0
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
会员中心
创作中心
发布
  • 发文章

  • 发资料

  • 发帖

  • 提问

  • 发视频

创作活动
TPS73HD301PWPR

TPS73HD301PWPR

  • 厂商:

    BURR-BROWN(德州仪器)

  • 封装:

    TSSOP28_9.7X4.4MM_EP

  • 描述:

    IC REG LIN POS ADJ 28HTSSOP

  • 数据手册
  • 价格&库存
TPS73HD301PWPR 数据手册
       SLVS167C − SEPTEMBER 1998 − REVISED − MAY 1999 D Dual Output Voltages for Split-Supply D D D D D D D PWP PACKAGE (TOP VIEW) Applications 3.3-V/Adjustable Output, 3.3 V/1.8 V, and 3.3 V/2.5 Dropout Voltage < 80 mV Max at IO = 100 mA (3.3-V option) Low Quiescent Current, Independent of Load . . . 340 µA Typ Per Regulator Ultra-Low-Current Sleep State . . . 2 µA Max Dual Active-Low Reset Signals with 200-ms Pulse Width Output Current Range of 0 mA to 750 mA Per Regulator 28-Pin PowerPAD TSSOP Package 1 2 3 4 5 6 7 8 9 10 11 12 13 14 NC NC 1GND 1EN 1IN 1IN NC NC 2GND 2EN 2IN 2IN NC NC description 28 27 26 25 24 23 22 21 20 19 18 17 16 15 1RESET NC NC 1FB/SENSE 1OUT 1OUT 2RESET NC NC 2SENSE 2OUT 2OUT NC NC NC − No internal connection The TPS73HD3xx family of dual voltage regulators offers very low dropout voltages and dual outputs in a compact package. Designed primarily for DSP applications, these devices can be used in any mixed-output voltage application with each regulator supporting up to 750 mA. Output current can be allocated as desired between the two regulators and used to power many of todays DSPs. Low quiescent current and very low dropout voltage assure maximum power usage in battery-powered applications. Texas Instruments PowerPAD TSSOP package allows use of these devices with any voltage/current combination within the range of the listed specifications without thermal problems, provided proper device mounting procedures are followed. Separate inputs allow the designer to configure the source power as desired. Dual active-low reset signals allow resetting of core-logic and I/O separately. Remote sense/feedback terminals provide regulation at the load. The TPS73HD3xx are available in 28-pin PowerPAD TSSOP. They operate over a free-air temperature range of −40°C to 125°C. AVAILABLE OPTIONS REGULATOR 1 VO (V) REGULATOR 2 VO (V) Adj (1.2 − 9.75 V) 3.3 V TPS73HD301PWPR 1.8 V 3.3 V TPS73HD318PWPR 2.5 V 3.3 V TPS73HD325PWPR TA −40°C 125°C −40 C to 125 C TSSOP (PWP) Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet. PowerPAD is a trademark of Texas Instruments Incorporated. Copyright  1999, Texas Instruments Incorporated   !"# $ %&'# "$  (&)*%"# +"#', +&%#$ %! # $('%%"#$ (' #-' #'!$  '."$ $#&!'#$ $#"+"+ /""#0, +&%# (%'$$1 +'$ # '%'$$"*0 %*&+' #'$#1  "** (""!'#'$, POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 1        SLVS167C − SEPTEMBER 1998 − REVISED − MAY 1999 functional block diagram IN † † † EN − + OUT RESET Vref = 1.182 V Delayed Reset SENSE/FB R1 R2 GND † Switch positions shown with EN low (active). OUTPUT VOLTAGE R1 R2 UNIT Adjustable 0 ∞ Ω 1.8 V 122 233 kΩ 2.5 V 260 233 kΩ 3.3 V 420 233 kΩ Terminal Functions TERMINAL NAME NC NO. I/O 1, 2, 7, 8, 13−16, 20, 21, 26, 27 DESCRIPTION No connection 1GND 3 1EN 4 I Regulator #1 enable, low = enable 1IN 5, 6 I Regulator #1 input supply voltage 2GND 9 2EN 10 Regulator #1 ground Regulator #2 ground I Regulator #2 enable, low = enable 2IN 11, 12 I Regulator #2 input supply voltage 2OUT 17, 18 O Regulator #2 output voltage 2SENSE 19 I Regulator #2 output voltage sense (fixed output) 2RESET 22 O Regulator #2 reset signal, low = reset 23, 24 O Regulator #1 output voltage 1OUT 1FB/SENSE 25 I Regulator #1 output voltage feedback (adjustable output) 1RESET 28 O Regulator #1 reset signal, low = reset 2 POST OFFICE BOX 655303 • DALLAS, TEXAS 75265        SLVS167C − SEPTEMBER 1998 − REVISED − MAY 1999 absolute maximum ratings over operating free-air temperature (unless otherwise noted)† Input voltage range, VI (xIN, xRESET, xSENSE, xEN) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . −0.3 V to 11 V Differential input voltage,VID (1GND to 2GND) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 V Output current, IO (1OUT, 2OUT) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 A Continuous total power dissipation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Dissipation Rating Tables Operating free-air temperature range, TA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . −40°C to 125°C Storage temperature range, Tstg . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . −65°C to 150°C Lead temperature soldering 1,6 mm (1/16 inch) from case for 10 seconds . . . . . . . . . . . . . . . . . . . . . . . 260°C † Stresses beyond those listed under “absolute maximum ratings” may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under “recommended operating conditions” is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability. NOTE 1: All voltages are with respect to GND. DISSIPATION RATING TABLE 1 − FREE-AIR TEMPERATURES‡ PACKAGE PWP‡ AIR FLOW (CFM) TA < 25°C POWER RATING DERATING FACTOR ABOVE TA = 25°C TA = 70°C POWER RATING TA = 85°C POWER RATING 1.5 W 0 2.9 W 23.5 mW/°C 1.9 W 300 4.3 W 34.6 mW/°C 2.8 W 2.2 W 0 3W 23.8 mW/°C 1.9 W 1.5 W PWP§ 300 7.2 W 57.9 mW/°C 4.6 W 3.8 W ‡ This parameter is measured with the recommended copper heat sink pattern on a 1-layer PCB, 5-in × 5-in PCB, 1 oz. copper, 2-in × 2-in coverage (4 in2). § This parameter is measured with the recommended copper heat sink pattern on a 8-layer PCB, 1.5-in × 2-in PCB, 1 oz. copper with layers 1, 2, 4, 5, 7, and 8 at 5% coverage (0.9 in2) and layers 3 and 6 at 100% coverage (6 in2). recommended operating conditions Input voltage, VI† Adjustable output (regulator #1) 3.3−V output (regulator #2) Input voltage, VI† High-level input voltage at EN, VIH MIN MAX 2.97 10 V 3.97 10 V 2 Low-level input voltage at EN, VIL Total output current range (per regulator), IO Operating virtual junction temperature range, TJ UNIT V 0.5 V 0 750 mA −40 125 °C † Minimum input voltage defined in the recommended operating conditions is the maximum specified output voltage plus dropout voltage, VDO, at the maximum specified load range (750 mA). Since dropout voltage is a function of output current, the usable range can be extended for lighter loads. To calculate the minimum input voltage for the maximum load current used in a given application, use the following equation: V I(min) +V O(max) )V DO(max load) Because regulator 1 of the TPS373HD301 is programmable, rDS(on) should be used to calculate VDO before applying the above equation. The equation for calculating VDO from rDS(on) is given in Note 3 in the TPS73HD301 electrical characteristics table. The minimum value of 3.5 V is the absolute lower limit for the recommended input voltage range for the TPS73HD301. With 2.97-V input voltage, the LDO may be in dropout and will not meet the 3% regulaotr output or 750-mA load current specification. POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 3        SLVS167C − SEPTEMBER 1998 − REVISED − MAY 1999 electrical characteristics, VI(IN) = 4.3 V, IO = 10 mA, EN = 0 V, CO = 4.7 µF/CSR‡ = 1 Ω, SENSE/FB shorted to OUT (unless otherwise noted) TEST CONDITIONS§ PARAMETER Quiescent current (active mode), each regulator TJ EN ≤ 0.5 V, 0 mA ≤ IO ≤ 750 mA, See NOTE 2 −40°C to 125°C −40°C to 125°C MIN Supply current (standby mode), each regulator EN = VI, NOTE 2 IO Output current limit, each regulator VO = 0, Ilkg Pass-element leakage current (standby mode) EN = VI, See NOTE 2 25°C VI = 10 V Output voltage temperature coefficient MAX 340 415 25°C 550 25°C ICC TYP 0.01 2 0.8 1.2 −40°C to 125°C 25°C 0.01 −40°C to 125°C 61 Logic high (EN) (standby mode) Logic low (EN) (active mode) See NOTE 2 II Input current (EN) 0 V ≤ VI ≤ 10 V −40°C to 125°C µA A ppm/°C V 2.7 25°C 0.5 0.5 50 25°C −0.5 −40°C to 125°C −0.5 0.001 2.05 25°C 0.5 −40°C to 125°C A µA 2.5 2.5 1 V mV 0.5 −40°C to 125°C IO(RESET) = −300 µA A °C −40°C to 125°C 25°C Minimum input voltage, for active pass element µA A 2 25°C Minimum input voltage, for valid RESET 75 165 2.5 V ≤ VI ≤ 6 V, 6 V ≤ VI ≤ 10 V Hysteresis voltage (EN) 0.5 1 −40°C to 125°C µA A 2 2 Thermal shutdown junction temperature Vhys 0.5 UNIT 1.5 1.9 V V ‡ CSR (compensation series resistance) refers to the total series resistance, including the equivalent series resistance (ESR) of the capacitor, any series resistance added externally, and PWB trace resistance to CO. § Pulse-testing techniques are used to maintain virtual junction temperature as close as possible to ambient temperature; thermal effects must be taken into account separately. NOTE 2: Minimum input voltage is 3.5V or Vo(typ) + 1V whichever is greater. The minimum value of 3.5 V is the absolute lower limit for the recommended input voltage range for the TPS73HD301. 4 POST OFFICE BOX 655303 • DALLAS, TEXAS 75265        SLVS167C − SEPTEMBER 1998 − REVISED − MAY 1999 electrical characteristics, VI(IN) = 4.3 V, IO = 10 mA, EN = 0 V, CO = 4.7 µF/CSR† = 1 Ω, SENSE/FB shorted to OUT (unless otherwise noted) (continued) adjustable regulator PARAMETER Reference voltage (1FB) TEST CONDITIONS‡ 5 mA ≤ IO ≤ 750 mA, See NOTE 2 −40°C to 125°C Reference voltage temperature coefficient Pass-element series resistance (see Note 3) Input regulation Output regulation TJ 25°C 75 0.52 1 −40°C to 125°C 1 ppm/°C Ω 50 µA ≤ IO ≤ 750 mA VI = 3.5 V, 50 µA ≤ IO ≤ 750 mA IO = 5 mA to 750 mA, See NOTE 2 25°C 0.23 25°C 3 mV 25°C 7 mV 25°C 10 mV 25°C 59 25°C 54 25°C 2 CL = 4.7 µF 25°C 95 CL = 10 µF 25°C 89 CL = 100 µF 25°C 74 IO = 50 µA IO = 500 mA f = 120 Hz Output noise voltage 10 Hz ≤ f ≤ 100 kHz, CSR = 1 Ω V(TO) Trip-threshold voltage (RESET)§ VO(FB) decreasing Vhys Hysteresis voltage (RESET)§ Measured at VO(ER) Input current (1FB) 61 V 0.32 Output noise-spectral density II 1.217 25°C f = 120 Hz, Low-level output voltage (RESET)§ UNIT 50 µA ≤ IO ≤ 750 mA VI = 3.9 V, VI = 5.9 V, f = 120 Hz, VOL MAX 1.182 25°C 50 µA ≤ IO ≤ 750 mA, See NOTE 2 TYP 1.147 −40°C to 125°C IO = 50 µA to 750 mA, See NOTE 2 Ripple rejection MIN VI = 2.13 V, −40°C to 125°C A IO(RESET) = 400 µA 1.101 dB mV/√Hz µV/rms 1.145 25°C 12 25°C 0.1 −40°C to 125°C mV 0.4 0.4 25°C −10 −40°C to 125°C −20 0.1 V V 10 20 nA † CSR (compensation series resistance) refers to the total series resistance, including the equivalent series resistance (ESR) of the capacitor, any series resistance added externally, and PWB trace resistance to CL. ‡ Pulse-testing techniques are used to maintain virtual junction temperature as close as possible to ambient temperature; thermal effects must be taken into account separately. § Output voltage programmed to 2.5 V with closed-loop configuration (see application information) NOTE 3: To calculate dropout voltage, use equation: V DO +I O r DS(ON) rDS(ON) is a function of both output current and input voltage. This parametric table lists rDS(ON) for VI = 3.9 V and 5.9 V, which corresponds to dropout conditions for programmed output voltages of 4 V and 6 V respectively. For other programmed values, refer to Figure 29. POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 5        SLVS167C − SEPTEMBER 1998 − REVISED − MAY 1999 electrical characteristics, VI(IN) = 4.3 V, IO = 10 mA, EN = 0 V, CO = 4.7 µF/CSR† = 1 Ω, SENSE/FB shorted to OUT (unless otherwise noted) (continued) 1.8-V regulator (TPS73HD318) TEST CONDITIONS‡ PARAMETER VO TJ 25°C MIN TYP MAX 1.746 1.8 1.854 −40°C to 125°C 1.728 Output voltage 4.3 V ≤ VI ≤ 10 V Pass-element series resistance (3.5 V − VO)/IO, IO = 750 mA, Input regulation 50 µA ≤ IO ≤ 750 mA, See NOTE 2 25°C 6 IO = 5 mA to 750 mA, IO = 50 µA to 750 mA, f = 120 Hz, Output regulation Ripple rejection Output noise-spectral density Output noise voltage f = 120 Hz, VI = 3.5 V, V2SENSE = 0 V§ 25°C 0.5 −40°C to 125°C 1 1.2 See NOTE 2 25°C 14 See NOTE 2 25°C 18 IO = 50 µA IO = 500 mA 25°C 51 25°C 49 f = 120 Hz 10 Hz ≤ f ≤ 100 kHz, CSR = 1 Ω 1.872 25°C 2 CL = 4.7 µF 25°C 274 CL = 10 µF 25°C 228 CL = 100 µF 25°C 159 UNIT V Ω mV mV dB mV/√Hz µV/rms † CSR (compensation series resistance) refers to the total series resistance, including the equivalent series resistance (ESR) of the capacitor, any series resistance added externally, and PWB trace resistance to CL. ‡ Pulse-testing techniques are used to maintain virtual junction temperature as close as possible to ambient temperature; thermal effects must be taken into account separately. § Pass-element series resistance measured with sense pin disconnected from output to allow output voltge to rise to full saturation. 6 POST OFFICE BOX 655303 • DALLAS, TEXAS 75265        SLVS167C − SEPTEMBER 1998 − REVISED − MAY 1999 electrical characteristics, VI(IN) = 4.3 V, IO = 10 mA, EN = 0 V, CO = 4.7 µF/CSR† = 1 Ω, SENSE/FB shorted to OUT (unless otherwise noted) (continued) 2.5-V regulator (TPS73HD325) TEST CONDITIONS‡ PARAMETER VO TJ 25°C MIN TYP 2.45 2.5 −40°C to 125°C 2.425 UNIT 2.55 Output voltage 4.3 V ≤ VI ≤ 10 V Dropout voltage IO = 750 mA, VI = 3.5 V 50 µA ≤ IO ≤ 750 mA, See NOTE 2 −40°C to 125°C 25°C 6 mV IO = 5 mA to 750 mA, See NOTE 2 IO = 50 µA to 750 mA, See NOTE 2 25°C 20 mV 25°C 25 mV IO = 50 µA IO = 500 mA 25°C 51 25°C 49 Input regulation Output regulation f = 120 Hz, Ripple rejection Output noise-spectral density Output noise voltage f = 120 Hz, f = 120 Hz 10 Hz ≤ f ≤ 100 kHz, CSR = 1 Ω 2.575 800 25°C 2 CL = 4.7 µF 25°C 274 CL = 10 µF 25°C 228 CL = 100 µF 25°C 159 V(TO) Trip-threshold voltage (RESET) Vhys Hysteresis voltage (RESET) 25°C 18 Low-level output voltage (RESET) 25°C 0.17 VOL MAX VO decreasing −40°C to 125°C VI = 2.8 V, IO(RESET) = −1 mA V mV dB mV/√Hz µV/rms 2.172 V −40°C to 125°C mV 0.4 0.4 V † CSR (compensation series resistance) refers to the total series resistance, including the equivalent series resistance (ESR) of the capacitor, any series resistance added externally, and PWB trace resistance to CL. ‡ Pulse-testing techniques are used to maintain virtual junction temperature as close as possible to ambient temperature; thermal effects must be taken into account separately. § Pass-element series resistance measured with sense pin disconnected from output to allow output voltge to rise to full saturation. switching characteristics PARAMETER Time-out delay (RESET) TEST CONDITIONS See Figure 3 POST OFFICE BOX 655303 TJ 25°C MIN TYP MAX 140 200 260 −40°C to 125°C 100 • DALLAS, TEXAS 75265 300 UNIT ms 7        SLVS167C − SEPTEMBER 1998 − REVISED − MAY 1999 electrical characteristics, VI(IN) = 4.3 V, IO = 10 mA, EN = 0 V, CO = 4.7 µF/CSR† = 1 Ω, SENSE/FB shorted to OUT (unless otherwise noted) (continued) 3.3-V regulator (TPS73HD301) TEST CONDITIONS‡ PARAMETER VO Output voltage 4.3 V ≤ VI ≤ 10 V TJ 25°C MIN −40°C to 125°C 3.23 TYP MAX UNIT 3.3 3.37 IO = 10 mA, IO = 100 mA, VI = 3.23 V VI = 3.23 V IO = 750 mA, VI = 3.23 V −40°C to 125°C Pass-element series resistance (3.23 V − VO)/IO, IO = 750 mA VI = 3.23 V, 25°C Input regulation 50 µA ≤ IO ≤ 750 mA, See NOTE 2 25°C 6 mV 25°C 30 mV Output regulation IO = 5 mA to 750 mA, See NOTE 2 IO = 50 µA to 750 mA, See NOTE 2 25°C 37 mV IO = 50 µA IO = 500 mA 25°C 51 25°C 49 Dropout voltage f = 120 Hz, Ripple rejection Output noise-spectral density Output noise voltage f = 120 Hz, 4.5 10 25°C 44 100 25°C 353 750 25°C 2 25°C 274 CL = 10 µF 25°C 228 CL = 100 µF 25°C 159 V(TO) Trip-threshold voltage (RESET) Vhys Hysteresis voltage (RESET) 25°C 18 25°C 0.17 VOL Low-level output voltage (RESET) −40°C to 125°C VI = 2.8 V, IO(RESET) = −1 mA 1 1.07 CL = 4.7 µF VO decreasing mV 800 0.44 −40°C to 125°C f = 120 Hz 10 Hz ≤ f ≤ 100 kHz, CSR = 1 Ω 25°C V Ω dB mV/√Hz µV/rms 2.868 V −40°C to 125°C mV 0.4 0.4 V † CSR (compensation series resistance) refers to the total series resistance, including the equivalent series resistance (ESR) of the capacitor, any series resistance added externally, and PWB trace resistance to CL. ‡ Pulse-testing techniques are used to maintain virtual junction temperature as close as possible to ambient temperature; thermal effects must be taken into account separately. switching characteristics PARAMETER Time-out delay (RESET) 8 TEST CONDITIONS See Figure 3 POST OFFICE BOX 655303 TJ 25°C MIN TYP MAX 140 200 260 −40°C to 125°C 100 • DALLAS, TEXAS 75265 300 UNIT ms        SLVS167C − SEPTEMBER 1998 − REVISED − MAY 1999 PARAMETER MEASUREMENT INFORMATION VO RESET VI RESET IN VIT+ t 250 kΩ 0.1 µf OUT + EN VO 10 µF SENSE GND RESET RESET Timeout Delay CSR t TEST CIRCUIT VOLTAGE WAVEFORMS Figure 1. Test Circuit and Voltage Waveforms VI IN OUT + EN CO CCER† SENSE GND RL CSR † Ceramic capacitor Figure 2. Test Circuit for Typical Regions of Stability (Refer to Figures 29 through 32) POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 9        SLVS167C − SEPTEMBER 1998 − REVISED − MAY 1999 TYPICAL CHARACTERISTICS Table of Graphs vs Load current 5 vs Input voltage 6 Adjustable regulator vs Load current 7 3.3-V regulator vs Load current 8 Change in dropout voltage vs Free-air temperature 9 Dropout voltage vs Output current 10 Change in output voltage vs Free-air temperature 11 Output voltage vs Input voltage 12 IQ Quiescent current VDO Dropout voltage ∆VDO VDO ∆VO VO Line regulation VO 13 Output voltage vs Output current Output voltage response from enable (EN) Load transient response Line transient response 14, 15 16 Adjustable regulator 17 3.3-V regulator 18 Adjustable regulator 19 3.3-V regulator 20 Ripple rejection vs Frequency 21 Output spectral noise density vs Frequency 22 vs Output current 23 vs Added ceramic capacitance 24 vs Output current 25 3.3-V regulator vs Output current 26 Adjustable regulator vs Added ceramic capacitance 27 3.3-V regulator vs Added ceramic capacitance 28 Adjustable regulator Compensation series resistance (CSR) rDS(on) Pass-element resistance vs Input voltage 29 VI VIT− Minimum input voltage for valid RESET vs Free-air temperature 30 vs Free-air temperature 31 IOL(RESET) td RESET output current vs Input voltage 32 vs Free-air temperature 33 td Distribution for reset delay 10 Negative-going reset threshold 3.3-V regulato Reset time delay 34 POST OFFICE BOX 655303 • DALLAS, TEXAS 75265        SLVS167C − SEPTEMBER 1998 − REVISED − MAY 1999 TYPICAL CHARACTERISTICS QUIESCENT CURRENT vs INPUT VOLTAGE QUEISCENT CURRENT vs LOAD CURRENT 500 500 I Q − Queiscent Current − uA I Q − Quiescent Current − µ A Adjustable With VO Programmed to 2.5 V 400 350 300 TA = 25°C IO = 500 mA 450 VI = 4.3 V 450 3.3-V Regulator 250 200 150 400 3.3-V Regulator 350 300 250 Adjustable With VO Programmed to 2.5 V 200 150 100 100 50 50 0 0 0 200 400 600 0 800 1 2 3 4 5 6 7 8 9 10 VI − Input Voltage − V IO − Load Current − mA Figure 3 Figure 4 ADJUSTABLE REGULATOR DROPOUT VOLTAGE vs LOAD CURRENT 3.3−V REGULATOR DROPOUT VOLTAGE vs LOAD CURRENT 0.6 0.6 0.5 0.5 0.4 TA = 125°C 0.3 Dropout Voltage − V Dropout Voltage − V TA = 125°C TA = 25°C 0.2 TA = −40°C 0.1 0.4 TA = 25°C 0.3 0.2 TA = −40°C 0.1 0 0 100 200 300 400 500 600 700 0 0 100 200 300 400 500 600 700 Load Current − mA Load Current − mA Figure 5 Figure 6 POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 11        SLVS167C − SEPTEMBER 1998 − REVISED − MAY 1999 TYPICAL CHARACTERISTICS CHANGE IN DROPOUT VOLTAGE vs FREE-AIR TEMPERATURE DROPOUT VOLTAGE vs OUTPUT CURRENT 1.6 IO = 100 mA 8 TA = 25°C 1.4 6 VDO − Dropout Voltage − V ∆ VDO− Change In Dropout Voltage − mV 10 4 2 0 −2 −4 −6 1.2 1 VI = 3.9 V 0.8 VI = 5.9 V 0.6 VI = 9.65 V 0.4 0.2 −8 −10 −50 −25 0 25 50 75 100 TA − Free-Air Temperature − °C 0 125 0 50 100 150 200 IO − Output Current − mA Figure 7 Figure 8 OUTPUT VOLTAGE vs INPUT VOLTAGE CHANGE IN OUTPUT VOLTAGE vs FREE-AIR TEMPERATURE 6 TA = 25°C IO = 500 mA VI = VO(nom) + 1 V IO = 100 mA 5 10 VO − Output Voltage − V ∆ VO − Change in Output Voltage − mV 20 15 5 0 −5 −10 4 3.3-V Regulator 3 2 2.5 V Regulator and Adjustable With VO Programmed to 2.5 V 1 −15 −20 −50 0 −25 0 25 50 75 100 125 0 1 2 3 4 5 Figure 9 Figure 10 POST OFFICE BOX 655303 6 7 VI − Input Voltage − V TA − Free-Air Temperature − °C 12 250 • DALLAS, TEXAS 75265 8 9 10        SLVS167C − SEPTEMBER 1998 − REVISED − MAY 1999 TYPICAL CHARACTERISTICS OUTPUT VOLTAGE vs OUTPUT CURRENT LINE REGULATION 2.55 Adjustable Regulator TA = 25°C IO = 250 mA 3.3-V Regulator 15 2.54 2.53 V O − Output voltage − V 10 5 0 −5 2.52 VI = 10 V 2.51 VI = 3.5 V 2.5 2.49 2.48 −10 2.47 −15 2.46 2.45 −20 4 5 8 6 7 VI − Input Voltage − V 9 0 10 200 400 600 800 IO − Output Current − mA Figure 11 Figure 12 OUTPUT VOLTAGE vs OUTPUT CURRENT 3.38 3.3-V Regulator 3.36 V O − Output voltage − V ∆VO− Change In Output Voltage − mV 20 3.34 3.32 3.30 VI = 4.3 V 3.28 VI = 10 V 3.26 3.24 3.22 0 200 400 600 800 IO − Output Current − mA Figure 13 POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 13        SLVS167C − SEPTEMBER 1998 − REVISED − MAY 1999 TYPICAL CHARACTERISTICS 6 VO(nom) 4 2 0 TA = 25°C RL = 500 Ω Co = 4.7 µF (CSR = 1Ω) No Input Capacitance 6 4 2 0 EN Voltage − V VO − Output Voltage − V OUTPUT VOLTAGE RESPONSE FROM ENABLE (EN) −2 0 20 40 60 80 100 120 140 Time − µs Figure 14 3.3−V REGULATOR LOAD TRANSIENT RESPONSE ADJUSTABLE REGULATOR LOAD TRANSIENT RESPONSE 2000 1000 500 0 −500 TA = 25°C VI = 6 V ∆IO = 750 mA Co = 10 µF CSR = 1 Ohm tR = 50 ns −1000 −1500 −2000 −2500 0 100 200 300 400 500 600 ∆Vo − Change in Output Voltage − mV ∆Vo − Change in Output Voltage − mV 1500 1500 1000 500 0 −1000 −1500 −2000 0 100 200 300 400 500 600 t − time − us t − time − us Figure 16 Figure 15 14 TA = 25°C VI = 6 V ∆IO = 750 mA Co = 10 µF CSR = 1 Ohm tR = 50 ns −500 POST OFFICE BOX 655303 • DALLAS, TEXAS 75265        SLVS167C − SEPTEMBER 1998 − REVISED − MAY 1999 ADJUSTABLE REGULATOR LINE TRANSIENT RESPONSE 100 50 0 −50 −100 TA = 25°C CI = 0 Co = 4.7 µF (CSR = 1 Ω) VO Programmable to 2.5 V 6.5 6.25 6 0 100 200 300 5.75 400 VI − Input Voltage − V ∆VO − Change in Output Voltage − mV TYPICAL CHARACTERISTICS t − Time − µs 3.3-V REGULATOR LINE TRANSIENT RESPONSE 200 100 0 −50 TA = 25°C CI = 0 Co = 4.7 µF (CSR = 1 Ω) −100 6.5 6.25 6 0 100 200 300 400 5.75 500 V I − Input Voltage − V ∆VO − Change in Output Voltage − mV Figure 17 t − Time − µs Figure 18 POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 15        SLVS167C − SEPTEMBER 1998 − REVISED − MAY 1999 TYPICAL CHARACTERISTICS RIPPLE REJECTION vs FREQUENCY OUTPUT SPECTRAL-NOISE DENSITY vs FREQUENCY 60 40 TA = 25°C No Input Capacitance Added VI = VO + 1 V IO = 100 mA Co = 4.7 µF (CSR = 1) 30 Adjustable With VO Programmed to 2.5 V Ripple Rejection − dB 50 10 Output Spectral-Noise Density − µV/ Hz 3.3-V Regulator 20 10 0 10 100 1K 10 K 100 K 1M TA = 25°C No Input Capacitance Added VI = VO + 1 V Co = 4.7 µF (CSR = 1 Ω) 1 Co = 10 µF (CSR = 1 Ω) 0.1 Co = 100 µF (CSR = 1 Ω) 0.01 10 10 M 100 f − Frequency − Hz Figure 19 TYPICAL REGIONS OF STABILITY TYPICAL REGIONS OF STABILITY COMPENSATION SERIES RESISTANCE (CSR)† vs OUTPUT CURRENT COMPENSATION SERIES RESISTANCE (CSR)† vs ADDED CERAMIC CAPACITANCE 100 CSR − Compensation Series Resistance − Ω CSR − Compensation Series Resistance − Ω 100 k Figure 20 100 Region of Instability 10 1 TA = 25°C VI = VO + 1 V Co = 4.7 µF No Added Ceramic Capacitance No Input Capacitance Added 0.1 Region of Instability 0.01 0 50 100 Region of Instability 10 TA = 25°C VI = VO + 1 V IO = 500 mA Co = 4.7 µF No Input Capacitor Added 1 0.1 Region of Instability 0.01 150 200 250 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 Added Ceramic Capacitance − µF IO − Output Current − mA Figure 21 16 1k 10 k f − Frequency − Hz Figure 22 POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 0.9 1        SLVS167C − SEPTEMBER 1998 − REVISED − MAY 1999 TYPICAL CHARACTERISTICS ADJUSTABLE REGULATOR TYPICAL REGIONS OF STABILITY 3.3−V REGULATOR TYPICAL REGIONS OF STABILITY COMPENSATION SERIES RESISTANCE vs OUTPUT CURRENT COMPENSATION SERIES RESISTANCE vs OUTPUT CURRENT 100 Region of Instability 10 CSR − Compensation Series Resistance − Ω CSR − Compensation Series Resistance − Ω 100 TA = 25°C VI = VO + 1 V Co = 10 µF No added ceramic capacitance. No input capacitor. 1 0.1 Region of Instability 0.01 Region of Instability 10 TA = 25°C VI = VO + 1 V Co = 10 µF No added ceramic capacitance. No input capacitor. 1 0.1 Region of Instability 0.01 0 100 200 300 400 600 500 0 700 100 IO − Output Current − mA 300 400 500 600 700 IO − Output Current − mA Figure 23 Figure 24 ADJUSTABLE REGULATOR TYPICAL REGIONS OF STABILITY 3.3-V REGULATOR TYPICAL REGIONS OF STABILITY COMPENSATION SERIES RESISTANCE vs ADDED CERAMIC CAPACITANCE COMPENSATION SERIES RESISTANCE vs ADDED CERAMIC CAPACITANCE 100 100 CSR − Compensation Series Resistance − Ω CSR − Compensation Series Resistance − Ω 200 Region of Instability 10 TA = 25°C VI = VO + 1 V IO = 750 mA Co = 10 µF No input capacitance. 1 0.1 Region of Instability 0.01 Region of Instability 10 TA = 25°C VI = VO + 1 V IO = 750 mA Co = 10 µF No input capacitance. 1 0.1 Region of Instability 0.01 0 0.2 0.4 0.6 0.8 1 0 Added Ceramic Capacitance − µF 0.2 0.4 0.6 0.8 1 Added Ceramic Capacitance − µF Figure 25 Figure 26 POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 17        SLVS167C − SEPTEMBER 1998 − REVISED − MAY 1999 TYPICAL CHARACTERISTICS MINIMUM INPUT VOLTAGE FOR VALID RESET vs FREE-AIR TEMPERATURE PASS-ELEMENT RESISTANCE vs INPUT VOLTAGE VI − Minimum Input Voltage For Valid RESET − V rDS(on) − Pass-Element Resistance − Ω 1.1 TA = 25°C VI(FB) = 1.12 V 1 0.9 0.8 IO = 500 mA 0.7 0.6 0.5 IO = 100 mA 0.4 0.3 0.2 0.1 2 3 4 9 6 8 5 7 VI − Input Voltage − V 10 ÁÁ ÁÁ 1.1 1.09 1.08 1.07 1.06 1.05 −50 −25 0 25 50 75 100 TA − Free-Air Temperature − °C Figure 28 Figure 27 NEGATIVE-GOING RESET THRESHOLD vs FREE-AIR TEMPERATURE RESET OUTPUT CURRENT vs INPUT VOLTAGE 4 IL = 10 mA VOL ≤ 0.4 V TA = 25°C 3.3-V Regulator 3.5 I OL − RESET Output Current − mA VIT− − Negative-Going Reset Threshold − mV 15 10 5 0 −5 ÁÁ ÁÁ ÁÁ −10 −15 −50 3 2.5 2 1.5 1 0.5 −25 0 25 50 75 100 125 0 0 1 TA − Free-Air Temperature − °C 2 3 4 5 Figure 30 POST OFFICE BOX 655303 6 7 VI − Input Voltage − V Figure 29 18 125 • DALLAS, TEXAS 75265 8 9 10        SLVS167C − SEPTEMBER 1998 − REVISED − MAY 1999 TYPICAL CHARACTERISTICS RESET DELAY TIME vs FREE-AIR TEMPERATURE DISTRIBUTION FOR RESET DELAY 50 197 TA = 25°C 197 Devices 45 196 Percentage of Units − % td − Reset Delay Time − ms 40 195 194 193 192 35 30 25 20 15 10 191 5 190 −50 −25 0 25 50 75 100 TA − Free-Air Temperature −°C 0 180 125 185 Figure 31 200 205 190 195 td − Reset Delay Time − ms 210 Figure 32 THERMAL INFORMATION The TPS73HD3xx is packaged in a high-power dissipation downset lead frame for optimal power handling. with proper heat dissipation techniques, the full power soutput of these devices can be safely handled over the full temperture range. The Texas Instruments technical brief, PowerPAD Thermally Enhanced Package (literature number SLMA002), goes into considerable detail into techniques for properly mounting this type of package for maximum thermal performance. A thermal conduction plane of approximately 3I y 3I will give a power dissipatio level of 4.5 W. Power dissipation within the device can be calculated with the following equation: P D +P ǒ Ǔǒ –P +V I )I – V IN OUT I O1 O2 O1 I O1 POST OFFICE BOX 655303 )V O2 I O2 Ǔ • DALLAS, TEXAS 75265 19        SLVS167C − SEPTEMBER 1998 − REVISED − MAY 1999 APPLICATION INFORMATION thermal considerations DISSIPATION RATING TABLE PACKAGE PWP‡ PWP§ AIR FLOW (CFM) TA < 25°C POWER RATING DERATING FACTOR ABOVE TA = 25°C TA = 70°C POWER RATING TA = 85°C POWER RATING 0 2.9 W 23.5 mW/°C 1.9 W 1.5 W 300 4.3 W 34.6 mW/°C 2.8 W 2.2 W 0 3W 23.8 mW/°C 1.9 W 1.5 W 300 7.2 W 57.9 mW/°C 4.6 W 3.8 W † This parameter is measured with the recommended copper heat sink pattern on a 1-layer PCB, 5-in × 5-in PCB, 1 oz. copper, 2-in × 2-in coverage (4 in2). ‡ This parameter is measured with the recommended copper heat sink pattern on an 8-layer PCB, 1.5-in × 2-in PCB, 1 oz. copper with layers 1, 2, 4, 5, 7, and 8 at 5% coverage (0.9 in2) and layers 3 and 6 at 100% coverage (6 in2). The maximum ambient temperature depends on the heatsinking ability of the PCB system. Using the 0 CFM and 300 CFM data from the dissipation rating table, the derating factor for the PWP package with 6.9 in2 of copper area on a multilayer PCB is 24 mW/°C and 58 mW/°C respectively. Converting this to ΘJA: Θ JA + 1 Derating For 0 CFM : 1 + 0.0235 For 300 CFM : + + 42.6°CńW 1 0.0579 + 17.3°CńW Given ΘJA, the maximum allowable junction temperature, and the total internal dissipation, the maximum ambient temperature can be calculated with the following equation. The maximum recommended junction temperature for the TPS73HD3xx is 150 °C. ǒ T Max + T Max * Θ A J JA P D Ǔ The maximum power dissipation limit is determined using the following equation: T D(max) + T max * T J A R θJA Where: TJmax is the maximum allowable junction temperature RθJA is the thermal resistance junction-to-free-air for the package (i.e., 285°C/W for the 5-terminal SOT-23 package. TA is the free-air temperautre The regulator dissipation is calculated using: P D + ǒVI * VOǓ 1 O Power dissipation resulting from quiescent current is negligible. 20 POST OFFICE BOX 655303 • DALLAS, TEXAS 75265        SLVS167C − SEPTEMBER 1998 − REVISED − MAY 1999 APPLICATION INFORMATION Capitalizing upon the features of the TPS73xx family (low-dropout voltage, low quiescent current, power-saving shutdown mode, and a supply-voltage supervisor) and the power-dissipation properties of the TSSOP PowerPAD package has enabled the integration of the TPS73HD3xx dual LDO regulator with high output current for use in DSP and other multiple voltage applications. Figure 35 shows a typical dual-voltage DSP application. R2 100 kΩ R1 100 kΩ U1 TPS73HD325 2 3 4 5V 5 6 C0 1 µF 7 8 9 10 11 12 13 14 NC 1RESET NC NC 1GND 1EN NC 1FB/SENSE 1IN 1OUT 1IN 1OUT NC 2RESET NC NC 2GND NC 2EN 2IN 2SENSE 2OUT 2IN 2OUT NC NC NC NC 28 27 RESET to DSP 26 25 24 23 2.5 V 22 D1 21 20 C3 33 µF 19 + 18 17 DL4148 1 PG CVdd (Core Supply) D3 DL5817 16 D2 15 3.3 V C1 1 µF C2 33 µF GND DVdd (I/O Supply) GND VC549 DSP Figure 33. Dual-Voltage DSP Application DSP power requirements include very high transient currents that must be considered in the initial design. This design uses higher-valued output capacitors to handle the large transient currents. Details of this type of design are shown in the application report, Designing Power Supplies for TMS320VC549 DSP Systems. minimum load requirements The TPS73HD3xx is stable even at zero load; no minimum load is required for operation. POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 21        SLVS167C − SEPTEMBER 1998 − REVISED − MAY 1999 APPLICATION INFORMATION SENSE connection The SENSE terminal of fixed-output devices must be connected to the regulator output for proper functioning of the regulator. Normally, this connection should be as short as possible; however, the connection can be made near a critical circuit (remote sense) to improve performance at that point. Internally, SENSE connects to a high-impedance wide-bandwidth amplifier through a resistor-divider network, and noise pickup feeds through to the regulator output. It is essential to route the SENSE connection in such a way as to minimize/avoid noise pickup. Adding an RC network between SENSE and OUT to filter noise is not recommended because it can cause the regulator to oscillate. external capacitor requirements An input capacitor is not required; however, a ceramic bypass capacitor (0.047 pF to 0.1 µF) improves load transient response and noise rejection when the TPS73HD3xx is located more than a few inches from the power supply. A higher-capacitance electrolytic capacitor may be necessary if large (hundreds of milliamps) load transients with fast rise times are anticipated. As with most LDO regulators, the TPS73HD3xx requires an output capacitor for stability. A low-ESR 10-µF solid-tantalum capacitor connected from the regulator output to ground is sufficient to ensure stability over the full load range (see Figure 44). Adding high-frequency ceramic or film capacitors (such as power-supply bypass capacitors for digital or analog ICs) can cause the regulator to become unstable unless the ESR of the tantalum capacitor is less than 1.2 Ω over temperature. Capacitors with published ESR specifications such as the AVX TPSD106M035R0300 and the Sprague 593D106X0035D2W work well because the maximum ESR at 25°C is 300 mΩ (typically, the ESR in solid-tantalum capacitors increases by a factor of 2 or less when the temperature drops from 25°C to − 40°C). Where component height and/or mounting area is a problem, physically smaller, 10-µF devices can be screened for ESR. Figures 23 through 28 show the stable regions of operation using different values of output capacitance with various values of ceramic load capacitance. Due to the reduced stability range available when using output capacitors smaller than 10 µF, capacitors in this range are not recommended. Larger capacitors provide a wider range of stability and better load transient response. Because capacitor minimum ESR is seldom if ever specified, it may be necessary to add a 0.5-Ω to 1-Ω resistor in series with the capacitor and limit ESR to 1.5 Ω maximum. As shown in the CSR graphs (Figures 23 through 28), minimum ESR is not a problem when using 10-µF or larger output capacitors. Below is a partial listing of surface-mount capacitors usable with the TPS73HD3xx. This information, along with the CSR graphs, is included to assist in selection of suitable capacitance for the user’s application. When necessary to achieve low height requirements along with high output current and/or high ceramic load capacitance, several higher ESR capacitors can be used in parallel to meet the guidelines above. 22 POST OFFICE BOX 655303 • DALLAS, TEXAS 75265        SLVS167C − SEPTEMBER 1998 − REVISED − MAY 1999 APPLICATION INFORMATION external capacitor requirements (continued) All load and temperature conditions with up to 1 µF of added ceramic load capacitance: PART NO. MFR. VALUE MAX ESR† SIZE (H × L × W)† T421C226M010AS Kemet 22 µF, 10 V 0.5 2.8 × 6 × 3.2 593D156X0025D2W Sprague 15 µF, 25 V 0.3 2.8 × 7.3 × 4.3 593D106X0035D2W Sprague 10 µF, 35 V 0.3 2.8 × 7.3 × 4.3 10 µF, 35 V 0.3 2.8 × 7.3 × 4.3 TPSD106M035R0300 AVX Load < 200 mA, ceramic load capacitance < 0.2 µF, full temperature range: PART NO. 592D156X0020R2T MFR. VALUE MAX ESR† SIZE (H × L × W)† Sprague 15 µF, 20 V 1.1 1.2 × 7.2 × 6 595D156X0025C2T Sprague 15 µF, 25 V 1 2.5 × 7.1 × 3.2 595D106X0025C2T Sprague 10 µF, 25 V 1.2 2.5 × 7.1 × 3.2 293D226X0016D2W Sprague 22 µF, 16 V 1.1 2.8 × 7.3 × 4.3 Load < 100 mA, ceramic load capacitance < 0.2 µF, full temperature range: MFR. VALUE MAX ESR† SIZE (H × L × W)† 195D106X06R3V2T Sprague 10 µF, 6.3 V 1.5 1.3 × 3.5 × 2.7 195D106X0016X2T Sprague 10 µF, 16 V 1.5 1.3 × 7 × 2.7 595D156X0016B2T Sprague 15 µF, 16 V 1.8 1.6 × 3.8 × 2.6 695D226X0015F2T Sprague 22 µF, 15 V 1.4 1.8 × 6.5 × 3.4 695D156X0020F2T Sprague 15 µF, 20 V 1.5 1.8 × 6.5 × 3.4 695D106X0035G2T Sprague 10 µF, 35 V 1.3 2.5 × 7.6 × 2.5 PART NO. † Size is in mm. ESR is maximum resistance at 100 kHz and TA = 25°C. Listings are sorted by height. POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 23        SLVS167C − SEPTEMBER 1998 − REVISED − MAY 1999 APPLICATION INFORMATION programming the adjustable LDO regulator output Programming the adjustable regulator is done using an external resistor divider as shown in Figure 44. The equation governing the output voltage is: V O +V ǒ1 ) R1 Ǔ R2 ref Where Vref = reference voltage, 1.182 V typ Resistors R1 and R2 should be chosen for approximately 7-µA divider current. A recommended value for R2 is 169 kΩ with R1 adjusted for the desired output voltage. Smaller resistors can be used, but offer no inherent advantage and consume more power. Larger values of R1 and R2 should be avoided as leakage currents at FB will introduce an error. Solving for R1 yields a more useful equation for choosing the appropriate resistance: R1 + ǒ Ǔ V V O *1 ref R2 OUTPUT VOLTAGE PROGRAMMING GUIDE TPS73HD3xx VI 0.1 µF 5 1IN 1RESET 6 1IN 1OUT >2.7 V 4
TPS73HD301PWPR 价格&库存

很抱歉,暂时无法提供与“TPS73HD301PWPR”相匹配的价格&库存,您可以联系我们找货

免费人工找货