the TPS54020. Some modifications can be made to this module. 1.3.1 Output Voltage Setpoint The output voltage is set by the resistor divider network of R7 and R10. The lower divider resistor R10 should not be modified and should remain at 2.55 kΩ. To change the output voltage of the EVM, it is necessary to change the value of resistor R7. Changing the value of R7 changes the output voltage between 0.6 V and 5 V. The value of R7 for a specific output voltage is calculated using Equation 1. (Vout - Vref )´ R10 R7 =   Vref (1) Table 1-3 lists the R7 values for some common output voltages. Note that VIN must then be within a range so that the minimum on time is greater than 150 ns. The values given in Table 1-3 show both the ideal required values and the closest E96 standard values. Table 1-3. Output Voltage Examples with R10 of 2.55 kΩ DESIRED VOUT IDEAL R7 CLOSEST E96 MATCH RESULTING VOUT 1.8 5.100 kΩ 5.11 kΩ 1.802 2.5 8.075 kΩ 8.06 kΩ 2.496 3.3 11.475 kΩ 11.5 kΩ 3.306 5.0 18.700 kΩ 18.7 kΩ 5.000 1.3.2 Slow-Start Time The slow-start time is adjusted by changing the value of C14. Use Equation 2 to calculate the required value of C14 for a desired slow-start time. T ´I C14 =   SS SS Vref (2) Where: TSS = desired slow start time ISS = slow start charging current = 2.3-µA nominal VREF = 0.6-V reference voltage The EVM is set for a slow-start time of approximately 26 ms using C14 = 0.1 μF. 1.3.3 Adjustable UVLO The undervoltage lockout (UVLO) is adjusted externally using R6 and R11. The EVM is set for a start voltage of 7.5 V and a stop voltage of 7.1 V using R6 = 69.8 kΩ and R11 = 13.3 kΩ. Use Equation 3 and Equation 4 to calculate required resistor values for different start and stop voltages. spacer SLVU777A – SEPTEMBER 2012 – REVISED NOVEMBER 2021 TPS54020 SWIFT™ Step-Down Converter Evaluation Module User's Guide Submit Document Feedback Copyright © 2021 Texas Instruments Incorporated 3 Introduction www.ti.com UVLO Top Resistor æ VEN falling ö VStart ´ ç ÷ - VStop ç VEN rising ÷ è ø R6 =   æ VEN falling ö Ip ´ ç 1 ÷ +I ç VEN rising ÷ø h è (3) spacer UVLO Bottom Resistor R11 =   R6 ´ VEN falling ( VStop - VEN falling + R6 ´ Ip + Ih ) (4) Where: Variable Description Nominal Value VStart Desired start voltage As desired, but must be greater than 4.4 V VStop Desired stop voltage As desired, but must be greater than 4.2 V VEN falling Enable pin stop threshold voltage 1.17-V nominal VEN rising Enable pin start threshold voltage 1.21-V nominal Ip Enable pin source current while OFF 1.15-µA nominal Ih Enable pin hysteresis current 2.15-µA nominal 1.3.4 Input Voltage Rails The EVM is designed to accommodate different input voltage levels for the power stage and control logic. For most applications, the PVIN and VIN inputs are connected together using a jumper across J2. When VIN is connected to PVIN, only 1 input voltage is required and is supplied at J1. If desired, these two input voltage rails may be separated by removing the jumper across J2. Two input voltages must then be provided at both J1 and J4. 2 Test Setup and Results This section describes how to properly connect, set up, and use the EVM. The section also includes test results typical for the EVM and includes efficiency, output voltage regulation, load transients, loop response, output ripple, input ripple, and start-up. 2.1 Input / Output Connections The EVM is provided with input/output connectors and test points as shown in Table 2-1. A power supply capable of supplying 5 A must be connected to J1, and a pair of 20-AWG wires is recommended. The jumper across J2 must be in place across pins 1 and 2. See Section 1.3.4 for split-input voltage rail operation. The load must be connected to J3 and a pair of 20-AWG wires is recommended. The load must be capable of drawing 10 A at 1.8 V. Wire lengths should be minimized to reduce losses in the wires. Test-point TP1 provides a place to monitor the PVIN input voltages with TP6 providing a convenient ground reference. TP5 is used to monitor the output voltage with TP8 as the ground reference. Table 2-1. EVM Connectors and Test Points Reference Designator 4 Function J1 PVIN input voltage connector. (See Table 1-1 for VIN range.) J2 PVIN to VIN jumper. Shunt SH1 is normally connected from pin 1 to pin 2 to tie VIN to PVIN for common rail voltage operation. J3 VOUT, 1.8 V at 10-A maximum. J4 VIN input voltage connector. Not normally used. J5 2-pin header for enable. Connect EN to ground to disable, open to enable. J6 2-pin header used to for sequencing via the slow start voltage. TPS54020 SWIFT™ Step-Down Converter Evaluation Module User's Guide SLVU777A – SEPTEMBER 2012 – REVISED NOVEMBER 2021 Submit Document Feedback Copyright © 2021 Texas Instruments Incorporated www.ti.com Test Setup and Results Table 2-1. EVM Connectors and Test Points (continued) Reference Designator Function TP1 Test point for PVIN. TP2 Test point for Power Good. Biased from VOUT. TP3 Test point for SYNC OUT. In RT mode, this is a clock output. In SYNC mode, this is a digital input. TP4 Test point for VIN. TP5 Test point for VOUT. TP6 Test point for PGND, near input. TP7 Test point for PH, or Switch Node. TP8 Test point for PGND, near output. TP9 Test point between voltage divider network and output. Used for loop response measurements. TP10 Test point for ENABLE. TP11 Test point for the timing resistor RT and Clock. TP12 Test point for slow start. TP13 Test point for AGND. TP14 Test point for AGND. 2.2 Efficiency The efficiency of this EVM peaks at a load current between 3 A and 6 A and then decreases as the load current increases toward full load. Figure 2-1 shows the efficiency for the EVM at an ambient temperature of 25°C. 100 Temp = 25°C 95 Efficiency (%) 90 85 80 75 70 65 VIN = 5 V VIN = 12 V VIN = 17 V 60 55 50 0 1 2 3 4 5 6 7 Output Current (A) 8 9 10 G006 Figure 2-1. EVM Efficiency at 25°C The efficiency is lower at higher ambient temperatures, due to temperature variation in the drain-to-source resistance RDS_ON of the internal MOSFETs. SLVU777A – SEPTEMBER 2012 – REVISED NOVEMBER 2021 TPS54020 SWIFT™ Step-Down Converter Evaluation Module User's Guide Submit Document Feedback Copyright © 2021 Texas Instruments Incorporated 5 Test Setup and Results www.ti.com 2.3 Output Voltage Load Regulation Figure 2-2 shows the load regulation for the EVM. 1.84 Temp = 25°C 1.835 VOUT (V) 1.83 1.825 1.82 1.815 1.81 VIN = 5 V VIN = 12 V VIN = 17 V 1.805 1.8 0 1 2 3 4 5 6 7 Output Current (A) 8 9 10 G007 Figure 2-2. TPS54020EVM-082 Load Regulation 2.4 Output Voltage Line Regulation Figure 2-3 shows the line regulation for the TPS54020EVM-082. 1.84 Temp = 25°C Output Voltage (V) 1.835 1.83 1.825 1.82 1.815 VOUT = 0.1 A VOUT = 1 A VOUT = 5 A VOUT = 1 0 A 1.81 1.805 1.8 5 6 7 8 9 10 11 12 13 Input Voltage (V) 14 15 16 17 G008 Figure 2-3. TPS54020EVM-082 Line Regulation 2.5 Load Transient Figure 2-4 shows the EVM response to load transients. The current step is from 0 A to 4.7 A with an input voltage of 5 V. The transient was applied by switching in a real resistor load. The current step slew rate is approximately 50 A/μs. Total peak-to-peak voltage variation is as shown, including ripple and noise on the output. 6 Parameter Description Bottom Trace Output current switching between 2.5 A and 7.5 A, 2.5 A/div Top trace Output voltage, AC coupled, at 100 mV/div Time Scale 200 µs/div Conditions Input voltage = 12 V, temperature = 25°C TPS54020 SWIFT™ Step-Down Converter Evaluation Module User's Guide SLVU777A – SEPTEMBER 2012 – REVISED NOVEMBER 2021 Submit Document Feedback Copyright © 2021 Texas Instruments Incorporated www.ti.com Test Setup and Results VOUT = 100 mV/div AC coupled IOUT = 2.5 A /div 2.5 A to 7.5 A switching Time = 200 ms/div Figure 2-4. TPS54020EVM-082 Transient Response 2.6 Control Loop Response Figure 2-5 shows the EVM control loop response characteristics. Gain and phase plots are shown for VIN voltage of 12 V and a constant resistance load current of 5 A. 150 Mag Phase Gain (dB) 40 120 30 90 20 60 10 30 0 0 −10 −30 −20 −60 −30 100 1k 10k Frequency (Hz) 100k Phase (°) 50 −90 Figure 2-5. TPS54020EVM-082 Loop Bode Response 2.7 Output Voltage Ripple Figure 2-6 shows the TPS54020EVM-082 output voltage ripple. The output current is the rated full load of 10 A and VIN = 12 V. The ripple voltage is measured directly across the output capacitors. PH node = 5 V/div VOUT = 20 mV/div AC coupled Time = 1 µs/div Figure 2-6. TPS54020EVM-082 Output Ripple SLVU777A – SEPTEMBER 2012 – REVISED NOVEMBER 2021 TPS54020 SWIFT™ Step-Down Converter Evaluation Module User's Guide Submit Document Feedback Copyright © 2021 Texas Instruments Incorporated 7 Test Setup and Results www.ti.com 2.8 Input Voltage Ripple Figure 2-7 shows the EVM input voltage ripple. The output current is the rated full load of 10 A and VIN = 12 V. The ripple voltage is measured directly across the input capacitors. PH node = 5 V/div VIN = 200 mV/div AC coupled Time = 1 µs/div Figure 2-7. TPS54020EVM-082 Input Ripple 2.9 Start Up Figure 2-8 and Figure 2-9 show the start-up waveforms for the EVM. In Figure 2-8, the output voltage ramps up as soon as the input voltage reaches the UVLO threshold as set by the R6 and R11 resistor divider network. In Figure 2-9, the input voltage is initially applied and the output is inhibited by using a jumper at J5 to tie EN to GND. When the jumper is removed, EN is released. When the EN voltage reaches the enable threshold voltage, the start-up sequence begins and the output voltage ramps up to the externally set value of 1.8 V. The input voltage for these plots is 12 V and the load is 10-A resistive load. VIN = 5 V/div IOUT = 2 A/div VOUT = 500 mV/div Time = 5 ms/div Figure 2-8. TPS54020EVM-082 Start Up with VIN VIN = 5 V/div IOUT = 2 A/div VOUT = 500 mV/div EN = 2 V/div Time = 5 ms/div Figure 2-9. TPS54020EVM-082 Start Up with EN 8 TPS54020 SWIFT™ Step-Down Converter Evaluation Module User's Guide SLVU777A – SEPTEMBER 2012 – REVISED NOVEMBER 2021 Submit Document Feedback Copyright © 2021 Texas Instruments Incorporated www.ti.com Test Setup and Results 2.10 Pre-Bias Start Up The TPS54020 is designed to start up into a pre-biased output. The output voltage is not discharged to ground at the beginning of the slow-start sequence, but only starts to increase towards regulation once the slow start voltage reaches the pre-bias bus voltage. Figure 2-10 shows the start-up waveform with the output voltage pre-biased to 1 V. VIN = 5 V/div PH node = 10 V/div VOUT = 500 mV/div with 1 V pre-bias EN = 2 V/div Time = 5 ms/div Figure 2-10. TPS54020EVM-082 Pre-Bias Startup 2.11 Hiccup Mode Current Limit The EVM features hiccup mode current limit. When an overcurrent event occurs, the device shuts down and restarts. Figure 2-11 shows the hiccup restart sequence in an over current condition. IOUT = 5 A/div PH node = 10 V/div VOUT = 500 mV/div Time = 20 ms/div Figure 2-11. TPS54020EVM-082 Hiccup Mode Current Limit SLVU777A – SEPTEMBER 2012 – REVISED NOVEMBER 2021 TPS54020 SWIFT™ Step-Down Converter Evaluation Module User's Guide Submit Document Feedback Copyright © 2021 Texas Instruments Incorporated 9 Board Layout www.ti.com 3 Board Layout This section provides a description of the EVM board layout and layer illustrations. 3.1 Layout The board layout for the EVM is shown in Figure 3-1 through Figure 3-6. The top-side layer of the EVM is laid out in a manner typical of a user application. All 4 layers (top, bottom, and 2 internal) are 2-oz copper. The top layer contains the main power traces for PVIN, VIN, VOUT and VPHASE. Also on the top layer are connections for several analog pins of the TPS54020 and a large area filled with PGND. The two internal layers are the same and contain mostly power planes, including PGND, VOUT, PVIN and VPHASE. The bottom layer contains the remainder of the analog circuit connections, plus power planes similar to the internal layers. The top-side power and ground planes are connected to the bottom and internal power and ground planes with multiple vias placed around the board including several vias directly under the TPS54020 device to provide a thermal path from the top-side power planes to the other layer power planes. The input decoupling capacitor C4 and bootstrap capacitor C5 are both located as close to the IC as possible. Additionally, the voltage set-point resistor divider components are kept close to the IC. The location of the connection to the voltage divider network at R5 defines the point of regulation, which is the copper VOUT trace at the output connector J3. For the TPS54020, an additional input bulk capacitor is included to effectively reduce the source impedance from the input supply to the switcher. Critical analog circuits such as the voltage setpoint divider, frequency set resistor, slow-start capacitor, and compensation components are terminated to analog ground (AGND) using a ground trace that is separate from the power ground plane. Figure 3-1. TPS54020EVM-082 Top Side Copper 10 TPS54020 SWIFT™ Step-Down Converter Evaluation Module User's Guide SLVU777A – SEPTEMBER 2012 – REVISED NOVEMBER 2021 Submit Document Feedback Copyright © 2021 Texas Instruments Incorporated www.ti.com Board Layout Figure 3-2. TPS54020EVM-082 Internal 1 Copper Figure 3-3. TPS54020EVM-082 Internal 2 Copper SLVU777A – SEPTEMBER 2012 – REVISED NOVEMBER 2021 TPS54020 SWIFT™ Step-Down Converter Evaluation Module User's Guide Submit Document Feedback Copyright © 2021 Texas Instruments Incorporated 11 Board Layout www.ti.com Figure 3-4. TPS54020EVM-082 Bottom Side Copper Figure 3-5. TPS54020EVM-082 Top Side Component Placement 12 TPS54020 SWIFT™ Step-Down Converter Evaluation Module User's Guide SLVU777A – SEPTEMBER 2012 – REVISED NOVEMBER 2021 Submit Document Feedback Copyright © 2021 Texas Instruments Incorporated www.ti.com Board Layout Figure 3-6. TPS54020EVM-082 Bottom Side Component Placement SLVU777A – SEPTEMBER 2012 – REVISED NOVEMBER 2021 TPS54020 SWIFT™ Step-Down Converter Evaluation Module User's Guide Submit Document Feedback Copyright © 2021 Texas Instruments Incorporated 13 Schematic and Bill of Materials www.ti.com 4 Schematic and Bill of Materials This section presents the EVM schematic and bill of materials. 4.1 Schematic Figure 4-1 shows the schematic for the EVM. NOTES: 1 DO NOT INSTALL 2 ILIM_SEL 9.4 A: INSTALL R2 = 500 kΩ 12.75 A: INSTALL R2 = short 15 A: REMOVE R2 3 HICCUP_SEL CYCLE-CYCLE: INSTALL R1 16384 CYCLES: REMOVE R1 4 R6 and R11 yield Von = 7.5 V Voff = 7.1 V Figure 4-1. TPS54020EVM-082 Schematic 14 TPS54020 SWIFT™ Step-Down Converter Evaluation Module User's Guide SLVU777A – SEPTEMBER 2012 – REVISED NOVEMBER 2021 Submit Document Feedback Copyright © 2021 Texas Instruments Incorporated www.ti.com Schematic and Bill of Materials 4.2 Bill of Materials Table 4-1 presents the bill of materials for the EVM. Table 4-1. TPS54020EVM-082 Bill of Materials Count RefDes Value Description Size Part Number Mfr 1 C1 68 µF Capacitor, aluminum, 25 V, ±20% 0.260 × 0.276 in EEE-FK1E680P Panasonic 5 C2, C5, C10, C13, C14 0.1 µF Capacitor, ceramic, 25 V, X7R, 10% 603 Std Std 2 C3, C4 22 µF Capacitor, ceramic, 25 V, X5R, 10% 1210 Std Std 1 C6 4.7 µF Capacitor, ceramic, 25 V, X5R, 10% 805 Std Std 3 C7, C8, C9 100 µF Capacitor, ceramic, 6.3 V, X5R, 20% 1210 Std Std 0 C11 820 pF Capacitor, ceramic, 50 V, X7R, 10% 603 Std Std 1 C12 22 nF Capacitor, ceramic, 16 V, X7R, 10% 603 Std Std 1 C15 220 pF Capacitor, ceramic, 50 V, X7R, 10% 603 Std Std 2 J1, J3 ED120/2DS Terminal block, 2 pin, 15 A, 5.1 mm 0.40 × 0.35 in ED120/2DS OST 1 J2 PEC03SAAN Header, male 3 pin, 100-mil spacing 0.100 in × 3 PEC03SAAN Sullins 1 J4 ED555/2DS Terminal block, 2 pin, 6 A, 3.5 mm 0.27 × 0.25 in ED555/2DS OST 2 J5, J6 PEC02SAAN Header, male 2 pin, 100-mil spacing, 0.100 in × 2 PEC02SAAN Sullins 1 L1 1.1 µH Inductor, power choke, 20 ±% 6.9 × 7 mm 744314110 IND_744314110 0 R1 0 Resistor, chip, 1/16W, 1% 603 Std Std 0 R2 0 Resistor, chip, 1/16W, 1% 603 Std Std 1 R3 33.1 Resistor, chip, 1/16W, 1% 603 Std Std 3 R4 10k Resistor, chip, 1/16W, 1% 603 Std Std 1 R7 5.11k Resistor, chip, 1/16W, 1% 604 Std Std 1 R5 49.9 Resistor, chip, 1/16W, 1% 603 Std Std 1 R6 69.8k Resistor, chip, 1/16W, 1% 603 Std Std 1 R8 20.0k Resistor, chip, 1/16W, 1% 603 Std Std 1 R9 100k Resistor, chip, 1/16W, 1% 603 Std Std 1 R10 2.55k Resistor, chip, 1/16W, 1% 603 Std Std 1 R11 13.3k Resistor, chip, 1/16W, 1% 603 Std Std 0 R12 20.0k Resistor, chip, 1/16W, 1% 603 Std Std 1 R13 3.01k Resistor, chip, 1/16W, 1% 603 Std Std 1 Shunt1 NA Shunt, 100-mil, black 0.100 in 929950-00 3M 2 TP1, TP5 5010 Test point, red, thru hole 0.125 × 0.125 in 5010 Keystone 6 TP2, TP3, TP4, TP10, TP11, TP12 5012 Test point, white, thru hole 0.125 × 0.125 in 5012 Keystone 4 TP6, TP8, TP13, TP14 5011 Test point, black, thru hole 0.125 × 0.125 in 5011 Keystone 2 TP7, TP9 5013 Test point, orange, thru hole 0.125 x 0.125 in 5013 Keystone 1 U1 IC, 4.5 V–17 V input, 10-A sync. step down TPS54020RUW SWIFT converter QFN TPS54020RUW TPS54020RUW 1 — PWR082 Any PCB, 3.0 in × 2.0 in × 0.062 in Note 1. This assembly is ESD sensitive. Observe ESD precautions. 5 Revision History NOTE: Page numbers for previous revisions may differ from page numbers in the current version. Changes from Revision * (September 2012) to Revision A (November 2021) Page • Updated the numbering format for tables, figures, and cross-references throughout the document. ................2 • Updated the user's guide title............................................................................................................................. 2 SLVU777A – SEPTEMBER 2012 – REVISED NOVEMBER 2021 TPS54020 SWIFT™ Step-Down Converter Evaluation Module User's Guide Submit Document Feedback Copyright © 2021 Texas Instruments Incorporated 15 IMPORTANT NOTICE AND DISCLAIMER TI PROVIDES TECHNICAL AND RELIABILITY DATA (INCLUDING DATA SHEETS), DESIGN RESOURCES (INCLUDING REFERENCE DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND OTHER RESOURCES “AS IS” AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS AND IMPLIED, INCLUDING WITHOUT LIMITATION ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT OF THIRD PARTY INTELLECTUAL PROPERTY RIGHTS. These resources are intended for skilled developers designing with TI products. You are solely responsible for (1) selecting the appropriate TI products for your application, (2) designing, validating and testing your application, and (3) ensuring your application meets applicable standards, and any other safety, security, regulatory or other requirements. These resources are subject to change without notice. TI grants you permission to use these resources only for development of an application that uses the TI products described in the resource. Other reproduction and display of these resources is prohibited. No license is granted to any other TI intellectual property right or to any third party intellectual property right. TI disclaims responsibility for, and you will fully indemnify TI and its representatives against, any claims, damages, costs, losses, and liabilities arising out of your use of these resources. TI’s products are provided subject to TI’s Terms of Sale or other applicable terms available either on ti.com or provided in conjunction with such TI products. TI’s provision of these resources does not expand or otherwise alter TI’s applicable warranties or warranty disclaimers for TI products. TI objects to and rejects any additional or different terms you may have proposed. IMPORTANT NOTICE Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265 Copyright © 2022, Texas Instruments Incorporated
TPS54020EVM-082 价格&库存

很抱歉,暂时无法提供与“TPS54020EVM-082”相匹配的价格&库存,您可以联系我们找货

免费人工找货