0
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
会员中心
创作中心
发布
  • 发文章

  • 发资料

  • 发帖

  • 提问

  • 发视频

创作活动
TPS54521EVM-607

TPS54521EVM-607

  • 厂商:

    BURR-BROWN(德州仪器)

  • 封装:

    Module

  • 描述:

    EVAL MODULE FOR TPS54521-607

  • 数据手册
  • 价格&库存
TPS54521EVM-607 数据手册
www.ti.com Table of Contents User’s Guide TPS54521 Step-Down Converter Evaluation Module User's Guide Table of Contents 1 Introduction.............................................................................................................................................................................3 1.1 Background........................................................................................................................................................................ 3 1.2 Performance Specification Summary.................................................................................................................................3 1.3 Modifications...................................................................................................................................................................... 4 2 Test Setup and Results.......................................................................................................................................................... 5 2.1 Input / Output Connections................................................................................................................................................ 5 2.2 Efficiency............................................................................................................................................................................6 2.3 Output Voltage Load Regulation........................................................................................................................................ 7 2.4 Output Voltage Line Regulation......................................................................................................................................... 7 2.5 Load Transients..................................................................................................................................................................8 2.6 Loop Characteristics.......................................................................................................................................................... 8 2.7 Output Voltage Ripple........................................................................................................................................................ 9 2.8 Input Voltage Ripple........................................................................................................................................................... 9 2.9 Powering Up.....................................................................................................................................................................10 2.10 Hiccup Overcurrent Mode Operation..............................................................................................................................11 2.11 Thermal Characteristics..................................................................................................................................................11 3 Board Layout.........................................................................................................................................................................13 3.1 Layout.............................................................................................................................................................................. 13 3.2 Estimated Circuit Area..................................................................................................................................................... 14 4 Schematic and Bill of Materials...........................................................................................................................................15 4.1 Schematic........................................................................................................................................................................ 15 4.2 Bill of Materials.................................................................................................................................................................17 5 Revision History................................................................................................................................................................... 17 List of Figures Figure 2-1. TPS54521EVM-607 Efficiency.................................................................................................................................. 6 Figure 2-2. TPS54521EVM-607 Low Current Efficiency..............................................................................................................6 Figure 2-3. TPS54521EVM-607 Load Regulation....................................................................................................................... 7 Figure 2-4. TPS54521EVM-607 Line Regulation........................................................................................................................ 7 Figure 2-5. TPS54521EVM-607 Transient Response................................................................................................................. 8 Figure 2-6. TPS54521EVM-607 Loop Response........................................................................................................................ 8 Figure 2-7. TPS54521EVM-607 Output Ripple........................................................................................................................... 9 Figure 2-8. TPS54521EVM-607 Input Ripple.............................................................................................................................. 9 Figure 2-9. TPS54521EVM-607 Start-Up Relative to VIN ......................................................................................................... 10 Figure 2-10. TPS54521EVM-607 Start-Up Relative to Enable..................................................................................................10 Figure 2-11. TPS54521EVM-607 Overcurrent Hiccup Mode..................................................................................................... 11 Figure 2-12. TPS54521EVM-607 Thermal Image......................................................................................................................11 Figure 2-13. TPS54521EVM-607 Junction Temperature vs Load Current................................................................................ 12 Figure 3-1. TPS54521EVM-607 Top-Side Layout (Top View)....................................................................................................13 Figure 3-2. TPS54521EVM-607 Layer 2 (X-Ray Top View).......................................................................................................13 Figure 3-3. TPS54521EVM-607 Layer 3 (X-Ray Top View).......................................................................................................14 Figure 3-4. TPS54521EVM-607 Bottom-Side Layout (Bottom View)........................................................................................ 14 Figure 3-5. TPS54521EVM-607 Top-Side Assembly.................................................................................................................14 Figure 4-1. TPS54521EVM-607 Schematic...............................................................................................................................16 List of Tables Table 1-1. Input Voltage and Output Current Summary...............................................................................................................3 Table 1-2. TPS54521EVM-607 Performance Specification Summary.........................................................................................3 Table 1-3. Output Voltages Available...........................................................................................................................................4 SLVU379A – AUGUST 2010 – REVISED AUGUST 2021 TPS54521 Step-Down Converter Evaluation Module User's Guide Submit Document Feedback Copyright © 2022 Texas Instruments Incorporated 1 Trademarks www.ti.com Table 2-1. EVM Connectors and Test Points............................................................................................................................... 5 Table 4-1. TPS54521EVM-607 Bill of Materials.........................................................................................................................17 Trademarks All trademarks are the property of their respective owners. 2 TPS54521 Step-Down Converter Evaluation Module User's Guide SLVU379A – AUGUST 2010 – REVISED AUGUST 2021 Submit Document Feedback Copyright © 2022 Texas Instruments Incorporated www.ti.com Introduction 1 Introduction This user's guide contains background information for the TPS54521, as well as support documentation for the TPS54521EVM-607 evaluation module (HPA607). Also included are the performance specifications, the schematic, and the bill of materials for the TPS54521EVM-607. 1.1 Background The TPS54521 dc/dc converter is designed to provide up to a 5 A output. The TPS54521 implements split input power rails with separate input voltage inputs for the power stage and control circuitry. The power stage input (PVIN) is rated for 1.6 V to 17 V while the control input (VIN) is rated for 4.5 to 17 V. The TPS54521EVM-607 provides both inputs but is designed and tested using the PVIN connected to VIN. Rated input voltage and output current range for the evaluation module are given in Table 1-1. This evaluation module demonstrates a low cost design that may be achieved when designing with the TPS54521 regulator. The switching frequency is externally set at a nominal 480 kHz. The high-side and low-side MOSFETs are incorporated inside the TPS54521 package along with the gate drive circuitry. The compensation components are external to the integrated circuit (IC), and an external divider allows for an adjustable output voltage. Additionally, the TPS54521 provides adjustable slow start, tracking and undervoltage lockout inputs. The absolute maximum input voltage is 20 V for the TPS54521EVM-607. Table 1-1. Input Voltage and Output Current Summary EVM INPUT VOLTAGE RANGE OUTPUT CURRENT RANGE TPS54521EVM-607 VIN = 8 V to 17 V (VIN start voltage = 6.806 V) 0 A to 5 A 1.2 Performance Specification Summary A summary of the TPS54521EVM-607 performance specifications is provided in Table 1-2. Specifications are given for an input voltage of 12 V and an output voltage of 3.3 V, unless otherwise specified. The TPS54521EVM-607 is designed and tested for VIN = 8 V to 17 V with the VIN and PVIN pins connected together with the JP1 jumper. The ambient temperature is 25°C for all measurements, unless otherwise noted. Table 1-2. TPS54521EVM-607 Performance Specification Summary SPECIFICATION TEST CONDITIONS VIN voltage range (PVIN = VIN) MIN 8 TYP MAX 12 17 UNIT V VIN start voltage 6.806 V VIN stop voltage 4.824 V 3.3 V Output voltage set point Output current range VIN = 8 V to 17 V Line regulation IO = 5 A, VIN = 8 V to 17 V ±0.04% Load regulation VIN = 12 V, IO = 0 A to 5 A ±0.05% IO = 2 A to 4 A Load transient response IO = 4 A to 2 A 0 Voltage change Recovery time Voltage change Recovery time 5 150 A mV 6 μs 125 mV 6 μs 42 kHz Loop bandwidth VIN = 12 V, IO = 5 A Phase margin VIN = 12 V , IO = 5 A 62 ° Input ripple voltage VIN = 12 V, IO = 5 A 500 mVPP Output ripple voltage VIN = 12 V, IO = 5 A Output rise time Operating frequency Maximum efficiency TPS54521EVM-607, VIN = 8 V, IO = 1.1 A 75 mVPP 3.5 ms 480 kHz 94.5% SLVU379A – AUGUST 2010 – REVISED AUGUST 2021 TPS54521 Step-Down Converter Evaluation Module User's Guide Submit Document Feedback Copyright © 2022 Texas Instruments Incorporated 3 Introduction www.ti.com 1.3 Modifications These evaluation modules are designed to provide access to the features of the TPS54521. Some modifications can be made to this module. 1.3.1 Output Voltage Set Point The output voltage is set by the resistor divider network of R8 and R9. R9 is fixed at 10 kΩ. To change the output voltage of the EVM, it is necessary to change the value of resistor R8. Changing the value of R8 can change the output voltage above 0.8 V. The value of R8 for a specific output voltage can be calculated using Equation 1. R8 = 10 kΩ (VOUT - 0.8 V ) 0.8 V (1) Table 1-3 lists the R8 values for some common output voltages. Note that VIN must be in a range so that the minimum on-time is greater than 135 ns, and the maximum duty cycle is less than 95%. In addition, different output voltages may require different frequency compensation, which will require changes to the values of R4, C4, C6, and C11. The values given in Table 1-3 are standard values, not the exact value calculated using Equation 1. Table 1-3. Output Voltages Available OUTPUT VOLTAGE (V) R8 VALUE (kΩ) 1.8 12.4 2.5 21.5 3.3 31.6 5 52.3 1.3.2 Slow-Start Time The slow-start time can be adjusted by changing the value of C7. Use Equation 2 to calculate the required value of C7 for a desired slow-start time. C7(nF) = Tss(ms) ´ Iss(m A) Vref(V) (2) The EVM is set for a slow start time of 3.5 msec using C7 = 0.01 μF. 1.3.3 Track In The TPS54521 can track an external voltage during start up. The J5 connector is provided to allow connection to that external voltage. Ratio-metric or simultaneous tracking can be implemented using resistor divider R5 and R6. See the TPS54521 4.5-V to 17-V Input, 5-A Synchronous Step-Down Converter Data Sheet for details. 1.3.4 Adjustable UVLO The under voltage lock out (UVLO) can be adjusted externally using R1 and R2. The EVM is set for a start voltage of 6.806 V and a stop voltage of 4.824 V using R1 = 511 kΩ and R2 = 100 kΩ. Use Equation 3 and Equation 4 to calculate required resistor values for different start and stop voltages. æV ö VSTART ç ENFALLING ÷ - VSTOP è VENRISING ø R1 = æ V ö Ip ç1 - ENFALLING ÷ + Ih VENRISING ø è R2 = 4 R1´ VENFALLING VSTOP - VENFALLING + R1(Ip + Ih ) TPS54521 Step-Down Converter Evaluation Module User's Guide (3) (4) SLVU379A – AUGUST 2010 – REVISED AUGUST 2021 Submit Document Feedback Copyright © 2022 Texas Instruments Incorporated www.ti.com Introduction 1.3.5 Input Voltage Rails The EVM is designed to accommodate different input voltage levels for the power stage and control logic. During normal operation, the PVIN and VIN inputs are connected together using a jumper across JP1. The single input voltage is supplied at J1. If desired, these two input voltage rails may be separated by removing the jumper across JP1. Two input voltages must then be provided at both J1 and J2. C1 is provided for adding additional input capacitance for the PVIN input, if desired. 2 Test Setup and Results This section describes how to properly connect, set up, and use the TPS54521EVM-607 evaluation module. The section also includes test results typical for the evaluation module and covers efficiency, output voltage regulation, load transients, loop response, output ripple, input ripple, and start-up. 2.1 Input / Output Connections The TPS54521EVM-607 is provided with input/output connectors and test points as shown in Table 2-1. A power supply capable of supplying 3 A must be connected to J1 through a pair of 20 AWG wires. The jumper across JP1 must be in place. See Section 1.3.5 for split input voltage rail operation. The load must be connected to J3 through a pair of 20 AWG wires. The maximum load current capability must be 5 A. Wire lengths must be minimized to reduce losses in the wires. Test-point TP1 provides a place to monitor the VIN input voltages with TP2 providing a convenient ground reference. TP8 is used to monitor the output voltage with TP9 as the ground reference. Table 2-1. EVM Connectors and Test Points REFERENCE DESIGNATOR FUNCTION J1 PVIN input voltage connector. See Table 1-1 for VIN range. J2 VIN input voltage connector. Not normally used J3 VOUT, 3.3 V at 5-A maximum J4 2-pin header for tracking output and ground J5 2-pin header for tracking voltage input and ground JP1 PVIN to VIN jumper. Normally closed to tie VIN to PVIN for common rail voltage operation JP2 2-pin header for enable. Connect EN to ground to disable, open to enable. TP1 PVIN test point at PVIN connector TP2 GND test point at PVIN connector TP3 VIN test point at VIN connector TP4 GND test point at VIN connector TP5 PH test point TP6 Slow start / track in test point TP7 Test point between voltage divider network and output. Used for loop response measurements. TP8 Output voltage test point at VOUT connector TP9 GND test point at VOUT connector TP10 PWRGD test point SLVU379A – AUGUST 2010 – REVISED AUGUST 2021 TPS54521 Step-Down Converter Evaluation Module User's Guide Submit Document Feedback Copyright © 2022 Texas Instruments Incorporated 5 Test Setup and Results www.ti.com 2.2 Efficiency The efficiency of this EVM peaks at a load current of about 1.1 A and then decreases as the load current increases towards full load. Figure 2-1 shows the efficiency for the TPS54521EVM-607 at an ambient temperature of 25°C. 100 VI = 8 V VI = 10 V 95 Efficiency - % 90 VI = 12 V 85 VI = 15 V VI = 17 V 80 75 70 65 60 0 1 2 3 IO - Output Current - A 4 5 Figure 2-1. TPS54521EVM-607 Efficiency Figure 2-2 shows the efficiency for the TPS54521EVM-607 at lower output currents below 0.10 A at an ambient temperature of 25°C. 100 90 VI = 15 V 80 VI = 17 V VI = 12 V Efficiency - % 70 VI = 10 V 60 VI = 8 V 50 40 30 20 10 0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 IO - Output Current - A 0.08 0.09 0.1 Figure 2-2. TPS54521EVM-607 Low Current Efficiency The efficiency may be lower at higher ambient temperatures, due to temperature variation in the drain-to-source resistance of the internal MOSFETs. 6 TPS54521 Step-Down Converter Evaluation Module User's Guide SLVU379A – AUGUST 2010 – REVISED AUGUST 2021 Submit Document Feedback Copyright © 2022 Texas Instruments Incorporated www.ti.com Test Setup and Results 2.3 Output Voltage Load Regulation Figure 2-3 shows the load regulation for the TPS54521EVM-607. 0.05 VI = 12 V 0.04 VI = 8 V Load Regulation - % 0.03 0.02 VI = 10 V 0.01 VI = 15 V 0 VI = 17 V -0.01 -0.02 -0.03 -0.04 -0.05 0 3 2 IO - Output Current - A 1 5 4 Figure 2-3. TPS54521EVM-607 Load Regulation Measurements are given for an ambient temperature of 25°C. 2.4 Output Voltage Line Regulation Figure 2-4 shows the line regulation for the TPS54521EVM-607. 0.05 0.04 0.03 Line Regulation - % 0.02 0.01 IO = 0 A 0 -0.01 -0.02 -0.03 IO = 2.5 A -0.04 IO = 5 A -0.05 8 9 10 11 12 13 VI - Input Voltage - V 14 15 16 17 Figure 2-4. TPS54521EVM-607 Line Regulation SLVU379A – AUGUST 2010 – REVISED AUGUST 2021 TPS54521 Step-Down Converter Evaluation Module User's Guide Submit Document Feedback Copyright © 2022 Texas Instruments Incorporated 7 Test Setup and Results www.ti.com 2.5 Load Transients Figure 2-5 shows the TPS54521EVM-607 response to load transients. The current step is from 2 A to 4 A at 12 V input. Total peak-to-peak voltage variation is as shown, including ripple and noise on the output. Vout = 100 mV / div (AC coupled) Iout = 2 A / div (2A to 4 A load step) Vin = 12 V Time = 10 μsec / div Figure 2-5. TPS54521EVM-607 Transient Response 2.6 Loop Characteristics Figure 2-6 shows the TPS54521EVM-607 loop-response characteristics. Gain and phase plots are shown for VIN voltage of 12 V. Load current for the measurement is 5 A. 60 180 50 150 40 120 90 30 60 Gain - dB 20 30 10 Gain 0 0 -10 -30 -20 -60 -30 -90 -120 -40 Vin = 12 V Load = 5 A -50 -150 Frequency - Hz -180 1000000 100000 10000 1000 100 -60 Phase - Deg Phase Figure 2-6. TPS54521EVM-607 Loop Response 8 TPS54521 Step-Down Converter Evaluation Module User's Guide SLVU379A – AUGUST 2010 – REVISED AUGUST 2021 Submit Document Feedback Copyright © 2022 Texas Instruments Incorporated www.ti.com Test Setup and Results 2.7 Output Voltage Ripple Figure 2-7 shows the TPS54521EVM-607 output voltage ripple. The output current is the rated full load of 5 A and VIN = 12 V. The ripple voltage is measured directly across the output capacitors. Vout = 50 mV / div (AC coupled) Inductor Current = 2 A / div PH = 10 V / div Time = 1 μsec / div Figure 2-7. TPS54521EVM-607 Output Ripple 2.8 Input Voltage Ripple Figure 2-8 shows the TPS54521EVM-607 input voltage ripple. The output current is the rated full load of 5 A and VIN = 12 V. The ripple voltage is measured directly across the input capacitors. Vout = 200 mV / div (AC coupled) Inductor Current = 2 A / div PH = 10 V / div Time = 1 μsec / div Figure 2-8. TPS54521EVM-607 Input Ripple SLVU379A – AUGUST 2010 – REVISED AUGUST 2021 TPS54521 Step-Down Converter Evaluation Module User's Guide Submit Document Feedback Copyright © 2022 Texas Instruments Incorporated 9 Test Setup and Results www.ti.com 2.9 Powering Up Figure 2-9 and Figure 2-10 show the start-up waveforms for the TPS54521EVM-607. In Figure 2-9, the output voltage ramps up as soon as the input voltage reaches the UVLO threshold as set by the R1 and R2 resistor divider network. In Figure 2-10, the input voltage is initially applied and the output is inhibited by using a jumper at J2 to tie EN to GND. When the jumper is removed, EN is released. When the EN voltage reaches the enable-threshold voltage, the start-up sequence begins and the output voltage ramps up to the externally set value of 3.3 V. The input voltage for these plots is 12 V and the load is 0.66 Ω. Vin = 10 V / div EN = 2 V / div SS/TR = 1 V / div Vout = 2 V / div Time = 2 msec / div Figure 2-9. TPS54521EVM-607 Start-Up Relative to VIN Vin = 10 V / div EN = 2 V / div SS/TR = 1 V / div Vout = 2 V / div Time = 2 msec / div Figure 2-10. TPS54521EVM-607 Start-Up Relative to Enable 10 TPS54521 Step-Down Converter Evaluation Module User's Guide SLVU379A – AUGUST 2010 – REVISED AUGUST 2021 Submit Document Feedback Copyright © 2022 Texas Instruments Incorporated www.ti.com Test Setup and Results 2.10 Hiccup Overcurrent Mode Operation Figure 2-11 shows the TPS54521EVM-607 operating in a near shorted output (0.1 Ω load) condition. If the current in the high-side MOSFET reaches the current limit for 512 switching cycles in a row, the TPS54521 enters hiccup overcurrent protection and stops switching (hiccups) for the next 16384 cycles. Vout = 2 V / div Inductor Current =10 A / div PH = 10 V / div Vin = 12 V Load = 0.1 Ω SS/TR = 1 V / div Time = 20 msec / div Figure 2-11. TPS54521EVM-607 Overcurrent Hiccup Mode 2.11 Thermal Characteristics This section shows a thermal image of the TPS54521EVM-607 running at 12 V input and 5 A load and a graph showing the junction temperature vs. output current of the EVM circuit. There is no air flow and the ambient temperature is 25°C. The peak temperature of the IC (91.9°C) is below the maximum recommended operating condition listed in the data sheet of 125°C. Figure 2-12. TPS54521EVM-607 Thermal Image SLVU379A – AUGUST 2010 – REVISED AUGUST 2021 TPS54521 Step-Down Converter Evaluation Module User's Guide Submit Document Feedback Copyright © 2022 Texas Instruments Incorporated 11 Test Setup and Results www.ti.com TJ - Junction Temperature - °C 125 VIN = 12V Vout = 3.3V Fsw = 480kHz Ta = room temperature no airflow 100 75 50 25 0 0.5 1 1.5 2 2.5 3 3.5 Load Current - A 4 4.5 5 Figure 2-13. TPS54521EVM-607 Junction Temperature vs Load Current 12 TPS54521 Step-Down Converter Evaluation Module User's Guide SLVU379A – AUGUST 2010 – REVISED AUGUST 2021 Submit Document Feedback Copyright © 2022 Texas Instruments Incorporated www.ti.com Board Layout 3 Board Layout This section provides a description of the TPS54521EVM-607, board layout, and layer illustrations. 3.1 Layout The board layout for the TPS54521EVM-607 is shown in Figure 3-1 through Figure 3-5. The topside layer of the EVM is laid out in a manner typical of a user application. The top, bottom and internal layers are 2-oz. copper. The top layer contains the main power traces for PVIN, VIN, VOUT, and VPHASE. Also on the top layer are connections for the remaining pins of the TPS54521 and a large area filled with ground. The bottom and internal ground layers contain ground planes only. The top side ground traces are connected to the bottom and internal ground planes with multiple vias placed around the board including two vias directly under the TPS54521 device to provide a thermal path from the top-side ground plane to the bottom-side ground plane. The input decoupling capacitors (C2, and C3) and bootstrap capacitor (C5) are all located as close to the IC as possible. In addition, the voltage set-point resistor divider components are also kept close to the IC. The voltage divider network ties to the output voltage at the point of regulation, the copper VOUT trace at the J3 output connector. For the TPS54521, an additional input bulk capacitor may be required, depending on the EVM connection to the input supply. Critical analog circuits such as the voltage setpoint divider, frequency set resistor, slow start capacitor and compensation components are terminated to ground using a wide ground trace separate from the power ground pour. Figure 3-1. TPS54521EVM-607 Top-Side Layout (Top View) Figure 3-2. TPS54521EVM-607 Layer 2 (X-Ray Top View) SLVU379A – AUGUST 2010 – REVISED AUGUST 2021 TPS54521 Step-Down Converter Evaluation Module User's Guide Submit Document Feedback Copyright © 2022 Texas Instruments Incorporated 13 Board Layout www.ti.com Figure 3-3. TPS54521EVM-607 Layer 3 (X-Ray Top View) Figure 3-4. TPS54521EVM-607 Bottom-Side Layout (Bottom View) Figure 3-5. TPS54521EVM-607 Top-Side Assembly 3.2 Estimated Circuit Area The estimated printed circuit board area for the components used in this design is 246 in2 (0.38 mm2). This area does not include test point or connectors. 14 TPS54521 Step-Down Converter Evaluation Module User's Guide SLVU379A – AUGUST 2010 – REVISED AUGUST 2021 Submit Document Feedback Copyright © 2022 Texas Instruments Incorporated www.ti.com Schematic and Bill of Materials 4 Schematic and Bill of Materials This section presents the TPS54521EVM-607 schematic and bill of materials. 4.1 Schematic Figure 4-1 is the schematic for the TPS54521EVM-607. SLVU379A – AUGUST 2010 – REVISED AUGUST 2021 TPS54521 Step-Down Converter Evaluation Module User's Guide Submit Document Feedback Copyright © 2022 Texas Instruments Incorporated 15 www.ti.com + Schematic and Bill of Materials Figure 4-1. TPS54521EVM-607 Schematic 16 TPS54521 Step-Down Converter Evaluation Module User's Guide SLVU379A – AUGUST 2010 – REVISED AUGUST 2021 Submit Document Feedback Copyright © 2022 Texas Instruments Incorporated www.ti.com Schematic and Bill of Materials 4.2 Bill of Materials Table 4-1 presents the bill of materials for the TPS54521EVM-607. Table 4-1. TPS54521EVM-607 Bill of Materials COUNT REFDES VALUE DESCRIPTION SIZE PART NUMBER MFR 1 C2 10 µF Capacitor, Ceramic, 25 V, X5R, 20% 1210 Std Std 1 C3 4.7 µF Capacitor, Ceramic, 25 V, X5R, 10% 0805 Std Std 1 C4 5600 pF Capacitor, Ceramic, 50 V, X7R, 10% 0603 Std Std 1 C5 0.1 µF Capacitor, Ceramic, 16 V, X7R, 10% 0603 Std Std 1 C6 560 pF Capacitor, Ceramic, 50 V, C0G, 5% 0603 Std Std 1 C7 0.01 µF Capacitor, Ceramic, 10 V, X7R, 10% 0603 Std Std 1 C8 10 µF Capacitor, Ceramic, 10 V, X5R, 10% 0805 Std Std 1 C9 330 µF Capacitor, Alum Electrolytic 6.3 V, 125 mΩ ESR, ±20% 6.30 mm Dia EKZE6R3ELL331 MF11D Chemi-con 1 L1 3.3 µH Inductor, 12mΩ DCR, 7.5 A, ± 20% 0.300 Dia. inch DR0608-332L Coilcraft 1 R1 511 K Resistor, Chip, 1/16W, 1% 0603 Std Std 2 R2, R3 100 K Resistor, Chip, 1/16W, 1% 0603 Std Std 1 R4 38.3 K Resistor, Chip, 1/16W, 1% 0603 Std Std 1 R7 51.1 Resistor, Chip, 1/16W, 1% 0603 Std Std 1 R8 31.6 K Resistor, Chip, 1/16W, 1% 0603 Std Std 1 R9 10.0 K Resistor, Chip, 1/16W, 1% 0603 Std Std 1 U1 TPS54521RHL IC, 17V Input, 5-A Output, Sync. StepDown Switcher With Integrated FET QFN14 TPS54521RHL TI 5 Revision History NOTE: Page numbers for previous revisions may differ from page numbers in the current version. Changes from Revision * (August 2010) to Revision A (August 2021) Page • Updated the numbering format for tables, figures, and cross-references throughout the document. ................3 • Updated the user's guide title............................................................................................................................. 3 SLVU379A – AUGUST 2010 – REVISED AUGUST 2021 TPS54521 Step-Down Converter Evaluation Module User's Guide Submit Document Feedback Copyright © 2022 Texas Instruments Incorporated 17 IMPORTANT NOTICE AND DISCLAIMER TI PROVIDES TECHNICAL AND RELIABILITY DATA (INCLUDING DATA SHEETS), DESIGN RESOURCES (INCLUDING REFERENCE DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND OTHER RESOURCES “AS IS” AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS AND IMPLIED, INCLUDING WITHOUT LIMITATION ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT OF THIRD PARTY INTELLECTUAL PROPERTY RIGHTS. These resources are intended for skilled developers designing with TI products. You are solely responsible for (1) selecting the appropriate TI products for your application, (2) designing, validating and testing your application, and (3) ensuring your application meets applicable standards, and any other safety, security, regulatory or other requirements. These resources are subject to change without notice. TI grants you permission to use these resources only for development of an application that uses the TI products described in the resource. Other reproduction and display of these resources is prohibited. No license is granted to any other TI intellectual property right or to any third party intellectual property right. TI disclaims responsibility for, and you will fully indemnify TI and its representatives against, any claims, damages, costs, losses, and liabilities arising out of your use of these resources. TI’s products are provided subject to TI’s Terms of Sale or other applicable terms available either on ti.com or provided in conjunction with such TI products. TI’s provision of these resources does not expand or otherwise alter TI’s applicable warranties or warranty disclaimers for TI products. TI objects to and rejects any additional or different terms you may have proposed. IMPORTANT NOTICE Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265 Copyright © 2022, Texas Instruments Incorporated
TPS54521EVM-607 价格&库存

很抱歉,暂时无法提供与“TPS54521EVM-607”相匹配的价格&库存,您可以联系我们找货

免费人工找货