0
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
会员中心
创作中心
发布
  • 发文章

  • 发资料

  • 发帖

  • 提问

  • 发视频

创作活动
TPS54620EVM-374

TPS54620EVM-374

  • 厂商:

    BURR-BROWN(德州仪器)

  • 封装:

    -

  • 描述:

    TPS54620 SWIFT™ DC/DC, Step Down 1, Non-Isolated Outputs Evaluation Board

  • 数据手册
  • 价格&库存
TPS54620EVM-374 数据手册
www.ti.com Table of Contents User’s Guide TPS54620 Step-Down Converter Evaluation Module User's Guide ABSTRACT This user’s guide contains background information for the TPS54620 as well as support documentation for the TPS54620EVM-374 evaluation module (HPA374). Also included are the performance specifications, the schematic, and the bill of materials for the TPS54620EVM-374. Table of Contents 1 Introduction.............................................................................................................................................................................2 2 Test Setup and Results.......................................................................................................................................................... 5 3 Board Layout.........................................................................................................................................................................12 4 Schematic and Bill of Materials...........................................................................................................................................18 5 Revision History................................................................................................................................................................... 19 List of Figures Figure 2-1. TPS54620EVM-374 Efficiency.................................................................................................................................. 6 Figure 2-2. TPS54620EVM-374 Low Current Efficiency..............................................................................................................6 Figure 2-3. TPS54620EVM-374 Load Regulation....................................................................................................................... 7 Figure 2-4. TPS54620EVM-374 Line Regulation........................................................................................................................ 7 Figure 2-5. TPS54620EVM-374 Transient Response................................................................................................................. 8 Figure 2-6. TPS54620EVM-374 Loop Response........................................................................................................................ 8 Figure 2-7. TPS54620EVM-374 Output Ripple........................................................................................................................... 9 Figure 2-8. TPS54620EVM-374 Input Ripple.............................................................................................................................. 9 Figure 2-9. TPS54620EVM-374 Start-Up Relative to VIN ......................................................................................................... 10 Figure 2-10. TPS54620EVM-374 Start-up Relative to Enable.................................................................................................. 10 Figure 2-11. TPS54620EVM-374 Thermal Image......................................................................................................................11 Figure 3-1. TPS54620EVM-374 Top-Side Layout..................................................................................................................... 13 Figure 3-2. TPS54620EVM-374 Layout 2..................................................................................................................................14 Figure 3-3. TPS54620EVM-374 Layout 3..................................................................................................................................15 Figure 3-4. TPS54620EVM-374 Bottom-Side layout................................................................................................................. 16 Figure 3-5. TPS54620EVM-374 Top-Side Assembly.................................................................................................................17 Figure 4-1. TPS54620EVM-374 Schematic...............................................................................................................................18 List of Tables Table 1-1. Input Voltage and Output Current Summary...............................................................................................................2 Table 1-2. TPS54620EVM-374 Performance Specification Summary.........................................................................................2 Table 1-3. Output Voltages Available...........................................................................................................................................3 Table 2-1. EVM Connectors and Test Points............................................................................................................................... 5 Table 4-1. TPS54620EVM-374 Bill of Materials.........................................................................................................................19 Trademarks All trademarks are the property of their respective owners. SLVU281B – MAY 2009 – REVISED AUGUST 2021 Submit Document Feedback TPS54620 Step-Down Converter Evaluation Module User's Guide Copyright © 2021 Texas Instruments Incorporated 1 Introduction www.ti.com 1 Introduction 1.1 Background The TPS54620 dc/dc converter is designed to provide up to a 6 A output. The TPS54620 implements a split input power rails with separate input voltage inputs for the power stage and control circuitry. The power stage input (PVIN) is rated for 1.6 V to 17 V while the control input (VIN) is rated for 4.5 to 17 V. The TPS54620EVM-374 provides both inputs but is designed and tested using the PVIN connected to VIN. Rated input voltage and output current range for the evaluation module are given in Table 1-1. This evaluation module is designed to demonstrate the small printed-circuit-board areas that may be achieved when designing with the TPS54620 regulator. The switching frequency is externally set at a nominal 480 kHz. The high-side and low-side MOSFETs are incorporated inside the TPS54620 package along with the gate drive circuitry. The low drain-to-source on resistance of the MOSFET allows the TPS54620 to achieve high efficiencies and helps keep the junction temperature low at high output currents. The compensation components are external to the integrated circuit (IC), and an external divider allows for an adjustable output voltage. Additionally, the TPS54620 provides adjustable slow start, tracking and undervoltage lockout inputs. The absolute maximum input voltage is 20 V for the TPS54620EVM-374. Table 1-1. Input Voltage and Output Current Summary EVM INPUT VOLTAGE RANGE OUTPUT CURRENT RANGE TPS54620EVM-374 VIN = 8 V to 17 V (VIN start voltage = 6.521 V) 0 A to 6 A 1.2 Performance Specification Summary A summary of the TPS54620EVM-374 performance specifications is provided in Table 1-2. Specifications are given for an input voltage of VIN = 12 V and an output voltage of 3.3 V, unless otherwise specified. The TPS54620EVM-374 is designed and tested for VIN = 8 V to 17 V with the VIN and PVIN pins connect together with the J3 jumper. The ambient temperature is 25°C for all measurements, unless otherwise noted. Table 1-2. TPS54620EVM-374 Performance Specification Summary SPECIFICATION TEST CONDITIONS VIN voltage range (PVIN = VIN) MIN TYP MAX 8 12 17 UNIT V VIN start voltage 6.521 V VIN stop voltage 6.065 V 3.3 V Output voltage set point Output current range VIN = 8 V to 17 V Line regulation IO = 3 A, VIN = 8 V to 17 V ±0.02% Load regulation VIN = 12 V, IO = 0 A to 6 A ±0.012% IO = 1.5 A to 4.5 A Load transient response IO = 4.5 A to 1.5 A 0 Voltage change 6 –100 A mV Recovery time 60 µs Voltage change 100 mV Recovery time 120 µs 43 kHz Loop bandwidth VIN = 12 V, IO = 6 A Phase margin VIN = 12 V , IO = 6 A 52 ° Input ripple voltage IO = 6 A 520 mVPP Output ripple voltage IO = 6 A 20 mVPP 4 ms 480 kHz Output rise time Operating frequency Maximum efficiency TPS54620EVM-374 , VIN = 8 V, IO = 2 A 95% 1.3 Modifications These evaluation modules are designed to provide access to the features of the TPS54620. Some modifications can be made to this module. 2 TPS54620 Step-Down Converter Evaluation Module User's Guide Copyright © 2021 Texas Instruments Incorporated SLVU281B – MAY 2009 – REVISED AUGUST 2021 Submit Document Feedback www.ti.com Introduction 1.3.1 Output Voltage Set Point The output voltage is set by the resistor divider network of R8 and R9. R9 is fixed at 10 kΩ. To change the output voltage of the EVM, it is necessary to change the value of resistor R8. Changing the value of R8 can change the output voltage above 0.8 V. The value of R8 for a specific output voltage can be calculated using Equation 1. R8= 10 kW (VOUT - 0.8 V ) 0.8 V (1) Table 1-3 lists the R8 values for some common output voltages. Note that VIN must be in a range so that the minimum on-time is greater than 120 ns, and the maximum duty cycle is less than 95%. The values given in Table 1-3 are standard values, not the exact value calculated using Equation 1. Table 1-3. Output Voltages Available Output Voltage (V) R8 Value (kΩ) 1.8 12.4 2.5 21.5 3.3 31.6 5 52.3 1.3.2 Slow Start Time The slow start time can be adjusted by changing the value of C7. Use Equation 2 to calculate the required value of C7 for a desired slow start time C7(nF)= Tss(ms) ´ Iss(μA) Vref(V) (2) The EVM is set for a slow start time of 4 msec using C7 = 0.01 µF. 1.3.3 Track In The TPS54620 can track an external voltage during start up. The J5 connector is provided to allow connection to that external voltage. Ratio-metric or simultaneous tracking can be implemented using resistor divider R5 and R6. See the TPS54620 data sheet (SLVS949) for details. 1.3.4 Adjustable UVLO The under voltage lock out (UVLO) ca be adjusted externally using R1 and R2. The EVM is st for a start voltage of 6.521 V and a stop voltage of 6.065 V using R1 = 35.7 kΩ and R2 = 8.06 kΩ. Use Equation 3 and Equation 4 to calculate required resistor values for different start and stop voltages. æV ö VSTART ç ENFALLING ÷ - VSTOP è VENRISING ø R1= æ VENFALLING ö Ip ç 1÷ +Ih è VENRISING ø R2= (3) R1× VENFALLING VSTOP - VENFALLING +R1(Ip +Ih) SLVU281B – MAY 2009 – REVISED AUGUST 2021 Submit Document Feedback (4) TPS54620 Step-Down Converter Evaluation Module User's Guide Copyright © 2021 Texas Instruments Incorporated 3 Introduction www.ti.com 1.3.5 Input Voltage Rails The EVM is designed to accommodate different input voltage levels for the power stage and control logic. During normal operation, the PVIN and VIN inputs are connected together using a jumper across J3. The single input voltage is supplied at J1. If desired, these to input voltage rails may be separated by removing the jumper across J3. Two input voltages must then be provided at both J1 and J2. 4 TPS54620 Step-Down Converter Evaluation Module User's Guide Copyright © 2021 Texas Instruments Incorporated SLVU281B – MAY 2009 – REVISED AUGUST 2021 Submit Document Feedback www.ti.com Test Setup and Results 2 Test Setup and Results This section describes how to properly connect, set up, and use the TPS54620EVM-374 evaluation module. The section also includes test results typical for the evaluation module and covers efficiency, output voltage regulation, load transients, loop response, output ripple, input ripple, and start-up. 2.1 Input / Output Connections The TPS54620EVM-374 is provided with input/output connectors and test points as shown in Table 2-1. A power supply capable of supplying 4 A must be connected to J1 through a pair of 20 AWG wires. The jumper across J3 must be in place. See Section 1.3.5 for split input voltage rail operation. The load must be connected to J7 through a pair of 20 AWG wires. The maximum load current capability must be 6 A. Wire lengths must be minimized to reduce losses in the wires. Test-point TP1 provides a place to monitor the VIN input voltages with TP2 providing a convenient ground reference. TP8 is used to monitor the output voltage with TP9 as the ground reference. Table 2-1. EVM Connectors and Test Points Reference Designator Function J1 PVIN input voltage connector. (see Table 1-1 for VIN range). J2 VIN input voltage connector. Not normally used. J3 PVIN to VIN jumper. Normally closed to tie VIN to PVIN for common rail voltage operation. J24 2-pin header for enable. Connect EN to ground to disable, open to enable. J5 2-pin header for tracking voltage input and ground. J6 2-pin header for tracking output and ground. J7 VOUT, 3.3 V at 6 A maximum. TP1 PVIN test point at PVIN connector. TP2 GND test point at PVIN connector. TP3 VIN test point at VIN connector. TP4 GND test point at VIN connector. TP5 PH test point. TP6 Slow start / track in test point. TP7 Test point between voltage divider network and output. Used for loop response measurements. TP8 Output voltage test point at VOUT connector TP9 GND test point at VOUT connector TP10 PWRGD test point. SLVU281B – MAY 2009 – REVISED AUGUST 2021 Submit Document Feedback TPS54620 Step-Down Converter Evaluation Module User's Guide Copyright © 2021 Texas Instruments Incorporated 5 Test Setup and Results www.ti.com 2.2 Efficiency The efficiency of this EVM peaks at a load current of about 2 A and then decreases as the load current increases towards full load. Figure 2-1 shows the efficiency for the TPS54620EVM-374 at an ambient temperature of 25°C. Figure 2-1. TPS54620EVM-374 Efficiency Figure 2-2 shows the efficiency for the TPS54620EVM-374 at lower output currents below 0.10 A at an ambient temperature of 25°C. Figure 2-2. TPS54620EVM-374 Low Current Efficiency The efficiency may be lower at higher ambient temperatures, due to temperature variation in the drain-to-source resistance of the internal MOSFET. 6 TPS54620 Step-Down Converter Evaluation Module User's Guide Copyright © 2021 Texas Instruments Incorporated SLVU281B – MAY 2009 – REVISED AUGUST 2021 Submit Document Feedback www.ti.com Test Setup and Results 2.3 Output Voltage Load Regulation Figure 2-3 shows the load regulation for the TPS54620EVM-374. Figure 2-3. TPS54620EVM-374 Load Regulation Measurements are given for an ambient temperature of 25°C. 2.4 Output Voltage Line Regulation Figure 2-4 shows the line regulation for the TPS54620EVM-374. Figure 2-4. TPS54620EVM-374 Line Regulation SLVU281B – MAY 2009 – REVISED AUGUST 2021 Submit Document Feedback TPS54620 Step-Down Converter Evaluation Module User's Guide Copyright © 2021 Texas Instruments Incorporated 7 Test Setup and Results www.ti.com 2.5 Load Transients Figure 2-5 shows the TPS54620EVM-374 response to load transients. The current step is from 25% to 75% of maximum rated load at 12 V input. Total peak-to-peak voltage variation is as shown, including ripple and noise on the output. Figure 2-5. TPS54620EVM-374 Transient Response 2.6 Loop Characteristics Figure 2-6 shows the TPS54620EVM-374 loop-response characteristics. Gain and phase plots are shown for VIN voltage of 12 V. Load current for the measurement is 6 A. 180 Gain Phase Gain (dB) 40 120 20 60 0 0 -20 -60 -40 -120 -60 100 1k 10k Frequency (Hz) 100k Phase (q) 60 -180 1M D001 Figure 2-6. TPS54620EVM-374 Loop Response 8 TPS54620 Step-Down Converter Evaluation Module User's Guide Copyright © 2021 Texas Instruments Incorporated SLVU281B – MAY 2009 – REVISED AUGUST 2021 Submit Document Feedback www.ti.com Test Setup and Results 2.7 Output Voltage Ripple Figure 2-7 shows the TPS54620EVM-374 output voltage ripple. The output current is the rated full load of 6 A and VIN = 12 V. The ripple voltage is measured directly across the output capacitors. Figure 2-7. TPS54620EVM-374 Output Ripple 2.8 Input Voltage Ripple Figure 2-8 shows the TPS54620EVM-374 input voltage. The output current is the rated full load of 4 A and VIN = 12 V. The ripple voltage is measured directly across the input capacitors. Figure 2-8. TPS54620EVM-374 Input Ripple SLVU281B – MAY 2009 – REVISED AUGUST 2021 Submit Document Feedback TPS54620 Step-Down Converter Evaluation Module User's Guide Copyright © 2021 Texas Instruments Incorporated 9 Test Setup and Results www.ti.com 2.9 Powering Up Figure 2-9 and Figure 2-10 show the start-up waveforms for the TPS54620EVM-374 . In Figure 2-9, the output voltage ramps up as soon as the input voltage reaches the UVLO threshold as set by the R1 and R2 resistor divider network. In Figure 2-10, the input voltage is initially applied and the output is inhibited by using a jumper at J2 to tie EN to GND. When the jumper is removed, EN is released. When the EN voltage reaches the enable-threshold voltage, the start-up sequence begins and the output voltage ramps up to the externally set value of 3.3 V. The input voltage for these plots is 12 V and the load is 1Ω. Figure 2-9. TPS54620EVM-374 Start-Up Relative to VIN Figure 2-10. TPS54620EVM-374 Start-up Relative to Enable 10 TPS54620 Step-Down Converter Evaluation Module User's Guide Copyright © 2021 Texas Instruments Incorporated SLVU281B – MAY 2009 – REVISED AUGUST 2021 Submit Document Feedback www.ti.com Test Setup and Results 2.10 Thermal Characteristics This section shows a thermal image of the TPS54620EVM-374 running at 12 V input and 6 A load. there is no air flow and the ambient temperature is 25°C. The peak temperature of the IC (70°C) is well below the maximum recommended operating condition listed in the data sheet of 150°C. Figure 2-11. TPS54620EVM-374 Thermal Image SLVU281B – MAY 2009 – REVISED AUGUST 2021 Submit Document Feedback TPS54620 Step-Down Converter Evaluation Module User's Guide Copyright © 2021 Texas Instruments Incorporated 11 Board Layout www.ti.com 3 Board Layout This section provides a description of the TPS54620EVM-374 , board layout, and layer illustrations. 3.1 Layout The board layout for the TPS54620EVM-374 is shown in Figure 3-1 through Figure 3-5. The topside layer of the EVM is laid out in a manner typical of a user application. The top, bottom and internal layers are 2-oz. copper. The top layer contains the main power traces for PVIN, VIN, VOUT, and VPHASE. Also on the top layer are connections for the remaining pins of the TPS54620 and a large area filled with ground. The bottom and internal ground layers contains ground planes only. The top side ground traces are connected to the bottom and internal ground planes with multiple vias placed around the board including two vias directly under the TPS54620 device to provide a thermal path from the top-side ground plane to the bottom-side ground plane. The input decoupling capacitors (C2, and C3) and bootstrap capacitor (C5) are all located as close to the IC as possible. In addition, the voltage set-point resistor divider components are also kept close to the IC. The voltage divider network ties to the output voltage at the point of regulation, the copper VOUT trace at the J7 output connector. For the TPS54620, an additional input bulk capacitor may be required, depending on the EVM connection to the input supply. Critical analog circuits such as the voltage setpoint divider, frequency set resistor, slow start capacitor and compensation components are terminated to ground using a wide ground trace separate from the power ground pour. 12 TPS54620 Step-Down Converter Evaluation Module User's Guide Copyright © 2021 Texas Instruments Incorporated SLVU281B – MAY 2009 – REVISED AUGUST 2021 Submit Document Feedback www.ti.com Board Layout Figure 3-1. TPS54620EVM-374 Top-Side Layout SLVU281B – MAY 2009 – REVISED AUGUST 2021 Submit Document Feedback TPS54620 Step-Down Converter Evaluation Module User's Guide Copyright © 2021 Texas Instruments Incorporated 13 Board Layout www.ti.com Figure 3-2. TPS54620EVM-374 Layout 2 14 TPS54620 Step-Down Converter Evaluation Module User's Guide Copyright © 2021 Texas Instruments Incorporated SLVU281B – MAY 2009 – REVISED AUGUST 2021 Submit Document Feedback www.ti.com Board Layout Figure 3-3. TPS54620EVM-374 Layout 3 SLVU281B – MAY 2009 – REVISED AUGUST 2021 Submit Document Feedback TPS54620 Step-Down Converter Evaluation Module User's Guide Copyright © 2021 Texas Instruments Incorporated 15 Board Layout www.ti.com Figure 3-4. TPS54620EVM-374 Bottom-Side layout 16 TPS54620 Step-Down Converter Evaluation Module User's Guide Copyright © 2021 Texas Instruments Incorporated SLVU281B – MAY 2009 – REVISED AUGUST 2021 Submit Document Feedback www.ti.com Board Layout Figure 3-5. TPS54620EVM-374 Top-Side Assembly 3.2 Estimated Circuit Area The estimated printed circuit board area for the components used in this design is 0.58 in2 (374 mm2). This area does not include test point or connectors. SLVU281B – MAY 2009 – REVISED AUGUST 2021 Submit Document Feedback TPS54620 Step-Down Converter Evaluation Module User's Guide Copyright © 2021 Texas Instruments Incorporated 17 Schematic and Bill of Materials www.ti.com 4 Schematic and Bill of Materials This section presents the TPS54620EVM-374 schematic and bill of materials. 4.1 Schematic Figure 4-1 is the schematic for the TPS54620EVM-374. Figure 4-1. TPS54620EVM-374 Schematic 18 TPS54620 Step-Down Converter Evaluation Module User's Guide Copyright © 2021 Texas Instruments Incorporated SLVU281B – MAY 2009 – REVISED AUGUST 2021 Submit Document Feedback www.ti.com Schematic and Bill of Materials 4.2 Bill of Materials Table 4-1 presents the bill of materials for the TPS54620EVM-374 . Table 4-1. TPS54620EVM-374 Bill of Materials Count RefDes Value Description Size Part Number MFR 0 C1 Open Capacitor, Ceramic, 25V, X5R, 20% 1210 Std Std 1 C2 10µF Capacitor, Ceramic, 25V, X5R, 20% 1210 Std Std 1 C3 4.7µF Capacitor, Ceramic, 25V, X5R, 10% 0805 Std Std 1 C4 6800pF Capacitor, Ceramic, 50V, X7R, 10% 0603 Std Std 1 C5 0.1µF Capacitor, Ceramic, 50V, X7R, 10% 0603 Std Std 0 C6, C10 Open Capacitor, Ceramic 0603 Std Std 1 C7 0.01µF Capacitor, Ceramic, 25V, X7R, 10% 0603 Std Std 2 C8, C9 100µF Capacitor, Ceramic, 6.3V, X5R, 20% 1210 Std Std 3 J1, J2, J7 ED555/2DS Terminal Block, 2-pin, 6-A, 3.5mm 0.27 x 0.25 inch ED555/2DS OST 4 J3, J4, J5, J6 PEC02SAAN Header, Male 2-pin, 100mil spacing 0.100 inch x 2 PEC02SAAN Sullins 1 L1 3.3µH Inductor, SMT, 7.2A, 10.4milliohm 0.402 sq inch MSS1048-332NL Coilcraft _ 1 R1 35.7K Resistor, Chip, 1/16W, 1% 0603 Std Std 1 R2 8.06K Resistor, Chip, 1/16W, 1% 0603 Std Std 1 R3 100K Resistor, Chip, 1/16W, 1% 0603 Std Std 1 R4 5.62K Resistor, Chip, 1/16W, 1% 0603 Std Std 0 R5, R6 Open Resistor, Chip, 1/16W, 1% 0603 Std Std 1 R7 0 Resistor, Chip, 1/16W, 1% 0603 Std Std 1 R8 31.6K Resistor, Chip, 1/16W, 1% 0603 Std Std 1 R9 10.0K Resistor, Chip, 1/16W, 1% 0603 Std Std 6 TP1, TP3, TP5, TP6, TP7, TP8 5000 Test Point, Red, Thru Hole Color Keyed 0.100 x 0.100 inch 5000 Keystone 4 TP2, TP4, TP9, TP10 5001 Test Point, Black, Thru Hole Color Keyed 0.100 x 0.100 inch 5001 Keystone 1 U1 TPS54620RGY IC, 4.5V-17V Synchronous Step Down Converter with Integrated MOSFETs 3.5mm x 3.5mm QFN14 TPS54620RGY TI 2 — Shunt, 100-mil, Black 0.100 929950-00 3M 1 — PCB, 2.5” x 2.5” x 0.062” HPA374 Any Notes 1. These assemblies are ESD sensitive, ESD precautions shall be observed. 2. These assemblies must be clean and free from flux and all contaminants. Use of no clean flux is not acceptable. 3. These assemblies must comply with workmanship standards IPC-A-610 Class 2. 4. Ref designators marked with an asterisk (‘**’) cannot be substituted. All other components can be substituted with equivalent MFG's components. 5 Revision History NOTE: Page numbers for previous revisions may differ from page numbers in the current version. Changes from Revision A (March 2017) to Revision B (August 2021) Page • Updated the numbering format for tables, figures, and cross-references throughout the document. ................2 • Updated the user's guide title............................................................................................................................. 2 Changes from Revision * (May 2009) to Revision A (March 2017) Page • Changed the Load transient response TYP values in Table 1-2 ........................................................................2 • Changed the Loop bandwidth TYP value From: 45 To 43 kHz in Table 1-2 ...................................................... 2 • Changed the Phase margin TYP value From: 46 To 52° in Table 1-2 ............................................................... 2 • Changed the Output ripple voltage TYP value From: 18 To 20 mVPP in Table 1-2 .......................................... 2 • Replaced Figure 2-5 .......................................................................................................................................... 8 • Replaced Figure 2-6 .......................................................................................................................................... 8 • Replaced Figure 2-7 .......................................................................................................................................... 9 SLVU281B – MAY 2009 – REVISED AUGUST 2021 Submit Document Feedback TPS54620 Step-Down Converter Evaluation Module User's Guide Copyright © 2021 Texas Instruments Incorporated 19 Revision History • • 20 www.ti.com Replaced Figure 4-1 ........................................................................................................................................ 18 Changed values of C8, C9, R4, C4, and the Description of U1 in Table 4-1 ................................................... 19 TPS54620 Step-Down Converter Evaluation Module User's Guide Copyright © 2021 Texas Instruments Incorporated SLVU281B – MAY 2009 – REVISED AUGUST 2021 Submit Document Feedback IMPORTANT NOTICE AND DISCLAIMER TI PROVIDES TECHNICAL AND RELIABILITY DATA (INCLUDING DATA SHEETS), DESIGN RESOURCES (INCLUDING REFERENCE DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND OTHER RESOURCES “AS IS” AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS AND IMPLIED, INCLUDING WITHOUT LIMITATION ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT OF THIRD PARTY INTELLECTUAL PROPERTY RIGHTS. These resources are intended for skilled developers designing with TI products. You are solely responsible for (1) selecting the appropriate TI products for your application, (2) designing, validating and testing your application, and (3) ensuring your application meets applicable standards, and any other safety, security, regulatory or other requirements. These resources are subject to change without notice. TI grants you permission to use these resources only for development of an application that uses the TI products described in the resource. Other reproduction and display of these resources is prohibited. No license is granted to any other TI intellectual property right or to any third party intellectual property right. TI disclaims responsibility for, and you will fully indemnify TI and its representatives against, any claims, damages, costs, losses, and liabilities arising out of your use of these resources. TI’s products are provided subject to TI’s Terms of Sale or other applicable terms available either on ti.com or provided in conjunction with such TI products. TI’s provision of these resources does not expand or otherwise alter TI’s applicable warranties or warranty disclaimers for TI products. TI objects to and rejects any additional or different terms you may have proposed. IMPORTANT NOTICE Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265 Copyright © 2022, Texas Instruments Incorporated
TPS54620EVM-374 价格&库存

很抱歉,暂时无法提供与“TPS54620EVM-374”相匹配的价格&库存,您可以联系我们找货

免费人工找货
TPS54620EVM-374
    •  国内价格
    • 1+533.54400

    库存:10