0
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
会员中心
创作中心
发布
  • 发文章

  • 发资料

  • 发帖

  • 提问

  • 发视频

创作活动
TPS59640EVM-751

TPS59640EVM-751

  • 厂商:

    BURR-BROWN(德州仪器)

  • 封装:

    Module

  • 描述:

    EVAL MODULE FOR TPS59640-751

  • 数据手册
  • 价格&库存
TPS59640EVM-751 数据手册
User's Guide SLUU796 – January 2012 Using the TPS59640EVM-751 IMVP-7, 3-Phase CPU/1-Phase GPU SVID Power System The TPS59640EVM-751 evaluation module (EVM) is a complete solution for the Intel™ IMVP-7 Serial VID (SVID) Power System from a 9-V to 20-V input bus. This EVM uses the TPS59640 for IMVP-7 3-Phase CPU and 1-Phase GPU Vcore, TPS51219 for 1.05VCCIO, TPS51916 for DDR3L/DDR4 memory rail (1.2VDDQ, 0.6VTT, and 0.6VTTREF). The TPS59640EVM-751 also uses the 5-mm x 6-mm TI power block MOSFET (CSD87350Q5D) for high-power density and superior thermal performance. 1 2 3 4 5 6 7 8 9 10 Contents Description ................................................................................................................... 4 1.1 Typical Applications ................................................................................................ 4 1.2 Features ............................................................................................................. 4 TPS59640EVM-751 Power System Block Diagram .................................................................... 5 Electrical Performance Specifications .................................................................................... 6 Schematic .................................................................................................................... 8 Test Setup .................................................................................................................. 21 5.1 Test Equipment ................................................................................................... 21 5.2 Recommended Wire Gage ...................................................................................... 22 5.3 Recommended Test Setup ...................................................................................... 22 5.4 USB Cable Connections ......................................................................................... 23 5.5 Input Connections ................................................................................................ 23 5.6 Output Connections .............................................................................................. 24 Configuration ............................................................................................................... 24 6.1 CPU and GPU Configuration ................................................................................... 24 6.2 1.2VDDQ, 0.6V VTT and 0.6V VTTREF Configuration ...................................................... 27 6.3 1.05V VCCIO Configuration ..................................................................................... 27 Test Procedure ............................................................................................................ 28 7.1 Line/Load Regulation and Efficiency Measurement Procedure ............................................ 28 7.2 Equipment Shutdown ............................................................................................ 31 Performance Data and Typical Characteristic Curves ................................................................ 32 8.1 CPU3-Phase Operation .......................................................................................... 32 8.2 CPU 2-Phase Operation ......................................................................................... 36 8.3 CPU 1-Phase Operation ......................................................................................... 40 8.4 GPU Operation ................................................................................................... 44 8.5 1.05V VCCIO ...................................................................................................... 48 8.6 1.2 VDDQ .......................................................................................................... 51 EVM Assembly Drawings and PCB layout ............................................................................. 53 Bill of Materials ............................................................................................................. 59 List of Figures 1 TPS59640EVM-751 Power System Block Diagram .................................................................... 5 2 TPS59640EVM-751 EVM Illustration ..................................................................................... 6 3 TPS59640EVM-751 Schematic (1 of 13) ................................................................................ 8 4 TPS59640EVM-751 Schematic (2 of 13) ................................................................................ 9 Intel is a trademark of Intel Corporation. Windows is a trademark of Microsoft Corporation. SLUU796 – January 2012 Submit Documentation Feedback Using the TPS59640EVM-751 IMVP-7, 3-Phase CPU/1-Phase GPU SVID Power System Copyright © 2012, Texas Instruments Incorporated 1 www.ti.com 5 TPS59640EVM-751 Schematic (3 of 13)............................................................................... 10 6 TPS59640EVM-751 Schematic (4 of 13)............................................................................... 11 7 TPS59640EVM-751 Schematic (5 of 13)............................................................................... 12 8 TPS59640EVM-751 Schematic (6 of 13)............................................................................... 13 9 TPS59640EVM-751 Schematic (7 of 13)............................................................................... 14 10 TPS59640EVM-751 Schematic (8 of 13)............................................................................... 15 11 TPS59640EVM-751 Schematic (9 of 13)............................................................................... 16 12 TPS59640EVM-751 Schematic (10 of 13) ............................................................................. 17 13 TPS59640EVM-751 Schematic (11 of 13) ............................................................................. 18 14 TPS59640EVM-751 Schematic (12 of 13) ............................................................................. 19 15 TPS59640EVM-751 Schematic (13 of 13) ............................................................................. 20 16 USB Cable.................................................................................................................. 21 17 TPS59640EVM-751 Recommended Test Setup ...................................................................... 23 18 TPS59640EVM-751 CPU GUI Setup Window ......................................................................... 29 19 TPS59640EVM-751 GPU GUI Setup Window 30 20 CPU3 Efficiency 32 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 2 ........................................................................ ........................................................................................................... CPU3 Load Regulation ................................................................................................... CPU3 Enable Turnon ..................................................................................................... CPU3 Enable Turnoff ..................................................................................................... CPU3 Switching Node (Ripple) ......................................................................................... CPU3 Dynamic VID: SetVID-Slow/Slow ................................................................................ CPU3 Dynamic VID:SetVID-Fast/Fast ................................................................................. CPU3 Dynamic VID:SetVID-Decay/Fast ............................................................................... CPU3 Output Load Insertion With OSR/USR20k (Min) ............................................................. CPU3 Output Load Release With OSR/USR 20k (Min) .............................................................. CPU3 Bode Plot at 12Vin, 1.05 V/60 A ................................................................................. CPU3 MOSFET ........................................................................................................... CPU3 IC .................................................................................................................... CPU2 Efficiency ........................................................................................................... CPU2 Load Regulation ................................................................................................... CPU2 Enable Turnon .................................................................................................... CPU2 Enable Turnoff .................................................................................................... CPU2 Switching Node (Ripple) ......................................................................................... CPU2 Dynamic VID: SetVID-Slow/Slow ................................................................................ CPU2 Dynamic VID: SetVID-Fast/Fast ................................................................................ CPU2 Dynamic VID: SetVID-Decay/Fast .............................................................................. CPU2 Output Load Insertion With OSR/USR 20k (Min) ............................................................. CPU2 Output Load Release With OSR/USR 20k (Min) ............................................................. CPU2 Bode Plot at 12Vin, 1.05 V/55 A ................................................................................. CPU2 MOSFET ........................................................................................................... CPU2 IC .................................................................................................................... CPU1 Efficiency ........................................................................................................... CPU1 Load Regulation ................................................................................................... CPU1 Enable Turnon .................................................................................................... CPU1 Enable Turnoff .................................................................................................... CPU1 Switching Node ................................................................................................... CPU1 Switching Node and Ripple ...................................................................................... CPU1 Dynamic VID: SetVID-Slow/Slow ............................................................................... CPU1 Dynamic VID: SetVID-Fast/Fast ................................................................................ Using the TPS59640EVM-751 IMVP-7, 3-Phase CPU/1-Phase GPU SVID Power System Copyright © 2012, Texas Instruments Incorporated 32 32 32 32 32 33 33 33 33 34 34 34 36 36 36 36 36 36 37 37 37 37 38 38 38 40 40 40 40 40 40 41 41 SLUU796 – January 2012 Submit Documentation Feedback www.ti.com 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 .............................................................................. CPU1 Output Load Insertion With OSR/USR 20k (Min) ............................................................. CPU1 Output Load Release With OSR/USR 20k (Min) ............................................................. CPU1 Bode Plot at 12Vin, 1.05 V/33 A ................................................................................. CPU1 MOSFET ........................................................................................................... CPU1 IC .................................................................................................................... GPU Efficiency ............................................................................................................ GPU Load Regulation ..................................................................................................... GPU Enable Turnon ...................................................................................................... GPU Enable Turnoff ...................................................................................................... GPU Switching Node ..................................................................................................... GPU Switching Node and Ripple ........................................................................................ GPU Dynamic VID: SetVID-Slow/Slow ................................................................................ GPU Dynamic VID: SetVID-Fast/Fast ................................................................................. GPU Dynamic VID: SetVID-Decay/Fast ............................................................................... GPU Output Load Insertion With OSR/USR 20k (Min) .............................................................. GPU Output Load Release With OSR/USR 20k (Min) .............................................................. GPU Bode Plot at 12Vin, 1.23 V/33 A .................................................................................. GPU MOSFET ............................................................................................................ GPU IC ...................................................................................................................... 1.05-V Efficiency .......................................................................................................... 1.05-V Load Regulation .................................................................................................. 1.05-V Enable Turnon .................................................................................................... 1.05-V Enable Turnoff .................................................................................................... 1.05-V Switching Node ................................................................................................... 1.05-V Ripple............................................................................................................... 1.05-V Transient DCM to CCM ......................................................................................... 1.05-V Transient CCM to DCM .......................................................................................... TPS51219 Thermal........................................................................................................ 1.2-V Efficiency ........................................................................................................... 1.2-V Load Regulation .................................................................................................... 1.2-V Enable Turnon ..................................................................................................... 1.2-V Enable Turnoff ..................................................................................................... 1.2-V Switching Node .................................................................................................... 1.2-V Ripple ................................................................................................................ 1.2-V Transient DCM to CCM ........................................................................................... 1.2-V Transient CCM to DCM ........................................................................................... TPS51916 Thermal........................................................................................................ TPS59640EVM-751 Top Layer Assembly Drawing (Top View) ..................................................... TPS59640EVM-751 Bottom Assembly Drawing (Bottom View) ..................................................... TPS59640EVM-751 Top Copper ....................................................................................... TPS59640EVM-751 Bottom Copper ................................................................................... TPS59640EVM-751 Internal Layer 2 .................................................................................. TPS59640EVM-751 Internal Layer 3 .................................................................................. TPS59640EVM-751 Internal Layer 4 .................................................................................. TPS59640EVM-751 Internal Layer 5 ................................................................................... TPS59640EVM-751 Internal Layer 6 ................................................................................... TPS59640EVM-751 Internal Layer 7 ................................................................................... CPU1 Dynamic VID: SetVID-Decay/Fast SLUU796 – January 2012 Submit Documentation Feedback Using the TPS59640EVM-751 IMVP-7, 3-Phase CPU/1-Phase GPU SVID Power System Copyright © 2012, Texas Instruments Incorporated 41 41 42 43 43 43 44 44 44 44 44 44 45 45 45 45 46 47 47 47 48 48 48 48 48 48 49 49 49 51 51 51 51 51 51 52 52 52 53 54 54 55 55 56 56 57 57 58 3 Description www.ti.com List of Tables 1 TPS59640EVM-751 Electrical Performance Specifications ........................................................... 6 2 Current Limit Trip Selection .............................................................................................. 24 3 CPU Frequency Selection ................................................................................................ 25 4 GPU Frequency Selection ................................................................................................ 25 5 GPU Overshoot/Undershoot Reduction Selection .................................................................... 25 6 GPU Overshoot/Undershoot Reduction Selection .................................................................... 26 7 F2806 DSP Program Mode Selection 26 8 F2806 DSP Program Mode Selection 26 9 10 11 12 13 1 .................................................................................. .................................................................................. Onboard Dynamic Load Selection ...................................................................................... VR_ON Enable Selection................................................................................................. VDDQ S3, S5 Enable Selection ........................................................................................ VCCIO Output Voltage Selection ....................................................................................... Bill of Materials............................................................................................................. 26 27 27 27 59 Description The TPS59640EVM-751 evaluation module is designed to use a 9-V to 20-V input bus to produce six regulated outputs for the IMVP-7 SVID CPU/GPU Power System. The TPS59640EVM-751 is specially designed to demonstrate the TPS59640 full IMVP-7 mobile feature while providing a GUI communication program and a number of test points to evaluate the static and dynamic performance of the TPS59640. 1.1 Typical Applications • 1.2 IMVP-7 Vcore applications for adapter, battery, NVDC, or 3-V/5-V/12-V rails Features The TPS59640EVM-751 features: • Complete solution for 9-V to 20-V input Intel IMVP-7 SVID Power System • GUI communication to demonstrate full IMVP-7 mobile feature • Three-phase CPU Vcore can support up to 94-A output current • One-Phase GPU Vcore can support up to 33-A output current • Eight selectable switching frequencies for CPU and GPU power • Eight levels selectable current limit for CPU and GPU power • Eight levels selectable output overshoot/undershoot reduction (OSR/USR™) for CPU and GPU power • Switches or jumpers for each output enable • Onboard dynamic load for CPU, GPU Vcore and VCCIO output • High efficiency and high density by using TI power block MOSFET • Convenient test points for probing critical waveforms • Eight-layer PCB with 2-oz copper 4 Using the TPS59640EVM-751 IMVP-7, 3-Phase CPU/1-Phase GPU SVID Power System Copyright © 2012, Texas Instruments Incorporated SLUU796 – January 2012 Submit Documentation Feedback TPS59640EVM-751 Power System Block Diagram www.ti.com 2 TPS59640EVM-751 Power System Block Diagram IMVP7 TPS59640 9-20VBAT CPU Core (94A) 48 Pin 6x6 QFN TPS51219 SVID GPU Core (33A) Power Block 16 Pin 3x3 QFN TPS51916 20 Pin 3x3 QFN TPS70102PWP 5Vin 20 Pin PWP VCCIO: 1.05V/15A DDR3L/DDR4 Memory Rail VDDQ: 1.2V/15A VTT: 0.6V/2A, VTTREF: 0.6V/10mA 1.8V/500mA 3.3V/250mA CPU: 0A-32A On Board Dynamic Load for CPU, GPU and VCCIO GUI communication USB Cable A B GPU: 0A-19A VCCIO: 0A-10A TMS320F2806PZS TUSB3410RHB Host Computer Figure 1. TPS59640EVM-751 Power System Block Diagram SLUU796 – January 2012 Submit Documentation Feedback Using the TPS59640EVM-751 IMVP-7, 3-Phase CPU/1-Phase GPU SVID Power System Copyright © 2012, Texas Instruments Incorporated 5 Electrical Performance Specifications www.ti.com IMVP7 TPS59640 + TPS51219 + TPS51916 POWER EVM with CSD87350Q5D Powerblocks CPU/GPU VR_ON Connections for electronic loads CSD87350Q5D OCL, FSW, OSR selection CPU Core TPS59640 TPS51219 VCCIO GPU CORE Sandy Bridge CPU socket (not populated) Intel SVID GUI from USB TPS51916 DDR3L/DDR4 Memory Rail Figure 2. TPS59640EVM-751 EVM Illustration 3 Electrical Performance Specifications Table 1. TPS59640EVM-751 Electrical Performance Specifications PARAMETER TEST CONDITIONS MIN TYP MAX 12 20 UNIT INPUT CHARACTERISTICS 12VBAT input voltage range VBAT Maximum input current VBAT = 12 V, all full load (3-Phase CPU/1-Phase GPU) 9 No-load input current VBAT=12 V, all no load(3-Phase CPU/1-Phase GPU) 5VIN input voltage range Vin = 5 V Maximum input current VBAT =12 V, all full load 0.3 A No-load input current VBAT=12 V, all no load 0.1 A 1.05 V 4.5 V 16.2 A 0.1 A 5 5.5 V OUTPUT CHARACTERISTICS CPU (TPS59640) Output voltage Vcore Output voltage regulation 6 SVID: address:00 CPU, payload: 1.05 V Line regulation 0.1% –1.9 Load regulation(droop) load line Output voltage ripple VBAT=12 V, 1.05 V/90 A (3-Phase) at 300 kHz Output load current CPU 3-Phase operation Output over current Selectable per phase Switching frequency Selectable Full load efficiency VBAT=12 V, 1.05 V/94 A at 300 kHz Using the TPS59640EVM-751 IMVP-7, 3-Phase CPU/1-Phase GPU SVID Power System Copyright © 2012, Texas Instruments Incorporated mΩ 25 0 mVpp 94 A 600 kHz 37 250 300 A 80.05% SLUU796 – January 2012 Submit Documentation Feedback Electrical Performance Specifications www.ti.com Table 1. TPS59640EVM-751 Electrical Performance Specifications (continued) PARAMETER TEST CONDITIONS MIN TYP MAX UNIT GPU (TPS59640) Output voltage Vcore Output voltage regulation SVID: address:01 GPU, payload: 1.23 V 1.23 Line regulation –3.9 Load regulation (droop) load line Output voltage ripple VBAT = 12 V, 1.23 V/35 A at 385 kHz Output load current CPU 3-Phase operation Output over current Selectable per phase Switching frequency Selectable Full load efficiency VBAT = 12 V, 1.23 V/35 A at 385 kHz V 0.1% mΩ 30 0 mVpp 35 A 660 kHz 37 275 385 A 81.99% 1.05-V VCCIO (TPS51219) Output voltage Output voltage regulation Output voltage ripple 1.05 Line regulation 0.1% Load regulation 0.1% VBAT =12 V, 1.05 V/15 A Output load current 30 0 Output over current Switching frequency Selectable Full load efficiency VBAT = 12 V, 1.05 V/15 A V mVpp 15 A 24 A 500 kHz 89.27% DDR3L/DDR4 MEMORY RAIL (TPS51916) Output voltage Output voltage regulation Output voltage ripple 1.2 Line regulation 0.1% Load regulation 0.1% VBAT = 12 V, 1.2 V/15 A Output load current Switching frequency Selectable Full-load efficiency VBAT = 12 V, 1.2 V/15 A Operating temperature SLUU796 – January 2012 Submit Documentation Feedback 30 0 Output over current V mVpp 15 A 500 kHz 90.62% 25 Using the TPS59640EVM-751 IMVP-7, 3-Phase CPU/1-Phase GPU SVID Power System Copyright © 2012, Texas Instruments Incorporated A 24 °C 7 3 8 Using the TPS59640EVM-751 IMVP-7, 3-Phase CPU/1-Phase GPU SVID Power System Copyright © 2012, Texas Instruments Incorporated 5 200k R21 TP17 C1 6 0.33uF TP10 C28 220nF R16 150k R14 169k C23 1uF TP19 2 R5 1 R24 309k TP7 100pF C26 4.12k R22 8.45k R6 C14 100pF R3 54.9 R26 0 TP1 4 R25 R15 2.21 R11 2.21 TP16 C24 1uF C27 1 RT2 100k 1 7 9 TP12 0 R13 0 R12 TP4 C5 10uF TP15 TP11 C6 10uF GPU OSR/USR selection: See sheet 5 CPU thrid phase: See sheet 2 GPU phase: See sheet 3 8 9 CPU OSR/USR selection: See sheet 5 GPU OCP selection: See sheet 5 CPU OCP selection: See sheet 5 GPU Switching frequency selection: See sheet 5 CPU Switching frequency selection: See sheet 5 Not used 2.21 R19 TP13 C17 1uF R9 2.21 C4 10uF TP3 7 6 5 4 3 1 6 8 R17 10.0k TP8 TP6 C3 4.7uF 2 TP5 15.4k R8 C15 1 10 R2 15.4k 1 R20 RT1 100k C2 2.2uF TP2 R23 TP18 TPS59640RSL 220nF C1 R1 71.5k C7 10uF 1 L2 0.36uH C9 10uF + C18 + 470uF C10 10uF TP9 C12 1nF TP14 C19 + C20 + 470uF 470uF C11 10uF C21 470uF C13 1nF CPU and GPU Control, 1st and 2nd Phase CPU VCORE R18 1 C25 C22 1 R10 1 L1 0.36uH C8 10uF 4 R7 42.2k R4 130 Schematic www.ti.com Note: Jumpers set to default locations; see Section 6 of this user’s guide. Schematic Figure 3. TPS59640EVM-751 Schematic (1 of 13) SLUU796 – January 2012 Submit Documentation Feedback SLUU796 – January 2012 Submit Documentation Feedback TP24 Copyright © 2012, Texas Instruments Incorporated 22uF 22uF 22uF C 41 C31 10uF 22uF C40 1uF C34 C30 10uF 22uF C54 22uF C55 22uF C56 C39 2.21 R27 C29 10uF C53 TP25 TP21 TP20 22uF C43 22uF C57 C42 TP23 22uF C58 C33 1nF 22uF C38 2.2uF C32 10uF 1 C46 C47 10uF 10uF 10uF C61 22uF C62 Not used 10uF 10uF C45 22uF C60 0 R30 22uF C59 C44 TP26 R28 2.21 C48 10uF 10uF C63 1 C49 1 C37 1 R29 10uF C64 TP22 1 C50 10uF C65 L3 u 0.36 H 22uF C51 + 1 CPU 3 1 10uF C66 C35 1 C52 1 1 C36 1 1 rd Phase VCORE 22uF 1 + www.ti.com Schematic Figure 4. TPS59640EVM-751 Schematic (2 of 13) Using the TPS59640EVM-751 IMVP-7, 3-Phase CPU/1-Phase GPU SVID Power System 9 10 TP33 Using the TPS59640EVM-751 IMVP-7, 3-Phase CPU/1-Phase GPU SVID Power System Copyright © 2012, Texas Instruments Incorporated 22uF C87 TP34 TP 29 1 C77 TP28 1 C78 22uF C8 9 1uF 2.21 1 C79 C69 10uF C73 C68 10u F R33 22uF C88 C67 10uF 22uF C90 1 C80 C76 2.2uF C70 10uF 1 C91 1 C82 22uF C92 C81 TP35 2.21 R31 22uF TP3 0 C71 1nF 1 C93 1 1 C94 Not used 22uF C83 0 R34 22u F C84 2 2uF C95 22uF C85 22uF C96 TP31 22uF C86 1 C75 1 R3 2 1 1 L4 0.36uH C72 330uF GPU VCORE GN D_PWR + + 330uF C74 TP36 TP32 Schematic www.ti.com Figure 5. TPS59640EVM-751 Schematic (3 of 13) SLUU796 – January 2012 Submit Documentation Feedback SLUU796 – January 2012 Submit Documentation Feedback C98 33nF Copyright © 2012, Texas Instruments Incorporated C102 33nF R69 28.7k C110 33nF 0 R70 0 R68 162k RT6 100k 0 R64 17.8k C106 33nF 0 R56 0 R52 R66 R6 3 28.7k RT5 100k R51 28.7k R65 R62 162k 17.8k R55 R50 162k 0 RT4 100k 17.8k 0 R41 R45 R39 28.7k R44 R38 162k 0 17.8k RT3 100k R36 R35 1 C105 1 C101 1 C97 1 1 1 1 1 C111 1 C109 1 1 C112 1 1 1 C108 C107 1 C104 C103 1 C100 C99 TP45 TP44 TP43 TP42 TP41 TP40 TP39 TP38 1 R67 1 R58 1 R46 1 R37 10 10 1 1 J15 1 R59 10 R53 10 R47 10 0 R57 0 R54 0 R43 0 R42 1 R60 1 R48 1 R61 1 R49 1 1 J16 J14 To controller To controller CPU and GPU VCORE: Current Sense Feedback and Differential Voltage Feedback A phase can be disabled by pulling the corresponding xCSPx pin to 3.3V. Default setting for CPU: 3 phase operation Dafault setting for GPU: 1 phase operation Phase disable can be done in reverse order.Phase 3, then 2, then 1. 1. CPU 3 Phase operation: R37, R46, R58 open 2. CPU 2 Phase operation: R58 used 0ohm 3. CPU 1 Phase operation: R46 used 0ohm and Connected CSP3 to GND 4. Disable GPU, R67 used 0ohm Not used To processor To processor J13 R40 10 www.ti.com Schematic Figure 6. TPS59640EVM-751 Schematic (4 of 13) Using the TPS59640EVM-751 IMVP-7, 3-Phase CPU/1-Phase GPU SVID Power System 11 11 12 R84 R87 R90 R93 R96 R99 R102 R105 R108 R111 R114 R117 39.2k 30.1k 150k 75.0k 56.2k 39.2k 30.1k 24.3k 20.0k 100k 20.0k 24.3k 56.2k R78 R81 R75 R72 75.0k 150k 100k Using the TPS59640EVM-751 IMVP-7, 3-Phase CPU/1-Phase GPU SVID Power System Copyright © 2012, Texas Instruments Incorporated 13 12 11 12 TP47 TP46 24.3k 20.0k R116 R107 R110 R113 R98 R101 R104 R95 150k 100k 75.0k 56.2k 39.2k 30.1k R89 R92 R86 30.1k 24.3k 20.0k R77 R80 R83 R71 R74 75.0k 56.2k 39.2k 100k 150k Level 8 (MAX) Level 7 Level 6 Level 5 Level 4 Level 3 Level 2 Level 1 (MIN) Level 8 (MAX) Level 7 Level 6 Level 5 Level 4 Level 3 Level 2 Level 1 (MIN) OVER-CURRENT PROTECTION SELECTION Over-Shoot /Under-Shoot Reduction Selection: 1. CPU OSR/USR Default Setting: Jumper shorts on pin1 and pin2 to set Max 2. GPU OSR/USR Default Setting: Jumper shorts on pin1 and pin2 to set Max Over Current Protection Selection: 1. CPU Over Current Protection Per Phase Default Setting: Jumper shorts on pin 7 and pin 8 to set 40A 2. GPU Over Current Protection Default Setting: Jumper shorts on pin7 and pin8 to set 40A Switching Frequency Selection: 1. CPU Switching Frequency Default Setting: Jumper shorts on pin13 and pin14 to set 300kHz 2. GPU Switching Frequency Default Setting: Jumper shorts on pin 11 and pin12 to set 385kHz 660kHz (MAX) 605kHz 550kHz 495kHz 440kHz 385kHz 330kHz 275kHz (MIN) 600kHz (MAX) 550kHz 500kHz 450kHz 400kHz 350kHz 300kHz 250kHz (MIN) SWITCHING FREQUENCY SELECTION R73 R76 R79 R82 R85 R88 R91 R94 75.0k 56.2k 39.2k 30.1k 24.3k 20.0k R100 R103 R106 R109 R112 R115 R118 100k 75.0k 56.2k 39.2k 30.1k 24.3k 20.0k R97 150k 100k 150k Lev el 8 (MAX OS) Lev el 7 Lev el 6 Lev el 5 Lev el 4 Lev el 3 Lev el 2 Lev el 1 (MIN OS) Level 8 (MAX OS) Level 7 Level 6 Level 5 Level 4 Level 3 Level 2 Level 1 (MIN OS) OVER-SHOOT/UNDER-SHOOT REDUCTION Frequenc y, OCP, OSR/USR SELECTIONS 13 Schematic www.ti.com Figure 7. TPS59640EVM-751 Schematic (5 of 13) SLUU796 – January 2012 Submit Documentation Feedback SLUU796 – January 2012 Submit Documentation Feedback Copyright © 2012, Texas Instruments Incorporated Q5 BSS123 14 TP50 To proces sor D1 GREEN R119 180 1 15 14 0 R134 0 R133 R128 10.5k 1 R126 C119 0.1uF R123 1.00k C124 1nF TP53 Q6 BSS123 TP49 C125 0.01uF 15 To controller J25 R130 37.4k 1.00k R121 C113 1nF S1: VCCIO Enable Pin VCCIO Output Selection: 1. Jumper shorts on pin1 and pin2 of J23 to set VCCIO: 1.05V(Default) 2. Jumper shorts on pin2 and pin3 of J23 to set VCCIO: 1.00V Not used R135 10 R132 10 R122 10.0k D2 GREEN R120 180 0 R131 2.21 R124 C149 1 1 1 22uF 1 C146 C129 C128 1 C150 22uF C144 TP56 2.21 R125 C116 10uF 22uF C127 2.2uF TP52 C115 10uF C148 C143 22uF C120 0.1uF C114 10uF C147 TP51 TP48 1 C130 0 R129 C117 10uF 1 C145 1 C131 C118 1nF 22uF C141 C132 22uF C133 22uF 22uF C137 C126 1 1 1 C134 R127 C135 22uF 1 C138 22uF C139 1 C123 + TP55 TP57 L5 0.56uH VCCIO Power Supply 22uF C142 TP54 1 C136 C121 + 330uF 22uF C140 + C122 330uF www.ti.com Schematic Figure 8. TPS59640EVM-751 Schematic (6 of 13) Using the TPS59640EVM-751 IMVP-7, 3-Phase CPU/1-Phase GPU SVID Power System 13 14 Q8 BSS123 Using the TPS59640EVM-751 IMVP-7, 3-Phase CPU/1-Phase GPU SVID Power System Copyright © 2012, Texas Instruments Incorporated 0 R 150 0 R 148 C160 2.2uF D3 GREEN R136 180 C157 10uF R137 10.0k TP60 16 1 TP70 C164 0.1uF To controller J29 C163 0.22uF C176 1nF R141 37.4k 0 R146 C156 0.1uF R142 2.21 R138 10.0k S3/S5 Enable Control, See datasheet for detail Not used R149 20.0k R147 10.0k R140 1.00k R139 10.0k 16 C 162 2.2uF TP61 1 C174 T P67 2.21 R 143 C175 1 C166 10uF C165 0 R145 10uF C170 10uF C167 Q9 CSD87350Q5D C152 10uF C151 10uF 10uF T P59 T P58 C153 10uF C168 TP62 1 R144 10uF C172 C155 1 1 C173 L6 0.56uH 1nF C169 1 C161 C154 10uF VDDQ Power Supply 1 C171 10uF TP68 C158 330uF TP63 + + 1 C159 Schematic www.ti.com Figure 9. TPS59640EVM-751 Schematic (7 of 13) SLUU796 – January 2012 Submit Documentation Feedback SLUU796 – January 2012 Submit Documentation Feedback Copyright © 2012, Texas Instruments Incorporated C189 0.01uF R173 100k R170 8.06k C192 0.1uF 0.1uF C191 D6 BAT54 R171 10.0k VCCIO_DL GPU_DL CPU_DL1 CPU_DL2 1 C179 R158 1 5V Bias Voltage Input TP77 + VBAT Voltage Input: 9V- 20V C193 0.1uF R165 10.0k R159 1 R174 10.0k TP79 C178 TP74 1 TP78 + TP73 17 R160 1 TP80 TP82 17 1 C180 0.1uF C181 10uF 100k R152 10 9 8 7 6 5 4 3 2 1 U8:A U8:D U8:C U8:B CD74HCT08D S3 1uF C194 U10 UCC27324D C188 1uF U9 UCC27324D VIN2 VIN2 GND R176 330 R177 330 VOU T1 RESET PGD_1 VSENSE1 PwrPad R178 330 D7 RED R179 330 D5 RED 150mA LDO D8 RED NC VOU T1 D4 RED C186 0.01uF TP81 NC VOU T2 VOU T2 SEQUENCE VSENSE2 ENA BLE MR1 MR2 VIN1 VIN1 NC U6 TPS70102PWP 1.2V LDO VCCIO, GPU and CPU Dynamic Load: 1. Switch to "ON" position to enable the Dynamic Load U7 2. Switch to "OFF" position to disable the Dynamic Load (Default) TPS71712DCK 1 5 OUT IN 2 GND 3 4 EN NR/FB C185 S2 0.1uF Not used TP75 TP72 R156 51.1k 1uF TP86 C190 TP85 R175 0.005 R168 0.05 R166 0.05 30.1k C183 10uF TP76 R169 0.05 R167 0.01 C177 10uF TP71 Q13 CSD16407Q5 30.1k R154 R155 R151 15.0k Q12 CSD16407Q5 C184 2.2uF 3.3V LDO 11 12 13 14 15 16 17 18 19 20 1.8V LDO C187 1uF R164 0.05 R162 0.01 R172 0.005 Q11 CSD16407Q5 TP83 R163 0.05 R161 0.01 LDOs and Dynamic Loads TP84 Q10 CSD16407Q5 1 R157 C182 0.1uF R153 2.00k www.ti.com Schematic Figure 10. TPS59640EVM-751 Schematic (8 of 13) Using the TPS59640EVM-751 IMVP-7, 3-Phase CPU/1-Phase GPU SVID Power System 15 16 1 R185 C195 1nF R186 100 18 1 J35 R192 3.01k Using the TPS59640EVM-751 IMVP-7, 3-Phase CPU/1-Phase GPU SVID Power System Copyright © 2012, Texas Instruments Incorporated Q15 BSS123 D9 GREEN VR_ON R203 180 Q16 BSS123 D10 GREEN TP90 C_PGOOD R204 180 R206 10.0k C197 10pF C198 10pF C196 0.1uF Q17 BSS123 D12 GREEN TP89 G_PGOOD R205 180 R202 10.0k 1 18 R208 10.0k TP88 R199 330 1 1 C199 0.1uF Support and Pull-ups 1 10.0k 10.0k 1 1 1 J 32, J34 are Labview connectors for EVM testing R194 R181 C200 1uF 0 R198 R207 1.00k 1M 0 R196 R197 R200 1.00k 1M R195 0 0 R190 1M R191 1M 1M R189 1 1M 1M 1M R188 R183 R184 R182 R180 S4: IMVP-7 VR Enable: 1. Switch to "ON" position to Enable TPS59640 controller 2. Switch to "OFF" position to Disable TPS59640 controller(Default) Not used R209 180 D11 RED VR_HOT Q14 BSS83P R201 10.0k J45, J46 are not used and they are for internal I2C connection To I2C Terminal R193 3.01k R187 10.0k Jumper to enter I2C Mode Logic Signal and Status LED's LED is ON when the logic signal is in the ACTIVE state TPS59640 Default Trim R117=not used, R116 = 1.00k TP87 1 J33 Schematic www.ti.com Figure 11. TPS59640EVM-751 Schematic (9 of 13) SLUU796 – January 2012 Submit Documentation Feedback Schematic R211 75.0 1 R210 1 R212 130 R213 43.2 1 Not used uC Socket Main www.ti.com Figure 12. TPS59640EVM-751 Schematic (10 of 13) SLUU796 – January 2012 Submit Documentation Feedback Using the TPS59640EVM-751 IMVP-7, 3-Phase CPU/1-Phase GPU SVID Power System Copyright © 2012, Texas Instruments Incorporated 17 Schematic 1 1 Not used uC Socket Others www.ti.com Figure 13. TPS59640EVM-751 Schematic (11 of 13) 18 Using the TPS59640EVM-751 IMVP-7, 3-Phase CPU/1-Phase GPU SVID Power System Copyright © 2012, Texas Instruments Incorporated SLUU796 – January 2012 Submit Documentation Feedback SLUU796 – January 2012 Submit Documentation Feedback J42 Copyright © 2012, Texas Instruments Incorporated 1 20 J43 R221 475 D13 GREEN USB Connector DM V+ VNC DP 19 FB1 J41 R222 2.21k R216 33.2 R215 33.2 TP91 TP92 20 19 1 R214 1.50k C202 0.1uF C206 22pF C208 0.01uF U14 TUSB3410RHB For Internal software developmenet 5V Bias option: 1. Jumper shorts on J41, 5V Bias used from USB. If USB 5V is used, external 5V supply from 2. No Jumper shorts on J41, 5V Bias used from external J31 (Default) Not used 10.0k R218 C205 22pF C201 0.1uF Y1 2 USB to DSP 0 R220 0 R219 C207 0.01uF 1 C204 J31 should not be used. TP94 TP93 10.0k R217 1 C203 1 www.ti.com Schematic Figure 14. TPS59640EVM-751 Schematic (12 of 13) Using the TPS59640EVM-751 IMVP-7, 3-Phase CPU/1-Phase GPU SVID Power System 19 C210 0.1uF C211 0.1uF 20 C214 0.1uF U15:B TMS320F2806PZS C213 0.1uF C215 0.1uF 47 GPIO 0 44 GPIO1 45 GPIO2 48 GPIO3 51 GPIO4 53 GPIO5 56 GPIO6 58 GPIO7 60 GPIO8 61 GPIO9 64 GPIO10 70 GPIO11 1 GPIO 12 95 GPIO13 8 GPIO14 9 GPIO15 50 GPIO16 C209 0.1uF Using the TPS59640EVM-751 IMVP-7, 3-Phase CPU/1-Phase GPU SVID Power System Copyright © 2012, Texas Instruments Incorporated 79 GPIO27 GPIO26 99 91 GPIO25 GPIO24 83 72 GPIO23 71 GPIO22 67 GPIO21 63 GPIO20 57 GPIO19 54 GPIO18 GPIO17 52 43 GPIO34 5 GPIO33 100 GPIO32 7 GPIO31 6 GPIO30 4 GPIO29 GPIO28 92 U15:A TMS3 20F2806PZS 15 VDDA2 76 TDO 14 VSSA 73 TDI 2 26 74 VDDAIO TMS 25 75 VSSAIO TCK 12 84 VDD1A18 TRST 13 94 VSS1AGND VSS 40 VSS 89 VDD2A18 39 VSS2AGND VSS 87 10 VSS 77 VDD 42 69 VDD VSS 59 VDD VSS 62 68 VDD VSS 55 85 VDD 49 VSS 93 41 VDD VSS 3 11 VSS VDDIO 46 2 VSS VDDIO 65 82 VDDIO VDDIO C212 0.1uF J46 2.74k R227 21 1 C224 R224 2.00k X1 ADCREFM U15:C TMS320F2806PZS C217 0.1uF C227 1 86 X2 78 XRS 16 ADCI NA7 17 A DCINA6 18 ADCINA5 19 ADCINA4 20 ADCINA3 29 30 24 27 28 37 35 38 36 C218 0.1 uF C219 0.1uF 2 6 GREEN D14 C222 0.1uF TP96 4 B2 5 B1 3 U18:B 4 VCCA 7 6 VCCB U17 SN74AVC2T245RSW 1 10 DIR1 DIR2 2 OE A2 9 3 GND A1 8 1 5 C221 0.1uF SN74LVC2G07DCK U16:A C220 0.1uF 1 TP97 C226 1uF TP95 SPISOMI R226 475 23 22 21 1 Differential Probe Test Point J46: F2806 DSP Program Mode Selection: 1. Jumper shorts for F2806 DSP Program Mode 2. No Jumper shorts for normal operation (Default) GUI and Intel VRTT Tool Selection: 1. Jumper shorts to use Intel VRTT Tool (Not us ed) 2. No Jumper shorts to user GUI (Default) Not us ed 2 5 C225 1uF 6 23 23 23 3 U16:B U18:A DSP to S VID Level Shifting Tranceiver nd Open Drain Buffers for DSP to SVID Translation ADCINB4 31 32 ADCINB5 33 ADCINB6 34 ADCINB7 23 ADCINA0 22 ADCINA1 ADCINA2 21 80 ADCREFP EMU0 81 ADCREFIN EMU1 96 VDD3VFLADCRESEXT 97 TEST1 ADCLO 98 ADCINB0 TEST2 66 XCLKOUT ADCINB1 90 ADCINB2 XCLKIN 88 X1 ADCINB3 R225 2.00k C216 0.1uF J48 J47 J45 C223 0.1uF 4 R223 2.00k 22 J 44 1 Schematic www.ti.com Figure 15. TPS59640EVM-751 Schematic (13 of 13) SLUU796 – January 2012 Submit Documentation Feedback Test Setup www.ti.com 5 Test Setup 5.1 Test Equipment 5.1.1 Personal Computer (Host Computer) Microsoft Windows™ XP or newer with available USB port 5.1.2 USB Cable The USB cable: standard USB_A to USB_B, 5-pin, mini-B cable. See the Figure 16 illustration. Figure 16. USB Cable 5.1.3 TPS59640 USB Driver and SVID GUI Installation Copy the file swrc094f.zip to the host computer. Copy the file TI-SVID-GUI_1_5_0_1 exe to the host computer. Extract setup.exe from the aforementioned .zip file. Double-click on this setup.exe. This loads the TUSB drivers files to the host computer on C:\Program Files\Texas Instruments Inc\TUSB3410 Single Driver installer\DISK1 5. Then, go to this location on the host computer (C:\Program Files\Texas Instruments Inc\TUSB3410 Single Driver installer\DISK1), and double-click setup.exe. This installs the TUSB driver. 1. 2. 3. 4. 5.1.4 DC Source 12VBAT DC Source: The 12VBAT DC source must be a 0-V to 20-V variable DC source capable of supplying a 20-Adc current. Connect 12VBAT to J30 as shown in Figure 17. 5Vin DC Source: The 5Vin DC source must be a 0-V to 5-V variable DC source capable of supplying a 1-Adc current. Connect 5Vin to J31 as shown in Figure 17. 5.1.5 • • • • 5.1.6 Meters V1: 5Vin at TP72(5Vin) and TP75 (GND) V2: 12VBAT at TP73(VBAT) and TP21 (GND) V3: CPU Vcore sense voltage at J14; GPU Vcore sense voltage at J16; VDDQ sense voltage at J29, VCCIO sense voltage at J25 A1: 12VBAT input current Load The output load must be an electronic constant current load capable of 0 Adc to 90 Adc. SLUU796 – January 2012 Submit Documentation Feedback Using the TPS59640EVM-751 IMVP-7, 3-Phase CPU/1-Phase GPU SVID Power System Copyright © 2012, Texas Instruments Incorporated 21 Test Setup 5.1.7 www.ti.com Oscilloscope A digital or analog oscilloscope can be used to measure the output ripple. The oscilloscope must be set for 1-MΩ impedance, 20-MHz bandwidth, AC coupling, 2-µs/division horizontal resolution, 50-mV/division vertical resolution. Test points TP27 and TP37 can be used to measure the output ripple voltage for CPU and GPU. Do not use a leaded ground connection as this can induce additional noise due to the large ground loop. 5.2 Recommended Wire Gage 1. V5in to J31 (5-V input): The recommended wire size is 1 x AWG 18 per input connection, with the total length of wire less than 4 feet (2- foot input, 2-foot return). 2. 12VBAT to J30 (12-V input): The recommended wire size is 1 x AWG 16 per input connection, with the total length of wire less than 4 feet (2-foot input, 2-foot return). 3. J1, J5, J6 (CPU) to LOAD or J11 (GPU) to LOAD or J28 (VDDQ) to LOAD or J24 (VCCIO) to LOAD The minimum recommended wire size is 2 x AWG 16, with the total length of wire less than 4 feet (2-foot output, 2-foot return) 5.3 Recommended Test Setup Figure 17 is the recommended test setup to evaluate the TPS59640EVM-751. Working at an ESD workstation, ensure that any wrist straps, bootstraps, or mats are connected referencing the user to earth ground before handling the EVM. 22 Using the TPS59640EVM-751 IMVP-7, 3-Phase CPU/1-Phase GPU SVID Power System Copyright © 2012, Texas Instruments Incorporated SLUU796 – January 2012 Submit Documentation Feedback Test Setup www.ti.com 12VBAT DC Source - + 5Vin DC Source + - Load VCCIO USB Cable A + - + - - + V3 CPU - + - + A1 V2 - + - V1 + + - TEXAS INSTRUMENTS B GPU + Host Computer + VDDQ Figure 17. TPS59640EVM-751 Recommended Test Setup 5.4 USB Cable Connections A standard USB_A and 5-pin mini_B USB cable is required to connect the host computer to J42 USB port (left bottom side). A green LED (D13) lights up near the USB port on the EVM. This indicates that the USB cable is connected. 5.5 Input Connections 1. Prior to connecting the 5Vin DC source, it is advisable to limit the source current from 5 Vin to 1 A maximum. Make sure that 5Vin is initially set to 0 V and connected as shown in Figure 17. 2. Prior to connecting the 12VBAT DC source, it is advisable to limit the source current from 12VBAT to 10 A maximum. Make sure that 12VBAT is initially set to 0 V and connected as shown in Figure 17. 3. Connect voltmeters V1 at TP72 (5Vin) and TP75 (GND) to measure 5Vin voltage, V2 at TP73 (12 VBAT), and TP21 (GND) to measure 12VBAT voltage as shown in Figure 17. 4. Connect a current meter A1 between 12VBAT DC source and J30 to measure the 12VBAT input current. SLUU796 – January 2012 Submit Documentation Feedback Using the TPS59640EVM-751 IMVP-7, 3-Phase CPU/1-Phase GPU SVID Power System Copyright © 2012, Texas Instruments Incorporated 23 Configuration 5.6 www.ti.com Output Connections 1. Connect the load to J1, J5, and J6, and set the load to constant resistance mode to sink 0 Adc before 5Vin and 12VBAT are applied. This is for CPU operation. 2. Connect a voltmeter V3 at J14 to measure CPU Vcore sense voltage. 6 Configuration All jumper selections must be made prior to applying power to the EVM. The user can configure this EVM per the following configurations. 6.1 6.1.1 CPU and GPU Configuration CPU/GPU Current Limit Trip Selection (J17 for CPU and J20 for GPU) The current limit trip can be set by J17 (COCP) and J20 (GOCP). Default setting: Level 5 for both CPU and GPU. Table 2. Current Limit Trip Selection 24 Jumper Set to Connected Resistor COCP Limit (Typ) Left (1-2 pin shorted) 150k Max Second (3-4 pin shorted) 100k Level 7 Third (5-6 pin shorted) 75k Level 6 Fourth (7-8 pin shorted) 56.2k Level 5 Fifth (9-10 pin shorted) 39.2k Level 4 Sixth (11-12 pin shorted) 30.1k Level 3 Seventh (13-14 pin shorted) 24.3k Level 2 Right (15-16 pin shorted) 20.0k Min Using the TPS59640EVM-751 IMVP-7, 3-Phase CPU/1-Phase GPU SVID Power System Copyright © 2012, Texas Instruments Incorporated SLUU796 – January 2012 Submit Documentation Feedback Configuration www.ti.com 6.1.2 CPU Frequency Selection (J18) The operating frequency can be set by J18 Default setting: 300 kHz for CPU. Table 3. CPU Frequency Selection 6.1.3 Jumper Set to Connected Resistor CPU Left (1-2 pin shorted) 150k 600 kHz Second (3-4 pin shorted) 100k 550 kHz Third (5-6 pin shorted) 75k 500 kHz Fourth (7-8 pin shorted) 56.2k 450kHz Fifth (9-10 pin shorted) 39.2k 400kHz Sixth (11-12 pin shorted) 30.1k 350kHz Seventh (13-14 pin shorted) 24.3k 300kHz Right(15-16 pin shorted) 20.0k 250kHz GPU Frequency Selection (J21) The operating frequency can be set by J21. Default setting: 385 kHz for GPU. Table 4. GPU Frequency Selection 6.1.4 Jumper Set to Connected Resistor CPU Left (1-2 pin shorted) 150k 660kHz Second (3-4 pin shorted) 100k 605kHz Third (5-6 pin shorted) 75k 550kHz Fourth (7-8 pin shorted) 56.2k 495kHz Fifth (9-10 pin shorted) 39.2k 440kHz Sixth (11-12 pin shorted) 30.1k 385kHz Seventh (13-14 pin shorted) 24.3k 330kHz Right(15-16 pin shorted) 20.0k 275kHz CPU Overshoot/Undershoot Reduction Selection (J19) The overshoot/undershoot reduction can be set by J19 CSKIP. Default setting: Max. Table 5. GPU Overshoot/Undershoot Reduction Selection Jumper Set to Connected Resistor CPU Left (1-2 pin shorted) 150k Max Second (3-4 pin shorted) 100k Level 7 Third (5-6 pin shorted) 75k Level 6 Fourth (7-8 pin shorted) 56.2k Level 5 Fifth (9-10 pin shorted) 39.2k Level 4 Sixth (11-12 pin shorted) 30.1k Level 3 Seventh (13-14 pin shorted) 24.3k Level 2 Right(15-16 pin shorted) 20.0k Min SLUU796 – January 2012 Submit Documentation Feedback Using the TPS59640EVM-751 IMVP-7, 3-Phase CPU/1-Phase GPU SVID Power System Copyright © 2012, Texas Instruments Incorporated 25 Configuration 6.1.5 www.ti.com GPU Overshoot/Undershoot Reduction Selection (J22) The overshoot/undershoot reduction can be set by J22 GSKIP. Default setting: Max. Table 6. GPU Overshoot/Undershoot Reduction Selection 6.1.6 Jumper Set to Connected Resistor Right (1-2 pin shorted) 150k CPU Max Second (3-4 pin shorted) 100k Level 7 Third (5-6 pin shorted) 75k Level 6 Fourth (7-8 pin shorted) 56.2k Level 5 Fifth (9-10 pin shorted) 39.2k Level 4 Sixth (11-12 pin shorted) 30.1k Level 3 Seventh (13-14 pin shorted) 24.3k Level 2 Left(15-16 pin shorted) 20.0k Min F2806 DSP Program Mode Selection (J46) The F2806 DSP Program Mode (GUI) Selection can be set by J46. Default setting: No jumper shorts on J46 for normal operation Table 7. F2806 DSP Program Mode Selection Jumper Set to 6.1.7 Program Mode Selection No jumper on J46 Normal operation Jumper on J46 Flash the DSP program to the EVM 5Vin Bias Voltage Option (J41) The 5-Vin bias voltage can be used from USB or externally. Default setting: No jumper shorts on J41 Table 8. F2806 DSP Program Mode Selection Jumper Set to 6.1.8 Program Mode Selection No jumper 5-Vin Bias from J31 external Jumper shorted 5-Vin Bias from USB, 5 Vin from J31 must not be connected Onboard Dynamic Load Selection [S3 for CPU, S2 [Upper) for GPU, S2 (Lower) for VCCIO] The onboard dynamic load can be set by S2 and S3. Default setting: Push S2 and S3 to OFF position to disable the on board dynamic load. Table 9. Onboard Dynamic Load Selection 26 Switch Set to Dynamic Load Selection Push S3 to ON position Enable 32-A onboard dynamic load at CPU Push S3 to OFF position Disable 32-A onboard dynamic load at CPU Push S2 (upper) to ON position Enable 19-A onboard dynamic load at GPU Push S2 (upper) to OFF position Disable 19-A onboard dynamic load at GPU Push S2 (lower) to ON position Enable 10-A onboard dynamic load at VCCIO Push S2 (lower) to OFF position Disable 10-A onboard dynamic load at VCCIO Using the TPS59640EVM-751 IMVP-7, 3-Phase CPU/1-Phase GPU SVID Power System Copyright © 2012, Texas Instruments Incorporated SLUU796 – January 2012 Submit Documentation Feedback Configuration www.ti.com 6.1.9 IMVP-7 VR_ON Enable Selection (S4) The IMVP-7 CPU/GPU can be enabled and disabled by S4. Default setting: Push S4 to OFF position to disable both CPU and GPU. Table 10. VR_ON Enable Selection 6.2 6.2.1 Switch Set to VR_ON Selection Push S4 to ON position Enable IMVP-7 CPU/GPU Vcore Push S4 to OFF position Disable IMVP-7 CPU/GPU Vcore 1.2VDDQ, 0.6V VTT and 0.6V VTTREF Configuration VDDQ S3, S5 Enable Selection The controller can be enabled and disabled by J26 and J27. Default setting: Jumper shorts on Pin 2 and Pin 3 of J27, Default setting: Jumper shorts on Pin 2 and Pin 3 of J26 Table 11. VDDQ S3, S5 Enable Selection State 6.3 6.3.1 J26 (S3) Set to J27 (S5) Set to VDDQ VTTREF VTT S0 ON position ON position ON ON ON S3 OFF position ON position ON ON OFF (High-Z) S4/S5 OFF position OFF position OFF (Discharge) OFF (Discharge) OFF (Discharge) 1.05V VCCIO Configuration 1.05V Enable Selection (S1) 1.05V enable can be set by S1. Default setting: Push S1 to OFF position 6.3.2 VCCIO Output Voltage Selection (J23) The VCCIO output voltage can be selected by J23. Default setting: Jumper shorts pin 1 and pin 2 of J23 Table 12. VCCIO Output Voltage Selection Jumper Set to Selection Jumper shorts on pin 1 and pin 2 VCCIO: 1.05 V Jumper shorts on pin 2 and pin 3 VCCIO: 1.00 V SLUU796 – January 2012 Submit Documentation Feedback Using the TPS59640EVM-751 IMVP-7, 3-Phase CPU/1-Phase GPU SVID Power System Copyright © 2012, Texas Instruments Incorporated 27 Test Procedure www.ti.com 7 Test Procedure 7.1 Line/Load Regulation and Efficiency Measurement Procedure 7.1.1 CPU 1. Set up EVM as described in Section 5.3, Section 5.4, Section 5.5, Section 5.6, and Figure 17. 2. Ensure no jumper shorts are on J46. 3. Ensure all other jumpers configuration settings in this section before 5Vin and 12VBAT are applied. 4. Ensure load is set to constant resistance mode and to sink 0 Adc. 5. Ensure S1 and S4 are in OFF position. 6. Add scope probe on the TP27 for CPU Vcore ripple measurement. 7. Ensure USB cable is connected between host computer and USB port (J42) on the EVM. 8. Increase 5Vin from 0 V to 5 V. Use V1 to measure 5Vin input voltage. 9. Increase 12VBAT from 0 V to 12 V. Use V2 to measure 12VBAT input voltage. 10. Double-click the TI-SVID-GUI_1_5_0_1.exe to launch the GUI program. The GUI window shown in Figure 18 appears. 11. Push S4 to ON position to enable the VR_ON of TPS59640. VR_ON LED lights up. 12. Now you are ready to send SVID commends. The GUI at start-up defaults: Address: 00 CPU, Commend: SetVIDslow, Payload: 1.05V (The user can select the SVID commend by using the pulldown menu.) 13. Click send Commend, and the CPU CPGOOD LED lights up. See the GUI window as shown in Figure 18. 14. Measure V3: CPU Vcore at J14 and A1: 12VBAT input current 15. Vary CPU LOAD from 0 Adc to 90 Adc. The CPU Vcore must remain in load line. 16. Vary 12VBAT from 9 V to 20 V. The CPU Vcore must remain in line regulation. 17. Push S4 to OFF position to disable CPU Vcore controller. 18. Decrease LOAD to 0 A, and disconnect the LOAD from terminal J1, J5, and J6. 19. Disconnect V3 from J14. 20. Disconnect scope probe from TP27. 28 Using the TPS59640EVM-751 IMVP-7, 3-Phase CPU/1-Phase GPU SVID Power System Copyright © 2012, Texas Instruments Incorporated SLUU796 – January 2012 Submit Documentation Feedback Test Procedure www.ti.com Figure 18. TPS59640EVM-751 CPU GUI Setup Window 7.1.2 GPU Connect the LOAD to GPU terminal J11 and V3 at J16. Ensure correct polarity. Add scope probe on the TP37 for GPU G_Vcore ripple measurement. Push S4 to ON position to enable the VR_ON of TPS59640. The VR_ON LED lights up. Now you are ready to send SVID commends for GPU. Using the pulldown menu: Address: 01 GPU, Commend: SetVIDslow, Payload: 1.23V 5. Click send Commend, and GPU GPOOD LED lights up. See the GUI window shown Figure 19. 6. Measure V3: GPU G_Vcore at J16 and A1: 12VBAT input current. 7. Vary GPU LOAD from 0 Adc to 30 Adc; GPU Vcore must remain in load line. 8. Vary 12VBAT from 9 V to 20 V; GPU Vcore must remain in line regulation. 9. Push S4 to OFF position to disable GPU Vcore controller. 10. Decrease LOAD to 0 A, and disconnect the LOAD from terminal J11. 11. Disconnect V3 from J16. 12. Disconnect scope probe from TP37. 13. Exit SVID GUI window: click File → click Exit. 1. 2. 3. 4. SLUU796 – January 2012 Submit Documentation Feedback Using the TPS59640EVM-751 IMVP-7, 3-Phase CPU/1-Phase GPU SVID Power System Copyright © 2012, Texas Instruments Incorporated 29 Test Procedure www.ti.com 14. Disconnect the USB cable between host Computer and EVM. Figure 19. TPS59640EVM-751 GPU GUI Setup Window 7.1.3 1. 2. 3. 4. 5. 6. 7. 8. VDDQ Connect the LOAD to VDDQ terminal J28 and V3 at J29. Ensure correct polarity. Remove jumper from J27 from pin 2 and pin 3, and put this jumper on pin 1 and pin 2 of J27 to enable S5 of VDDQ controller. VDDQ PGOOD LED lights up. Measure V3: VDDQ at J29 and A1: 12Vin input current Vary VDDQ LOAD from 0 Adc to 15 Adc; VDDQ must remain in the load regulation. Vary 12VBAT from 9 V to 20 V; VDDQ must remain in the line regulation. Remove jumper off J27, and short back on pin 2 and pin 3 of J27 to disable VDDQ controller. Decrease LOAD to 0 A, and disconnect the LOAD from terminal J28. Disconnect V3 from J29. 7.1.4 VCCIO 1. Connect the LOAD to VCCIO terminal J24 and V3 at J25. Ensure correct polarity. 2. Push S1 to ON position to enable the VCCIO controller. VCCIO EN and PGOOD LEDs light up. 30 Using the TPS59640EVM-751 IMVP-7, 3-Phase CPU/1-Phase GPU SVID Power System Copyright © 2012, Texas Instruments Incorporated SLUU796 – January 2012 Submit Documentation Feedback Test Procedure www.ti.com 3. 4. 5. 6. 7. 8. 7.2 Measure V3: VCCIO at J25 and A1: 12Vin input current. Vary VDDQ LOAD from 0 Adc to 15 Adc; VCCIO must remain in the load regulation. Vary 12VBAT from 9 V to 20 V; VCCIO must remain in the line regulation. Push S1 to OFF position to disable VCCIO controller. Decrease LOAD to 0 A, and disconnect the LOAD from terminal J24. Disconnect V3 from J25. Equipment Shutdown 1. 2. 3. 4. Shut down Shut down Shut down Shut down load. 12VBAT and 5Vin. oscilloscope. host computer. SLUU796 – January 2012 Submit Documentation Feedback Using the TPS59640EVM-751 IMVP-7, 3-Phase CPU/1-Phase GPU SVID Power System Copyright © 2012, Texas Instruments Incorporated 31 Performance Data and Typical Characteristic Curves 8 www.ti.com Performance Data and Typical Characteristic Curves Figure 20 through Figure 91 present typical performance curves for TPS59640EVM-751. Jumpers are set to default locations; see Section 6 of this user’s guide 8.1 CPU3-Phase Operation 95 1.1 VI = 9 V SPEC (max) VI = 12 V 90 1.05 20 Vin Vout (V) IO - Output Voltage - V 9 Vin Vout (V) Efficiency - % 85 VI = 20 V 80 75 12 Vin Vout (V) 0.95 SPEC (nom) 0.9 SPEC (min) 0.85 70 65 1 0 10 20 30 40 50 60 70 IO - Output Current - A 80 90 100 0.8 0 Figure 20. CPU3 Efficiency Test condition: 12 Vin, 105 V 90 A CPU 3 Phase operation TPS59640EVM CPU VDIO Turn on 10 20 30 40 50 60 70 80 90 100 IO - Output Current - A Figure 21. CPU3 Load Regulation TPS59640EVM CPU VR_IO Turn off Test condition: 12 Vin, 105 V 90 A CPU 3 Phase operation CH1: CSW1 CH1: CSW1 CH2: CSW2 CH2: CSW2 CH3: Vcore CH3: Vcore CH4: CPGOOD CH4: CPGOOD Figure 22. CPU3 Enable Turnon 32 Figure 23. CPU3 Enable Turnoff Using the TPS59640EVM-751 IMVP-7, 3-Phase CPU/1-Phase GPU SVID Power System Copyright © 2012, Texas Instruments Incorporated SLUU796 – January 2012 Submit Documentation Feedback Performance Data and Typical Characteristic Curves www.ti.com TPS59640EVM CPU Switching Node Test condition: 12 Vin, 105 V 90 A CPU 3 Phase operation TPS59640EVM Dynamic VID: Set VID-Set VID-Slow Test condition: 12 Vin, 105 V-0.6 V, 0.5 A CPU 2 Phase operation CH1: CSW1 CH1: CSW1 CH2: CSW2 CH2: CSW2 CH3: Vcore CH3: VSW3 CH4: VDIO CH4: Vcore Ripple Figure 24. CPU3 Switching Node (Ripple) TPS59640EVM Dynamic VID: set VID-Fast/Set VID-Fast Test condition: 12 Vin, 105 V-06 V, 0.5 A CPU 2 Phase operation Figure 25. CPU3 Dynamic VID: SetVID-Slow/Slow TPS59640EVM Dynamic VID: Set VID-Decay/Set VID-Fast CH1: CSW1 CH1: CSW1 CH2: CSW2 CH2: CSW2 CH3: Vcore CH3: Vcore CH4: VDIO CH4: VDIO Figure 26. CPU3 Dynamic VID:SetVID-Fast/Fast SLUU796 – January 2012 Submit Documentation Feedback Test condition: 12 Vin, 105 V-0.6 V, 2 A CPU 2 Phase operation Figure 27. CPU3 Dynamic VID:SetVID-Decay/Fast Using the TPS59640EVM-751 IMVP-7, 3-Phase CPU/1-Phase GPU SVID Power System Copyright © 2012, Texas Instruments Incorporated 33 Performance Data and Typical Characteristic Curves TPS59640EVM CPU Output Load Insertion with OSR/USR = 20 k (Min) www.ti.com TPS59640EVM CPU Output Load Release with OSR/USR = 20 k (Min) Test condition: 12 Vin, 105 V/0 A-51 A CPU 3 Phase on board dynamic load CH1: CSW1 Test condition: 12 Vin, 105 V/0 A-51 A CPU 3 Phase on board dynamic load CH1: CSW1 CH2: CSW2 CH2: CSW2 CH3: VSW3 CH3: CSW3 CH4: Vcore CH4: Vcore Figure 28. CPU3 Output Load Insertion With OSR/USR20k (Min) Figure 29. CPU3 Output Load Release With OSR/USR 20k (Min) Figure 30. CPU3 Bode Plot at 12Vin, 1.05 V/60 A 34 Using the TPS59640EVM-751 IMVP-7, 3-Phase CPU/1-Phase GPU SVID Power System Copyright © 2012, Texas Instruments Incorporated SLUU796 – January 2012 Submit Documentation Feedback Performance Data and Typical Characteristic Curves www.ti.com Figure 31. CPU3 MOSFET Figure 32. CPU3 IC Test condition: CPU3 12Vin, 1.05 V/60 A, no airflow SLUU796 – January 2012 Submit Documentation Feedback Using the TPS59640EVM-751 IMVP-7, 3-Phase CPU/1-Phase GPU SVID Power System Copyright © 2012, Texas Instruments Incorporated 35 Performance Data and Typical Characteristic Curves 8.2 www.ti.com CPU 2-Phase Operation 1.1 95 VI = 12 V VI = 9 V 90 Efficiency - % 85 VO - Output Voltage - V 1.05 VI = 20 V 80 75 0.95 12 Vin Vout - V 20 Vin Vout - V 9 Vin Vout - V 0.9 70 65 0 1 5 10 15 20 25 30 35 40 IO - Output Current - A 45 50 55 0.85 0 Figure 33. CPU2 Efficiency TPS59640EVM CPU VDIO Turn on SPEC - min Test condition: 12 Vin, 105 V 50 A CPU 2 Phase operation SPEC - nom SPEC - max 5 10 15 20 25 30 35 40 IO - Output Current - A 45 50 55 Figure 34. CPU2 Load Regulation TPS59640EVM CPU VR_ON Turn on CH1: CSW1 Test condition: 12 Vin, 105 V 50 A CPU 3 Phase operation CH1: CSW1 CH2: CSW2 CH2: CSW2 CH3: Vcore CH4: CPGOOD Figure 35. CPU2 Enable Turnon 36 CH3: Vcore CH4: CPGOOD Figure 36. CPU2 Enable Turnoff Using the TPS59640EVM-751 IMVP-7, 3-Phase CPU/1-Phase GPU SVID Power System Copyright © 2012, Texas Instruments Incorporated SLUU796 – January 2012 Submit Documentation Feedback Performance Data and Typical Characteristic Curves www.ti.com TPS59640EVM CPU Switching Node Test condition: 12 Vin, 105 V 50 A CPU 2 Phase operation Test Condition: 12Vin,VID: 1.05V-0.6V, 0.5A TPS59640EVM CPU 2 Phase operation Dynamic VID: Set VID-Slow/Set VID-Slow CH1: CSW1 CH1: CSW1 CH2: CSW2 CH2: CSW2 CH3: Vcore CH4: VDIO CH3: Vcore Ripple Figure 37. CPU2 Switching Node (Ripple) Test Condition: 12Vin,VID: 1.05V-0.6V, 0.5A TPS59640EVM CPU 2 Phase operation Dynamic VID: Set VID-Fast/Set VID-Fast Figure 38. CPU2 Dynamic VID: SetVID-Slow/Slow Test Condition: 12Vin,VID: 1.05V-0.6V, 2A TPS59640EVM CPU 2 Phase operation Dynamic VID: Set VID-Decay/Set VID-Fast CH1: CSW1 CH1: CSW1 CH2: CSW2 CH2: CSW2 CH3: Vcore CH3: Vcore CH4: VDIO CH4: VDIO Figure 39. CPU2 Dynamic VID: SetVID-Fast/Fast SLUU796 – January 2012 Submit Documentation Feedback Figure 40. CPU2 Dynamic VID: SetVID-Decay/Fast Using the TPS59640EVM-751 IMVP-7, 3-Phase CPU/1-Phase GPU SVID Power System Copyright © 2012, Texas Instruments Incorporated 37 Performance Data and Typical Characteristic Curves TPS59640EVM CPU Output Load Insertion with OSR/USR = 20 k - Min Test Condition: 12Vin, 1.05V/0A CPU 2-Phase on board dynamic load www.ti.com TPS59640EVM CPU Output Load Release with OSR/USR = 20 k - Min Test Condition: 12Vin, 1.05V/0A-51A CPU 2-Phase on board dynamic load CH1: DYN_C CH1: DYN_C CH2: CSW1 CH2: CSW1 CH3: CSW2 CH3: CSW2 CH4: Vcore CH4: Vcore Figure 41. CPU2 Output Load Insertion With OSR/USR Figure 42. CPU2 Output Load Release With OSR/USR 20k (Min) 20k (Min) Figure 43. CPU2 Bode Plot at 12Vin, 1.05 V/55 A 38 Using the TPS59640EVM-751 IMVP-7, 3-Phase CPU/1-Phase GPU SVID Power System Copyright © 2012, Texas Instruments Incorporated SLUU796 – January 2012 Submit Documentation Feedback Performance Data and Typical Characteristic Curves www.ti.com Figure 44. CPU2 MOSFET Figure 45. CPU2 IC Test condition: CPU2 12Vin, 1.05 V/55 A, no airflow SLUU796 – January 2012 Submit Documentation Feedback Using the TPS59640EVM-751 IMVP-7, 3-Phase CPU/1-Phase GPU SVID Power System Copyright © 2012, Texas Instruments Incorporated 39 Performance Data and Typical Characteristic Curves 8.3 www.ti.com CPU 1-Phase Operation 1.1 95 VI = 9 V VI = 12 V 1.05 VO - Output Voltage - V Efficiency - % 90 85 VI = 20 V 80 1 12 Vin Vout - V 20 Vin Vout - V 0.95 9 Vin Vout - V 75 SPEC - min SPEC - nom SPEC - max 70 0.9 0 5 10 15 20 25 IO - Output Current - A 30 35 Figure 46. CPU1 Efficiency TPS59640EVM CPU VDIO Turn on Test Condition: 12Vin, 1.05V/0A CPU 1 Phase operation 0 5 10 15 20 25 IO - Output Current - A 30 35 Figure 47. CPU1 Load Regulation TPS59640EVM CPU VR_ON Turn off CH1: VDIO Test Condition: 12Vin, 1.05V/20A CPU 1 Phase operation CH1: VR_ON CH2: CSW1 CH2: CSW1 CH3: Vcore CH3: Vcore CH4: CPGOOD CH4: CPGOOD Figure 48. CPU1 Enable Turnon 40 Figure 49. CPU1 Enable Turnoff Using the TPS59640EVM-751 IMVP-7, 3-Phase CPU/1-Phase GPU SVID Power System Copyright © 2012, Texas Instruments Incorporated SLUU796 – January 2012 Submit Documentation Feedback Performance Data and Typical Characteristic Curves www.ti.com TPS59640EVM CPU Switching Node Test Condition: 12Vin, 1.05V/30A CPU 1 Phase operation TPS59640EVM CPU Output Ripple Test Condition: 12Vin, 1.05V/30A CPU 1 Phase operation CH1: CSW1 CH1: CSW1 CH2: Vcore Ripple Figure 50. CPU1 Switching Node TPS59640EVM Test Condition:12Vin,VID:1.05V-0.6V, 0.5A Dynamic VID: Set VID-Slow/Set VID-Slow CPU 1 Phase operation TPS59640EVM Dynamic VID:Set VID-Fast/Set VID-Fast Test Condition: 12Vin,VID: 1.05V-0.6V,0.5A CPU 1 Phase operation CH1: VDIO CH1: VDIO CH2: CSW1 CH2: CSW1 CH3: Vcore CH3: Vcore CH4: CPGOOD CH4: CPGOOD Figure 52. CPU1 Dynamic VID: SetVID-Slow/Slow SLUU796 – January 2012 Submit Documentation Feedback Figure 51. CPU1 Switching Node and Ripple Figure 53. CPU1 Dynamic VID: SetVID-Fast/Fast Using the TPS59640EVM-751 IMVP-7, 3-Phase CPU/1-Phase GPU SVID Power System Copyright © 2012, Texas Instruments Incorporated 41 Performance Data and Typical Characteristic Curves www.ti.com TPS59640EVM CPU Output Load Insertion with OSR/USR = 20 k - Min Test Condition: 12Vin,VID: 0.6V-1.05V, 0.5A TPS59640EVM CPU 1 Phase operation Dynamic VID: Set VID-Fast/Set VID-Decay Test Condition: 12Vin, 1.05V/0A-32A CPU 1-Phase on board dynamic load CH1: VDIO CH1: DYN_C CH2: CSW1 CH2: CSW1 CH3: Vcore CH4: Vcore CH4: CPGOOD Figure 54. CPU1 Dynamic VID: SetVID-Decay/Fast TPS59640EVM CPU Output Load Release with OSR/USR = 20 k - Min Figure 55. CPU1 Output Load Insertion With OSR/USR 20k (Min) Test Condition: 12Vin, 1.05V/0A-32A CPU 2-Phase on board dynamic load CH1: DYN_C CH2: CSW1 CH4: Vcore Figure 56. CPU1 Output Load Release With OSR/USR 20k (Min) 42 Using the TPS59640EVM-751 IMVP-7, 3-Phase CPU/1-Phase GPU SVID Power System Copyright © 2012, Texas Instruments Incorporated SLUU796 – January 2012 Submit Documentation Feedback Performance Data and Typical Characteristic Curves www.ti.com Figure 57. CPU1 Bode Plot at 12Vin, 1.05 V/33 A Figure 58. CPU1 MOSFET Figure 59. CPU1 IC Test condition: CPU1 12Vin, 1.05 V/33 A, no airflow SLUU796 – January 2012 Submit Documentation Feedback Using the TPS59640EVM-751 IMVP-7, 3-Phase CPU/1-Phase GPU SVID Power System Copyright © 2012, Texas Instruments Incorporated 43 Performance Data and Typical Characteristic Curves 8.4 www.ti.com GPU Operation 95 1.3 VI = 9 V VI = 12 V 85 1.25 VO - Output Voltage - V Efficiency - % 90 VI = 20 V 80 1.15 75 70 1.2 12 Vin Vout - V 20 Vin Vout - V 9 Vin Vout - V 1.1 SPEC - min SPEC - nom SPEC - max 0 5 10 15 20 25 IO - Output Current - A 30 35 1.05 0 Figure 60. GPU Efficiency TPS59640EVM CPU VDIO Turn on Test Condition: 12Vin, 1.23V/20A CPU operation 5 30 35 Figure 61. GPU Load Regulation TPS59640EVM GPU VR_ON Turn off Test Condition: 12Vin, 1.23V/20A GPU operation CH1: VR_ON CH1: VDIO CH2: GSW CH2: GSW CH3: G_Vcore CH3: G_Vcore CH4: GPGOOD CH4: GPGOOD Figure 62. GPU Enable Turnon 44 10 15 20 25 IO - Output Current - A Figure 63. GPU Enable Turnoff Using the TPS59640EVM-751 IMVP-7, 3-Phase CPU/1-Phase GPU SVID Power System Copyright © 2012, Texas Instruments Incorporated SLUU796 – January 2012 Submit Documentation Feedback Performance Data and Typical Characteristic Curves www.ti.com TPS59640EVM GPU Switching Node Test Condition: 12Vin, 1.23V/30A GPU operation TPS59640EVM GPU Output Ripple Test Condition: 12Vin, 1.23V/30A GPU operation CH1: GSW CH1: GSW CH2: G_Vcore Ripple Figure 64. GPU Switching Node TPS59640EVM Test Condition:12Vin,VID: 1.23V-0.6V, 0.5A Dynamic VID: Set VID-Slow/Set VID-Slow GPU 2 Phase operation TPS59640EVM Dynamic VID: Set VID-Fast/Set VID-Fast Test Condition: 12Vin,VID: 1.23V-0.6V, 0.5A GPU operation CH1: VDIO CH1: VDIO CH2: GSW CH2: GSW CH3: G_Vcore CH3: G_Vcore CH4: GPGOOD CH4: GPGOOD Figure 66. GPU Dynamic VID: SetVID-Slow/Slow SLUU796 – January 2012 Submit Documentation Feedback Figure 65. GPU Switching Node and Ripple Figure 67. GPU Dynamic VID: SetVID-Fast/Fast Using the TPS59640EVM-751 IMVP-7, 3-Phase CPU/1-Phase GPU SVID Power System Copyright © 2012, Texas Instruments Incorporated 45 Performance Data and Typical Characteristic Curves www.ti.com TPS59640EVM GPU Output Load Insertion with OSR/USR = 20 k - Min TPS59640EVM Test Condition: 12Vin,VID: 0.6V-1.23V,0.5A Dynamic VID: Set VID-Fast/Set VID-Decay GPU operation Test Condition: 12Vin,1.23V/0A-24A GPU on board dynamic load CH1: VDIO CH1: DYN_G CH2: GSW CH2: GSW CH3: G_Vcore CH4: G_Vcore CH4: GPGOOD Figure 68. GPU Dynamic VID: SetVID-Decay/Fast TPS59640EVM GPU Output Load Release with OSR/USR = 20 k - Min Figure 69. GPU Output Load Insertion With OSR/USR 20k (Min) Test Condition: 12Vin,1.23V/0A-24A GPU on board dynamic load CH1: DYN_G CH2: GSW CH4: G_Vcore Figure 70. GPU Output Load Release With OSR/USR 20k (Min) 46 Using the TPS59640EVM-751 IMVP-7, 3-Phase CPU/1-Phase GPU SVID Power System Copyright © 2012, Texas Instruments Incorporated SLUU796 – January 2012 Submit Documentation Feedback Performance Data and Typical Characteristic Curves www.ti.com Figure 71. GPU Bode Plot at 12Vin, 1.23 V/33 A Figure 72. GPU MOSFET Figure 73. GPU IC Test condition: GPU 12Vin, 1.23 V/33 A, no airflow SLUU796 – January 2012 Submit Documentation Feedback Using the TPS59640EVM-751 IMVP-7, 3-Phase CPU/1-Phase GPU SVID Power System Copyright © 2012, Texas Instruments Incorporated 47 Performance Data and Typical Characteristic Curves 8.5 www.ti.com 1.05V VCCIO 100 90 1.08 VI = 9 V 80 VI = 12 V VI = 20 V VO - Output Voltage - V Efficiency - % 70 60 50 40 30 VI = 12 V 1.06 VI = 9 V VI = 20 V 1.04 20 10 0 0.001 0.01 0.1 1 IO - Output Current - A 10 100 1.02 0 Figure 74. 1.05-V Efficiency TPS59640EVM VCCIO Output Start up Test Condition: 12Vin, 1.05V/15A CH1: VCCIO_EN 2 4 14 16 Figure 75. 1.05-V Load Regulation TPS59640EVM VCCIO Output Enable Shutdown Test Condition: 12Vin, 1.05V/15A CH1: VCCIO_EN CH2: VCCIO CH3: VCCIO_PG Figure 76. 1.05-V Enable Turnon 48 6 8 10 12 IO - Output Current - A CH2: VCCIO CH3: VCCIO_PG Figure 77. 1.05-V Enable Turnoff Using the TPS59640EVM-751 IMVP-7, 3-Phase CPU/1-Phase GPU SVID Power System Copyright © 2012, Texas Instruments Incorporated SLUU796 – January 2012 Submit Documentation Feedback Performance Data and Typical Characteristic Curves www.ti.com TPS59640EVM VCCIO Switching Node Test Condition: 12Vin, 1.05V/15A TPS59640EVM VCCIO Output Ripple Test Condition: 12Vin, 1.05V/15A CH1: VCCIO_SW CH1: VCCIO Output Ripple Figure 78. 1.05-V Switching Node TPS59640EVM VCCIO Output Transient from DCM to CCM Test Condition: 12Vin, 1.05V/0A-10A CH1: VCCIO Output Voltage TPS59640EVM VCCIO Output Transient from CCM to DCM Test Condition: 12Vin, 1.05V/10A-0A CH1: VCCIO Output Voltage CH4: VCCIO Output Current CH4: VCCIO Output Current Figure 80. 1.05-V Transient DCM to CCM SLUU796 – January 2012 Submit Documentation Feedback Figure 79. 1.05-V Ripple Figure 81. 1.05-V Transient CCM to DCM Using the TPS59640EVM-751 IMVP-7, 3-Phase CPU/1-Phase GPU SVID Power System Copyright © 2012, Texas Instruments Incorporated 49 Performance Data and Typical Characteristic Curves www.ti.com Figure 82. TPS51219 Thermal Test condition: 12Vin, 1.05 V/15 A, no airflow 50 Using the TPS59640EVM-751 IMVP-7, 3-Phase CPU/1-Phase GPU SVID Power System Copyright © 2012, Texas Instruments Incorporated SLUU796 – January 2012 Submit Documentation Feedback Performance Data and Typical Characteristic Curves www.ti.com 8.6 1.2 VDDQ 1.26 100 VI = 9 V 90 1.24 VI = 12 V Efficiency - % 70 VO - Output Voltage - V 80 VI = 20 V 60 50 40 30 20 VI = 12 V 1.22 VI = 20 V 1.20 VI = 9 V 1.18 1.16 10 0 0.001 0.01 0.1 1 IO - Output Current - A 10 Figure 83. 1.2-V Efficiency TPS59640EVM VDDQ Output S5 Start up 1.14 0 2 4 6 8 10 12 IO - Output Current - A 14 16 Figure 84. 1.2-V Load Regulation Test Condition: 12Vin, 1.2V/15A TPS59640EVM VDDQ Output S5 Shutdown Test Condition: 12Vin, 1.2V/15A CH1: VDDQ S5 CH1: VDDQ S5 CH2: VTTREF CH2: VTTREF CH3: VDDQ CH3: VDDQ CH4: VDDQ_PG CH4: VDDQ_PG Figure 85. 1.2-V Enable Turnon SLUU796 – January 2012 Submit Documentation Feedback 100 Figure 86. 1.2-V Enable Turnoff Using the TPS59640EVM-751 IMVP-7, 3-Phase CPU/1-Phase GPU SVID Power System Copyright © 2012, Texas Instruments Incorporated 51 Performance Data and Typical Characteristic Curves TPS59640EVM VDDQ Output Switching Node Test Condition: 12Vin, 1.2V/15A CH1: VDDQ SW www.ti.com TPS59640EVM VDDQ Output Ripple CH1: VDDQ Output Ripple Figure 87. 1.2-V Switching Node TPS59640EVM VDDQ Output Transient from DCM to CCM Test Condition: 12Vin, 1.2V/0A-10A Figure 88. 1.2-V Ripple TPS59640EVM VDDQ Output Transient from CCM to DCM CH1: VDDQ Output Voltage CH1: VDDQ Output Voltage CH4: VDDQ Output Current CH4: VDDQ Output Current Figure 89. 1.2-V Transient DCM to CCM 52 Test Condition: 12Vin, 1.2V/15A Test Condition: 12Vin, 1.2V/0A-10A Figure 90. 1.2-V Transient CCM to DCM Using the TPS59640EVM-751 IMVP-7, 3-Phase CPU/1-Phase GPU SVID Power System Copyright © 2012, Texas Instruments Incorporated SLUU796 – January 2012 Submit Documentation Feedback EVM Assembly Drawings and PCB layout www.ti.com Figure 91. TPS51916 Thermal Test condition: 12Vin, 1.2 V/15 A, no airflow 9 EVM Assembly Drawings and PCB layout The following figures (Figure 92 through Figure 101) show the design of the TPS59640EVM-751 printed-circuit board. The EVM has been designed using an eight-layer circuit board with 2 oz o0f copper on outside layers. TEXAS INSTRUMENTS Figure 92. TPS59640EVM-751 Top Layer Assembly Drawing (Top View) SLUU796 – January 2012 Submit Documentation Feedback Using the TPS59640EVM-751 IMVP-7, 3-Phase CPU/1-Phase GPU SVID Power System Copyright © 2012, Texas Instruments Incorporated 53 EVM Assembly Drawings and PCB layout www.ti.com Figure 93. TPS59640EVM-751 Bottom Assembly Drawing (Bottom View) Figure 94. TPS59640EVM-751 Top Copper 54 Using the TPS59640EVM-751 IMVP-7, 3-Phase CPU/1-Phase GPU SVID Power System Copyright © 2012, Texas Instruments Incorporated SLUU796 – January 2012 Submit Documentation Feedback EVM Assembly Drawings and PCB layout www.ti.com Figure 95. TPS59640EVM-751 Bottom Copper Figure 96. TPS59640EVM-751 Internal Layer 2 SLUU796 – January 2012 Submit Documentation Feedback Using the TPS59640EVM-751 IMVP-7, 3-Phase CPU/1-Phase GPU SVID Power System Copyright © 2012, Texas Instruments Incorporated 55 EVM Assembly Drawings and PCB layout www.ti.com Figure 97. TPS59640EVM-751 Internal Layer 3 Figure 98. TPS59640EVM-751 Internal Layer 4 56 Using the TPS59640EVM-751 IMVP-7, 3-Phase CPU/1-Phase GPU SVID Power System Copyright © 2012, Texas Instruments Incorporated SLUU796 – January 2012 Submit Documentation Feedback EVM Assembly Drawings and PCB layout www.ti.com Figure 99. TPS59640EVM-751 Internal Layer 5 Figure 100. TPS59640EVM-751 Internal Layer 6 SLUU796 – January 2012 Submit Documentation Feedback Using the TPS59640EVM-751 IMVP-7, 3-Phase CPU/1-Phase GPU SVID Power System Copyright © 2012, Texas Instruments Incorporated 57 EVM Assembly Drawings and PCB layout www.ti.com Figure 101. TPS59640EVM-751 Internal Layer 7 58 Using the TPS59640EVM-751 IMVP-7, 3-Phase CPU/1-Phase GPU SVID Power System Copyright © 2012, Texas Instruments Incorporated SLUU796 – January 2012 Submit Documentation Feedback Bill of Materials www.ti.com 10 Bill of Materials The EVM major components list according to the schematics shown in Figure 3 to Figure 15. Table 13. Bill of Materials QTY RefDes Description MFR Part Number 3 C1, C28, C163 Capacitor, Ceramic, 220nF, 25V, X7R, 10%, 0603 STD STD 29 C119, C180, C192, C201, C211, C215, C219, C164, Capacitor, Ceramic, 0.1uF, 25V, X7R, 10%, 0603 C191, C199, C210, C214, C218, C222, C223 STD STD 10 C12, C13, C33, C71, C113, Capacitor, Ceramic, 1nF, 50V, X7R, 10%, 0603 C118, C124, C155, C176, C195 STD STD 2 C14, C26 Capacitor, Ceramic, 100pF, 50V, C0G, 10%, 0603 STD STD 1 C16 Capacitor, Ceramic, 0.33uF, 25V, X7R, 10%, 0603 STD STD 1 C160 Capacitor, Ceramic, 2.2uF, 25V, X7R, 10%, 0805 STD STD 12 C17, C23, C24, C34, C73, C187, C188, C190, C194, C200, C225, C226 Capacitor, Ceramic, 1uF, 25V, X7R, 10%, 0603 STD STD 4 C18, C19, C20, C21 Capacitor, Aluminum, 2.0V, 470uF, 4mohm, 20%, D2T Sanyo 2TPLF470M4E 5 C186, C189, C207, C208, C125 Capacitor, Ceramic, 0.01uF, 25V, X7R, 10%, 0603 STD STD 2 C197, C198 Capacitor, Ceramic, 10pF, 50V, C0G, 10%, 0603 STD STD 6 C2, C38, C76, C127, C162, C184 Capacitor, Ceramic, 2.2uF, 25V, X7R, 10%, 0603 STD STD 2 C205, C206 Capacitor, Ceramic, 22pF, 50V, C0G, 5%, 0603 STD STD C120, C182, C193, C202, C212, C216, C220, C156, C185, C196, C209, C213, C217, C221, 1 C3 Capacitor, Ceramic, 4.7uF, 25V, X7R, 10%, 0805 STD STD 40 C39, C40, C41, C42, C43, C44, Capacitor, Ceramic, 22uF, 6.3V, X5R, 10%, 0805 C45, C47, C51, C52, C53, C54, C55, C56, C57, C58, C81, C82, C83, C84, C85, C86, C87, C88, C89, C90, C95, C96, C128, C132, C133, C135, C137, C138, C140, C141, C142, C143, C144, C146 STD STD 24 C4, C5, C6, C7, C8, C9, C10, Capacitor, Ceramic, 10uF, 25V, X7R, 20%, 1206 C11, C29, C30, C31, C32, C67, C68, C69, C70, C114, C115, C116, C117, C151, C152, C153, C154 STD STD 20 C46, C48, C59, C60, C61, C62, Capacitor, Ceramic, 10uF, 6.3V, X5R, 10%, 0805 C63, C64, C65, C66, C165, C166, C167, C168, C170, C172, C157, C177, C181, C183 STD STD 5 C72, C74, C121, C122, C158 Capacitor, Aluminum, 2.0V, 330uF, 2mohm, 20%, 7343 Sanyo 2TPF330M6 4 C98, C102, C106, C110 Capacitor, Ceramic, 33nF, 25V, X7R, 10%, 0603 STD STD 8 D1, D2, D3, D9, D10, D12, D13, D14 Diode, LED, Green Clear, 20mcd, 0.079x0.049 Lite On LTST-C170GKT 5 D4, D5, D7, D8, D11 Diode, LED, Red Clear, 20mcd, 0.079x0.049 Lite On LTST-C170CKT 1 D6 Diode, Schottky, 200mA, 30V, SOT-23, Vishay-Liteon BAT54-V-GS08 1 FB1 Bead, SMD, Ferrite, 100MHz Max, 200mA, +/-25%, 0603 WE 74279266A 4 L1, L2, L3, L4 Inductor, SMT, 0.36uH, 35A , 0.82mohm, 10x11.5mm Toko FCUL1040-H-R36M 2 L5, L6 Inductor, SMT, 0.56uH, 32A , 1.3mohm, 10x11.2mm Toko FDUE1040J-H-R56M 6 Q1, Q2, Q3, Q4, Q7, Q9 MOSFET, Synchronous Buck NexFET Power Block SON 5X6mm TI CSD87350Q5D 4 Q10, Q11, Q12, Q13 MOSFET, Nchan, 25V, 31A, 2.5mohm, QFN5X6mm TI CSD16407Q5 1 Q14 MOSFET, Pchan, -60V, -0.33A, 2ohm, SOT23 Infineon BSS83P 6 Q5, Q6, Q8, Q15, Q16, Q17 MOSFET, Nchan, 100V, 0.17A, 6ohm, SOT23 Fairchild BSS123 1 R1 Resistor, Chip, 71.5k, 1/10W, 1%, 0603 STD STD 7 R119, R120, R136, R203, R204, R205, R209 Resistor, Chip, 180, 1/10W, 1%, 0603 STD STD SLUU796 – January 2012 Submit Documentation Feedback Using the TPS59640EVM-751 IMVP-7, 3-Phase CPU/1-Phase GPU SVID Power System Copyright © 2012, Texas Instruments Incorporated 59 Bill of Materials www.ti.com Table 13. Bill of Materials (continued) QTY 60 MFR Part Number 19 RefDes R12, R13, R26, R30, R34, R42, Resistor, Chip, 0, 1/10W, 1%, 0603 R43, R54, R57, R129, R131, R133, R134, R145, R146, R148, R150, R219, R220 Description STD STD 5 R121, R123, R140, R200, R207 Resistor, Chip, 1.00k, 1/10W, 1%, 0603 STD STD 14 R122, R147, R201, R217, Resistor, Chip, 10.0k, 1/10W, 1%, 0603 STD STD 1 R128 Resistor, Chip, 10.5k, 1/10W, 1%, 0603 STD STD 2 R130, R141 Resistor, Chip, 37.4k, 1/10W, 1%, 0603 STD STD 1 R14 Resistor, Chip, 169k, 1/10W, 1%, 0603 STD STD 1 R151 Resistor, Chip, 15.0k, 1/10W, 1%, 0603 STD STD 4 R153, R223, R224, R225 Resistor, Chip, 2.00k, 1/10W, 1%, 0603 STD STD 1 R156 Resistor, Chip, 51.1k, 1/10W, 1%, 0603 STD STD 1 R157 Resistor, Chip, 1, 1/10W, 1%, 0603 STD STD 3 R158, R159, R160 Resistor, Chip, 1, 1/10W, 1%, 0805 STD STD 7 R16, R71, R72, R73, R95, R96, Resistor, Chip, 150k, 1/18W, 1%, 0603 R97 STD STD 3 R161, R162, R167 Resistor, Chip, 0.01, 1W, 2512 STD STD 5 R163, R164, R166, R168, R169 Resistor, Chip, 0.05, 1W, 2512 STD STD 1 R165 Resistor, Chip Array, 10.0k, 62.5mW, 5%, 1206 Yageo TC164-JR-0710KL 3 R17, R181, R194 Resistor, Chip, 10.0k, 1/16W, 1%, 0402 STD STD 1 R170 Resistor, Chip, 8.06k, 1/10W, 1%, 0603 STD STD 2 R172, R175 Resistor, Chip, 0.005, 1W, 2512 STD STD 5 R176, R177, R178, R179, R199 Resistor, Chip, 330, 1/10W, 1%, 0603 STD STD 8 R180, R182, R183, R184, R188, R189, R195, R196 Resistor, Chip, 1M, 1/16W, 1%, 0402 STD STD 1 R186 Resistor, Chip, 100, 1/10W, 1%, 0603 STD STD 2 R192, R193 Resistor, Chip, 3.01k, 1/10W, 1%, 0603 STD STD 7 R2, R40, R47, R53, R59, R132, Resistor, Chip, 10, 1/10W, 1%, 0603 R135 STD STD 1 R21 Resistor, Chip, 200k, 1/10W, 1%, 0603 STD STD 1 R211 Resistor, Chip, 75, 1/10W, 1%, 0603 STD STD 1 R212 Resistor, Chip, 130, 1/10W, 1%, 0603 STD STD 1 R213 Resistor, Chip, 43.2, 1/10W, 1%, 0603 STD STD 1 R214 Resistor, Chip, 1.50k, 1/10W, 1%, 0603 STD STD 2 R215, R216 Resistor, Chip, 33.2, 1/10W, 1%, 0603 STD STD 1 R22 Resistor, Chip, 4.12k, 1/10W, 1%, 0603 STD STD 2 R221, R226 Resistor, Chip, 475, 1/10W, 1%, 0603 STD STD 1 R222 Resistor, Chip, 2.21k, 1/10W, 1%, 0603 STD STD 1 R227 Resistor, Chip, 2.74k, 1/10W, 1%, 0603 STD STD 1 R24 Resistor, Chip, 309k, 1/10W, 1%, 0603 STD STD 1 R3 Resistor, Chip, 54.9, 1/16W, 1%, 0402 STD STD 4 R35, R44, R55, R65 Resistor, Chip, 17.8k, 1/8W, 1%, 0805 STD STD 12 R36, R41, R45, R52, R56, R64, Resistor, Chip, 0, 1/16W, 1%, 0402 R66, R70, R190, R191, R197, R198 STD STD 4 R38, R50, R62, R68 Resistor, Chip, 162k, 1/10W, 1%, 0603 STD STD 4 R39, R51, R63, R69 Resistor, Chip, 28.7k, 1/10W, 1%, 0603 STD STD 1 R4 Resistor, Chip, 130, 1/16W, 1%, 0402 STD STD 1 R6 Resistor, Chip, 8.45k, 1/10W, 1%, 0603 STD STD 1 R7 Resistor, Chip, 42.2k, 1/10W, 1%, 0603 STD STD 8 R74, R75, R76, R98, R99, R100, R152, R173 Resistor, Chip, 100k, 1/10W, 1%, 0603 STD STD R137, R138, R139, R171, R174, R187, R202, R206, R208, R218 Using the TPS59640EVM-751 IMVP-7, 3-Phase CPU/1-Phase GPU SVID Power System Copyright © 2012, Texas Instruments Incorporated SLUU796 – January 2012 Submit Documentation Feedback Bill of Materials www.ti.com Table 13. Bill of Materials (continued) QTY RefDes Description MFR Part Number 6 R77, R78, R79, R101, R102, R103 Resistor, Chip, 75.0k, 1/10W, 1%, 0603 STD STD 2 R8, R23 Resistor, Chip, 15.4k, 1/10W, 1%, 0603 STD STD 6 R80, R81, R82, R104, R105, R106 Resistor, Chip, 56.2k, 1/10W, 1%, 0603 STD STD 6 R83, R84, R85, R107, R108, R109 Resistor, Chip, 39.2k, 1/10W, 1%, 0603 STD STD 8 R86, R87, R88, R110, R111, R112, R154, R155 Resistor, Chip, 30.1k, 1/10W, 1%, 0603 STD STD 6 R89, R90, R91, R113, R114, R115 Resistor, Chip, 24.3k, 1/10W, 1%, 0603 STD STD 12 R9, R11, R15, R19, R27, R28, R31, R33, R124, R125, R142, R143, Resistor, Chip, 2.21, 1/10W, 1%, 0603 STD STD 7 R92, R93, R94, R116, R117, R118, R149 Resistor, Chip, 20.0k, 1/10W, 1%, 0603 STD STD 6 RT1, RT2, RT3, RT4, RT5, RT6 NTC Thermistor, 100k, 0603, 5% Murata NCP18WF104J03RB 1 U1 IC, 3+1 phase, IMVP-7 VCORE CPU and GPU Controller, QFN-48 TI TPS59640RSL 1 U11 IC, Timer, Low-Power CMOS, SO-8 TI TLC555CDR 1 U12 IC, Dual 10 ohm SPDT Analogy Switch, DGS_10P TI TS5A23157DGS 1 U13 IC, Nano Power, Open output comparators, PW14 TI TLV3404IPW 1 U14 IC, USB to series port controller, QFN-32 TI TUSB3410RHB 1 U15 IC, CMOS programmable controller, QFP-100 TI TMS320F2806PZS 2 U16, U18 IC, Dual Schmitt-trigger inverter, DCK-6 TI SN74LVC2G07DCK 1 U17 IC, Dual-bit dual-supply bus transceiver, RSW-10 TI SN74AVC2T245RSW 2 U2, U3 IC, Dual high voltage, efficient synchronous MOSFET buck driver, QFN-8 TI TPS51601ADRB 1 U4 IC, High performance, single synchronous step down controller, QFN-16 TI TPS51219RTE 1 U5 IC, Complete DDR2, DDR3 and DDR3L memory power solution, QFN-20 TI TPS51916RUK 1 U6 IC, Dual low dropout regulator, 500mA and 250mA outputs, PWP20 TI TPS70102PWP 1 U7 IC, 150mA, low Iq, wide bandwidth, LDO, SC70 TI TPS71712DCK 1 U8 IC, Quadruple 2-input positive –AND gates, SO-14 TI SN74HC08D 2 U9, U10 IC, Dual 4A High speed low side power MOSFET drivers, SO-8 TI UCC27324D 1 X1 Crystal, controlled oscillators, 0.150”x0.528” ABRACON ABLS-20.000MHZ-B2-T 1 Y1 Crystal, controlled oscillators, 0.150”x0.528” ABRACON ABLS-12.000MHZ-B2-T 0 XU1 Socket, CPU Molex rPGA989 SLUU796 – January 2012 Submit Documentation Feedback Using the TPS59640EVM-751 IMVP-7, 3-Phase CPU/1-Phase GPU SVID Power System Copyright © 2012, Texas Instruments Incorporated 61 Evaluation Board/Kit Important Notice Texas Instruments (TI) provides the enclosed product(s) under the following conditions: This evaluation board/kit is intended for use for ENGINEERING DEVELOPMENT, DEMONSTRATION, OR EVALUATION PURPOSES ONLY and is not considered by TI to be a finished end-product fit for general consumer use. Persons handling the product(s) must have electronics training and observe good engineering practice standards. As such, the goods being provided are not intended to be complete in terms of required design-, marketing-, and/or manufacturing-related protective considerations, including product safety and environmental measures typically found in end products that incorporate such semiconductor components or circuit boards. This evaluation board/kit does not fall within the scope of the European Union directives regarding electromagnetic compatibility, restricted substances (RoHS), recycling (WEEE), FCC, CE or UL, and therefore may not meet the technical requirements of these directives or other related directives. Should this evaluation board/kit not meet the specifications indicated in the User’s Guide, the board/kit may be returned within 30 days from the date of delivery for a full refund. THE FOREGOING WARRANTY IS THE EXCLUSIVE WARRANTY MADE BY SELLER TO BUYER AND IS IN LIEU OF ALL OTHER WARRANTIES, EXPRESSED, IMPLIED, OR STATUTORY, INCLUDING ANY WARRANTY OF MERCHANTABILITY OR FITNESS FOR ANY PARTICULAR PURPOSE. The user assumes all responsibility and liability for proper and safe handling of the goods. Further, the user indemnifies TI from all claims arising from the handling or use of the goods. Due to the open construction of the product, it is the user’s responsibility to take any and all appropriate precautions with regard to electrostatic discharge. EXCEPT TO THE EXTENT OF THE INDEMNITY SET FORTH ABOVE, NEITHER PARTY SHALL BE LIABLE TO THE OTHER FOR ANY INDIRECT, SPECIAL, INCIDENTAL, OR CONSEQUENTIAL DAMAGES. TI currently deals with a variety of customers for products, and therefore our arrangement with the user is not exclusive. TI assumes no liability for applications assistance, customer product design, software performance, or infringement of patents or services described herein. Please read the User’s Guide and, specifically, the Warnings and Restrictions notice in the User’s Guide prior to handling the product. This notice contains important safety information about temperatures and voltages. For additional information on TI’s environmental and/or safety programs, please contact the TI application engineer or visit www.ti.com/esh. No license is granted under any patent right or other intellectual property right of TI covering or relating to any machine, process, or combination in which such TI products or services might be or are used. FCC Warning This evaluation board/kit is intended for use for ENGINEERING DEVELOPMENT, DEMONSTRATION, OR EVALUATION PURPOSES ONLY and is not considered by TI to be a finished end-product fit for general consumer use. It generates, uses, and can radiate radio frequency energy and has not been tested for compliance with the limits of computing devices pursuant to part 15 of FCC rules, which are designed to provide reasonable protection against radio frequency interference. Operation of this equipment in other environments may cause interference with radio communications, in which case the user at his own expense will be required to take whatever measures may be required to correct this interference. EVM Warnings and Restrictions It is important to operate this EVM within the input voltage range of 0 V to 20 V and the output voltage range of 0 V to 1.5 V. Exceeding the specified input range may cause unexpected operation and/or irreversible damage to the EVM. If there are questions concerning the input range, please contact a TI field representative prior to connecting the input power. Applying loads outside of the specified output range may result in unintended operation and/or possible permanent damage to the EVM. Please consult the EVM User's Guide prior to connecting any load to the EVM output. If there is uncertainty as to the load specification, please contact a TI field representative. During normal operation, some circuit components may have case temperatures greater than 80°C. The EVM is designed to operate properly with certain components above 80°C as long as the input and output ranges are maintained. These components include but are not limited to linear regulators, switching transistors, pass transistors, and current sense resistors. These types of devices can be identified using the EVM schematic located in the EVM User's Guide. When placing measurement probes near these devices during operation, please be aware that these devices may be very warm to the touch. Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265 Copyright © 2012, Texas Instruments Incorporated Evaluation Board/Kit Important Notice Texas Instruments (TI) provides the enclosed product(s) under the following conditions: This evaluation board/kit is intended for use for ENGINEERING DEVELOPMENT, DEMONSTRATION, OR EVALUATION PURPOSES ONLY and is not considered by TI to be a finished end-product fit for general consumer use. Persons handling the product(s) must have electronics training and observe good engineering practice standards. As such, the goods being provided are not intended to be complete in terms of required design-, marketing-, and/or manufacturing-related protective considerations, including product safety and environmental measures typically found in end products that incorporate such semiconductor components or circuit boards. This evaluation board/kit does not fall within the scope of the European Union directives regarding electromagnetic compatibility, restricted substances (RoHS), recycling (WEEE), FCC, CE or UL, and therefore may not meet the technical requirements of these directives or other related directives. Should this evaluation board/kit not meet the specifications indicated in the User’s Guide, the board/kit may be returned within 30 days from the date of delivery for a full refund. THE FOREGOING WARRANTY IS THE EXCLUSIVE WARRANTY MADE BY SELLER TO BUYER AND IS IN LIEU OF ALL OTHER WARRANTIES, EXPRESSED, IMPLIED, OR STATUTORY, INCLUDING ANY WARRANTY OF MERCHANTABILITY OR FITNESS FOR ANY PARTICULAR PURPOSE. The user assumes all responsibility and liability for proper and safe handling of the goods. Further, the user indemnifies TI from all claims arising from the handling or use of the goods. Due to the open construction of the product, it is the user’s responsibility to take any and all appropriate precautions with regard to electrostatic discharge. EXCEPT TO THE EXTENT OF THE INDEMNITY SET FORTH ABOVE, NEITHER PARTY SHALL BE LIABLE TO THE OTHER FOR ANY INDIRECT, SPECIAL, INCIDENTAL, OR CONSEQUENTIAL DAMAGES. TI currently deals with a variety of customers for products, and therefore our arrangement with the user is not exclusive. TI assumes no liability for applications assistance, customer product design, software performance, or infringement of patents or services described herein. Please read the User’s Guide and, specifically, the Warnings and Restrictions notice in the User’s Guide prior to handling the product. This notice contains important safety information about temperatures and voltages. For additional information on TI’s environmental and/or safety programs, please contact the TI application engineer or visit www.ti.com/esh. No license is granted under any patent right or other intellectual property right of TI covering or relating to any machine, process, or combination in which such TI products or services might be or are used. FCC Warning This evaluation board/kit is intended for use for ENGINEERING DEVELOPMENT, DEMONSTRATION, OR EVALUATION PURPOSES ONLY and is not considered by TI to be a finished end-product fit for general consumer use. It generates, uses, and can radiate radio frequency energy and has not been tested for compliance with the limits of computing devices pursuant to part 15 of FCC rules, which are designed to provide reasonable protection against radio frequency interference. Operation of this equipment in other environments may cause interference with radio communications, in which case the user at his own expense will be required to take whatever measures may be required to correct this interference. EVM Warnings and Restrictions It is important to operate this EVM within the input voltage range of 0 V to 20 V and the output voltage range of 0 V to 1.5 V. Exceeding the specified input range may cause unexpected operation and/or irreversible damage to the EVM. If there are questions concerning the input range, please contact a TI field representative prior to connecting the input power. Applying loads outside of the specified output range may result in unintended operation and/or possible permanent damage to the EVM. Please consult the EVM User's Guide prior to connecting any load to the EVM output. If there is uncertainty as to the load specification, please contact a TI field representative. During normal operation, some circuit components may have case temperatures greater than 80°C. The EVM is designed to operate properly with certain components above 80°C as long as the input and output ranges are maintained. These components include but are not limited to linear regulators, switching transistors, pass transistors, and current sense resistors. These types of devices can be identified using the EVM schematic located in the EVM User's Guide. When placing measurement probes near these devices during operation, please be aware that these devices may be very warm to the touch. Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265 Copyright © 2012, Texas Instruments Incorporated EVALUATION BOARD/KIT/MODULE (EVM) ADDITIONAL TERMS Texas Instruments (TI) provides the enclosed Evaluation Board/Kit/Module (EVM) under the following conditions: The user assumes all responsibility and liability for proper and safe handling of the goods. Further, the user indemnifies TI from all claims arising from the handling or use of the goods. Should this evaluation board/kit not meet the specifications indicated in the User’s Guide, the board/kit may be returned within 30 days from the date of delivery for a full refund. THE FOREGOING LIMITED WARRANTY IS THE EXCLUSIVE WARRANTY MADE BY SELLER TO BUYER AND IS IN LIEU OF ALL OTHER WARRANTIES, EXPRESSED, IMPLIED, OR STATUTORY, INCLUDING ANY WARRANTY OF MERCHANTABILITY OR FITNESS FOR ANY PARTICULAR PURPOSE. EXCEPT TO THE EXTENT OF THE INDEMNITY SET FORTH ABOVE, NEITHER PARTY SHALL BE LIABLE TO THE OTHER FOR ANY INDIRECT, SPECIAL, INCIDENTAL, OR CONSEQUENTIAL DAMAGES. Please read the User's Guide and, specifically, the Warnings and Restrictions notice in the User's Guide prior to handling the product. This notice contains important safety information about temperatures and voltages. For additional information on TI's environmental and/or safety programs, please visit www.ti.com/esh or contact TI. No license is granted under any patent right or other intellectual property right of TI covering or relating to any machine, process, or combination in which such TI products or services might be or are used. TI currently deals with a variety of customers for products, and therefore our arrangement with the user is not exclusive. TI assumes no liability for applications assistance, customer product design, software performance, or infringement of patents or services described herein. REGULATORY COMPLIANCE INFORMATION As noted in the EVM User’s Guide and/or EVM itself, this EVM and/or accompanying hardware may or may not be subject to the Federal Communications Commission (FCC) and Industry Canada (IC) rules. For EVMs not subject to the above rules, this evaluation board/kit/module is intended for use for ENGINEERING DEVELOPMENT, DEMONSTRATION OR EVALUATION PURPOSES ONLY and is not considered by TI to be a finished end product fit for general consumer use. It generates, uses, and can radiate radio frequency energy and has not been tested for compliance with the limits of computing devices pursuant to part 15 of FCC or ICES-003 rules, which are designed to provide reasonable protection against radio frequency interference. Operation of the equipment may cause interference with radio communications, in which case the user at his own expense will be required to take whatever measures may be required to correct this interference. General Statement for EVMs including a radio User Power/Frequency Use Obligations: This radio is intended for development/professional use only in legally allocated frequency and power limits. Any use of radio frequencies and/or power availability of this EVM and its development application(s) must comply with local laws governing radio spectrum allocation and power limits for this evaluation module. It is the user’s sole responsibility to only operate this radio in legally acceptable frequency space and within legally mandated power limitations. Any exceptions to this are strictly prohibited and unauthorized by Texas Instruments unless user has obtained appropriate experimental/development licenses from local regulatory authorities, which is responsibility of user including its acceptable authorization. For EVMs annotated as FCC – FEDERAL COMMUNICATIONS COMMISSION Part 15 Compliant Caution This device complies with part 15 of the FCC Rules. Operation is subject to the following two conditions: (1) This device may not cause harmful interference, and (2) this device must accept any interference received, including interference that may cause undesired operation. Changes or modifications not expressly approved by the party responsible for compliance could void the user's authority to operate the equipment. FCC Interference Statement for Class A EVM devices This equipment has been tested and found to comply with the limits for a Class A digital device, pursuant to part 15 of the FCC Rules. These limits are designed to provide reasonable protection against harmful interference when the equipment is operated in a commercial environment. This equipment generates, uses, and can radiate radio frequency energy and, if not installed and used in accordance with the instruction manual, may cause harmful interference to radio communications. Operation of this equipment in a residential area is likely to cause harmful interference in which case the user will be required to correct the interference at his own expense. FCC Interference Statement for Class B EVM devices This equipment has been tested and found to comply with the limits for a Class B digital device, pursuant to part 15 of the FCC Rules. These limits are designed to provide reasonable protection against harmful interference in a residential installation. This equipment generates, uses and can radiate radio frequency energy and, if not installed and used in accordance with the instructions, may cause harmful interference to radio communications. However, there is no guarantee that interference will not occur in a particular installation. If this equipment does cause harmful interference to radio or television reception, which can be determined by turning the equipment off and on, the user is encouraged to try to correct the interference by one or more of the following measures: • Reorient or relocate the receiving antenna. • Increase the separation between the equipment and receiver. • Connect the equipment into an outlet on a circuit different from that to which the receiver is connected. • Consult the dealer or an experienced radio/TV technician for help. For EVMs annotated as IC – INDUSTRY CANADA Compliant This Class A or B digital apparatus complies with Canadian ICES-003. Changes or modifications not expressly approved by the party responsible for compliance could void the user’s authority to operate the equipment. Concerning EVMs including radio transmitters This device complies with Industry Canada licence-exempt RSS standard(s). Operation is subject to the following two conditions: (1) this device may not cause interference, and (2) this device must accept any interference, including interference that may cause undesired operation of the device. Concerning EVMs including detachable antennas Under Industry Canada regulations, this radio transmitter may only operate using an antenna of a type and maximum (or lesser) gain approved for the transmitter by Industry Canada. To reduce potential radio interference to other users, the antenna type and its gain should be so chosen that the equivalent isotropically radiated power (e.i.r.p.) is not more than that necessary for successful communication. This radio transmitter has been approved by Industry Canada to operate with the antenna types listed in the user guide with the maximum permissible gain and required antenna impedance for each antenna type indicated. Antenna types not included in this list, having a gain greater than the maximum gain indicated for that type, are strictly prohibited for use with this device. Cet appareil numérique de la classe A ou B est conforme à la norme NMB-003 du Canada. Les changements ou les modifications pas expressément approuvés par la partie responsable de la conformité ont pu vider l’autorité de l'utilisateur pour actionner l'équipement. Concernant les EVMs avec appareils radio Le présent appareil est conforme aux CNR d'Industrie Canada applicables aux appareils radio exempts de licence. L'exploitation est autorisée aux deux conditions suivantes : (1) l'appareil ne doit pas produire de brouillage, et (2) l'utilisateur de l'appareil doit accepter tout brouillage radioélectrique subi, même si le brouillage est susceptible d'en compromettre le fonctionnement. Concernant les EVMs avec antennes détachables Conformément à la réglementation d'Industrie Canada, le présent émetteur radio peut fonctionner avec une antenne d'un type et d'un gain maximal (ou inférieur) approuvé pour l'émetteur par Industrie Canada. Dans le but de réduire les risques de brouillage radioélectrique à l'intention des autres utilisateurs, il faut choisir le type d'antenne et son gain de sorte que la puissance isotrope rayonnée équivalente (p.i.r.e.) ne dépasse pas l'intensité nécessaire à l'établissement d'une communication satisfaisante. Le présent émetteur radio a été approuvé par Industrie Canada pour fonctionner avec les types d'antenne énumérés dans le manuel d’usage et ayant un gain admissible maximal et l'impédance requise pour chaque type d'antenne. Les types d'antenne non inclus dans cette liste, ou dont le gain est supérieur au gain maximal indiqué, sont strictement interdits pour l'exploitation de l'émetteur. SPACER SPACER SPACER SPACER SPACER SPACER SPACER SPACER 【Important Notice for Users of this Product in Japan】 】 This development kit is NOT certified as Confirming to Technical Regulations of Radio Law of Japan If you use this product in Japan, you are required by Radio Law of Japan to follow the instructions below with respect to this product: 1. 2. 3. Use this product in a shielded room or any other test facility as defined in the notification #173 issued by Ministry of Internal Affairs and Communications on March 28, 2006, based on Sub-section 1.1 of Article 6 of the Ministry’s Rule for Enforcement of Radio Law of Japan, Use this product only after you obtained the license of Test Radio Station as provided in Radio Law of Japan with respect to this product, or Use of this product only after you obtained the Technical Regulations Conformity Certification as provided in Radio Law of Japan with respect to this product. Also, please do not transfer this product, unless you give the same notice above to the transferee. Please note that if you could not follow the instructions above, you will be subject to penalties of Radio Law of Japan. Texas Instruments Japan Limited (address) 24-1, Nishi-Shinjuku 6 chome, Shinjuku-ku, Tokyo, Japan http://www.tij.co.jp 【ご使用にあたっての注】 本開発キットは技術基準適合証明を受けておりません。 本製品のご使用に際しては、電波法遵守のため、以下のいずれかの措置を取っていただく必要がありますのでご注意ください。 1. 2. 3. 電波法施行規則第6条第1項第1号に基づく平成18年3月28日総務省告示第173号で定められた電波暗室等の試験設備でご使用いただく。 実験局の免許を取得後ご使用いただく。 技術基準適合証明を取得後ご使用いただく。 なお、本製品は、上記の「ご使用にあたっての注意」を譲渡先、移転先に通知しない限り、譲渡、移転できないものとします。    上記を遵守頂けない場合は、電波法の罰則が適用される可能性があることをご留意ください。 日本テキサス・インスツルメンツ株式会社 東京都新宿区西新宿6丁目24番1号 西新宿三井ビル http://www.tij.co.jp SPACER SPACER SPACER SPACER SPACER SPACER SPACER SPACER SPACER SPACER SPACER SPACER SPACER SPACER SPACER SPACER EVALUATION BOARD/KIT/MODULE (EVM) WARNINGS, RESTRICTIONS AND DISCLAIMERS For Feasibility Evaluation Only, in Laboratory/Development Environments. Unless otherwise indicated, this EVM is not a finished electrical equipment and not intended for consumer use. It is intended solely for use for preliminary feasibility evaluation in laboratory/development environments by technically qualified electronics experts who are familiar with the dangers and application risks associated with handling electrical mechanical components, systems and subsystems. It should not be used as all or part of a finished end product. Your Sole Responsibility and Risk. You acknowledge, represent and agree that: 1. 2. 3. 4. You have unique knowledge concerning Federal, State and local regulatory requirements (including but not limited to Food and Drug Administration regulations, if applicable) which relate to your products and which relate to your use (and/or that of your employees, affiliates, contractors or designees) of the EVM for evaluation, testing and other purposes. You have full and exclusive responsibility to assure the safety and compliance of your products with all such laws and other applicable regulatory requirements, and also to assure the safety of any activities to be conducted by you and/or your employees, affiliates, contractors or designees, using the EVM. Further, you are responsible to assure that any interfaces (electronic and/or mechanical) between the EVM and any human body are designed with suitable isolation and means to safely limit accessible leakage currents to minimize the risk of electrical shock hazard. You will employ reasonable safeguards to ensure that your use of the EVM will not result in any property damage, injury or death, even if the EVM should fail to perform as described or expected. You will take care of proper disposal and recycling of the EVM’s electronic components and packing materials. Certain Instructions. It is important to operate this EVM within TI’s recommended specifications and environmental considerations per the user guidelines. Exceeding the specified EVM ratings (including but not limited to input and output voltage, current, power, and environmental ranges) may cause property damage, personal injury or death. If there are questions concerning these ratings please contact a TI field representative prior to connecting interface electronics including input power and intended loads. Any loads applied outside of the specified output range may result in unintended and/or inaccurate operation and/or possible permanent damage to the EVM and/or interface electronics. Please consult the EVM User's Guide prior to connecting any load to the EVM output. If there is uncertainty as to the load specification, please contact a TI field representative. During normal operation, some circuit components may have case temperatures greater than 60°C as long as the input and output are maintained at a normal ambient operating temperature. These components include but are not limited to linear regulators, switching transistors, pass transistors, and current sense resistors which can be identified using the EVM schematic located in the EVM User's Guide. When placing measurement probes near these devices during normal operation, please be aware that these devices may be very warm to the touch. As with all electronic evaluation tools, only qualified personnel knowledgeable in electronic measurement and diagnostics normally found in development environments should use these EVMs. Agreement to Defend, Indemnify and Hold Harmless. You agree to defend, indemnify and hold TI, its licensors and their representatives harmless from and against any and all claims, damages, losses, expenses, costs and liabilities (collectively, "Claims") arising out of or in connection with any use of the EVM that is not in accordance with the terms of the agreement. This obligation shall apply whether Claims arise under law of tort or contract or any other legal theory, and even if the EVM fails to perform as described or expected. Safety-Critical or Life-Critical Applications. If you intend to evaluate the components for possible use in safety critical applications (such as life support) where a failure of the TI product would reasonably be expected to cause severe personal injury or death, such as devices which are classified as FDA Class III or similar classification, then you must specifically notify TI of such intent and enter into a separate Assurance and Indemnity Agreement. Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265 Copyright © 2012, Texas Instruments Incorporated IMPORTANT NOTICE Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, enhancements, improvements and other changes to its semiconductor products and services per JESD46, latest issue, and to discontinue any product or service per JESD48, latest issue. Buyers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. All semiconductor products (also referred to herein as “components”) are sold subject to TI’s terms and conditions of sale supplied at the time of order acknowledgment. TI warrants performance of its components to the specifications applicable at the time of sale, in accordance with the warranty in TI’s terms and conditions of sale of semiconductor products. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where mandated by applicable law, testing of all parameters of each component is not necessarily performed. TI assumes no liability for applications assistance or the design of Buyers’ products. Buyers are responsible for their products and applications using TI components. To minimize the risks associated with Buyers’ products and applications, Buyers should provide adequate design and operating safeguards. TI does not warrant or represent that any license, either express or implied, is granted under any patent right, copyright, mask work right, or other intellectual property right relating to any combination, machine, or process in which TI components or services are used. Information published by TI regarding third-party products or services does not constitute a license to use such products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI. Reproduction of significant portions of TI information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. TI is not responsible or liable for such altered documentation. Information of third parties may be subject to additional restrictions. Resale of TI components or services with statements different from or beyond the parameters stated by TI for that component or service voids all express and any implied warranties for the associated TI component or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements. Buyer acknowledges and agrees that it is solely responsible for compliance with all legal, regulatory and safety-related requirements concerning its products, and any use of TI components in its applications, notwithstanding any applications-related information or support that may be provided by TI. Buyer represents and agrees that it has all the necessary expertise to create and implement safeguards which anticipate dangerous consequences of failures, monitor failures and their consequences, lessen the likelihood of failures that might cause harm and take appropriate remedial actions. Buyer will fully indemnify TI and its representatives against any damages arising out of the use of any TI components in safety-critical applications. In some cases, TI components may be promoted specifically to facilitate safety-related applications. With such components, TI’s goal is to help enable customers to design and create their own end-product solutions that meet applicable functional safety standards and requirements. Nonetheless, such components are subject to these terms. No TI components are authorized for use in FDA Class III (or similar life-critical medical equipment) unless authorized officers of the parties have executed a special agreement specifically governing such use. Only those TI components which TI has specifically designated as military grade or “enhanced plastic” are designed and intended for use in military/aerospace applications or environments. Buyer acknowledges and agrees that any military or aerospace use of TI components which have not been so designated is solely at the Buyer's risk, and that Buyer is solely responsible for compliance with all legal and regulatory requirements in connection with such use. TI has specifically designated certain components which meet ISO/TS16949 requirements, mainly for automotive use. Components which have not been so designated are neither designed nor intended for automotive use; and TI will not be responsible for any failure of such components to meet such requirements. Products Applications Audio www.ti.com/audio Automotive and Transportation www.ti.com/automotive Amplifiers amplifier.ti.com Communications and Telecom www.ti.com/communications Data Converters dataconverter.ti.com Computers and Peripherals www.ti.com/computers DLP® Products www.dlp.com Consumer Electronics www.ti.com/consumer-apps DSP dsp.ti.com Energy and Lighting www.ti.com/energy Clocks and Timers www.ti.com/clocks Industrial www.ti.com/industrial Interface interface.ti.com Medical www.ti.com/medical Logic logic.ti.com Security www.ti.com/security Power Mgmt power.ti.com Space, Avionics and Defense www.ti.com/space-avionics-defense Microcontrollers microcontroller.ti.com Video and Imaging www.ti.com/video RFID www.ti-rfid.com OMAP Applications Processors www.ti.com/omap TI E2E Community e2e.ti.com Wireless Connectivity www.ti.com/wirelessconnectivity Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265 Copyright © 2012, Texas Instruments Incorporated
TPS59640EVM-751 价格&库存

很抱歉,暂时无法提供与“TPS59640EVM-751”相匹配的价格&库存,您可以联系我们找货

免费人工找货