TPS61099
ZHCSFH7L – JULY 2016 – REVISED AUGUST 2021
TPS61099x 静态电流极低的同步升压转换器
TPS61099x 升压转换器采用迟滞控制拓扑,能够以最
小静态电流实现最高的效率。该器件在轻载条件下仅消
耗 1µA 静态电流,在 10µA 负载下可实现高达 75% 的
效率(固定输出电压版本)。此外,该器件在 3.3V 至
5V 转 换 过 程 中 支 持 高 达 300mA 的 输 出 电 流 , 在
200mA 负载条件下可实现高达 93% 的效率。
1 特性
600nA 超低 IQ 流入 VOUT 引脚
400nA 超低 IQ 流入 VIN 引脚
工作输入电压范围为 0.7V 至 5.5V
可调输出电压范围为 1.8V 至 5.5V
可提供固定输出电压版本
最小 0.8A 开关峰值电流限制
降压模式下提供稳压输出电压
关断期间真正断开连接
使用固定输出电压版本时,10µA 负载条件下的效
率高达 75%
• 在 10mA 至 300mA 负载下具有高达 93% 的效率
• 6 焊球 1.23mm × 0.88mm WCSP 封装和 2mm ×
2mm WSON 封装
• 使用 TPS61099x 并借助 WEBENCH® Power
Designer 创建定制设计方案
•
•
•
•
•
•
•
•
•
TPS61099x 还为不同应用提供降压模式和直通操作。
在降压模式下,即使输入电压高于输出电压,输出电压
仍可调节为目标值。在直通模式下,输出电压与输入电
压保持一致。当 VIN > VOUT + 0.5V 时,TPS61099x
退出降压模式并转入直通模式。
TPS61099x 在禁用状态下能够将负载与输入电源断
开,真正实现关断,从而降低电流消耗。
TPS61099x 具有可调输出电压版本和固定输出电压版
本。该器件采用 6 焊球 1.23mm × 0.88mm WCSP 封
装和 6 焊球 2mm × 2mm WSON 封装。
2 应用
•
•
•
•
•
•
器件信息
记忆 LCD 偏压
光学心率监测 LED 偏压
可穿戴应用
低功耗无线应用
便携式产品
电池供电型系统
器件型号
TPS61099
TPS61099x
TPS61099
TPS61099x
(1)
3 说明
封装(1)
封装尺寸(标称值)
WCSP (6)
1.23mm × 0.88mm
WSON (6)
2mm × 2mm
如需了解所有可用封装,请参阅本文档末尾的可订购产品附
录。
TPS61099x 器件是一款具有 1µA 超低静态电流的同步
升压转换器。该器件专为由碱性电池、镍氢充电电池、
锂锰电池或锂离子充电电池供电的产品而设计,能够在
轻载条件下高效运行,这对延长电池使用寿命至关重
要。
1.8 V to 5.5 V
VOUT
L1
2.2 µH
VIN
0.7 V to 5.5 V
VOUT
SW
R1
VIN
TPS61099
FB
C1
10 µF
C2
C3
10 µF
10 µF
R2
EN
GND
Copyright © 2016, Texas Instruments Incorporated
典型应用电路
本文档旨在为方便起见,提供有关 TI 产品中文版本的信息,以确认产品的概要。有关适用的官方英文版本的最新信息,请访问
www.ti.com,其内容始终优先。TI 不保证翻译的准确性和有效性。在实际设计之前,请务必参考最新版本的英文版本。
English Data Sheet: SLVSD88
TPS61099
www.ti.com.cn
ZHCSFH7L – JULY 2016 – REVISED AUGUST 2021
Table of Contents
1 特性................................................................................... 1
2 应用................................................................................... 1
3 说明................................................................................... 1
4 Revision History.............................................................. 2
5 Device Comparison Table...............................................3
6 Pin Configuration and Functions...................................3
7 Specifications.................................................................. 4
7.1 Absolute Maximum Ratings........................................ 4
7.2 ESD Ratings............................................................... 4
7.3 Recommended Operating Conditions.........................4
7.4 Thermal Information....................................................4
7.5 Electrical Characteristics.............................................5
7.6 Typical Characteristics................................................ 7
8 Detailed Description......................................................10
8.1 Overview................................................................... 10
8.2 Functional Block Diagram......................................... 10
8.3 Feature Description...................................................10
8.4 Device Functional Modes..........................................13
9 Application and Implementation.................................. 14
9.1 Application Information............................................. 14
9.2 Typical Application - 5 V Output Boost Converter.....14
10 Power Supply Recommendations..............................18
11 Layout........................................................................... 19
11.1 Layout Guidelines................................................... 19
11.2 Layout Example...................................................... 19
12 Device and Documentation Support..........................21
12.1 Device Support....................................................... 21
12.2 Documentation Support.......................................... 21
12.3 接收文档更新通知................................................... 21
12.4 支持资源..................................................................21
12.5 Trademarks............................................................. 22
12.6 Electrostatic Discharge Caution..............................22
12.7 术语表..................................................................... 22
13 Mechanical, Packaging, and Orderable
Information.................................................................... 22
4 Revision History
注:以前版本的页码可能与当前版本的页码不同
Changes from Revision K (May 2018) to Revision L (August 2021)
Page
• 更新了整个文档中的表格、图和交叉参考的编号格式......................................................................................... 1
Changes from Revision J (October 2017) to Revision K (May 2018)
Page
• Added Load Efficiency graph for TPS610995 device ........................................................................................ 7
2
Submit Document Feedback
Copyright © 2021 Texas Instruments Incorporated
Product Folder Links: TPS61099
TPS61099
www.ti.com.cn
ZHCSFH7L – JULY 2016 – REVISED AUGUST 2021
5 Device Comparison Table
(1)
PART NUMBER
OUTPUT VOLTAGE
TPS61099
Adjustable
TPS610997
5.0 V
TPS610996
4.5 V
TPS610995
3.6 V
TPS610994
3.3 V
TPS610993
3.0 V
TPS610992
2.5 V
TPS610991(1)
1.8 V
Product Preview. Contact TI factory for more information.
6 Pin Configuration and Functions
VIN
A1
A2
GND
1
B1
B2
EN
C1
C2
VOUT
2
3
FB
图 6-1. YFF Package 6-Pin YFF Top View
PowerPad
SW
6
5
4
图 6-2. DRV Package 6-Pin DRV Top View
表 6-1. Pin Functions
PIN
NAME
YFF
DRV
VIN
A1
6
SW
B1
5
EN
C1
4
TYPE
I
DESCRIPTION
IC power supply input
PWR Switch pin of the converter. It is connected to the inductor
I
Enable logic input. Logic high voltage enables the device; logic low voltage disables the device.
Do not leave it floating.
GND
A2
1
PWR Ground
VOUT
B2
2
PWR Boost converter output
FB
C2
3
PowerPad
I
7
Voltage feedback of adjustable output voltage. Connect to the center tap of a resistor divider to
program the output voltage. Connect to GND pin for fixed output voltage versions.
Connect to GND
Submit Document Feedback
Copyright © 2021 Texas Instruments Incorporated
Product Folder Links: TPS61099
3
TPS61099
www.ti.com.cn
ZHCSFH7L – JULY 2016 – REVISED AUGUST 2021
7 Specifications
7.1 Absolute Maximum Ratings
over operating free-air temperature range (unless otherwise noted)(1)
MIN
MAX
UNIT
-0.3
6.0
V
Operating junction temperature, TJ
–40
150
°C
Storage temperature range, Tstg
–65
150
°C
Voltage range at terminals(2)
(1)
(2)
VIN, SW, VOUT, FB, EN
Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings
only, and functional operation of the device at these or any other conditions beyond those indicated under Recommended Operating
Conditions is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.
All voltage values are with respect to network ground terminal.
7.2 ESD Ratings
Human Body Model (HBM), per ANSI/ESDA/JEDEC JS-001, all
V(ESD)
(1)
(2)
Electrostatic discharge
pins(1)
VALUE
UNIT
±2000
V
Charged Device Model (CDM), per JEDEC specification JESD22C101, all pins(2)
±500
JEDEC document JEP155 states that 500V HBM rating allows safe manufacturing with a standard ESD control process.
JEDEC document JEP157 states that 250V CDM rating allows safe manufacturing with a standard ESD control process.
7.3 Recommended Operating Conditions
MIN
NOM
MAX
UNIT
VIN
Input voltage range
0.7
5.5
V
VOUT
Output voltage range
1.8
5.5
V
L
Inductor
0.7
2.2
2.86
µH
CIN
Input capacitor
1.0
10
COUT
Output capacitor
10
20
TJ
Operating virtual junction temperature
–40
µF
100
µF
125
°C
7.4 Thermal Information
TPS61099
THERMAL METRIC(1)
DRV(6 PINS,
WSON)
UNIT
134.4
71.7
°C/W
RθJA
Junction-to-ambient thermal resistance
RθJCtop
Junction-to-case (top) thermal resistance
0.9
83.0
°C/W
RθJB
Junction-to-board thermal resistance
36.1
33.9
°C/W
ψJT
Junction-to-top characterization parameter
0.1
2.7
°C/W
ψJB
Junction-to-board characterization parameter
36.2
33.4
°C/W
RθJCbot
Junction-to-case (bottom) thermal resistance
N/A
14.4
°C/W
(1)
4
YFF (6 BALLS,
WCSP)
For more information about traditional and new thermal metrics, see the IC Package Thermal Metrics application report, SPRA953.
Submit Document Feedback
Copyright © 2021 Texas Instruments Incorporated
Product Folder Links: TPS61099
TPS61099
www.ti.com.cn
ZHCSFH7L – JULY 2016 – REVISED AUGUST 2021
7.5 Electrical Characteristics
TJ = -40°C to 125°C and VIN = 0.7 V to 5.5 V. Typical values are at VIN = 3.7 V, TJ = 25°C, unless otherwise noted.
PARAMETER
Version
TEST CONDITIONS
MIN
TYP
MAX
UNIT
POWER SUPPLY
VIN
Input voltage range
TPS61099x
VUVLO
Input under voltage lockout threshold
TPS61099x
UVLO hysteresis
TPS61099x
0.6
5.5
V
0.7
V
200
mV
Quiescent current into VIN pin
TPS61099x
IC enabled, no Load, no Switching
TJ = -40 °C to 85 °C
Quiescent current into VOUT pin
TPS61099x
IC enabled, no Load, no Switching,
Boost or Down Mode
TJ = -40 °C to 85 °C
0.6
1.5
µA
Shutdown current into VIN pin
TPS61099x
IC disabled, VIN = 3.7 V, VOUT = 0 V
TJ = -40 °C to 85 °C
0.5
1.6
µA
Output voltage range
TPS61099
5.5
V
5.00
5.10
V
3.37
V
IQ
ISD
0.7
VIN rising
0.4
1.1
µA
OUTPUT
VOUT
TPS610997
TPS610994
TPS610993
Output accuracy
TPS610996
TPS610992
TPS610995
VREF
Feedback reference voltage
VOVP
Output overvoltage protection threshold TPS61099x
IFB_LKG
1.8
VIN < VOUT, PWM mode
VIN < VOUT, PFM mode
VIN < VOUT, PWM mode
VIN < VOUT, PWM mode
VIN < VOUT, PWM mode
VIN < VOUT, PWM mode
TPS61099x
4.4
VOUT rising
3.06
4.5
4.6
4.63
2.45
2.5
2.55
2.58
3.53
VIN < VOUT, PFM mode
VIN < VOUT, PFM mode
3.0
3.1
VIN < VOUT, PFM mode
VIN < VOUT, PWM mode
3.30
3.4
2.94
VIN < VOUT, PFM mode
TPS61099
Leakage current into FB pin
3.23
VIN < VOUT, PFM mode
VIN < VOUT, PWM mode
TPS61099x
5.15
VIN < VOUT, PFM mode
TPS61099
OVP hysteresis
4.90
3.6
3.67
3.71
0.98
1.00
1.02
1.03
5.6
VFB = 1.0 V
V
V
V
V
V
V
5.8
6.0
V
100
200
mV
10
50
nA
POWER SWITCH
RDS(on)_LS
RDS(on)_HS
ILH
Low side switch on resistance
Rectifier on resistance
Inductor current ripple
TPS61099x
TPS61099x
TPS61099x
ILIM
Current limit threshold
TPS61099x
ISW_LKG
Leakage current into SW pin (from SW
pin to GND)
TPS61099x
VOUT = 5.0 V
250
mΩ
VOUT = 3.3 V
300
mΩ
VOUT = 1.8 V
400
mΩ
VOUT = 5.0 V
300
350
mΩ
VOUT = 3.3 V
350
450
mΩ
VOUT = 1.8 V
500
750
mΩ
VOUT = 5.0 V
350
mA
VOUT = 3.3 V
300
mA
VOUT = 1.8 V
250
VOUT ≥ 2.5 V, boost operation
0.8
1
VOUT < 2.5 V, boost operation
0.5
0.75
VSW = 5.0 V, no switch, TJ = -40 °C to 85 °C
mA
1.25
A
A
200
nA
Submit Document Feedback
Copyright © 2021 Texas Instruments Incorporated
Product Folder Links: TPS61099
5
TPS61099
www.ti.com.cn
ZHCSFH7L – JULY 2016 – REVISED AUGUST 2021
7.5 Electrical Characteristics (continued)
TJ = -40°C to 125°C and VIN = 0.7 V to 5.5 V. Typical values are at VIN = 3.7 V, TJ = 25°C, unless otherwise noted.
PARAMETER
Version
TEST CONDITIONS
MIN
TYP
MAX
UNIT
CONTROL LOGIC
6
0.2 x
VIN
VIL
EN input low voltage threshold
TPS61099x
VIN ≤ 1.5 V
VIH
EN input high voltage threshold
TPS61099x
VIN ≤ 1.5 V
VIL
EN input low voltage threshold
TPS61099x
VIN > 1.5 V
VIH
EN input high voltage threshold
TPS61099x
VIN > 1.5 V
1.2
V
IEN_LKG
Leakage current into EN pin
TPS61099x
VEN = 5.0 V
50
nA
Overtemperature protection
TPS61099x
150
°C
Overtemperature hysteresis
TPS61099x
25
°C
Submit Document Feedback
V
0.8 x
VIN
0.4
V
V
Copyright © 2021 Texas Instruments Incorporated
Product Folder Links: TPS61099
TPS61099
www.ti.com.cn
ZHCSFH7L – JULY 2016 – REVISED AUGUST 2021
100
100
95
95
Load Efficiency with Different Input
Load Efficiency with Different Input
7.6 Typical Characteristics
90
85
80
75
70
65
VIN = 0.7 V
VIN = 1.5 V
VIN = 3.0 V
VIN = 3.6 V
VIN = 4.2 V
60
55
50
45
0.005
0.1
1
10
IOUT (mA)
100
90
85
80
75
70
60
55
0.005
1000
100
95
95
90
90
85
85
80
75
70
70
65
60
1
10
Output Current (mA)
100
VIN = 0.7V
VIN = 1.5V
VIN = 2.5V
VIN = 3.0V
VIN = 3.3V
55
1000
50
0.01
0.1 0.2 0.5 1
D016
TPS610996, VIN= 0.7 V, 1.5 V, 2.7, 3.3 V, 4.2 V
图 7-3. TPS610996 Load Efficiency with Different Inputs
D002
75
60
0.1
1000
80
65
VIN = 3.3 V
VIN = 4.2 V
100
图 7-2. TPS610997 Load Efficiency with Different Inputs
100
50
0.01
1
10
IOUT (mA)
TPS610997, VIN= 0.7 V, 1.5 V, 3.0 V, 3.6 V, 4.2 V
Efficiency (%)
Efficiency (%)
图 7-1. TPS61099 Load Efficiency with Different Inputs
VIN = 0.7 V
VIN = 1.5 V
VIN = 2.7 V
0.1
D001
TPS61099, VIN = 0.7 V, 1.5 V, 3.0 V, 3.6 V, 4.2 V, VOUT = 5.0 V
55
VIN = 0.7 V
VIN = 1.5 V
VIN = 3.0 V
VIN = 3.6 V
VIN = 4.2 V
65
2 3 5 710 20
Iout (mA)
50 100
1000
TPS6
TPS610995, VIN= 0.7 V, 1.5 V, 2.0, 3.0 V, 3.3 V
图 7-4. TPS610995 Load Efficiency with Different Inputs
Load Efficiency with Different Input
100
95
90
85
80
75
70
VIN = 0.7 V
VIN = 1.5 V
VIN = 2.5 V
VIN = 3.0 V
65
60
0.005
0.1
1
10
IOUT (mA)
100
1000
0.1
D003
10
IOUT (mA)
100
1000
TPS610993, VIN= 0.7 V, 1.5 V, 2.2 V, 2.5 V
TPS610994, VIN= 0.7 V, 1.5 V, 2.5 V, 3.0 V
图 7-5. TPS610994 Load Efficiency with Different Inputs
1
图 7-6. TPS610993 Load Efficiency with Different Inputs
Submit Document Feedback
Copyright © 2021 Texas Instruments Incorporated
Product Folder Links: TPS61099
7
TPS61099
www.ti.com.cn
ZHCSFH7L – JULY 2016 – REVISED AUGUST 2021
7.6 Typical Characteristics (continued)
100
95
Load Efficiency with Different Output
95
90
Efficiency (%)
85
80
75
70
65
VIN = 0.7 V
VIN = 1.2 V
VIN = 1.5 V
VIN = 2.2 V
60
55
50
0.01
0.1
1
10
Output Current (mA)
100
90
85
80
75
70
65
VOUT = 3.0 V
VOUT = 3.6 V
VOUT = 4.5 V
VOUT = 5.0 V
60
55
50
0.005
1000
0.1
1
10
IOUT (mA)
D014
TPS610992, VIN= 0.7 V, 1.2 V, 1.5 V, 2.2 V
100
D004
TPS61099, VIN = 2.4 V, VOUT = 3.0 V, 3.6 V, 4.5 V, 5.0 V
图 7-7. TPS610992 Load Efficiency with Different Inputs
图 7-8. Load Efficiency with Different Outputs
1.2
5.4
VIN = 3.7 V
Vin = 0.7 V
Vin = 1.5 V
5.3
1
5.2
Quiescent Current (µA)
Vin = 3.0 V
Output Voltage (V)
1000
Vin = 3.6 V
Vin = 4.2 V
5.1
5
4.9
0.8
0.6
0.4
0.2
4.8
4.7
10 µ
100 µ
1m
10 m
Output Current (A)
100 m
0
-40
600 m
D003a
TPS61099, VIN = 0.7 V, 1.5 V, 3.0 V, 3.6 V, 4.2 V, VOUT = 5.0 V
-20
0
VIN = 3.7 V
图 7-9. Load Regulation
20
40
Temperature (°C)
60
80
100
D004
No Switching
图 7-10. Quiescent Current into VOUT vs Temperature
0.7
1.2
VIN = 3.7 V
1
Shutdown Current (µA)
Quiescent Current (µA)
0.6
0.5
0.4
0.3
0.2
0.8
0.6
0.4
0.2
VIN = 3.7 V
0.1
-40
-20
0
VIN = 3.7 V
20
40
Temperature (°C)
60
80
0
-40
-20
D005
No Switching
0
20
40
Temperature (°C)
60
80
100
D006
VIN = 3.7 V, Into VIN and SW
图 7-11. Quiescent Current into VIN vs Temperature
8
100
图 7-12. Shutdown Current vs Temperature
Submit Document Feedback
Copyright © 2021 Texas Instruments Incorporated
Product Folder Links: TPS61099
TPS61099
www.ti.com.cn
ZHCSFH7L – JULY 2016 – REVISED AUGUST 2021
7.6 Typical Characteristics (continued)
5.02
1.009
VIN = 3.7 V
5.018
1.007
Output Voltage (V)
Reference Voltage (V)
5.016
1.005
1.003
1.001
0.999
5.014
5.012
5.01
5.008
5.006
5.004
0.997
0.995
-40
5.002
-20
0
20
40
60
80
Temperature (°C)
TPS61099, VIN = 3.7 V
100
120
5
-40
140
TJ = –40°C to 125°C
-20
0
20
40
60
80
Temperature (qC)
100
120
140
D010
TPS610997, VIN= 3.7 V, TJ = –40°C to 125°C
图 7-13. Reference Voltage vs Temperature
图 7-14. Output Voltage vs Temperature
3.324
1.1
VIN = 3.7 V
3.322
3.32
Current Limit (A)
Output Voltage (V)
1.05
3.318
3.316
3.314
3.312
3.31
1
0.95
3.308
3.306
3.304
-40
0.9
-20
0
20
40
60
80
Temperature (qC)
100
120
140
–40
10
VIN = 3.7 V
TPS610994, VIN= 2.5 V, TJ = –40°C to 125°C
图 7-15. TPS610994 Output Voltage vs Temperature
60
Temperature (°C)
D012
125
D001
TJ = –40°C to 125°C
图 7-16. Current Limit vs Temperature
Submit Document Feedback
Copyright © 2021 Texas Instruments Incorporated
Product Folder Links: TPS61099
9
TPS61099
www.ti.com.cn
ZHCSFH7L – JULY 2016 – REVISED AUGUST 2021
8 Detailed Description
8.1 Overview
The TPS61099x synchronous step-up converter is designed for alkaline battery, coin-cell battery, Li-ion or Lipolymer battery powered systems, which requires long battery running time and tiny solution size. The
TPS61099x can operate with a wide input voltage from 0.7 V to 5.5 V. It only consumes 1 µA quiescent current
and can achieve high efficiency under light load condition.
The TPS61099x operates in a hysteretic control scheme with typical 1-A peak switch current limit. The
TPS61099x provides the true shutdown function and the load is completely disconnected from the input so as to
minimize the leakage current. It also adopts Down Mode and Pass-Through operation when input voltage is
close to or higher than the regulated output voltage. The TPS61099x family is available in both adjustable and
fixed output voltage versions. Adjustable version offers programmable output voltage for flexible applications
while fixed versions offer minimal solution size and achieve up to 75% high efficiency under 10-µA load.
8.2 Functional Block Diagram
B2 VOUT
SW B1
(1)
Startup
Boost
Gate Driver
UVLO
Pulse
Modulator
Current
Sense
Protection
(OCP, OVP)
REF
TPS61099 x
OCP
TPS61099
C2 FB
VDOWN
OVP
Down Mode
Logic
Control
VIN A1
Pass-Through
Thermal
Shutdown
VPSTH
A2 GND
EN C1
A.
Internal FB resistor divider is implemented in fixed output voltage versions.
图 8-1. Functional Block Diagram
8.3 Feature Description
8.3.1 Boost Controller Operation
The TPS61099x boost converter is controlled by a hysteretic current mode controller. This controller regulates
the output voltage by keeping the inductor ripple current constant in the range of 300 mA and adjusting the offset
of this inductor current depending on the output load. Since the input voltage, output voltage and inductor value
all affect the rising and falling slopes of inductor ripple current, the switching frequency is not fixed and is
determined by the operation condition. If the required average input current is lower than the average inductor
current defined by this constant ripple, the inductor current goes discontinuously to keep the efficiency high
under light load condition. 图 8-2 illustrates the hysteretic current operation. If the load current is reduced further,
the boost converter enters into Burst mode. In Burst mode, the boost converter ramps up the output voltage with
several switching cycles. Once the output voltage exceeds a setting threshold, the device stops switching and
10
Submit Document Feedback
Copyright © 2021 Texas Instruments Incorporated
Product Folder Links: TPS61099
TPS61099
www.ti.com.cn
ZHCSFH7L – JULY 2016 – REVISED AUGUST 2021
goes into a sleep status. In sleep status, the device consumes less quiescent current. It resumes switching when
the output voltage is below the setting threshold. It exits the Burst mode when the output current can no longer
be supported in this mode. Refer to 图 8-3 for Burst mode operation details.
To achieve high efficiency, the power stage is realized as a synchronous boost topology. The output voltage
VOUT is monitored via an external or internal feedback network which is connected to the voltage error amplifier.
To regulate the output voltage, the voltage error amplifier compares this feedback voltage to the internal voltage
reference and adjusts the required offset of the inductor current accordingly.
IL
Continuous Current Operation
Discontinuous Current Operation
300 mA
(typ.)
300 mA
(typ.)
t
图 8-2. Hysteretic Current Operation
Output Voltage of
Boost Converter
Burst Mode Operation at
Light Load
VOUT_BST
Continuous Current Operation at
Heavy Load
VOUT_NOM
t
图 8-3. Burst Mode Operation
8.3.2 Under-Voltage Lockout
An under-voltage lockout (UVLO) circuit stops the operation of the converter when the input voltage drops below
the typical UVLO threshold of 0.4 V. A hysteresis of 200 mV is added so that the device cannot be enabled again
until the input voltage goes up to 0.6 V. This function is implemented in order to prevent malfunctioning of the
device when the input voltage is between 0.4 V and 0.6 V.
8.3.3 Enable and Disable
When the input voltage is above UVLO rising threshold and the EN pin is pulled to high voltage, the TPS61099x
is enabled. When the EN pin is pulled to low voltage, the TPS61099x goes into shutdown mode. In shutdown
mode, the device stops switching and the rectifying PMOS fully turns off, providing the completed disconnection
between input and output. Less than 0.5-µA input current is consumed in shutdown mode.
8.3.4 Soft Start
After the EN pin is tied to high voltage, the TPS61099x begins to startup. At the beginning, the device operates
at the boundary of Discontinuous Conduction Mode (DCM) and Continuous Conduction Mode (CCM), and the
inductor peak current is limited to around 200 mA during this stage. When the output voltage is charged above
approximately 1.6 V, the device starts the hysteretic current mode operation. The current limit threshold is
gradually increasing to 0.7× ILIM within 500 µs. In this way, the soft start function reduces the inrush current
during startup. After VOUT reaches the target value, soft start stage ends and the peak current is now determined
by the output of an internal error amplifier which compares the feedback of the output voltage and the internal
reference voltage.
Submit Document Feedback
Copyright © 2021 Texas Instruments Incorporated
Product Folder Links: TPS61099
11
TPS61099
www.ti.com.cn
ZHCSFH7L – JULY 2016 – REVISED AUGUST 2021
The TPS61099x is able to start up with 0.7-V input voltage with larger than 3-kΩ load. However, if the load
during startup is so heavy that the TPS61099x fails to charge the output voltage above 1.6 V, the TPS61099x
can't start up successfully until the input voltage is increased or the load current is reduced. The startup time
depends on input voltage and load current.
8.3.5 Current Limit Operation
The TPS61099x employs cycle-by-cycle over-current protection (OCP) function. If the inductor peak current
reaches the current limit threshold ILIM, the main switch turns off so as to stop further increase of the input
current. In this case the output voltage will decrease until the power balance between input and output is
achieved. If the output drops below the input voltage, the TPS61099x enters into Down Mode. The peak current
is still limited by ILIM cycle-by-cycle in Down Mode. If the output drops below 1.6 V, the TPS61099 enters into
startup process again. In Pass-Through operation, current limit function is not enabled.
8.3.6 Output Short-to-Ground Protection
The TPS61099x starts to limit the switch current to 200 mA when the output voltage is below 1.6 V. If short-toground condition occurs, switch current is limited at 200 mA. Once the short circuit is released, the TPS61099x
goes back to soft start again and regulates the output voltage.
8.3.7 Over Voltage Protection
TPS61099x has an output over-voltage protection (OVP) to protect the device in case that the external feedback
resistor divider is wrongly populated. When the output voltage of the TPS61099 exceeds the OVP threshold of
5.8 V, the device stops switching. Once the output voltage falls 0.1 V below the OVP threshold, the device starts
operating again.
8.3.8 Down Mode Regulation and Pass-Through Operation
The TPS61099x features Down Mode and Pass-Through operation when input voltage is close to or higher than
output voltage.
In the Down Mode, output voltage is regulated at target value even when VIN > VOUT. The control circuit changes
the behavior of the rectifying PMOS by pulling its gate to input voltage instead of to ground. In this way, the
voltage drop across the PMOS is increasing as high as to regulate the output voltage. The power loss also
increases in this mode, which needs to be taken into account for thermal consideration.
In the Pass-Through operation, the boost converter stops switching. The rectifying PMOS constantly turns on
and low side switch constantly turns off. The output voltage is the input voltage minus the voltage drop across
the dc resistance (DCR) of the inductor and the on-resistance of the rectifying PMOS.
With VIN ramping up, the TPS61099x goes into Down Mode first when VIN > VOUT – 50mV. It stays in Down
Mode until VIN > VOUT + 0.5 V and then goes automatically into Pass-Through operation. In the Pass-Through
operation, output voltage follows input voltage. The TPS61099x exits Pass-Through Mode and goes back to
Down Mode when VIN ramps down to 103% of the target output voltage. It stays in Down Mode until input
voltage falls 100mV below the output voltage, returning to Boost operation.
12
Submit Document Feedback
Copyright © 2021 Texas Instruments Incorporated
Product Folder Links: TPS61099
TPS61099
www.ti.com.cn
Voltage
ZHCSFH7L – JULY 2016 – REVISED AUGUST 2021
3
1
2
1
3
1:Down Mode
2:Pass-through Mode
3:Boost Mode
500mV
VIN
3%*VOUT
VOUT
50mV
100mV
t
图 8-4. Down Mode and Pass-Through Operation
8.3.9 Thermal Shutdown
The TPS61099x has a built-in temperature sensor which monitors the internal junction temperature in boost
mode operation. If the junction temperature exceeds the threshold 150°C, the device stops operating. As soon
as the junction temperature drops below the shutdown temperature minus the hysteresis, typically 125°C, it
starts operating again.
8.4 Device Functional Modes
8.4.1 Burst Mode Operation under Light Load Condition
The boost converter of TPS61099x enters into Burst Mode operation under light load condition. Refer to Boost
Controller Operation for details.
8.4.2 Down Mode Regulation and Pass-Through Mode Operation
The boost converter of TPS61099x automatically enters into Down Mode or pass-through mode operation when
input voltage is higher than the target output voltage. Refer to Down Mode Regulation and Pass-Through
Operation for details.
Submit Document Feedback
Copyright © 2021 Texas Instruments Incorporated
Product Folder Links: TPS61099
13
TPS61099
www.ti.com.cn
ZHCSFH7L – JULY 2016 – REVISED AUGUST 2021
9 Application and Implementation
Note
以下应用部分中的信息不属于 TI 器件规格的范围,TI 不担保其准确性和完整性。TI 的客 户应负责确定
器件是否适用于其应用。客户应验证并测试其设计,以确保系统功能。
9.1 Application Information
The TPS61099x is a synchronous boost converter designed to operate at a wide input voltage from 0.7 V to 5.5
V with 1-A peak switch current limit. The device adopts a hysteretic control scheme so the operating frequency is
not a constant value, which varies with different input/output voltages and inductor values. It only consumes 1µA quiescent current under light load condition. It also supports true shutdown to disconnect the load from the
input in order to minimize the leakage current. Therefore, it is very suitable for alkaline battery, coin-cell battery,
Li-ion or Li-polymer battery powered systems to extend the battery running time.
9.2 Typical Application - 5 V Output Boost Converter
L1
2.2 µH
VIN
2.7 V to 4.2 V
VOUT
SW
R1
VIN
TPS61099
FB
C1
10 µF
C2
C3
10 µF
10 µF
VOUT
5V
R2
EN
GND
Copyright © 2016, Texas Instruments Incorporated
9.2.1 Design Requirements
A typical application example is the memory LCD, which normally requires 5-V output as its bias voltage and
only consumes less than 1 mA current. The following design procedure can be used to select external
component values for the TPS61099x.
表 9-1. Design Requirements
PARAMETERS
VALUES
Input Voltage
2.7 V ~ 4.2 V
Output Voltage
5V
Output Current
1 mA
Output Voltage Ripple
± 50 mV
9.2.1.1 Detailed Design Procedure
9.2.1.1.1 Custom Design With WEBENCH® Tools
Click here to create a custom design using the TPS61099 device with the WEBENCH® Power Designer.
1. Start by entering the input voltage (VIN), output voltage (VOUT), and output current (IOUT) requirements.
2. Optimize the design for key parameters such as efficiency, footprint, and cost using the optimizer dial.
3. Compare the generated design with other possible solutions from Texas Instruments.
The WEBENCH Power Designer provides a customized schematic along with a list of materials with real-time
pricing and component availability.
In most cases, these actions are available:
• Run electrical simulations to see important waveforms and circuit performance
• Run thermal simulations to understand board thermal performance
• Export customized schematic and layout into popular CAD formats
14
Submit Document Feedback
Copyright © 2021 Texas Instruments Incorporated
Product Folder Links: TPS61099
TPS61099
www.ti.com.cn
ZHCSFH7L – JULY 2016 – REVISED AUGUST 2021
• Print PDF reports for the design, and share the design with colleagues
Get more information about WEBENCH tools at www.ti.com/WEBENCH.
9.2.1.1.2 Programming the Output Voltage
There are two ways to set the output voltage of the TPS61099x. For adjustable output voltage version, select the
external resistor divider R1 and R2, as shown in 方程式 1, the output voltage is programmed to the desired
value. When the output voltage is regulated, the typical voltage at the FB pin is VREF of 1.0 V.
VOUT
VREF ˜
R1 R2
R2
(1)
For fixed output voltage versions, the FB pin should be connected to the GND. The TPS61099x offers diverse
fixed voltage versions, refer to Device Comparison Table for version details.
In this example, 5-V output is required to bias the memory LCD. For the best accuracy, the current following
through R2 should be 100 times larger than FB pin leakage current. Changing R2 towards a lower value
increases the robustness against noise injection. Changing R2 towards higher values reduces the FB divider
current for achieving the highest efficiency at low load currents. 1-MΩ and 249-kΩ resistors are selected for R1
and R2 in this example. High accuracy resistors are recommended for better output voltage accuracy.
9.2.1.1.3 Maximum Output Current
The maximum output capability of the TPS61099x is determined by the input to output ratio and the current limit
of the boost converter. It can be estimated by 方程式 2.
VIN ˜ (ILIM
IOUT(max)
ILH
)˜K
2
VOUT
(2)
where
• η is the conversion efficiency, use 85% for estimation
• ILH is the current ripple value
• ILIM is the switch current limit
Minimum input voltage, maximum boost output voltage and minimum current limit ILIM should be used as the
worst case condition for the estimation.
9.2.1.1.4 Inductor Selection
Because the selection of the inductor affects steady state operation, transient behavior, and loop stability, the
inductor is the most important component in power regulator design. There are three important inductor
specifications, inductor value, saturation current, and dc resistance (DCR).
The TPS61099x is optimized to work with inductor values between 1 µH and 2.2 µH. For best stability
consideration, a 2.2-µH inductor is recommended under Vout > 3.0V condition while choosing a 1-µH inductor
for applications under Vout ≤ 3.0V condition. Follow 方程式 3 and 方程式 4 to calculate the inductor's peak
current for the application. Depending on different load conditions, the TPS61099x works in continuous current
mode or discontinuous mode. In different modes, the peak currents of the inductor are also different. 方程式 3
provides an easy way to estimate whether the device works in CCM or DCM. As long as the 方程式 3 is true,
continuous current mode is typically established. Otherwise, discontinuous current mode is typically established.
VOUT ˜ IOUT ILH
!
VIN u K
2
(3)
The inductor current ripple ILH is fixed by design. Therefore, the peak inductor current is calculated with 方程式
4.
Submit Document Feedback
Copyright © 2021 Texas Instruments Incorporated
Product Folder Links: TPS61099
15
TPS61099
www.ti.com.cn
ZHCSFH7L – JULY 2016 – REVISED AUGUST 2021
IL,peak
VOUT ˜ IOUT
VIN u K
IL,peak
ILH;
ILH
; continuous current mode operation
2
discontinuous current mode operation
(4)
where
• IL,peak is the peak inductor current.
The inductor's saturation current must be higher than the calculated peak inductor current. 表 9-2 lists the
recommended inductors for TPS61099x device.
After choosing the inductor, the estimated switching frequency ƒ in continuous current mode can be calculated
by 方程式 5. The switching frequency is not a constant value, which is determined by L, VIN and VOUT.
f
VIN ˜ ( VOUT VIN ˜ K)
L ˜ ILH ˜ VOUT
(5)
表 9-2. List of Inductors
VOUT [V](1)
> 3.0
≤ 3.0
(1)
INDUCTANCE
[µH]
SATURATION
CURRENT [A]
DC RESISTANCE
[mΩ]
SIZE (LxWxH)
PART NUMBER
MANUFACTURER
2.2
1.95
80
2.5 x 2.0 x 1.2
74404024022
Würth Elektronik
2.2
1.7
92
2.5 x 2.0 x 1.1
LQH2HPN2R2MJR
muRata
2.2
1.45
163
2.0 x 1.6 x 1.0
VLS201610CX-2R2M
TDK
1.0
2.6
37
2.5 x 2.0 x 1.2
74404024010
Würth Elektronik
1.0
2.3
48
2.5 x 2.0 x 1.0 MLP2520W1R0MT0S1
1.0
1.5
80
2.0 x 1.2 x 1.0
LQM21PN1R0MGH
TDK
muRata
See Third-Party Products disclaimer
9.2.1.1.5 Capacitor Selection
For best output and input voltage filtering, low ESR X5R or X7R ceramic capacitors are recommended.
The input capacitor minimizes input voltage ripple, suppresses input voltage spikes and provides a stable system
rail for the device. An input capacitor value of 10 μF is normally recommended to improve transient behavior of
the regulator and EMI behavior of the total power supply circuit. A ceramic capacitor placed as close as possible
to the VIN and GND pins of the IC is recommended.
For the output capacitor of VOUT pin, small ceramic capacitors are recommended, placed as close as possible
to the VOUT and GND pins of the IC. If, for any reason, the application requires the use of large capacitors
which cannot be placed close to the IC, the use of a small ceramic capacitor with a capacitance value of 1 μF in
parallel to the large one is recommended. This small capacitor should be placed as close as possible to the
VOUT and GND pins of the IC.
From the power stage point of view, the output capacitor sets the corner frequency of the converter while the
inductor creates a Right-Half-Plane-Zero. Consequently, with a larger inductor, a larger output capacitor must be
used. The TPS61099x is optimized to work with the inductor from 1 µH to 2.2 µH, so the minimal output
capacitor value is 20 μF (nominal value). Increasing the output capacitor makes the output ripple smaller in
PWM mode.
When selecting capacitors, ceramic capacitor’s derating effect under bias should be considered. Choose the
right nominal capacitance by checking capacitor's DC bias characteristics. In this example,
GRM188R60J106ME84D, which is a 10-µF ceramic capacitor with high effective capacitance value at DC biased
condition, is selected for VOUT rail. The performance of TPS61099x is shown in Application Curves section.
16
Submit Document Feedback
Copyright © 2021 Texas Instruments Incorporated
Product Folder Links: TPS61099
TPS61099
www.ti.com.cn
ZHCSFH7L – JULY 2016 – REVISED AUGUST 2021
9.2.1.2 Application Curves
VIN = 3.7 V
VIN = 3.7 V
VOUT = 5 V
IOUT = 200 mA
VOUT = 5 V
IOUT = 10 mA
图 9-2. Switching Waveform at Light Load
图 9-1. Switching Waveform at Heavy Load
VIN = 3.7 V
VOUT = 5 V
IOUT = 50 mA
VIN = 3.7 V
VOUT = 5 V
IOUT = 100 mA
图 9-4. Startup by EN
图 9-3. Startup by VIN
VIN = 2.4 V to 3.7 V
VOUT = 5 V
IOUT = 200 mA
VIN = 3.7 V
图 9-5. Line Transient
VOUT = 5 V
IOUT = 50 mA to 200 mA
图 9-6. Load Transient
Submit Document Feedback
Copyright © 2021 Texas Instruments Incorporated
Product Folder Links: TPS61099
17
TPS61099
www.ti.com.cn
ZHCSFH7L – JULY 2016 – REVISED AUGUST 2021
VIN = 3.7 V
VOUT = 5 V IOUT = 0 mA to 250 mA
VIN = 2.4 to 5.5 V
图 9-7. Load Regulation
VOUT = 5 V
IOUT = 200 mA
图 9-8. Line Regulation
10 Power Supply Recommendations
The TPS61099x family is designed to operate from an input voltage supply range between 0.7 V to 5.5 V. The
power supply can be alkaline battery, NiMH rechargeable battery, Li-Mn battery or rechargeable Li-Ion battery.
The input supply should be well regulated with the rating of TPS61099x.
18
Submit Document Feedback
Copyright © 2021 Texas Instruments Incorporated
Product Folder Links: TPS61099
TPS61099
www.ti.com.cn
ZHCSFH7L – JULY 2016 – REVISED AUGUST 2021
11 Layout
11.1 Layout Guidelines
As for all switching power supplies, the layout is an important step in the design, especially at high peak currents
and high switching frequencies. If the layout is not carefully done, the regulator could show stability problems as
well as EMI problems. Therefore, use wide and short traces for the main current path and for the power ground
paths. The input and output capacitor, as well as the inductor should be placed as close as possible to the IC.
11.2 Layout Example
The bottom layer is a large GND plane connected by vias.
GROUND
INPUT
Top Layer
VIA
VIN
GND
SW
VOUT
EN
FB
OUTPUT
GROUND
EN
图 11-1. Layout -YFF
Submit Document Feedback
Copyright © 2021 Texas Instruments Incorporated
Product Folder Links: TPS61099
19
TPS61099
www.ti.com.cn
ZHCSFH7L – JULY 2016 – REVISED AUGUST 2021
VIN
GND
GND
VIN
VOUT
SW
FB
EN
VOUT
EN
图 11-2. Layout - DRV
20
Submit Document Feedback
Copyright © 2021 Texas Instruments Incorporated
Product Folder Links: TPS61099
TPS61099
www.ti.com.cn
ZHCSFH7L – JULY 2016 – REVISED AUGUST 2021
12 Device and Documentation Support
12.1 Device Support
12.1.1 Development Support
12.1.1.1 Custom Design With WEBENCH® Tools
Click here to create a custom design using the TPS61099x device with the WEBENCH® Power Designer.
1. Start by entering the input voltage (VIN), output voltage (VOUT), and output current (IOUT) requirements.
2. Optimize the design for key parameters such as efficiency, footprint, and cost using the optimizer dial.
3. Compare the generated design with other possible solutions from Texas Instruments.
The WEBENCH Power Designer provides a customized schematic along with a list of materials with real-time
pricing and component availability.
In most cases, these actions are available:
• Run electrical simulations to see important waveforms and circuit performance
• Run thermal simulations to understand board thermal performance
• Export customized schematic and layout into popular CAD formats
• Print PDF reports for the design, and share the design with colleagues
Get more information about WEBENCH tools at www.ti.com/WEBENCH.
12.1.2 第三方产品免责声明
TI 发布的与第三方产品或服务有关的信息,不能构成与此类产品或服务或保修的适用性有关的认可,不能构成此
类产品或服务单独或与任何 TI 产品或服务一起的表示或认可。
12.2 Documentation Support
12.2.1 Related Documentation
For related documentation see the following:
• Performing Accurate PFM Mode Efficiency Measurements, SLVA236
• Accurately measuring efficiency of ultralow-IQ devices, SLYT558
• IQ: What it is, what it isn’t, and how to use it, SLYT412
12.3 接收文档更新通知
要接收文档更新通知,请导航至 ti.com 上的器件产品文件夹。点击订阅更新 进行注册,即可每周接收产品信息更
改摘要。有关更改的详细信息,请查看任何已修订文档中包含的修订历史记录。
12.4 支持资源
TI E2E™ 支持论坛是工程师的重要参考资料,可直接从专家获得快速、经过验证的解答和设计帮助。搜索现有解
答或提出自己的问题可获得所需的快速设计帮助。
链接的内容由各个贡献者“按原样”提供。这些内容并不构成 TI 技术规范,并且不一定反映 TI 的观点;请参阅
TI 的《使用条款》。
Submit Document Feedback
Copyright © 2021 Texas Instruments Incorporated
Product Folder Links: TPS61099
21
TPS61099
www.ti.com.cn
ZHCSFH7L – JULY 2016 – REVISED AUGUST 2021
12.5 Trademarks
TI E2E™ is a trademark of Texas Instruments.
WEBENCH® is a registered trademark of Texas Instruments.
is a registered trademark of Texas Instruments.
所有商标均为其各自所有者的财产。
12.6 Electrostatic Discharge Caution
This integrated circuit can be damaged by ESD. Texas Instruments recommends that all integrated circuits be handled
with appropriate precautions. Failure to observe proper handling and installation procedures can cause damage.
ESD damage can range from subtle performance degradation to complete device failure. Precision integrated circuits may
be more susceptible to damage because very small parametric changes could cause the device not to meet its published
specifications.
12.7 术语表
TI 术语表
本术语表列出并解释了术语、首字母缩略词和定义。
13 Mechanical, Packaging, and Orderable Information
The following pages include mechanical packaging and orderable information. This information is the most
current data available for the designated devices. This data is subject to change without notice and revision of
this document. For browser-based versions of this data sheet, refer to the left-hand navigation.
22
Submit Document Feedback
Copyright © 2021 Texas Instruments Incorporated
Product Folder Links: TPS61099
重要声明和免责声明
TI 提供技术和可靠性数据(包括数据表)、设计资源(包括参考设计)、应用或其他设计建议、网络工具、安全信息和其他资源,不保证没
有瑕疵且不做出任何明示或暗示的担保,包括但不限于对适销性、某特定用途方面的适用性或不侵犯任何第三方知识产权的暗示担保。
这些资源可供使用 TI 产品进行设计的熟练开发人员使用。您将自行承担以下全部责任:(1) 针对您的应用选择合适的 TI 产品,(2) 设计、验
证并测试您的应用,(3) 确保您的应用满足相应标准以及任何其他安全、安保或其他要求。这些资源如有变更,恕不另行通知。TI 授权您仅可
将这些资源用于研发本资源所述的 TI 产品的应用。严禁对这些资源进行其他复制或展示。您无权使用任何其他 TI 知识产权或任何第三方知
识产权。您应全额赔偿因在这些资源的使用中对 TI 及其代表造成的任何索赔、损害、成本、损失和债务,TI 对此概不负责。
TI 提供的产品受 TI 的销售条款 (https:www.ti.com/legal/termsofsale.html) 或 ti.com 上其他适用条款/TI 产品随附的其他适用条款的约束。TI
提供这些资源并不会扩展或以其他方式更改 TI 针对 TI 产品发布的适用的担保或担保免责声明。重要声明
邮寄地址:Texas Instruments, Post Office Box 655303, Dallas, Texas 75265
Copyright © 2021,德州仪器 (TI) 公司
PACKAGE OPTION ADDENDUM
www.ti.com
28-Sep-2021
PACKAGING INFORMATION
Orderable Device
Status
(1)
Package Type Package Pins Package
Drawing
Qty
Eco Plan
(2)
Lead finish/
Ball material
MSL Peak Temp
Op Temp (°C)
Device Marking
(3)
(4/5)
(6)
TPS610992YFFR
ACTIVE
DSBGA
YFF
6
3000
RoHS & Green
SNAGCU
Level-1-260C-UNLIM
-40 to 85
19J
TPS610992YFFT
ACTIVE
DSBGA
YFF
6
250
RoHS & Green
SNAGCU
Level-1-260C-UNLIM
-40 to 85
19J
TPS610993YFFR
ACTIVE
DSBGA
YFF
6
3000
RoHS & Green
SNAGCU
Level-1-260C-UNLIM
-40 to 85
17X
TPS610993YFFT
ACTIVE
DSBGA
YFF
6
250
RoHS & Green
SNAGCU
Level-1-260C-UNLIM
-40 to 85
17X
TPS610994YFFR
ACTIVE
DSBGA
YFF
6
3000
RoHS & Green
SNAGCU
Level-1-260C-UNLIM
-40 to 85
17N
TPS610994YFFT
ACTIVE
DSBGA
YFF
6
250
RoHS & Green
SNAGCU
Level-1-260C-UNLIM
-40 to 85
17N
TPS610995DRVR
ACTIVE
WSON
DRV
6
3000
RoHS & Green
NIPDAU
Level-1-260C-UNLIM
-40 to 125
1NDU
TPS610995DRVT
ACTIVE
WSON
DRV
6
250
RoHS & Green
NIPDAU
Level-1-260C-UNLIM
-40 to 125
1NDU
TPS610995YFFR
ACTIVE
DSBGA
YFF
6
3000
RoHS & Green
SNAGCU
Level-1-260C-UNLIM
-40 to 85
19K
TPS610995YFFT
ACTIVE
DSBGA
YFF
6
250
RoHS & Green
SNAGCU
Level-1-260C-UNLIM
-40 to 85
19K
TPS610996YFFR
ACTIVE
DSBGA
YFF
6
3000
RoHS & Green
SNAGCU
Level-1-260C-UNLIM
-40 to 85
19I
TPS610996YFFT
ACTIVE
DSBGA
YFF
6
250
RoHS & Green
SNAGCU
Level-1-260C-UNLIM
-40 to 85
19I
TPS610997YFFR
ACTIVE
DSBGA
YFF
6
3000
RoHS & Green
SNAGCU
Level-1-260C-UNLIM
-40 to 85
14K
TPS610997YFFT
ACTIVE
DSBGA
YFF
6
250
RoHS & Green
SNAGCU
Level-1-260C-UNLIM
-40 to 85
14K
TPS61099DRVR
ACTIVE
WSON
DRV
6
3000
RoHS & Green
NIPDAU
Level-2-260C-1 YEAR
-40 to 150
1I8U
TPS61099YFFR
ACTIVE
DSBGA
YFF
6
3000
RoHS & Green
SNAGCU
Level-1-260C-UNLIM
-40 to 85
12G
TPS61099YFFT
ACTIVE
DSBGA
YFF
6
250
RoHS & Green
SNAGCU
Level-1-260C-UNLIM
-40 to 85
12G
(1)
The marketing status values are defined as follows:
ACTIVE: Product device recommended for new designs.
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.
Addendum-Page 1
Samples
PACKAGE OPTION ADDENDUM
www.ti.com
28-Sep-2021
OBSOLETE: TI has discontinued the production of the device.
(2)
RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance
do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may
reference these types of products as "Pb-Free".
RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.
Green: TI defines "Green" to mean the content of Chlorine (Cl) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of