0
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
会员中心
创作中心
发布
  • 发文章

  • 发资料

  • 发帖

  • 提问

  • 发视频

创作活动
TPS562231DRLR

TPS562231DRLR

  • 厂商:

    BURR-BROWN(德州仪器)

  • 封装:

    SOT-563-6

  • 描述:

    采用 SOT563 封装的 TPS562231 4.5V 至 17V 输入、2A 同步降压转换器

  • 数据手册
  • 价格&库存
TPS562231DRLR 数据手册
Order Now Product Folder Support & Community Tools & Software Technical Documents TPS562231 ZHCSJF5B – FEBRUARY 2019 – REVISED OCTOBER 2019 采用 SOT563 封装的 TPS562231 4.5V 至 17V 输入、2A 同步降压转换器 1 特性 • • • • • • • • • • • • • • • 1 3 说明 TPS562231 是一款采用 SOT563 封装的简单易用型 2A 同步降压转换器。 2A 转换器集成了 95mΩ 和 55mΩ FET D-CAP3™模式控制,用于快速瞬态响应 输入电压范围:4.5V 至 17V 输出电压范围:0.6V 至 7V 脉冲跳跃模式 850kHz 开关频率 小于 2µA(典型值)的低关断电流 2% 反馈电压精度 (25ºC) 从预偏置输出电压中启动 逐周期过流限制 断续模式过流保护 非锁存 UVP 和 TSD 保护 6 引脚 SOT563 封装 精密使能端 与 TPS563231 引脚对引脚兼容 该器件经过优化,最大限度地减少了运行所需的外部组 件并可实现低待机电流。 这些开关模式电源 (SMPS) 器件采用 D-CAP3 模式控 制,该模式控制可提供快速瞬态响应,并同时支持诸如 高分子聚合物等低等效串联电阻 (ESR) 输出电容以及 超低 ESR 陶瓷电容器(无需外部补偿组件)。 在轻载运行期间,TPS562231 在脉冲跳跃模式 (PSM) 下运行,从而保持高效率。TPS562231 采用 6 引脚 1.6mm × 1.6mm SOT563 (DRL) 封装,额定结温范围 为 –40°C 至 125°C。 器件信息(1) 器件型号 2 应用 • • • • • • • TPS562231 封装 封装尺寸(标称值) DRL (6) 1.60mm x 1.60mm (1) 如需了解所有可用封装,请参阅数据表末尾的可订购产品附 录。 标准 12V 电源轨 数字电视电源 嵌入式系统 网络家庭终端设备 数字机顶盒 (STB) 监控 电表 空白 SPACER 简化电路原理图 TPS562231 效率 VIN VIN 100 BST CBST CIN L VOUT RFBT GND 80 SW FB COUT RFBB Efficiency(%) EN 60 40 20 0.001 Vo=1.05V Vo=1.8V Vo=3.3V Vo=5V 0.01 0.1 Iout(A) 1 2 TPS5 1 本文档旨在为方便起见,提供有关 TI 产品中文版本的信息,以确认产品的概要。 有关适用的官方英文版本的最新信息,请访问 www.ti.com,其内容始终优先。 TI 不保证翻译的准确 性和有效性。 在实际设计之前,请务必参考最新版本的英文版本。 English Data Sheet: SLUSDA4 TPS562231 ZHCSJF5B – FEBRUARY 2019 – REVISED OCTOBER 2019 www.ti.com.cn 目录 1 2 3 4 5 6 7 特性 .......................................................................... 应用 .......................................................................... 说明 .......................................................................... 修订历史记录 ........................................................... Pin Configuration and Functions ......................... Specifications......................................................... 1 1 1 2 3 4 6.1 6.2 6.3 6.4 6.5 6.6 4 4 4 5 6 7 Absolute Maximum Ratings ...................................... ESD Ratings.............................................................. Recommended Operating Conditions....................... Thermal Information .................................................. Electrical Characteristics........................................... Typical Characteristics .............................................. Detailed Description .............................................. 9 7.1 Overview ................................................................... 9 7.2 Functional Block Diagram ......................................... 9 7.3 Feature Description................................................... 9 7.4 Device Functional Modes........................................ 10 8 Application and Implementation ........................ 12 8.1 Application Information............................................ 12 8.2 Typical Application ................................................. 12 9 Power Supply Recommendations...................... 16 10 Layout................................................................... 17 10.1 Layout Guidelines ................................................. 17 10.2 Layout Example .................................................... 17 11 器件和文档支持 ..................................................... 18 11.1 11.2 11.3 11.4 11.5 11.6 器件支持 ............................................................... 接收文档更新通知 ................................................. 社区资源................................................................ 商标 ....................................................................... 静电放电警告......................................................... Glossary ................................................................ 18 18 18 18 18 18 12 机械、封装和可订购信息 ....................................... 19 4 修订历史记录 注:之前版本的页码可能与当前版本有所不同。 Changes from Revision A (March 2019) to Revision B • Page Changed FB I/O Type from 'O' to 'I'........................................................................................................................................ 4 Changes from Original (February 2019) to Revision A Page • 已更改 将销售状态从“预告信息”更改为“初始发行版”。........................................................................................................... 1 2 Copyright © 2019, Texas Instruments Incorporated TPS562231 www.ti.com.cn ZHCSJF5B – FEBRUARY 2019 – REVISED OCTOBER 2019 5 Pin Configuration and Functions DRL Package 6-Pin SOT563 Top View VIN 1 6 FB SW 2 5 EN GND 3 4 BST Pin Functions PIN NAME NO. I/O DESCRIPTION BST 4 O Supply input for the high-side NFET gate drive circuit. Connect 0.1 µF capacitor between BST and SW pins. EN 5 I Enable input control. High = On, Low = Off. Can be connected to VIN. Do not float. Adjust the input undervoltage lockout with EN resistor divider. FB 6 I Converter feedback input. Connect to output voltage with feedback resistor divider. GND 3 — Power ground terminals, connected to the source of low-side FET internally. Connect to system ground, ground side of CIN and COUT. Path to CIN must as short as possible. SW 2 O Switch node connection between high-side NFET and low-side NFET. VIN 1 I Input voltage supply pin. The drain terminal of high-side power NFET. Copyright © 2019, Texas Instruments Incorporated 3 TPS562231 ZHCSJF5B – FEBRUARY 2019 – REVISED OCTOBER 2019 www.ti.com.cn 6 Specifications 6.1 Absolute Maximum Ratings over operating free-air temperature range (unless otherwise noted) (1) Input voltage MIN MAX UNIT VIN –0.3 19 V BST –0.3 24.5 V BST (10 ns transient) –0.3 26.5 V BST to SW –0.3 5.5 V FB –0.3 5.5 V EN -0.3 VIN + 0.3 SW –2 19 V SW (10 ns transient) –3.5 21 V Operating junction temperature TJ –40 150 °C Storage temperature Tstg –55 150 °C (1) Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings only, which do not imply functional operation of the device at these or any other conditions beyond those indicated under Recommended Operating Conditions. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability. 6.2 ESD Ratings VALUE V(ESD) (1) (2) Electrostatic discharge Human-body model (HBM), per ANSI/ESDA/JEDEC JS-001 (1) ±2000 Charged-device model (CDM), per JEDEC specification JESD22C101 (2) ±500 UNIT V JEDEC document JEP155 states that 500-V HBM allows safe manufacturing with a standard ESD control process. JEDEC document JEP157 states that 250-V CDM allows safe manufacturing with a standard ESD control process. 6.3 Recommended Operating Conditions over operating free-air temperature range (unless otherwise noted) Input voltage Operating junction temperature 4 MIN MAX VIN 4.5 17 BST –0.1 22 BST to SW –0.1 5 EN –0.1 VIN FB –0.1 4.5 SW –1.8 17 TJ –40 125 UNIT V V °C Copyright © 2019, Texas Instruments Incorporated TPS562231 www.ti.com.cn ZHCSJF5B – FEBRUARY 2019 – REVISED OCTOBER 2019 6.4 Thermal Information TPS562231 THERMAL METRIC (1) DRL UNIT 6 PINS θJA Junction-to-ambient thermal resistance 135.8 °C/W θJC(top) Junction-to-case (top) thermal resistance 45.5 °C/W θJB Junction-to-board thermal resistance 23.8 °C/W ψJT Junction-to-top characterization parameter 1.2 °C/W ψJB Junction-to-board characterization parameter 24.0 °C/W (1) For more information about traditional and new thermal metrics, see the Semiconductor and IC Package Thermal Metrics application report. Copyright © 2019, Texas Instruments Incorporated 5 TPS562231 ZHCSJF5B – FEBRUARY 2019 – REVISED OCTOBER 2019 www.ti.com.cn 6.5 Electrical Characteristics TJ = –40°C to 125°C, VIN = 12 V (unless otherwise noted) PARAMETER TEST CONDITIONS MIN TYP MAX UNIT 220 300 µA 2 12 µA 4.0 4.3 POWER SUPPLY (VIN PIN) IVIN Operating – non-switching supply current VEN = 5 V, VFB = 0.7 V IVINSDN Shutdown supply current VEN = 0 V VIN_UVLO Undervoltage lockout thresholds Rising threshold Falling threshold 3.3 Hysteresis 3.6 V 0.4 ENABLE (EN PIN) VENH EN high-level input voltage VENL EN low-level input voltage REN EN pin resistance to GND 1.1 1.24 1.42 1 1.13 1.3 VEN = 12 V 1000 V V kΩ VOLTAGE REFERENCE (FB PIN) VIN = 4.5 V to 17 V, TJ = 25 °C 588 600 612 mV VREF Reference voltage IFB VFB input current VFB = 0.6 V RDSON_H High-side switch resistance TJ = 25°C, VBST – VSW = 5.5 V 95 mΩ RDSON_L Low-side switch resistance TJ = 25°C 55 mΩ VIN = 4.5 V to 17 V, TJ = –40°C to 125°C 600 0 mV ±100 nA MOSFET CURRENT LIMIT IOC_LS Low side FET source current limit IZC Zero cross current detection 2.3 TPS562231 2.8 0 3.3 A A THERMAL SHUTDOWN TSDN Thermal shutdown threshold (1) Shutdown temperature Hysteresis 160 25 °C ON-TIME TIMER CONTROL tON(MIN) tOFF(MIN) Minimum on time (1) 80 ns VFB = 0.5 V 250 ns Soft-start time Internal soft-start time 1.5 ms Switching frequency VIN = 12 V, VOUT = 3.3 V, CCM mode 850 kHz 65 % Minimum off time (1) SOFT START Tss FREQUENCY Fsw OUTPUT UNDERVOLTAGE AND OVERVOLTAGE PROTECTION VUVP Output UVP falling threshold THICCUP_WAIT UVP propagation delay 0.6 ms THICCUP_RE Hiccup time before restart 24 ms (1) 6 Hiccup detect Not production tested. 版权 © 2019, Texas Instruments Incorporated TPS562231 www.ti.com.cn ZHCSJF5B – FEBRUARY 2019 – REVISED OCTOBER 2019 6.6 Typical Characteristics VIN = 12 V (unless otherwise noted) 230 610 608 Reference Voltage VREF (V) Quiescent Current IQ (µA) 225 220 215 210 205 606 604 602 600 598 596 594 200 -50 -25 0 25 50 75 Temperature (°C) 100 125 592 -40 150 -20 0 20 Iq-S 图 1. IQ vs Junction Temperature 40 60 80 Temperature(qC) 100 120 140 Refe 图 2. VREF Voltage vs Junction Temperature 4.3 1.3 EN Threshold VEN (V) VIN UVLO Threshold (V) 4.2 4.1 4 Rising Falling 3.9 3.8 1.25 1.2 Rising Falling 1.15 3.7 3.6 -50 -25 0 25 50 75 Temperature (°C) 100 125 1.1 -50 150 0 25 50 75 Temperature (°C) 100 125 150 en-S 图 4. EN Pin UVLO vs Junction Temperature 140 3 120 HS and LS FET RDSON LS Fet Valley Current Limit Isc_cl(A) 图 3. VIN UVLO vs Junction Temperature 3.04 2.96 2.92 HS LS 100 80 60 2.88 2.84 -50 -25 vin- -25 0 25 50 75 Temperature(qC) 100 125 150 图 5. Current Limit vs Junction Temperature 版权 © 2019, Texas Instruments Incorporated Vall 40 -50 -25 0 25 50 75 Temperature (°C) 100 125 150 rdso 图 6. RDS-ON vs Junction Temperature 7 TPS562231 ZHCSJF5B – FEBRUARY 2019 – REVISED OCTOBER 2019 www.ti.com.cn Typical Characteristics (接 接下页) VIN = 12 V (unless otherwise noted) 100 100 80 Efficiency(%) Efficiency(%) 80 60 40 40 Vin=5V Vin=9V Vin=12V Vin=17V 20 0 0.001 0.01 0.1 1 Vin=5V Vin=9V Vin=12V Vin=17V 20 0.001 2 Iout(A) 60 0.01 0.1 1 2 Iout(A) TPS5 图 7. TPS562231 VOUT = 1.05 V Efficiency TPS5 图 8. TPS562231 VOUT = 1.8 V Efficiency 100 100 90 Efficiency(%) Efficiency(%) 80 60 40 Vin=5V Vin=9V Vin=12V Vin=17V 20 0.001 0.01 0.1 1 70 60 40 0.001 0.1 1 2 Iout(A) TPS5 图 10. TPS562231 VOUT = 5 V Efficiency 3.339 3.36 3.336 3.35 3.333 3.34 3.33 3.33 3.327 3.32 Vout(V) VOUT(V) 0.01 TPS5 图 9. TPS562231 VOUT = 3.3 V Efficiency 3.324 3.321 3.318 3.31 3.3 3.29 3.315 3.28 3.312 Vin=9V Vin=12V Vin=17V 3.309 3.27 0 0.2 0.4 Io=0A Io=1A Io=2A 3.26 3.306 0.6 0.8 1 1.2 Iout(A) 1.4 1.6 1.8 图 11. TPS562231 VOUT = 3.3V Load Regulation 8 7.5V 9V 12V 17V 50 2 Iout(A) 80 2 TPS5 3.25 4 6 8 10 12 14 16 Vin(V) 18 TPS5 图 12. TPS562231 VOUT = 3.3 V Line Regulation 版权 © 2019, Texas Instruments Incorporated TPS562231 www.ti.com.cn ZHCSJF5B – FEBRUARY 2019 – REVISED OCTOBER 2019 7 Detailed Description 7.1 Overview The TPS562231 is a 2-A synchronous step-down converter. The proprietary D-CAP3 mode control supports low ESR output capacitors such as specialty polymer capacitors and multi-layer ceramic capacitors without complex external compensation circuits. The fast transient response of D-CAP3 mode control can reduce the output capacitance required to meet a specific level of performance. 7.2 Functional Block Diagram EN 5 1 VIN VUVP + UVP Hiccup Control Logic VREG5 Regulator UVLO FB 6 Voltage Reference + + + 4 BST PWM SS Soft Start HS + Internal Ramp 2 SW One-Shot XCON VREG5 Ripple Injection TSD OCL threshold LS OCL + 3 GND + ZC 7.3 Feature Description 7.3.1 Adaptive On-Time Control and PWM Operation The main control loop of the TPS562231 is adaptive on-time pulse width modulation (PWM) controller that supports a proprietary D-CAP3 mode control. The D-CAP3 mode control combines adaptive on-time control with an internal compensation circuit for pseudo-fixed frequency and low external component count configuration with both low-ESR and ceramic output capacitors. It is stable even with virtually no ripple at the output. At the beginning of each cycle, the high-side MOSFET is turned on. This MOSFET is turned off after internal onshot timer expires. This one shot duration is set proportional to the converter input voltage, VIN, and inversely proportional to the output voltage, VOUT, to maintain a pseudo-fixed frequency over the input voltage range, hence it is called adaptive on-time control. The on-shot timer is reset and the high-side MOSFET is turned on again when the feedback voltage falls below the reference voltage. An internal ramp is added to reference voltage to simulate output ripple, eliminating the need for ESR induced output ripple from D-CAP3 mode control. 版权 © 2019, Texas Instruments Incorporated 9 TPS562231 ZHCSJF5B – FEBRUARY 2019 – REVISED OCTOBER 2019 www.ti.com.cn Feature Description (接 接下页) 7.3.2 Soft Start and Pre-Biased Soft Start The TPS562231 has an internal 1.5-ms soft-start. When the EN pin becomes high, the internal soft-start function begins ramping up the reference voltage from 0 V to 0.6 V linearly. If the output capacitor is pre-biased at startup, the devices initiate switching and start ramping up only after the internal reference voltage becomes greater than the feedback voltage VFB. This scheme ensures that the converters ramp up smoothly into regulation point. 7.3.3 Over Current and Short Circuit Protection The TPS562231 is protected from over-current conditions by cycle-by-cycle current limit on the valley of the inductor current. Hiccup mode will be activated if a fault condition persists to prevent over-heating. The current going through low-side (LS) MOSFET is sensed and monitored. When the LS MOSFET turns on, the inductor current begins to ramp down. The LS MOSFET will not be turned OFF if its current is above the LS current limit ILS_LIMIT even the feedback voltage, VFB, drops below the reference voltage VREF. The LS MOSFET is kept ON so that inductor current keeps ramping down, until the inductor current ramps below the LS current limit ILS_LIMIT. Then the LS MOSFET is turned OFF and the HS switch is turned on after a dead time. As the inductor current is limited by ILS_LIMT, the output voltage tends to drop as the inductor current may be smaller than the load current. Hiccup current protection mode is activated once the VFB drops below the UVP threshold after a delay time (600 µs typically). In hiccup mode, the regulator is shut down and kept off for 24 ms typically before the TPS562231 try to start again. If over-current or short-circuit fault condition still exist, hiccup will repeat until the fault condition is removed. Hiccup mode reduces power dissipation under severe over-current conditions, prevents over-heating and potential damage to the device. 7.3.4 Undervoltage Lockout (UVLO) Protection UVLO protection monitors the internal regulator voltage. When the voltage is lower than UVLO threshold voltage, the device is shut off. This protection is non-latching. 7.3.5 Thermal Shutdown The device monitors the temperature of itself. If the temperature exceeds the threshold value (typically 160°C), the device is shut off. This is a non-latch protection. 7.4 Device Functional Modes 7.4.1 Shutdown Mode The EN pin provides electrical ON and OFF control for the TPS562231. When VEN is below its threshold (1.13 V typically), the device is in shutdown mode. The switching regulator is turned off and the quiescent current drops to 2.0 µA typically. The TPS562231 also employ VIN under voltage lock out protection. If VIN voltage is below its UVLO threshold (3.6 V typically), the regulator is turned off. 7.4.2 Continuous Conduction Mode (CCM) Continuous Conduction Mode (CCM) operation is employed when the load current is higher than half of the peak-to-peak inductor current. In CCM operation, the frequency of operation is pseud fixed, output voltage ripple will be at a minimum in this mode and the maximum output current of 2 A can be supplied. 10 版权 © 2019, Texas Instruments Incorporated TPS562231 www.ti.com.cn ZHCSJF5B – FEBRUARY 2019 – REVISED OCTOBER 2019 Device Functional Modes (接 接下页) 7.4.3 Pulse Skip Mode (PSM, TPS562231) The TPS562231 is designed with Advanced Eco-mode™ to maintain high light load efficiency. As the output current decreases from heavy load condition, the inductor current is also reduced and eventually comes to point that its rippled valley touches zero level, which is the boundary between continuous conduction mode (CCM) and discontinuous conduction mode (DCM). The low-side MOSFET is turned off when the zero inductor current is detected. As the load current further decreases the converter runs into discontinuous conduction mode. The ontime is kept almost the same as it was in the continuous conduction mode so that it takes longer time to discharge the output capacitor with smaller load current to the level of the reference voltage. This makes the switching frequency lower, proportional to the load current, and keeps the light load efficiency high. The transition point to the light load operation current IOUT_LL can be calculated in 公式 1. (V VOUT ) u VOUT 1 u IN IOUT _ LL 2 u L u fSW VIN (1) As the load current continues to decrease, the switching frequency also decreases. The on-time starts to decrease once the switching frequency is lower than 250 kHz. The on-time can be about 22% reduced at most for extremely light load condition. This function is employed to achieve smaller ripple at extremely light load condition. 版权 © 2019, Texas Instruments Incorporated 11 TPS562231 ZHCSJF5B – FEBRUARY 2019 – REVISED OCTOBER 2019 www.ti.com.cn 8 Application and Implementation 注 Information in the following applications sections is not part of the TI component specification, and TI does not warrant its accuracy or completeness. TI’s customers are responsible for determining suitability of components for their purposes. Customers should validate and test their design implementation to confirm system functionality. 8.1 Application Information The devices are typical step-down DC-DC converters. It typically uses to convert a higher dc voltage to a lower dc voltage with a maximum available output current of 2 A. The following design procedure can be used to select component values for the TPS562231. Alternately, the WEBENCH® software may be used to generate a complete design. The WEBENCH software uses an iterative design procedure and accesses a comprehensive database of components when generating a design. This section presents a simplified discussion of the design process. 8.2 Typical Application The TPS562231 only require a few external components to convert from a higher variable voltage supply to a fixed output voltage. 图 13 shows a basic schematic of 3.3-V output application. This section provides the design procedure. VIN 12 V BST VIN CIN 10 µF CBOOT 0.1 µF VOUT 3.3 V L 3.3 µH SW EN RFBT 45.3 NŸ COUT 47 µF FB GND RFBB 10 NŸ 图 13. TPS562231 3.3V/2-A Reference Design 8.2.1 Design Requirements 表 1 shows the design parameters for this application. 表 1. Design Parameters PARAMETER Input voltage range Output voltage Transient response, 2-A load step EXAMPLE VALUE 4.5 to 17 V 3.3 V ΔVout = ±5% Input ripple voltage 400 mV Output ripple voltage 30 mV Output current rating 2A Operating frequency 850 kHz 8.2.2 Detailed Design Procedure 8.2.2.1 Output Voltage Resistors Selection The output voltage is set with a resistor divider from the output node to the FB pin. 1% tolerance or better divider resistors is recommended. Start by using 公式 2 to calculate VOUT. 12 版权 © 2019, Texas Instruments Incorporated TPS562231 www.ti.com.cn ZHCSJF5B – FEBRUARY 2019 – REVISED OCTOBER 2019 To improve efficiency at very light loads consider using larger value resistors, too high of resistance will be more susceptible to noise and voltage errors from the FB input current will be more noticeable. § RFBT · VOUT 0.6 u ¨ 1 ¸ RFBB ¹ © (2) Choose the value of RFBB to be 10 kΩ. With the desired output voltage set to 3.3 V and the VREF = 0.6 V, the RFBT value can then be calculated using 公式 2. The formula yields to a value 45.3 kΩ of RFBT. 8.2.2.2 Output Filter Selection The LC filter used as the output filter has double pole at: 1 fP 2S L u COUT (3) At low frequencies, the overall loop gain is set by the output set-point resistor divider network and the internal gain of the device. The low frequency phase is 180°. At the output filter pole frequency, the gain rolls off at a –40 dB per decade rate and the phase drops rapidly. D-CAP3 introduces a high frequency zero that reduces the gain roll off to –20 dB per decade and increases the phase to 90° one decade above the zero frequency. The inductor and capacitor for the output filter must be selected so that the double pole of 公式 3 is located below the high frequency zero but close enough that the phase boost provided be the high frequency zero provides adequate phase margin for a stable circuit. To meet this requirement use the values recommended in 表 2. 表 2. Recommended Component Values OUTPUT VOLTAGE (V) R1 (kΩ) R2 (kΩ) L1 (µH) MIN TYP MAX C8 + C9 (µF) 1 6.65 10.0 1 1.2 4.7 20 to 68 1.05 7.5 10.0 1 1.2 4.7 20 to 68 1.2 10 10.0 1.2 1.5 4.7 20 to 68 1.5 15 10.0 1.5 1.5 4.7 20 to 68 1.8 20 10.0 1.5 2.2 4.7 20 to 68 2.5 31.6 10.0 2.2 2.2 4.7 20 to 68 3.3 45.3 10.0 2.2 3.3 4.7 20 to 68 5 73.2 10.0 3.3 4.7 4.7 20 to 68 6.5 97.6 10.0 3.3 4.7 4.7 20 to 68 The inductor peak-to-peak ripple current, peak current and RMS current are calculated using 公式 4, 公式 5, and 公式 6. The inductor saturation current rating must be greater than the calculated peak current and the RMS or heating current rating must be greater than the calculated RMS current. VIN _ MAX VOUT VOUT IL _ PP u VIN _ MAX L u fSW (4) IL _ PK IL _ RMS IOUT 2 IOUT IL _ PP 2 (5) 1 2 IL _ PP 12 (6) For this design example, the calculated peak current is 2.43 A and the calculated RMS current is 2.01A. The inductor used is a WE 74437349033 with a peak current rating of 13.5 A and an RMS current rating of 5 A. The capacitor value and ESR determines the amount of output voltage ripple. The TPS562231 is intended for use with ceramic or other low ESR capacitors. Recommended values range from 20 µF to 68 µF. Use 公式 7 to determine the required RMS current rating for the output capacitor. IC _ RMS VOUT u VIN _ MAX VOUT 12 u VIN _ MAX u L u fSW 版权 © 2019, Texas Instruments Incorporated (7) 13 TPS562231 ZHCSJF5B – FEBRUARY 2019 – REVISED OCTOBER 2019 www.ti.com.cn For this design two Murata GRM21BR61A226ME44L 22-µF/10-V output capacitors are used in parallel. The typical ESR is 3mΩ each. The calculated RMS current is 0.39 A and each output capacitor is rated for 5 A. 8.2.2.3 Input Capacitor Selection The TPS562231 requires an input decoupling capacitor and a bulk capacitor is needed depending on the application. TI recommends a ceramic capacitor over 10-µF for the decoupling capacitor. An additional 0.1-µF capacitor from VIN pin to GND pin is also recommended to provide additional high frequency filtering. The capacitor voltage rating needs to be greater than the maximum input voltage, 25 V or higher voltage rating is recommended. 8.2.2.4 Bootstrap Capacitor Selection A 0.1-µF ceramic capacitor must be connected between the BST to SW pin for proper operation. 10 V or higher voltage rating is recommended. 14 版权 © 2019, Texas Instruments Incorporated TPS562231 www.ti.com.cn ZHCSJF5B – FEBRUARY 2019 – REVISED OCTOBER 2019 8.2.3 Application Curves VSW [5V/div] VSW [5V/div] VOUT [5mV/div ] VOUT [10mV/div ] IL [1A/div] IL [1A/div] Time [1 s/div] Time [2 s/div] 图 14. CCM Mode 图 15. DCM Mode VSW [5V/div] VIN [5V/div] VOUT [10mV/div ] VOUT [1V/div ] IL [1A/div] IL [2A/div] Time [1ms/div] Time [2ms/div] 图 17. Start-up by VIN 图 16. PSM Mode VOUT [100mV/div ] VEN [2V/div] VOUT [1V/div ] Iout [1A/div] IL [2A/div] IO Time [400 s/div] Time [1ms/div] 图 18. Start-up by EN 版权 © 2019, Texas Instruments Incorporated 图 19. Load Transient 15 TPS562231 ZHCSJF5B – FEBRUARY 2019 – REVISED OCTOBER 2019 www.ti.com.cn VOUT [1V/div ] VOUT [1V/div ] IL [2A/div] IL [2A/div] Time [20ms/div] Time [20ms/div] 图 20. Short Protection 图 21. Short Recovery 9 Power Supply Recommendations TPS562231 is designed to operate from input supply voltage in the range of 4.5 V to 17 V. Buck converters require the input voltage to be higher than the output voltage for proper operation. The maximum recommended operating duty cycle is 70%. Using that criteria, the minimum recommended input voltage is VO / 0.7. 16 版权 © 2019, Texas Instruments Incorporated TPS562231 www.ti.com.cn ZHCSJF5B – FEBRUARY 2019 – REVISED OCTOBER 2019 10 Layout 10.1 Layout Guidelines 1. VIN and GND traces should be as wide as possible to reduce trace impedance. The wide areas are also of advantage from the view point of heat dissipation. 2. The input capacitor and output capacitor should be placed as close to the device as possible to minimize trace impedance. 3. Provide sufficient vias for the input capacitor and output capacitor. 4. Keep the SW trace as physically short and wide as practical to minimize radiated emissions. 5. Do not allow switching current to flow under the device. 6. A separate VOUT path should be connected to the upper feedback resistor. 7. Make a Kelvin connection to the GND pin for the feedback path. 8. Voltage feedback loop should be placed away from the high-voltage switching trace, and preferably has ground shield. 9. The trace of the VFB node should be as small as possible to avoid noise coupling. 10. The GND trace between the output capacitor and the GND pin should be as wide as possible to minimize its trace impedance. 10.2 Layout Example VIN GND CIN SW RFBB VIN FB SW EN GND BST RFBT EN Control CBST L VOUT GND COUT VIA (Connected to GND plane at bottom layer) VIA (Connected to SW) 图 22. TPS562231 Layout 版权 © 2019, Texas Instruments Incorporated 17 TPS562231 ZHCSJF5B – FEBRUARY 2019 – REVISED OCTOBER 2019 www.ti.com.cn 11 器件和文档支持 11.1 器件支持 11.2 接收文档更新通知 要接收文档更新通知,请导航至 ti.com. 上的器件产品文件夹。单击右上角的通知我进行注册,即可每周接收产品 信息更改摘要。有关更改的详细信息,请查看任何已修订文档中包含的修订历史记录。 11.3 社区资源 TI E2E™ support forums are an engineer's go-to source for fast, verified answers and design help — straight from the experts. Search existing answers or ask your own question to get the quick design help you need. Linked content is provided "AS IS" by the respective contributors. They do not constitute TI specifications and do not necessarily reflect TI's views; see TI's Terms of Use. 11.4 商标 D-CAP3, E2E are trademarks of Texas Instruments. WEBENCH is a registered trademark of Texas Instruments. 11.5 静电放电警告 ESD 可能会损坏该集成电路。德州仪器 (TI) 建议通过适当的预防措施处理所有集成电路。如果不遵守正确的处理措施和安装程序 , 可 能会损坏集成电路。 ESD 的损坏小至导致微小的性能降级 , 大至整个器件故障。 精密的集成电路可能更容易受到损坏 , 这是因为非常细微的参数更改都可 能会导致器件与其发布的规格不相符。 11.6 Glossary SLYZ022 — TI Glossary. This glossary lists and explains terms, acronyms, and definitions. 18 版权 © 2019, Texas Instruments Incorporated TPS562231 www.ti.com.cn ZHCSJF5B – FEBRUARY 2019 – REVISED OCTOBER 2019 12 机械、封装和可订购信息 以下页面包含机械、封装和可订购信息。这些信息是指定器件的最新可用数据。数据如有变更,恕不另行通知,且 不会对此文档进行修订。如需获取此数据表的浏览器版本,请查阅左侧的导航栏。 版权 © 2019, Texas Instruments Incorporated 19 PACKAGE OPTION ADDENDUM www.ti.com 10-Dec-2020 PACKAGING INFORMATION Orderable Device Status (1) Package Type Package Pins Package Drawing Qty Eco Plan (2) Lead finish/ Ball material MSL Peak Temp Op Temp (°C) Device Marking (3) (4/5) (6) TPS562231DRLR ACTIVE SOT-5X3 DRL 6 4000 RoHS & Green Call TI | SN Level-1-260C-UNLIM -40 to 125 2231 TPS562231DRLT ACTIVE SOT-5X3 DRL 6 250 RoHS & Green Call TI | SN Level-1-260C-UNLIM -40 to 125 2231 (1) The marketing status values are defined as follows: ACTIVE: Product device recommended for new designs. LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect. NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design. PREVIEW: Device has been announced but is not in production. Samples may or may not be available. OBSOLETE: TI has discontinued the production of the device. (2) RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may reference these types of products as "Pb-Free". RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption. Green: TI defines "Green" to mean the content of Chlorine (Cl) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of
TPS562231DRLR 价格&库存

很抱歉,暂时无法提供与“TPS562231DRLR”相匹配的价格&库存,您可以联系我们找货

免费人工找货
TPS562231DRLR
  •  国内价格 香港价格
  • 1+4.235911+0.52999
  • 10+2.9226710+0.36568
  • 25+2.6094925+0.32650
  • 100+2.25905100+0.28265
  • 250+2.09256250+0.26182
  • 500+1.99201500+0.24924
  • 1000+1.909171000+0.23887

库存:15250

TPS562231DRLR
    •  国内价格
    • 1+0.40274

    库存:600