0
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
会员中心
创作中心
发布
  • 发文章

  • 发资料

  • 发帖

  • 提问

  • 发视频

创作活动
TPS59650EVM-753

TPS59650EVM-753

  • 厂商:

    BURR-BROWN(德州仪器)

  • 封装:

    Module

  • 描述:

    EVAL MODULE FOR TPS59650-753

  • 数据手册
  • 价格&库存
TPS59650EVM-753 数据手册
User's Guide SLUU896 – March 2012 Using the TPS59650EVM-753 Intel™ IMVP-7 3-Phase CPU/2-Phase GPU SVID Power System The TPS59650EVM-753 evaluation module (EVM) is a complete solution for Intel™ IMVP7 Serial VID(SVID) Power System from a 9V-20V input bus. This EVM uses the TPS59650 for IMVP7 - 3-Phase CPU and 2-Phase GPU Vcore controller, the TPS51219 for 1.05VCCIO, TPS51916 for DDR3L/DDR4 Memory rail (1.2VDDQ, 0.6VTT and 0.6VTTREF) and also uses the (CSD87350Q5D) a 5mm x 6mm TI’s power block MOSFETs that uses Powerstack™ technology with high-side and low-side MOSFETs for high power density and superior thermal performance. 1 2 3 4 5 6 7 8 9 10 Contents Description ................................................................................................................... 5 1.1 Typical Applications ................................................................................................ 5 1.2 Features ............................................................................................................. 5 TPS59650EVM-753 Power System Block Diagram .................................................................... 6 Electrical Performance Specifications .................................................................................... 7 Test Setup ................................................................................................................... 8 4.1 Test Equipment ..................................................................................................... 8 4.2 Recommended Wire Gauge ...................................................................................... 9 4.3 Recommended Test Setup ....................................................................................... 9 4.4 USB Cable Connections ......................................................................................... 10 4.5 Input Connections ................................................................................................ 10 4.6 Output Connections .............................................................................................. 11 Configuration ............................................................................................................... 11 5.1 CPU and GPU Configuration ................................................................................... 11 5.2 1.2VDDQ, 0.6V VTT and 0.6V VTTREF Configuration ...................................................... 13 5.3 1.05V VCCIO Configuration ..................................................................................... 13 Test Procedure ............................................................................................................ 14 6.1 Line/Load Regulation and Efficiency Measurement Procedure ............................................ 14 6.2 Equipment Shutdown ............................................................................................ 17 Performance Data and Typical Characteristic Curves ................................................................ 18 7.1 CPU 3-Phase Operation ......................................................................................... 18 7.2 CPU 2-Phase Operation ......................................................................................... 21 7.3 CPU1-Phase Operation .......................................................................................... 25 7.4 GPU 2 Phase Operation ......................................................................................... 29 7.5 GPU 1 Phase Operation ......................................................................................... 32 7.6 1.05V VCCIO ...................................................................................................... 36 7.7 1.2V VDDQ ........................................................................................................ 39 EVM Assembly Drawings and PCB Layout ............................................................................ 42 Bill of Materials ............................................................................................................. 47 Schematics ................................................................................................................. 50 List of Figures 1 TPS59650EVM-753 Power System Block Diagram .................................................................... 6 2 TPS59650EVM-753 EVM Illustration ..................................................................................... 7 Powerstack is a trademark of Texas Instruments. Intel is a trademark of Intel. All other trademarks are the property of their respective owners. SLUU896 – March 2012 Submit Documentation Feedback Using the TPS59650EVM-753 Intel™ IMVP-7 3-Phase CPU/2-Phase GPU SVID Power System Copyright © 2012, Texas Instruments Incorporated 1 www.ti.com 3 USB Cable ................................................................................................................... 8 4 TPS59650EVM-753 Recommended Test Set Up ..................................................................... 10 5 TPS59650EVM-753 CPU GUI set up Window ........................................................................ 15 6 TPS59650EVM-753 GPU GUI set up Window ........................................................................ 16 7 CPU3 Efficiency 8 CPU3 Load regulation .................................................................................................... 18 9 CPU3 Enable Turn on 18 10 CPU3 Enable Turn off 18 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 2 ........................................................................................................... .................................................................................................... .................................................................................................... CPU3 Switching Node(Ripple) .......................................................................................... CPU3 Dynamic VID: SetVID-Slow/Slow ................................................................................ CPU3 Dynamic VID:SetVID-Fast/Fast ................................................................................. CPU3 Dynamic VID:SetVID-Decay/Fast ............................................................................... CPU3 Output Load Insertion with OSR/USR middle level .......................................................... CPU3 Output Load Release with OSR/USR middle level............................................................ CPU3 Bode Plot at 12Vin, 1.05V/60A .................................................................................. CPU3 MOSFET ........................................................................................................... CPU3 IC .................................................................................................................... CPU2 Efficiency ........................................................................................................... CPU2 Load regulation .................................................................................................... CPU2 Enable Turn on .................................................................................................... CPU2 Enable Turn off .................................................................................................... CPU2 Switching Node(Ripple) .......................................................................................... CPU2 Dynamic VID: SetVID-Slow/Slow ................................................................................ CPU2 Dynamic VID:SetVID-Fast/Fast ................................................................................. CPU2 Dynamic VID:SetVID-Decay/Fast ............................................................................... CPU2 Output Load Insertion with OSR/USR middle level .......................................................... CPU2 Output Load Release with OSR/USR middle level............................................................ CPU2 Bode Plot at 12Vin, 1.05V/55A .................................................................................. CPU2 MOSFET ........................................................................................................... CPU2 IC .................................................................................................................... CPU1 Efficiency ........................................................................................................... CPU1 Load regulation .................................................................................................... CPU1 Enable Turn on .................................................................................................... CPU1 Enable Turn off .................................................................................................... CPU1 Switching Node ................................................................................................... CPU1 Switching node and Ripple ...................................................................................... CPU1 Dynamic VID:SetVID-Slow/Slow ................................................................................ CPU1 Dynamic VID:SetVID-Fast/Fast ................................................................................. CPU1 Dynamic VID:SetVID-Decay/Fast ............................................................................... CPU1 Output Load Insertion with OSR/USR middle level .......................................................... CPU1 Output Load Release with OSR/USR middle level............................................................ CPU1 Bode Plot at 12Vin, 1.05V/33A .................................................................................. CPU1 MOSFET ........................................................................................................... CPU1 IC .................................................................................................................... GPU2 Efficiency .......................................................................................................... GPU2 Load regulation .................................................................................................... GPU2 Enable Turn on ................................................................................................... GPU2 Enable Turn off ................................................................................................... GPU2 Switching Node and Ripple ..................................................................................... Using the TPS59650EVM-753 Intel™ IMVP-7 3-Phase CPU/2-Phase GPU SVID Power System Copyright © 2012, Texas Instruments Incorporated 18 18 18 19 19 19 19 20 20 20 21 21 21 21 22 22 22 22 23 23 24 24 24 25 25 25 25 25 25 26 26 26 26 27 28 28 28 29 29 29 29 29 SLUU896 – March 2012 Submit Documentation Feedback www.ti.com 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 ................................................................................ GPU2 Dynamic VID:SetVID-Fast/Fast ................................................................................. GPU2 Dynamic VID:SetVID-Decay/Fast ............................................................................... GPU2 Output Load Insertion with OSR/USR OFF ................................................................... GPU2 Output Load Release with OSR/USR OFF .................................................................... GPU2 Bode Plot at 12Vin, 1.23V/50A .................................................................................. GPU2 MOSFET ........................................................................................................... GPU2 IC .................................................................................................................... GPU1 Efficiency .......................................................................................................... GPU1 Load regulation .................................................................................................... GPU1 Enable Turn on ................................................................................................... GPU1 Enable Turn off ................................................................................................... GPU1 Switching Node ................................................................................................... GPU1 Switching Node and Ripple ..................................................................................... GPU1 Dynamic VID:SetVID-Slow/Slow ................................................................................ GPU1 Dynamic VID:SetVID-Fast/Fast ................................................................................. GPU1 Dynamic VID:SetVID-Decay/Fast .............................................................................. GPU1 Output Load Insertion with OSR/USR OFF .................................................................... GPU1 Output Load Release with OSR/USR OFF .................................................................... GPU1 Bode Plot at 12Vin, 1.23V/33A .................................................................................. GPU1 MOSFET ........................................................................................................... GPU1 IC .................................................................................................................... 1.05V Efficiency ........................................................................................................... 1.05V Load regulation .................................................................................................... 1.05V Enable Turn on .................................................................................................... 1.05V Enable Turn off .................................................................................................... 1.05V Switching Node ................................................................................................... 1.05V Ripple ............................................................................................................... 1.05V Transient DCM TO CCM ......................................................................................... 1.05V Transient CCM to DCM ........................................................................................... TPS51219 Thermal........................................................................................................ 1.2V Efficiency ............................................................................................................ 1.2V Load regulation ...................................................................................................... 1.2V Enable Turn on ..................................................................................................... 1.2V Enable Turn off ..................................................................................................... 1.2V Switching Node ..................................................................................................... 1.2V Ripple ................................................................................................................. 1.2V Transient DCM TO CCM .......................................................................................... 1.2V Transient CCM to DCM ............................................................................................ TPS51916 Thermal........................................................................................................ TPS59650EVM-753 Top Layer Assembly Drawing (Top view) ..................................................... TPS59650EVM-753 Bottom Assembly Drawing (Bottom view) ..................................................... TPS59650EVM-753 Top Copper ....................................................................................... TPS59650EVM-753 Bottom Copper ................................................................................... TPS59650EVM-753 Internal Layer 2 .................................................................................. TPS59650EVM-753 Internal Layer 3 .................................................................................. TPS59650EVM-753 Internal Layer 4 .................................................................................. TPS59650EVM-753 Internal Layer 5 ................................................................................... GPU2 Dynamic VID:SetVID-Slow/Slow SLUU896 – March 2012 Submit Documentation Feedback Using the TPS59650EVM-753 Intel™ IMVP-7 3-Phase CPU/2-Phase GPU SVID Power System Copyright © 2012, Texas Instruments Incorporated 29 30 30 30 30 31 31 31 32 32 32 32 33 33 33 33 34 34 34 35 35 35 36 36 36 36 37 37 37 37 38 39 39 39 39 39 39 40 40 41 42 42 43 43 44 44 45 45 3 www.ti.com 100 TPS59650EVM-753 Internal Layer 6 ................................................................................... 46 101 TPS59650EVM-753 Internal Layer 7 ................................................................................... 46 List of Tables 1 TPS59650EVM-753 Electrical Performance Specifications ........................................................... 7 2 Current Limit Trip Selection .............................................................................................. 11 3 CPU Frequency Selection ................................................................................................ 11 4 GPU Frequency Selection 5 6 7 8 9 10 11 12 13 4 ............................................................................................... F2808 DSP Program Mode Selection .................................................................................. 5Vin Bias Voltage Option (J33) .......................................................................................... On Board Dynamic Load Selection ..................................................................................... VR_ON Enable Selection................................................................................................. VDDQ S3, S5 Enable Selection ........................................................................................ 1.05V Enable Selection .................................................................................................. VCCIO Output Voltage Selection ....................................................................................... On Board Dynamic Load Enable/Disable selection .................................................................. EVM Major Components List ............................................................................................ Using the TPS59650EVM-753 Intel™ IMVP-7 3-Phase CPU/2-Phase GPU SVID Power System Copyright © 2012, Texas Instruments Incorporated 12 12 12 12 13 13 13 13 14 47 SLUU896 – March 2012 Submit Documentation Feedback Description www.ti.com 1 Description The TPS59650EVM-753 is designed to use a 9V-20V Input bus to produce 6 regulated outputs for IMVP7 SVID CPU/GPU Power System. The TPS59650EVM-753 is specially designed to demonstrate the TPS59650 full IMVP7 mobile feature while providing GUI communication programing and a number of test points to evaluate the static and dynamic performance of TPS59650. 1.1 Typical Applications • 1.2 IMVP7 Vcore Applications for Adapter, Battery, NVDC or 3V/5V/12V rails Features The TPS59650EVM-753 features: • Complete solution for 9V-20V Input Intel IMVP7 SVID Power System • GUI communication to demonstrate full IMVP7 Mobile feature • 3-Phase CPU Vcore can support up to 94A output current • 2-Phase GPU Vcore can support up to 46A output current • 8 Selectable Switching frequency for CPU and GPU power • 8 Levels selectable current limit for CPU and GPU power • Switches or Jumpers for each output enable • On Board Dynamic Load for CPU, GPU Vcore and VCCIO output • High efficiency and high density by using TI power block MOSFET • Convenient test points for probing critical waveforms • Eight Layer PCB with 1oz copper SLUU896 – March 2012 Submit Documentation Feedback Using the TPS59650EVM-753 Intel™ IMVP-7 3-Phase CPU/2-Phase GPU SVID Power System Copyright © 2012, Texas Instruments Incorporated 5 TPS59650EVM-753 Power System Block Diagram 2 www.ti.com TPS59650EVM-753 Power System Block Diagram IMVP7 TPS59650 9-20VBAT Power Block CPU Core (94A) 48 Pin 6x6 QFN SVID GPU Core (46A) TPS51219 16 Pin 3x3 QFN TPS51916 20 Pin 3x3 QFN TPS70102PWP 5Vin 20 Pin PWP VCCIO: 1.05V/10A DDR3L/DDR4 Memory Rail VDDQ: 1.2V/8A VTT: 0.6V/2A, VTTREF: 0.6V/10mA 1.8V/500mA 3.3V/250mA CPU: 0A-32A On Board Dynamic Load for CPU, GPU and VCCIO GUI communication USB Cable A B GPU: 0A-19A VCCIO: 0A-10A TMS320F2808PZS TUSB3410RHB Host Computer Figure 1. TPS59650EVM-753 Power System Block Diagram 6 Using the TPS59650EVM-753 Intel™ IMVP-7 3-Phase CPU/2-Phase GPU SVID Power System Copyright © 2012, Texas Instruments Incorporated SLUU896 – March 2012 Submit Documentation Feedback Electrical Performance Specifications www.ti.com CPU/GPU VR_ON CPU Load Connector CSD87350Q5D OCL, FSW selection CPU Core TPS59650 TPS51219 VCCIO GPU CORE Intel SVID GUI from USB GPU Load Connector TPS51916 DDR3L/DDR4 Memory Rail Chief River CPU socket Figure 2. TPS59650EVM-753 EVM Illustration 3 Electrical Performance Specifications Table 1. TPS59650EVM-753 Electrical Performance Specifications (1) PARAMETER TEST CONDITIONS MIN TYP MAX UNITS 12 20 V INPUT CHARACTERISTICS 12VBAT input voltage range VBAT Maximum input current VBAT = 12V, all full load (3-Phase CPU/2-Phase GPU) 9 15.5 A No load input current VBAT=12V, all no load(3-Phase CPU/2 Phase GPU) 0.14 A 5VIN input voltage range 5Vin Maximum input current VBAT =12 V, all full load 0.3 A No load input current VBAT=12V, all no load 0.1 A SVID: Address:00 CPU, Payload: 1.05V 1.05 V Line regulation 0.1% Load regulation(Droop) Load Line –1.9 mΩ 25 mVpp 4.5 5 5.5 V OUTPUT CHARACTERISTICS CPU(TPS59650) Output voltage Vcore Output voltage regulation Output voltage ripple VBAT=12V, 1.05V/90A(3-Phase) at 300kHz Output load current CPU 3-Phase operation Output over current Selectable per phase Switching frequency Selectable Full load efficiency VBAT=12V, 1.05V/95A at 300kHz 0 94 A 600 kHz 37 250 300 A 80.05% GPU(TPS59650) Output voltage Vcore (1) SVID: Address:01 GPU, Payload: 1.23V 1.23 V Jumpers set to default locations, see section 6 of this user’s guide SLUU896 – March 2012 Submit Documentation Feedback Using the TPS59650EVM-753 Intel™ IMVP-7 3-Phase CPU/2-Phase GPU SVID Power System Copyright © 2012, Texas Instruments Incorporated 7 Test Setup www.ti.com Table 1. TPS59650EVM-753 Electrical Performance Specifications (1) (continued) PARAMETER Output voltage regulation Output voltage ripple TEST CONDITIONS MIN TYP MAX UNITS Line regulation 0.1% Load regulation(Droop) Load Line –3.9 mΩ 30 mVpp VBAT=12V, 1.23V/50A 2 Phase at 385kHz Output load current 0 Output over current Selectable per phase Switching frequency Selectable Full load efficiency VBAT=12V, 1.23V/50A 2 Phase at 385KHz 50 A 660 kHz 37 275 385 A 86.58% 1.05V VCCIO (TPS51219) Output voltage Output voltage regulation Output voltage ripple 1.05 Line regulation 0.1% Load regulation 0.1% VBAT=12V, 1.05V/10A Output load current 30 0 Output over current Switching frequency Selectable Full load efficiency VBAT=12V, 1.05V/10A V mVpp 10 A 16 A 500 kHz 89.87% DDR3L/DDR4 Memory Rail (TPS51916) Output voltage Output voltage regulation Output voltage ripple 1.2 Line regulation 0.1% Load regulation 0.1% VBAT=12V, 1.2V/8A Output load current 30 0 Output over current Switching frequency Selectable Full load efficiency VBAT=12V, 1.2V/8A Operating temperature 4 Test Setup 4.1 Test Equipment 4.1.1 V mVpp 8 A 10 A 500 kHz 89.07% 25 °C PC Computer (Host Computer) Microsoft Windows XP or newer with available USB port 4.1.2 USB Cable The USB Cable: Standard USB_A to USB_B 5 Pin Mini-B cable. See Figure 3 . Figure 3. USB Cable 8 Using the TPS59650EVM-753 Intel™ IMVP-7 3-Phase CPU/2-Phase GPU SVID Power System Copyright © 2012, Texas Instruments Incorporated SLUU896 – March 2012 Submit Documentation Feedback Test Setup www.ti.com 4.1.3 1. 2. 3. 4. 4.1.4 TPS59650 USB driver and SVID GUI Installation Copy the both files: setup.exe and setup.msi to the host computer. Run this setup.exe. Following installation Instructions, this will install the driver and the Texas Instruments SVID GUI. It will add the below icon DC Source 12VBAT DC Source: The 12VBAT DC source should be a 0-20V variable DC source capable of supplying 20Adc current. Connect 12VBAT to J21 as shown in Figure 4. 5Vin DC Source: The 5Vin DC source should be a 0-5V variable DC source capable of supplying 1Adc current. Connect 5Vin to J22 as shown in Figure 4. 4.1.5 • • • • 4.1.6 Meters V1: 5Vin at TP81(5Vin) and TP83(GND) V2: 12VBAT at TP82(VBAT) and TP24(GND) V3: CPU Vcore sense voltage at J7; GPU Vcore sense voltage at J9; VDDQ sense voltage at J20, VCCIO sense voltage at J16 A1: 12VBAT input current Load The output load should be an electronic constant current load capable of 0-90Adc. 4.1.7 Oscilloscope A digital or analog oscilloscope can be used to measure the output ripple. The oscilloscope should be set for 1MΩ impedance, 20MHz Bandwidth, AC coupling, 2us/division horizontal resolution, 50mV/division vertical resolution. Test point TP30 and TP46 can be used to measure the output ripple voltage for CPU and GPU. Do not use a leaded ground connection as this may induce additional noise due to the large ground loop. 4.2 Recommended Wire Gauge 1. V5in to J22(5V input): The recommended wire size is 1x AWG #18 per input connection, with the total length of wire less than 4 feet (2 feet input, 2 feet return). 2. 12VBAT to J21(12V input): The recommended wire size is 1x AWG #16 per input connection, with the total length of wire less than 4 feet (2 feet input, 2 feet return). 3. J1, J2, J3(CPU) to LOAD or J4, J5 (GPU) to LOAD or J19 (VDDQ) to LOAD or J15(VCCIO) to LOAD: The minimum recommended wire size is 2x AWG #16, with the total length of wire less than 4 feet (2 feet output, 2 feet return) 4.3 Recommended Test Setup Figure 4 is the recommended test set up to evaluate the TPS59650EVM-753.Working at an ESD workstation, make sure that any wrist straps, bootstraps or mats are connected referencing the user to earth ground before handling the EVM. SLUU896 – March 2012 Submit Documentation Feedback Using the TPS59650EVM-753 Intel™ IMVP-7 3-Phase CPU/2-Phase GPU SVID Power System Copyright © 2012, Texas Instruments Incorporated 9 Test Setup www.ti.com 12VBAT DC Source - - - + V3 VCCIO + CPU - + + Load - + - + 5Vin DC Source + - V2 A1 - + V1 - + + - GPU + USB Cable A B Host Computer + _ VDDQ Figure 4. TPS59650EVM-753 Recommended Test Set Up 4.4 USB Cable Connections A standard USB_A and 5 pin Mini_B USB cable needed to connect between host computer and J34 USB port (left bottom side). A GREEN LED(D13) will light up near the USB port on the EVM. This just means USB cable is connected. 4.5 Input Connections 1. Prior to connecting the 5Vin DC source, it is advisable to limit the source current from 5Vin to 1A maximum. Make sure 5Vin is initially set to 0V and connected as shown in Figure 4. 2. Prior to connecting the 12VBAT DC source, it is advisable to limit the source current from 12VBAT to 10A maximum. Make sure 12VBAT is initially set to 0V and connected as shown in Figure 4. 3. Connect voltmeters V1 at TP81 (5Vin) and TP83 (GND) to measure 5Vin voltage, V2 at TP82 (VBAT) and TP24 (GND) to measure 12VBAT voltage as shown in Figure 4. 4. Connect a current meter A1 between 12VBAT DC source and J21 to measure the 12VBAT input current. 10 Using the TPS59650EVM-753 Intel™ IMVP-7 3-Phase CPU/2-Phase GPU SVID Power System Copyright © 2012, Texas Instruments Incorporated SLUU896 – March 2012 Submit Documentation Feedback Configuration www.ti.com 4.6 Output Connections 1. Connect Load to J1, J2, J3 and set Load to constant resistance mode to sink 0Adc before 5Vin and 12VBAT are applied. This is for CPU operation. 2. Connect a voltmeter V3 at J7 to measure CPU Vcore sense voltage. 5 Configuration All Jumper selections should be made prior to applying power to the EVM. User can configure this EVM per following configurations. 5.1 5.1.1 CPU and GPU Configuration CPU/GPU Current Limit Trip Selection (J10 for CPU and J12 for GPU) The current limit trip can be set by J10(COCP) and J12(GOCP). Default setting: Level 5 for both CPU and GPU. Table 2. Current Limit Trip Selection Jumper set to Connected Resistor Left (1-2 pin shorted) 150k Max 2nd(3-4 pin shorted) 100k Level 7 3rd(5-6 pin shorted) 75k Level 6 4 (7-8 pin shorted) 56.2k Level 5 5th(9-10 pin shorted) 39.2k Level 4 6th(11-12 pin shorted) 30.1k Level 3 7 (13-14 pin shorted) 24.3k Level 2 Right(15-16 pin shorted) 20.0k Min th th 5.1.2 COCP/GOCP Limit (Typ.) CPU Frequency Selection (J11) The operating frequency can be set by J11 Default setting: 300 kHz for CPU Table 3. CPU Frequency Selection Jumper set to Connected Resistor CPU Left (1-2 pin shorted) 150k 600 kHz 2nd(3-4 pin shorted) 100k 550 kHz 3 (5-6 pin shorted) 75k 500 kHz 4th(7-8 pin shorted) 56.2k 450 kHz 5th(9-10 pin shorted) 39.2k 400 kHz rd th 6 (11-12 pin shorted) 30.1k 350 kHz 7th(13-14 pin shorted) 24.3k 300 kHz Right(15-16 pin shorted) 20.0k 250 kHz SLUU896 – March 2012 Submit Documentation Feedback Using the TPS59650EVM-753 Intel™ IMVP-7 3-Phase CPU/2-Phase GPU SVID Power System Copyright © 2012, Texas Instruments Incorporated 11 Configuration 5.1.3 www.ti.com GPU Frequency Selection (J13) The operating frequency can be set by J13 Default setting: 385 kHz for GPU. Table 4. GPU Frequency Selection Jumper set to Connected Resistor GPU Left (1-2 pin shorted) 150k 660 kHz 2nd(3-4 pin shorted) 100k 605 kHz 3 (5-6 pin shorted) 75k 550 kHz 4th(7-8 pin shorted) 56.2k 495 kHz 5th(9-10 pin shorted) 39.2k 440 kHz 6th(11-12 pin shorted) 30.1k 385 kHz 7th(13-14 pin shorted) 24.3k 330 kHz Right(15-16 pin shorted) 20.0k 275 kHz rd 5.1.4 F2808 DSP Program Mode Selection (J39) The F2808 DSP Program Mode(GUI) Selection can be set by J39. Default setting: No Jumper shorts on J39 for normal operation Table 5. F2808 DSP Program Mode Selection 5.1.5 Jumper set to Program Mode Selection No Jumper on J39 Normal Operation Jumper on J39 Flash the DSP program to the EVM 5Vin Bias Voltage Option (J33) The 5Vin Bias Voltage can be used from USB or Externally Default setting: No Jumper shorts on J33 Table 6. 5Vin Bias Voltage Option (J33) 5.1.6 Jumper set to Selection No Jumper 5Vin Bias from J22 external Jumper on J39 5Vin Bias from USB, 5Vin from J22 should not be connected On Board Dynamic Load Selection (S3 for CPU, S2(upper) for GPU, S2(lower) for VCCIO) The on board dynamic load can be set by S2 and S3. Default setting: Push S2 and S3 to “OFF” position to disable the on board dynamic load Table 7. On Board Dynamic Load Selection 12 Switch set to Dynamic Load Selection Push S3 to “ON” position Enable 32A on board dynamic load at CPU Push S3 to “OFF” position Disable 32A on board dynamic load at CPU Push S2(upper) to “ON” position Enable 19A on board dynamic load at GPU Push S2(upper) to “OFF” position Disable 19A on board dynamic load at GPU Push S2(lower) to “ON” position Enable 10A on board dynamic load at VCCIO Push S2(lower) to “OFF” position Disable 10A on board dynamic load at VCCIO Using the TPS59650EVM-753 Intel™ IMVP-7 3-Phase CPU/2-Phase GPU SVID Power System Copyright © 2012, Texas Instruments Incorporated SLUU896 – March 2012 Submit Documentation Feedback Configuration www.ti.com 5.1.7 IMVP-7 VR_ON Enable Selection (S4) The IMVP-7 CPU/GPU can be enabled and disabled by S4 Default setting: Push S4 to “OFF” position to disable both CPU and GPU Table 8. VR_ON Enable Selection 5.2 5.2.1 Switch set to VR_ON Selection Push S4 to “ON” position Enable IMVP-7 CPU/GPU Vcore Push S4 to “OFF” position Disable IMVP-7 CPU/GPU Vcore 1.2VDDQ, 0.6V VTT and 0.6V VTTREF Configuration VDDQ S3, S5 Enable Selection The controller can be enabled and disabled by J18 and J17. Default setting: Jumper shorts on Pin2 and Pin3 of J18, Def ault setti ng : Jumper shorts on Pin2 and Pin3 of J17 Table 9. VDDQ S3, S5 Enable Selection State 5.3 5.3.1 J17 (S3) set to J18(S5) set to VDDQ VTTREF VTT S0 ON position ON position ON ON ON S3 OFF position ON position ON ON OFF(High-Z) S4/S5 OFF position OFF position OFF(Discharge) OFF(Discharge) OFF(Discharge) 1.05V VCCIO Configuration 1.05V Enable Selection (S1) 1.05V Enable can be set by S1 Default setting: Push S1 to ”OFF” position Table 10. 1.05V Enable Selection 5.3.2 Jumper set to Selection Push S1 to “ON” position 1.05V Enabled Push S1 to “OFF” position 1.05V Disabled VCCIO Output Voltage Selection (J14) The VCCIO Output Voltage can be selected by J14 Default setting: Jumper shorts Pin1 and Pin2 of J14 Table 11. VCCIO Output Voltage Selection Jumper set to Selection Jumper shorts on Pin1 and Pin2 VCCIO: 1.05V Jumper shorts on Pin2 and Pin3 VCCIO: 1.00V SLUU896 – March 2012 Submit Documentation Feedback Using the TPS59650EVM-753 Intel™ IMVP-7 3-Phase CPU/2-Phase GPU SVID Power System Copyright © 2012, Texas Instruments Incorporated 13 Test Procedure 5.3.3 www.ti.com On Board Dyanamic Load Enable Pin (J23) The on board dynamic load can be enabled or disabled by J23 Default setting: Jumper shorts on J23 Table 12. On Board Dynamic Load Enable/Disable selection Jumper set to Selection Jumper shorts Enable on board dynamic load No Jumper short Disable on board dynamic load 6 Test Procedure 6.1 Line/Load Regulation and Efficiency Measurement Procedure 6.1.1 1. 2. 3. 4. 5. 6. 7. 8. 9. CPU Set up EVM as described in Section 4.3 through Section 4.6 and Figure 4. Ensure J39 no Jumper shorts on Ensure all other Jumpers configuration setting by Section 5 before 5Vin and 12VBAT are applied. Ensure Load is set to constant resistance mode and to sink 0Adc Ensure S1 and S4 are in “OFF” position Add scope probe on the TP30 for CPU Vcore ripple measurement Ensure USB Cable is connected between host computer and USB port(J34) on the EVM Increase 5Vin from 0V to 5V. Using V1 to measure 5Vin input voltage. Increase 12VBAT from 0V to 12V. Using V2 to measure 12VBAT input voltage. 10. Double-Click the icon to launch the GUI program. The GUI window shown in Figure 5. 11. Push S4 to “ON” position to enable the VR_ON of TPS59650. VR_ON LED will light up. 12. Now the user is ready to send SVID commends. The GUI at start-up defaults: Address: 00 CPU, Commend: SetVIDslow, Payload: 1.05V (The user can select the SVID commend by using the pull-down menu”) 13. Click “send Commend” and CPU CPGOOD LED will light up, See the GUI window as Figure 5. 14. Measure V3: CPU Vcore at J7 and A1: 12VBAT input current 15. Vary CPU LOAD from 0Adc to 94Adc, CPU Vcore must remain in load line 16. Vary 12VBAT from 9V to 20V CPU Vcore must remain in line regulation 17. Push S4 to “OFF” position to disable CPU Vcore controller. 18. Decrease LOAD to 0A and disconnect the LOAD from terminal J1, J2, J3 19. Disconnect V3 from J7. 20. Disconnect scope probe from TP30 14 Using the TPS59650EVM-753 Intel™ IMVP-7 3-Phase CPU/2-Phase GPU SVID Power System Copyright © 2012, Texas Instruments Incorporated SLUU896 – March 2012 Submit Documentation Feedback Test Procedure www.ti.com Figure 5. TPS59650EVM-753 CPU GUI set up Window 6.1.2 1. 2. 3. 4. 5. GPU Connect the LOAD to GPU terminal J4, J5 and V3 at J9. Ensure correct polarity. Add scope probe on the TP46 for GPU Vcore_G ripple measurement Push S4 to “ON” position to enable the VR_ON of TPS59650. The VR_ON LED will light up. Now you are ready to send SVID commends for GPU. Using pull-down menu: Address: 01 GPU, Commend: SetVIDslow, Payload: 1.23V Click “send Commend” and GPU GPOOD LED will light up, See the GUI window as Figure 6. SLUU896 – March 2012 Submit Documentation Feedback Using the TPS59650EVM-753 Intel™ IMVP-7 3-Phase CPU/2-Phase GPU SVID Power System Copyright © 2012, Texas Instruments Incorporated 15 Test Procedure www.ti.com Figure 6. TPS59650EVM-753 GPU GUI set up Window 6. Measure V3: GPU Vcore_G at J9 and A1: 12VBAT input current 7. Vary GPU LOAD from 0Adc to 50Adc, GPU Vcore must remain in load line 8. Vary 12VBAT from 9V to 20V GPU Vcore must remain in line regulation 9. Push S4 to “OFF” position to disable GPU Vcore controller. 10. Decrease LOAD to 0A and disconnect the LOAD from terminal J11 11. Disconnect V3 from J9. 12. Disconnect scope probe from TP46 13. Exit SVID GUI window: click File → click Exit 14. Disconnect the USB cable between host Computer and EVM 16 Using the TPS59650EVM-753 Intel™ IMVP-7 3-Phase CPU/2-Phase GPU SVID Power System Copyright © 2012, Texas Instruments Incorporated SLUU896 – March 2012 Submit Documentation Feedback Test Procedure www.ti.com 6.1.3 VDDQ 1. Connect the LOAD to VDDQ terminal J19 and V3 at J20. Ensure correct polarity. 2. Remove Jumper from J17, J18 from pin2 and pin3 and put this Jumper on pin1 and pin 2 of J18, J17 to enable S5 of VDDQ controller. VDDQ PGOOD LED will light up. 3. Measure V3: VDDQ at J20 and A1: 12Vin input current 4. Vary VDDQ LOAD from 0Adc to 8Adc, VDDQ must remain in the load regulation 5. Vary 12VBAT from 9V to 20V, VDDQ must remain in the line regulation 6. Remove Jumper of J17, J18 and shorts back on pin2 and pin3 of J17, J18 to disable VDDQ controller. 7. Decrease LOAD to 0A and disconnect the LOAD from terminal J19 8. Disconnect V3 from J20. 6.1.4 VCCIO Connect the LOAD to VCCIO terminal J15 and V3 at J16. Ensure correct polarity. Push S1 to “ON” position to enable the VCCIO controller. VCCIO EN and PGOOD LED will light up. Measure V3: VCCIO at J16 and A1: 12Vin input current Vary VDDQ LOAD from 0Adc to 10Adc, VCCIO must remain in the load regulation Vary 12VBAT from 9V to 20V, VCCIO must remain in the line regulation Push S1 to “OFF” position to disable VCCIO controller. Decrease LOAD to 0A and disconnect the LOAD from terminal J15 Disconnect V3 from J16. 1. 2. 3. 4. 5. 6. 7. 8. 6.2 Equipment Shutdown 1. 2. 3. 4. Shut down Shut down Shut down Shut down Load 12VBAT and 5Vin oscilloscope host computer SLUU896 – March 2012 Submit Documentation Feedback Using the TPS59650EVM-753 Intel™ IMVP-7 3-Phase CPU/2-Phase GPU SVID Power System Copyright © 2012, Texas Instruments Incorporated 17 Performance Data and Typical Characteristic Curves 7 www.ti.com Performance Data and Typical Characteristic Curves Figure 7 through Figure 91 present typical performance curves for TPS59650EVM-753. Jumpers set to default locations, see section 6 of this user’s guide. 7.1 CPU 3-Phase Operation 95 1.1 VIN = 12 V VIN = 9 V 85 Efficiency - % VIN = 9 V 1.05 VO - Output Voltage - V 90 VIN = 20 V 80 75 SPEC(max) 1 VIN = 12 V 0.95 VIN = 20 V 0.9 SPEC(min) SPEC(nom) 0.85 70 65 0 10 20 30 40 50 60 70 IO - Output Current - A 80 90 100 0.8 0 Figure 7. CPU3 Efficiency 10 20 80 90 100 Figure 8. CPU3 Load regulation TPS59650EVM Test condition: 12 Vin, 1.05V/60A TPS59650EVM Test condition: 12 Vin, 1.05V/60A CPU VDIO Turn on CPU 3 Phase operation CPU VR_ON Turn off CPU 3 Phase operation CH1: CSW1 CH1: CSW1 CH2: CSW2 CH2: CSW2 CH3: 1.05V core CH4: CPGOOD Figure 9. CPU3 Enable Turn on 18 30 40 50 60 70 IO - Output Current - A CH3: 1.05V core CH4: CPGOOD Figure 10. CPU3 Enable Turn off Using the TPS59650EVM-753 Intel™ IMVP-7 3-Phase CPU/2-Phase GPU SVID Power System Copyright © 2012, Texas Instruments Incorporated SLUU896 – March 2012 Submit Documentation Feedback Performance Data and Typical Characteristic Curves www.ti.com TPS59650EVM CPU Switching node and Output Ripple Test condition: 12 Vin, 1.05V/60A CPU 3 Phase operation TPS59650EVM CPU Dynamic VID: Set VID-Slow/Slow Test condition: 12 Vin, 1.05V/1A CPU 3 Operation CH1: CSW1 CH1: CSW1 CH2: CSW2 CH2: CSW2 CH3: 1.05V core CH3: CSW3 CH4: VDIO CH4: 1.05V core Ripple Figure 11. CPU3 Switching Node(Ripple) Figure 12. CPU3 Dynamic VID: SetVID-Slow/Slow TPS59650EVM Test condition: 12 Vin, 1.05V/1A TPS59650EVM Test condition: 12 Vin, 1.05V/1A CPU Dynamic VID: Set VID-Fast/fast CPU 3 Operation CPU Dynamic VID: Set VID-Decay/Fast CPU 3 Operation CH1: CSW1 CH1: CSW1 CH2: CSW2 CH2: CSW2 CH3: 1.05V core CH3: 1.05V core CH4: VDIO CH4: VDIO Figure 13. CPU3 Dynamic VID:SetVID-Fast/Fast SLUU896 – March 2012 Submit Documentation Feedback Figure 14. CPU3 Dynamic VID:SetVID-Decay/Fast Using the TPS59650EVM-753 Intel™ IMVP-7 3-Phase CPU/2-Phase GPU SVID Power System Copyright © 2012, Texas Instruments Incorporated 19 Performance Data and Typical Characteristic Curves www.ti.com Test condition: 12 Vin, 1.05V/0A-51A CPU 3 Phase on board dynamic load TPS59650EVM CPU Output Load Releas with OSR/USR middle level Test condition: 12 Vin, 1.05V/0A-51A CPU 3 Phase on board dynamic load TPS59650EVM CPU Output Load Insertion with OSR/USR middle level CH1: CSW1 CH1: CSW1 CH2: CSW2 CH2: CSW2 CH3: CSW3 CH3: CSW3 CH4: 1.05V core CH4: 1.05V core Figure 15. CPU3 Output Load Insertion with OSR/USR middle level Figure 16. CPU3 Output Load Release with OSR/USR middle level Figure 17. CPU3 Bode Plot at 12Vin, 1.05V/60A Test condition: CPU3 12Vin, 1.05V/60A no airflow 20 Using the TPS59650EVM-753 Intel™ IMVP-7 3-Phase CPU/2-Phase GPU SVID Power System Copyright © 2012, Texas Instruments Incorporated SLUU896 – March 2012 Submit Documentation Feedback Performance Data and Typical Characteristic Curves www.ti.com Figure 18. CPU3 MOSFET 7.2 Figure 19. CPU3 IC CPU 2-Phase Operation 1.1 95 VIN = 12 V VIN = 12 V VIN = 9 V 90 VO - Output Voltage - V 1.05 Efficiency - % 85 VIN = 20 V 80 75 VIN = 9 V 1 SPEC(min) SPEC(nom) 0.95 SPEC(max) 0.9 70 65 0 VIN = 20 V 5 10 15 20 25 30 35 40 IO - Output Current - A Figure 20. CPU2 Efficiency SLUU896 – March 2012 Submit Documentation Feedback 45 50 55 0.85 0 5 10 15 20 25 30 35 40 IO - Output Current - A 45 50 55 Figure 21. CPU2 Load regulation Using the TPS59650EVM-753 Intel™ IMVP-7 3-Phase CPU/2-Phase GPU SVID Power System Copyright © 2012, Texas Instruments Incorporated 21 Performance Data and Typical Characteristic Curves www.ti.com TPS59650EVM Test condition: 12 Vin, 1.05V/40A TPS59650EVM Test condition: 12 Vin, 1.05V/40A CPU VDIO Turn on CPU 2 Phase Operation CPU VR_ON Turn off CPU 2 Phase Operation CH1: CSW1 CH1: CSW1 CH2: CSW2 CH2: CSW2 CH3: 1.05V core CH3: 1.05V core CH4: CPGOOD CH4: CPGOOD Figure 22. CPU2 Enable Turn on Figure 23. CPU2 Enable Turn off TPS59650EVM Test condition: 12 Vin, 1.05V/40A TPS59650EVM CPU Switching node and Output Ripple CPU 2 Phase Operation CPU Dynamic VID: Set VID-Slow/Slow Test condition: 12 Vin, 1.05V/1A CPU 2 Operation CH1: CSW1 CH2: CSW1 CH2: CSW2 CH3: CSW2 CH3: 1.05Vcore CH4: VDIO CH4: 1.05Vcore Figure 24. CPU2 Switching Node(Ripple) 22 Figure 25. CPU2 Dynamic VID: SetVID-Slow/Slow Using the TPS59650EVM-753 Intel™ IMVP-7 3-Phase CPU/2-Phase GPU SVID Power System Copyright © 2012, Texas Instruments Incorporated SLUU896 – March 2012 Submit Documentation Feedback Performance Data and Typical Characteristic Curves www.ti.com TPS59650EVM Test condition: 12 Vin, 1.05V/1A TPS59650EVM Test condition: 12 Vin, 1.05V/1A CPU Dynamic VID: Set VID-Slow/Slow CPU 2 Operation CPU Dynamic VID: Set VID-Decay/Fast CPU 2 Operation CH1: CSW1 CH1: CSW1 CH2: CSW2 CH2: CSW2 CH3: 1.05Vcore CH3: 1.05Vcore CH4: VDIO CH4: VDIO Figure 26. CPU2 Dynamic VID:SetVID-Fast/Fast TPS59650EVM CPU Output Load Insertion with OSR/USR middle level Test condition: 12 Vin, 1.05V/0A-51A CPU 3 Phase on board dynamic load Figure 27. CPU2 Dynamic VID:SetVID-Decay/Fast TPS59650EVM CPU Output Load Release with OSR/USR middle level CH1: DYN_C CH1: DYN_C CH2: CSW1 CH2: CSW1 CH3: CSW2 CH3: CSW2 CH4: 1.05Vcore CH4: 1.05Vcore Figure 28. CPU2 Output Load Insertion with OSR/USR middle level SLUU896 – March 2012 Submit Documentation Feedback Test condition: 12 Vin, 1.05V/0A-51A CPU 3 Phase on board dynamic load Figure 29. CPU2 Output Load Release with OSR/USR middle level Using the TPS59650EVM-753 Intel™ IMVP-7 3-Phase CPU/2-Phase GPU SVID Power System Copyright © 2012, Texas Instruments Incorporated 23 Performance Data and Typical Characteristic Curves www.ti.com Figure 30. CPU2 Bode Plot at 12Vin, 1.05V/55A Test condition: CPU2 12Vin, 1.05V/55A no airflow Figure 31. CPU2 MOSFET 24 Using the TPS59650EVM-753 Intel™ IMVP-7 3-Phase CPU/2-Phase GPU SVID Power System Copyright © 2012, Texas Instruments Incorporated Figure 32. CPU2 IC SLUU896 – March 2012 Submit Documentation Feedback Performance Data and Typical Characteristic Curves www.ti.com 7.3 CPU1-Phase Operation 1.1 95 VIN = 12 V VIN = 12 V VIN = 20 V VIN = 9 V 90 VO - Output Voltage - V Efficiency - % 1.05 85 VIN = 20 V 80 VIN = 9 V 1 SPEC(min) SPEC(nom) SPEC(max) 0.95 75 70 0 5 10 15 20 25 IO - Output Current - A 30 Figure 33. CPU1 Efficiency TPS59650EVM CPU VDIO Turn on 35 0.9 0 5 10 15 20 25 IO - Output Current - A 30 35 Figure 34. CPU1 Load regulation Test condition: 12 Vin, 1.05V/20A CPU 3 Phase on board dynamic load TPS59650EVM CPU VR_ON Turn off Test condition: 12 Vin, 1.05V/20A CPU 1 Phase operation CH1: VR_ON CH1: VDIO CH2: CSW1 CH2: CSW1 CH3: 1.05Vcore CH3: 1.05Vcore CH4: CPGOOD CH4: CPGOOD Figure 35. CPU1 Enable Turn on SLUU896 – March 2012 Submit Documentation Feedback Figure 36. CPU1 Enable Turn off Using the TPS59650EVM-753 Intel™ IMVP-7 3-Phase CPU/2-Phase GPU SVID Power System Copyright © 2012, Texas Instruments Incorporated 25 Performance Data and Typical Characteristic Curves TPS59650EVM CPU Switching Node Test condition: 12 Vin, 1.05V/20A CPU 1 Phase operation www.ti.com TPS59650EVM CPU Switching Node and Output Ripple Test condition: 12 Vin, 1.05V/20A CPU 1 Phase operation CH1: CSW1 CH1: CSW1 CH2: 1.05Vcore Ripple Figure 37. CPU1 Switching Node TPS59650EVM CPU Dynamic VID: Set VID-Slow/Slow Figure 38. CPU1 Switching node and Ripple Test condition: 12 Vin, 1.05V/21A CPU 1 Operation TPS59650EVM CPU Dynamic VID: Set VID-Fast/Fast CH1: CSW1 CH1: CSW1 CH3: 1.05Vcore CH3: 1.05Vcore CH4: VDIO CH4: VDIO Figure 39. CPU1 Dynamic VID:SetVID-Slow/Slow 26 Test condition: 12 Vin, 1.05V/1A CPU 1 Operation Figure 40. CPU1 Dynamic VID:SetVID-Fast/Fast Using the TPS59650EVM-753 Intel™ IMVP-7 3-Phase CPU/2-Phase GPU SVID Power System Copyright © 2012, Texas Instruments Incorporated SLUU896 – March 2012 Submit Documentation Feedback Performance Data and Typical Characteristic Curves www.ti.com TPS59650EVM CPU Dynamic VID: Set VID-Decay/Fast Test condition: 12 Vin, 1.05V/1A CPU 1 Operation TPS59650EVM CPU Output Load Insertion with OSR/USR middle level Test condition: 12 Vin, 1.05V/0A-27A CPU 1 Phase on board dynamic load CH1: CSW1 CH1: DYN_C CH2: CSW1 CH3: 1.05Vcore CH4: VDIO CH3: 1.05Vcore Figure 41. CPU1 Dynamic VID:SetVID-Decay/Fast TPS59650EVM CPU Output Load Releas with OSR/USR middle level Figure 42. CPU1 Output Load Insertion with OSR/USR middle level Test condition: 12 Vin, 1.05V/0A-27A CPU 1 Phase on board dynamic load CH1: DYN_C CH2: CSW1 CH3: 1.05Vcore Figure 43. CPU1 Output Load Release with OSR/USR middle level SLUU896 – March 2012 Submit Documentation Feedback Using the TPS59650EVM-753 Intel™ IMVP-7 3-Phase CPU/2-Phase GPU SVID Power System Copyright © 2012, Texas Instruments Incorporated 27 Performance Data and Typical Characteristic Curves www.ti.com Figure 44. CPU1 Bode Plot at 12Vin, 1.05V/33A Test condition: CPU1 12Vin, 1.05V/33A no airflow Figure 45. CPU1 MOSFET 28 Using the TPS59650EVM-753 Intel™ IMVP-7 3-Phase CPU/2-Phase GPU SVID Power System Copyright © 2012, Texas Instruments Incorporated Figure 46. CPU1 IC SLUU896 – March 2012 Submit Documentation Feedback Performance Data and Typical Characteristic Curves www.ti.com 7.4 GPU 2 Phase Operation 95 1.3 VIN = 12 V VIN = 9 V VO - Output Voltage - V VIN = 20 V Efficiency - % VIN = 9 V 1.25 90 85 VIN = 20 V 1.2 1.15 80 75 70 0 VIN = 12 V SPEC(min) 1.1 SPEC(nom) 1.05 5 10 15 20 25 30 35 IO - Output Current - A 40 45 Figure 47. GPU2 Efficiency TPS59650EVM GPU VDIO Turn on 50 SPEC(max) 1 0 5 10 15 20 25 30 35 IO - Output Current - A 45 50 Figure 48. GPU2 Load regulation Test condition: 12 Vin, 1.23V/40A GPU 2 Phase operation TPS59650EVM GPU VR_ON Turn off CH1: GSW1 CH1: GSW1 CH2: GSW2 CH2: GSW2 CH3: 1.23Vcore Test condition: 12 Vin, 1.23V/40A GPU 2 Phase operation CH3: 1.23Vcore CH4: GPGOOD CH4: GPGOOD Figure 49. GPU2 Enable Turn on SLUU896 – March 2012 Submit Documentation Feedback 40 Figure 50. GPU2 Enable Turn off Using the TPS59650EVM-753 Intel™ IMVP-7 3-Phase CPU/2-Phase GPU SVID Power System Copyright © 2012, Texas Instruments Incorporated 29 Performance Data and Typical Characteristic Curves TPS59650EVM GPU Switching Node and Output Ripple www.ti.com Test condition: 12 Vin, 1.23V/20A GPU 2 Phase operation TPS59650EVM Test condition: 12 Vin, 1.23V/1A GPU Dynamic VID: Set VID-Slow/Slow GPU 2 Operation CH1: GSW1 CH2: GSW1 CH2: GSW2 CH3: GSW2 CH3: 1.23Vcore_G CH4: VDIO CH4: 1.23Vcore Ripple Figure 51. GPU2 Switching Node and Ripple Figure 52. GPU2 Dynamic VID:SetVID-Slow/Slow TPS59650EVM Test condition: 12 Vin, 1.23V/1A TPS59650EVM Test condition: 12 Vin, 1.23V/1A GPU Dynamic VID: Set VID-Fast/Fast GPU 2 Operation GPU Dynamic VID: Set VID-Decay/Fast GPU 2 Operation CH1: GSW1 CH1: GSW1 CH2: GSW2 CH2: GSW2 CH3: 1.23Vcore_G CH3: 1.23Vcore_G CH4: VDIO CH4: VDIO Figure 53. GPU2 Dynamic VID:SetVID-Fast/Fast 30 Figure 54. GPU2 Dynamic VID:SetVID-Decay/Fast Using the TPS59650EVM-753 Intel™ IMVP-7 3-Phase CPU/2-Phase GPU SVID Power System Copyright © 2012, Texas Instruments Incorporated SLUU896 – March 2012 Submit Documentation Feedback Performance Data and Typical Characteristic Curves www.ti.com Test condition: 12 Vin, 1.23V/0A-18A TPS59650EVM GPU Output Load Insertion with OSR/USR GPU 2 Phase on board dynamic load least reduction TPS59650EVM GPU Output Load Release with OSR/USR least reduction CH1: DYN_G Test condition: 12 Vin, 1.23V/0A-18A GPU 2 Phase on board dynamic load CH1: DYN_G CH2: GSW1 CH2: GSW1 CH3: GSW2 CH3: GSW2 CH4: 1.23Vcore CH4: 1.23Vcore Figure 55. GPU2 Output Load Insertion with OSR/USR Figure 56. GPU2 Output Load Release with OSR/USR OFF OFF Figure 57. GPU2 Bode Plot at 12Vin, 1.23V/50A Test condition: GPU2 12Vin, 1.23V/50A no airflow SLUU896 – March 2012 Submit Documentation Feedback Using the TPS59650EVM-753 Intel™ IMVP-7 3-Phase CPU/2-Phase GPU SVID Power System Copyright © 2012, Texas Instruments Incorporated 31 Performance Data and Typical Characteristic Curves www.ti.com Figure 58. GPU2 MOSFET 7.5 Figure 59. GPU2 IC GPU 1 Phase Operation 95 1.3 VIN = 9 V 90 1.25 VO - Output Voltage - V Efficiency - % VIN = 12 V 85 VIN = 20 V 80 1.2 VIN = 12 V SPEC(min) VIN = 20 V VIN = 9 V 1.1 5 10 15 20 25 IO - Output Current - A 30 35 1.05 0 Figure 60. GPU1 Efficiency 32 SPEC(nom) 1.15 75 70 0 SPEC(max) 5 10 15 20 25 IO - Output Current - A 30 35 Figure 61. GPU1 Load regulation Using the TPS59650EVM-753 Intel™ IMVP-7 3-Phase CPU/2-Phase GPU SVID Power System Copyright © 2012, Texas Instruments Incorporated SLUU896 – March 2012 Submit Documentation Feedback Performance Data and Typical Characteristic Curves www.ti.com TPS59650EVM GPU VDIO Turn on Test condition: 12 Vin, 1.05V/20A GPU 1 Phase operation TPS59650EVM GPU VR_ON Turn on Test condition: 12 Vin, 1.23V/20A GPU 1 Phase operation CH1: VR_ON CH1: VDIO CH2: GSW1 CH2: GSW1 CH3: 1.23Vcore CH3: 1.23Vcore CH4: GPGOOD CH4: GPGOOD Figure 62. GPU1 Enable Turn on TPS59650EVM GPU Switching Node Test condition: 12 Vin, 1.23V/0A-18A GPU 1 Phase operation Figure 63. GPU1 Enable Turn off TPS59650EVM GPU Switching Node and Output Ripple Test condition: 12 Vin, 1.23V/20A GPU 1 Phase operation CH2: GSW1 CH1: GSW1 CH3: 1.23Vcore Ripple Figure 64. GPU1 Switching Node SLUU896 – March 2012 Submit Documentation Feedback Figure 65. GPU1 Switching Node and Ripple Using the TPS59650EVM-753 Intel™ IMVP-7 3-Phase CPU/2-Phase GPU SVID Power System Copyright © 2012, Texas Instruments Incorporated 33 Performance Data and Typical Characteristic Curves www.ti.com TPS59650EVM Test condition: 12 Vin, 1.23V/1A TPS59650EVM Test condition: 12 Vin, 1.23V/1A GPU Dynamic VID: Set VID-Slow/Slow GPU 1 Operation CPU Dynamic VID: Set VID-Fast/Fast GPU 1 Operation CH1: GSW1 CH1: CSW1 CH3: 1.23Vcore_G CH3: 1.23Vcore_G CH4: VDIO CH4: VDIO Figure 66. GPU1 Dynamic VID:SetVID-Slow/Slow TPS59650EVM Test condition: 12 Vin, 1.23V/1A GPU Dynamic VID: Set VID-Decay/Fast GPU 1 Operation Figure 67. GPU1 Dynamic VID:SetVID-Fast/Fast TPS59650EVM Test condition: 12 Vin, 1.23V/0A-18A GPU Output Load Insertion with OSR/USR least reduction GPU 1 Phase on board dynamic load CH1: GSW1 CH1: DYN_G CH2: GSW1 CH3: 1.23Vcore_G CH4: VDIO CH3: 1.23Vcore Figure 68. GPU1 Dynamic VID:SetVID-Decay/Fast 34 Figure 69. GPU1 Output Load Insertion with OSR/USR OFF Using the TPS59650EVM-753 Intel™ IMVP-7 3-Phase CPU/2-Phase GPU SVID Power System Copyright © 2012, Texas Instruments Incorporated SLUU896 – March 2012 Submit Documentation Feedback Performance Data and Typical Characteristic Curves www.ti.com Test condition: 12 Vin, 1.23V/0A-18A TPS59650EVM GPU Output Load Release with OSR/USR GPU 1 Phase on board dynamic load least reduction CH1: DYN_G CH2: GSW1 CH3: 1.23Vcore Figure 70. GPU1 Output Load Release with OSR/USR OFF Figure 71. GPU1 Bode Plot at 12Vin, 1.23V/33A Test condition: GPU1 12Vin, 1.23V/33A no airflow SLUU896 – March 2012 Submit Documentation Feedback Using the TPS59650EVM-753 Intel™ IMVP-7 3-Phase CPU/2-Phase GPU SVID Power System Copyright © 2012, Texas Instruments Incorporated 35 Performance Data and Typical Characteristic Curves www.ti.com Figure 72. GPU1 MOSFET 7.6 Figure 73. GPU1 IC 1.05V VCCIO 100 1.08 VIN = 9 V 90 80 Efficiency - % 60 VO - Output Voltage - V VIN = 12 V 70 VIN = 20 V 50 40 30 1.06 VIN = 12 V VIN = 9 V VIN = 20 V 1.04 20 10 0 0.001 0.01 0.1 1 IO - Output Current - A 10 100 1.02 Figure 74. 1.05V Efficiency 36 0 2 4 6 IO - Output Current - A 8 10 Figure 75. 1.05V Load regulation Using the TPS59650EVM-753 Intel™ IMVP-7 3-Phase CPU/2-Phase GPU SVID Power System Copyright © 2012, Texas Instruments Incorporated SLUU896 – March 2012 Submit Documentation Feedback Performance Data and Typical Characteristic Curves www.ti.com TPS59650EVM VCCIO Enable Turn on Test condition: 12 Vin, 1.05VCCIO/10A Test condition: 12 Vin, 1.05VCCIO/10A CH1: VCCIO_EN CH1: VCCIO_EN CH2: 1.05VCCIO CH2: 1.05VCCIO CH3: VCCIO_PG CH3: VCCIO_PG Figure 76. 1.05V Enable Turn on TPS59650EVM VCCIO Switching Node TPS59650EVM VCCIO Enable Turn off Test condition: 12 Vin, 1.05VCCIO/10A Figure 77. 1.05V Enable Turn off TPS59650EVM VCCIO Output Ripple Test condition: 12 Vin, 1.05VCCIO/10A CH1: SW CH1: VCCIO Output Ripple Figure 78. 1.05V Switching Node SLUU896 – March 2012 Submit Documentation Feedback Figure 79. 1.05V Ripple Using the TPS59650EVM-753 Intel™ IMVP-7 3-Phase CPU/2-Phase GPU SVID Power System Copyright © 2012, Texas Instruments Incorporated 37 Performance Data and Typical Characteristic Curves TPS59650EVM VCCIO Output Transient from DCM to CCM Test condition: 12 Vin, 1.05VCCIO/0A-10A www.ti.com TPS59650EVM VCCIO Output Transient from CCM to DCM CH1: VCCIO Output Test condition: 12 Vin, 1.05VCCIO/0A-10A CH1: VCCIO Output CH2: VCCIO Output current CH2: VCCIO Output current Figure 80. 1.05V Transient DCM TO CCM Figure 81. 1.05V Transient CCM to DCM Test condition: 12Vin, 1.05V/10A no airflow Figure 82. TPS51219 Thermal 38 Using the TPS59650EVM-753 Intel™ IMVP-7 3-Phase CPU/2-Phase GPU SVID Power System Copyright © 2012, Texas Instruments Incorporated SLUU896 – March 2012 Submit Documentation Feedback Performance Data and Typical Characteristic Curves www.ti.com 7.7 1.2V VDDQ 1.26 100 90 VIN = 9 V 1.24 80 VIN = 12 V VO - Output Voltage - V Efficiency - % 70 VIN = 20 V 60 50 40 30 1.22 VIN = 12 V VIN = 20 V 1.20 VIN = 9 V 1.18 20 1.16 10 0 0.001 0.01 0.1 1 IO - Output Current - A 10 Figure 83. 1.2V Efficiency TPS59650EVM VDDQ S5 Turn on 1.14 0 2 4 6 IO - Output Current - A 8 Figure 84. 1.2V Load regulation Test condition: 12 Vin, 1.2VDDQ/8A TPS59650EVM VDDQ S5 Turn off Test condition: 12 Vin, 1.2VDDQ/8A CH1: VDDQ S5 CH1: VDDQ S5 CH2: VDDQ CH2: VDDQ CH3: VTTREF CH3: VTTREF CH4: VDDQ_PG CH4: VDDQ_PG Figure 85. 1.2V Enable Turn on SLUU896 – March 2012 Submit Documentation Feedback Figure 86. 1.2V Enable Turn off Using the TPS59650EVM-753 Intel™ IMVP-7 3-Phase CPU/2-Phase GPU SVID Power System Copyright © 2012, Texas Instruments Incorporated 39 Performance Data and Typical Characteristic Curves TPS59650EVM VDDQ Output Switching Node Test condition: 12 Vin, 1.2VDDQ/8A www.ti.com TPS59650EVM VDDQ Output Ripple Test condition: 12 Vin, 1.2VDDQ/8A CH1: VDDQ SW CH1: VDDQ Output Ripple Figure 87. 1.2V Switching Node TPS59650EVM VDDQ Output transient from DCM to CCM Test condition: 12 Vin, 1.2VDDQ/0A-8A CH1: VDDQ Output Figure 88. 1.2V Ripple TPS59650EVM VDDQ Output transient from CCM to DCM Test condition: 12 Vin, 1.2VDDQ/0A-8A CH1: VDDQ Output CH4: VDDQ Output current CH4: VDDQ Output current Figure 89. 1.2V Transient DCM TO CCM Figure 90. 1.2V Transient CCM to DCM Test condition: 12Vin, 1.2V/7.5A no airflow 40 Using the TPS59650EVM-753 Intel™ IMVP-7 3-Phase CPU/2-Phase GPU SVID Power System Copyright © 2012, Texas Instruments Incorporated SLUU896 – March 2012 Submit Documentation Feedback www.ti.com Performance Data and Typical Characteristic Curves Figure 91. TPS51916 Thermal SLUU896 – March 2012 Submit Documentation Feedback Using the TPS59650EVM-753 Intel™ IMVP-7 3-Phase CPU/2-Phase GPU SVID Power System Copyright © 2012, Texas Instruments Incorporated 41 EVM Assembly Drawings and PCB Layout 8 www.ti.com EVM Assembly Drawings and PCB Layout The following figures (Figure 92 through Figure 101) show the design of the TPS59650EVM-753 printed circuit board. The EVM has been designed using 8 Layers circuit board with 1oz copper on outside layers. Figure 92. TPS59650EVM-753 Top Layer Assembly Drawing (Top view) Figure 93. TPS59650EVM-753 Bottom Assembly Drawing (Bottom view) 42 Using the TPS59650EVM-753 Intel™ IMVP-7 3-Phase CPU/2-Phase GPU SVID Power System Copyright © 2012, Texas Instruments Incorporated SLUU896 – March 2012 Submit Documentation Feedback EVM Assembly Drawings and PCB Layout www.ti.com Figure 94. TPS59650EVM-753 Top Copper Figure 95. TPS59650EVM-753 Bottom Copper SLUU896 – March 2012 Submit Documentation Feedback Using the TPS59650EVM-753 Intel™ IMVP-7 3-Phase CPU/2-Phase GPU SVID Power System Copyright © 2012, Texas Instruments Incorporated 43 EVM Assembly Drawings and PCB Layout www.ti.com Figure 96. TPS59650EVM-753 Internal Layer 2 Figure 97. TPS59650EVM-753 Internal Layer 3 44 Using the TPS59650EVM-753 Intel™ IMVP-7 3-Phase CPU/2-Phase GPU SVID Power System Copyright © 2012, Texas Instruments Incorporated SLUU896 – March 2012 Submit Documentation Feedback EVM Assembly Drawings and PCB Layout www.ti.com Figure 98. TPS59650EVM-753 Internal Layer 4 Figure 99. TPS59650EVM-753 Internal Layer 5 SLUU896 – March 2012 Submit Documentation Feedback Using the TPS59650EVM-753 Intel™ IMVP-7 3-Phase CPU/2-Phase GPU SVID Power System Copyright © 2012, Texas Instruments Incorporated 45 EVM Assembly Drawings and PCB Layout www.ti.com Figure 100. TPS59650EVM-753 Internal Layer 6 Figure 101. TPS59650EVM-753 Internal Layer 7 46 Using the TPS59650EVM-753 Intel™ IMVP-7 3-Phase CPU/2-Phase GPU SVID Power System Copyright © 2012, Texas Instruments Incorporated SLUU896 – March 2012 Submit Documentation Feedback Bill of Materials www.ti.com 9 Bill of Materials The EVM major components list according to the schematic shown in the following pages. Table 13. EVM Major Components List QTY REF DES Description MFR Part Number 11 C1, C12, C31, C69, C74, C124, C159, C121, C130, C184, C204 Capacitor, Ceramic, 1nF, 50V, X7R, 10%, 0603 STD STD 5 C104, C108, C112, C115, C118 Capacitor, Ceramic, 33nF, 25V, X7R, 10%, 0603 STD STD 29 C128, C201, C192, C209, C218, C222, C226, C230 Capacitor, Ceramic, 0.1uF, 25V, X7R, 10%, 0603 STD STD 3 C129, C133, C168 Capacitor, Polymer, 330uF, 2V, 6mohm, 20%, 7343 Sanyo 2TPF330M6 2 C13, C26 Capacitor, Ceramic, 100pF, 50V, C0G, 10%, 0603 STD STD 3 C131, C239, C246 Capacitor, Ceramic, 10nF, 50V, X7R, 10%, 0603 STD STD 6 C15, C16, C19, C20, C76, C77 Capacitor, Polymer, 470uF, 2V, 4mohm, 20%, D2T Sanyo 2TPLF470M4E 1 C166 Capacitor, Ceramic, 2.2uF, 6.3V, X5R, 10%, 0805 STD STD 1 C17 Capacitor, Ceramic, 0.33uF, 6.3V, X7R, 10%, 0603 STD STD 1 C171 Capacitor, Ceramic, 0.22uF, 50V, X7R, 10%, 0603 STD STD 15 C18, C23, C33, C75, C80, C196, C202, C208, C195, C200, C242, C250, C22, C233, C234 Capacitor, Ceramic, 1uF, 25V, X7R, 10%, 0603 STD STD 7 C193, C36, C79, C82, C7, C135, C170 Capacitor, Ceramic, 2.2uF, 6.3V, X5R, 10%, 0603 STD STD 3 C194, C197, C215 Capacitor, Ceramic, 0.01uF, 50V, X7R, 10%, 0603 STD STD 28 C2, C3, C4, C5, C8, C9, C10, C11, C27, C28, C29, C30, C65, C66, C67, C68, C70, C71, C72, C73, C122, C123, C125, C126, C160, C161, C162, C163 Capacitor, Ceramic, 10uF, 25V, X7R, 20%, 1206 STD STD 2 C205, C206 Capacitor, Ceramic, 10pF, 50V, C0G, 10%, 0603 STD STD 2 C213, C214 Capacitor, Ceramic, 22pF, 50V, C0G, 10%, 0603 STD STD 2 C240, C248 Capacitor, Ceramic, 0.22uF, 25V, X7R, 10%, 0402 STD STD 2 C241, C249 Capacitor, Ceramic, 220pF, 25V, X7R, 10%, 0402 STD STD 2 C243, C251 Capacitor, Ceramic, 680pF, 25V, X7R, 10%, 0402 STD STD 2 C244, C252 Capacitor, Ceramic, 100pF, 25V, C0G, 10%, 0402 STD STD 2 C245, C253 Capacitor, Ceramic, 1.8nF, 25V, X7R, 10%, 0402 STD STD 2 C247, C254 Capacitor, Ceramic, 2200pF, 25V, X7R, 10%, 0402 STD STD 44 C37, C38, C39, C40, C41, C42, C43, C45, C49, C50, C51, C52, C53, C54, C55, C56, C87, C88, C89, C90, C91, C92, C93, C94, C95, C100, C101, C102, C136, C140, C141, C143, C145, C146, C147, C148, C150, C151, C152, C154, C235, C236, C237, C238 Capacitor, Ceramic, 22uF, 6.3V, X5R, 10%, 0805 STD STD 20 C44, C46, C57, C58, C59, C60, C61, C62, C63, C64, C173, C174, C175, C176, C180, C182, C165, C185, C189, C191 Capacitor, Ceramic, 10uF, 6.3V, X5R, 10%, 0805 STD STD 1 C6 Capacitor, Ceramic, 4.7uF, 6.3V, X5R, 10%, 0805 STD STD 8 D1, D2, D3, D9, D10, D12, D13, D14 Diode, LED, Green Clear, 20mcd, 0.079x0.049 Lite On LTST-C170GKT C164, C127, C203, C210, C219, C223, C227, C198, C172, C207, C216, C220, C224, C228, C199, C188, C190, C217, C221, C225, C229, SLUU896 – March 2012 Submit Documentation Feedback Using the TPS59650EVM-753 Intel™ IMVP-7 3-Phase CPU/2-Phase GPU SVID Power System Copyright © 2012, Texas Instruments Incorporated 47 Bill of Materials www.ti.com Table 13. EVM Major Components List (continued) QTY REF DES Description MFR Part Number 5 D4, D5, D7, D8, D11 Diode, LED, Red Clear, 20mcd, 0.079x0.049 Lite On LTST-C170CKT 1 D6 Diode, Schottky, 200mA, 30V, SOT-23, Vishay-Liteon BAT54-V-GS08 1 FB1 Bead, SMD,Ferrite, 100MHz Max, 200mA, +/-25%, 0603 WE 74279266A 5 L1, L2, L3, L4, L5 Inductor, SMT, 0.36uH, 35A , 0.82mohm, 10x11.5mm Toko FCUL1040-H-R36M 1 L6 Inductor, SMT, 0.42uH, 17A , 1.5mohm, 8.7x7.0mm Panasonic ETQP4LR42AFM 1 L7 Inductor, SMT, 1.0uH, 8.1A , 6.9mohm, 7.3x6.6mm Panasonic ETQP3W1R0WFN 7 Q1, Q2, Q3, Q4, Q5, Q8, Q10 MOSFET, Synchronous Buck NexFET Power Block SON 5X6mm TI CSD87350Q5D 4 Q11, Q12, Q13, Q14 MOSFET, Nchan, 25V, 31A, 2.5mohm, QFN5X6mm TI CSD16407Q5 1 Q15 MOSFET, Pchan, -60V, -0.33A, 2ohm, SOT23 Infineon BSS83P 6 Q6, Q7, Q9, Q16, Q17, Q18 MOSFET, Nchan, 100V, 0.17A, 6ohm, SOT23 Fairchild BSS123 1 R1 Resistor, Chip, 42.2k, 1/10W, 1%, 0603 STD STD 4 R101, R102, R118, R119 Resistor, Chip, 56.2k, 1/10W, 1%, 0603 STD STD 1 R104 Resistor, Chip, 2.43k, 1/10W, 1%, 0603 STD STD 7 R106, R107, R122, R123, R141, R165, R166 Resistor, Chip, 30.1k, 1/10W, 1%, 0603 STD STD 4 R108, R109, R124, R125 Resistor, Chip, 24.3k, 1/10W, 1%, 0603 STD STD 22 R12, R15, R24, R31, R36, R41, R54, R58, R73, R76, R140, R142, R144, R145, R156, R157, R159, R161, R232, R233, R250, R268 Resistor, Chip, 0, 1/10W, 1%, 0603 STD STD 7 R130, R131, R147, R215, R216, R217, R222 Resistor, Chip, 180, 1/10W, 1%, 0603 STD STD 14 R132, R158, R214, R230, R148, R149, R150, R183, R185, R205, R219, R220, R221, R231 Resistor, Chip, 10.0k, 1/10W, 1%, 0603 STD STD 5 R133, R134, R151, R213, R218 Resistor, Chip, 1.00k, 1/10W, 1%, 0603 STD STD 1 R139 Resistor, Chip, 10.5k, 1/10W, 1%, 0603 STD STD 1 R152 Resistor, Chip, 22.1k, 1/10W, 1%, 0603 STD STD 6 R16, R110, R111, R126, R127, R160 Resistor, Chip, 20.0k, 1/10W, 1%, 0603 STD STD 1 R163 Resistor, Chip, 15.0k, 1/10W, 1%, 0603 STD STD 4 R164, R237, R238, R239 Resistor, Chip, 2.00k, 1/10W, 1%, 0603 STD STD 1 R167 Resistor, Chip, 51.1k, 1/10W, 1%, 0603 STD STD 1 R168 Resistor, Chip, 1, 1/10W, 1%, 0603 STD STD 1 R176 Resistor, Chip Array, 10.0k, 62.5mW, 5%, 1206 Yageo TC164-JR-0710KL 3 R169, R170, R171 Resistor, Chip, 1, 1/8W, 1%, 0805 STD STD 3 R172, R173, R178 Resistor, Chip, 0.01, 1W, 1%, 2512 STD STD 5 R174, R175, R177, R179, R180 Resistor, Chip, 0.05, 1W, 1%, 2512 STD STD 5 R176, R177, R178, R179, R199 Resistor, Chip, 330, 1/10W, 1%, 0603 STD STD 7 R18, R194, R202, R246, R248, R260, R262 Resistor, Chip, 10.0k, 1/16W, 1%, 0402 STD STD 2 R181, R189 Resistor, Chip, 0.005, 1W, 1%, 2512 STD STD 1 R182 Resistor, Chip, 8.06k, 1/10W, 1%, 0603 STD STD 5 R186, R187, R188, R190, R212 Resistor, Chip, 330, 1/10W, 1%, 0603 STD STD 1 R192 Resistor, Chip, 100, 1/10W, 1%, 0603 STD STD 10 R193, R195, R196, R197, R198, R199, R203, R204, R206, R207 Resistor, Chip, 1M, 1/16W, 1%, 0402 STD STD 1 R2 Resistor, Chip, 130, 1/16W, 1%, 0402 STD STD 48 Using the TPS59650EVM-753 Intel™ IMVP-7 3-Phase CPU/2-Phase GPU SVID Power System Copyright © 2012, Texas Instruments Incorporated SLUU896 – March 2012 Submit Documentation Feedback Bill of Materials www.ti.com Table 13. EVM Major Components List (continued) QTY REF DES Description MFR Part Number 20 R43, R49, R51, R60, R65, R71, R75, R85, R87, R93, R200, R201, R208, R209, R243, R249, R253, R254, R263, R265 Resistor, Chip, 0, 1/16W, 1%, 0402 STD STD 1 R21 Resistor, Chip, 200k, 1/10W, 1%, 0603 STD STD 2 R210, R211 Resistor, Chip, 3.01k, 1/10W, 1%, 0603 STD STD 1 R224 Resistor, Chip, 75, 1/10W, 1%, 0603 STD STD 1 R225 Resistor, Chip, 130, 1/10W, 1%, 0603 STD STD 1 R226 Resistor, Chip, 43.2, 1/10W, 1%, 0603 STD STD 1 R227 Resistor, Chip, 1.50k, 1/10W, 1%, 0603 STD STD 2 R228, R229 Resistor, Chip, 33.2, 1/10W, 1%, 0603 STD STD 1 R23 Resistor, Chip, 4.02k, 1/10W, 1%, 0603 STD STD 2 R234, R236 Resistor, Chip, 470, 1/10W, 1%, 0603 STD STD 1 R235 Resistor, Chip, 2.21k, 1/10W, 1%, 0603 STD STD 2 R240, R241 Resistor, Chip, 2.74k, 1/10W, 1%, 0603 STD STD 2 R242, R251 Resistor, Chip, 2.21, 1/16W, 1%, 0402 STD STD 2 R244, R255 Resistor, Chip, 475k, 1/16W, 1%, 0402 STD STD 2 R245, R257 Resistor, Chip, 5.62k, 1/16W, 1%, 0402 STD STD 2 R252, R264 Resistor, Chip, 2.00k, 1/16W, 1%, 0402 STD STD 1 R258 Resistor, Chip, 3.09k, 1/16W, 1%, 0402 STD STD 1 R259 Resistor, Chip, 20.0k, 1/16W, 1%, 0402 STD STD 7 R26, R97, R98, R114, R115, R162, R184 Resistor, Chip, 100k, 1/10W, 1%, 0603 STD STD 1 R267 Resistor, Chip, 1.37k, 1/16W, 1%, 0603 STD STD 1 R4 Resistor, Chip, 54.9, 1/16W, 1%, 0402 STD STD 5 R42, R50, R64, R74, R86 Resistor, Chip, 17.8k, 1/8W, 1%, 0805 STD STD 5 R46, R56, R68, R79, R91 Resistor, Chip, 162k, 1/10W, 1%, 0603 STD STD 5 R48, R59, R70, R84, R92 Resistor, Chip, 28.7k, 1/10W, 1%, 0603 STD STD 7 R5, R52, R61, R72, R80, R143, R146 Resistor, Chip, 10, 1/10W, 1%, 0603 STD STD 1 R6 Resistor, Chip, 8.25k, 1/10W, 1%, 0603 STD STD 2 R7, R22 Resistor, Chip, 15.4k, 1/10W, 1%, 0603 STD STD 14 R8, R11, R14, R20, R28, R29, R32, R34, R37, R39, R135, R136, R153, R154 Resistor, Chip, 2.21, 1/10W, 1%, 0603 STD STD 5 R94, R103, R105, R120, R121 Resistor, Chip, 39.2k, 1/10W, 1%, 0603 STD STD 4 R95, R96, R112, R113 Resistor, Chip, 150k, 1/10W, 1%, 0603 STD STD 4 R99, R100, R116, R117 Resistor, Chip, 75.0k, 1/10W, 1%, 0603 STD STD 7 RT1, RT2, RT3, RT4, RT5, RT6, RT7 NTC Thermistor, 100k, 0603, 5% Murata NCP18WF104J03RB 1 U1 IC, 3+2 phase, IMVP-7 VCORE CPU and GPU Controller, QFN-48 TI TPS59650RSL 1 U12 IC, Timer, Low-Power CMOS, SO-8 TI TLC555CDR 1 U13 IC, Dual 10 ohm SPDT Analogy Switch, DGS_10P TI TS5A23157DGS 1 U14 IC, Nano Power, Open output comparators, PW14 TI TLV3404IPW 1 U15 IC, USB to series port controller, QFN-32 TI TUSB3410RHB 1 U16 IC, CMOS programmable controller, QFP-100 TI TMS320F2808PZS 3 U17, U19, U20 IC, Dual Schmitt-trigger inverter, DCK-6 TI SN74LVC2G07DCK 1 U18 IC, Dual-bit dual-supply bus transceiver, RSW-10 TI SN74AVC2T245RSW 3 U2, U3, U4 IC, Dual high voltage, efficient synchronous MOSFET buck driver, QFN-8 TI TPS51601ADRB 1 U5 IC, High performance, single synchronous step down controller, QFN-16 TI TPS51219RTE 1 U6 IC, Complete DDR2, DDR3 and DDR3L memory power solution, QFN-20 TI TPS51916RUK 1 U7 IC, Dual low dropout regulator, 500mA and 250mA outputs, PWP20 TI TPS70102PWP 1 U8 IC, 150mA, low Iq, wide bandwidth, LDO, SC70 TI TPS71712DCK SLUU896 – March 2012 Submit Documentation Feedback Using the TPS59650EVM-753 Intel™ IMVP-7 3-Phase CPU/2-Phase GPU SVID Power System Copyright © 2012, Texas Instruments Incorporated 49 Schematics www.ti.com Table 13. EVM Major Components List (continued) QTY REF DES Description MFR Part Number 1 U9 IC, Quadruple 2-input positive –AND gates, SO-14 TI SN74HC08D 2 U10, U11 IC, Dual 4A High speed low side power MOSFET drivers, SO-8 TI UCC27324D 1 X1 Crystal, controlled oscillators, 0.150”x0.528” ABRACON ABLS-20.000MHZ-B2-T 1 Y1 Crystal, controlled oscillators, 0.150”x0.528” ABRACON ABLS-12.000MHZ-B2-T 1 XU1 Socket, CPU Molex rPGA989 10 Schematics 50 Using the TPS59650EVM-753 Intel™ IMVP-7 3-Phase CPU/2-Phase GPU SVID Power System Copyright © 2012, Texas Instruments Incorporated SLUU896 – March 2012 Submit Documentation Feedback 6 1 R3 R4 54.9 TP18 R21 200k TP16 C17 0.33uF TP9 3 See Sheet 5 for FREQ selection R16 20.0k 1 R13 C22 1uF 5 See Sheet 5 for OCP selection and OSR setting R2 130 0 R24 C26 100pF 4.02k R23 TP21 C13 100pF 8.25k R6 TP3 1 C25 RT2 100k 15.4k R22 TP20 2 TP5 R26 100k 1 R25 1 C14 R18 10.0k TP8 15.4k R7 7 2.21 R14 2.21 R11 10 R5 TP17 C7 2.2uF TP1 See Sheet 3 for GPU Vcore 8 See Sheet 2 for 3rd phase TP6 RT1 100k 4 See Sheet 5 CPU See Sheet 5 OCP selection for FREQ selection and OSR setting R1 42.2k TP13 0 R15 CPU thrid phase: See sheet 2 GPU phase: See sheet 3 8 GPU OSR/USR selection: See sheet 5 GPU OCP selection: See sheet 5 CPU OCP selection: See sheet 5 GPU Switching frequency selection: See sheet 5 1 R17 1 C24 1 C21 0 R10 1 TP19 TP11 C8 10uF C3 10uF R12 TP4 CPU Switching frequency selection: See sheet 5 Not used 2.21 R20 TP15 C18 1uF 2.21 R8 C2 10uF 7 6 5 4 3 2 1 TP22 C23 1uF TP10 TP7 C6 4.7uF TP2 TP14 1 C10 10uF 1 C19 + 470uF C15 + 470uF C5 10uF C20 + 470uF TP12 C11 10uF + C1 1nF C16 470uF C12 1nF CPU and GPU Control, 1st and 2nd Phase CPU Power L2 0.36uH L1 0.36uH C9 10uF C4 10uF 22uF C51 22uF 22uF 22uF C52 C38 C37 TP29 TP26 22uF C53 22uF 22uF C54 1uF 2.21 C39 C33 R29 22uF C40 1 C36 22uF 22uF C56 Not used 22uF C55 C41 2.2uF 22uF C42 R28 2.21 10uF R31 0 10uF 22uF C58 C43 TP28 C57 TP25 TP24 TP23 10uF 10uF C59 C44 C27 10uF 10uF 22uF C60 C45 C28 10uF 1 C47 C31 1nF 10uF C62 1 C35 1 1 C48 0.36uH L3 R30 C30 10uF TP27 10uF 10uF C61 C46 C29 10uF 10uF C63 22uF C49 1 C50 22uF 1 C32 CPU 3rd Phase Power 10uF C64 + + 1 C34 C94 22uF C93 22uF 1 1 22uF C95 1 C85 TP42 TP44 C84 TP34 C65 10uF TP37 C83 TP38 TP32 TP31 1 C96 2.21 R32 C66 10uF 1 1 22uF 22uF 1 C88 C82 2.2uF C79 2.2uF C69 1nF C87 C98 1uF C86 C80 R37 C75 1uF C68 10uF 2.21 C97 C67 10uF 1 C99 22uF C89 TP43 R34 2.21 22uF 22uF 22uF 22uF C101 C91 0 R41 0 R36 22uF C102 C72 10uF C90 TP45 2.21 R39 TP39 C71 10uF C100 TP36 C70 10uF 22uF C92 C73 10uF GND_PWR C74 1nF 1 0.36uH L4 Not used 1 C81 1 0.36uH L5 R40 TP41 1 C78 1 R35 TP33 1 GPU Power 1 TP40 C76 + 470uF C77 + 470uF TP35 R91 162k 17.8k R86 R79 162k 17.8k R74 R68 162k 17.8k R64 R56 162k 17.8k R50 R46 162k 17.8k R42 R92 28.7k RT7 100k R84 28.7k RT6 100k R70 28.7k RT5 100k R59 28.7k RT4 100k R48 28.7k RT3 100k C118 33nF C115 33nF C112 33nF C108 33nF C104 33nF 0 1 1 0 0 1 1 0 0 1 1 0 0 R93 R87, R93 = 0 for DCR sense R88, R90 = 0 for Resistor Sense 1 1 0 1 C119 1 1 1 1 C120 1 C117 C116 0 R90 R88 R87 1 1 C114 1 1 C110 1 C106 C113 1 C111 1 1 C109 1 C107 1 1 C105 1 C103 1 1 0 R75, R85 = 0 for DCR sense R77, R78 = 0 for Resistor Sense R85 R78 R77 R75 R65, R71 = 0 for DCR sense R66, R67 = 0 for Resistor Sense R71 R67 R66 R65 R51, R60 = 0 for DCR sense R53, R57 = 0 for Resistor Sense R60 R57 R53 R51 R43, R49 = 0 for DCR sense R44, R45 = 0 for Resistor Sense R49 R45 R44 R43 TP56 TP55 TP54 TP53 TP52 TP51 TP50 TP49 TP48 TP47 1 R89 1 R83 1 R69 1 R55 1 R47 9 1 J8 J6 10 R80 R72 10 R61 10 R52 10 R76 R73 R58 R54 0 0 0 0 1 1 R81 R62 1 1 1 R82 1 R63 J9 J7 To controller To controller Current Feedback Selection and Filtering Differential Voltage Feedback and termination A phase can be disabled by pulling the corresponding xCSPx pin to 3.3V. Default setting for CPU: 3 phase operation Dafault setting for GPU: 2 phase operation CPU: Phase disable can be done in reverse order.Phase 3, then 2, then 1. 1. CPU 3 Phase operation: R47, R55, R69 open 2. CPU 2 Phase operation: R69 used 0ohm 3. CPU 1 Phase operation: R47, R55 used 0ohm GPU: 1. GPU 2 Phase operation: R83, R89 open 2. GPU 1 Phase operation: R89 used 0ohm Not used To processor To processor 9 13 10 1 1 R129 R128 R96 R98 R100 R102 R105 R107 R109 R111 R113 R115 R117 R119 R121 R123 R125 R127 150k 100k 75.0k 56.2k 39.2k 30.1k 24.3k 20.0k 150k 100k 75.0k 56.2k 39.2k 30.1k 24.3k 20.0k 13 12 11 10 1 11 TP58 TP57 R120 R122 R124 R126 30.1k 24.3k 20.0k R112 150k R118 R110 20.0k 39.2k R108 24.3k 56.2k R106 30.1k R116 R103 39.2k R114 R101 56.2k 75.0k R99 100k R97 75.0k R95 100k 150k Level 8 (MAX) Level 7 Level 6 Level 5 Level 4 Level 3 Level 2 Level 1 (MIN) Level 8 (MAX) Level 7 Level 6 Level 5 Level 4 Level 3 Level 2 Level 1 (MIN) OVER-CURRENT PROTECTION SELECTION Optional parts for using TPS51640 Over-Shoot /Under-Shoot Reduction Selection: 1. CPU OSR/USR Default Setting: OSR/USR Reduction middle level 2. GPU OSR/USR Default Setting: OSR/USR Reduction off Over Current Protection Selection: 1. CPU Over Current Protection Per Phase Default Setting: Jumper shorts on pin 7 and pin 8 to level 5 (set 40A) 2. GPU Over Current Protection Per Phase Default Setting: Jumper shorts on pin 7 and pin 8 to level 5 (set 40A) Switching Frequency Selection: 1. CPU Switching Frequency Default Setting: Jumper shorts on pin13 and pin14 to set 300kHz 2. GPU Switching Frequency Default Setting: Jumper shorts on pin 11 and pin12 to set 385kHz Not used 660kHz (MAX) 605kHz 550kHz 495kHz 440kHz 385kHz 330kHz 275kHz (MIN) 600kHz (MAX) 550kHz 500kHz 450kHz 400kHz 350kHz 300kHz 250kHz (MIN) SWITCHING FREQUENCY SELECTION R94 39.2k R104 2.43k OSR / USR SETTING Frequency and OCP SELECTIONS for CPU and GPU 12 14 TP62 To processor Q6 BSS123 D1 GREEN R130 180 R146 10 10 R143 R139 10.5k 1 R137 R132 10.0k 15 14 1 0 TP65 TP61 C127 0.1uF C131 10nF 15 J16 R135 2.21 0 R142 TP63 To controller R141 30.1k R134 1.00k C121 1nF S1: VCCIO Enable Pin 1 1 C156 1 TP60 TP59 1 C137 1 C158 22uF C148 TP68 R136 2.21 C157 22uF 22uF C155 22uF C147 C136 C135 2.2uF TP64 C146 C128 0.1uF VCCIO Output Selection: 1. Jumper shorts on pin1 and pin2 of J14 to set VCCIO: 1.05V(Default) 2. Jumper shorts on pin2 and pin3 of J14 to set VCCIO: 1.00V Not used R145 0 R133 1.00k C130 1nF R144 Q7 BSS123 D2 GREEN R131 180 1 C138 1 C149 0 R140 C122 10uF C140 C141 C126 10uF TP66 1 C142 1 C143 + 22uF 1 C152 22uF C153 C134 1 TP67 TP69 L6 0.42uH R138 C124 1nF VCCIO Power C145 22uF C150 22uF C151 22uF 22uF 22uF GND_PWR 1 C139 C125 10uF C123 10uF 1 C144 1 C132 C129 330uF 22uF C154 + + C133 330uF Q9 BSS123 C165 10uF 0 R161 0 R148 10.0k C166 2.2uF R159 TP72 D3 GREEN R147 180 C171 0.22uF J20 C172 0.1uF TP79 R160 20.0k R158 10.0k R151 1.00k 1nF C184 R152 22.1k 0 R157 R149 10.0k C174 C162 10uF C175 C161 10uF 1 C169 1 1 10uF 10uF VDDQ Power 1 1 1 TP76 TP77 C183 L7 1.0uH C177 C159 1nF TP75 R155 C176 C163 10uF 10uF C179 10uF C180 10uF C181 10uF C182 S3/S5 Enable Control, See datasheet for detail 1 C160 10uF C173 0 R156 16 C178 TP78 2.21 R154 Not used C170 2.2uF TP74 TP71 1 C164 0.1uF R153 2.21 TP73 R150 10.0k 16 TP70 + 330uF C168 + 1 C167 C197 0.01uF R184 100k R182 8.06k C198 0.1uF 0.1uF C201 R183 10.0k D6 BAT54 1 1 J23 1 17 R171 TP84 TP82 R185 10.0k 18 C199 0.1uF 10.0k R176 R170 TP86 R169 1 + C186 Silk: VCCIO_DL GFX_DL CPU_DL1 CPU_DL2 5V Bias Voltage Input TP87 1 + C187 VBAT Conversion Voltage Input: 9V -20V 18 U9:D U9:C U9:B SN74HC08D U9:A C202 1uF U11 UCC27324D C196 1uF U10 UCC27324D J23: Default setting: Jumper shorts on to Enable on board dynamic load 330 R186 0.1uF C192 17 C189 10uF VCCIO, GPU and CPU Dynamic Load: 1. Switch to "ON" position to enable the Dynamic Load 2. Switch to "OFF" position to disable the Dynamic Load (Default) C188 0.1uF Not used TP83 R162 100k 1 GND_PWR TP90 TP88 5VIN TP81 U7 TPS70102PWP VOUT1 PGD_1 RESET NR/FB OUT D7 RED R188 330 4 5 11 Q13 C193 2.2 uF 0.005 R189 TP93 30.1k R166 30.1k R165 R180 0.05 R178 0.01 C191 10uF TP85 TP80 Q14 CSD16407Q5 R179 0.05 0.05 R177 R167 51.1k R163 15.0k CSD16407Q5 0.01uF C194 TP89 TP94 C200 1uF R190 330 D4 RED 150mA LDO EN GND IN D5 RED 3 2 1 U8 TPS71712DCK 1.2V LDO NC VIN2 12 13 14 15 16 17 18 19 20 3.3V LDO VOUT2 VIN2 PwrPad VOUT2 GND SEQUENCE VSENSE2 ENABLE MR1 VSENSE1 VIN1 MR2 VOUT1 NC VIN1 NC R187 330 D8 RED 10 9 8 7 6 5 4 3 2 1 1.8V LDO Q11 R174 0.05 R172 0.01 DYNAMIC LOADs TP92 Q12 R175 0.05 R173 0.01 1uF C195 TP91 0.005 R181 CSD16407Q5 0.1uF C190 R164 2.00k CSD16407Q5 1 R168 C185 10uF 1 20 1 R191 C204 1nF R192 100 19 Q16 BSS123 D9 GREEN VR_ON 180 R215 BSS123 Q17 D10 GREEN TP98 C_PGOOD R216 180 10.0k R220 10pF C205 10pF C206 C203 0.1uF BSS123 Q18 D12 GREEN G_PGOOD TP97 10.0k R221 R222 180 D11 RED VR_HOT BSS83P Q15 Default Trim: R117 = Not used, R116 = 1.00k R219 10.0k R214 10.0k S4: IMVP-7 VR Enable: 1. Switch to "ON" position to Enable TPS59650 controller 2. Switch to "OFF" position to Disable TPS59650 controller(Default) Not used R210 3.01k R205 10.0k Jumper to enter I2C Mode R217 180 20 19 1 I2C Terminal J32 R211 3.01k Logic Signal Termination and Status LED's LED is ON when the logic signal is in the ACTIVE state TP95 J30 TP96 1M 1M 1M R196 R197 R212 330 R199 1M R218 1.00k R213 1.00k C208 1uF 0 0 R202 R194 0.1uF C207 J24, J31 are labview connections for EVM testing 10.0k 10.0k Support and Pull-ups R208 R209 1M R206 1M R204 R207 1M 0 R203 0 R200 R201 1M 1M R195 R198 1M R193 1 R223 R224 75.0 R225 130 R226 43.2 1 Not used uC Socket Main uC Socket Others V+ DM DP NC V- 22 J35 J34 GREEN D13 21 R234 470 FB1 J33 R229 R228 Jumper to use 5V from USB 33.2 33.2 R235 2.21k 22pF 10.0k R231 C214 22pF R227 C213 TP99 TP100 C209 0.1uF 22 21 1 1.50k 1 TP102 TP101 10.0k R230 1 C211 Y1 2 0 R233 0 R232 0.01uF C215 1 C212 For Internal software developmenet USB to DSP 5V Bias option: 1. Jumper shorts on J33, 5V Bias used from USB. If USB 5V is used, external 5V supply from J22 should not be used. 2. No Jumper shorts on J33, 5V Bias used from external J22 (Default) Not used C210 0.1uF U15 TUSB3410RHB 4 TP108 3 U20:B U20:A R241 2.74k TP107 C218 0.1uF C217 0.1uF 6 C219 2 5 C220 C221 0.1uF VDDIO VDDIO VDDIO VDD VDD VDD VDD VDD VDD 1 TCK TMS TDI TDO 50 9 8 95 1 70 64 61 60 58 56 53 51 48 45 44 82 2 11 41 49 55 62 69 77 87 89 94 84 75 74 73 GPIO16 GPIO15 GPIO14 GPIO13 GPIO12 GPIO11 GPIO10 GPIO9 GPIO8 GPIO7 GPIO6 GPIO5 GPIO4 GPIO3 GPIO2 GPIO1 GPIO0 GPIO34 GPIO17 GPIO18 GPIO19 GPIO20 GPIO21 GPIO22 GPIO23 GPIO24 GPIO25 GPIO26 GPIO27 GPIO28 GPIO29 GPIO30 GPIO31 GPIO32 GPIO33 52 54 57 63 67 71 72 83 91 99 79 92 4 6 7 100 5 43 0.1uF 76 C216 C222 0.1uF U16:A TMS320F2808PZS VDDIO VSS VSS VSS VSS VSS VSS VSS VSS VSS VSS VSS TRST 47 VSS2AGND VDD2A18 VSS1AGND VDD1A18 VSSAIO VDDAIO VSSA2 VDDA2 U16:B TMS320F2808PZS 0.1uF TP105 65 46 3 93 85 68 59 42 10 39 40 13 12 25 26 14 15 0.1uF R240 2.74k 23 J39 1 C231 R237 2.00k 1 C232 X1 20 19 18 17 16 78 86 88 90 66 98 97 96 81 80 R238 2.00k C223 C224 0.1uF ADCREFIN ADCREFP ADCLO ADCINA2 ADCINA1 ADCINA0 ADCINB7 ADCINB6 ADCINB5 ADCINB4 ADCINB3 ADCINB2 ADCINB1 ADCINB0 21 22 23 34 33 32 31 30 29 28 27 24 38 35 37 36 C225 0.1uF C226 TP104 0.1uF C227 3 U19:B 1 C228 2 5 0.1uF C229 6 U17:A GREEN D14 4 1 TP106 25 24 23 1 Differential Probe Test Point GUI and Intel VRTT Tool Selection 1. Jumper shorts to use Intel VRTT Tool 2. No Jumper shorts to user GUI (Default) J39: F2808 DSP Program Mode Selection: 1. Jumper shorts for F2808 DSP Program Mode 2. No Jumper shorts for normal operation (Default) Not used 6 U19:A C234 1uF DSP to SVID 2 5 TP103 470 R236 C233 1uF 0.1uF U18 SN74AVC2T245RSW 10 1 DIR1 DIR2 9 2 OE A2 3 8 GND A1 4 7 B2 VCCA 5 6 VCCB B1 0.1uF Level Shifting Tranceiver and Open Drain Buffers for DSP to SVID Translation ADCINA3 ADCINA4 ADCINA5 ADCINA6 ADCINA7 XRS X2 X1 XCLKIN XCLKOUT TEST2 TEST1 VDD3VFLADCRESEXT EMU1 EMU0 ADCREFM U16:C TMS320F2808PZS 0.1uF 25 25 J38 J40 25 3 U17:B J37 0.1uF C230 4 R239 2.00k J36 24 26 1 0 1 TP111 C235 C236 R253 0 1.8nF C245 R252 2.00k C244 100pF R259 20.0k C237 22uF C243 5.62k 22uF 680pF R245 22uF C238 C239 10nF R258 3.09k 2200pF C247 1uF C242 22uF VIN 17 1 R256 SS IMON MODE VOUT EN FSET VFB COMP 1 TPS51318 U21 VBST VCCA GND PGOOD J42, J43: Optional VCCIO and VDDQ Enable 1. Jumper shorts on J42, J43 to Enable Optional VCCIO and VDDQ 2. No Jumper shorts on J42, J43 to Disable Optional VCCIO and VDDQ Not used R250 R247 5V POWER Voltage Input 2 1 10 11 12 13 14 15 J41 1 3 2 4 16 VIN PGND 7 SW 8 PGND 9 5 6 TP110 R261 R248 10.0k R243 0 C240 0.22uF 1 R265 0 C253 1.8nF C250 1uF 26 R267 1.37k J42 R264 2.00k 100pF 680pF 5.62k R246 10.0k C252 R257 1 C251 R249 0 R244 475k 220pF C241 R242 2.21 L8 0.42uH C246 10nF 1 3 2 4 5 0 R268 R266 C254 2200pF 6 17 IMON MODE VOUT SS FSET VFB EN VBST VCCA GND PGOOD VIN COMP 1 1 R262 10.0k R254 0 C248 0.22uF R263 0 R255 475k R260 10.0k C249 220pF R251 1 2.21 L9 0.42uH J43 26 Optional Solution for VCCIO and VDDQ TP112 U22 TPS51318 16 VIN PGND 7 SW 8 PGND 9 TP109 10 11 12 13 14 15 EVALUATION BOARD/KIT/MODULE (EVM) ADDITIONAL TERMS Texas Instruments (TI) provides the enclosed Evaluation Board/Kit/Module (EVM) under the following conditions: The user assumes all responsibility and liability for proper and safe handling of the goods. Further, the user indemnifies TI from all claims arising from the handling or use of the goods. Should this evaluation board/kit not meet the specifications indicated in the User’s Guide, the board/kit may be returned within 30 days from the date of delivery for a full refund. THE FOREGOING LIMITED WARRANTY IS THE EXCLUSIVE WARRANTY MADE BY SELLER TO BUYER AND IS IN LIEU OF ALL OTHER WARRANTIES, EXPRESSED, IMPLIED, OR STATUTORY, INCLUDING ANY WARRANTY OF MERCHANTABILITY OR FITNESS FOR ANY PARTICULAR PURPOSE. EXCEPT TO THE EXTENT OF THE INDEMNITY SET FORTH ABOVE, NEITHER PARTY SHALL BE LIABLE TO THE OTHER FOR ANY INDIRECT, SPECIAL, INCIDENTAL, OR CONSEQUENTIAL DAMAGES. Please read the User's Guide and, specifically, the Warnings and Restrictions notice in the User's Guide prior to handling the product. This notice contains important safety information about temperatures and voltages. For additional information on TI's environmental and/or safety programs, please visit www.ti.com/esh or contact TI. No license is granted under any patent right or other intellectual property right of TI covering or relating to any machine, process, or combination in which such TI products or services might be or are used. TI currently deals with a variety of customers for products, and therefore our arrangement with the user is not exclusive. TI assumes no liability for applications assistance, customer product design, software performance, or infringement of patents or services described herein. REGULATORY COMPLIANCE INFORMATION As noted in the EVM User’s Guide and/or EVM itself, this EVM and/or accompanying hardware may or may not be subject to the Federal Communications Commission (FCC) and Industry Canada (IC) rules. For EVMs not subject to the above rules, this evaluation board/kit/module is intended for use for ENGINEERING DEVELOPMENT, DEMONSTRATION OR EVALUATION PURPOSES ONLY and is not considered by TI to be a finished end product fit for general consumer use. It generates, uses, and can radiate radio frequency energy and has not been tested for compliance with the limits of computing devices pursuant to part 15 of FCC or ICES-003 rules, which are designed to provide reasonable protection against radio frequency interference. Operation of the equipment may cause interference with radio communications, in which case the user at his own expense will be required to take whatever measures may be required to correct this interference. General Statement for EVMs including a radio User Power/Frequency Use Obligations: This radio is intended for development/professional use only in legally allocated frequency and power limits. Any use of radio frequencies and/or power availability of this EVM and its development application(s) must comply with local laws governing radio spectrum allocation and power limits for this evaluation module. It is the user’s sole responsibility to only operate this radio in legally acceptable frequency space and within legally mandated power limitations. Any exceptions to this are strictly prohibited and unauthorized by Texas Instruments unless user has obtained appropriate experimental/development licenses from local regulatory authorities, which is responsibility of user including its acceptable authorization. For EVMs annotated as FCC – FEDERAL COMMUNICATIONS COMMISSION Part 15 Compliant Caution This device complies with part 15 of the FCC Rules. Operation is subject to the following two conditions: (1) This device may not cause harmful interference, and (2) this device must accept any interference received, including interference that may cause undesired operation. Changes or modifications not expressly approved by the party responsible for compliance could void the user's authority to operate the equipment. FCC Interference Statement for Class A EVM devices This equipment has been tested and found to comply with the limits for a Class A digital device, pursuant to part 15 of the FCC Rules. These limits are designed to provide reasonable protection against harmful interference when the equipment is operated in a commercial environment. This equipment generates, uses, and can radiate radio frequency energy and, if not installed and used in accordance with the instruction manual, may cause harmful interference to radio communications. Operation of this equipment in a residential area is likely to cause harmful interference in which case the user will be required to correct the interference at his own expense. FCC Interference Statement for Class B EVM devices This equipment has been tested and found to comply with the limits for a Class B digital device, pursuant to part 15 of the FCC Rules. These limits are designed to provide reasonable protection against harmful interference in a residential installation. This equipment generates, uses and can radiate radio frequency energy and, if not installed and used in accordance with the instructions, may cause harmful interference to radio communications. However, there is no guarantee that interference will not occur in a particular installation. If this equipment does cause harmful interference to radio or television reception, which can be determined by turning the equipment off and on, the user is encouraged to try to correct the interference by one or more of the following measures: • Reorient or relocate the receiving antenna. • Increase the separation between the equipment and receiver. • Connect the equipment into an outlet on a circuit different from that to which the receiver is connected. • Consult the dealer or an experienced radio/TV technician for help. For EVMs annotated as IC – INDUSTRY CANADA Compliant This Class A or B digital apparatus complies with Canadian ICES-003. Changes or modifications not expressly approved by the party responsible for compliance could void the user’s authority to operate the equipment. Concerning EVMs including radio transmitters This device complies with Industry Canada licence-exempt RSS standard(s). Operation is subject to the following two conditions: (1) this device may not cause interference, and (2) this device must accept any interference, including interference that may cause undesired operation of the device. Concerning EVMs including detachable antennas Under Industry Canada regulations, this radio transmitter may only operate using an antenna of a type and maximum (or lesser) gain approved for the transmitter by Industry Canada. To reduce potential radio interference to other users, the antenna type and its gain should be so chosen that the equivalent isotropically radiated power (e.i.r.p.) is not more than that necessary for successful communication. This radio transmitter has been approved by Industry Canada to operate with the antenna types listed in the user guide with the maximum permissible gain and required antenna impedance for each antenna type indicated. Antenna types not included in this list, having a gain greater than the maximum gain indicated for that type, are strictly prohibited for use with this device. Cet appareil numérique de la classe A ou B est conforme à la norme NMB-003 du Canada. Les changements ou les modifications pas expressément approuvés par la partie responsable de la conformité ont pu vider l’autorité de l'utilisateur pour actionner l'équipement. Concernant les EVMs avec appareils radio Le présent appareil est conforme aux CNR d'Industrie Canada applicables aux appareils radio exempts de licence. L'exploitation est autorisée aux deux conditions suivantes : (1) l'appareil ne doit pas produire de brouillage, et (2) l'utilisateur de l'appareil doit accepter tout brouillage radioélectrique subi, même si le brouillage est susceptible d'en compromettre le fonctionnement. Concernant les EVMs avec antennes détachables Conformément à la réglementation d'Industrie Canada, le présent émetteur radio peut fonctionner avec une antenne d'un type et d'un gain maximal (ou inférieur) approuvé pour l'émetteur par Industrie Canada. Dans le but de réduire les risques de brouillage radioélectrique à l'intention des autres utilisateurs, il faut choisir le type d'antenne et son gain de sorte que la puissance isotrope rayonnée équivalente (p.i.r.e.) ne dépasse pas l'intensité nécessaire à l'établissement d'une communication satisfaisante. Le présent émetteur radio a été approuvé par Industrie Canada pour fonctionner avec les types d'antenne énumérés dans le manuel d’usage et ayant un gain admissible maximal et l'impédance requise pour chaque type d'antenne. Les types d'antenne non inclus dans cette liste, ou dont le gain est supérieur au gain maximal indiqué, sont strictement interdits pour l'exploitation de l'émetteur. SPACER SPACER SPACER SPACER SPACER SPACER SPACER SPACER 【Important Notice for Users of this Product in Japan】 】 This development kit is NOT certified as Confirming to Technical Regulations of Radio Law of Japan If you use this product in Japan, you are required by Radio Law of Japan to follow the instructions below with respect to this product: 1. 2. 3. Use this product in a shielded room or any other test facility as defined in the notification #173 issued by Ministry of Internal Affairs and Communications on March 28, 2006, based on Sub-section 1.1 of Article 6 of the Ministry’s Rule for Enforcement of Radio Law of Japan, Use this product only after you obtained the license of Test Radio Station as provided in Radio Law of Japan with respect to this product, or Use of this product only after you obtained the Technical Regulations Conformity Certification as provided in Radio Law of Japan with respect to this product. Also, please do not transfer this product, unless you give the same notice above to the transferee. Please note that if you could not follow the instructions above, you will be subject to penalties of Radio Law of Japan. Texas Instruments Japan Limited (address) 24-1, Nishi-Shinjuku 6 chome, Shinjukku-ku, Tokyo, Japan http://www.tij.co.jp 【ご使用にあたっての注】 本開発キットは技術基準適合証明を受けておりません。 本製品のご使用に際しては、電波法遵守のため、以下のいずれかの措置を取っていただく必要がありますのでご注意ください。 1. 2. 3. 電波法施行規則第6条第1項第1号に基づく平成18年3月28日総務省告示第173号で定められた電波暗室等の試験設備でご使用いただく。 実験局の免許を取得後ご使用いただく。 技術基準適合証明を取得後ご使用いただく。 なお、本製品は、上記の「ご使用にあたっての注意」を譲渡先、移転先に通知しない限り、譲渡、移転できないものとします。    上記を遵守頂けない場合は、電波法の罰則が適用される可能性があることをご留意ください。 日本テキサス・インスツルメンツ株式会社 東京都新宿区西新宿6丁目24番1号 西新宿三井ビル http://www.tij.co.jp SPACER SPACER SPACER SPACER SPACER SPACER SPACER SPACER SPACER SPACER SPACER SPACER SPACER SPACER SPACER SPACER EVALUATION BOARD/KIT/MODULE (EVM) WARNINGS, RESTRICTIONS AND DISCLAIMERS For Feasibility Evaluation Only, in Laboratory/Development Environments. Unless otherwise indicated, this EVM is not a finished electrical equipment and not intended for consumer use. It is intended solely for use for preliminary feasibility evaluation in laboratory/development environments by technically qualified electronics experts who are familiar with the dangers and application risks associated with handling electrical mechanical components, systems and subsystems. It should not be used as all or part of a finished end product. Your Sole Responsibility and Risk. You acknowledge, represent and agree that: 1. 2. 3. 4. You have unique knowledge concerning Federal, State and local regulatory requirements (including but not limited to Food and Drug Administration regulations, if applicable) which relate to your products and which relate to your use (and/or that of your employees, affiliates, contractors or designees) of the EVM for evaluation, testing and other purposes. You have full and exclusive responsibility to assure the safety and compliance of your products with all such laws and other applicable regulatory requirements, and also to assure the safety of any activities to be conducted by you and/or your employees, affiliates, contractors or designees, using the EVM. Further, you are responsible to assure that any interfaces (electronic and/or mechanical) between the EVM and any human body are designed with suitable isolation and means to safely limit accessible leakage currents to minimize the risk of electrical shock hazard. You will employ reasonable safeguards to ensure that your use of the EVM will not result in any property damage, injury or death, even if the EVM should fail to perform as described or expected. You will take care of proper disposal and recycling of the EVM’s electronic components and packing materials. Certain Instructions. It is important to operate this EVM within TI’s recommended specifications and environmental considerations per the user guidelines. Exceeding the specified EVM ratings (including but not limited to input and output voltage, current, power, and environmental ranges) may cause property damage, personal injury or death. If there are questions concerning these ratings please contact a TI field representative prior to connecting interface electronics including input power and intended loads. Any loads applied outside of the specified output range may result in unintended and/or inaccurate operation and/or possible permanent damage to the EVM and/or interface electronics. Please consult the EVM User's Guide prior to connecting any load to the EVM output. If there is uncertainty as to the load specification, please contact a TI field representative. During normal operation, some circuit components may have case temperatures greater than 60°C as long as the input and output are maintained at a normal ambient operating temperature. These components include but are not limited to linear regulators, switching transistors, pass transistors, and current sense resistors which can be identified using the EVM schematic located in the EVM User's Guide. When placing measurement probes near these devices during normal operation, please be aware that these devices may be very warm to the touch. As with all electronic evaluation tools, only qualified personnel knowledgeable in electronic measurement and diagnostics normally found in development environments should use these EVMs. Agreement to Defend, Indemnify and Hold Harmless. You agree to defend, indemnify and hold TI, its licensors and their representatives harmless from and against any and all claims, damages, losses, expenses, costs and liabilities (collectively, "Claims") arising out of or in connection with any use of the EVM that is not in accordance with the terms of the agreement. This obligation shall apply whether Claims arise under law of tort or contract or any other legal theory, and even if the EVM fails to perform as described or expected. Safety-Critical or Life-Critical Applications. If you intend to evaluate the components for possible use in safety critical applications (such as life support) where a failure of the TI product would reasonably be expected to cause severe personal injury or death, such as devices which are classified as FDA Class III or similar classification, then you must specifically notify TI of such intent and enter into a separate Assurance and Indemnity Agreement. Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265 Copyright © 2012, Texas Instruments Incorporated EVALUATION BOARD/KIT/MODULE (EVM) ADDITIONAL TERMS Texas Instruments (TI) provides the enclosed Evaluation Board/Kit/Module (EVM) under the following conditions: The user assumes all responsibility and liability for proper and safe handling of the goods. Further, the user indemnifies TI from all claims arising from the handling or use of the goods. Should this evaluation board/kit not meet the specifications indicated in the User’s Guide, the board/kit may be returned within 30 days from the date of delivery for a full refund. THE FOREGOING LIMITED WARRANTY IS THE EXCLUSIVE WARRANTY MADE BY SELLER TO BUYER AND IS IN LIEU OF ALL OTHER WARRANTIES, EXPRESSED, IMPLIED, OR STATUTORY, INCLUDING ANY WARRANTY OF MERCHANTABILITY OR FITNESS FOR ANY PARTICULAR PURPOSE. EXCEPT TO THE EXTENT OF THE INDEMNITY SET FORTH ABOVE, NEITHER PARTY SHALL BE LIABLE TO THE OTHER FOR ANY INDIRECT, SPECIAL, INCIDENTAL, OR CONSEQUENTIAL DAMAGES. Please read the User's Guide and, specifically, the Warnings and Restrictions notice in the User's Guide prior to handling the product. This notice contains important safety information about temperatures and voltages. For additional information on TI's environmental and/or safety programs, please visit www.ti.com/esh or contact TI. No license is granted under any patent right or other intellectual property right of TI covering or relating to any machine, process, or combination in which such TI products or services might be or are used. TI currently deals with a variety of customers for products, and therefore our arrangement with the user is not exclusive. TI assumes no liability for applications assistance, customer product design, software performance, or infringement of patents or services described herein. REGULATORY COMPLIANCE INFORMATION As noted in the EVM User’s Guide and/or EVM itself, this EVM and/or accompanying hardware may or may not be subject to the Federal Communications Commission (FCC) and Industry Canada (IC) rules. For EVMs not subject to the above rules, this evaluation board/kit/module is intended for use for ENGINEERING DEVELOPMENT, DEMONSTRATION OR EVALUATION PURPOSES ONLY and is not considered by TI to be a finished end product fit for general consumer use. It generates, uses, and can radiate radio frequency energy and has not been tested for compliance with the limits of computing devices pursuant to part 15 of FCC or ICES-003 rules, which are designed to provide reasonable protection against radio frequency interference. Operation of the equipment may cause interference with radio communications, in which case the user at his own expense will be required to take whatever measures may be required to correct this interference. General Statement for EVMs including a radio User Power/Frequency Use Obligations: This radio is intended for development/professional use only in legally allocated frequency and power limits. Any use of radio frequencies and/or power availability of this EVM and its development application(s) must comply with local laws governing radio spectrum allocation and power limits for this evaluation module. It is the user’s sole responsibility to only operate this radio in legally acceptable frequency space and within legally mandated power limitations. Any exceptions to this are strictly prohibited and unauthorized by Texas Instruments unless user has obtained appropriate experimental/development licenses from local regulatory authorities, which is responsibility of user including its acceptable authorization. For EVMs annotated as FCC – FEDERAL COMMUNICATIONS COMMISSION Part 15 Compliant Caution This device complies with part 15 of the FCC Rules. Operation is subject to the following two conditions: (1) This device may not cause harmful interference, and (2) this device must accept any interference received, including interference that may cause undesired operation. Changes or modifications not expressly approved by the party responsible for compliance could void the user's authority to operate the equipment. FCC Interference Statement for Class A EVM devices This equipment has been tested and found to comply with the limits for a Class A digital device, pursuant to part 15 of the FCC Rules. These limits are designed to provide reasonable protection against harmful interference when the equipment is operated in a commercial environment. This equipment generates, uses, and can radiate radio frequency energy and, if not installed and used in accordance with the instruction manual, may cause harmful interference to radio communications. Operation of this equipment in a residential area is likely to cause harmful interference in which case the user will be required to correct the interference at his own expense. FCC Interference Statement for Class B EVM devices This equipment has been tested and found to comply with the limits for a Class B digital device, pursuant to part 15 of the FCC Rules. These limits are designed to provide reasonable protection against harmful interference in a residential installation. This equipment generates, uses and can radiate radio frequency energy and, if not installed and used in accordance with the instructions, may cause harmful interference to radio communications. However, there is no guarantee that interference will not occur in a particular installation. If this equipment does cause harmful interference to radio or television reception, which can be determined by turning the equipment off and on, the user is encouraged to try to correct the interference by one or more of the following measures: • Reorient or relocate the receiving antenna. • Increase the separation between the equipment and receiver. • Connect the equipment into an outlet on a circuit different from that to which the receiver is connected. • Consult the dealer or an experienced radio/TV technician for help. For EVMs annotated as IC – INDUSTRY CANADA Compliant This Class A or B digital apparatus complies with Canadian ICES-003. Changes or modifications not expressly approved by the party responsible for compliance could void the user’s authority to operate the equipment. Concerning EVMs including radio transmitters This device complies with Industry Canada licence-exempt RSS standard(s). Operation is subject to the following two conditions: (1) this device may not cause interference, and (2) this device must accept any interference, including interference that may cause undesired operation of the device. Concerning EVMs including detachable antennas Under Industry Canada regulations, this radio transmitter may only operate using an antenna of a type and maximum (or lesser) gain approved for the transmitter by Industry Canada. To reduce potential radio interference to other users, the antenna type and its gain should be so chosen that the equivalent isotropically radiated power (e.i.r.p.) is not more than that necessary for successful communication. This radio transmitter has been approved by Industry Canada to operate with the antenna types listed in the user guide with the maximum permissible gain and required antenna impedance for each antenna type indicated. Antenna types not included in this list, having a gain greater than the maximum gain indicated for that type, are strictly prohibited for use with this device. Cet appareil numérique de la classe A ou B est conforme à la norme NMB-003 du Canada. Les changements ou les modifications pas expressément approuvés par la partie responsable de la conformité ont pu vider l’autorité de l'utilisateur pour actionner l'équipement. Concernant les EVMs avec appareils radio Le présent appareil est conforme aux CNR d'Industrie Canada applicables aux appareils radio exempts de licence. L'exploitation est autorisée aux deux conditions suivantes : (1) l'appareil ne doit pas produire de brouillage, et (2) l'utilisateur de l'appareil doit accepter tout brouillage radioélectrique subi, même si le brouillage est susceptible d'en compromettre le fonctionnement. Concernant les EVMs avec antennes détachables Conformément à la réglementation d'Industrie Canada, le présent émetteur radio peut fonctionner avec une antenne d'un type et d'un gain maximal (ou inférieur) approuvé pour l'émetteur par Industrie Canada. Dans le but de réduire les risques de brouillage radioélectrique à l'intention des autres utilisateurs, il faut choisir le type d'antenne et son gain de sorte que la puissance isotrope rayonnée équivalente (p.i.r.e.) ne dépasse pas l'intensité nécessaire à l'établissement d'une communication satisfaisante. Le présent émetteur radio a été approuvé par Industrie Canada pour fonctionner avec les types d'antenne énumérés dans le manuel d’usage et ayant un gain admissible maximal et l'impédance requise pour chaque type d'antenne. Les types d'antenne non inclus dans cette liste, ou dont le gain est supérieur au gain maximal indiqué, sont strictement interdits pour l'exploitation de l'émetteur. SPACER SPACER SPACER SPACER SPACER SPACER SPACER SPACER 【Important Notice for Users of this Product in Japan】 】 This development kit is NOT certified as Confirming to Technical Regulations of Radio Law of Japan If you use this product in Japan, you are required by Radio Law of Japan to follow the instructions below with respect to this product: 1. 2. 3. Use this product in a shielded room or any other test facility as defined in the notification #173 issued by Ministry of Internal Affairs and Communications on March 28, 2006, based on Sub-section 1.1 of Article 6 of the Ministry’s Rule for Enforcement of Radio Law of Japan, Use this product only after you obtained the license of Test Radio Station as provided in Radio Law of Japan with respect to this product, or Use of this product only after you obtained the Technical Regulations Conformity Certification as provided in Radio Law of Japan with respect to this product. Also, please do not transfer this product, unless you give the same notice above to the transferee. Please note that if you could not follow the instructions above, you will be subject to penalties of Radio Law of Japan. Texas Instruments Japan Limited (address) 24-1, Nishi-Shinjuku 6 chome, Shinjuku-ku, Tokyo, Japan http://www.tij.co.jp 【ご使用にあたっての注】 本開発キットは技術基準適合証明を受けておりません。 本製品のご使用に際しては、電波法遵守のため、以下のいずれかの措置を取っていただく必要がありますのでご注意ください。 1. 2. 3. 電波法施行規則第6条第1項第1号に基づく平成18年3月28日総務省告示第173号で定められた電波暗室等の試験設備でご使用いただく。 実験局の免許を取得後ご使用いただく。 技術基準適合証明を取得後ご使用いただく。 なお、本製品は、上記の「ご使用にあたっての注意」を譲渡先、移転先に通知しない限り、譲渡、移転できないものとします。    上記を遵守頂けない場合は、電波法の罰則が適用される可能性があることをご留意ください。 日本テキサス・インスツルメンツ株式会社 東京都新宿区西新宿6丁目24番1号 西新宿三井ビル http://www.tij.co.jp SPACER SPACER SPACER SPACER SPACER SPACER SPACER SPACER SPACER SPACER SPACER SPACER SPACER SPACER SPACER SPACER EVALUATION BOARD/KIT/MODULE (EVM) WARNINGS, RESTRICTIONS AND DISCLAIMERS For Feasibility Evaluation Only, in Laboratory/Development Environments. Unless otherwise indicated, this EVM is not a finished electrical equipment and not intended for consumer use. It is intended solely for use for preliminary feasibility evaluation in laboratory/development environments by technically qualified electronics experts who are familiar with the dangers and application risks associated with handling electrical mechanical components, systems and subsystems. It should not be used as all or part of a finished end product. Your Sole Responsibility and Risk. You acknowledge, represent and agree that: 1. 2. 3. 4. You have unique knowledge concerning Federal, State and local regulatory requirements (including but not limited to Food and Drug Administration regulations, if applicable) which relate to your products and which relate to your use (and/or that of your employees, affiliates, contractors or designees) of the EVM for evaluation, testing and other purposes. You have full and exclusive responsibility to assure the safety and compliance of your products with all such laws and other applicable regulatory requirements, and also to assure the safety of any activities to be conducted by you and/or your employees, affiliates, contractors or designees, using the EVM. Further, you are responsible to assure that any interfaces (electronic and/or mechanical) between the EVM and any human body are designed with suitable isolation and means to safely limit accessible leakage currents to minimize the risk of electrical shock hazard. You will employ reasonable safeguards to ensure that your use of the EVM will not result in any property damage, injury or death, even if the EVM should fail to perform as described or expected. You will take care of proper disposal and recycling of the EVM’s electronic components and packing materials. Certain Instructions. It is important to operate this EVM within TI’s recommended specifications and environmental considerations per the user guidelines. Exceeding the specified EVM ratings (including but not limited to input and output voltage, current, power, and environmental ranges) may cause property damage, personal injury or death. If there are questions concerning these ratings please contact a TI field representative prior to connecting interface electronics including input power and intended loads. Any loads applied outside of the specified output range may result in unintended and/or inaccurate operation and/or possible permanent damage to the EVM and/or interface electronics. Please consult the EVM User's Guide prior to connecting any load to the EVM output. If there is uncertainty as to the load specification, please contact a TI field representative. During normal operation, some circuit components may have case temperatures greater than 60°C as long as the input and output are maintained at a normal ambient operating temperature. These components include but are not limited to linear regulators, switching transistors, pass transistors, and current sense resistors which can be identified using the EVM schematic located in the EVM User's Guide. When placing measurement probes near these devices during normal operation, please be aware that these devices may be very warm to the touch. As with all electronic evaluation tools, only qualified personnel knowledgeable in electronic measurement and diagnostics normally found in development environments should use these EVMs. Agreement to Defend, Indemnify and Hold Harmless. You agree to defend, indemnify and hold TI, its licensors and their representatives harmless from and against any and all claims, damages, losses, expenses, costs and liabilities (collectively, "Claims") arising out of or in connection with any use of the EVM that is not in accordance with the terms of the agreement. This obligation shall apply whether Claims arise under law of tort or contract or any other legal theory, and even if the EVM fails to perform as described or expected. Safety-Critical or Life-Critical Applications. If you intend to evaluate the components for possible use in safety critical applications (such as life support) where a failure of the TI product would reasonably be expected to cause severe personal injury or death, such as devices which are classified as FDA Class III or similar classification, then you must specifically notify TI of such intent and enter into a separate Assurance and Indemnity Agreement. Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265 Copyright © 2012, Texas Instruments Incorporated IMPORTANT NOTICE Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, enhancements, improvements and other changes to its semiconductor products and services per JESD46, latest issue, and to discontinue any product or service per JESD48, latest issue. Buyers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. All semiconductor products (also referred to herein as “components”) are sold subject to TI’s terms and conditions of sale supplied at the time of order acknowledgment. TI warrants performance of its components to the specifications applicable at the time of sale, in accordance with the warranty in TI’s terms and conditions of sale of semiconductor products. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where mandated by applicable law, testing of all parameters of each component is not necessarily performed. TI assumes no liability for applications assistance or the design of Buyers’ products. Buyers are responsible for their products and applications using TI components. To minimize the risks associated with Buyers’ products and applications, Buyers should provide adequate design and operating safeguards. TI does not warrant or represent that any license, either express or implied, is granted under any patent right, copyright, mask work right, or other intellectual property right relating to any combination, machine, or process in which TI components or services are used. Information published by TI regarding third-party products or services does not constitute a license to use such products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI. Reproduction of significant portions of TI information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. TI is not responsible or liable for such altered documentation. Information of third parties may be subject to additional restrictions. Resale of TI components or services with statements different from or beyond the parameters stated by TI for that component or service voids all express and any implied warranties for the associated TI component or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements. Buyer acknowledges and agrees that it is solely responsible for compliance with all legal, regulatory and safety-related requirements concerning its products, and any use of TI components in its applications, notwithstanding any applications-related information or support that may be provided by TI. Buyer represents and agrees that it has all the necessary expertise to create and implement safeguards which anticipate dangerous consequences of failures, monitor failures and their consequences, lessen the likelihood of failures that might cause harm and take appropriate remedial actions. Buyer will fully indemnify TI and its representatives against any damages arising out of the use of any TI components in safety-critical applications. In some cases, TI components may be promoted specifically to facilitate safety-related applications. With such components, TI’s goal is to help enable customers to design and create their own end-product solutions that meet applicable functional safety standards and requirements. Nonetheless, such components are subject to these terms. No TI components are authorized for use in FDA Class III (or similar life-critical medical equipment) unless authorized officers of the parties have executed a special agreement specifically governing such use. Only those TI components which TI has specifically designated as military grade or “enhanced plastic” are designed and intended for use in military/aerospace applications or environments. Buyer acknowledges and agrees that any military or aerospace use of TI components which have not been so designated is solely at the Buyer's risk, and that Buyer is solely responsible for compliance with all legal and regulatory requirements in connection with such use. TI has specifically designated certain components which meet ISO/TS16949 requirements, mainly for automotive use. Components which have not been so designated are neither designed nor intended for automotive use; and TI will not be responsible for any failure of such components to meet such requirements. Products Applications Audio www.ti.com/audio Automotive and Transportation www.ti.com/automotive Amplifiers amplifier.ti.com Communications and Telecom www.ti.com/communications Data Converters dataconverter.ti.com Computers and Peripherals www.ti.com/computers DLP® Products www.dlp.com Consumer Electronics www.ti.com/consumer-apps DSP dsp.ti.com Energy and Lighting www.ti.com/energy Clocks and Timers www.ti.com/clocks Industrial www.ti.com/industrial Interface interface.ti.com Medical www.ti.com/medical Logic logic.ti.com Security www.ti.com/security Power Mgmt power.ti.com Space, Avionics and Defense www.ti.com/space-avionics-defense Microcontrollers microcontroller.ti.com Video and Imaging www.ti.com/video RFID www.ti-rfid.com OMAP Applications Processors www.ti.com/omap TI E2E Community e2e.ti.com Wireless Connectivity www.ti.com/wirelessconnectivity Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265 Copyright © 2012, Texas Instruments Incorporated
TPS59650EVM-753 价格&库存

很抱歉,暂时无法提供与“TPS59650EVM-753”相匹配的价格&库存,您可以联系我们找货

免费人工找货