0
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
创作中心
发布
  • 发文章

  • 发资料

  • 发帖

  • 提问

  • 发视频

创作活动
TPS65921B1ZQZ

TPS65921B1ZQZ

  • 厂商:

    BURR-BROWN(德州仪器)

  • 封装:

    VFBGA120

  • 描述:

    IC PWR MGMT 4 LDO TXRX 120BGA

  • 数据手册
  • 价格&库存
TPS65921B1ZQZ 数据手册
Product Folder Sample & Buy Tools & Software Technical Documents Support & Community TPS65921 SWCS048G – MARCH 2010 – REVISED SEPTEMBER 2014 TPS65921 Power Management and USB Single Chip 1 Device Overview 1.1 Features 1 • Three Step-Down Converters: – Up to 1.2 A of Output Current for VDD1 • TPS65921B Supports VDD1 up to 1.2 A • TPS65921B1 Supports VDD1 up to 1.4 A (Necessary for 1-GHz Operation) – SmartReflex™ Dynamic Voltage Management – 3.2-MHz Fixed Frequency Operation – VIN Range from 2.7 to 4.5 V – Typical 30 µA Quiescent per Converter • Four General-Purpose Configurable LDOs: – Dynamic Voltage Scaling – 220-mA Maximum Current for One LDO – VIN Range from 2.7 to 4.5 V – 2 LDOs With Low Noise and High PSRR • RTC With Alarm Wake-Up Mechanism • Clock Management 1.2 • • • • • • • • Applications Mobile Phones and Smart Phones MP3 Players Handheld Devices 1.3 • – 32-kHz Crystal Oscillator – Clock Slicer for 26, 19.2, and 38.4 MHz – HF Clock Output Buffer USB: – USB HS 2.0 Transceiver – USB 1.3 OTG-Compliant – 12-Bit ULPI 1.1 Interface – USB Power Supply (5-V CP for VBUS) Control – High-Speed I2C Interface – All Resource Configurable by I2C Keypad Interface up to 8 × 8 10-Bit A/D Converter Hot-Die, Thermal Shutdown Protection µ*BGA 120 Balls ZQZ • • E-Books OMAP™ and Low-Power DSP Supply Description The TPS65921 device is a highly integrated power-management circuit (IC) that supports the power and peripheral requirements of the OMAP application processors. The device contains power management, a universal serial bus (USB) high-speed (HS) transceiver, an analog-to-digital converter (ADC), a real-time clock (RTC), a keypad interface, and an embedded power control (EPC). The power portion of the device contains three buck converters, two controllable by a dedicated SmartReflex class-3 interface, multiple low-dropout (LDO) regulators, an EPC to manage the power-sequencing requirements of OMAP, and an RTC module. The USB module provides an HS 2.0 transceiver suitable for direct connection to the OMAP universal transceiver macrocell interface (UTMI) + low pin interface (ULPI) with an integrated charge pump (CP). The device also provides auxiliary modules: ADC, keypad interface, and general-purpose inputs/outputs (GPIOs) muxed with the JTAG functions. The keypad interface implements a built-in scanning algorithm to decode hardware-based key presses and to reduce software use, with multiple additional GPIOs that can be used as interrupts when they are configured as inputs. Device Information (1) PART NUMBER TPS65921ZQZ (1) PACKAGE BODY SIZE ZQZ (120) 6.00 mm × 6.00 mm For more information, see Section 7, Mechanical Packaging and Orderable Information. 1 An IMPORTANT NOTICE at the end of this data sheet addresses availability, warranty, changes, use in safety-critical applications, intellectual property matters and other important disclaimers. PRODUCTION DATA. TPS65921 SWCS048G – MARCH 2010 – REVISED SEPTEMBER 2014 1.4 www.ti.com Functional Block Diagram REFS VRTC TEST/GPIO TESTV1 TESTV2 TEST JTAG.TCK JTAG.TDO JTAG.TMS JTAG.TDI VPROG VREF REFGND VINTANA2 VINTANA1 VINT.IN VRTC_OUT Figure 1-1 shows the functional block diagram of the device. AGND VBAT VDD1_IN TEST/MUXed I/O’s VINTANA2 VINTANA1 VDD1_L VDD1 IO.1P8 DGND VDD1_FDBK SRI2C_SCL VDD1_GND VDD2_IN I2C Smart-Reflex SRI2C_SDA VDD2_L 32KXIN 32KXOUT VDD2 Xtal 32K HFCLKIN HFCLKOUT VDD2_FDBK RTC Clock sys 32KCLKOUT VDD2_GND VIO_IN Clock slicer VIO_L VIO MSECURE VIO_FDBK BOOT0 BOOT1 VIO_GND RESPWRON NRESWARM VPLLA3RIN Power control PWRON NSLEEP VPLL1OUT Control I/Os VPLL1 INT SYSEN REGEN CLKEN TESTRESET CLKREQ VDAC.IN VDAC.OUT VDAC CTLI2C_SCL I2C control CTLI2C_SDA Control, Data and Test logic DP DM MUX 10- bit ADC VMMC1OUT VMMC1 VAUX12SIN VAUX2_OUT ULPI DATA0 DATA1 DATA2 DATA3 DATA4 DATA5 DATA6 DATA7 NXT DIR STP UCLK ID VBUS Scalars VMMC1_IN ADCIN0 VAUX2 USB 2.0 OTG CP_IN USB CP USB PHY CP_CAPP CP_CAPM CP_GND AVSS1 VINT.IN VINTDIG VBAT_USB KPD_R0 KPD_R1 KPD_R2 KPD_R3 KPD_R4 KPD_R5 KPD_R6 KPD_R7 KPD_C7 KPD_C6 KPD_C5 KPD_C4 KPD_C3 KPD_C2 KPD_C1 KPD_C0 KEY PAD VINTDIG VINTUSB1P5 VINTUSB1P5_OUT VINTUSB1P8 VINTUSB1P8_OUT VUSB3P1 VUSB3P1 AVSS2 AVSS3 AVSS4 SWCS048-010 Figure 1-1. Functional Block Diagram 2 Device Overview Copyright © 2010–2014, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: TPS65921 TPS65921 www.ti.com SWCS048G – MARCH 2010 – REVISED SEPTEMBER 2014 Table of Contents 1 2 3 Device Overview ......................................... 1 4.18 Battery Threshold Levels............................ 24 1.1 Features .............................................. 1 4.19 Power Consumption................................. 25 1.2 Applications ........................................... 1 4.20 USB Charge Pump 1.3 Description ............................................ 1 4.21 Hot-Die Detection and Thermal Shutdown.......... 26 1.4 Functional Block Diagram ............................ 2 ................................................. ............................................... 4.24 TPS65921 Interface Target Frequencies ........... 4.25 JTAG Interfaces ..................................... Detailed Description ................................... 5.1 Functional Block Diagram ........................... 5.2 Clock System ....................................... 5.3 32-kHz Oscillator .................................... 5.4 Clock Slicer ......................................... 5.5 Power Path .......................................... 5.6 Charger Detection ................................... 5.7 MADC ............................................... 5.8 JTAG Interfaces ..................................... Device and Documentation Support ............... 6.1 Device Support ...................................... 6.2 Documentation Support ............................. 6.3 Trademarks.......................................... 6.4 Electrostatic Discharge Caution ..................... 6.5 Export Control Notice ............................... 6.6 Glossary ............................................. Revision History ......................................... 4 Terminal Configuration and Functions .............. 5 3.1 4 Signal Descriptions ................................... 6 Specifications ........................................... 10 4.1 Absolute Maximum Ratings ......................... 10 4.2 Handling Ratings .................................... 10 4.3 4.4 Recommended Operating Conditions ............... 10 Thermal Resistance Characteristics for ZQZ Package ............................................. 13 4.5 Crystal Oscillator .................................... 13 4.6 ......................................... 32KCLKOUT Output Clock.......................... HFCLKOUT Output Clock ........................... VDD1 DC-DC Converter ............................ VDD2 DC-DC Converter ............................ VIO DC-DC Converter .............................. VMMC1 Low Dropout Regulator .................... VDAC Low Dropout Regulator ...................... VAUX2 Low Dropout Regulator ..................... VPLL1 Low Dropout Regulator ..................... Internal LDOs ....................................... Voltage References ................................. 4.7 4.8 4.9 4.10 4.11 4.12 4.13 4.14 4.15 4.16 4.17 Clock Slicer 5 14 14 15 6 17 18 19 20 21 22 23 7 ................................. 25 4.22 USB 26 4.23 MADC 31 33 36 38 38 39 39 40 43 54 57 58 60 60 61 61 61 61 61 24 Mechanical Packaging and Orderable Information .............................................. 62 24 7.1 Packaging Information .............................. Table of Contents Copyright © 2010–2014, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: TPS65921 62 3 TPS65921 SWCS048G – MARCH 2010 – REVISED SEPTEMBER 2014 www.ti.com 2 Revision History NOTE: Page numbers for previous revisions may differ from page numbers in the current version. Changes from Revision F (March 2012) to Revision G • 4 Changed the format to the latest TI standards Page ................................................................................... Revision History 1 Copyright © 2010–2014, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: TPS65921 TPS65921 www.ti.com SWCS048G – MARCH 2010 – REVISED SEPTEMBER 2014 3 Terminal Configuration and Functions shows the ball locations for the 120-ball plastic ball grid array (PBGA) package and is used in conjunction with ball description to locate signal names and ball grid numbers. 1 2 3 4 5 6 7 8 9 10 11 A VMMC1.OUT VINTANA2. OUT VMODE2/ I2C.SR.SCL AVSS4 DIR/GPIO.10 VPLLA3R.IN VINT.IN VPLL1.OUT INT1 IO.1P8 VDD1.GND A B VMMC1.IN KPD.C3 I2C.CNTL. SCL KPD.C0 VRTC.OUT DATA0/ UART4.TXD VINTDIG. OUT DGND SYSEN VDD1.GND VDD1.GND B C VDAC.IN KPD.C4 #N/A I2C.CNTL. SDA NXT/GPIO.11 DATA1/ UART4.RXD DATA2/ UART4.RTSI HFCLKIN TESTV2 VDD1.L VDD1.L C D VINTANA1. OUT KPD.C1 TEST PWROK2/ 12C.SR.SDA PWRON UCLK DATA3/ UART4. CTSO/ GPIO.12 CLKREQ DATA7/ GPIO.5 VDD1.L VDD1.OUT D E VDAC.OUT KPD.C2 KPD.C6 KPD.C5 BOOT0 DATA6/ GPIO.4 VDD1.IN VDD1.IN VDD1.IN E F VAUX12S.IN ADCIN0 AVSS1 KPD.C7 KPD.R7 BOOT1 JTAG.TCK/ BERCLK DATA4/ GPIO.14 AVSS3 CLKEN DATA5/ GPIO.3 F G VAUX2.OUT GPIO.2/ TEST1 REGEN KPD.R1 KPD.R3 32KCLKOUT KPD.R6 MSECURE BKBAT VREF 32KXOUT G H VIO.OUT TESTV1 VPROG KPD.R2 KPD.R0 AVSS2 STARTADC NRESWARM VDD2.OUT AGND 32KXIN H J VIO.GND VIO.GND CP.GND KPD.R4 ID KPD.R5 TEST.RESET VDD2.GND VDD2.GND J K VIO.L VIO.IN VBAT NSLEEP1 VBUS VBAT.USB GND_AGND HFCLKOUT GPIO.1/CD2/ JTAG.TMS VDD2.IN VDD2.L K L VIO.L VIO.IN CP.CAPM CP.IN CP.CAPP VUSB.3P1 DP/UART3. RXD DN/UART3. TXD GPIO.0/CD1/ JTAG.TD0 VDD2.IN VDD2.L L 1 2 3 4 5 6 7 8 9 10 11 STP/GPIO.9 NRESPWRON VINTUSB1P5. VINTUSB1P8. OUT OUT SWCS048-009 Figure 3-1. Ball Placement (Top View) Terminal Configuration and Functions Copyright © 2010–2014, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: TPS65921 5 TPS65921 SWCS048G – MARCH 2010 – REVISED SEPTEMBER 2014 3.1 www.ti.com Signal Descriptions Table 3-1. Signal Descriptions NAME ADCIN0 BALL SUPPLIES F2 TYPE I/O DESCRIPTION PU/PD Analog I/O General-purpose ADC input NO ADC conversion request/JTAG test data input NO STARTADC H7 VDDIO/DGND Digital I I2C.CNTL.SDA C4 VDDIO/DGND Digital I/O I2C bidirectional data signal External PU External PU I2C.CNTL.SCL B3 VDDIO/DGND Digital I/O I2C bidirectional clock signal I2C.SR.SDA D4 VDDIO/DGND Digital I/O HS I2C bidirectional data signal External PU I2C.SR.SCL A3 VDDIO/DGND Digital I/O HS I2C bidirectional Clock signal External PU PWRON D5 VBAT/GND Digital I Input detects a control command to start or stop the system. External PU REGEN G3 Digital O Enable signal for external LDO PU MSECURE G8 VDDIO/DGND Digital I Security and digital rights management NO BOOT0 E5 VBAT/GND Digital I Power-up sequence selection Programmable PD (default active) BOOT1 F6 VBAT/GND Digital I Power-up sequence selection Programmable PD (default active) NRESPWRON E7 VDDIO/DGND Digital O Output control the NRESPWRON of the application processor NO NRESWARM H8 VDDIO/DGND Digital I Warm reset signal PU NSLEEP1 K4 VDDIO/DGND Digital I ACTIVE-SLEEP state transition control signal NO INT1 A9 VDDIO/DGND Digital O Output line interrupt NO SYSEN B9 VDDIO/DGND Digital O System enable output NO CLKEN F10 VDDIO/DGND Digital O Clock Enable NO PD disabled in ACTIVE state 32KCLKOUT G6 VDDIO/DGND Digital O 32-kHz clock output 32KXOUT G11 VRTC/REFGND Analog I 32-kHz crystal oscillator NO 32KXIN H11 VRTC/REFGND Analog I 32-kHz crystal oscillator NO NO HFCLKIN C8 VDDIO/DGND Analog I Sine wave or square wave input HFCLKOUT K8 VDDIO/DGND Digital O 50% duty cycle square wave output NO G10 VREF/REFGND Analog O Bandgap voltage NO VREF GND_AGND K7 AGND Analog I/O Substrate ground NO AGND H10 REFGND Analog I/O Reference ground NO DGND B8 DGND Power I/O Digital ground NO NO IO.1P8 A10 BKBAT G9 VDD1.IN VDD1.GND 6 VBACKUP/AGND E9, E10, E11 A11, B10, B11 Power I Supply for I/O buffers (VDDIO) Power I Not used. Must be grounded NO Power I VDD1 DC-DC input NO I/O VDD1 DC-DC power ground NO Power Terminal Configuration and Functions Copyright © 2010–2014, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: TPS65921 TPS65921 www.ti.com SWCS048G – MARCH 2010 – REVISED SEPTEMBER 2014 Table 3-1. Signal Descriptions (continued) NAME VDD1.L VDD1.OUT BALL SUPPLIES TYPE I/O DESCRIPTION C10, C11, D10 Power O VDD1 DC-DC switched output PU/PD NO D11 Analog I VDD1 feedback voltage PD VDD2.IN K10, L10 Power I VDD2 DC-DC input NO VDD2.GND J10, J11 Power I/O VDD2 DC-DC power ground NO VDD2.L K11, L11 Power O VDD2 DC-DC switched output NO VDD2.OUT H9 Analog I VDD2 feedback voltage PD VIO.IN K2, L2 Power I VIO DC-DC input NO VIO.GND J1, J2 Power I/O VIO DC-DC power ground NO VIO.L K1, L1 Power O VIO DC-DC switched output NO VIO.OUT H1 Analog I VIO feedback voltage PD VAUX12S.IN F1 Power I VAUX2 LDO input NO VAUX2.OUT G1 Power O VAUX2 regulator output PD VPLLA3R.IN A6 Power I VPLL1/VRTC LDO input NO VPLL1.OUT A8 Power O VPLL1 LDO regulator output PD VRTC.OUT B5 Power O VRTC internal LDO regulator output (internal use only) PD VINT.IN A7 Power I VINTDIG LDO input NO PD VINTANA1.OUT D1 Power O VINTANA1 internal LDO regulator output (internal use only) VINTANA2.OUT A2 Power O VINTANA2 internal LDO regulator output (internal use only) PD VDAC.IN C1 Power I VDAC/VINTANA1/VINTAN2 LDO input NO VDAC.OUT E1 Power O VDAC LDO regulator output PD PD VINTDIG.OUT B7 Power O VINTDIG internal LDO regulator output (internal use only) VMMC1.OUT A1 Power O VMMC1 LDO regulator output PD VBAT.USB K6 Power I VINTUSBiP5,VINTUSB1P8, VUSB.3P1 input regulator NO VUSB.3P1 L6 Power O VUSB.3P1 LDO regulator output PD VINTUSB1P8.OUT J6 Power O VUSB1P8 LDO regulator output (internal use only) PD VINTUSB1P5.OUT J5 Power O VUSB1P5 LDO regulator output (internal use only) PD TESTV1 H2 Analog IO Analog test pin 1 NO TESTV2 C9 Analog IO Analog test pin 2 NO TEST D3 VDDIO/DGND Digital IO Selection between JTAG mode and application mode PD AVSS1 F3 AGND Power I/O Analog ground NO AVSS2 H6 AGND Power I/O Analog ground NO AVSS3 F9 AGND Power I/O Analog ground NO AVSS4 A4 AGND Power I/O Analog ground NO VBUS K5 VBUS power rail NO Power Terminal Configuration and Functions Copyright © 2010–2014, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: TPS65921 7 TPS65921 SWCS048G – MARCH 2010 – REVISED SEPTEMBER 2014 www.ti.com Table 3-1. Signal Descriptions (continued) NAME BALL SUPPLIES TYPE I/O Analog I/O USB differential data line NO Analog I/O USB differential data line NO Digital I/O USB ID NO VDDIO/DGND Digital I/O HS USB Clock NO E6 VDDIO/DGND Digital I/O HS USB Stop NO A5 VDDIO/DGND Digital I/O HS USB Direction NO C5 VDDIO/DGND Digital I/O HS USB Next NO DATA0/UART4.TXD B6 VDDIO/DGND Digital I/O HS USB Data0 NO DATA1/UART4.RXD C6 VDDIO/DGND Digital I/O HS USB Data1 NO DATA2/UART4.RTSI C7 VDDIO/DGND Digital I/O HS USB Data2 NO DATA3/UART4.CTSO/ GPIO.12 D7 VDDIO/DGND Digital I/O HS USB Data3 NO DATA4/GPIO.14 F8 VDDIO/DGND Digital I/O HS USB Data4 NO DATA5/GPIO.3 F11 VDDIO/DGND Digital I/O HS USB Data5 NO DATA6/GPIO.4 E8 VDDIO/DGND Digital I/O HS USB Data6 NO DATA7/GPIO.5 D9 VDDIO/DGND Digital I/O HS USB Data7 NO CP.IN L4 Power I/O Charge pump input voltage NO CP.GND J3 Power Gnd I/O Charge pump ground NO CP.CAPP L5 Analog I/O Charge pump flying capacitor P NO CP.CAPM L3 Analog I/O Charge pump flying capacitor M NO DP/UART3.RXD L7 DN/UART3.TXD L8 ID J7 VDDIO/DGND UCLK D6 STP/GPIO.9 DIR/GPIO.10 NXT/GPIO.11 DESCRIPTION PU/PD KPD.C0 B4 VDDIO/DGND Open Drain O Keypad column 0 PU KPD.C1 D2 VDDIO/DGND Open Drain O Keypad column 1 PU KPD.C2 E2 VDDIO/DGND Open Drain O Keypad column 2 PU KPD.C3 B2 VDDIO/DGND Open Drain O Keypad column 3 PU KPD.C4 C2 VDDIO/DGND Open Drain O Keypad column 4 PU KPD.C5 E4 VDDIO/DGND Open Drain O Keypad column 5 PU KPD.C6 E3 VDDIO/DGND Open Drain O Keypad column 6 PU KPD.C7 F4 VDDIO/DGND Open Drain O Keypad column 7 PU KPD.R0 H5 VDDIO/DGND Digital I Keypad row 0 PU KPD.R1 G4 VDDIO/DGND Digital I Keypad row 1 PU KPD.R2 H4 VDDIO/DGND Digital I Keypad row 2 PU KPD.R3 G5 VDDIO/DGND Digital I Keypad row 3 PU KPD.R4 J4 VDDIO/DGND Digital I Keypad row 4 PU KPD.R5 J8 VDDIO/DGND Digital I Keypad row 5 PU KPD.R6 G7 VDDIO/DGND Digital I Keypad row 6 PU KPD.R7 F5 VDDIO/DGND Digital I Keypad row 7 PU VBAT K3 Power I/O Battery input voltage (Sense) NO CLKREQ D8 VDDIO/DGND Digital I Clock request line PD TEST.RESET J9 VBAT/GND Digital I Reset the device (except the state-machine) PD VPROG H3 Analog I Reserved. Must be grounded. NO JTAG/TCK/BERCLK F7 Digital I JTAG clock input NO PD PD VDDIO/DGND GPIO.0/CD1/JTAG.TD O L9 VDDIO/DGND Digital I/O JTAG test output or GPIO0/card detection 1 GPIO.1/CD2/JTAG.TM S K9 VDDIO/DGND Digital I/O JTAG test mode state or GPIO1/card detection 2 8 Terminal Configuration and Functions Copyright © 2010–2014, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: TPS65921 TPS65921 www.ti.com SWCS048G – MARCH 2010 – REVISED SEPTEMBER 2014 Table 3-1. Signal Descriptions (continued) NAME GPIO.2/TEST1 BALL G2 VMMC1.IN B1 N/A C3 SUPPLIES VDDIO/DGND N/A TYPE Digital I/O DESCRIPTION PU/PD Programmable PD I GPIO/Digital test pin Power I VMMC1 input LDO NO N/A N/A N/A N/A Terminal Configuration and Functions Copyright © 2010–2014, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: TPS65921 9 TPS65921 SWCS048G – MARCH 2010 – REVISED SEPTEMBER 2014 www.ti.com 4 Specifications Absolute Maximum Ratings (1) 4.1 over operating free-air temperature range (unless otherwise noted) PARAMETER TEST CONDITIONS MIN MAX UNIT 0.0 5.0 V –0.3 1.0 × Supply + 0.3 V VBUS input –0.3 7 V Operating ambient temperature (TA) –40 85 °C –40 125 °C –40 150 °C –40 85 °C Main battery supply voltage (2) Where supply represents the voltage applied to the power supply pin associated with the input (4) Voltage on any input (3) Operating junction temperature (TJ) Absolute maximum rating Operating junction temperature (TJ) For parametric compliance Ambient temperature for parametric compliance With maximum 125°C as junction temperature (TJ) (1) (2) (3) (4) Stresses beyond those listed under absolute maximum ratings may cause permanent damage to the device. The product will have negligible reliability impact if voltage spikes of 5.2 V occur for a total (cumulative over lifetime) duration of 10 milliseconds. Excepts VBAT input pads and VBUS pad. Supply equals the reference level of each pin. 4.2 Handling Ratings Tstg Storage temperature range VESD Electrostatic discharge (ESD) performance: (1) (2) NOM MIN MAX UNIT –55 125 °C –1 1 kV –250 250 V Human Body Model (HBM), per ANSI/ESDA/JEDEC JS001 (1) Charged Device Model (CDM), per JESD22-C101 (2) All pins JEDEC document JEP155 states that 500-V HBM allows safe manufacturing with a standard ESD control process. JEDEC document JEP157 states that 250-V CDM allows safe manufacturing with a standard ESD control process. 4.3 Recommended Operating Conditions over operating free-air temperature range (unless otherwise noted) PARAMETER MIN TYP MAX UNIT 2.7 3.6 4.5 V 7 V Power and USB Path VBAT/VBAT.USB main battery supply voltage and VBUS 0 HFCLKIN Input Clock Frequency 1/tC(HFCLKIN) 19.2, 26 or 38.4 Pulse duration, HFCLKIN low or high (BP) 0.45 × tC(HFCLKIN) HFCLKIN stability MHz 0.55 × tC(HFCLKIN) ns –150 150 ppm Rise time of HFCLKIN (BP) 0 5 ns Fall time of HFCLKIN (BP) 0 5 ns 1.45 Vpp 1.85 (1) Vpp –25 dBc Input dynamic range LP/HP (sine wave) 0.3 BP/PD (square wave) 0.7 0 Harmonic content of input signal (with 0.7-VPP amplitude): Second component - LP/HP (sine wave) VIH voltage input high (1) (1) 10 BP (square mode) 0.65 × IO.1P8 V Bypass input maximum voltage is the same as the maximum voltage provided for the I/O interface (IO.1P8V). Specifications Copyright © 2010–2014, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: TPS65921 TPS65921 www.ti.com SWCS048G – MARCH 2010 – REVISED SEPTEMBER 2014 Recommended Operating Conditions (continued) over operating free-air temperature range (unless otherwise noted) PARAMETER VIL voltage input low (1) MIN TYP BP (square mode) MAX 0.35 × IO.1P8 UNIT V Crystal Oscillator Parallel resonance crystal frequency 1/tC(32KHZ) 32.768 Input voltage, Vin (normal mode) 1.0 Crystal tolerance at room temperature, 25°C Crystal tolerance versus temperature range (–40°C to 85°C) Crystal quality factor 1.3 kHz 1.55 V –30 30 ppm –200 200 ppm 13k 54k Maximum drive power Operating drive level 1 µW 0.5 µW 32KXIN 32KXOUT duty cycle Crystal 40% 60% Square wave 45% 55% 32-kHz clock rise/fall time Square wave with capacitive load equivalent to 30 pF (2) VIH voltage input high Square wave in bypass mode VIL voltage input low Square wave in bypass mode (2) 0.1 × tC(32KHZ) 0.65 × VBRTC µs V 0.35 × VBRTC V DC-DC Converters and LDOs VDD1.IN, VDD2.IN, VDD3.IN input voltage range for step-down converter VDD1, VDD2, VIO VMMC1.IN input voltage range for LDO VMMC1 2.7 3.6 4.5 V Maximum (2.7, output voltage selected + 250 mV) 3.6 4.5 V VDAC.IN input voltage range for LDO VDAC 2.7 3.6 4.5 V VAUX12S.IN input voltage range for LDO VAUX2 Maximum (2.7, output voltage selected + 250 mV) 3.6 4.5 V VINT.IN input voltage range for LDO VINTANA1, VINTANA2, VINTDIG and VRTC Maximum (2.7, output voltage selected + 200 mV) 3.6 4.5 V VPLLA3R.IN input voltage range for LDO VPLL1 2.7 3.6 VDD1.OUT ouput voltage range for VDD1 step-down converter 0.6 VDD2.OUT ouput voltage range for VDD2 step-down converter 0.6 VIO.OUT ouput voltage range for VIO step-down converter 4.5 V 1.45 V 1.5 V 1.8/1.85 V VMMC1.OUT output voltage range for LDO VMMC1 1.85 3.15 V VDAC.OUT output voltage range for LDO VDAC 1.2 1.8 V VAUX2.OUT output voltage range for LDO VAUX2 1.3 2.8 V VPLL1.OUT output voltage range for LDO VPLL1 1.0 1.8 V VINTANA1.OUT output voltage for LDO VINTANA1 1.5 VINTANA2.OUT output voltage for LDO VINTANA2 V 2.5/2.75 V VINTUSB1P5V.OUT output voltage for LDO VINTUSB1P5 1.35 1.5 1.65 V VINTUSB1P8V.OUT output voltage for LDO VINTUSB1P8 1.62 1.8 1.98 V VUSB3P1V.OUT output voltage for LDO VUSB3P1 3.1 VINTDIG.OUT output voltage range for LDO VINTDIG VRTC.OUT output voltage range Normal mode Backup mode V 1.35 1.5 1.65 V 1.45 1.5 1.55 V 1.0 1.3 1.55 V 9 10 12.5 pF External Components Crystal: Nominal load cap on each oscillator input CXIN and CXOUT (3) (2) (3) Bypass input maximum voltage is the same as the maximum voltage provided for the I/O interface (IO.1P8V). Nominal load capacitor on each oscillator input defined as CXIN = CXOUT = Cosc × 2 – (Cint + Cpin). Cosc is the load capacitor defined in the crystal oscillator specification, Cint is the internal capacitor, and Cpin is the parallel input capacitor. Specifications Copyright © 2010–2014, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: TPS65921 11 TPS65921 SWCS048G – MARCH 2010 – REVISED SEPTEMBER 2014 www.ti.com Recommended Operating Conditions (continued) over operating free-air temperature range (unless otherwise noted) MAX UNIT Crystal ESR (4) PARAMETER MIN 90 kΩ Crystal shunt capacitance, CO 1 pF 1.3 µH 0.1 Ω Value External coil for VDD1 External coil for VDD2 and VIO TYP 0.7 1 DCR Saturation current for TPS65921B 1.8 Saturation current for TPS65921B1 2.1 Value 0.7 A A 1 DCR 1.3 0.1 Saturation current 900 External capacitor for Value (5) VDD1, VDD2, VIO connected to VDD1.IN, VDD2.IN, VDD3.IN, ESR at switching frequency and VDD1.OUT, VDD2.OUT, VIO.OUT µH Ω mA 5 10 1 μF 20 mΩ 2.7 µF 600 mΩ 6.5 µF 600 mΩ Filtering capacitor for VMCC1.IN, VDAC.IN, VAUX12S.IN, VPPLA3R.IN, VINT.IN, VBAT.USB, VMMC1.OUT, VDAC.OUT, VAUX2.OUT, VPPL1, VINTDIG, VINTANA1, VINTANA2, VRRTC Value 0.3 ESR 20 Filtering capacitor for VUSB3V1, VUSB1V8, VUSB1V5 Value 0.5 ESR 20 Connected from VREF to REFGND 0.3 1 2.7 µF Filtering capacitor (Connected between VBUS.CPOUT and GND) and called CVBUS 1.41 (The minimum can be reduced to 1.2 µF, provided the charge-pump is only used to supply VUSB3V1 LDO) 4.7 6.5 µF Flying capacitor (Connected between CP.CAPP and CP.CAPM) called CVBUS.FC 1.32 (The minimum can be reduced to 1.2 µF, provided the charge-pump is only used to supply VUSB3V1 LDO) 2.2 3.08 µF 20 mΩ Filtering capacitor for voltage reference External capacitor for charge pump and VBUS 1 15 2.2 Filtering capacitor ESR for CVUSB.IN and CVBUS.FC Filtering capacitor CVBUS.IN External capacitor for power reference filter (4) Filtering capacitor 12 10 15 µF 0.3 1 2.7 µF The crystal motional resistance Rm relates to the equivalent series resistance (ESR) by the following formula: æ C ö ESR = Rm ç 1 + 0 ÷ è CL ø (5) 5 2 Measured with the load capacitance specified by the crystal manufacturer. In fact, if CXIN = CXOUT = 10 pF, then CL = 5 pF. Parasitic capacitance from the package and board must also be considered. For TPS65921B1, in case of OMAP frequency ≥ 1 GHz, replace 10-µF capacitor on VDD1.OUT by two 22-µF capacitors. One capacitor must be placed near the PMIC and one near the OMAP device. Specifications Copyright © 2010–2014, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: TPS65921 TPS65921 www.ti.com 4.4 SWCS048G – MARCH 2010 – REVISED SEPTEMBER 2014 Thermal Resistance Characteristics for ZQZ Package °C/W (1) (2) AIR FLOW (m/s) (3) NAME DESCRIPTION RΘJC Junction-to-case 20 0.00 RΘJB Junction-to-board 17 0.00 RΘJA Junction-to-free air 46 0.00 PsiJT Junction-to-package top 0.3 0.00 PsiJB Junction-to-board 16 0.00 (1) (2) (3) °C/W = degrees Celsius per watt. These values are based on a JEDEC-defined 2S2P system (with the exception of the Theta JC [RΘJC] value, which is based on a JEDEC-defined 1S0P system) and will change based on environment as well as application. For more information, see these EIA/JEDEC standards: • JESD51-2, Integrated Circuits Thermal Test Method Environmental Conditions - Natural Convection (Still Air) • JESD51-3, Low Effective Thermal Conductivity Test Board for Leaded Surface Mount Packages • JESD51-7, High Effective Thermal Conductivity Test Board for Leaded Surface Mount Packages • JESD51-9, Test Boards for Area Array Surface Mount Package Thermal Measurements Power dissipation of 2 W and an ambient temperature of 70ºC is assumed. m/s = meters per second. 4.5 Crystal Oscillator When selecting a crystal, the system designer must consider the temperature and aging characteristics of a crystal versus the user environment and expected lifetime of the system. The following table lists the switching characteristics of the oscillator. Table 4-1. Base Oscillator Switching Characteristics PARAMETER Crystal: Internal capacitor on each input (Cint) MIN TYP MAX UNIT 8 10 12 pF 1.0 pF Crystal: Parallel input capacitance (Cpin) Parallel resonance crystal frequency 32.768 Pin-to-pin capacitance 1.6 Maximum drive power Operating drive level Crystal quality factor tSX 13k kHz 1.8 pF 1.0 µW 0.5 µW 54k Start-up time, all conditions 500 Start-up time, 25°C 360 IDDA Active current consumption (configured through the LOJIT bit) IDDQ Current consumption High jitter mode 1.8 Low jitter mode 0.8 Low battery mode (1.2 V) 1 Startup 8 ms µA µA Specifications Copyright © 2010–2014, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: TPS65921 13 TPS65921 SWCS048G – MARCH 2010 – REVISED SEPTEMBER 2014 4.6 www.ti.com Clock Slicer MODE (1) PARAMETER MIN TYP MAX 4.2 5 5.7 pF Internal coupling capacitor Parallel input resistance over 10 to 40 MHz range Parallel input capacitance over 10 to 40 MHz range Output duty cycle with VIN = 0.2 VPP Propagation delay Power supply rejection ratio sideband (1% RMS of supply voltage added sine 5 MHz) Current consumption at maximum input of 40 MHz UNIT LP 15 60 kΩ HP 30 75 kΩ BP/PD 1 100 MΩ LP 0.3 0.8 HP 0.3 0.7 BP/PD 0.08 1 BP/PD 40 LP/HP 40% pF 230 50% 60% LP 4 18 HP 3 15 BP/PD 0.2 3 LP/HP 26 ns dBc LP 175 µA HP 235 µA BP/PD 39 nA Power-up time LP/HP 1 ms Output peak-to-peak jitter with an input peak-to-peak jitter < 0.1% and for jitter frequency below 300 kHz LP/HP 0.2% Output peak-to-peak jitter with an input peak-to-peak jitter < 0.1% and for jitter frequency above 300 kHz LP/HP 1.0% (1) Bypass input maximum voltage is the same as the maximum voltage provided for the I/O interface. 4.7 32KCLKOUT Output Clock NAME PARAMETER DESCRIPTION f Frequency CL Load capacitance MIN TYP MAX UNIT 32.768 kHz 40 VOUT Output clock voltage, depending on output reference level IO.1P8 VOH Voltage output high VOUT – 0.45 VOUT V VOL Voltage output low 0 0.45 V (1) 1.8 pF (1) V The output voltage depends on output reference level which is IO.1P8. The following table details the output clock timing characteristics. The following figure shows the 32KCLKOUT output clock waveform. NAME CK0 PARAMETER DESCRIPTION MIN TYP MAX UNIT 1/tC(32KCLKOUT) Frequency tW(32KCLKOUT) Pulse duration, 32KCLKOUT low or high CK2 tR(32KCLKOUT) Rise time, 32KCLKOUT (1) 16 ns CK3 tF(32KCLKOUT) Fall time, 32KCLKOUT (1) 16 ns SSB Phase Noise At 1-kHz offset from the carrier –110 dBc/Hz CK1 (1) 32.768 kHz 0.40 × 0.60 × tC(32KCLKOUT) tC(32KCLKOUT) ns The output capacitive load is equivalent to 30 pF. CK0 CK1 CK1 32KCLKOUT SWCS048-001 Figure 4-1. 32KCLKOUT Output Clock 14 Specifications Copyright © 2010–2014, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: TPS65921 TPS65921 www.ti.com 4.8 SWCS048G – MARCH 2010 – REVISED SEPTEMBER 2014 HFCLKOUT Output Clock The following table summarizes the HFCLKOUT output clock electrical characteristics. Table 4-2. HFCLKOUT Output Clock Electrical Characteristics NAME PARAMETER DESCRIPTION MIN TYP MAX UNIT f Frequency CL Load capacitance VOUT Output clock voltage, depending on output reference level IO.1P8 VOH Voltage output high VOUT – 0.45 VOUT V Voltage output low 0 0.45 V VOL (1) 19.2, 26, or 38.4 MHz 30 pF 1.8 (1) V The output voltage depends on output reference level which is IO.1P8. The following table details the HFCLKOUT output clock timing characteristics. Table 4-3. HFCLKOUT Output Clock Switching Characteristics NAME CHO1 CHO2 PARAMETER DESCRIPTION 1/tC(HFCLKOUT) Frequency tW(HFCLKOUT) Pulse duration, HFCLKOUT low or high MIN TYP MAX UNIT 19.2, 26, or 38.4 MHz 0.4 × 0.6 × tC(HFCLKOUT) tC(HFCLKOUT) ns Rise time, HFCLKOUT, low drive (1) CHO3 tR(HFCLKOUT) - Load: 5 pF 3.8 - Load: 10 pF 5.5 ns Rise time, HFCLKOUT, high drive (1) - Load: 10 pF 2.9 - Load: 20 pF 5.0 Fall time, HFCLKOUT, low drive (1) CHO4 (1) tF(HFCLKOUT) - Load: 5 pF 3.5 - Load: 10 pF 5.1 ns Fall time, HFCLKOUT, high drive (1) - Load: 10 pF 2.7 - Load: 20 pF 4.7 Low drive: MISC_CFG[CLK_HF_DRV] = 0 (default) High drive: MISC_CFG[CLK_HF_DRV] = 1 Figure 4-2 shows the HFCLKOUT output clock waveform. CHO1 CHO1 CHO2 HFCLKOUT SWCS048-002 Figure 4-2. HFCLKOUT Output Clock Specifications Copyright © 2010–2014, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: TPS65921 15 TPS65921 SWCS048G – MARCH 2010 – REVISED SEPTEMBER 2014 www.ti.com Figure 4-3 shows the 32KCLKOUT and HFCLKOUT clock stabilization time. XIN Starting_Event Tstartup CLK32KOUTEN CLK32KOUT CLKEN Delay1 HFCLKOUTEN HFCLKOUT Delay2 NRESPWRON SWCS048-003 A. Tstartup, Delay1, Delay2, and Delay3 depend on the boot mode (See Power timing chapter). Figure 4-3. 32KCLKOUT and HFCLKOUT Clock Stabilization Time HFCLKIN HFCLKOUT SWCS048-004 Figure 4-4. HFCLKOUT Behavior 16 Specifications Copyright © 2010–2014, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: TPS65921 TPS65921 www.ti.com 4.9 SWCS048G – MARCH 2010 – REVISED SEPTEMBER 2014 VDD1 DC-DC Converter MIN TYP MAX UNIT Input voltage range PARAMETER COMMENTS 2.7 3.6 4.5 V Output voltage 0.6 Output voltage step 0.6 to 1.45 V Output accuracy (1) 0.6 to < 0.8 V –6% 0.8 to 1.45 V –5% 12.5 Switching frequency Conversion efficiency (2) Output current 1.45 6% 5% 3.2 IO = 10 mA, sleep 82% 100 mA < IO < 400 mA 85% 400 mA < IO < 600 mA 80% 600 mA < IO < 800 mA 75% 1.2 A Active mode Output Voltage 1.2 V to 1.45 V for TPS65921B1 1.4 A Sleep mode 10 mA 3 Sleep, unloaded 30 Active, unloaded, not switching Short-circuit current VIN = VMAX Load regulation 0 < IO < IMAX Transient load regulation at 1.2 A (3) IO = 10 mA to (IMAX/3) + 10 mA, maximum slew rate is IMAX/3/100 ns 2.2 –65 300 mVPP ac input, 10-μs rise and fall time Start-up time Recovery time 50 From sleep to on with constant load Slew rate (rising or falling) (4) 4 A 20 mV 50 mV 10 mV 10 mV ms 0.25 1 < 10 100 µs 8 16 mV/µs mV Active (PWM and PSM) –10 10 Sleep (PFM) –2% 2% Current limit for PWM/PSM mode switch. PSM is below this limit, and PWM is above this limit. Active mode 150 200 Overshoot Softstart Output pulldown resistance In Off mode Output ripple (1) (2) (3) (4) µA 300 Line regulation Transient line regulation MHz Active mode Output voltage 0.6 V to 1.45 V for TPS65921B/TPS65921B1 Off at 30°C Ground current (IQ) V mV mA 5% 500 700 Ω Accuracy includes all variations (line and load regulations, line and load transients, temperature, and process). VBAT = 3.6 V, VDD1 = 1.2 V, Fs = 3.2 MHz, L = 1 μH, LDCR = 100 mΩ, C = 10 μF, ESR = 10 mΩ For negative transient load, the output voltage must discharge completely and settle to its final value within 100 ms. Transient load is specified at Vout max with a ±50% external capacitor accuracy and includes temperature and process variation. Load current varies proportional to the output voltage. The slew rate is for increasing and decreasing voltages and the load current is 1.1 A. Specifications Copyright © 2010–2014, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: TPS65921 17 TPS65921 SWCS048G – MARCH 2010 – REVISED SEPTEMBER 2014 www.ti.com 4.10 VDD2 DC-DC Converter MIN TYP MAX UNIT Input voltage range PARAMETER COMMENTS 2.7 3.6 4.5 V Output voltage 0.6 1.0 1.5 Output voltage step 0.6 to 1.45 V 12.5 Output accuracy (1) 0.6 to < 0.8 V –6% 0.8 to 1.45 V –5% Switching frequency Conversion efficiency (2) Output current Ground current (IQ) 6% 5% 3.2 IO = 10 mA, sleep 82% 100 mA < IO < 300 mA 85% 300 mA < IO < 500 mA 80% 600 mA Sleep mode 10 mA Off at 30°C 1 Sleep, unloaded 30 Active, unloaded, not switching VIN = VMAX Load regulation 0 < IO < IMAX Transient load regulation (3) IO = 10 mA to (IMAX/3) + 10 mA, maximum slew rate is IMAX/3/100 ns 50 Transient line regulation 300 mVPP ac input, 10-μs rise and fall time Output pulldown resistance In OFF mode –65 Start-up time From sleep to on with constant load Slew rate (rising or falling) (4) 4 A 20 mV 50 mV 10 mV 10 mV 500 700 Ω 0.25 1 ms 25 100 µs 8 16 mV/µs mV Active (PWM and PSM) –10 10 Sleep (PFM) –2% 2% Current limit for PWM/PSM mode switch. PSM is below this limit, and PWM is above this limit. Active mode 150 200 Overshoot Softstart (1) (2) (3) (4) 18 µA 300 1.2 Line regulation Output ripple MHz Active mode Short-circuit current Recovery time V mV mA 5% Accuracy includes all variations (line and load regulations, line and load transients, temperature, and process). VBAT = 3.8 V, VDD1 = 1.3 V, Fs = 3.2 MHz, L = 1 μH, LDCR = 100 mΩ, C = 10 μF, ESR = 10 mΩ Output voltage must be able to discharge the load current completely and settle to its final value within 100 μs. Load current varies proportional to the output voltage. The slew rate is for increasing and decreasing voltages and the load current is 1.1 A. Specifications Copyright © 2010–2014, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: TPS65921 TPS65921 www.ti.com SWCS048G – MARCH 2010 – REVISED SEPTEMBER 2014 4.11 VIO DC-DC Converter PARAMETER COMMENTS Input voltage range Output voltage MIN TYP MAX UNIT 2.7 3.6 4.5 V 1.8 1.85 (1) Output accuracy DC accuracy only –3% 3% Including all variations (line and load regulations, line and load transients, temperature, and process) –4% 4% Switching frequency Conversion efficiency (2) Output current 3.2 IO = 10 mA, sleep 85% 100 mA < IO < 400 mA 85% 400 mA < IO < 600 mA 80% Load regulation 700 mA Sleep mode 10 mA 1 Sleep, unloaded 30 50 300 0 < IO < IMAX 20 mV 10 mV 50 mV 10 mV 0.25 1 ms < 10 100 µs 8 16 mV/µs mV Transient load regulation IO = 10 mA to (IMAX/3) + 10 mA, maximum slew rate is IMAX/3/100 ns Transient line regulation 300 mVPP ac input, 10-μs rise and fall time –65 Start-up time From sleep to on with constant load Slew rate (rising or falling) 4 Active (PWM and PSM) –10 10 Sleep (PFM) –2% 2% Current limit for PWM/PSM mode switch. PSM is below this limit, and PWM is above this limit. Active mode 150 200 Overshoot Softstart Output pulldown resistance In Off mode Output ripple (1) (2) µA Active, unloaded, not switching Line regulation Recovery time MHz On mode Off at 30°C Ground current (IQ) V mA 5% 500 700 Ω This voltage is tuned according to the platform and transient requirements. VBAT = 3.8 V, VIO = 1.8 V, Fs = 3.2 MHz, L = 1 μH, LDCR = 100 mΩ, C = 10 μF, ESR = 10 mΩ Specifications Copyright © 2010–2014, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: TPS65921 19 TPS65921 SWCS048G – MARCH 2010 – REVISED SEPTEMBER 2014 www.ti.com 4.12 VMMC1 Low Dropout Regulator PARAMETER VIN Input voltage VOUT Output voltage including all variations (line and load regulations, line and load transients, temperature, and process) IOUT Rated output current TEST CONDITIONS MIN TYP MAX UNIT 2.7 3.6 5.5 V 1.7945 2.7645 2.91 3.0555 1.85 2.85 3.0 3.15 1.9055 2.9355 3.09 3.2445 V On mode 220 mA Low-power mode 5 DC load regulation On mode: 0 < IO < IMAX 20 mV DC line regulation On mode, VIN = VINmin to VINmax at IOUT = IOUTmax 3 mV Turn-on time IOUT = 0, CL = 1 μF (within 10% of VOUT) 100 µs Wake-up time Full load capability 10 µs Ripple rejection f < 10 kHz 50 10 kHz < f < 100 kHz 40 f = 1 MHz 25 dB VIN = VOUT + 1 V, IO = IMAX Ground current On mode, IOUT = 0 70 On mode, IOUT = IOUTmax 290 Low-power mode, IOUT = 0 17 Low-power mode, IOUT = 5 mA 20 Off mode at 55°C VDO Dropout voltage (1) Transient load regulation (2) Transient line regulation (1) (2) 20 1 On mode, IOUT = IOUTmax ILOAD: IMIN – IMAX Slew: 40 mA/μs –40 VIN drops 500 mV Slew: 40 mV/μs Overshoot Softstart Pulldown resistance Default in off mode µA 250 mV 40 mV 10 mV 3% 250 320 450 Ω For nominal output voltage Transient load regulation is always included in the overall accuracy of the selected output voltage option. For voltage levels that have a tighter output voltage specification than the transient load regulation, follow the output voltage specification. Specifications Copyright © 2010–2014, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: TPS65921 TPS65921 www.ti.com SWCS048G – MARCH 2010 – REVISED SEPTEMBER 2014 4.13 VDAC Low Dropout Regulator PARAMETER VIN Input voltage VOUT Output voltage including all variations (line and load regulations, line and load transients, temperature, and process) IOUT Rated output current TEST CONDITIONS MIN TYP MAX UNIT 2.7 3.6 4.5 V 1.164 1.261 1.746 12 1.3 1.8 1.236 1.339 1.854 V On mode 70 Low-power mode 5 DC load regulation On mode: 0 < IO < IMAX 20 mV DC line regulation On mode, VIN = VINmin to VINmax at IOUT = IOUTmax 3 mV Turn-on time IOUT = 0, CL = 1 μF (within 10% of VOUT) 100 µs Wake-up time Full load capability 10 µs Ripple rejection f < 20 kHz 65 20 kHz < f < 100 kHz 45 f = 1 MHz 40 mA dB VIN = VOUT + 1 V, IO = IMAX Output noise Ground current 200 Hz < f < 5 kHz 400 5 kHz < f < 400 kHz 125 400 kHz < f < 10 MHz 50 On mode, IOUT = 0 150 On mode, IOUT = IOUTmax 350 Low-power mode, IOUT = 0 15 Low-power mode, IOUT = 1 mA 25 Off mode at 55°C VDO Dropout voltage (1) Transient load regulation (2) Transient line regulation (1) (2) Slew: 60 mA/μs –40 VIN drops 500 mV Slew: 40 mV/μs Overshoot Softstart Pull down resistance Default in off mode µA 1 On mode, IOUT = IOUTmax ILOAD: IMIN – IMAX nV/√Hz 250 mV 40 mV 10 mV 3% 250 320 450 Ω For nominal output voltage Transient load regulation is always included in the overall accuracy of the selected output voltage option. For voltage levels that have a tighter output voltage specification than the transient load regulation, follow the output voltage specification. Specifications Copyright © 2010–2014, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: TPS65921 21 TPS65921 SWCS048G – MARCH 2010 – REVISED SEPTEMBER 2014 www.ti.com 4.14 VAUX2 Low Dropout Regulator PARAMETER VIN TEST CONDITIONS Input voltage VOUT Output voltage including all variations (line and load regulations, line and load transients, temperature, and process) IOUT Rated output current MIN TYP MAX UNIT 2.7 3.6 4.5 V –3% 1.3 1.5 1.7 1.8 1.9 2.0 2.1 2.2 2.3 2.4 2.5 2.8 +3% V On mode 100 mA Low-power mode 5 DC load regulation On mode: 0 < IO < IMAX 20 mV DC line regulation On mode, VIN = VINmin to VINmax at IOUT = IOUTmax 3 mV Turn-on time IOUT = 0, CL = 1 μF (within 10% of VOUT) 100 µs Wake-up time Full load capability 10 µs Ripple rejection f < 10 kHz 50 10 kHz < f < 100 kHz 40 f = 1 MHz 30 dB VIN = VOUT + 1 V, IO = IMAX Ground current On mode, IOUT = 0 70 On mode, IOUT = IOUTmax 170 Low-power mode, IOUT = 0 17 Low-power mode, IOUT = 5 mA 20 Off mode at 55°C VDO Dropout voltage (1) Transient load regulation (2) Transient line regulation Overshoot Pulldown resistance (1) (2) 22 1 On mode, IOUT = IOUTmax ILOAD: IMIN – IMAX Slew: 40 mA/μs µA –40 VIN drops 500 mV Slew: 40 mV/μs Softstart 250 mV 40 mV 10 mV 3% Default in off mode 250 Configurable as HighZ in off mode 100 320 450 Ω MΩ For nominal output voltage Transient load regulation is always included in the overall accuracy of the selected output voltage option. For voltage levels that have a tighter output voltage specification than the transient load regulation, follow the output voltage specification. Specifications Copyright © 2010–2014, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: TPS65921 TPS65921 www.ti.com SWCS048G – MARCH 2010 – REVISED SEPTEMBER 2014 4.15 VPLL1 Low Dropout Regulator PARAMETER VIN VOUT IOUT MIN TYP MAX UNIT Input voltage TEST CONDITIONS 2.7 3.6 4.5 V Output voltage including all variations (line and load regulations, line and load transients, temperature, and process) 0.97 1.0 1.03 1.164 1.2 1.236 1.261 1.3 1.339 1.746 1.8 1.854 V On mode 40 Low-power mode 5 DC load regulation On mode: 0 < IO < IMAX 20 mV DC line regulation On mode, VIN = VINmin to VINmax at IOUT = IOUTmax 3 mV Turn-on time IOUT = 0, CL = 1 μF (within 10% of VOUT) 100 µs Wake-up time Full load capability 10 µs Rated output current Ripple rejection f < 10 kHz 50 10 kHz < f < 100 kHz 40 f = 1 MHz 30 mA dB VIN = VOUT + 1 V, IO = IMAX Ground current On mode, IOUT = 0 70 On mode, IOUT = IOUTmax 110 Low-power mode, IOUT = 0 15 Low-power mode, IOUT = 1 mA 16 Off mode at 55°C VDO Dropout voltage (1) Transient load regulation (2) Transient line regulation (1) (2) 1 On mode, IOUT = IOUTmax ILOAD: IMIN – IMAX Slew: 60 mA/μs –40 VIN drops 500 mV Slew: 40 mV/μs Overshoot Softstart Pulldown resistance Default in off mode µA 250 mV 40 mV 10 mV 3% 250 320 450 Ω For nominal output voltage Transient load regulation is always included in the overall accuracy of the selected output voltage option. For voltage levels that have a tighter output voltage specification than the transient load regulation, follow the output voltage specification. Specifications Copyright © 2010–2014, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: TPS65921 23 TPS65921 SWCS048G – MARCH 2010 – REVISED SEPTEMBER 2014 www.ti.com 4.16 Internal LDOs Internal LDOs (except USBCP, which is a boost) are described in following table. NAME USAGE TYPE VOLTAGE RANGE (V) DEFAULT VOLTAGE (V) MAXIMUM CURRENT VINTANA1 Internal LDO 1.5 1.5 50 mA VINTANA2 Internal LDO 2.5, 2.75 2.75 250 mA VINTDIG Internal LDO 1.5 1.5 100 mA USBCP Internal Charge pump 5 5 100 mA VUSB1V5 Internal LDO 1.5 1.5 30 mA VUSB1V8 Internal LDO 1.8 1.8 30 mA VUSB3V1 Internal LDO 3.1 3.1 14 mA VRRTC Internal LDO 1.5 1.5 30 mA VBRTC Internal LDO 1.3 1.3 100 μA 4.17 Voltage References TEST CONDITONS MIN TYP MAX UNIT Internal bandgap reference voltage PARAMETER On mode, measured through TESTV terminal 1.272 1.285 1.298 V Reference voltage (VREF terminal) On mode 0.7425 0.75 0.7575 V Retention mode reference On mode 0.492 0.5 0.508 V 0.9 1.0 1.1 µA IREF NMOS sink Ground current Output spot noise Bandgap 25 IREF block 20 Preregulator 15 VREF buffer 10 Retention reference buffer 10 100 Hz P-weighted noise (rms) 20 Hz to 100 kHz 200 nV (rms) 150 nV (rms) 2.2 µV IBIAS trim bit LSB Ripple rejection μV/√Hz 1 A-weighted noise (rms) Integrated noise µA < 1 MHz from VBAT 0.1 µA 1 ms 60 dB Start-up time 4.18 Battery Threshold Levels (1) PARAMETER TEST CONDITIONS MIN TYP MAX UNIT Main battery charged threshold VMBCH Measured on VBAT terminal 3.14 3.2 3.3 V Main battery low threshold VMBLO Measured on VBAT terminal (monitored on terminal ONNOFF) 2.55 2.7 2.8 V Main battery high threshold VMBHI Measured on terminal VBAT 2.5 2.65 3.0 V Measured on terminal VBAT 1.6 1.8 2.6 V Measured on terminal VBAT in slave mode 1.95 2.1 2.6 V Batteries not present threshold VBNPR (1) 24 Backup ball must always be tied to ground. Specifications Copyright © 2010–2014, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: TPS65921 TPS65921 www.ti.com SWCS048G – MARCH 2010 – REVISED SEPTEMBER 2014 4.19 Power Consumption The typical power consumption is obtained in the nominal operating conditions and with the TPS65921 standalone. MODE TYPICAL CONSUMPTION DESCRIPTION C021 boot mode WAIT-ON ACTIVE No Load HFCLK = 26 MHz ACTIVE No Load HFCLK = 38.4 MHz The phone is apparently off for the user, a main battery is present and well-charged. The RTC registers, registers in backup domain are maintained. The wakeup capabilities (like the PWRON button) are available. VBAT = 3.8 V and Quartz present Subsystem is powered by the main battery. All supplies are enabled with no external load, internal reset is released, and the associated processor is running. USB interrupt handler consumes 433 µA (typ). VBAT = 3.8 V The main battery powers subsystem. Selected supplies are enabled but in lowconsumption mode and associated processor is in low-power mode. VBAT = 3.8 V SLEEP No Load 64 µA × 3.8 V = 243.2 μW (2995 + 433) µA × 3.8 V = 13026 µW (3879 + 433) µA × 3.8 V = 16386 µW 492 µA × 3.8 V = 1870 µW 4.20 USB Charge Pump PARAMETER VIN Input voltage VO Output voltage Iload Rated output current TEST CONDITIONS MIN TYP MAX UNIT On mode: VIN = VBAT 2.7 3.6 4.5 V 4.625 5.0 5.25 V VBAT > 3 V at VBUS 0 100 2.7 V < VBAT < 3 V, at VBUS 0 50 Efficiency ILOAD = 100 mA, VBAT = 3.6 V 55% Setting time ILOADmax/2 to ILOADmax in 5 μs 100 400 µs 3 ms 350 450 mA 250 500 mV 250 350 mV 300 350 Start-up time Short-circuit limitation current 250 DC load regulation ILOADmin to ILOADmax 3.0 V to VBATmax DC line regulation ILOAD = 100 mA IVBUS_5Vmax/2 – IVBUS_5Vmax 50 μs, C = 2 × 4.7 μF Transient load regulation mV 0 – IVBUS_5Vmax/2, 50 μs, C = 2 × 4.7 μF Transient line regulation VBATmin to VBATmax in 50 μs, C = 2 × 4.7 μF mA 350 300 350 mV Specifications Copyright © 2010–2014, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: TPS65921 25 TPS65921 SWCS048G – MARCH 2010 – REVISED SEPTEMBER 2014 www.ti.com 4.21 Hot-Die Detection and Thermal Shutdown PARAMETER THRESHOLD (NOMINAL) (1) Thermal hot-die selection THERM_HDSEL[1:0] Threshold (nominal) (1) Rising temp: 120°C 00 (1st hot-die threshold) Falling temp: 111°C Rising temp: 130°C 01 (2nd hot-die threshold) Falling temp: 121°C Rising temp: 140°C 10 (3rd hot-die threshold) Falling temp: 131°C 11 (4th hot-die threshold) Not used Threshold (nominal) (1) - Rising temp: 150°C Thermal shutdown enable (1) Threshold (nominal) (1) - Falling temp: 140°C The minimum/maximum range is ±5% 4.22 USB 4.22.1 LS/FS Single-Ended Receivers PARAMETER COMMENTS MIN TYP MAX UNIT 0 2 ns USB Single-Ended Receivers Skew between VP and VM SKWVP_VM Driver outputs unloaded Single-ended hysteresis VSE_HYS 50 High (driven) VIH 2 Low VIL Switching threshold VTH –2 mV V 0.8 0.8 V 2 V MAX UNIT 4.22.2 LS/FS Differential Receiver PARAMETER COMMENTS MIN Differential input sensitivity VDI Ref. USB2.0 200 Differential common mode range VCM Ref. USB2.0 0.8 TYP mV 2.5 V MAX UNIT 4.22.3 LS/FS Transmitter PARAMETER COMMENTS MIN TYP Low VOL Ref. USB2.0 0 300 mV High (driven) VOH Ref. USB2.0 2.8 3.6 V Output signal crossover voltage VCRS Ref. USB2.0, covered by eye diagram 1.3 2.0 V Rise time TFR 75 300 ns Fall time TFF 75 300 ns Differential rise and fall time matching TFRFM 80% 125% Low-speed data rate TFDRATE Ref. USB2.0, covered by eye diagram 1.4775 1.5225 Mbps - To next transition TDJ1 Ref. USB2.0, covered by eye diagram –25 25 ns - For paired transitions TDJ2 –10 10 Ref. USB2.0, covered by eye diagram Source jitter total (including frequency tolerance): 26 Specifications Copyright © 2010–2014, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: TPS65921 TPS65921 www.ti.com SWCS048G – MARCH 2010 – REVISED SEPTEMBER 2014 PARAMETER Source SE0 interval of EOP TFEOPT Downstream eye diagram Differential common mode range COMMENTS MIN Ref. USB2.0, covered by eye diagram TYP MAX UNIT 1.25 1.5 µs 0.8 2.5 V MAX UNIT Ref. USB2.0, covered by eye diagram VCM Ref. USB2.0 4.22.4 FS Transmitter PARAMETER COMMENTS MIN TYP Low VOL Ref. USB2.0 0 300 mV High (driven) VOH Ref. USB2.0 2.8 3.6 V Output signal crossover voltage VCRS Ref. USB2.0, covered by eye diagram 1.3 2.0 V Rise time TFR Ref. USB2.0 4 20 ns Fall time TFF Ref. USB2.0 4 20 ns Differential rise and fall time matching TFRFM Ref. USB2.0, covered by eye diagram 90% 111.11% Driver output resistance ZDRV Ref. USB2.0 28 44 Ω Full-speed data rate TFDRATE Ref. USB2.0, covered by eye diagram 11.97 12.03 Mbps - To next transition TDJ1 Ref. USB2.0, covered by eye diagram –2 2 ns - For paired transitions TDJ2 –1 1 Source SE0 interval of EOP TFEOPT 160 175 ns MAX UNIT Source jitter total (including frequency tolerance): Downstream eye diagram Ref. USB2.0, covered by eye diagram Ref. USB2.0, covered by eye diagram Upstream eye diagram 4.22.5 HS Differential Receiver PARAMETER COMMENTS MIN TYP High-speed squelch detection VHSSQ threshold (differential signal amplitude) Ref. USB2.0 100 150 mV High-speed disconnect detection threshold (differential signal amplitude) Ref. USB2.0 525 625 V VHSDSC High-speed differential input signaling levels Ref. USB2.0, specified by eye pattern templates High-speed data signaling VHSCM common mode voltage range (guidelines for receiver) Ref. USB2.0 Receiver jitter tolerance mV –50 Ref. USB2.0, specified by eye pattern templates 600 mV 150 ps Specifications Copyright © 2010–2014, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: TPS65921 27 TPS65921 SWCS048G – MARCH 2010 – REVISED SEPTEMBER 2014 www.ti.com 4.22.6 HS Transmitter PARAMETER MAX UNIT Ref. USB2.0 COMMENTS –10 10 mV Ref. USB2.0 360 440 mV Ref. USB2.0 –10 10 mV Ref. USB2.0 700 1100 mV Ref. USB2.0 –825 –500 mV THSR Ref. USB2.0, covered by eye diagram 500 Fall time (10% – 90%) THSR Ref. USB2.0, covered by eye diagram 500 Driver output resistance (which also serves as highspeed termination) ZHSDRV Ref. USB2.0 40.5 49.5 Ω High-speed data range THSDRAT 479.76 480.24 Mbps High-speed idle level VHSOI High-speed data signaling high VHSOH High-speed data signaling low VHSOL Chirp J level (differential voltage) VCHIRPJ Chirp K level (differential voltage) VCHIRPK Rise Time (10% – 90%) Ref. USB2.0, covered by eye diagram Data source jitter Ref. USB2.0, covered by eye diagram Downstream eye diagram Ref. USB2.0, covered by eye diagram Upstream eye diagram Ref. USB2.0, covered by eye diagram MIN TYP 4.22.7 UART Transceiver PARAMETER MIN tPH_DP_CON Phone D+ connect time 100 tPH_DISC_DET Phone D+ disconnect time 150 fUART_DFLT Default UART signaling rate (typical rate) PARAMETER COMMENTS MAX UNIT ms ms 9600 MIN bps TYP MAX UNIT 1 ms 2.4 3.3 3.6 V 0 0.1 0.4 V UART Transmitter CEA-2011 Phone UART edge rates tPH_UART_EDGE DP_PULLDOWN asserted Serial interface output high VOH_SER ISOURCE = 4 mA Serial interface output low VOL_SER ISINK = –4 mA Serial interface input high VIH_SER DP_PULLDOWN asserted Serial interface input low VIL_SER DP_PULLDOWN asserted Switching threshold VTH UART Receiver CEA-2011 28 2.0 0.8 Specifications V 0.8 V 2.0 V Copyright © 2010–2014, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: TPS65921 TPS65921 www.ti.com SWCS048G – MARCH 2010 – REVISED SEPTEMBER 2014 4.22.8 Pullup/Pulldown Resistors PARAMETER COMMENTS MIN TYP MAX 0.9 1.1 1.575 2.2 3.09 UNIT Pullup Resistors Bus pullup resistor on upstream port (idle bus) RPUI Bus idle Bus pullup resistor on upstream port (receiving) RPUA Bus driven/driver's outputs unloaded 1.425 High (floating) VIHZ Pullups/pulldowns on both DP and DM lines 2.7 Phone D+ pullup voltage VPH_DP_UP Driver's outputs unloaded 3.0 Driver's outputs unloaded 14.25 2.7 kΩ 3.6 V 3.3 3.6 V 18 24.8 kΩ 3.6 V 75 pF 0.342 V Pulldown Resistors Phone D+/– pulldown RPH_DP_DWN RPH_DM_DWN High (floating) VIHZ Pullups/pulldowns on both DP and DM lines Upstream facing port CINUB [1.0] On-the-go device leakage VOTG_DATA_LKG [2] Input impedance exclusive of pullup/pulldown ZINP Driver’s outputs unloaded D+/– Data line 22 300 kΩ 4.22.9 OTG VBUS PARAMETER COMMENTS MIN TYP MAX UNIT 15 µs VBUS Wakeup Comparator VBUS wake-up delay DELVBUS_WK_ UP VBUS Comparators A-device session valid VA_SESS_VLD 0.8 1.1 1.4 V A-device VBUS valid VA_VBUS_VLD 4.4 4.5 4.625 V B-device session end VB_SESS_END 0.2 0.5 0.8 V B-device session valid VB_SESS_VLD 2.1 2.4 2.7 V 100 kΩ VBUS Line A-device VBUS input impedance to ground RA_BUS_IN SRP (VBUS pulsing) capable A-device not driving VBUS 13.77 B-device VBUS SRP pulldown RB_SRP_DWN 5.25 V / 8 mA, pullup voltage =3V 0.656 10 RB_SRP_UP (5.25 V – 3 V) / 8 mA, pullup voltage = 3 V 0.85 1.3 B-device VBUS SRP rise time maximum for OTG-A communication tRISE_SRP_UP_ 0 to 2.1 V with < 13 μF load B-device VBUS SRP rise time minimum for standard host connection tRISE_SRP_UP_ B-device VBUS SRP pullup kΩ 1.75 kΩ 34 ms MAX 0.8 to 2.0 V with > 97 μF load 46 COMMENTS MIN ms MIN 4.22.10 OTG ID PARAMETER TYP MAX UNIT 100 kΩ 25 kΩ 500 kΩ VBUS Wakeup Comparator ID wake-up comparator RID_WK_UP Wakeup when ID shorted to ground. 30 ID Comparators — ID External Resistors Specifications ID ground comparator RID_GND ID_GND interrupt ID Float comparator RID_FLOAT ID_FLOAT interrupt 4 200 20 ID Line Specifications Copyright © 2010–2014, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: TPS65921 29 TPS65921 SWCS048G – MARCH 2010 – REVISED SEPTEMBER 2014 www.ti.com MIN TYP MAX UNIT Phone ID pullup to VPH_ID_UP PARAMETER RPH_ID_UP ID unloaded (VRUSB) COMMENTS 70 90 286 kΩ Phone ID pullup voltage VPH_ID_UP Connected to VRUSB 2.5 3.2 V 5.25 V ID line maximum voltage 4.22.11 USB Charger Detection USB Charger Detection Debounce Time REQUIREMENT PARAMETER MAX UNIT Minimum 10 ms DEBVBUS_TIME NB CLOCK 448 ACTIVE/SLEEP mode TEST CONDITIONS 13.7 MIN TYP 13.7 ms Minimum 20 ms DEBUSBCHG_TIM E 896 ACTIVE/SLEEP mode 27.3 27.3 ms Table 4-4. Voltages PARAMETER SYMBOL MIN MAX UNIT REF 0.8 2.0 V 1.4.4 0.5 0.675 V VDAT_REF 0.25 0.4 V VDAT_LKG 0 3.6 V 3.9 MAX UNIT REF 710 mA 3.6.2 Logic Threshold VLGC D+ Source Voltage VDP_SRC Data Detect Voltage Data Line Leakage Voltage CONDITIONS Output current > 250 µA Table 4-5. Currents PARAMETER SYMBOL Portable Device Current from Charging Host Port during chirp CONDITIONS MIN IDEV_HCHG_CHRP Data Contact Detect Current Source IDP_SRC 7 13 µA D- Sink Current IDM_SINK 50 150 µA Table 4-6. Resistances PARAMETER SYMBOL CONDITIONS MIN MAX UNIT D+ pulldown resistance RDP_DWN 14.25 24.8 kΩ D- pulldown resistance RDM_DWN 14.25 24.8 kΩ Table 4-7. USB Charger Detection (Wait and Debounce Timing) USB Charger Detection (Wait and Debounce Timing) Requirement PARAMETER NB CLOCK TEST CONDITIONS MIN TYP MAX UNIT Minimum 200 us D+ Current source ontime TIDP_SRC_ON 8 ACTIVE/SLEEP mode (1) 244.1 244.1 µs Minimum 40 ms D+ Voltage source ontime TVDP_SRC_ON 1792 ACTIVE/SLEEP mode (1) 54.7 54.7 ms Minimum 40 ms D+ Voltage source off to high current TVDP_SRC_HICRNT 1792 ACTIVE/SLEEP mode (1) 54.7 54.7 ms Minimum 2 s DATA_CONTACT_DET ECT Timeout TDCD_TIMEOUT 89600 ACTIVE/SLEEP mode (1) 2.73 2.73 s (1) 30 Note: LS Device mode not supported Specifications Copyright © 2010–2014, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: TPS65921 TPS65921 www.ti.com SWCS048G – MARCH 2010 – REVISED SEPTEMBER 2014 4.23 MADC PARAMETER CONDITIONS MIN TYP Resolution MAX UNIT 10 Input dynamic range for external input ADCIN0 Bit 0 1.5 V –1 1 LSB 2 LSB 28.5 mV MADC voltage reference 1.5 Differential nonlinearity Integral nonlinearity Best fitting –2 Offset Best fitting –28.5 Input bias V μA 1 Input capacitor CBANK 10 pF Input current leakage 1 μA 4.23.1 MADC Analog Input Range and Prescaler Ratio MADC CHANNEL INT/EXT ADCIN0: Generalpurpose input (1) External ADCIN1:7 Reserved Internal ADCIN8: VBUS Voltage (VBUS) Internal ADCIN9: Reserved Internal ADCIN10:11 Reserved Internal ADCIN12: Main battery voltage (VBAT) Internal ADCIN13:15 Reserved Internal (1) (2) (3) ANALOG INPUT RANGE (V) PRESCALER OUTPUT RANGE (V) MIN MAX DIVIDER RATIO 1.5 N/A N/A 1 N/A N/A N/A N/A MIN MAX 0.0 N/A NOTE No prescaler Not used Prescaler in USB subchip. 0.0 6.5 0.0 1.5 3/14 N/A N/A N/A N/A N/A 2.7 4.7 0.675 1.175 0.25 N/A N/A N/A N/A N/A Rdivider = (6 × 2.76 kΩ)/(28 × 2.76 kΩ) (typ) (2) Not used Prescaler integrated Rdivider = 9.85 kΩ/(4 × 9.85 kΩ) (typ) (3) General-purpose input has to be tied to ground when TPS65921 internal power supply (VINTANA1) is off. Tolerance for resistors-type (PL_VHSR): ±19% Tolerance for resistors-type (PL_HR): ±12% The table below summarizes the sequence conversion timing characteristics. Figure 4-5 shows one conversion sequence general timing diagram. Specifications Copyright © 2010–2014, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: TPS65921 31 TPS65921 SWCS048G – MARCH 2010 – REVISED SEPTEMBER 2014 www.ti.com Table 4-8. Sequence Conversion Timing Characteristics PARAMETER COMMENTS MIN TYP MAX UNIT F Running frequency 1 MHz T = 1/F Clock period 1 μs N Number of analog inputs to convert in a single sequence 0 16 Tstart SW1, SW2, or USB asynchronous request or real-time STARTADC request 3 4 μs Tsettling time Settling time to wait before sampling a stable analog input (capacitor bank charge time) 260 μs Tsettling is calculated from the max((Rs + Ron)*Cbank) of all possible input sources (internal or external). Ron is the resistance of the selection analog input switches (5 kΩ). This time is software programmable by OCP register; default value is 12 µs. 5 12 Tstartsar The successive approximation registers ADC start time 1 μs Tadc time The successive approximation registers ADC conversion time 10 μs Tcapture time Tcapture time is the conversion result capture time. 2 μs Tstop 1 2 Full Conversion Sequence Time Only one channel (N = 1) (1) 22 39 All channels (2) 352 624 Conversion Sequence Time Without Tstart and Tstop: Only one channel (N = 1) (1) 18 33 288 528 Without Tstart and Tstop: All channels STARTADC pulse duration (1) (2) 32 STARTADC period is T (1) μs μs μs μs 0.33 General-purpose input ADCIN0 must be tied to ground when TPS65921 internal power supplies (VINTANA1) is off. Total Sequence Conversion Time General Formula: Tstart + N × (1 + Tsettling + Tadc + Tcapture) + Tstop. Specifications Copyright © 2010–2014, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: TPS65921 TPS65921 www.ti.com SWCS048G – MARCH 2010 – REVISED SEPTEMBER 2014 This table is illustrated in Figure 4-5. The Busy parameter indicates that a conversion sequence is running, and the channel N result register parameter corresponds to the result register of RT/GP selected channel. T one conversion Tstartsar Tstart Tcapture Tsettling Tadc Tstop madc_clk Busy mux_sel_lowv[3:0] Channel N selected Acquire_lowv start_sar_lowv out_lowv[9:0] Channel N result register New channel N value Channel X value Old value New value SWCS048-005 Figure 4-5. One Conversion Sequence General Timing Diagram 4.23.2 MADC Power Consumption PARAMETER Power on consumption TEST CONDITIONS MIN Running frequency f = 1 MHz TYP UNIT mA 1 μA Power down consumption (1) MAX 1 (1) The consumption is given in stand-alone mode. 4.24 TPS65921 Interface Target Frequencies Table below assumes testing over the recommended operating conditions. I/O INTERFACE INTERFACE DESIGNATION TARGET FREQUENCY 1.5 V SmartReflex I2C General-purpose I2C USB JTAG I2C Interface USB Slave high-speed mode 3.6 Mbps Slave fast-speed mode 400 kbps Slave standard mode 100 kbps High speed 480 Mbps Full speed 12 Mbps Low speed 1.5 Mbps Real/View® ICE tool 30 MHz XDS560 and XDS510 tools 30 MHz Lauterbach™ tool 30 MHz Specifications Copyright © 2010–2014, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: TPS65921 33 TPS65921 SWCS048G – MARCH 2010 – REVISED SEPTEMBER 2014 www.ti.com 4.24.1 I2C Timing The TPS65921 provides two I2C HS slave interfaces (one for general-purpose and one for SmartReflex). These interfaces support the standard mode (100 kbps), fast mode (400 kbps), and HS mode (3.5 Mbps). The generalpurpose I2C module embeds four different slave hard-coded addresses (ID1 = 48h, ID2 = 49h, ID3 = 4Ah, and ID4 = 4Bh). The SmartReflex I2C module uses one slave hard-coded address (ID5). The master mode is not supported. Table 4-9 and Table 4-10 assume testing over the recommended operating conditions. START I1 I2C.SCL RESTART STOP I2 1 8 9 1 I8 8 9 I8 I3 I2C.SDA I4 I7 MSB LSB ACK I9 MSB LSB ACK SWCS048-006 2 Figure 4-6. I C Interface—Transmit and Receive in Slave Mode 34 Specifications Copyright © 2010–2014, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: TPS65921 TPS65921 www.ti.com SWCS048G – MARCH 2010 – REVISED SEPTEMBER 2014 Table 4-9. I2C Interface Timing Requirements (1) (2) NO. PARAMETER MIN MAX UNIT Slave High-Speed Mode I3 tsu(SDA-SCLH) Setup time, SDA valid to SCL high 10 I4 th(SCLL-SDA) Hold time, SDA valid from SCL low 0 ns I7 tsu(SCLH-SDAL) Setup time, SCL high to SDA low 160 ns I8 th(SDAL-SCLL) Hold time, SCL low from SDA low 160 ns I9 tsu(SDAH-SCLH) Setup time, SDA high to SCL high 160 ns I3 tsu(SDA-SCLH) Setup time, SDA valid to SCL high 100 I4 th(SCLL-SDA) Hold time, SDA valid from SCL low 0 I7 tsu(SCLH-SDAL) Setup time, SCL high to SDA low 0.6 µs I8 th(SDAL-SCLL) Hold time, SCL low from SDA low 0.6 µs I9 tsu(SDAH-SCLH) Setup time, SDA high to SCL high 0.6 µs ns 70 ns Slave Fast-Speed Mode ns 0.9 µs Slave Standard Mode I3 tsu(SDA-SCLH) Setup time, SDA valid to SCL high 250 I4 th(SCLL-SDA) Hold time, SDA valid from SCL low 0 ns I7 tsu(SCLH-SDAL) Setup time, SCL high to SDA low 4.7 µs I8 th(SDAL-SCLL) Hold time, SCL low from SDA low 4 µs I9 tsu(SDAH-SCLH) Setup time, SDA high to SCL high 4 µs (1) (2) The input timing requirements are given by considering a rising or falling time of: 80 ns in high-speed mode (3.4 Mbits/s) 300 ns in fast-speed mode (400 Kbits/s) 1000 ns in standard mode (100 Kbits/s) SDA is equal to I2C.SR.SDA or I2C.CNTL.SDA SCL is equal to I2C.SR.SCL or I2C.CNTL.SCL Table 4-10. I2C Interface Switching Requirements (1) (2) NO. PARAMETER MIN MAX UNIT Slave High-speed Mode I1 tw(SCLL) Pulse duration, SCL low 160 ns I2 tw(SCLH) Pulse duration, SCL high 60 ns Slave Fast-speed Mode I1 tw(SCLL) Pulse duration, SCL low 1.3 µs I2 tw(SCLH) Pulse duration, SCL high 0.6 µs Slave Standard Mode I1 I2 (1) (2) tw(SCLL) Pulse duration, SCL low 4.7 µs tw(SCLH) Pulse duration, SCL high 4 µs The capacitive load is equivalent to: 100 pF in high-speed mode (3.4 Mbits/s) 400 pF in fast-speed mode (400 Kbits/s) 400 pF in standard mode (100 Kbits/s) SDA is equal to I2C.SR.SDA or I2C.CNTL.SDA SCL is equal to I2C.SR.SCL or I2C.CNTL.SCL Specifications Copyright © 2010–2014, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: TPS65921 35 TPS65921 SWCS048G – MARCH 2010 – REVISED SEPTEMBER 2014 www.ti.com 4.25 JTAG Interfaces Table 4-11 and Table 4-12 assume testing over the recommended operating conditions. JL1 JL2 JL2 JTAG.TCK JL3 JL4 JL5 JL6 JTAG.TDI JTAG.TMS JL7 JTAG.TDO SWCS048-007 Figure 4-7. JTAG Interface Timing The input timing requirements are given by considering a rising or falling edge of 7 ns. 4.25.1 JTAG Interface Timing Requirements Table 4-11. JTAG Interface Timing Requirements NO. PARAMETER MIN MAX UNIT Clock JL1 tc(TCK) Cycle time, JTAG.TCK period JL2 tw(TCK) Pulse duration, JTAG.TCK high or low (1) 30 0.48 × P ns 0.52 × P ns Read Timing JL3 tsu(TDIV-TCKH) Setup time, JTAG.TDI valid before JTAG.TCK high 8 ns JL4 th(TDIV-TCKH) Hold time, JTAG.TDI valid after JTAG.TCK high 5 ns JL5 tsu(TMSV-TCKH) Setup time, JTAG.TMS valid before JTAG.TCK high 8 ns JL6 th(TMSV-TCKH) Hold time, JTAG.TMS valid after JTAG.TCK high 5 ns (1) P = JTAG.TCK clock period The capacitive load is equivalent to 35 pF. 36 Specifications Copyright © 2010–2014, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: TPS65921 TPS65921 www.ti.com SWCS048G – MARCH 2010 – REVISED SEPTEMBER 2014 4.25.2 JTAG Interface Switching Characteristics Table 4-12. JTAG Interface Switching Characteristics NO. PARAMETER MIN MAX UNIT 0 14 ns MIN MAX UNIT Write Timing td(TCK-TDOV)) JL7 NO. Delay time, JTAG, TCK active edge to JTAG.TDO valid PARAMETER Clock JL1 tc(TCK) Cycle time, JTAG.TCK period JL2 tw(TCK) Pulse duration, JTAG.TCK high or low (1) 30 JL3 tsu(TDIV-TCKH) Setup time, JTAG.TDI valid before JTAG.TCK high 8 ns JL4 th(TDIV-TCKH) Hold time, JTAG.TDI valid after JTAG.TCK high 5 ns JL5 tsu(TMSV-TCKH) Setup time, JTAG.TMS valid before JTAG.TCK high 8 ns JL6 th(TMSV-TCKH) Hold time, JTAG.TMS valid after JTAG.TCK high 5 ns 0.48 × P ns 0.52 × P ns Read Timing (1) P = JTAG.TCK clock period 4.25.3 Debouncing Time Debounce times are listed in Table 4-13. Table 4-13. Debouncing Time DEBOUNCING FUNCTIONS PROGRAMMABLE DEBOUNCING TIME DEFAULT No 580 μs 580 μs Main battery low threshold detection ( 3.0 V supply, USB PHY cannot directly operate from VBAT.USB for battery voltages lower than 3.3 V. Detailed Description Copyright © 2010–2014, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: TPS65921 43 TPS65921 SWCS048G – MARCH 2010 – REVISED SEPTEMBER 2014 www.ti.com In such case, VBUS should be supplied by a boosted voltage to ensure enough overhead for USB LDO operation. An internal charge pump (whose output is connected to VBUS) can be used for this purpose. To select between these two power sources, a power mux is connected to the VUSB3V1 LDO supply. The VUSB1V8 and VUSB1V5 internal LDO regulators power the USB subchip inside the TPS65921 device. The short-circuit current for the LDOs and DC-DCs in the TPS65921 device is approximately twice the maximum load current. In certain cases when the output of the block is shorted to ground, the power dissipation can exceed the 1.2 W requirement if no action is taken. A short-circuit protection scheme is included in the TPS65921 device to ensure that if the output of an LDO or DC-DC converter is shortcircuited, then the power dissipation does not exceed the 1.2-W level. The three USB LDOs VUSB3V1, VUSB1V8, and VUSB1V5 are included in this short circuit protection scheme which monitors the LDO output voltage at a frequency of 1 Hz, and generates an interrupt when a short circuit is detected. The scheme compares the LDO output voltage to a reference voltage and detects a short circuit if the LDO voltage drops below this reference value (0.5 V or 0.75 V programmable). In the case of the VUSB3V1 and VUSB1V8 LDOs, the reference is compared with a divided down voltage (1.5 V typical). If a short circuit is detected on VUSB3V1, then the power subchip FSM switches this LDO to sleep-mode. If a short circuit is detected on VUSB1V8 or VUSB1V5, then the power subchip FSM switches the relevant LDO off. 5.5.3 Power Reference The bandgap voltage reference is filtered (RC filter), using an external capacitor connected across the VREF output and an analog ground (REFGND). The VREF voltage is scaled, distributed, and buffered inside the device. The bandgap is started in fast mode (not filtered) and is set automatically by the power state-machine in slow mode (filtered, less noisy) after switch on. 5.5.4 Power Use Cases The TPS65921 device has two modes: • Master: The TPS65921 device decides to power up or down the system and control the other power ICs in the system with the SYSEN output. • Slave: The TPS65921 device is controlled by another power IC with a digital signal on the PWRON input. There is no battery management in slave mode. The modes corresponding to BOOT0–BOOT1 combination value are: BOOT0 BOOT1 MC021 (1) NAME Master_C021_Generic 10 1 0 SC021 Slave_C021_Generic 11 1 1 (1) DESCRIPTION Boot mode for OMAP3430 is c021 Master boot mode. Process modes define: • The boot voltage for the host core • The boot sequence associated with the process • The DVFS protocol associated with the process MODE C021.M Boot core voltage 1.2 V Power sequence VIO followed by VPLL1, VDD2, VDD1 DVFS protocol SmartReflex interface (I2C high speed) 44 Detailed Description Copyright © 2010–2014, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: TPS65921 TPS65921 www.ti.com SWCS048G – MARCH 2010 – REVISED SEPTEMBER 2014 Regulator states depending on use cases: REGULATOR MODE: C021 (MASTER/SLAVE) BACKUP WAIT ON SLEEP NO LOAD ACTIVE NO LOAD VAUX2 OFF OFF OFF OFF VMMC1 OFF OFF OFF OFF VPLL1 OFF OFF SLEEP ON VDAC OFF OFF OFF OFF VINTANA1 OFF OFF SLEEP ON VINTANA2 OFF OFF SLEEP ON VINTDIG OFF OFF SLEEP ON VIO OFF OFF SLEEP ON VDD1 OFF OFF SLEEP ON VDD2 OFF OFF SLEEP ON VUSB1V5 OFF OFF OFF OFF VUSB1V8 OFF OFF OFF OFF VUSB3V1 OFF OFF SLEEP ON 5.5.5 Power Timing Sequence start is a symbolic internal signal to ease the description of the power sequences and occurs according to the different events detailed in Figure 5-7. Sequence start timing depends on the TPS65921 starting event. If the starting event is: • Main battery insertion, event time is 1.126 ms (time to set up internal LDO and relax internal reset) • VBUS insertion, event time is 25 cycles of 32k Starting_Event is main battery insertion Vbat 1.126 ms Sequence_Start Starting_Event is VBUS insertion Vbus 782 ms = 25 cycle32k Sequence_Start Starting_Event is PWRON button PWRON Pushbutton debouncing - 30 ms Sequence_Start Starting_Event is PWRON rising when device is in slave mode PWRON 0 ms Sequence_Start SWCS048-018 Figure 5-7. Timings Before Sequence Start Detailed Description Copyright © 2010–2014, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: TPS65921 45 TPS65921 SWCS048G – MARCH 2010 – REVISED SEPTEMBER 2014 5.5.5.1 www.ti.com Switch On In MASTER_C021_GENERIC Mode Figure 5-8 describes the timing and control that must occur in Master_C021_Generic mode. Sequence_Start is a symbolic internal signal to ease the description of the power sequences and occurs according to the different events detailed in Figure 5-7. Sequence_Start 4608 ms battery detection REGEN 1068 ms - 3 MHz oscillator setting + clock switch VIO 1.8 V 1179 ms for VIO stabilization VPLL1 1.8 V 1022 ms for LDO stabilization and start DC-DC ramping VDD2 1.2 V 1099 ms for VDD2 stabilization and VDD1 start ramping VDD1 1.2 V 1175 ms for VDD1 stabilization 32KCLKOUT 61 ms SYSEN 1179 ms for VIO stabilization CLKEN 29.053 ms 32.410 ms HFCLKOUT T1 NRESPWRON SWCS048-019 Figure 5-8. Timings—Switch On in Master_C021_Generic Mode PARAMETER T1 46 MIN MAX UNIT 10 11 32k clock cycles Detailed Description Copyright © 2010–2014, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: TPS65921 TPS65921 www.ti.com 5.5.5.2 SWCS048G – MARCH 2010 – REVISED SEPTEMBER 2014 Switch On In SLAVE_C021_GENERIC Mode Figure 5-9 describes the timing and control that must occur in Slave_C021_Generic mode. Sequence_Start is a symbolic internal signal to ease the description of the power sequences and occurs according to the different events detailed in Figure 5-7. PWRON 4791 ms – 3 MHz oscillator setting + internal reg REGEN 1068 ms for external supply ramp VIO 1.8 V 1179 ms for VIO DC-DC stablilization VPLL1 1.8 V 1022 ms VDD2 1.2 V 1099 ms for VDD2 stabilization VDD1 1.2 V 1175 ms for VDD1 stabilization 32KCLKOUT 61 ms SYSEN CLKEN 1099 ms for VDD2 stabilization 29.053 ms 1953 ms for digital clock setting HFCLKOUT T1 NRESPWRON SWCS048-020 Figure 5-9. Timings—Switch On in Slave_C021_Generic Model PARAMETER T1 MIN MAX UNIT 10 11 32k clock cycles Detailed Description Copyright © 2010–2014, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: TPS65921 47 TPS65921 SWCS048G – MARCH 2010 – REVISED SEPTEMBER 2014 5.5.5.3 www.ti.com Switch-Off Sequence This section describes the signal behavior required to switch off the system. 48 Detailed Description Copyright © 2010–2014, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: TPS65921 TPS65921 www.ti.com SWCS048G – MARCH 2010 – REVISED SEPTEMBER 2014 5.5.5.3.1 Switch-Off Sequence In Master Modes Figure 5-10 describes the timing and control that occur during the switch-off sequence in master modes. VBAT DEVOFF (register) 18 ms NRESPWRON 1,2 ms REGEN 18 ms 32KCLKOUT 1,2 ms DCDCs 1,2 ms LDOs 18 ms SYSEN 18 ms HFCLKOUT 126 ms CLKEN 3.42 ms before detection of starting event NEXT_Startup_event SWCS048-021 NOTE: All of the above timings are the typical values with the default setup (depending on the resynchronization between power domains, state machinery priority, and so forth). Figure 5-10. Switch-Off Sequence in Master Modes In case the value of the HF clock is different from 19.2 MHz (with HFCLK_FREQ bit field values set accordingly inside the CFG_BOOT register), then the delay between DEVOFF and NRESPWRON/CLK32KOUT/SYSEN/HFCLKOUT is divided by 2 (meaning around 9 μs). This is due to the internal frequency used by POWER STM switching from 3 MHz to 1.5 MHz in case the value of the HF clock is 19.2 MHz. The DEVOFF event is the PWRON falling edge in slave mode and the DEVOFF internal register write in master mode. Detailed Description Copyright © 2010–2014, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: TPS65921 49 TPS65921 SWCS048G – MARCH 2010 – REVISED SEPTEMBER 2014 www.ti.com 5.5.5.3.2 Switch-Off Sequence in Slave Mode Figure 5-11 describes the timing and control that occur during the switch off-sequence in slave mode. VBAT PWRON 18 ms NRESPWRON 1,2 ms REGEN 18 ms 32KCLKOUT 1,2 ms DCDCs 1,2 ms LDOs 18 ms SYSEN 18 ms HFCLKOUT 3.42 ms before detection of starting event NEXT_Startup_event 6 ms (see comment in notes about reducing this interval) VIO 6 ms 32KXIN SWCS048-022 NOTE: All of the above timings are the typical values with the default setup (depending on the resynchronization between power domains, state machinery priority, and so forth). If necessary, the 6-ms period to maintain VIO and 32KXIN after PWRON goes low can be reduced to 150 μs. Figure 5-11. Switch-Off Sequence in Slave Mode In case the value of the HF clock is different from 19.2 MHz (with HFCLK_FREQ bit field values set accordingly inside the CFG_BOOT register), then the delay between DEVOFF and NRESPWRON/CLK32KOUT/ SYSEN/HFCLKOUT is divided by 2 (meaning around 9 μs). This is due to the internal frequency used by POWER STM switching from 3 MHz into 1.5 MHz in case the value of the HF clock is 19.2 MHz. 5.5.5.4 Charge Pump The charge pump generates a 5.0-V (nominal) power supply voltage from battery to the VBUS CP.OUT/VUSB.IN pin. The input voltage range is 2.7 to 4.5 V for the battery voltage. The charge pump operating frequency is 1 MHz. The charge pump tolerates 6 V on VBUS when it is in power down mode. The charge pump integrates a short-circuit current limitation at 450 mA. Figure 5-12 shows the charge pump. 50 Detailed Description Copyright © 2010–2014, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: TPS65921 TPS65921 www.ti.com SWCS048G – MARCH 2010 – REVISED SEPTEMBER 2014 Switched 3.3 V USB connector VBAT.USB CP.IN CP.GND VBUS CPOUT Normal operation USB @ VBUS > 4.4 V 5.0-V CP Power-up USB @ VBAT > 3.20 V USBIN USB3P3 TPS65921 DP DM USB PHY ID SWCS048-023 Figure 5-12. General Overview of the Charge Pump and Its Interfaces The charge pump can be used to supply USB 3.1 V LDO when battery voltage is lower than this LDO VBATmin voltage (see Section 4). 5.5.6 USB Transceiver The TPS65921 device includes a USB OTG transceiver that support USB 480 Mbps HS, 12 Mbps FS, and USB 1.5 Mbps LS through a 4-pin UTMI+ ULPI. It also includes a module covering Battery Charging Specification v1.0. Figure 5-13 shows the USB 2.0 PHY highlight block diagram. USB OTG device OMAP (LINK) Device USB PHY ULPI Phone connector (USB) PC ADC inputs (optional) Charger SWCS048-024 Figure 5-13. USB 2.0 PHY Highlight Detailed Description Copyright © 2010–2014, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: TPS65921 51 TPS65921 SWCS048G – MARCH 2010 – REVISED SEPTEMBER 2014 www.ti.com Figure 5-14 shows the USB system application schematic. VBAT CVBUS.IN CVBUS.PC CUSB.1P3 VUSB.3P1 CUSB3P1 VUSB.1P5 VUSB.1P8 CP.CAPN CP.CAPP CP.IN CP.GND CUSB.1P5 VBAT VBAT.USB CVBAT.USB CVBUS VBUS ULPI_CLK TPS65921 D+ / RXD ULPI_STP USB PLL ULPI_DIR USB CP USB PWR ULPI_NXT D– / TXD ID USB OTG connector OMAP host processor (LINK) ULP interface GND ULPI_DATA0 ULPI_DATA1 ULPI_DATA2 ULPI USB 2.0 HS-OTG transceiver (PHY) ULPI_DATA3 ULPI_DATA4 ULPI_DATA5 Registers OTG ULPI_DATA6 Serial interface ULPI_DATA7 TXEN DAT SE0 SWCS048-025 Figure 5-14. USB System Application Schematic 5.5.7 PHY The PHY is the physical signaling layer of the USB 2.0. It contains all the drivers and receivers required for physical data and protocol signaling on the DP and DM lines. The PHY interfaces to the USB controller through a standard digital interface called the universal transceiver macro cell interface (UTMI). The transmitters and receivers inside the PHY are classified into two main classes: • The FS and LS transceivers. These are the legacy USB1.x transceivers. • The HS transceivers To bias the transistors and run the logic, the PHY also contains reference generation circuitry consisting of: • A DPLL, which does a frequency multiplication to achieve the 480-MHz low-jitter lock necessary for USB, and also the clock required for the switched capacitor resistance block. • A switched capacitor resistance block used to replicate an external resistor on chip. Built-in pullup and pulldown resistors are used as part of the protocol signaling. Apart from this, the PHY also contains circuitry that protects it from an accidental 5 V short on the DP and DM lines. 52 Detailed Description Copyright © 2010–2014, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: TPS65921 TPS65921 www.ti.com 5.5.7.1 SWCS048G – MARCH 2010 – REVISED SEPTEMBER 2014 LS/FS Single-Ended Receivers In addition to the differential receiver, there is a single-ended receiver (SE–, SE+) for each of the two data lines D+/–. The main purpose of the single-ended receivers is to qualify the D+ and D– signals in the FS/LS modes of operation. 5.5.7.2 LS/FS Differential Receiver A differential input receiver (RX) retrieves the LS/FS differential data signaling. The differential voltage on the line is converted into digital data by a differential comparator on DP/DM. This data is then sent to a clock and data recovery circuit, which recovers the clock from the data. In an additional serial mode, the differential data is directly output on the RXRCV pin. 5.5.7.3 LS/FS Transmitter The USB transceiver (TX) uses a differential output driver to drive the USB data signal D+/– onto the USB cable. The outputs of the driver support 3-state operation to achieve bidirectional half-duplex transactions. 5.5.7.4 HS Differential Receiver The HS receiver consists of the following blocks: • A differential input comparator to receive the serial data • A squelch detector to qualify the received data • An oversampler-based clock data recovery scheme followed by a NRZI decoder, bit unstuffing, and serial-to-parallel converter to generate the UTMI DATAOUT 5.5.7.5 HS Differential Transmitter The HS transmitter is always operated on the UTMI parallel interface. The parallel data on the interface is serialized, bit-stuffed, NRZI-encoded, and transmitted as a DC output current on DP or DM depending on the data. Each line has an effective 22.5-Ω load to ground, which generates the voltage levels for signaling. A disconnect detector is also part of the HS transmitter. A disconnect on the far end of the cable causes the impedance seen by the transmitter to double, thereby doubling the differential amplitude seen on the DP and DM lines. 5.5.7.6 UART Transceiver In this mode, the ULPI data bus is redefined as a 2-pin UART interface, which exchanges data through a direct access to the FS/LS analog transmitter and receiver. ULPI Device USB connector DATA0: UART_TX DP/RXD/MIC DATA1: UART_RX DM/TXD/SPKR SWCS048-026 Figure 5-15. USB UART Data Flow The OTG block integrates three main functions: • The USB plug detection function on VBUS and ID • The ID resistor detection • The VBUS level detection Detailed Description Copyright © 2010–2014, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: TPS65921 53 TPS65921 SWCS048G – MARCH 2010 – REVISED SEPTEMBER 2014 5.6 www.ti.com Charger Detection To support Battery Charging Specification v1.1 [BCS v1.1], a charger detection module is included in the TPS65921 USB module. The detection mechanism aims distinguishing several types of power sources that can be connected on VBUS line: • Dedicated charger port • Standard host port • Charging host port The hardware includes: • A dedicated voltage referenced pullup on DP line • A dedicated current controlled pulldown on DM line • A detection comparator on DM line • A control/detection state-machine including timers Additional circuitry is added on DP/DM respectively for data line symmetry (required for HS operation) and for possible future extension ID pin status detection (as defined per OTG v1.3 standard) and DP/DM single-ended receivers (as defined per USB v2.0 standard) are also used to determine the type of device plugged on the USB connector. For details on the detection mechanism, refer to [BCS v1.1] (1). The charging detection feature has two modes (description of each mode follows): 1. Software CTL mode: Software has direct control of current source and USB charger detection comparator on DP/DM (enabled when USB_SW_CTRL_EN=1) using USB_CHRG_CTRL registers bits. 2. Software FSM mode: Software can start and stop USB charger detection state-machine. For both modes, DPPULLDOWN and DMPULLDOWN bits in OTG_CTRL register are 1 by default. This can cause errors in charger detection. Therefore, both bits must be cleared to 0 before software begins charger detection sequence. 1- Software CTL Mode (Manual detection): When in this mode the charger detection circuitry is fully under control of software. Refer to POWER_CONTROL register bits as to how to control the detection circuitry. Conditions: • The TPS65921 device is powered and is in active mode. • USB_SW_CHRG_CTRL_EN = 1, register bit set by the software • USB_CHG_DET_EN_SW = 1, register bit set by the software Control the USB_SW_CHRF_CTRL register to achieve charger detection. 2- Software FSM Mode (Automatic detection): The TPS65921 also supports automated battery charger detection through the USB battery charger detection FSM in Figure 5-16 while the chip is in active mode. This mode is set by software using the SW_USB_DET bit. When in this mode, the automated charger detection finite state-machine (FSM) is enabled. Refer to the state-machine diagram for details. Conditions: • The TPS65921 device is powered and is in active mode. • USB_HW_CHRG_DET_EN = 1 See the Register Map for more details. 54 Detailed Description Copyright © 2010–2014, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: TPS65921 TPS65921 www.ti.com SWCS048G – MARCH 2010 – REVISED SEPTEMBER 2014 The TPS65921 device also supports automated data contact detection in the FSM through the DATA_CONTACT_DET_EN bit which should be set at the same time as SW_USB_DET above, before setting SW_CONTROL bit. This enables a block of the FSM, which performs data contact detect for a maximum of DCD_TIMEOUT before automatically skipping to charger detection. See Figure 5-16,USB Battery Charger FSM, for details of how context is stored if SW_CONTROL bit is set while in software FSM mode. USB_DET_ON INIT CHGD_INIT DATA_CONTACT_DET_EN=0 CHGDCTRL=”000_0000" CHGDCTRL=”011_0110" DATA_CONTACT_DET_EN=1 CHGD_SETUP DCD_INIT Wait TVDP_SCR_ON CHGDCTRL=”011_1010" Dcounter=DCD_TIMEOUT Or CHGD_SERX_DP_DEB=0 DCD_SETUP End wait CHGD CHECK _ Dcounter=0 Wait TIDP_SRC_ON Always ON End wait CHGD_SERX_DM_DEB=0 and CHGD_VDM_DEB=1 DCD_CHECK Dcounter=Dcounter+1 USB500_WAIT CHGDCTRL=010_0000 Wait TVDP_SRC_HICRNT End wait Dcounter
TPS65921B1ZQZ 价格&库存

很抱歉,暂时无法提供与“TPS65921B1ZQZ”相匹配的价格&库存,您可以联系我们找货

免费人工找货