0
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
创作中心
发布
  • 发文章

  • 发资料

  • 发帖

  • 提问

  • 发视频

创作活动
TPS65988DJEVM

TPS65988DJEVM

  • 厂商:

    BURR-BROWN(德州仪器)

  • 封装:

  • 描述:

    TPS65988 USB Type-C® 电源管理 评估板

  • 数据手册
  • 价格&库存
TPS65988DJEVM 数据手册
www.ti.com User’s Guide TPS65988 Evaluation Module ABSTRACT This document is the user guide for the TPS65988 Evaluation Module (TPS65988EVM). The TPS65988EVM allows for evaluation of the TPS65988 IC as part of a stand-alone testing kit and for development and testing of USB Type-C and Power Delivery (PD) end products. Out of the box, the TPS65988EVM is configured to emulate a dual-port laptop computer. Both ports can be used to source or sink power, and both are dual-role ports (DRP) but only support data as a downstream-facing port (DFP) host. When different configurations are required to test your system, use the TPS65988 Application Configuration software tool to create a configuration or load a different configuration template (see Figure 1-1). The TPS65988EVM uses a control MUX (HD3SS3412) to route DisplayPort™ (DP) and a USB HUB (TUSB8020) to route USB signals to the appropriate port A or port A (port A/B). The control MUX and USB HUB are connected to a SuperSpeed (SS) MUX (TUSB546) which routes the appropriate DP lanes and USB 3.0 signals according to cable orientation and Alternate Mode selection. Figure 1-2 highlights these features. Figure 1-1. TPS65988EVM SLVUB62B – JUNE 2017 – REVISED NOVEMBER 2020 Submit Document Feedback Copyright © 2020 Texas Instruments Incorporated TPS65988 Evaluation Module 1 www.ti.com Table of Contents C_SSTX /RX I2C TUSB546 MUX_CTR L0-2 AUX DP0-3 DP source USB2 USB source USB3 PFET Control PPEXT1 Sink C_SSTX/RX GPIO PP1_CABLE USB2.0 BC1.2 PPHV 1 VBUS1 CC1/2 System 5V 5/9/15/20V @3A Variable DC/DC C1_CC1/2 I2C1 I2C2 Port A TPS65988 System Power (20V) DC Barrel Jack System 3.3V VIN_3V3 Type C Receptacle Port B PPHV2 VBUS2 C2_CC1/2 BC1.2 USB2.0 C_SSTX/RX PPEXT2 CC1/2 5/9/15/20V @3A Variable DC/DC PP2_CABLE System 5V GPIO Sink PFET Control MUX_CTR L0-2 I2C TUSB546 C_SSTX /RX AUX DP0-3 DP source USB2 USB source USB3 Copyright © 2017, Texas Instruments Incorporated Figure 1-2. TPS65988EVM Block Diagram Table of Contents 1 About this Manual...................................................................................................................................................................5 2 Information About Cautions and Warnings..........................................................................................................................5 3 Items Required for Operation................................................................................................................................................ 5 4 Introduction.............................................................................................................................................................................5 5 Setup........................................................................................................................................................................................6 5.1 Switch, Push Button, Connector, and Test Point Descriptions........................................................................................... 6 5.2 LED Indicators Description...............................................................................................................................................25 2 TPS65988 Evaluation Module SLVUB62B – JUNE 2017 – REVISED NOVEMBER 2020 Submit Document Feedback Copyright © 2020 Texas Instruments Incorporated Table of Contents www.ti.com 6 Using the TPS65988EVM......................................................................................................................................................29 6.1 Powering the TPS65988EVM.......................................................................................................................................... 29 6.2 Firmware Configurations.................................................................................................................................................. 29 7 Connecting the EVM.............................................................................................................................................................30 7.1 Connecting to Various Devices........................................................................................................................................ 30 7.2 Debugging the EVM......................................................................................................................................................... 35 8 REACH Compliance..............................................................................................................................................................37 9 TPS65988EVM Schematic.................................................................................................................................................... 38 10 TPS65988EVM Board Layout.............................................................................................................................................51 11 TPS65988EVM Bill of Materials..........................................................................................................................................54 12 Revision History................................................................................................................................................................. 62 List of Figures Figure 1-1. TPS65988EVM..........................................................................................................................................................1 Figure 1-2. TPS65988EVM Block Diagram................................................................................................................................. 2 Figure 5-1. TPS65988 Jumper Configuration.............................................................................................................................. 7 Figure 5-2. TPS65988 Jumper Configuration Net Names........................................................................................................... 7 Figure 5-3. TPS65987D Jumper Configuration........................................................................................................................... 8 Figure 5-4. TPS65987D Jumper Configuration Net Names........................................................................................................ 8 Figure 5-5. TPS65987S Jumper Configuration............................................................................................................................9 Figure 5-6. TPS65987S Jumper Configuration Net Names.......................................................................................................10 Figure 5-7. DisplayPort Source Schematic Block...................................................................................................................... 10 Figure 5-8. DisplayPort Source Block Diagram......................................................................................................................... 10 Figure 5-9. DisplayPort Source Receptacle............................................................................................................................... 11 Figure 5-10. HRESET Push-Button (S1) Schematic..................................................................................................................11 Figure 5-11. HRESET Push-Button (S1)....................................................................................................................................11 Figure 5-12. SPI-MISO Pull Down Switch................................................................................................................................. 12 Figure 5-13. FTDI Dip Switch (S3) Schematic...........................................................................................................................12 Figure 5-14. FTDI Dip Switch (S3).............................................................................................................................................13 Figure 5-15. I2C and BusPower DIP Switch (S2)...................................................................................................................... 14 Figure 5-16. I2C DIP Switch (S2) Schematic.............................................................................................................................14 Figure 5-17. Barrel Jack (J1) Schematic................................................................................................................................... 15 Figure 5-18. Barrel Jack (J1)..................................................................................................................................................... 15 Figure 5-19. Barrel Jack Detect Schematic............................................................................................................................... 16 Figure 5-20. USB Type-B Receptacle (J11) Schematic............................................................................................................. 16 Figure 5-21. USB (J11) Block Diagram......................................................................................................................................16 Figure 5-22. USB Type-B Receptacle (J11)...............................................................................................................................17 Figure 5-23. USB Type-C Receptacles (J2) Schematic.............................................................................................................18 Figure 5-24. USB Type-C Receptacles (J2).............................................................................................................................. 18 Figure 5-25. USB Micro-B Receptacle (J9) Schematic..............................................................................................................19 Figure 5-26. USB Micro-B Receptacle (J9)............................................................................................................................... 19 Figure 5-27. TP13 (5 V), TP8 (3.3 V), and TP12 (1.2 V)........................................................................................................... 20 Figure 5-28. Aardvark Connector (J10) Schematic................................................................................................................... 21 Figure 5-29. Aardvark Connector (J10)..................................................................................................................................... 21 Figure 5-30. TP10, TP11, TP15, TP16, TP17, TP18, TP9: GND Test Points............................................................................ 21 Figure 5-31. TP1, TP2, TP3 and TP4 – CC1 and CC2 Test Points........................................................................................... 22 Figure 5-32. TPS65988 BMC Data............................................................................................................................................22 Figure 5-33. VBUS Test Points: TP14....................................................................................................................................... 23 Figure 5-34. TPS65988 VBUS Voltage Transition..................................................................................................................... 23 Figure 5-35. A-Var, B-Var and System Power Test Points: TP7, TP6, and TP5........................................................................ 24 Figure 5-36. BoosterPack Headers (J3 and J4)........................................................................................................................ 25 Figure 5-37. MUX Control LEDs................................................................................................................................................ 26 Figure 5-38. HPD Port A/B LEDs...............................................................................................................................................26 Figure 5-39. PDO Port A/B LEDs.............................................................................................................................................. 27 Figure 7-1. Connecting EVM to Type-A Device......................................................................................................................... 30 Figure 7-2. Connecting EVM to USB Type-C Devices...............................................................................................................31 Figure 7-3. DRP CC1 and CC2 Toggling................................................................................................................................... 35 Figure 7-4. USB Type-C Connection and VBUS....................................................................................................................... 35 Figure 7-5. USB Type-C Connection and PD Negotiation......................................................................................................... 36 Figure 9-1. TPS65988EVM Block Diagram............................................................................................................................... 38 Figure 9-2. TPS65988EVM Processor Block.............................................................................................................................39 Figure 9-3. TPS65988EVM Power Path Block.......................................................................................................................... 40 Figure 9-4. TPS65988EVM Power Supply Block.......................................................................................................................41 SLVUB62B – JUNE 2017 – REVISED NOVEMBER 2020 Submit Document Feedback Copyright © 2020 Texas Instruments Incorporated TPS65988 Evaluation Module 3 Trademarks www.ti.com Figure 9-5. TPS65988EVM DisplayPort Mux............................................................................................................................ 42 Figure 9-6. TPS65988EVM SS MUX Block Port A ................................................................................................................... 43 Figure 9-7. TPS65988EVM SS MUX Block Port B.................................................................................................................... 44 Figure 9-8. TPS65988EVM USB HUB.......................................................................................................................................45 Figure 9-9. TPS65988EVM USB Type-C Port-A Block .............................................................................................................46 Figure 9-10. TPS65988EVM USB Type-C Port B Block ...........................................................................................................47 Figure 9-11. TPS65988EVM FTDI Connector Block..................................................................................................................48 Figure 9-12. TPS65988EVM Current Sense Block Port A.........................................................................................................49 Figure 9-13. TPS65988EVM Current Sense Block Port B.........................................................................................................49 Figure 9-14. TPS65988EVM BoosterPack Header Block..........................................................................................................50 Figure 10-1. TPS65988EVM Top Overlay................................................................................................................................. 51 Figure 10-2. TPS65988EVM Solder.......................................................................................................................................... 51 Figure 10-3. TPS65988EVM Top Layer SSTXRX1................................................................................................................... 51 Figure 10-4. TPS65988EVM GND Plane 1............................................................................................................................... 51 Figure 10-5. TPS65988EVM High Speed..................................................................................................................................52 Figure 10-6. TPS65988EVM GND Plane 2............................................................................................................................... 52 Figure 10-7. TPS65988EVM Power 1....................................................................................................................................... 52 Figure 10-8. TPS65988EVM Power 2....................................................................................................................................... 52 Figure 10-9. TPS65988EVM GND Plane 3............................................................................................................................... 53 Figure 10-10. TPS65988EVM SSTXRX2.................................................................................................................................. 53 Figure 10-11. TPS65988EVM Solder Mask............................................................................................................................... 53 Figure 10-12. TPS65988EVM Bottom Layer Component View................................................................................................. 53 List of Tables Table 5-1. Port A SS MUX Control LED Functions.................................................................................................................... 26 Table 5-2. Port B SS MUX Control LED Functions.................................................................................................................... 27 Table 5-3. Variable DC/DC Control Port A/B Functions............................................................................................................. 27 Table 5-4. PDO LED 0 and PDO LED 1 Truth Table..................................................................................................................28 Table 5-5. I2C Address Setting.................................................................................................................................................. 28 Table 5-6. ADCIN1 Setting.........................................................................................................................................................28 Table 7-1. DisplayPort and USB Test Setup.............................................................................................................................. 33 Table 8-1. REACH Compliance................................................................................................................................................. 37 Table 11-1. TPS65988EVM Bill of Materials.............................................................................................................................. 54 Trademarks USB Type-C™ are trademarks of USB Implementers Forum. Aardvark™ are trademarks of Total Phase, Incorporated. DisplayPort™ are trademarks of Video Electronics Standards Association. BoosterPack™ is a trademark of Texas Instruments. FTDI® and Future Technology Devices International®, are registered trademarks of Future Technology Devices International Limited. Dell® is a registered trademark of Dell Incorporated. Total Phase® is a registered trademark of Total Phase, Incorporated. Microsoft® and Windows® are registered trademarks of Microsoft Corporation. All trademarks are the property of their respective owners. 4 TPS65988 Evaluation Module SLVUB62B – JUNE 2017 – REVISED NOVEMBER 2020 Submit Document Feedback Copyright © 2020 Texas Instruments Incorporated About this Manual www.ti.com 1 About this Manual This user's guide describes the TPS65988EVM. The guide consists of an introduction, setup instructions, the EVM schematic, board layouts, component views, internal power (PWR) and ground (GND) plane layouts, and a bill of materials (BOM). 2 Information About Cautions and Warnings ATTENTION STATIC SENSITIVE DEVICES HANDLE ONLY AT STATIC SAFE WORK STATIONS CAUTION This EVM contains components that can potentially be damaged by electrostatic discharge. Always transport and store the EVM in the supplied ESD bag when not in use. Handle using an antistatic wristband. Operate on an antistatic work surface. For more information on proper handling, see Electrostatic Discharge (ESD). 3 Items Required for Operation The following items are required to use the TPS65988EVM: • • • • • • • • • TPS65988 data sheet TPS65988EVM TPS65988 Application Customization Tool 20-V barrel jack adapter or DC power supply (model # 492-BBGP) Passive USB Type-C™ cables USB Type-A to USB Micro-B cable USB Type-A to USB Type-B cable Mini-DisplayPort to DisplayPort cables Notebook with USB 2.0, USB 3.0, and DP capabilities 4 Introduction The TPS65988 is a stand-alone USB Type-C and Power Delivery (PD) controller providing cable plug and orientation detection at the USB Type-C connector. Upon cable plug and orientation detection, the TPS65988 communicates on the CC line using the USB PD protocol. When cable detection and USB PD negotiation are complete, the TPS65988 enables the appropriate power path and configures external multiplexers and alternate mode settings. This user guide describes how the TPS65988EVM can be used to test DisplayPort alternate mode as well as USB Data. This guide also contains testing procedures of DP alternate mode as well as various PD power configurations. The EVM is customizable through the TPS65988 Configuration Tool. Additionally, the EVM is equipped with a Future Technology Devices International® ( FTDI®) board and Aardvark connector to SPI or I2C interfaces for debugging and development. SLVUB62B – JUNE 2017 – REVISED NOVEMBER 2020 Submit Document Feedback Copyright © 2020 Texas Instruments Incorporated TPS65988 Evaluation Module 5 Setup www.ti.com 5 Setup This section describes the various EVM features and how to test these features. Schematic screen shots, pictures, and block diagrams are provided as necessary. 5.1 Switch, Push Button, Connector, and Test Point Descriptions Components described in this section are listed with respect to the EVM from left to right and top to bottom. Related components are listed simultaneously. 5.1.1 Power Path Jumper Configuration The TPS65988EVM allows for analysis of TPS65987D and TPS65987S platforms through the adjustment of jumpers on J11 and J12. 6 TPS65988 Evaluation Module SLVUB62B – JUNE 2017 – REVISED NOVEMBER 2020 Submit Document Feedback Copyright © 2020 Texas Instruments Incorporated Setup www.ti.com 5.1.1.1 TPS65988 Jumper Configuration Out of the box, the TPS65988EVM has jumper configuration for a TPS65988 device. With this configuration, the two internal power paths are configured as Source paths for their respective Type-C ports. The two external power paths are configured as Sink paths for their respective Type-C ports. When using the TPS65988EVM, use a TPS65988 template in the TPS6598x Application Customization Tool. Refer to Figure 5-1 and Figure 5-2 for the TPS65988 Jumper Configuration. Figure 5-1. TPS65988 Jumper Configuration Figure 5-2. TPS65988 Jumper Configuration Net Names SLVUB62B – JUNE 2017 – REVISED NOVEMBER 2020 Submit Document Feedback Copyright © 2020 Texas Instruments Incorporated TPS65988 Evaluation Module 7 www.ti.com Setup 5.1.1.2 TPS65987D Jumper Configuration To use the TPS65988EVM to perform as a TPS65987D, the jumpers on J11 and J12 needs to be adjusted. Place a jumper on J12 to short the two VBUS nodes together. In this use case, one of the internal power paths is used as a source path and the other internal power path is used as a sink path. The TPS65987D supports one Type-C port and contains 2 internal power paths. The TPS65988 can be configured to act as a TPS65987D through the use of a TPS65987D Configuration Template in the TPS6598x Application Customization Tool. In this configuration, PPHV2 is used as the Source path for the Type-C port, it is connected to the net B-Var which is the Variable DC/DC used for Port B in the TPS65988 configuration. PPHV1 is used for the Sink path on the TPS65987D. PPHV1 connects to the net SYSPWR in this configuration. Refer to Figure 5-3 and Figure 5-4 for the TPS65987D Jumper Configuration. When the TPS65988EVM is configured as a TPS65987D, only Port A is functional. Figure 5-3. TPS65987D Jumper Configuration Figure 5-4. TPS65987D Jumper Configuration Net Names 8 TPS65988 Evaluation Module SLVUB62B – JUNE 2017 – REVISED NOVEMBER 2020 Submit Document Feedback Copyright © 2020 Texas Instruments Incorporated www.ti.com Setup 5.1.1.3 TPS65987S Jumper Configuration To emulate a TPS65987S with the TPS65988EVM, the jumpers on J11 need to be adjusted. The TPS65987S supports one Type-C port and contains one internal power path. When using the TPS65988EVM to emulate a TPS65987S, the internal power path (PPHV1) is used as the Source Path and one of the external power paths is used as the sink path. The TPS65988 can be configured to act as a TPS65987S through the use of a TPS65987S Configuration Template in the TPS6598x Application Customization Tool. Refer to Figure 5-5 and Figure 5-6 for the TPS65987D Jumper Configuration. When the TPS65988EVM is configured as a TPS65987S, only Port A is functional. Figure 5-5. TPS65987S Jumper Configuration SLVUB62B – JUNE 2017 – REVISED NOVEMBER 2020 Submit Document Feedback Copyright © 2020 Texas Instruments Incorporated TPS65988 Evaluation Module 9 www.ti.com Setup Figure 5-6. TPS65987S Jumper Configuration Net Names 5.1.2 DP Source Receptacle The DP source receptacle routes DP lanes for port A/B, AUX for port A/B, HPD for port A/B, as well as DP port A/B select. The HD3SS3412 is used to MUX the DP source from the full-size DP receptacle to the USB Type-C alternate mode MUX (TUSB546) for port A/B. Only one of the ports can support DP at a time. The DP source MUX is controlled by GPIO0 that allocates the DP source signals to the appropriate port. Figure 5-7 shows the DP source MUX Configuration Note Only one DP source can be used on either port A or port B at the same time. Figure 5-7. DisplayPort™ Source Schematic Block DP0 ADP0 DP1 ADP1 DP2 ADP2 DP3 ADP3 DisplayPort Source Receptacle TUSB546 Port A HD3SS3412 DP0 LNA DP1 LNB DP2 LNC DP3 LND Port B DP0 BDP0 DP1 BDP1 DP2 BDP2 DP3 BDP3 TUSB546 Copyright © 2017, Texas Instruments Incorporated Figure 5-8. DisplayPort™ Source Block Diagram 10 TPS65988 Evaluation Module SLVUB62B – JUNE 2017 – REVISED NOVEMBER 2020 Submit Document Feedback Copyright © 2020 Texas Instruments Incorporated Setup www.ti.com Figure 5-9. DisplayPort™ Source Receptacle 5.1.3 S1 HRESET Push-Button S1 is located on the top-left corner of the EVM. This switch is a push-button that pulls the HRESET pin (39) of the TPS65988 high when pressed. Releasing the push-button pulls HRESET low again, and the TPS65988 goes through a soft reset, which consists of reloading firmware (FW) from RAM. If a valid configuration is present in the RAM, the TPS65988 does not reload the configuration from the external flash. Figure 5-10 highlights these features. HRESET 39 ADCIN1 6 ADCIN2 8 HRESET S1 0 C6 0.01µF R11 P3V3 R12 100k GND Figure 5-10. HRESET Push-Button (S1) Schematic Figure 5-11. HRESET Push-Button (S1) SLVUB62B – JUNE 2017 – REVISED NOVEMBER 2020 Submit Document Feedback Copyright © 2020 Texas Instruments Incorporated TPS65988 Evaluation Module 11 www.ti.com Setup 5.1.4 S6 SPI MISO Pull Down Button S6 is located on the top right corner of the EVM. This push button switch holds the SPI Miso line to GND. This button is to be used when booting the device. If this button is pressed when the device is booting, the TPS65988 does not load its configuration from the SPI Flash, but instead boots into a default ROM configuration. Figure 5-12. SPI-MISO Pull Down Switch 5.1.5 S3: FTDI® Enable and Disable The dip switch, S3, has 4 switches. The switches labeled 3.3V (switch 3) and 5V (switch 4) pass the supply from the FTDI board micro-B receptacle from the BoosterPack header (J6) and vice versa. The Force Enable (switch 1 and switch 2) switch controls the reset on the FTDI device. When switch 1 is closed, the FTDI is held in reset until the TPS65988 has successfully loaded the firmware. When switch 2 is closed, the FTDI can be reset externally by pin 8 on the FTDI board header J7. By default, all switches are opened and in the upward position. Figure 5-13 highlights these features. D26 1 R314 2 3 2 10.0k White GND 1 Q28 F_SYSTEM_3V3 R195 1.00k S3 F_RESETN F_5V_VBUS F_SYSTEM_3V3 F_C_UART_RX F_C_UART_TX F_SPI_CLK F_I2C_IRQ1 I2C1_SCL I2C1_SDA 1 2 3 4 8 7 6 5 R203 0 DNP R206 0 DNP R212 R215 R218 R222 0 0 0 0 RESETN J6 1 3 5 7 9 11 13 15 17 19 2 4 6 8 10 12 14 16 18 20 R204 0 DNP R207 0 DNP R209 0 DNP F_I2C_IRQ2 F_I2C_SDA2 F_I2C_SCL2 R219 R223 F_SWD_DATA F_SWD_CLK 0 0 GND Figure 5-13. FTDI® Dip Switch (S3) Schematic 12 TPS65988 Evaluation Module SLVUB62B – JUNE 2017 – REVISED NOVEMBER 2020 Submit Document Feedback Copyright © 2020 Texas Instruments Incorporated www.ti.com Setup Figure 5-14. FTDI® Dip Switch (S3) 5.1.6 S2: SPI , I2C, and BusPowerZ Configurations The TPS65988EVM has a dip switch (S2) that can be used to configure the I2C addresses and BusPower settings of the device. Switch1 through Switch3 are used to set the I2C address of the TPS65988 by adjusting the voltage divider seen at ADCIN2. Refer to the TPS65988 datasheet to see the different I2C address configurations. The default switch setting for Switch 1 through switch 3 is open, resulting in a 0x38 I2C address. Switch4 through Switch6 adjusts the BusPowerZ setting by adjusting the voltage divider on ADCIN1. Refer to the TPS65988 datasheet to see the different BusPowerZ configurations. Figure 5-15 highlights the default switch setting of S2. SLVUB62B – JUNE 2017 – REVISED NOVEMBER 2020 Submit Document Feedback Copyright © 2020 Texas Instruments Incorporated TPS65988 Evaluation Module 13 www.ti.com Setup Figure 5-15. I2C and BusPower DIP Switch (S2) Figure 5-16. I2C DIP Switch (S2) Schematic 5.1.7 J1: Barrel Jack Power Connector The barrel jack power connector accepts a 19-V to 20-V DC supply. A standard Dell or HP notebook adapter (or similar adapter) provides the required power. This input provides the PP_HV power rail 19-V to 20-V for high power PD contracts up to 60 W per port or 120 W, total. An appropriate power adapter greater than 120 W must 14 TPS65988 Evaluation Module SLVUB62B – JUNE 2017 – REVISED NOVEMBER 2020 Submit Document Feedback Copyright © 2020 Texas Instruments Incorporated www.ti.com Setup be used for high-power PD. For example, the Dell® 130-W Part Number: 492-BBGP. Figure 5-17 highlights these features. WARNING The barrel jack input is high voltage. SYS_PWR SYS_PWR J1 9 8 7 6 SHIELD SHIELD SHIELD SHIELD 5 4 GND GND TP5 POWER 2 SENSE 1 POWER D2 3 R71 100k JPD1135-509-7F GND GND R74 11.0k GND Figure 5-17. Barrel Jack (J1) Schematic Figure 5-18. Barrel Jack (J1) SLVUB62B – JUNE 2017 – REVISED NOVEMBER 2020 Submit Document Feedback Copyright © 2020 Texas Instruments Incorporated TPS65988 Evaluation Module 15 www.ti.com Setup 5.1.8 Barrel Jack Detect The TPS65988EVM is capable of requesting a power role swap when the barrel jack is connected on an EVM that is currently bus-powered. The barrel jack voltage is sensed by a comparator, which drives GPIO1 (BJ_DETECT) on the TPS65988. By default, the Barrel Jack Detect is not enabled. To enable Barrel Jack Detect place R109 and refer to the TPS65988 Utilities Tool User Guide and TPS65988 Firmware User Guide. Figure 5-19 highlights these features. C80 0.1µF Good @ 11.2V !Good @9.5V 0 C85 22pF R111 15.0k 4 3 5 V+ V- 1 U10 TLV3012AIDCKR 0 R109 DNP BJ_DETECT R112 DNP 39k R115 DNP 560k GND GND 6 R108 2 R107 100k GND GND Hysterisis Vh 1.376V Vl 1.16V Figure 5-19. Barrel Jack Detect Schematic 5.1.9 USB Type B Connector (J11) J11 is the Type-B connection to the PC for testing USB 2.0 or USB 3.0 functionality. A Type-A to Type-B cable can be used to connect the EVM to the USB port on a computer. This connector provides the USB data to the USB HUB on the TPS65988EVM. Figure 5-20 through Figure 5-22 highlight these features. Figure 5-20. USB Type-B Receptacle (J11) Schematic DP0 ADP0 DP1 ADP1 DP2 ADP2 DP3 ADP3 DisplayPort Source Receptacle TUSB546 Port A TUSB546 DP0 LNA DP1 LNB DP2 LNC DP3 LND Port B DP0 BDP0 DP1 BDP1 DP2 BDP2 DP3 BDP3 TUSB546 Copyright © 2017, Texas Instruments Incorporated Figure 5-21. USB (J11) Block Diagram 16 TPS65988 Evaluation Module SLVUB62B – JUNE 2017 – REVISED NOVEMBER 2020 Submit Document Feedback Copyright © 2020 Texas Instruments Incorporated www.ti.com Setup Figure 5-22. USB Type-B Receptacle (J11) SLVUB62B – JUNE 2017 – REVISED NOVEMBER 2020 Submit Document Feedback Copyright © 2020 Texas Instruments Incorporated TPS65988 Evaluation Module 17 Setup www.ti.com 5.1.10 USB Type-C™Connector (J2) The TPS65988EVM has two full feature USB Type-C receptacles (port A/B) and routes VBUS, SSTX and SSRX pairs, SBU1 and SBU2 pairs, and D+ and D– signals. The TPS65988 device can be used in self-powered and bus-powered configurations for added flexibility. When self-powered, the EVM can provide up to 60 W (20 V, at 3 A) of power per port via the internal high voltage power path. The EVM is also capable of sinking 100 W (20 V, at 5 A) of power via the external power path. The internal power path is used for sourcing power and the external power path is used for sinking power. Figure 5-23 and Figure 5-24 highlight these features. Figure 5-23. USB Type-C™ Receptacles (J2) Schematic Figure 5-24. USB Type-C™ Receptacles (J2) 18 TPS65988 Evaluation Module SLVUB62B – JUNE 2017 – REVISED NOVEMBER 2020 Submit Document Feedback Copyright © 2020 Texas Instruments Incorporated www.ti.com Setup 5.1.11 USB Micro B Connector (J9) 11 9 7 J9, the micro-B receptacle connects the FTDI to the PC for the TPS65988 Customization GUI. Use a standard USB micro-B to Type-A cable to make this connection. The Debug Board Enable LED turns on when VBUS is present on the FTDI board. Figure 5-25 and Figure 5-26 highlight these features. J9 GND GND ID D+ DVBUS 5 4 3 2 1 F_USB_D_P F_USB_D_N L7 26 ohm F_5V_VBUS D16 D17 10 8 6 C143 0.01µF GND GND GND Figure 5-25. USB Micro-B Receptacle (J9) Schematic Figure 5-26. USB Micro-B Receptacle (J9) SLVUB62B – JUNE 2017 – REVISED NOVEMBER 2020 Submit Document Feedback Copyright © 2020 Texas Instruments Incorporated TPS65988 Evaluation Module 19 www.ti.com Setup 5.1.12 TP13 (5 V), TP8 (3.3 V), and TP12 (1.2 V) Use the TP13, TP8, and TP12 test points to measure the output voltage of the onboard DC/DC converters. These DC/DC converters produce the required voltage rails for full functionality of the EVM including power delivery, powering internal and external circuits, and so forth. These test points allow the user to verify the system supplies on the TPS65988EVM. LDO_1V8 is internally generated for internal circuitry. Use P3V3 to supply VIN_3V3 which then supplies LDO_3V3. Also, use LDO_3V3 as a low-power output for external flash memory. In bus-powered conditions, or self-powered conditions, P3V3 and LDO_3V3 are active. P3V3 has the ability to operate at 4 V to compensate for IR drop through the USB Type-C cable. The P5V supply can operate at 4.5 V at 100% duty cycle, but it is intended to supply the 5 V at 3 A when the barrel jack or system power is connected to the EVM. P5V powers PP_CABLE for both ports as well as the VBUS current sense IC for both ports. Figure 5-27 highlights these test points. Figure 5-27. TP13 (5 V), TP8 (3.3 V), and TP12 (1.2 V) 5.1.13 Aardvark™ Connector (J10) This connector matches the Total Phase® Aardvark that allows the user to access the I2C and SPI pins on the TPS65988EVM using the SPI, I2C master, or both capabilities. Figure 5-28 and Figure 5-29 highlight theses features. Note The FT4232 loads the I2C or SPI pins when powered. TI recommends leaving the FT4232 in reset by having the Force Enable switches (switch 1 and switch 2) in the disabled (up) position. 20 TPS65988 Evaluation Module SLVUB62B – JUNE 2017 – REVISED NOVEMBER 2020 Submit Document Feedback Copyright © 2020 Texas Instruments Incorporated Setup www.ti.com 0 F_I2C_SCL2 R254 DNP F_I2C_SDA2 R255 0 DNP I2C1_SCL I2C1_SDA F_SPI_MISO F_SPI_CLK F_SPI_CSZ Aardvark Connector J10 R256 R257 R258 R259 R261 0 0 0 0 0 1 3 5 7 9 2 4 6 8 10 R260 0 F_SPI_MOSI R262 0 GND Figure 5-28. Aardvark™ Connector (J10) Schematic Figure 5-29. Aardvark™ Connector (J10) 5.1.14 TP10, TP11, TP15, TP16, TP17, TP18, TP9: GND Test Points TP15, TP16, and TP9 GND Test Points are provided for attaching an oscilloscope or multi-meter. Test Points TP10, TP11, TP17, and TP18 (circled in orange) are used for load testing. These Test Points are connected to the board GND planes through multiple vias.Figure 5-30 highlights these features. Figure 5-30. TP10, TP11, TP15, TP16, TP17, TP18, TP9: GND Test Points SLVUB62B – JUNE 2017 – REVISED NOVEMBER 2020 Submit Document Feedback Copyright © 2020 Texas Instruments Incorporated TPS65988 Evaluation Module 21 www.ti.com Setup 5.1.15 TP1, TP2, TP3 and TP4 – CC1 and CC2 Test Points Test points CC1 and CC2 are used to tie a PD protocol analyzer for PD BMC data or to verify the BMC signal integrity with an oscilloscope (depending on the cable orientation). Use a multimeter or oscilloscope to measure VCONN when an electronically marked USB Type-C cable is connected. Use these test points to attach an external load on VCONN. Figure 5-31 and Figure 5-32 the highlight these features. Figure 5-31. TP1, TP2, TP3 and TP4 – CC1 and CC2 Test Points Figure 5-32. TPS65988 BMC Data 22 TPS65988 Evaluation Module SLVUB62B – JUNE 2017 – REVISED NOVEMBER 2020 Submit Document Feedback Copyright © 2020 Texas Instruments Incorporated Setup www.ti.com 5.1.16 TP14 (PA and PB): VBUS Test Point The VBUS test points are used to measure VBUS at each USB Type-C port A/B connector. With PD power possibly going up to 20 V, use caution when connecting and disconnecting probes on the TPS65988EVM. The VBUS test point is capable of drawing up to 3 A for an external load. Note that a PD power contract with the necessary capability must be negotiated in order to draw current from the VBUS test point. Refer to the TPS65988 Configuration Tool User Guide for configuration instructions. Figure 5-33 and Figure 5-34 highlights these features. Figure 5-33. VBUS Test Points: TP14 Figure 5-34. TPS65988 VBUS Voltage Transition SLVUB62B – JUNE 2017 – REVISED NOVEMBER 2020 Submit Document Feedback Copyright © 2020 Texas Instruments Incorporated TPS65988 Evaluation Module 23 Setup www.ti.com 5.1.17 TP7, TP6, and TP5: A-VAR, B-VAR, and System Power Test Points Respectively Test point A-VAR (TP7) is the output of the variable DC/DC for port A. Test point B-VAR (TP6) is the output of the variable DC/DC for port B. These test points are provided for attaching an oscilloscope, multimeter, or external supply. System power (TP5) can be in the operating range of 5–20 V, any voltage lower than 20 V decreases the sourcing power capabilities. Figure 5-35 highlights these features. Figure 5-35. A-Var, B-Var and System Power Test Points: TP7, TP6, and TP5 24 TPS65988 Evaluation Module SLVUB62B – JUNE 2017 – REVISED NOVEMBER 2020 Submit Document Feedback Copyright © 2020 Texas Instruments Incorporated Setup www.ti.com 5.1.18 J3 and J4 (Bottom of EVM): Signal Headers These headers allow the user to probe many different signals on the TPS65988EVM. Note that some of the header pins are not connected unless a 0-Ω option resistor is placed. Figure 5-36 highlights these features. J3 0 0 0 0 0 0 0 0 0 0 0 0 P3V3 P1V2 GPIO4 GPIO1 PB_USB_P PB_USB_N SPI_CLK I2C1_IRQZ I2C1_SCL I2C1_SDA PB_CC1 PB_CC2 R128 DNP R130 DNP R131 DNP R133 DNP R135 DNP R137 DNP R139 R141 R143 R145 R148 R149 1 3 5 7 9 11 13 15 17 19 21 23 2 4 6 8 10 12 14 16 18 20 22 24 0 R129 DNP GND 0 R132 DNP 0 R134 DNP 0 R136 DNP 0 R138 DNP 0 R140 DNP 0 R142 DNP 0 R144 DNP 0 R146 DNP P5V I2C2_IRQZ I2C2_SDA I2C2_SCL ADCIN2 ADCIN1 PB_PP_EXT_ENABLE SWD_DATA DNP SWD_CLK 100k DNP R147 3.83k LDO_3V3 R150 SSW-112-22-G-D-VS GND PB_VBUS R151 DNP 100k PB_VAR_DCDC R152 100k R153 DNP 100k R154 100k GND GND J4 HRESET GPIO14 GPIO15 GPIO7 PA_USB_P PA_USB_N GPIO6 GPIO5 GPIO3 GPIO2 PA_CC1 PA_CC2 0 0 0 0 0 0 0 0 0 0 0 0 R155 DNP R156 DNP R158 DNP R160 DNP R162 DNP R164 DNP R166 DNP R168 DNP R170 DNP R172 DNP R174 R175 1 3 5 7 9 11 13 15 17 19 21 23 2 4 6 8 10 12 14 16 18 20 22 24 GND 0 0 0 0 0 0 0 0 0 R157 DNP R159 DNP R161 DNP R163 DNP R165 R167 R169 DNP R171 R173 DNP LDO_3V3 LDO_1V8 PB_ISENSE_VOUT PA_ISENSE_VOUT SPI_MOSI SPI_MISO PA_PP_EXT_ENABLE SPI_CS GPIO0 PA_VBUS R176 DNP 100k SSW-112-22-G-D-VS PA_VAR_DCDC R177 100k R178 DNP 100k GND R179 100k GND Copyright © 2017, Texas Instruments Incorporated Figure 5-36. BoosterPack™ Headers (J3 and J4) 5.2 LED Indicators Description The EVM has multiple LEDs to notify the user what type of connection is present. The LEDs are separated into two groups: MUX control LEDs (MXCTL0–2) and status LEDs. All LEDs are enabled with general purpose I/O (GPIO); therefore, each must be enabled separately via configuration, if configuring a custom image (see TPS65988 Configuration Tool User Guide). By default MXCTL0 LED is on when the connected device supports USB3.0, MXCTL1 LED is on when DisplayPort Alternate Mode is entered. MXCTL2 highlights the orientation of the cable. When MXCTL2 LED is on, CC2 is connected. When MXCTL2 LED is off, CC1 is connected. SLVUB62B – JUNE 2017 – REVISED NOVEMBER 2020 Submit Document Feedback Copyright © 2020 Texas Instruments Incorporated TPS65988 Evaluation Module 25 Setup www.ti.com 5.2.1 MXCTL0-2 and HPD LEDs (SS MUX Control LED) These LEDs correspond to the MUX control signals needed for the SS MUX on either USB Type-C port. Figure 5-37 and Figure 5-38 Table 5-1 highlight these features and Table 5-1 and Table 5-2 summarize the LED behavior. Figure 5-37. MUX Control LEDs Figure 5-38. HPD Port A/B LEDs Table 5-1. Port A SS MUX Control LED Functions LED Indicator 26 GPIO Function D6 - MXCTL0 GPIO6 USB 3.0 event D18 - MXCTL1 GPIO5 DP mode event D19 - MXCTL2 GPIO7 Cable orientation event D24 - PA_HPD GPIO3 HPD TPS65988 Evaluation Module SLVUB62B – JUNE 2017 – REVISED NOVEMBER 2020 Submit Document Feedback Copyright © 2020 Texas Instruments Incorporated www.ti.com Setup Table 5-2. Port B SS MUX Control LED Functions LED Indicator GPIO Function D6 - MXCTL0 GPIO_1 USB 3.0 event D18 - MXCTL1 GPIO_0 DP mode event D19 - MXCTL2 GPIO_2 Cable orientation event D25 - PB_HPD GPIO_4 HPD 5.2.2 Status LEDs LEDs, D5 and D3, are for the variable DC/DC on port A, and port B, respectively. When powering up the EVM, these LEDs lights up blue. They also provide a voltage discharge path for high to low PD contracts. For higher voltage PD contracts, D5 and D3 are brighter. Figure 5-39 highlights these features and Table 5-3 summarizes the LED behavior. Figure 5-39. PDO Port A/B LEDs Table 5-3. Variable DC/DC Control Port A/B Functions LED Indicator GPIO Function D20 - PA_PDO0 GPIO_12 PDO TT bit 0 D21 - PA_PDO1 GPIO_13 PDO TT bit 1 D23 - PB_PDO1 GPIO_14 PDO TT bit 1 D22 - PB_PDO0 GPIO_15 PDO TT bit 0 D5 - PA_VAR_DCDC GPIO_16 VAR-A enable D3 - PB_VAR_DCDC GPIO_17 VAR-B enable SLVUB62B – JUNE 2017 – REVISED NOVEMBER 2020 Submit Document Feedback Copyright © 2020 Texas Instruments Incorporated TPS65988 Evaluation Module 27 Setup www.ti.com The PDO LEDs in Table 5-4 are high, depending on which PDO is negotiated. By activating these LEDs, the output voltage of the variable DC/DC can be changed. Table 5-4 summarizes the PDO LED behavior. Table 5-4. PDO LED 0 and PDO LED 1 Truth Table PDO PDO LED 1 PDO LED 0 R1 R2 Output Voltage PDO 1 (5 V) 0 0 60.4 kΩ 19.1 kΩ 5.15 V PDO 2 (9 V) 0 1 60.4 kΩ 9.27 kΩ 9.26 V PDO 3 (15 V) 1 0 60.4 kΩ 5.2 kΩ 15.62 V PDO 4 (20 V) 1 1 60.4 kΩ 4.04 kΩ 19.78 V 5.2.3 S2 Switch Bank Functionality The I2C address setting must match the configuration generated by the TPS65988 configuration tool. Table 5-5 summarizes the I2C address settings. To adjust the dead battery boot behavior, the setting on ADCIN1 can be adjusted. Table 5-6 summarizes the ADCIN1 settings. The specific settings for each divider ratio is discussed in the TPS65988 datasheet. Table 5-5. I2C Address Setting Switch On, Off Bits Divider Ratio 1-3 Off 000b 0.00 1 On 001b 0.34 2 On 010b 0.50 3 On 011b 0.90 Table 5-6. ADCIN1 Setting Switch 28 On, Off Bits Divider Ratio 4-6 Off 000b 0.00 4 On 001b 0.34 5 On 010b 0.50 6 On 011b 0.90 TPS65988 Evaluation Module SLVUB62B – JUNE 2017 – REVISED NOVEMBER 2020 Submit Document Feedback Copyright © 2020 Texas Instruments Incorporated www.ti.com Using the TPS65988EVM 6 Using the TPS65988EVM This section discusses the pre-loaded or recovery firmware, getting started, and debugging the EVM. 6.1 Powering the TPS65988EVM The main power supply for the EVM is the barrel jack (J1), which accepts 19 V to 20 V via a barrel jack adapter. The EVM can also be powered with an external power supply on SYS_PWR (TP5). The input voltage can range from 5 V to 20 V, but the appropriate power profile for PP_HV should be configured in the firmware using the configuration tool. The EVM can also be bus-powered from the USB Type-C connector and accepts 5 V to 20 V on VBUS, depending on the sink configuration. 6.2 Firmware Configurations Out of the box, the TPS65988EVM is configured to emulate a dual-port laptop computer. Both ports are used to source or sink power, and both ports are data DFP. If different configurations are required to test your system, use the TPS65988 Application Configuration GUI tool to create a configuration or load a different configuration template. SLVUB62B – JUNE 2017 – REVISED NOVEMBER 2020 Submit Document Feedback Copyright © 2020 Texas Instruments Incorporated TPS65988 Evaluation Module 29 Connecting the EVM www.ti.com 7 Connecting the EVM 7.1 Connecting to Various Devices Various USB Type-C cables can be used to connect the EVM to a legacy Type-A device, legacy Type-A host, or USB Type-C device or host. 7.1.1 Connecting to a Legacy Type-A Device Using a USB Type-C to Type-A cable allows for connection to a legacy USB device, such as a flash-drive. The TPS65988 can act as a host passing the DP or USB connection by using the SS MUX and USB HUB. Figure 7-1 shows how the notebook, DP and USB receptacle, TPS65988EVM, cable, and flash drive are connected. USB source DP source Notebook (DP & USB Source ) TPS65988-EVM USB Out Flash Drive Figure 7-1. Connecting EVM to Type-A Device 7.1.2 Connecting to USB Type-C™ Devices Using a USB Type-C cable allows for connection to USB and DP devices. Figure 7-2 shows how a source setup can be connected to a DP or USB data-capable device, such as a USB Type-C or Type-A flash drive, USB TypeC to DP directly plugged in port A/B, Type-A flash drive, USB Type-C to DP, HDMI dongle or USB Type-C docking system. Note The TPS65988 can only be DP and USB 3.0 host or source. 30 TPS65988 Evaluation Module SLVUB62B – JUNE 2017 – REVISED NOVEMBER 2020 Submit Document Feedback Copyright © 2020 Texas Instruments Incorporated www.ti.com Connecting the EVM Notebook (DP & USB Source ) Connection Options USB Type-C Docking System USB source DP source USB Type-C Cable USB Type-C to Type-A Cable USB Type-C to DP/HDMI Dongle Type-A Flash Drive DP/HDMI Monitor TPS65988-EVM Figure 7-2. Connecting EVM to USB Type-C™ Devices SLVUB62B – JUNE 2017 – REVISED NOVEMBER 2020 Submit Document Feedback Copyright © 2020 Texas Instruments Incorporated TPS65988 Evaluation Module 31 Connecting the EVM www.ti.com 7.1.3 Testing DisplayPort™ Alternate Mode and USB 2.0 and USB 3.0 The DisplayPort alternate mode can be tested with a non-USB Type-C notebook, allowing the user to simulate a DisplayPort DFP_D (video source) or UFP_D (video sink). 7.1.3.1 Required Hardware The following hardware is required to test the DP alternate mode and USB 3.0: • • • • • • A Microsoft® Windows® PC with a USB Type-A receptacle and DisplayPort video output – USB 2.0 or USB 3.0 Type-A to Type-B cable – USB 2.0 or USB 3.0, or USB Type-C flash drive – USB 2.0 Type-A to micro USB cable USB Type-C cable Monitor with DisplayPort Input Mini DisplayPort to DisplayPort cable or USB Type-C to DisplayPort cable FTDI board (used for programming the TPS695988EVM and interfacing with configuration tool) Dell laptop power supply (model # 492-BBGP) Use the TPS65988EVM to test DP alternate mode as well as USB data using the default firmware. To do so, connect a DP source from a laptop to the TPS65988EVM through the DP receptacle on the EVM. Next, connect a USB Type-B to USB Type-A cable from the TPS65988EVM to a Windows computer. To test DP, connect a USB Type-C to DP cable from one of the USB Type-C ports to a DP monitor. To test USB functionality, connect a USB Type-C flash drive to the other USB Type-C port on the TPS65988EVM. The monitor displays what is present from the DP source. The flash drive enumerates on the windows PC. Table 7-1 explains this test setup. 32 TPS65988 Evaluation Module SLVUB62B – JUNE 2017 – REVISED NOVEMBER 2020 Submit Document Feedback Copyright © 2020 Texas Instruments Incorporated www.ti.com Connecting the EVM Table 7-1. DisplayPort™ and USB Test Setup Test Setup Pass Criteria DP can be connected from port A/B with a USB Type-C to DP cable. USB can be connected to Port A/B directly with a Type-C Flash Drive SLVUB62B – JUNE 2017 – REVISED NOVEMBER 2020 Submit Document Feedback Copyright © 2020 Texas Instruments Incorporated TPS65988 Evaluation Module 33 www.ti.com Connecting the EVM Table 7-1. DisplayPort™ and USB Test Setup (continued) Test Setup Pass Criteria Connect a type C cable from DP and USB can be tested simultaneously with the TPS65988EVM setup to the right. Observe TPS65988EVM LEDs. Check for video on DP monitor and verify USB flash drive enumerates on the PC. LED Name Event Mapping Source x988 LED Status MXCTL0 USB3 ON MXCTL1 DP ON MXCTL2 POL ON/OFF HPD X ON Variable DC/DC X A/B ON Successfully copy and paste a file to and from the USB flash drive. Extend the PC to the DP monitor and play video to verify video stream. Verify the voltages on the DP source board. Source Test Point Test Point Name Voltage TP12 P1V2 1.2 V TP8 P3V3 3.3 V TP13 P5V 5V TP5 SYS_PWR 20 V If video is displayed on the monitor, it is confirmed that DP alternate mode is entered. Similarly, if the USB flash drive can be read by the attached PC, it is confirmed that USB data is functioning properly. USB 3.0 data can be confirmed by observing LED MUX_CTRL0 in the high state. 34 TPS65988 Evaluation Module SLVUB62B – JUNE 2017 – REVISED NOVEMBER 2020 Submit Document Feedback Copyright © 2020 Texas Instruments Incorporated www.ti.com Connecting the EVM 7.2 Debugging the EVM This section discusses various debugging examples. Testing and debugging approaches on the EVM can be applied to an actual system to help identify any issues. 7.2.1 Connection Not Established The following checks help resolve issues when connecting the EVM to another EVM or USB Type-C device and no status LEDs are on: • • • • • Verify that a firmware image is loaded in on the TPS65988 using the TPS65988 Configuration Tool Verify the CC lines are toggling for Dual-Role Port functionality (see Figure 7-3) Verify the following system supplies: – System_3V3 and VIN_3V3: 3.3 V – System_5V and PP_CABLE: 5 V – Barrel jack and SYS_PWR: 20 V – LDO_3V3: 3.3 V – LDO_1V8: 1.8 V Verify that the devices connected are compatible. The following are some of the compatible connections: – Dual-Role Port → UFP – Dual-Role Port → DFP – DFP → UFP Verify that VBUS is reaching 5 V when connected, (see Figure 7-4) Figure 7-3. DRP CC1 and CC2 Toggling Figure 7-4. USB Type-C™ Connection and VBUS SLVUB62B – JUNE 2017 – REVISED NOVEMBER 2020 Submit Document Feedback Copyright © 2020 Texas Instruments Incorporated TPS65988 Evaluation Module 35 Connecting the EVM www.ti.com 7.2.2 Resetting Behavior Improper configurations and shorts can cause a USB Type-C PD system to constantly reset. The following checks should be used to debug these types of issues: • • • • Verify that the essential power paths have the correct voltages: – System_3V3 and System_5V – System Power: 20 V (or the appropriate configured voltage) Probe VBUS, CC1, and CC2 to check for any anomalies. Figure 7-5 shows a successful power contract. When there is a short on VBUS, the initial 5 V on VBUS is not present Check for a small spike on VBUS during a plug event to verify that the PP_HV or PP_EXT switch is closed and is then opened, once an overcurrent condition is detected. Figure 7-5. USB Type-C™ Connection and PD Negotiation 36 TPS65988 Evaluation Module SLVUB62B – JUNE 2017 – REVISED NOVEMBER 2020 Submit Document Feedback Copyright © 2020 Texas Instruments Incorporated www.ti.com REACH Compliance 8 REACH Compliance In compliance with the Article 33 provision of the EU REACH regulation, the user is notified that this EVM includes component(s) containing at least one Substance of Very High Concern (SVHC) above 0.1%. The substance use from Texas Instruments does not exceed 1 ton per year. The SVHCs are shown in Table 8-1. Table 8-1. REACH Compliance Component Manufacturer Component part number SVHC Substance SVHC CAS (when available) Abracon ABM3-24.000MHZ-D2Y-T Diboron Trioxide 1303-86-2 Abracon ABM3-24.000MHZ-D2Y-T Lead Oxide 1317-36-8 SLVUB62B – JUNE 2017 – REVISED NOVEMBER 2020 Submit Document Feedback Copyright © 2020 Texas Instruments Incorporated TPS65988 Evaluation Module 37 TPS65988EVM Schematic www.ti.com 9 TPS65988EVM Schematic Figure 9-1 shows the block diagram of the main components of the TPS65988EVM. The main schematic blocks port A/B control MUX and SS MUX, USB HUB, power paths, power supplies, USB Type-C receptacles, processor, BoosterPack headers, and hardware. C_SSTX /RX I2C TUSB546 MUX_CTR L0-2 AUX DP0-3 DP source USB2 USB source USB3 PFET Control PPEXT1 Sink C_SSTX/RX GPIO PP1_CABLE USB2.0 BC1.2 PPHV 1 VBUS1 CC1/2 System 5V 5/9/15/20V @3A Variable DC/DC C1_CC1/2 I2C1 I2C2 Port A TPS65988 VIN_3V3 System Power (20V) DC Barrel Jack System 3.3V Type C Receptacle Port B PPHV2 VBUS2 C2_CC1/2 BC1.2 C_SSTX/RX PPEXT2 CC1/2 USB2.0 5/9/15/20V @3A Variable DC/DC PP2_CABLE System 5V GPIO Sink PFET Control MUX_CTR L0-2 I2C AUX DP0-3 TUSB546 C_SSTX /RX DP source USB2 USB source USB3 Copyright © 2017, Texas Instruments Incorporated Figure 9-1. TPS65988EVM Block Diagram 38 TPS65988 Evaluation Module SLVUB62B – JUNE 2017 – REVISED NOVEMBER 2020 Submit Document Feedback Copyright © 2020 Texas Instruments Incorporated www.ti.com TPS65988EVM Schematic Figure 9-2 illustrates the processor block showing the USB Type-C PD controller and contains connections for GPIOs, D+ and D-, CC1 and CC2, HRESET, I2C lines, SPI for flash memory, and ADC1 and ADC2. Figure 9-2. TPS65988EVM Processor Block SLVUB62B – JUNE 2017 – REVISED NOVEMBER 2020 Submit Document Feedback TPS65988 Evaluation Module Copyright © 2020 Texas Instruments Incorporated 39 TPS65988EVM Schematic www.ti.com Figure 9-3 shows the power path block, which contains the power portion of the TPS65988 and the required passives. The external power path consists of back-to-back PMOS with RCP circuit. The internal power path is used for sourcing power and the external power path is used for sinking power. The TPS65988 power path can provide power to VBUS or consume power from VBUS. Figure 9-3. TPS65988EVM Power Path Block 40 TPS65988 Evaluation Module SLVUB62B – JUNE 2017 – REVISED NOVEMBER 2020 Submit Document Feedback Copyright © 2020 Texas Instruments Incorporated www.ti.com TPS65988EVM Schematic Figure 9-4 shows the power supply block, which has all of the onboard supplies generated and the comparator circuit for barrel-jack detection. There are two variable supplies that generate 5, 9, 15, and 20 V. There are three DC/DC converters that generate 1.2, 3.3, and 5 V. The minimum voltage for SYS_PWR is 5 V; however, this also decreases VBUS maximum power capabilities. When using a lower voltage, the comparator circuit may have to be adjusted to trip at a lower voltage for proper barrel jack detection. Figure 9-4. TPS65988EVM Power Supply Block SLVUB62B – JUNE 2017 – REVISED NOVEMBER 2020 Submit Document Feedback TPS65988 Evaluation Module Copyright © 2020 Texas Instruments Incorporated 41 TPS65988EVM Schematic www.ti.com Figure 9-5 shows the DisplayPort Mux used to switch the DisplayPort signals to either USB Type-C Port. Figure 9-5. TPS65988EVM DisplayPort Mux 42 TPS65988 Evaluation Module SLVUB62B – JUNE 2017 – REVISED NOVEMBER 2020 Submit Document Feedback Copyright © 2020 Texas Instruments Incorporated www.ti.com TPS65988EVM Schematic Figure 9-6 shows the SS MUX block for port A which connects the DP and USB signals from the DP and USB receptacle. Operating from the system 3.3V rail, the SS MUX is used for configurations C, D, and E from DisplayPort. Achieve configurations through GPIO or I2C. As the host, the SS MUX is capable of USB 3.1 data rates up to 5 Gbps and DP 1.4 up to 8.1 Gbps with 2 or 4 DP lanes. Figure 9-6. TPS65988EVM SS MUX Block Port A SLVUB62B – JUNE 2017 – REVISED NOVEMBER 2020 Submit Document Feedback TPS65988 Evaluation Module Copyright © 2020 Texas Instruments Incorporated 43 TPS65988EVM Schematic www.ti.com Figure 9-7 shows the SS MUX block for port B which connects the DP and USB signals from the DP and USB receptacle. Operating from the system 3.3V rail, the SS MUX is used for configurations C, D, and E from DisplayPort. Achieve configurations through GPIO or I2C. As the host, the SS MUX is capable of USB 3.1 data rates up to 5 Gbps and DP 1.4 up to 8.1 Gbps with 2 or 4 DP lanes. Figure 9-7. TPS65988EVM SS MUX Block Port B 44 TPS65988 Evaluation Module SLVUB62B – JUNE 2017 – REVISED NOVEMBER 2020 Submit Document Feedback Copyright © 2020 Texas Instruments Incorporated www.ti.com TPS65988EVM Schematic Figure 9-8 shows the USB HUB, which contains the connections from the USB source receptacle. Figure 9-8. TPS65988EVM USB HUB SLVUB62B – JUNE 2017 – REVISED NOVEMBER 2020 Submit Document Feedback TPS65988 Evaluation Module Copyright © 2020 Texas Instruments Incorporated 45 TPS65988EVM Schematic www.ti.com Figure 9-9 shows the USB Type-C block, which includes the USB Type-C port A and ESD protection. Figure 9-9. TPS65988EVM USB Type-C™ Port-A Block 46 TPS65988 Evaluation Module SLVUB62B – JUNE 2017 – REVISED NOVEMBER 2020 Submit Document Feedback Copyright © 2020 Texas Instruments Incorporated www.ti.com TPS65988EVM Schematic Figure 9-10 shows the USB Type-C block, which includes the USB Type-C port B and ESD protection. Figure 9-10. TPS65988EVM USB Type-C™ Port B Block SLVUB62B – JUNE 2017 – REVISED NOVEMBER 2020 Submit Document Feedback TPS65988 Evaluation Module Copyright © 2020 Texas Instruments Incorporated 47 TPS65988EVM Schematic www.ti.com Figure 9-11 shows the FTDI block, which contain the connections from the FTDI board. Figure 9-11. TPS65988EVM FTDI® Connector Block 48 TPS65988 Evaluation Module SLVUB62B – JUNE 2017 – REVISED NOVEMBER 2020 Submit Document Feedback Copyright © 2020 Texas Instruments Incorporated www.ti.com TPS65988EVM Schematic Figure 9-12 and Figure 9-13 show the current sense block, which contain the sense connections to VBUS and VIN_3V3 for port A and port B. Figure 9-12. TPS65988EVM Current Sense Block Port A Figure 9-13. TPS65988EVM Current Sense Block Port B SLVUB62B – JUNE 2017 – REVISED NOVEMBER 2020 Submit Document Feedback TPS65988 Evaluation Module Copyright © 2020 Texas Instruments Incorporated 49 TPS65988EVM Schematic www.ti.com Figure 9-14 shows the BoosterPack headers block, which contain the connections to the BoosterPack headers. Figure 9-14. TPS65988EVM BoosterPack Header Block 50 TPS65988 Evaluation Module SLVUB62B – JUNE 2017 – REVISED NOVEMBER 2020 Submit Document Feedback Copyright © 2020 Texas Instruments Incorporated TPS65988EVM Board Layout www.ti.com 10 TPS65988EVM Board Layout Figure 9-1 through Figure 10-12 contain the PCB layouts of the TPS65988EVM. Figure 10-1. TPS65988EVM Top Overlay Figure 10-2. TPS65988EVM Solder Figure 10-3. TPS65988EVM Top Layer SSTXRX1 Figure 10-4. TPS65988EVM GND Plane 1 SLVUB62B – JUNE 2017 – REVISED NOVEMBER 2020 Submit Document Feedback Copyright © 2020 Texas Instruments Incorporated TPS65988 Evaluation Module 51 www.ti.com TPS65988EVM Board Layout Figure 10-5. TPS65988EVM High Speed Figure 10-6. TPS65988EVM GND Plane 2 Figure 10-7. TPS65988EVM Power 1 Figure 10-8. TPS65988EVM Power 2 52 TPS65988 Evaluation Module SLVUB62B – JUNE 2017 – REVISED NOVEMBER 2020 Submit Document Feedback Copyright © 2020 Texas Instruments Incorporated TPS65988EVM Board Layout www.ti.com Figure 10-9. TPS65988EVM GND Plane 3 Figure 10-10. TPS65988EVM SSTXRX2 Figure 10-11. TPS65988EVM Solder Mask Figure 10-12. TPS65988EVM Bottom Layer Component View SLVUB62B – JUNE 2017 – REVISED NOVEMBER 2020 Submit Document Feedback Copyright © 2020 Texas Instruments Incorporated TPS65988 Evaluation Module 53 TPS65988EVM Bill of Materials www.ti.com 11 TPS65988EVM Bill of Materials Table 11-1 lists the TPS65988EVM BOM. Table 11-1. TPS65988EVM Bill of Materials Designator Qty !PCB1 1 C1, C24_PA_SS, C24_PB_SS, C25_PA_SS, C25_PB_SS, C26_PA_SS, C26_PB_SS, C27_PA_SS, C27_PB_SS, C28_PA_SS, C28_PB_SS, C29_PA_SS, C29_PB_SS, C30_PA_SS, C30_PB_SS, C31_PA_SS, C31_PB_SS, C32_PA_SS, C32_PB_SS, C33_PA_SS, C33_PB_SS, C34_PA_SS, C34_PB_SS, C35_PA_SS, C35_PB_SS, C36_PA_SS, C36_PB_SS, C37_PA_SS, C37_PB_SS, C38_PA_SS, C38_PB_SS, C110, C147, C148 34 C2, C3, C4, C5 C6 Value Description Package Reference Manufacturer Alternate Part Number Alternate Manufacturer - - ACS009 Any 0.1uF CAP, CERM, 0.1 µF, 10 V, +/- 10%, X5R, 0201 0201 CL03A104KP3NNNC Samsung Electro-Mechanics 4 220pF CAP, CERM, 220 pF, 25 V, +/- 10%, X7R, 0201 0201 GRM033R71E221KA01D Murata 1 0.01uF CAP, CERM, 0.01 µF, 10 V, +/- 10%, X5R, 0201 0201 GRM033R61A103KA01D Murata C7, C8, C20, C21, C39, C40, C41, C42, C43, C44, C45, C46, C47, C48, C49, C50, C51, C52, C55, C56, C64, C65, C72, C88 24 22uF CAP, CERM, 22 µF, 35 V, +/- 20%, X5R, 0805 0805 C2012X5R1V226M125AC TDK C9, C10, C22, C23, C102_PA_CS, C102_PB_CS, C103, C104, C105, C106, C107, C126, C150, C151, C152, C153, C154, C155, C157, C158, C159, C160, C161, C162, C163, C164, C165, C170, C171 29 0.1uF CAP, CERM, 0.1 µF, 25 V, +/- 10%, X5R, 0201 0201 GRM033R61E104KE14J Murata C11, C14, C19, C149 4 10uF CAP, CERM, 10 µF, 10 V, +/- 20%, X5R, 0402 0402 CL05A106MP5NUNC Samsung Electro-Mechanics C12, C13 2 1uF CAP, CERM, 1 µF, 35 V, +/- 10%, JB, 0402 0402 C1005JB1V105K050BC TDK C15, C16 2 22uF CAP, CERM, 22 µF, 10 V, +/- 20%, X5R, 0603 0603 C1608X5R1A226M080AC TDK C17, C18 2 10uF CAP, CERM, 10 µF, 25 V, +/- 20%, X5R, 0603 0603 GRM188R61E106MA73D Murata C53, C54, C62, C63 4 47uF CAP, TA, 47 µF, 35 V, +/- 10%, 0.3 ohm, SMD 7343-43 T521X107M025ATE060 Kemet 54 Printed Circuit Board Part Number TPS65988 Evaluation Module SLVUB62B – JUNE 2017 – REVISED NOVEMBER 2020 Submit Document Feedback Copyright © 2020 Texas Instruments Incorporated www.ti.com TPS65988EVM Bill of Materials Table 11-1. TPS65988EVM Bill of Materials (continued) Designator Qty Value Description Package Reference Part Number Manufacturer C57, C59, C60, C66, C68, C69, C73, C82, C84, C89 10 0.1uF CAP, CERM, 0.1 µF, 50 V, +/- 10%, X7R, 0402 0402 C1005X7R1H104K050BB TDK C58, C61, C67, C70 4 0402 GRM1555C1H102FA01D Murata C71, C87 2 0.1uF CAP, CERM, 0.1 µF, 50 V, +/- 10%, X7R, AEC-Q200 Grade 1, 0402 0402 CGA2B3X7R1H104K050B B TDK C74, C83, C90 3 100uF CAP, CERM, 100 µF, 10 V, +/- 20%, X5R, 1210 1210 C1210C107M8PACTU Wurth Elektronik C75, C91 2 0.1uF CAP, CERM, 0.1 µF, 25 V, +/- 10%, X7R, 0402 0402 GRM155R71E104KE14D Murata C76, C92 2 220pF CAP, CERM, 220 pF, 50 V, +/- 10%, X7R, AEC-Q200 Grade 1, 0201 0201 CGA1A2X7R1H221K030B A TDK C78, C94 2 4.7pF CAP, CERM, 4.7 pF, 50 V, +/- 5%, C0G/NP0, 0201 C79, C95 2 C80 1 0.1uF CAP, CERM, 0.1 µF, 35 V, +/- 10%, X5R, 0402 0402 GMK105BJ104KV-F Taiyo Yuden C81 1 47uF CAP, CERM, 47 µF, 6.3 V, +/- 20%, X5R, 0603 0603 GRM188R60J476ME15D Murata C85 1 22pF CAP, CERM, 22 pF, 50 V, +/- 5%, C0G/NP0, 0402 0402 C1005C0G1H220J050BA TDK C86 1 0.047uF CAP, CERM, 0.047 µF, 16 V, +/- 10%, X5R, 0201 0201 GRM033R61C473KE84D Murata C96_PA, C96_PB, C97_PA, C97_PB, C98_PA, C98_PB, C99_PA, C99_PB 8 0.01uF CAP, CERM, 0.01 µF, 50 V, +/- 10%, X7R, 0402 0402 GRM155R71H103KA88D Murata C100_PA, C100_PB 2 1uF CAP, CERM, 1 µF, 6.3 V, +/- 20%, X5R, 0201 0201 GRM033R60J105MEA2D Murata C101_PA, C101_PB 2 0.1uF CAP, CERM, 0.1 µF, 100 V, +/- 10%, X7R, 0603 0603 GRM188R72A104KA35D Murata C108, C127, C156, C168, C169 5 1uF CAP, CERM, 1 µF, 10 V, +/- 20%, X5R, 0201 0201 CL03A105MP3NSNC Samsung Electro-Mechanics C109, C111, C112, C113, C114, C115, C116, C117, C118, C119, C120, C121, C122, C123, C124, C125 16 0.22uF CAP, CERM, 0.22 µF, 10 V, +/- 20%, X5R, 0201 0201 LMK063BJ224MP-F Taiyo Yuden C128, C130, C131, C133, C134, C135, C136, C137, C138, C139, C144 11 0.1uF CAP, CERM, 0.1 µF, 50 V, +/- 10%, X7R, 0603 0603 GRM188R71H104KA93D Murata C129, C132, C140 3 4.7uF CAP, CERM, 4.7 µF, 25 V, +/- 10%, X5R, 0603 0603 GRM188R61E475KE11D Murata C141, C142 2 27pF CAP, CERM, 27 pF, 50 V, +/- 1%, C0G/NP0, 0603 0603 CL10C270FB8NNNC Samsung Electro-Mechanics 1000pF CAP, CERM, 1000 pF, 50 V, +/- 1%, C0G/NP0, 0402 2700pF CAP, CERM, 2700 pF, 10 V, +/- 10%, X5R, 0201 0201 GRM0335C1H4R7CA01D Murata 0201 GRM033R61A272KA01D Murata C143 1 0.01uF CAP, CERM, 0.01 µF, 50 V, +/- 5%, X7R, 0402 0402 C0402C103J5RACTU Kemet C145 1 10uF CAP, TA, 10 µF, 10 V, +/- 10%, 2.5 ohm, SMD 3528-21 293D106X9010B2TE3 Vishay-Sprague C146 1 10uF CAP, CERM, 10 µF, 10 V, +/- 20%, X5R, 0402 0402 GRM155R61A106ME21D Murata C166, C167 2 18pF CAP, CERM, 18 pF, 50 V, +/- 5%, C0G/NP0, 0402 0402 GRM1555C1H180JA01D Murata D1, D4 2 30V Diode, Schottky, 30 V, 5 A, SOD-128 SOD-128 PMEG3050EP,115 NXP Semiconductor D2 1 24V Diode, TVS, Bi, 24 V, 200 W, SOD323, 2-Leads, Body 1.9x1.45mm, No Polarity Mark SOD323, 2-Leads, Body 1.9x1.45mm, No Polarity Mark PESD24VL1BA,115 NXP Semiconductor D3, D5 2 Blue LED, Blue, SMD 0.8x1.6mm 19-213/BHC-AN1P2/3T Everlight D6_PA_SS, D6_PB_SS, D18_PA_SS, D18_PB_SS, D19_PA_SS, D19_PB_SS, D20, D21, D22, D23, D24, D25, D26 13 White LED, White, SMD 0402, White LW QH8G-Q2S2-3K5L-1 OSRAM SLVUB62B – JUNE 2017 – REVISED NOVEMBER 2020 Submit Document Feedback Alternate Part Number Alternate Manufacturer TPS65988 Evaluation Module Copyright © 2020 Texas Instruments Incorporated 55 TPS65988EVM Bill of Materials www.ti.com Table 11-1. TPS65988EVM Bill of Materials (continued) Designator Qty Value Description Package Reference Part Number Manufacturer Alternate Part Number Alternate Manufacturer 1 Channel ESD Protection Diode for High Speed Data Lines up to 20Gbps, DPL0002A DPL0002A TPD1E01B04DPLR Texas Instruments TPD1E01B04DPLT Texas Instruments - - D7_PA, D7_PB, D8_PA, D8_PB, D9_PA, D9_PB, D10_PA, D10_PB, D12_PA, D12_PB, D13_PA, D13_PB, D14_PA, D14_PB, D15_PA, D15_PB, D16, D17 18 D11_PA, D11_PB 2 Diode, Schottky, 30 V, 2 A, 2-XFDFN 2-XFDFN NSR20F30NXT5G ON Semiconductor FID1, FID2, FID3, FID4, FID5, FID6 6 Fiducial mark. There is nothing to buy or mount. Fiducial N/A N/A J1 1 Connector, DC Power Jack, R/A, 3 Pos, TH Power connector JPD1135-509-7F Foxconn J2_PA, J2_PB 2 Connector, Receptacle, USB Type C, R/A, SMT Connector, Receptacle, USB Type 20-0000016-01 C, SMT Lintes Technology J3, J4 2 Receptacle, 12x2, 2.54mm, Gold, SMT Receptacle, 12x2, 2.54mm, SMT SSW-112-22-G-D-VS Samtec J5 1 Receptacle, HDMI, 20 Pos, R/A, SMT Receptacle, HDMI, 20 Pos, R/A, SMT 47272-0001 Molex J6, J7 2 Receptacle, 2.54 mm, 10x2, Gold, TH Receptacle, 2.54 mm, 10x2, TH CRD-081413-A-G Major League Electronics J8, J10 2 Header, 100mil, 5x2, Tin, TH Header, 5x2, 100mil, Tin PEC05DAAN Sullins Connector Solutions J9 1 Receptacle, Micro-USB Type B, 0.65 mm, 5x1, R/A, Bottom Mount SMT Receptacle, 0.65mm, 5x1, R/A, SMT 47346-1001 Molex J11 1 Connector, Receptacle, USB 3.1 Type B, R/A, TH Connector, Receptacle, USB 3.1 Type B, R/A, TH GSB4211311WEU Amphenol Canada L1, L2, L3, L5 4 10uH 7.2 mm x 6.65 mm ASPI-0630LR-100M-T15 ABRACON L4 1 1uH 2.5x1.2x2mm DFE252012F-1R0M=P2 Murata Toko L6_PA, L6_PB 2 21 ohm Ferrite Bead, 21 ohm @ 100MHz, 6A, 0805 0805 FBMJ2125HM210NT Taiyo Yuden L7 1 26 ohm Ferrite Bead, 26 ohm @ 100 MHz, 6 A, 0603 0603 BLM18SG260TN1D Murata L8, L9 2 220 ohm 0603 BLM18SG221TN1D Murata Q1, Q4, Q7, Q12 4 -30V MOSFET, P-CH, -30 V, -60 A, 610x604x515mm 610x604x515mm SI7997DP-T1-GE3 Vishay-Siliconix None Q2, Q5, Q8, Q9, Q10, Q13, Q14, Q15, Q16, Q18 10 30V MOSFET, N-CH, 30 V, 0.35 A, AEC-Q101, SOT-323 SOT-323 NX3008NBKW,115 NXP Semiconductor None Q3, Q6, Q11, Q17, Q19_PA_SS, Q19_PB_SS, Q20_PA_SS, Q20_PB_SS, Q21_PA_SS, Q21_PB_SS, Q22, Q23, Q24, Q25, Q26, Q27, Q28 17 20V MOSFET, N-CH, 20 V, 0.5 A, YJM0003A (PICOSTAR-3) YJM0003A CSD15380F3 Texas Instruments None R1, R2, R3, R4 4 3.3k RES, 3.3 k, 5%, 0.063 W, 0402 0402 CRCW04023K30JNED Vishay-Dale R5, R6, R9, R10 4 3.83k RES, 3.83 k, 1%, 0.05 W, 0201 0201 CRCW02013K83FKED Vishay-Dale R7, R8 2 10.0k RES, 10.0 k, 1%, 0.05 W, 0201 0201 MCR006YRTF1002 Rohm 56 30V Inductor, Shielded, Metal Composite, 1 µH, 3.3 A, 0.04 ohm, SMD Ferrite Bead, 220 ohm @ 100 MHz, 2.5 A, 0603 TPS65988 Evaluation Module SLVUB62B – JUNE 2017 – REVISED NOVEMBER 2020 Submit Document Feedback Copyright © 2020 Texas Instruments Incorporated www.ti.com TPS65988EVM Bill of Materials Table 11-1. TPS65988EVM Bill of Materials (continued) Designator Qty Value Description Package Reference Part Number Manufacturer R11, R16, R47_PA_SS, R47_PB_SS, R50_PA_SS, R50_PB_SS, R51_PA_SS, R51_PB_SS, R75, R76, R88, R89, R113, R123_PA_CS, R123_PB_CS, R124_PA_CS, R124_PB_CS, R127_PA_CS, R127_PB_CS, R139, R141, R143, R145, R148, R149, R165, R167, R171, R174, R175, R317_PA, R317_PB, R318_PA, R318_PB, R321_PA_SS, R321_PB_SS 36 0 RES, 0, 5%, 0.05 W, 0201 0201 ERJ-1GE0R00C Panasonic R12, R14, R18, R19, R29, R41, R46_PA_SS, R46_PB_SS, R49_PA_SS, R49_PB_SS, R71, R83, R96, R104, R106, R122_PA, R122_PB, R152, R154, R177, R179, R180, R181, R182 24 100k RES, 100 k, 1%, 0.05 W, 0201 0201 CRCW0201100KFKED Vishay-Dale R13, R17, R22, R24, R25, R26, R27, R34, R36, R37, R38, R40, R85, R91, R99, R103, R304_PA_SS, R304_PB_SS, R305_PA_SS, R305_PB_SS, R306_PA_SS, R306_PB_SS, R307, R308, R309, R310, R312, R313, R314, R323, R324, R325, R326 33 10.0k RES, 10.0 k, 1%, 0.05 W, 0201 0201 CRCW020110K0FKED Vishay-Dale R15 1 191k RES, 191 k, 1%, 0.05 W, 0201 0201 RC0201FR-07191KL Yageo America SLVUB62B – JUNE 2017 – REVISED NOVEMBER 2020 Submit Document Feedback Alternate Part Number Alternate Manufacturer TPS65988 Evaluation Module Copyright © 2020 Texas Instruments Incorporated 57 TPS65988EVM Bill of Materials www.ti.com Table 11-1. TPS65988EVM Bill of Materials (continued) Designator Qty Value Description Package Reference Part Number Manufacturer R28, R39, R53_PA_SS, R53_PB_SS, R54_PA_SS, R54_PB_SS, R55_PA_SS, R55_PB_SS, R56_PA_SS, R56_PB_SS, R57_PA_SS, R57_PB_SS, R58_PA_SS, R61_PA_SS, R61_PB_SS, R62_PA_SS, R62_PB_SS, R63_PA_SS, R63_PB_SS, R64_PA_SS, R64_PB_SS, R65_PA_SS, R65_PB_SS, R66_PA_SS, R66_PB_SS, R67_PA_SS, R67_PB_SS, R189, R191, R270, R274, R275, R276, R282, R287, R293, R294, R298, R299, R300, R311 41 1.00k RES, 1.00 k, 1%, 0.05 W, 0201 0201 CRCW02011K00FKED Vishay-Dale R31 1 0.51 RES, 0.51, 1%, 0.125 W, 0402 0402 ERJ-2BQFR51X Panasonic R42_PA_SS, R42_PB_SS, R97, R116 4 150k RES, 150 k, 1%, 0.063 W, 0402 0402 CRCW0402150KFKED Vishay-Dale R69, R81 2 36.5k RES, 36.5 k, 1%, 0.063 W, 0402 0402 CRCW040236K5FKED Vishay-Dale R70, R82 2 60.4k RES, 60.4 k, 1%, 0.063 W, 0402 0402 CRCW040260K4FKED Vishay-Dale R72, R84 2 270 RES, 270, 5%, 0.063 W, 0402 0402 CRCW0402270RJNED Vishay-Dale R73, R86 2 1.00k RES, 1.00 k, 0.1%, 0.1 W, 0603 0603 RT0603BRB071KL Yageo America R74, R87 2 11.0k RES, 11.0 k, 1%, 0.05 W, 0201 0201 CRCW020111K0FKED Vishay-Dale R77, R90, R120 3 19.1k RES, 19.1 k, 1%, 0.063 W, 0402 0402 CRCW040219K1FKED Vishay-Dale R79, R93 2 18.0k RES, 18.0 k, 1%, 0.063 W, AEC-Q200 Grade 0, 0402 0402 CRCW040218K0FKED Vishay-Dale R80, R94 2 7.15k RES, 7.15 k, 1%, 0.063 W, 0402 0402 CRCW04027K15FKED Vishay-Dale R98, R107, R117 3 100k RES, 100 k, 1%, 0.063 W, 0402 0402 CRCW0402100KFKED Vishay-Dale R100, R118 2 8.87k RES, 8.87 k, 1%, 0.063 W, 0402 0402 CRCW04028K87FKED Vishay-Dale R101, R119 2 66.5k RES, 66.5 k, 1%, 0.063 W, 0402 0402 CRCW040266K5FKED Vishay-Dale R102 1 32.4k R108 1 0 RES, 32.4 k, 1%, 0.063 W, 0402 0402 CRCW040232K4FKED Vishay-Dale RES, 0, 5%, 0.063 W, 0402 0402 CRCW04020000Z0ED Vishay-Dale R110 1 7.50k RES, 7.50 k, 1%, 0.063 W, 0402 0402 CRCW04027K50FKED Vishay-Dale R111, R114 2 15.0k RES, 15.0 k, 1%, 0.063 W, 0402 0402 CRCW040215K0FKED Vishay-Dale 0.001 RES, 0.001, 1%, 1 W, AEC-Q200 Grade 0, 1206 Alternate Part Number R121_PA, R121_PB 2 R183 1 R192, R193, R194 3 10.0k RES, 10.0 k, 1%, 0.1 W, 0603 0603 RC0603FR-0710KL Yageo America R195 1 1.00k RES, 1.00 k, 1%, 0.1 W, 0603 0603 CRCW06031K00FKEA Vishay-Dale 58 5.6Meg RES, 5.6 M, 5%, 0.05 W, 0201 1206 CSNL1206FT1L00 Stackpole Electronics Inc 0201 MCR006YRTJ565 Rohm TPS65988 Evaluation Module Alternate Manufacturer SLVUB62B – JUNE 2017 – REVISED NOVEMBER 2020 Submit Document Feedback Copyright © 2020 Texas Instruments Incorporated www.ti.com TPS65988EVM Bill of Materials Table 11-1. TPS65988EVM Bill of Materials (continued) Designator Qty Value Description Package Reference Part Number Manufacturer R208, R211, R212, R213, R215, R218, R219, R220, R222, R223, R235, R236, R238, R241, R243, R246, R256, R257, R258, R259, R260, R261, R262, R269 24 0 RES, 0, 5%, 0.1 W, 0603 0603 CRCW06030000Z0EA Vishay-Dale R226 1 R227 1 12k RES, 12 k, 5%, 0.1 W, 0603 0603 CRCW060312K0JNEA Vishay-Dale 100k RES, 100 k, 5%, 0.1 W, 0603 0603 CRCW0603100KJNEA R245, R253 2 10k Vishay-Dale RES, 10 k, 5%, 0.1 W, 0603 0603 RC1608J103CS Samsung Electro-Mechanics R248, R250, R251, R252 4 3.3k RES, 3.3 k, 5%, 0.1 W, 0603 0603 CRCW06033K30JNEA Vishay-Dale R263 1 249k RES, 249 k, 1%, 0.1 W, 0603 0603 CRCW0603249KFKEA Vishay-Dale R264 1 2.20k RES, 2.20 k, 1%, 0.1 W, 0603 0603 RC0603FR-072K2L Yageo America R271 1 9.09k RES, 9.09 k, 1%, 0.05 W, 0201 0201 CRCW02019K09FKED Vishay-Dale 90.9k RES, 90.9 k, 1%, 0.063 W, 0402 R279 1 R280 1 1.00Me RES, 1.00 M, 1%, 0.05 W, AEC-Q200 Grade 0, 0201 g R281 1 10k R302, R303, R315, R316 4 0 R322, R327 2 576k S1 1 0402 CRCW040290K9FKED Vishay-Dale 0201 RK73H1HTTC1004F KOA Speer RES, 10 k, 5%, 0.063 W, 0402 0402 CRCW040210K0JNED Vishay-Dale RES, 0, 5%, 0.125 W, 0805 0805 ERJ-6GEY0R00V Panasonic RES, 576 k, 1%, 0.05 W, 0201 0201 RC0201FR-07576KL Yageo America SWITCH TACTILE SPST-NO 0.05A 12V 3x1.6x2.5mm B3U-1000P Omron Electronic Components Alternate Part Number Alternate Manufacturer S2, S3, S5 3 DIP Switch, SPST 4Pos, Slide, SMT 6.2x2.0x6.2mm TDA04H0SB1 C&K Components S4 1 Switch, SPST, 2 Pos, 25mA, 24VDC, SMD 3.71x5.8mm 218-2LPST CTS Electrocomponents TP1, TP2, TP3, TP4, TP5, TP6, TP7, TP8, TP9, TP10, TP11, TP12, TP13, TP14_PA, TP14_PB, TP15, TP16 17 Test Point, Miniature, SMT Test Point, Miniature, SMT 5019 Keystone U1 1 3V, 8Mbit, Serial Flash Memory with Dual and Qual SPI, SOIC-8 SOIC-8 W25Q80DVSNIG Winbond U2 1 Dual Port USB Type-C & USB PD Controller with Integrated Power Switches Internal Datasheet, RSL0048D RSL0048D TPS65988RSL Texas Instruments U3, U4 2 2.2-V to 36-V, microPower Comparator, DBV0005A DBV0005A TLV1701AIDBVR Texas Instruments TLV1701AIDBVT Texas Instruments U5_PA_SS, U5_PB_SS 2 USB Type-C DP ALT Mode Linear Redriver Xpoint Switch, RNQ0040A RNQ0040A TUSB546-DCIRNQR Texas Instruments TUSB546-DCIRNQT Texas Instruments U6, U7 2 Hysteretic PFET Buck Controller with Enable Pin, 8-pin MSOP, Pb-Free MUA08A LM3489QMM/NOPB Texas Instruments U8, U11 2 4.2 V TO 28 V INPUT, 3 A OUTPUT, SYNCHRONOUS SWIFT™ STEP DOWN VOLTAGE CONVERTER, DRC0010J DRC0010J TPS54334DRCR Texas Instruments TPS54334DRCT Texas Instruments U9 1 2A High Efficiency Step Down Converter with iDCS-Control, Forced PWM Mode and Programmable Switching Frequency, RWK0011B RWK0011B TPS62097RWKR Texas Instruments TPS62097RWKT Texas Instruments U10 1 Nanopower, 1.8V, Comparator with Voltage Reference, DCK0006A DCK0006A TLV3012AIDCKR Texas Instruments TLV3012AIDCKT Texas Instruments U12_PA, U12_PB 2 USB Type C Interface Protector: Short-to-VBUS Over Voltage and IEC 61000-4-2 ESD Protection, RUK0020B RUK0020B TPD6S300RUK Texas Instruments U13_PA_CS, U13_PB_CS 2 High-Accuracy, Wide Common-Mode Range, Bidirectional Current Shunt Monitors, Zero-Drift Series, DGK0008A DGK0008A INA284AIDGKR Texas Instruments SLVUB62B – JUNE 2017 – REVISED NOVEMBER 2020 Submit Document Feedback Texas Instruments Texas Instruments INA284AIDGKT Texas Instruments TPS65988 Evaluation Module Copyright © 2020 Texas Instruments Incorporated 59 TPS65988EVM Bill of Materials www.ti.com Table 11-1. TPS65988EVM Bill of Materials (continued) Designator Qty Value Description Package Reference Part Number Manufacturer Alternate Part Number Alternate Manufacturer U14 1 4-Channel High-Performance Differential Switch, RUA0042A RUA0042A HD3SS3412RUAR Texas Instruments HD3SS3412RUAT Texas Instruments U15, U22 2 ESD Protected,High-Speed USB 2.0 (480-Mbps) 1:2 Multiplexer / Demultiplexer Switch, 1:2 MUX / DeMUX, 6 ohm RON, 2.5 to 3.3 V, -40 to 85 degC, 10-Pin UQFN (RSE), Green (RoHS & no Sb/Br) RSE0010A TS3USB221ARSER Texas Instruments Equivalent Texas Instruments U16 1 Quad High Speed USB to Multipurpose UART/MPSSE IC LQFP_10x10mm FT4232HL FTDI U17 1 Single Output Fast Transient Response LDO, 1 A, Fixed 3.3 D0008A V Output, 2.7 to 10 V Input, with Low IQ, 8-pin SOIC (D), -40 to 125 degC, Green (RoHS ampersand no Sb/Br) TPS76833QD Texas Instruments Equivalent None U18 1 2K Microwire Compatible Serial EEPROM, SOT-23-6 SOT-23-6 93LC56B-I/OT Microchip U19 1 Two-Port USB 3.0 Hub, PHP0048E PHP0048E TUSB8020BPHPR Texas Instruments TUSB8020BPHP Texas Instruments U20 1 EEPROM 4KBIT 1MHZ,8UDFN UDFN-8 AT24C04D-MAHM-T Atmel Y1 1 CRYSTAL, 12MHz, 20pF, SMD 7x2.3x4.1mm ECS-120-20-3X-TR ECS Inc. Y2 1 Crystal, 24 MHz, 18 pF, SMD ABM3 ABM3-24.000MHZ-D2W-T Abracon Corporation C77, C93 0 300pF R20, R30, R32, R319, R320 0 0 R21, R23, R33, R35 0 10.0k RES, 10.0 k, 1%, 0.05 W, 0201 0201 CRCW020110K0FKED Vishay-Dale R43_PA_SS, R43_PB_SS, R44_PA_SS, R44_PB_SS, R150, R184, R185, R186, R187 0 100k RES, 100 k, 1%, 0.05 W, 0201 0201 CRCW0201100KFKED Vishay-Dale R45_PA_SS, R45_PB_SS, R48_PA_SS, R48_PB_SS, R52_PA_SS, R52_PB_SS, R78, R92, R95, R105, R109, R125_PA_CS, R125_PB_CS, R126_PA_CS, R126_PB_CS, R131, R132, R133, R134, R135, R136, R137, R138, R140, R142, R144, R146, R155, R156, R157, R158, R159, R160, R161, R162, R163, R164, R166, R168, R169, R170, R172, R173, R291 0 0 RES, 0, 5%, 0.05 W, 0201 0201 ERJ-1GE0R00C Panasonic R58_PB_SS, R59_PA_SS, R59_PB_SS, R60_PA_SS, R60_PB_SS, R188, R190, R272, R273, R277, R278, R283, R284, R285, R286, R288, R289, R290, R292, R295, R296, R297, R301 0 1.00k RES, 1.00 k, 1%, 0.05 W, 0201 0201 CRCW02011K00FKED Vishay-Dale R68_PA_SS, R68_PB_SS 0 150k RES, 150 k, 1%, 0.063 W, 0402 0402 CRCW0402150KFKED Vishay-Dale R112 0 39k RES, 39 k, 5%, 0.063 W, 0402 0402 CRCW040239K0JNED Vishay-Dale R115 0 560k RES, 560 k, 5%, 0.063 W, 0402 0402 CRCW0402560KJNED Vishay-Dale 60 CAP, CERM, 300 pF, 25 V, +/- 5%, C0G/NP0, 0402 0402 GRM1555C1E301JA01D Murata RES, 0, 5%, 0.125 W, 0805 0805 ERJ-6GEY0R00V Panasonic TPS65988 Evaluation Module SLVUB62B – JUNE 2017 – REVISED NOVEMBER 2020 Submit Document Feedback Copyright © 2020 Texas Instruments Incorporated www.ti.com TPS65988EVM Bill of Materials Table 11-1. TPS65988EVM Bill of Materials (continued) Designator Qty Value R128, R129, R130, R196, R197, R198, R199, R200, R201, R202, R203, R204, R205, R206, R207, R209, R210, R214, R216, R217, R221, R224, R225, R228, R229, R230, R231, R232, R233, R234, R237, R239, R240, R242, R244, R247, R249, R254, R255, R265, R266, R267, R268 0 0 R147 0 3.83k RES, 3.83 k, 1%, 0.05 W, 0201 0201 CRCW02013K83FKED Vishay-Dale R151, R153, R176, R178 0 100k RES, 100 k, 1%, 0.1 W, 0603 0603 CRCW0603100KFKEA Vishay-Dale Single 2-Input Positive-OR Gate, DCK0005A DCK0005A SN74AHC1G32TDCKRQ1 Texas Instruments U21 0 Description Package Reference Part Number Manufacturer RES, 0, 5%, 0.1 W, 0603 0603 CRCW06030000Z0EA Vishay-Dale Alternate Part Number Alternate Manufacturer Texas Instruments Notes: Unless otherwise noted in the Alternate Part Number or Alternate Manufacturer columns, all parts may be substituted with equivalents. SLVUB62B – JUNE 2017 – REVISED NOVEMBER 2020 Submit Document Feedback TPS65988 Evaluation Module Copyright © 2020 Texas Instruments Incorporated 61 Revision History www.ti.com 12 Revision History NOTE: Page numbers for previous revisions may differ from page numbers in the current version. Changes from Revision A (June 2018) to Revision B (November 2020) Page • Added the REACH Compliance section........................................................................................................... 37 • Changed the images in the TPS65988EVM Board Layout section.................................................................. 51 Changes from Revision * (June 2017) to Revision A (June 2018) Page • Overall rework of this user's guide for revision A from Section 4 to Section 9....................................................5 62 TPS65988 Evaluation Module SLVUB62B – JUNE 2017 – REVISED NOVEMBER 2020 Submit Document Feedback Copyright © 2020 Texas Instruments Incorporated IMPORTANT NOTICE AND DISCLAIMER TI PROVIDES TECHNICAL AND RELIABILITY DATA (INCLUDING DATA SHEETS), DESIGN RESOURCES (INCLUDING REFERENCE DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND OTHER RESOURCES “AS IS” AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS AND IMPLIED, INCLUDING WITHOUT LIMITATION ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT OF THIRD PARTY INTELLECTUAL PROPERTY RIGHTS. These resources are intended for skilled developers designing with TI products. You are solely responsible for (1) selecting the appropriate TI products for your application, (2) designing, validating and testing your application, and (3) ensuring your application meets applicable standards, and any other safety, security, regulatory or other requirements. These resources are subject to change without notice. TI grants you permission to use these resources only for development of an application that uses the TI products described in the resource. Other reproduction and display of these resources is prohibited. No license is granted to any other TI intellectual property right or to any third party intellectual property right. TI disclaims responsibility for, and you will fully indemnify TI and its representatives against, any claims, damages, costs, losses, and liabilities arising out of your use of these resources. TI’s products are provided subject to TI’s Terms of Sale or other applicable terms available either on ti.com or provided in conjunction with such TI products. TI’s provision of these resources does not expand or otherwise alter TI’s applicable warranties or warranty disclaimers for TI products. TI objects to and rejects any additional or different terms you may have proposed. IMPORTANT NOTICE Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265 Copyright © 2022, Texas Instruments Incorporated
TPS65988DJEVM 价格&库存

很抱歉,暂时无法提供与“TPS65988DJEVM”相匹配的价格&库存,您可以联系我们找货

免费人工找货