TPS62065, TPS62067
TPS62067
SLVS833E – MARCH 2010 –TPS62065,
REVISED OCTOBER
2020
SLVS833E – MARCH 2010 – REVISED OCTOBER 2020
www.ti.com
TPS6206x 3-MHz, 2-A, Step-Down Converter in 2-mm × 2-mm SON Package
1 Features
3 Description
•
•
•
•
•
•
•
•
•
•
•
•
•
•
The TPS6206x is a family of highly efficient
synchronous step down DC/DC converters. They
provide up to 2-A output current.
3-MHz Switching Frequency
VIN Range from 2.9 V to 6 V
Up to 97% Efficiency
Power Save Mode / 3-MHz Fixed PWM Mode
Power Good Output
Output Voltage Accuracy in PWM Mode ±1.5%
Output Capacitor Discharge Function
Typical 18 µA Quiescent Current
100% Duty Cycle for Lowest Dropout
Voltage Positioning
Clock Dithering
-40°C to 125°C Operating Junction Temperature
Supports Maximum 1-mm Height Solutions
Available in a 2 mm x 2 mm x 0.75 mm WSON
2 Applications
•
•
•
•
Point of Load (POL)
Notebooks, Pocket PCs
Portable Media Players
DSP Supply
With an input voltage range of 2.9 V to 6 V, the device
is a perfect fit for power conversion from a 5-V or 3.3V system supply rail. The TPS6206x operates at 3MHz fixed frequency and enters power save mode
operation at light load currents to maintain high
efficiency over the entire load current range. The
power save mode is optimized for low output voltage
ripple. For low noise applications, TPS62065 can be
forced into fixed frequency PWM mode by pulling the
MODE pin high. TPS62067 provides an open drain
power good output.
In the shutdown mode, the current consumption is
reduced to less than 1 µA and an internal circuit
discharges the output capacitor.
TPS6206x family is optimized for operation with a tiny
1 µH inductor and a small 10-µF output capacitor to
achieve smallest solution size and high regulation
performance.
It is available in a small 2-mm × 2-mm × 0.75-mm 8pin WSON package.
Device Information
PACKAGE (1)
PART NUMBER
TPS62065
TPS62067
(1)
L
1.0 mH
VIN = 2.9 V to 6 V
CIN
10 mF
AVIN
EN
AGND
PGND
VOUT
1.8 V 2 A
100
FB
PG
R2
180 kW
Cff
COUT
22 pF 10 mF
RPG
100 kW
90
Copyright © 2016, Texas Instruments Incorporated
Typical Application Schematic
VIN = 3.7 V
95
SW
R1
360 kW
2.00 mm × 2.00 mm
For all available packages, see the orderable addendum at
the end of the data sheet.
VIN = 4.2 V
VIN = 5 V
85
Efficiency - %
PVIN
WSON (8)
BODY SIZE (NOM)
80
75
70
65
L = 1.2 mH (NRG4026T 1R2),
COUT = 22 mF (0603 size),
VOUT = 3.3 V,
Mode: Auto PFM/PWM
60
55
50
0
0.25
0.5
0.75
1
1.25 1.5
IL - Load Current - A
1.75
2
Efficiency vs Load Current
An IMPORTANT NOTICE at the end of this data sheet addresses availability, warranty, changes, use in safety-critical applications,
Submit Document Feedback
Copyright
© 2020 Texas
Instruments
Incorporated
intellectual
property
matters
and other important disclaimers. PRODUCTION DATA.
Product Folder Links: TPS62065 TPS62067
1
TPS62065, TPS62067
www.ti.com
SLVS833E – MARCH 2010 – REVISED OCTOBER 2020
Table of Contents
1 Features............................................................................1
2 Applications..................................................................... 1
3 Description.......................................................................1
4 Revision History.............................................................. 2
5 Device Comparison Table...............................................3
6 Pin Configuration and Functions...................................3
7 Specifications.................................................................. 4
7.1 Absolute Maximum Ratings........................................ 4
7.2 ESD Ratings............................................................... 4
7.3 Recommended Operating Conditions.........................4
7.4 Thermal Information....................................................4
7.5 Electrical Characteristics.............................................5
7.6 Typical Characteristics................................................ 6
8 Detailed Description........................................................7
8.1 Overview..................................................................... 7
8.2 Functional Block Diagram........................................... 7
8.3 Feature Description.....................................................8
8.4 Device Functional Modes............................................9
9 Application and Implementation.................................. 12
9.1 Application Information............................................. 12
9.2 Typical Application.................................................... 12
9.3 System Example....................................................... 18
10 Power Supply Recommendations..............................19
11 Layout........................................................................... 19
11.1 Layout Guidelines................................................... 19
11.2 Layout Example...................................................... 19
12 Device and Documentation Support..........................20
12.1 Device Support....................................................... 20
12.2 Related Links.......................................................... 20
12.3 Receiving Notification of Documentation Updates..20
12.4 Support Resources................................................. 20
12.5 Trademarks............................................................. 20
12.6 Electrostatic Discharge Caution..............................20
12.7 Glossary..................................................................20
13 Mechanical, Packaging, and Orderable
Information.................................................................... 20
4 Revision History
NOTE: Page numbers for previous revisions may differ from page numbers in the current version.
Changes from Revision D (November 2016) to Revision E (October 2020)
Page
• Updated the numbering format for tables, figures and cross-references throughout the document...................1
Changes from Revision C (September 2015) to Revision D (November 2016)
Page
• Changed the conditions statement for Section 7.5 ............................................................................................ 5
• Added Note 1 to the Test conditions of ISD, IIN, and ILKG in Section 7.5 ............................................................ 5
• Changed temperature values From: TA To: TJ in Figure 7-1 and Figure 7-3 ..................................................... 6
Changes from Revision B (November 2013) to Revision C (September 2015)
Page
• Added Pin Configuration and Functions section, ESD Ratings table, Feature Description section, Device
Functional Modes, Application and Implementation section, Power Supply Recommendations section, Layout
section, Device and Documentation Support section, and Mechanical, Packaging, and Orderable Information
section ............................................................................................................................................................... 1
Changes from Revision A (May 2010) to Revision B (November 2013)
Page
• Added Thermal Information table and deleted Dissipation Ratings table........................................................... 4
Changes from Revision * (March 2010) to Revision A ()
Page
• Changed VIN Range from "3V to 6V" to "2.9V to 6V", throughout...................................................................... 1
• Added equation to "Output Voltage Setting" section.........................................................................................12
• Changed equation for calculating fz. ................................................................................................................ 12
• Changed equation for calculating Cff. .............................................................................................................. 12
2
Submit Document Feedback
Copyright © 2020 Texas Instruments Incorporated
Product Folder Links: TPS62065 TPS62067
TPS62065, TPS62067
www.ti.com
SLVS833E – MARCH 2010 – REVISED OCTOBER 2020
5 Device Comparison Table
POWER GOOD (PG)
MAXIMUM OUTPUT
CURRENT
Adjustable
Selectable
No
2A
Adjustable
Auto
PWM/PFM
Yes
2A
OUTPUT VOLTAGE(1)
TPS62065
TPS62067
(1)
(2)
FUNCTION
MODE
PART NUMBER (2)
Contact TI for other fixed output voltage options
For the most current package and ordering information, see Section 13 at the end of this document, or see the TI website at
www.ti.com.
PGND 1
SW 2
AGND 3
FB 4
PowerPAD
6 Pin Configuration and Functions
8 PVIN
7 AVIN
6 MODE
5 EN
Figure 6-1. DSG Package 8-Pin WSON Top View
Table 6-1. Pin Functions
PIN
NAME
NO.
I/O
DESCRIPTION
AGND
3
I
Analog GND supply pin for the control circuit.
AVIN
7
I
Analog VIN power supply for the control circuit. Must be connected to PVIN and input
capacitor.
EN
5
I
This is the enable pin of the device. Pulling this pin to low forces the device into shutdown
mode. Pulling this pin to high enables the device. This pin must be terminated
FB
4
I
Feedback pin for the internal regulation loop. Connect the external resistor divider to this pin.
In case of fixed output voltage option, connect this pin directly to the output capacitor
I
MODE: MODE pin = High forces the device to operate in fixed frequency PWM mode. MODE
pin = Low enables the power save mode with automatic transition from PFM mode to fixed
frequency PWM mode. This pin must be terminated.
MODE
6
Open- PG: Power Good Open-Drain output. Connect an external pullup resistor to a rail which is
Drain below or equal AVIN.
PG
PGND
1
PWR
PowerPAD™
—
—
PVIN
8
PWR
SW
2
O
GND supply pin for the output stage.
For good thermal performance, this PAD must be soldered to the land pattern on the PCB.
This PAD should be used as device GND.
VIN power supply pin for the output stage.
This is the switch pin and is connected to the internal MOSFET switches. Connect the
external inductor between this terminal and the output capacitor.
Submit Document Feedback
Copyright © 2020 Texas Instruments Incorporated
Product Folder Links: TPS62065 TPS62067
3
TPS62065, TPS62067
www.ti.com
SLVS833E – MARCH 2010 – REVISED OCTOBER 2020
7 Specifications
7.1 Absolute Maximum Ratings
Over operating free-air temperature range (unless otherwise noted) (1)
Voltage(2)
MIN
MAX
AVIN, PVIN
–0.3
7
UNIT
EN, MODE, PG, FB
–0.3
VIN +0.3 < 7
SW
–0.3
7
V
Current (sink)
into PG
Current (source)
Peak output
Internally limited
TJ
–40
125
°C
Tstg
–65
150
°C
Temperature
(1)
(2)
1
mA
A
Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings
only and functional operation of the device at these or any other conditions beyond those indicated under Recommended Operating
Conditions is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.
All voltage values are with respect to network ground terminal.
7.2 ESD Ratings
VALUE
Human body model (HBM), per ANSI/ESDA/JEDEC
V(ESD)
(1)
(2)
Electrostatic discharge
JS-001(1)
UNIT
±2000
Charged-device model (CDM), per JEDEC specification JESD22C101(2)
V
±1000
JEDEC document JEP155 states that 500-V HBM allows safe manufacturing with a standard ESD control process.
JEDEC document JEP157 states that 250-V CDM allows safe manufacturing with a standard ESD control process.
7.3 Recommended Operating Conditions
MIN
AVIN , PVIN Supply voltage
NOM
2.9
MAX
6
Output current capability
2000
Output voltage range for adjustable voltage
0.8
UNIT
V
mA
VIN
V
L
Effective inductance
0.7
1
1.6
µH
COUT
Effective output capacitance
4.5
10
22
µF
TJ
Operating junction temperature
–40
125
°C
7.4 Thermal Information
THERMAL METRIC(1)
TPS62065
TPS62067
DSG (WSON)
UNIT
8 PINS
RθJA
Junction-to-ambient thermal resistance
65.3
°C/W
RθJC(top)
Junction-to-case (top) thermal resistance
74.2
°C/W
RθJB
Junction-to-board thermal resistance
35.4
°C/W
ψJT
Junction-to-top characterization parameter
2.2
°C/W
ψJB
Junction-to-board characterization parameter
36
°C/W
RθJC(bot)
Junction-to-case (bottom) thermal resistance
12.8
°C/W
(1)
4
For more information about traditional and new thermal metrics, see the Semiconductor and IC Package Thermal Metrics application
report.
Submit Document Feedback
Copyright © 2020 Texas Instruments Incorporated
Product Folder Links: TPS62065 TPS62067
TPS62065, TPS62067
www.ti.com
SLVS833E – MARCH 2010 – REVISED OCTOBER 2020
7.5 Electrical Characteristics
TJ = -40°C to 125°C, typical values are at TA = 25°C. Unless otherwise noted, specifications apply for condition VIN = EN =
3.6 V. External components CIN = 10 μF 0603, COUT = 10 μF 0603, L = 1 μH, see the parameter measurement information.
PARAMETER
TEST CONDITIONS
MIN
TYP
MAX
UNIT
SUPPLY
VIN
Input voltage range
2.9
IQ
Operating quiescent current
IOUT = 0 mA, device operating in PFM mode
and device not switching
ISD
Shutdown current
EN = GND, current into AVIN and PVIN(1)
VUVLO
Undervoltage lockout threshold
6
18
0.1
1
V
μA
Falling
1.73
1.78
1.83
Rising
1.9
1.95
1.99
μA
V
ENABLE, MODE
VIH
High level input voltage
2.9 V ≤ VIN ≤ 6 V
1
VIL
Low level input voltage
2.9 V ≤ VIN ≤ 6 V
0
IIN
Input bias current
EN, mode tied to GND or AVIN(1)
6
V
0.4
V
0.01
1
μA
POWER GOOD OPEN-DRAIN OUTPUT
VTHPG
Power good threshold voltage
Rising feedback voltage
93%
95%
98%
Falling feedback voltage
87%
90%
92%
VOL
Output low voltage
IOUT = –1mA; must be limited by external pullup
resistor (1)
VH
Output high voltage
Voltage applied to PG pin through external pullup
resistor
ILKG
Leakage current into PG pin
V(PG) = 3.6V(1)
tPGDL
Internal power good delay time
0.3
V
VIN
V
100
nA
5
µs
POWER SWITCH
VIN = 3.6 V (1)
120
180
95
150
90
130
75
100
2750
3300
RDS(on)
High-side MOSFET on-resistance
RDS(on)
Low-side MOSFET on-resistance
ILIMF
Forward current limit MOSFET
high-side and low-side
2.9 V ≤ VIN ≤ 6 V
Thermal shutdown
Increasing junction temperature
150
Thermal shutdown hysteresis
Decreasing junction temperature
10
TSD
VIN = 5
V(1)
VIN = 3.6 V(1)
VIN = 5
V(1)
2300
mΩ
mΩ
mA
°C
OSCILLATOR
fSW
Oscillator frequency
2.9 V ≤ VIN ≤ 6 V
2.6
3
3.4
MHz
OUTPUT
Vref
Reference voltage
VFB(PWM)
Feedback voltage PWM mode
VFB(PFM)
Feedback voltage PFM mode,
voltage positioning
600
PWM operation, MODE = VIN ,
2.9 V ≤ VIN ≤ 6 V, 0 mA load
device in PFM mode, voltage positioning active(2)
Line regulation
R(Discharge)
Internal discharge resistor
Activated with EN = GND, 2.9 V ≤ VIN ≤ 6 V,
0.8 ≤ VOUT ≤ 3.6 V
tSTART
Start-up time
Time from active EN to reach 95% of VOUT
0%
1.5%
1%
Load regulation
VFB
(1)
(2)
–1.5%
mV
75
–0.5
%/A
0
%/V
200
500
1450
Ω
μs
Maximum value applies for TJ = 85°C
In PFM mode, the internal reference voltage is set to typ. 1.01 × Vref. See the parameter measurement information.
Submit Document Feedback
Copyright © 2020 Texas Instruments Incorporated
Product Folder Links: TPS62065 TPS62067
5
TPS62065, TPS62067
www.ti.com
SLVS833E – MARCH 2010 – REVISED OCTOBER 2020
7.6 Typical Characteristics
25
TA = 85°C
TJ = 85°C
20
0.75
Iq - Quiesent Current - mA
ISHDN - Shutdown Current - mA
1
0.50
TJ = 25°C
0.25
3
3.5
4
4.5
5
VI - Input Voltage - V
5.5
TA = -40°C
10
0
2.5
6
Figure 7-1. Shutdown Current vs Input Voltage and Ambient
Temperature
3
3.5
4
4.5
5
VI - Input Voltage - V
5.5
6
Figure 7-2. Quiescent Current vs Input Voltage
3.1
0.12
TJ = 85°C
3.05
0.1
TJ = 85°C
TJ = 25°C
TJ = 25°C
3
0.08
RDSON - W
fOSC - Oscillator Frequency - MHz
15
5
TJ = -40°C
0
2.5
TA = 25°C
2.95
TJ = -40°C
0.06
2.9
0.04
2.85
0.02
2.8
2.5
3
3.5
4
4.5
5
VI - Input Voltage - V
5.5
TJ = -40°C
0
2.5
6
Figure 7-3. Oscillator Frequency vs Input Voltage
3
3.5
4
4.5
5
VI - Input Voltage - V
5.5
6
Figure 7-4. RDSON Low-Side Switch
0.2
600
0.18
500
0.16
400
TJ = 25°C
0.12
RDischarge - W
RDSON - W
VO = 3.3 V
TJ = 85°C
0.14
TJ = -40°C
0.1
0.08
VO = 1.8 V
300
200
0.06
VO = 1.2 V
0.04
100
0.02
0
2.5
3
3.5
4
4.5
5
VI - Input Voltage - V
5.5
Figure 7-5. RDSON High-Side Switch
6
6
0
2.5
3
3.5
4
4.5
5
VI - Input Voltage - V
5.5
6
Figure 7-6. Rdischarge vs Input Voltage
Submit Document Feedback
Copyright © 2020 Texas Instruments Incorporated
Product Folder Links: TPS62065 TPS62067
TPS62065, TPS62067
www.ti.com
SLVS833E – MARCH 2010 – REVISED OCTOBER 2020
8 Detailed Description
8.1 Overview
The TPS6206x step down converter operates with typically 3-MHz fixed frequency pulse width modulation
(PWM) at moderate to heavy load currents. At light load currents the converter can automatically enter power
save mode and operates then in pulse frequency modulation (PFM) mode.
During PWM operation the converter use a unique fast response voltage mode controller scheme with input
voltage feed-forward to achieve good line and load regulation allowing the use of small ceramic input and output
capacitors. At the beginning of each clock cycle initiated by the clock signal, the high-side MOSFET switch is
turned on. The current flows now from the input capacitor through the high-side MOSFET switch through the
inductor to the output capacitor and load. During this phase, the current ramps up until the PWM comparator
trips and the control logic will turn off the switch. The current limit comparator will also turn off the switch in case
the current limit of the high-side MOSFET switch is exceeded. After a dead time preventing shoot through
current, the low-side MOSFET rectifier is turned on and the inductor current ramps down. The current flows now
from the inductor to the output capacitor and to the load. It returns back to the inductor through the low-side
MOSFET rectifier..
The next cycle will be initiated by the clock signal again turning off the low-side MOSFET rectifier and turning on
the high-side MOSFET switch.
8.2 Functional Block Diagram
AVIN
PVIN
Current
Limit Comparator
Undervoltage
Lockout 1.8V
Thermal
Shutdown
Limit
High Side
PFM Comparator
Reference
0.6V VREF
FB
VREF
Softstart
VOUT RAMP
CONTROL
Gate Driver
Anti
Shoot-Through
Control
Stage
Error Amp.
VREF
SW
Integrator
FB
Internal
FB
Network*
MODE *
MODE/
PG
PWM
Comp.
Zero-Pole
AMP.
Sawtooth
Generator
PG
Limit
Low Side
3MHz
Clock
Current
Limit Comparator
FB
VREF
RDischarge
PG Comparator*
AGND
EN
PGND
Copyright © 2016, Texas Instruments Incorporated
* Function depends on device option
Submit Document Feedback
Copyright © 2020 Texas Instruments Incorporated
Product Folder Links: TPS62065 TPS62067
7
TPS62065, TPS62067
www.ti.com
SLVS833E – MARCH 2010 – REVISED OCTOBER 2020
8.3 Feature Description
8.3.1 Mode Selection (TPS62065)
The MODE pin allows mode selection between forced PWM mode and power save mode.
Connecting this pin to GND enables the power save mode with automatic transition between PWM and PFM
mode. Pulling the MODE pin high forces the converter to operate in fixed frequency PWM mode even at light
load currents. This allows simple filtering of the switching frequency for noise sensitive applications. In this
mode, the efficiency is lower compared to the power save mode during light loads.
The condition of the MODE pin can be changed during operation and allows efficient power management by
adjusting the operation mode of the converter to the specific system requirements.
In device options where the MODE pin is replaced with power good output, the power save mode is enabled per
default.
8.3.2 Power Good Output (TPS62067)
This function is available in the TPS62067. The power good output is an open-drain output and requires an
external pullup resistor. The circuit is active once the device is enabled and AVIN is above the undervoltage
lockout threshold V UVLO. It is driven by an internal comparator connected to the FB voltage. The PG output
provides a high level once the feedback voltage exceeds typically 95% of its nominal value. The PG output is
driven to low level once the feedback voltage falls below typically 90% of its nominal value. The PG output is
activated with an internal delay of 5 µs.
The PG open-drain output transistor is turned on immediately with EN = Low level and pulls the output low. The
external pullup resistor can be connected to any voltage rail lower or equal the voltage applied to AVIN of the
device. The value of the pullup resistor must be carefully selected to limit the current into the PG pin to maximum
1 mA. The external pullup resistor can be connected to VOUT or another voltage rail which does not exceed the
V IN level. The current flowing through the pullup resistor impacts the current consumption of the application
circuit in shutdown mode.
The shutdown current of the device does not include the current through the external pullup and internal opendrain stage. The PG signal can be used for sequencing various converters or to reset a microcontroller.
EN
VOUT
Startup
95%
90%
Overload
Output
discharge
tRamp
tStart
PG
WithEN = low
PG --> low
Figure 8-1. Power Good Output Pg
8.3.3 Enable
The device is enabled by setting EN pin to high. At first, the internal reference is activated and the internal
analog circuits are settled. Afterwards, the soft start is activated and the output voltage is ramped up. The output
voltages reaches 95% of its nominal value within t START of typically 500 µs after the device has been enabled.
The EN input can be used to control power sequencing in a system with various DC/DC converters. The EN pin
can be connected to the output of another converter, to drive the EN pin high and getting a sequencing of supply
rails. With EN = GND, the device enters shutdown mode. In this mode, all circuits are disabled and the SW pin is
connected to PGND through an internal resistor to discharge the output.
8
Submit Document Feedback
Copyright © 2020 Texas Instruments Incorporated
Product Folder Links: TPS62065 TPS62067
www.ti.com
TPS62065, TPS62067
SLVS833E – MARCH 2010 – REVISED OCTOBER 2020
8.3.4 Clock Dithering
To reduce the noise level of switch frequency harmonics in the higher RF bands, the TPS6206x family has a
built-in clock-dithering circuit. The oscillator frequency is slightly modulated with a sub clock causing a clock
dither of typically 6 ns.
8.3.5 Undervoltage Lockout
The undervoltage lockout circuit prevents the device from malfunctioning at low input voltages and from
excessive discharge of the battery. It disables the output stage of the converter once the falling V IN trips the
undervoltage lockout threshold V UVLO. The undervoltage lockout threshold V UVLO for falling V IN is typically 1.78
V. The device starts operation once the rising V IN trips undervoltage lockout threshold V UVLO again at typically
1.95 V.
8.3.6 Thermal Shutdown
As soon as the junction temperature, T J, exceeds 150°C (typical) the device goes into thermal shutdown. In this
mode, the high-side and low-side MOSFETs are turned off. The device continues its operation with a soft start
once the junction temperature falls below the thermal shutdown hysteresis.
8.4 Device Functional Modes
8.4.1 Soft Start
The TPS6206x has an internal soft start circuit that controls the ramp up of the output voltage. Once the
converter is enabled and the input voltage is above the undervoltage lockout threshold V UVLO the output voltage
ramps up from 5% to 95% of its nominal value within tRamp of typically 250 µs.
This limits the inrush current in the converter during start-up and prevents possible input voltage drops when a
battery or high impedance power source is used.
During soft start, the switch current limit is reduced to 1/3 of its nominal value I LIMF until the output voltage
reaches 1/3 of its nominal value. Once the output voltage trips this threshold, the device operates with its
nominal current limit ILIMF.
8.4.2 Power Save Mode
At TPS62065 pulling the MODE pin low enables power save mode. In TPS62067 power save mode is enabled
per default. If the load current decreases, the converter enters power save mode operation automatically. During
power save mode the converter skips switching and operates with reduced frequency in PFM mode with a
minimum quiescent current to maintain high efficiency. The converter positions the output voltage typically +1%
above the nominal output voltage. This voltage positioning feature minimizes voltage drops caused by a sudden
load step.
The transition from PWM mode to PFM mode occurs once the inductor current in the low-side MOSFET switch
becomes zero, which indicates discontinuous conduction mode.
During the power save mode the output voltage is monitored with a PFM comparator. As the output voltage falls
below the PFM comparator threshold of V OUTnominal +1%, the device starts a PFM current pulse. For this the
high-side MOSFET switch will turn on and the inductor current ramps up. After the on-time expires the switch will
be turned off and the low-side MOSFET switch will be turned on until the inductor current becomes zero.
The converter effectively delivers a current to the output capacitor and the load. If the load is below the delivered
current the output voltage will rise. If the output voltage is equal or higher than the PFM comparator threshold,
the device stops switching and enters a sleep mode with typically 18 µA current consumption.
In case the output voltage is still below the PFM comparator threshold, further PFM current pulses will be
generated until the PFM comparator threshold is reached. The converter starts switching again once the output
voltage drops below the PFM comparator threshold due to the load current.
The PFM mode is exited and PWM mode entered in case the output current can no longer be supported in PFM
mode.
Submit Document Feedback
Copyright © 2020 Texas Instruments Incorporated
Product Folder Links: TPS62065 TPS62067
9
TPS62065, TPS62067
www.ti.com
SLVS833E – MARCH 2010 – REVISED OCTOBER 2020
8.4.3 Dynamic Voltage Positioning
This feature reduces the voltage undershoots and overshoots at load steps from light to heavy load and vice
versa. It is active in power save mode and regulates the output voltage 1% higher than the nominal value. This
provides more headroom for both the voltage drop at a load step, and the voltage increase at a load throw-off.
Output voltage
Voltage Positioning
VOUT + 1%
PFM Comparator
threshold
Light load
PFM Mode
VOUT (PWM)
Moderate to heavy load
PWM Mode
Figure 8-2. Power Save Mode Operation with Automatic Mode Transition
8.4.4 100% Duty Cycle Low Dropout Operation
The device starts to enter 100% duty cycle mode as the input voltage comes close to the nominal output voltage.
To maintain the output voltage, the high-side MOSFET switch is turned on 100% for one or more cycles.
With further decreasing V IN the high-side MOSFET switch is turned on completely. In this case the converter
offers a low input-to-output voltage difference. This is particularly useful in battery-powered applications to
achieve longest operation time by taking full advantage of the whole battery voltage range.
The minimum input voltage to maintain regulation depends on the load current and output voltage, and can be
calculated as:
VINmin = VOmax + IOmax × (RDS(on)max + RL)
(1)
where
•
•
•
•
IOmax = maximum output current
RDS(on)max = maximum P-channel switch RDS(on)
RL = DC resistance of the inductor
VOmax = nominal output voltage plus maximum output voltage tolerance
8.4.5 Internal Current Limit and Fold-Back Current Limit for Short Circuit Protection
During normal operation the high-side and low-side MOSFET switches are protected by its current limits I LIMF.
Once the high-side MOSFET switch reaches its current limit, it is turned off and the low-side MOSFET switch is
turned on. The high-side MOSFET switch can only turn on again, once the current in the low-side MOSFET
switch decreases below its current limit I LIMF. The device is capable to provide peak inductor currents up to its
internal current limitILIMF..
As soon as the switch current limits are hit and the output voltage falls below 1/3 of the nominal output voltage
due to overload or short circuit condition, the foldback current limit is enabled. In this case the switch current limit
is reduced to 1/3 of the nominal value ILIMF.
Due to the short circuit protection is enabled during start-up, the device does not deliver more than 1/3 of its
nominal current limit I LIMF until the output voltage exceeds 1/3 of the nominal output voltage. This needs to be
considered when a load is connected to the output of the converter, which acts as a current sink.
10
Submit Document Feedback
Copyright © 2020 Texas Instruments Incorporated
Product Folder Links: TPS62065 TPS62067
www.ti.com
TPS62065, TPS62067
SLVS833E – MARCH 2010 – REVISED OCTOBER 2020
8.4.6 Output Capacitor Discharge
With EN = GND, the device enters shutdown mode and all internal circuits are disabled. The SW pin is
connected to PGND through an internal resistor to discharge the output capacitor. This feature ensures a startup
in a discharged output capacitor once the converter is enabled again and prevents "floating" charge on the
output capacitor. The output voltage ramps up monotonic starting from 0 V.
Submit Document Feedback
Copyright © 2020 Texas Instruments Incorporated
Product Folder Links: TPS62065 TPS62067
11
TPS62065, TPS62067
www.ti.com
SLVS833E – MARCH 2010 – REVISED OCTOBER 2020
9 Application and Implementation
Note
Information in the following applications sections is not part of the TI component specification, and TI
does not warrant its accuracy or completeness. TI’s customers are responsible for determining
suitability of components for their purposes. Customers should validate and test their design
implementation to confirm system functionality.
9.1 Application Information
The TPS62065 and TPS62067 are highly efficient synchronous step down DC/DC converters providing up to 2-A
output current.
9.2 Typical Application
L
1.0 mH
VIN = 2.9 V to 6 V
PVIN
SW
R1
360 kΩ
AVIN
EN
MODE
AGND
PGND
CIN
10 µF
VOUT = 1.8 V
up to 2 A
FB
Cff
22 pF
COUT
10 µF
R2
180 kΩ
Copyright © 2016, Texas Instruments Incorporated
Figure 9-1. TPS62065 1.8-V Adjustable Output Voltage Configuration
9.2.1 Design Requirements
The device operates over an input voltage range from 2.9 V to 6 V. The output voltage is adjustable using an
external feedback divider.
9.2.2 Detailed Design Procedure
9.2.2.1 Output Voltage Setting
The output voltage can be calculated to:
æ R ö
VOUT = VREF ´ ç1 + 1 ÷
è R2 ø
æV
ö
R1 = ç OUT - 1÷ ´ R2
V
è REF
ø
(2)
with an internal reference voltage VREF typically 0.6 V.
To minimize the current through the feedback divider network, R 2 should be within the range of 120 kΩ to 360
kΩ. The sum of R1 and R 2 should not exceed approximately 1 MΩ, to keep the network robust against noise. An
external feed-forward capacitor Cff is required for optimum regulation performance. Lower resistor values can be
used. R1 and Cff places a zero in the loop. The right value for Cff can be calculated as:
fz =
C ff =
12
1
= 25 kHz
2 ´ p ´ R1 ´ C ff
(3)
1
2 ´ p ´ R1 ´ 25 kHz
(4)
Submit Document Feedback
Copyright © 2020 Texas Instruments Incorporated
Product Folder Links: TPS62065 TPS62067
TPS62065, TPS62067
www.ti.com
SLVS833E – MARCH 2010 – REVISED OCTOBER 2020
9.2.2.2 Output Filter Design (Inductor and Output Capacitor)
The internal compensation network of TPS6206x is optimized for a LC output filter with a corner frequency of:
fc =
1
2 ´ p ´ (1μH ´ 10μF)
= 50kHz
(5)
The device operates with nominal inductors of 1 µH to 1.2 µH and with 10 µF to 22 µF small X5R and X7R
ceramic capacitors. Refer to the lists of inductors and capacitors. The device is optimized for a 1-µH inductor
and 10-µF output capacitor.
9.2.2.2.1 Inductor Selection
The inductor value has a direct effect on the ripple current. The selected inductor must be rated for its DC
resistance and saturation current. The inductor ripple current (ΔI L) decreases with higher inductance and
increases with higher VIN or VOUT.
Equation 6 calculates the maximum inductor current in PWM mode under static load conditions. The saturation
current of the inductor should be rated higher than the maximum inductor current as calculated with Equation 7.
This is recommended because during heavy load transient the inductor current rises above the calculated value.
Vout
Vin
L´ƒ
1DI L = Vout ´
IL max = Iout max +
(6)
DIL
2
(7)
where
•
•
•
•
f = Switching frequency (3 MHz typical)
L = Inductor value
ΔIL = Peak-to-peak inductor ripple current
ILmax = Maximum inductor current
A more conservative approach is to select the inductor current rating just for the switch current limit I LIMF of the
converter.
The total losses of the coil have a strong impact on the efficiency of the DC/DC conversion and consist of both
the losses in the DC resistance R(DC) and the following frequency-dependent components:
•
•
•
•
The losses in the core material (magnetic hysteresis loss, especially at high switching frequencies)
Additional losses in the conductor from the skin effect (current displacement at high frequencies)
Magnetic field losses of the neighboring windings (proximity effect)
Radiation losses
Table 9-1. List of Inductors
DIMENSIONS (mm3)
INDUCTANCE (μH)
INDUCTOR TYPE
SUPPLIER
3.2 × 2.5 × 1 maximum
1
LQM32PN (MLCC)
Murata
3.7 × 4 × 1.8 maximum
1
LQH44 (wire wound)
Murata
4 × 4 × 2.6 maximum
1.2
NRG4026T (wire wound) Taiyo Yuden
3.5 × 3.7 × 1.8 maximum
1.2
DE3518 (wire wound)
TOKO
9.2.2.2.2 Output Capacitor Selection
The advanced fast-response voltage mode control scheme of the TPS6206x allows the use of tiny ceramic
capacitors. TI recommends ceramic capacitors with low ESR values that have the lowest output voltage ripple.
Submit Document Feedback
Copyright © 2020 Texas Instruments Incorporated
Product Folder Links: TPS62065 TPS62067
13
TPS62065, TPS62067
www.ti.com
SLVS833E – MARCH 2010 – REVISED OCTOBER 2020
The output capacitor requires either an X7R or X5R dielectric. Y5V and Z5U dielectric capacitors, aside from
their wide variation in capacitance over temperature, become resistive at high frequencies and may not be used.
For most applications a nominal 10-µF or 22-µF capacitor is suitable. At small ceramic capacitors, the DC-bias
effect decreases the effective capacitance. Therefore a 22-µF capacitor can be used for output voltages higher
than 2 V, see list of capacitors.
In case additional ceramic capacitors in the supplied system are connected to the output of the DC/DC
converter, the output capacitor C OUT must be decreased in order not to exceed the recommended effective
capacitance range. In this case a loop stability analysis must be performed as described later.
At nominal load current, the device operates in PWM mode and the RMS ripple current is calculated as:
Vout
Vin
1
´
L´ƒ
2´ 3
1IRMSCout = Vout ´
(8)
9.2.2.2.3 Input Capacitor Selection
Because of the nature of the buck converter having a pulsating input current, a low ESR input capacitor is
required for best input voltage filtering and minimizing the interference with other circuits caused by high input
voltage spikes. For most applications, TI recommends a 10-µF ceramic capacitor. The input capacitor can be
increased without any limit for better input voltage filtering.
Take care when using only small ceramic input capacitors. When a ceramic capacitor is used at the input and the
power is being supplied through long wires, such as from a wall adapter, a load step at the output or VIN step on
the input can induce ringing at the VIN pin. This ringing can couple to the output and be mistaken as loop
instability or could even damage the part by exceeding the maximum ratings.
Table 9-2. List of Capacitors
TYPE
SIZE (mm3)
SUPPLIER
10μF
GRM188R60J106M
0603: 1.6 x 0.8 x 0.8
Murata
22μF
GRM188R60G226M
0603: 1.6 x 0.8 x 0.8
Murata
22µF
CL10A226MQ8NRNC
0603: 1.6 x 0.8 x 0.8
Samsung
10µF
CL10A106MQ8NRNC
0603: 1.6 x 0.8 x 0.8
Samsung
CAPACITANCE
9.2.2.3 Checking Loop Stability
The first step of circuit and stability evaluation is to look from a steady-state perspective at the following signal
•
•
•
Switching node, SW
Inductor current, IL
Output ripple voltage, VOUT(AC)
These are the basic signals that must be measured when evaluating a switching converter. When the switching
waveform shows large duty cycle jitter or the output voltage or inductor current shows oscillations, the regulation
loop may be unstable. This is often a result of board layout and/or wrong L-C output filter combinations. As a
next step in the evaluation of the regulation loop, the load transient response is tested. The time between the
application of the load transient and the turnon of the P-channel MOSFET, the output capacitor must supply all of
the current required by the load. V OUT immediately shifts by an amount equal to Δ I(LOAD) x ESR, where ESR is
the effective series resistance of COUT. ΔI(LOAD) begins to charge or discharge COUT generating a feedback error
signal used by the regulator to return VOUT to its steady-state value. The results are most easily interpreted when
the device operates in PWM mode at medium to high load currents.
During this recovery time, V OUT can be monitored for settling time, overshoot, or ringing; that helps evaluate
stability of the converter. Without any ringing, the loop has usually more than 45° of phase margin.
14
Submit Document Feedback
Copyright © 2020 Texas Instruments Incorporated
Product Folder Links: TPS62065 TPS62067
TPS62065, TPS62067
www.ti.com
SLVS833E – MARCH 2010 – REVISED OCTOBER 2020
9.2.3 Application Curves
100
100
95
95
90
VIN = 4.2 V
80
VIN = 3 V
75
VIN = 3.3 V
VIN = 3.6 V
70
65
55
50
0
VIN = 3.3 V
75
VIN = 3.6 V
70
0.25
0.5
0.75
1
1.25 1.5
IL - Load Current - A
1.75
100
L = 1.2 mH (NRG4026T 1R2),
COUT = 10 mF (0603 size),
VOUT = 1.8 V,
Mode: Auto PFM/PWM
60
55
50
0
2
Figure 9-2. VOUT = 1.2 V, Auto PFM/PWM Mode,
Linear Scale
0.25
0.5
0.75
1
1.25 1.5
IL - Load Current - A
1.75
2
Figure 9-3. VOUT = 1.8 V, Auto PFM/PWM Mode,
Linear Scale
100
VIN = 3.7 V
Auto PFM/PWM Mode
95
90
90
VIN = 4.2 V
80
VIN = 5 V
85
70
Efficiency - %
Efficiency - %
VIN = 3 V
80
65
L = 1.2 mH (NRG4026T 1R2),
COUT = 10 mF (0603 size),
VOUT = 1.2 V,
Mode: Auto PFM/PWM
60
80
75
70
VIN = 3.3 V
VIN = 3.6 V
VIN = 4.2 V
VIN = 5 V
Forced PWM Mode
60
VIN = 3.3 V
VIN = 3.6 V
VIN = 4.2 V
VIN = 5 V
50
40
30
65
L = 1.2 mH (NRG4026T 1R2),
COUT = 22 mF (0603 size),
VOUT = 3.3 V,
Mode: Auto PFM/PWM
60
55
0
0.25
0.5
0.75
1
1.25 1.5
IL - Load Current - A
1.75
20
0
0.001
2
1.872
1.872
1.854 Voltage Positioning PFM Mode
1.854
VO - Output Voltage DC - V
1.890
1.836
1.818
1.800
VIN = 3.6 V
VIN = 4.2 V
1.782
1.764
PWM Mode
VIN = 5 V
L = 1 mH,
COUT = 10 mF,
VOUT = 1.8 V,
Mode: Auto PFM/PWM
1.746
1.728
1.710
0.001
0.01
0.1
IL - Load Current - A
1
Figure 9-6. Auto PFM/PWM Mode
0.01
0.1
IL - Load Current - A
1
10
Figure 9-5. Auto PFM/PWM Mode vs. Forced PWM
Mode, Logarithmic Scale
1.890
VIN = 3.3 V
L = 1.2 mH (NRG4026T 1R2),
COUT = 10 mF (0603 size),
VOUT = 1.8 V
10
Figure 9-4. VOUT = 3.3 V, Auto PFM/PWM Mode,
Linear Scale
VO - Output Voltage DC - V
VIN = 5 V
85
Efficiency - %
Efficiency - %
85
50
VIN = 4.2 V
90
VIN = 5 V
L = 1 mH,
COUT = 10 mF,
VOUT = 1.8 V,
Mode: Forced PWM
1.836
1.818
1.800
VIN = 3.3 V
1.782
VIN = 3.6 V
VIN = 4.2 V
1.764
VIN = 5 V
1.746
1.728
10
1.710
0.001
0.01
0.1
IL - Load Current - A
1
10
Figure 9-7. Forced PWM Mode
Submit Document Feedback
Copyright © 2020 Texas Instruments Incorporated
Product Folder Links: TPS62065 TPS62067
15
TPS62065, TPS62067
www.ti.com
SLVS833E – MARCH 2010 – REVISED OCTOBER 2020
VOUT 50mV/Div
VOUT 50mV/Div
VIN = 3.6 V
VOUT = 1.8 V
IOUT = 20 mA
MODE = GND
L = 1.2 mH
COUT = 10 mF
SW 2V/Div
SW 2V/Div
ICOIL 500mA/Div
MODE = GND
VIN = 3.6 V
L = 1.2 mH
VOUT = 1.8 V
IOUT = 500 mA COUT = 10 mF
ICOIL 200mA/Div
Time Base - 100ns/Div
Time Base - 4ms/Div
Figure 9-8. Typical Operation (PWM Mode)
Figure 9-9. Typical Operation (PFM Mode)
VOUT100 mV/Div
VOUT100 mV/Div
SW 2V/Div
SW 2V/Div
ICOIL1A/Div
ICOIL1A/Div
VIN = 3.6 V,
VOUT = 1.2 V,
IOUT = 0.2 A to 1 A
MODE = VIN
ILOAD500 mA/Div
VIN = 3.6 V,
VOUT = 1.2 V,
IOUT = 20 mA to 250 mA
ILOAD500 mA/Div
Time Base - 10 µs/Div
Time Base - 10 µs/Div
Figure 9-10. Load Transient Response PWM Mode
0.2 A to 1 A
Figure 9-11. Load Transient PFM Mode 20 mA to
250 mA
VIN = 3.6 V to 4.2 V,
VOUT = 1.8 V,
IOUT = 500 mA
L = 1.2 mH,
200 mV/Div
500 mV/Div
2A/Div
VIN = 3.6 V,
VOUT = 1.8 V,
1A/Div
50 mV/Div
L = 1.2 mH
COUT = 10 mF
IOUT 200 mA to 1500 mA
Time Base - 100 ms/Div
Time Base - 100ms/Div
Figure 9-12. Load Transient Response 200 mA to
1500 mA
16
Figure 9-13. Line Transient Response PWM Mode
Submit Document Feedback
Copyright © 2020 Texas Instruments Incorporated
Product Folder Links: TPS62065 TPS62067
TPS62065, TPS62067
www.ti.com
SLVS833E – MARCH 2010 – REVISED OCTOBER 2020
2 V/Div
500 mV/Div
1 V/Div
2 A/Div
500 mA/Div
VIN = 3.6 V to 4.2 V,
VOUT = 1.8 V,
IOUT = 50 mA,
50 mV/Div
L = 1.2 mH,
COUT = 10 mF
500 mA/Div
VIN = 3.6 V, L = 1.2 mH,
VOUT = 1.8 V, COUT = 10 mF
Load = 2R2
Time Base - 100 ms/Div
Time Base - 100 ms/Div
Figure 9-14. Line Transient PFM Mode
Figure 9-15. Startup Into Load – VOUT 1.8 V
EN
1 V/Div
VIN = 3.6 V,
VOUT = 1.8 V,
COUT = 10 mF,
No Load
2 V/Div
SW
2 V/Div
2 V/Div
VOUT
1 V/Div
1 A/Div
2 V/Div
VIN = 4.2 V,
VOUT = 3.3 V,
Load = 2R2
PG Pullup resistor 10 kW
Time Base - 2ms/Div
Time Base - 100 ms/Div
Figure 9-17. Output Discharge
Figure 9-16. Start-up TPS62067 Into 2.2-Ω Load
With Power Good
VIN = 4.2 V,
VOUT = 3.3 V,
Load = no load
PG Pullup resistor 10 kW
2 V/Div
2 V/Div
5 V/Div
Time Base - 1 ms/Div
Figure 9-18. Shutdown TPS62067
Submit Document Feedback
Copyright © 2020 Texas Instruments Incorporated
Product Folder Links: TPS62065 TPS62067
17
TPS62065, TPS62067
www.ti.com
SLVS833E – MARCH 2010 – REVISED OCTOBER 2020
9.3 System Example
The TPS62067 provides an open-drain power good output, refer to Section 8.3.2.
9.3.1 TPS62067 Adjustable 1.8-V Output
L
1.0 mH
VIN = 2.9 V to 6 V
PVIN
CIN
10 mF
AVIN
EN
AGND
PGND
VOUT
1.8 V 2 A
SW
R1
360 kW
FB
PG
R2
180 kW
Cff
COUT
22 pF 10 mF
RPG
100 kW
Copyright © 2016, Texas Instruments Incorporated
Figure 9-19. TPS62067 Adjustable 1.8-V Output
18
Submit Document Feedback
Copyright © 2020 Texas Instruments Incorporated
Product Folder Links: TPS62065 TPS62067
TPS62065, TPS62067
www.ti.com
SLVS833E – MARCH 2010 – REVISED OCTOBER 2020
10 Power Supply Recommendations
The power supply to the TPS6206x must have a current rating according to the supply voltage, output voltage,
and output current of the TPS6206x.
11 Layout
11.1 Layout Guidelines
Take care in board layout to get the specified performance. If the layout is not carefully done, the regulator could
show poor line and/or load regulation, stability issues as well as EMI and thermal problems. It is critical to
provide a low inductance, impedance ground path. Therefore, use wide and short traces for the main current
paths. The input capacitor should be placed as close as possible to the IC pins as well as the inductor and
output capacitor.
Connect the AGND and PGND pins of the device to the PowerPAD™ land of the PCB and use this pad as a star
point. Use a common power PGND node and a different node for the signal AGND to minimize the effects of
ground noise. The FB divider network should be connected right to the output capacitor and the FB line must be
routed away from noisy components and traces (for example, SW line).
Due to the small package of this converter and the overall small solution size the thermal performance of the
PCB layout is important. To get a good thermal performance, TI recommends a four or more Layer PCB design.
The PowerPAD™ of the IC must be soldered on the power pad area on the PCB to get a proper thermal
connection. For good thermal performance the PowerPAD™ on the PCB needs to be connected to an inner GND
plane with sufficient via connections. Refer to the documentation of the evaluation kit.
Mode/PG
Enable
11.2 Layout Example
VIN
GND
CIN
COUT
R2
R1
CFF
GND
L
VOUT
Figure 11-1. PCB Layout
Submit Document Feedback
Copyright © 2020 Texas Instruments Incorporated
Product Folder Links: TPS62065 TPS62067
19
TPS62065, TPS62067
www.ti.com
SLVS833E – MARCH 2010 – REVISED OCTOBER 2020
12 Device and Documentation Support
12.1 Device Support
12.1.1 Third-Party Products Disclaimer
TI'S PUBLICATION OF INFORMATION REGARDING THIRD-PARTY PRODUCTS OR SERVICES DOES NOT
CONSTITUTE AN ENDORSEMENT REGARDING THE SUITABILITY OF SUCH PRODUCTS OR SERVICES
OR A WARRANTY, REPRESENTATION OR ENDORSEMENT OF SUCH PRODUCTS OR SERVICES, EITHER
ALONE OR IN COMBINATION WITH ANY TI PRODUCT OR SERVICE.
12.2 Related Links
The table below lists quick access links. Categories include technical documents, support and community
resources, tools and software, and quick access to sample or buy.
Table 12-1. Related Links
PARTS
PRODUCT FOLDER
SAMPLE & BUY
TECHNICAL
DOCUMENTS
TOOLS &
SOFTWARE
SUPPORT &
COMMUNITY
TPS62065
Click here
Click here
Click here
Click here
Click here
TPS62067
Click here
Click here
Click here
Click here
Click here
12.3 Receiving Notification of Documentation Updates
To receive notification of documentation updates, navigate to the device product folder on ti.com. Click on
Subscribe to updates to register and receive a weekly digest of any product information that has changed. For
change details, review the revision history included in any revised document.
12.4 Support Resources
TI E2E™ support forums are an engineer's go-to source for fast, verified answers and design help — straight
from the experts. Search existing answers or ask your own question to get the quick design help you need.
Linked content is provided "AS IS" by the respective contributors. They do not constitute TI specifications and do
not necessarily reflect TI's views; see TI's Terms of Use.
12.5 Trademarks
PowerPAD™ and TI E2E™ are trademarks of Texas Instruments.
All other trademarks are the property of their respective owners.
12.6 Electrostatic Discharge Caution
This integrated circuit can be damaged by ESD. Texas Instruments recommends that all integrated circuits be handled
with appropriate precautions. Failure to observe proper handling and installation procedures can cause damage.
ESD damage can range from subtle performance degradation to complete device failure. Precision integrated circuits may
be more susceptible to damage because very small parametric changes could cause the device not to meet its published
specifications.
12.7 Glossary
TI Glossary
This glossary lists and explains terms, acronyms, and definitions.
13 Mechanical, Packaging, and Orderable Information
The following pages include mechanical, packaging, and orderable information. This information is the most
current data available for the designated devices. This data is subject to change without notice and revision of
this document. For browser-based versions of this data sheet, refer to the left-hand navigation.
20
Submit Document Feedback
Copyright © 2020 Texas Instruments Incorporated
Product Folder Links: TPS62065 TPS62067
PACKAGE OPTION ADDENDUM
www.ti.com
29-Apr-2022
PACKAGING INFORMATION
Orderable Device
Status
(1)
Package Type Package Pins Package
Drawing
Qty
Eco Plan
(2)
Lead finish/
Ball material
MSL Peak Temp
Op Temp (°C)
Device Marking
(3)
(4/5)
(6)
TPS62065DSGR
ACTIVE
WSON
DSG
8
3000
RoHS & Green NIPDAU | NIPDAUAG
Level-2-260C-1 YEAR
-40 to 125
OFA
TPS62065DSGT
ACTIVE
WSON
DSG
8
250
RoHS & Green NIPDAU | NIPDAUAG
Level-2-260C-1 YEAR
-40 to 125
OFA
TPS62067DSGR
ACTIVE
WSON
DSG
8
3000
RoHS & Green NIPDAU | NIPDAUAG
Level-2-260C-1 YEAR
-40 to 125
ODH
TPS62067DSGT
ACTIVE
WSON
DSG
8
250
RoHS & Green NIPDAU | NIPDAUAG
Level-2-260C-1 YEAR
-40 to 125
ODH
(1)
The marketing status values are defined as follows:
ACTIVE: Product device recommended for new designs.
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.
OBSOLETE: TI has discontinued the production of the device.
(2)
RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance
do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may
reference these types of products as "Pb-Free".
RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.
Green: TI defines "Green" to mean the content of Chlorine (Cl) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of