User's Guide
SLVU813A – November 2012 – Revised June 2013
Using the TPS92075 Buck-Boost Converter
The TPS92075EVM is a 17-W maximum, 120-VAC non-isolated dimmable LED driver. The
TPS92075EVM implements a dimming solution using the TPS92075 integrated circuit from Texas
Instruments. This user's guide provides electrical specifications, performance data, typical characteristic
curves, schematics, printed-circuit board layout, and a bill of materials.
Contents
Introduction .................................................................................................................. 2
Description ................................................................................................................... 2
2.1
Typical Applications ................................................................................................ 2
2.2
TPS92075 Features ............................................................................................... 2
3
Electrical Performance Specifications .................................................................................... 3
4
Schematic .................................................................................................................... 3
5
Performance Data and Typical Characteristic Curves – Configured as Buck-Boost ............................... 4
5.1
Efficiency ............................................................................................................ 4
5.2
Load Regulation .................................................................................................... 5
5.3
Output Ripple ....................................................................................................... 5
5.4
Turn On Waveform ................................................................................................ 6
5.5
Turn Off Waveform ................................................................................................ 6
5.6
Dimming – Lutron Triac Dimmer at One Position .............................................................. 7
5.7
Dimming – Leviton Triac Dimmer at One Position ............................................................. 7
5.8
Thermal Scans ..................................................................................................... 8
5.9
EMI Scan – 9 LEDs ................................................................................................ 8
5.10 Dimmer Testing ................................................................................................... 10
6
Reference Design, Assembly Drawing, PCB layout, and Bill of Materials ......................................... 11
6.1
Reference Design, Assembly Drawing and PCB layout ..................................................... 11
6.2
Bill of Materials .................................................................................................... 13
Appendix A
Table Data – Buck-Boost Configuration ....................................................................... 14
Appendix B
Table Data – Buck Configuration. (Exchange Diode and Inductor, Reverse Bulk Cap Polarity) Efficiency
Calculated using Pout = Vout × Iout ........................................................................... 16
Appendix C Connection Snap-Shot ........................................................................................... 17
1
2
List of Figures
1
2
3
4
5
6
7
8
9
10
11
12
13
....................................................................................... 3
Dimming Wiring Diagram .................................................................................................. 4
TPS92075 Buck-Boost Efficiency (Input and Output Power Meter Used) ........................................... 4
TPS92075 Buck-Boost Regulation ....................................................................................... 5
Output Ripple (Vout: 35.5 V, Iout 375 mA, THD 18.5%)............................................................... 5
Enable Turn On Waveform – Turn On Time ~64 ms................................................................... 6
Enable Turn Off Waveform ................................................................................................ 6
Lutron Leading Edge, Output = 100 mA ................................................................................. 7
Leviton Leading Edge, Output = 20 mA.................................................................................. 7
Thermal Scans .............................................................................................................. 8
Conducted EMI Scan, 9 LEDs ............................................................................................ 8
Typical Top Overall View ................................................................................................. 11
TPS92075 Buck-Boost Top (left) and Bottom (right) Layer Assembly Drawing ................................... 11
TPS92075 Buck-Boost Schematic
SLVU813A – November 2012 – Revised June 2013
Submit Documentation Feedback
Using the TPS92075 Buck-Boost Converter
Copyright © 2012–2013, Texas Instruments Incorporated
1
Introduction
www.ti.com
14
TPS92075 Buck-Boost Bottom Copper (PCB is Single-Sided Copper) ............................................ 12
15
Suggested Dimming Connection ........................................................................................ 17
List of Tables
1
1
TPS92075 Buck-Boost REF DESIGN-001 Electrical Performance Specifications ................................. 3
2
System Scan of 27 Highest Peaks
3
Dimmer Testing ............................................................................................................ 10
4
Bill of Materials............................................................................................................. 13
.......................................................................................
9
Introduction
The TPS92075EVM is a 17-W maximum, 120-VAC non-isolated dimmable LED driver whose form factor
is intended for A-15, A-19, A-21, A-23, R-20, R-25, R-27, R-30, R-40, PS-25, PS-30, PS-35, BR-30, BR38, BR-40, PAR-20, PAR-30, PAR-30L, G-25, G-30, G-40, and other LED bulbs.
2
Description
The TPS92075EVM implements a dimming solution using the TPS92075 integrated circuit from Texas
Instruments. The TPS92075 is a hybrid power factor controller with a built-in phase dimming decoder. Line
cycles are analyzed continuously by an internal low power digital controller for shape and symmetry. An
analog current reference is then generated and used by the power converter stage to regulate the output
current. The analog reference is manipulated using control algorithms developed to optimize dimmer
compatibility, power factor, and THD.
Using constant off-time control, the solution achieves a low part count, high efficiency and inherently
provides variation in the switching frequency. This variation creates an emulated spread-spectrum effect
easing the converters EMI signature and allowing a smaller input filter.
2.1
Typical Applications
Triac-compatible LED lighting, including forward and reverse phase compatibility.
2.2
TPS92075 Features
•
•
•
•
•
•
•
•
•
•
•
•
•
2
Controlled reference derived PFC (Power Factor Correction)
Integrated digital phase angle decoder
Digital PLL with active 50-Hz, 60-Hz sync
Phase-symmetry balancing
Instant-On with safe mode
Leading and trailing edge dimmer compatibility
Dimming implemented via an analog reference
Smooth dimming transitions
Over-voltage protection
Output short circuit protection
Low BOM cost and small PCB footprint
Patent pending digital architecture
6-pin SOT and 8-pin SOIC available
Using the TPS92075 Buck-Boost Converter
SLVU813A – November 2012 – Revised June 2013
Submit Documentation Feedback
Copyright © 2012–2013, Texas Instruments Incorporated
Electrical Performance Specifications
www.ti.com
3
Electrical Performance Specifications
Table 1 presents the electrical performance specifications of the TPS92075.
Table 1. TPS92075 Buck-Boost REF DESIGN-001 Electrical Performance Specifications (1)
Parameter
Test Conditions
MIN
TYP
MAX
Units
90
120
135
V
0.140
A
50
V
Input Characteristics
Input Voltage range
Maximum Input current
Output Characteristics
Output voltage, VOUT
Output current will change with LED stack. Nominal
output is 35V, 360mA (12.6W)
Output voltage regulation
Line Regulation: Input voltage = 110 to 130
±4
Line Regulation: Input voltage = 90 to 135
±8
%
120Hz LED Ripple, typical with 35V output
300
mApp
Switching frequency
100
kHz
Peak efficiency
88
%
Output voltage ripple
18
%
Systems Characteristics
Peak Power Factor
.986
Operating temperature
25
Solution Volume
Solution Volume per Watt
(1)
4
Based on 17W maximum
125
ºC
18.5
cm3
1.1
W/cm3
All performance results are for this design configuration only. Many opportunities exist to balance one performance factor for
another in this design.
Schematic
Figure 1 is the EVM schematic, and Figure 2 shows suggested dimming connections.
Figure 1. TPS92075 Buck-Boost Schematic
SLVU813A – November 2012 – Revised June 2013
Submit Documentation Feedback
Using the TPS92075 Buck-Boost Converter
Copyright © 2012–2013, Texas Instruments Incorporated
3
Performance Data and Typical Characteristic Curves – Configured as Buck-Boost
www.ti.com
LED Load
Triac
Dimmer
AMP Meter
LED+
LEDJ6
L
AC Source
PWR503TPS92075EVM
N
J8
Figure 2. Dimming Wiring Diagram
5
Performance Data and Typical Characteristic Curves – Configured as Buck-Boost
Note: 18-V stack; ~8-W, 46-V Stack; ~14-W Only LED stack voltage changed, EVM design left intact for
all curves
5.1
Efficiency
90
87.5
46-V LED String
Efficiency (%)
85
40-V LED String
35-V LED String
82.5
30-V LED String
80
25-V LED String
18-V LED String
77.5
75
90
100
110
120
130
Input Voltage (VAC)
Figure 3. TPS92075 Buck-Boost Efficiency (Input and Output Power Meter Used)
4
Using the TPS92075 Buck-Boost Converter
SLVU813A – November 2012 – Revised June 2013
Submit Documentation Feedback
Copyright © 2012–2013, Texas Instruments Incorporated
Performance Data and Typical Characteristic Curves – Configured as Buck-Boost
www.ti.com
5.2
Load Regulation
550
Output Current (mA)
500
450
25-V LED String
400
30-V LED String
35-V LED String
350
40-V LED String
300
46-V LED String
250
200
110
115
120
Input Voltage (VAC)
125
130
Figure 4. TPS92075 Buck-Boost Regulation
5.3
Output Ripple
Ch4
Ch3
Ch1
Ch1: FET Q2 Source Ch3: LED Current Ch4: Input Current
Figure 5. Output Ripple (Vout: 35.5 V, Iout 375 mA, THD 18.5%)
SLVU813A – November 2012 – Revised June 2013
Submit Documentation Feedback
Using the TPS92075 Buck-Boost Converter
Copyright © 2012–2013, Texas Instruments Incorporated
5
Performance Data and Typical Characteristic Curves – Configured as Buck-Boost
5.4
www.ti.com
Turn On Waveform
Ch3
Ch4
Ch3: LED Current Ch4: Input Current
Figure 6. Enable Turn On Waveform – Turn On Time ~64 ms
5.5
Turn Off Waveform
Ch3
Ch4
Ch3: LED Current Ch4: Input Current
Figure 7. Enable Turn Off Waveform
6
Using the TPS92075 Buck-Boost Converter
SLVU813A – November 2012 – Revised June 2013
Submit Documentation Feedback
Copyright © 2012–2013, Texas Instruments Incorporated
Performance Data and Typical Characteristic Curves – Configured as Buck-Boost
www.ti.com
5.6
Dimming – Lutron Triac Dimmer at One Position
Ch3
Ch4
Ch1
Ch1: FET Q2 Source Ch3: LED Current Ch4: Input Current
Figure 8. Lutron Leading Edge, Output = 100 mA
5.7
Dimming – Leviton Triac Dimmer at One Position
Ch3
Ch4
Ch1
Ch1: FET Q2 Source Ch3: LED Current Ch4: Input Current
Figure 9. Leviton Leading Edge, Output = 20 mA
SLVU813A – November 2012 – Revised June 2013
Submit Documentation Feedback
Using the TPS92075 Buck-Boost Converter
Copyright © 2012–2013, Texas Instruments Incorporated
7
Performance Data and Typical Characteristic Curves – Configured as Buck-Boost
5.8
www.ti.com
Thermal Scans
Thermal Scan 1: 20-Minute Soak, 36-V LED Stack,
o
Top View, Hottest Point in Box: 70.2 C
Thermal Scan 2: 20-Minute Soak, 36-V LED Stack,
o
Top View, Hottest Point in Box: 59.5 C
Figure 10. Thermal Scans
5.9
EMI Scan – 9 LEDs
spacerspacerspacerspacerspacerspacerBlue Trace: Peak, Black Trace: Average
Figure 11. Conducted EMI Scan, 9 LEDs
8
Using the TPS92075 Buck-Boost Converter
SLVU813A – November 2012 – Revised June 2013
Submit Documentation Feedback
Copyright © 2012–2013, Texas Instruments Incorporated
Performance Data and Typical Characteristic Curves – Configured as Buck-Boost
www.ti.com
Table 2. System Scan of 27 Highest Peaks
Peak #
Limit
Frequency (Hz)
Level (dB)
Margin (dB)
1
QP
262000
58.9
–2.8
2
AV
262000
48.37
–3
3
QP
394000
54.95
–3
4
AV
394000
42.69
–5.3
5
QP
526000
51.45
–4.6
6
QP
798000
42.25
–13.8
7
QP
1042000
47.07
–8.9
8
QP
1186000
48.71
–7.3
–5.8
9
QP
1326000
50.23
10
QP
1458000
48.14
–7.9
11
QP
1958000
45.66
–10.3
12
QP
2110000
46.6
–9.4
13
QP
2258000
48.92
–7.1
14
QP
2746000
44.71
–11.3
15
QP
2906000
46.93
–9.1
16
QP
3058000
49.22
–6.8
17
QP
3190000
47.93
–8.1
18
QP
3678000
44.55
–11.5
19
QP
3846000
46.77
–9.2
20
QP
3990000
48.4
–7.6
21
QP
4782000
46.62
–9.4
22
QP
28686000
46.82
–13.2
23
QP
28838000
46.86
–13.1
24
QP
29178000
47.75
–12.3
25
QP
29342000
47.72
–12.3
26
QP
29654000
48.22
–11.8
27
QP
29950000
49.31
–10.7
NOTE: When using unshielded inductors it is important that the devices sit in perpendicular planes.
If the input filter inductors are not positioned at right angles conducted emissions will
increase.
SLVU813A – November 2012 – Revised June 2013
Submit Documentation Feedback
Using the TPS92075 Buck-Boost Converter
Copyright © 2012–2013, Texas Instruments Incorporated
9
Performance Data and Typical Characteristic Curves – Configured as Buck-Boost
www.ti.com
5.10 Dimmer Testing
Table 3. Dimmer Testing
Conditions: 120 VAC, 12 LEDs in series
10
Mfg:
Series:
Leviton
Decora
Leviton
Lutron
Max Iout with no dimmer = 375 mA
FlickerFree
Steady
State
FlickerFree
Steady
State
Max Iout
Min Iout
Max Iout
Min Iout
1 Lamp
3 Lamps
1 Lamp
1 Lamp
3 Lamps 3 Lamps
y
y
357
0
348
R52-06161-00W
y
y
308
0
303
0
Skylark Contour
y
y
260
62
252
56
Lutron
Abella
y
y
292
22
289
19
Lutron
Maestro Duo
y
y
255
55
248
50
Lutron
Maestro Duo
y
y
296
102
288
97
Lutron
Skylark Contour
y
y
290
0
287
0
Lutron
Skylark Contour
y
y
306
45
300
41
Lutron
Toggler
y
y
324
37
319
34
Lutron
Toggler
y
y
307
56
296
51
Lutron
Maestro Duo
y
y
300
21
287
18
46
0
Lutron
Skylark Contour
y
y
305
50
296
Leviton
Decora
y
y
362
0
352
0
Lutron
Skylark Contour
y
y
298
19
288
17
Leviton
Decora
y
y
315
0
305
0
Leviton
Rotary
y
y
370
0
356
0
Lutron
Diva
y
y
300
78
295
73
Lutron
Skylark Contour
y
y
276
40
275
39
Lutron
Rotary
y
y
287
0
288
0
Leviton
Sureslide
y
y
307
0
305
0
Using the TPS92075 Buck-Boost Converter
SLVU813A – November 2012 – Revised June 2013
Submit Documentation Feedback
Copyright © 2012–2013, Texas Instruments Incorporated
Reference Design, Assembly Drawing, PCB layout, and Bill of Materials
www.ti.com
6
Reference Design, Assembly Drawing, PCB layout, and Bill of Materials
6.1
Reference Design, Assembly Drawing and PCB layout
Figure 12 to Figure 14
Figure 12. Typical Top Overall View
Figure 13. TPS92075 Buck-Boost Top (left) and Bottom (right) Layer Assembly Drawing
SLVU813A – November 2012 – Revised June 2013
Submit Documentation Feedback
Using the TPS92075 Buck-Boost Converter
Copyright © 2012–2013, Texas Instruments Incorporated
11
Reference Design, Assembly Drawing, PCB layout, and Bill of Materials
www.ti.com
Figure 14. TPS92075 Buck-Boost Bottom Copper (PCB is Single-Sided Copper)
12
Using the TPS92075 Buck-Boost Converter
SLVU813A – November 2012 – Revised June 2013
Submit Documentation Feedback
Copyright © 2012–2013, Texas Instruments Incorporated
Reference Design, Assembly Drawing, PCB layout, and Bill of Materials
www.ti.com
6.2
Bill of Materials
Table 4. Bill of Materials
Qty
Designator
Description
Manufacturer
Part Number
1
U1
Triac Dimmable Offline LED Driver
Texas Instruments
TPS92075
1
BR1
Diode, Switching-Bridge, 400V, 0.8A, MiniDIP
Diodes Inc.
HD04-T
1
C1
CAP FILM 0.022uF 250VDC RADIAL
TDK/EPCOS Inc
B32529C3223J
1
C2
CAP FILM 0.47uF 250VDC RADIAL
TDK/EPCOS Inc
B32521C3474K
1
C3
CAP ALUM 470uF 50V 7khr-105 20% RAD
Nichicon
UPW1H471MHD
1
C5
CAP CER 22uF 25V 20% X7R 1210
Taiyo Yuden
TMK325B7226MM-TR
1
C6
CAP FILM 0.1uF 250VDC RADIAL
EPCOS
B32529C3104K289
1
C7
CAP CER 4700pF, 25V, +/-10%, X7R, 0603
MuRata
GRM188R71E472KA01D
1
C8
CAP CER 220pF, 50V, 5%,NP0, 0603
MuRata
GRM1885C1H221JA01D
1
C10
CAP CER 0.033uF 25V 20% X7R 0603
TDK Corporation
C1608X7R1E333M
2
D1, D4
Diode, Zener, 15V, 500mW, SOD-123
ON Semiconductor
MMSZ4702T1G
1
D2
DIODE ULT FAST 400V 1A SMB
STMicroelectronics
STTH1R04U
1
D3
DIODE ZENER 4.7V 500MW SOD-123
Diodes Inc
BZT52C4V7-13-F
1
D5
BAW56-V-GS08CT-ND
Vishay
BAW56-V-GS08
1
D8
Diode, Schottky, 200V, 1A, PowerDI123
Diodes Inc.
DFLS1200-7
1
F1
FUSE 500mA 125V SLOW AXL BULK MS
Bel Fuse Inc
MS 500
2
L1, L2
INDUCTOR 2200uH .16A 8075 RAD
Wurth Electronics
7447720222
1
L4
INDUCTOR 680uH RADIAL
TDK Corporation
TSL1315RA-681KR99-PF
2
Q1, Q2
MOSFET N-CH 250V 4.4A DPAK
Fairchild
FDD6N25TM
1
R1
RES 220 OHM 1W 5% 2512 SMD
Vishay Dale
CRCW2512220RJNEG
1
R2
RES, 100k ohm, 1%, 0.1W, 0603
Vishay-Dale
CRCW0603100KFKEA
1
R3
RES, 332k ohm, 1%, 0.25W, 1206
Vishay-Dale
CRCW1206332KFKEA
1
R4
RES 10.0 OHM 1/4W 1% AXIAL
Vishay Dale
CMF5010R000FHEB
1
R5
RES, 243k ohm, 1%, 0.125W, 0805
Vishay-Dale
CRCW0805243KFKEA
1
R6
RES, 4.99 ohm, 1%, 0.1W, 0603
Yageo America
RC0603FR-074R99L
2
R7, R8
RES 1.43 OHM 1/8W 1% 0805 SMD
Vishay Dale
CRCW08051R43FKEA
1
R9
RES, 2.00Meg ohm, 1%, 0.25W, 1206
Vishay-Dale
CRCW12062M00FKEA
1
R10
RES, 6.81k ohm, 1%, 0.1W, 0603
Vishay-Dale
CRCW06036K81FKEA
1
R11
RES, 1.00k ohm, 1%, 0.125W, 0805
Vishay-Dale
CRCW08051K00FKEA
Hardware for EVM
4
H1, H2, H3, H4 Machine Screw, Round, #4-40 x 1/4, Nylon
B&F Fastener
NY PMS 440 0025 PH
4
H5, H6, H7, H8 Standoff, Hex, 0.5"L #4-40 Nylon
Keystone
1902C
1
H15
RTV167 Adhesive Sealant
Momentive
RTV167
5
J1, J2, J3, J4,
J5
Jumper 300mil spacing, Orange, 200pc
3M
923345-03-C
2
J6, J8
Conn Term Block, 2POS, 5.08mm PCB
Wurth Electronics
691212710002
SLVU813A – November 2012 – Revised June 2013
Submit Documentation Feedback
Using the TPS92075 Buck-Boost Converter
Copyright © 2012–2013, Texas Instruments Incorporated
13
www.ti.com
Appendix A Table Data – Buck-Boost Configuration
Pout Eff = Efficiency Calculated using Pout = Pout reading on power meter
Calc Pout Eff = Efficiency Calculated using Pout = Vout × Iout
Test Data ~12V LED Load
Input Measurement
Load Measurement
Calculation
Vin
(Vrms)
Iin
(mArms)
Pin (W)
PF
%THD
Vout
(Vdc)
Iout
(mAdc)
Pout
Meas
(W)
Pout Eff
(%)
Pout
Calc (W)
Calc
Pout Eff
(%)
Loss (W)
90
0.083
7.17
0.978
20.7
12.21
454
5.68
79.2
5.54
77.3
1.49
100
0.078
7.47
0.974
21.6
12.23
467
5.86
78.4
5.71
76.5
1.61
120
0.072
8.07
0.961
23.6
12.28
496
6.25
77.4
6.09
75.5
1.82
135
0.068
8.43
0.944
24.8
12.3
510
6.44
76.4
6.27
74.4
1.99
Test Data ~18V LED Load
Input Measurement
Load Measurement
Calculation
Vin
(Vrms)
Iin
(mArms)
Pin (W)
PF
%THD
Vout
(Vdc)
Iout
(mAdc)
Pout
Meas
(W)
Pout Eff
(%)
Pout
Calc (W)
Calc
Pout Eff
(%)
Loss (W)
90
0.104
9.04
0.982
18.8
18.08
407
7.49
82.9
7.36
81.4
1.55
100
0.097
9.4
0.984
17.8
18.11
422
7.77
82.7
7.64
81.3
1.63
120
0.088
10.17
0.982
18.2
18.18
451
8.35
82.1
8.20
80.6
1.82
135
0.084
10.84
0.977
19.6
18.23
476
8.84
81.5
8.68
80.1
2
Test Data ~25V LED Load
Input Measurement
Vin
(Vrms)
Load Measurement
Calculation
Iin
(mArms)
Pin (W)
PF
%THD
Vout
(Vdc)
Iout
(mAdc)
Pout
Meas
(W)
Pout Eff
(%)
Pout
Calc (W)
Calc
Pout Eff
(%)
Loss (W)
90
0.12
10.46
0.978
20.1
23.81
368
8.86
84.7
8.76
83.8
1.6
100
0.114
11.02
0.984
17.1
23.87
386
9.33
84.7
9.21
83.6
1.69
120
0.104
12.12
0.985
17.7
23.98
421
10.23
84.4
10.10
83.3
1.89
135
0.097
12.7
0.985
16.7
24.01
437
10.65
83.9
10.49
82.6
2.05
Test Data ~30V LED Load
Input Measurement
Load Measurement
Calculation
Vin
(Vrms)
Iin
(mArms)
Pin (W)
PF
%THD
Vout
(Vdc)
Iout
(mAdc)
Pout
Meas
(W)
Pout Eff
(%)
Pout
Calc (W)
Calc
Pout Eff
(%)
Loss (W)
90
0.135
11.67
0.974
21.8
29.56
336
10.02
85.9
9.93
85.1
1.65
100
0.127
12.33
0.981
19.1
29.63
354
10.6
86.0
10.49
85.1
1.73
120
0.115
13.31
0.984
17.8
29.73
381
11.43
85.9
11.33
85.1
1.88
135
0.109
14.24
0.986
16.8
29.82
404
12.2
85.7
12.05
84.6
2.04
Test Data ~35V LED Load
Input Measurement
Load Measurement
Calculation
Vin
(Vrms)
Iin
(mArms)
Pin (W)
PF
%THD
Vout
(Vdc)
Iout
(mAdc)
Pout
Meas
(W)
Pout Eff
(%)
Pout
Calc (W)
Calc
Pout Eff
(%)
Loss (W)
90
0.146
12.63
0.973
22.2
34.91
312
10.96
86.8
10.89
86.2
1.67
100
0.137
13.2
0.976
21.3
34.99
326
11.5
87.1
11.41
86.4
1.7
120
0.127
14.7
0.982
18.8
35.16
360
12.77
86.9
12.66
86.1
1.93
135
0.118
15.4
0.984
18.2
35.23
376
13.36
86.8
13.25
86.0
2.04
white text
14
Table Data – Buck-Boost Configuration
SLVU813A – November 2012 – Revised June 2013
Submit Documentation Feedback
Copyright © 2012–2013, Texas Instruments Incorporated
Appendix A
www.ti.com
Test Data ~40V LED Load
Input Measurement
Vin
(Vrms)
Iin
(mArms)
Pin (W)
PF
Load Measurement
Calculation
%THD
Vout
(Vdc)
Iout
(mAdc)
Pout
Meas
(W)
Pout Eff
(%)
Pout
Calc (W)
Calc
Pout Eff
(%)
Loss (W)
90
0.155
13.38
0.969
24
40.51
286
11.66
87.1
11.59
86.6
1.72
100
0.146
14
0.973
22.9
40.6
300
12.27
87.6
12.18
87.0
1.73
120
0.133
15.4
0.981
20
40.77
329
13.51
87.7
13.41
87.1
1.89
135
0.127
16.5
0.984
18.2
40.9
352
14.51
87.9
14.40
87.3
1.99
Test Data ~46V LED Load
Input Measurement
Load Measurement
Calculation
Vin
(Vrms)
Iin
(mArms)
Pin (W)
PF
%THD
Vout
(Vdc)
Iout
(mAdc)
Pout
Meas
(W)
Pout Eff
(%)
Pout
Calc (W)
Calc
Pout Eff
(%)
Loss (W)
90
0.162
13.9
0.963
26.3
46.1
263
12.17
87.6
12.12
87.2
1.73
100
0.156
14.97
0.969
23.7
46.26
283
13.17
88.0
13.09
87.5
1.8
120
0.143
16.54
0.977
20.6
46.47
311
14.57
88.1
14.45
87.4
1.97
135
0.134
17.41
0.982
19.3
46.57
327
15.36
88.2
15.23
87.5
2.05
SLVU813A – November 2012 – Revised June 2013
Submit Documentation Feedback
Table Data – Buck-Boost Configuration
Copyright © 2012–2013, Texas Instruments Incorporated
15
www.ti.com
Appendix B Table Data – Buck Configuration. (Exchange Diode and Inductor, Reverse Bulk
Cap Polarity) Efficiency Calculated using Pout = Vout × Iout
LED Voltage ~12V
Vin (RMS)
Pin
PF
%THD
Vout
Iout
Pout Calc
Calc Pout Eff
(%)
100
8.21
0.977
20.5
12.55
0.516
6.476
78.88
120
8.87
0.965
22.53
12.58
0.547
6.881
77.58
135
8.92
0.953
24.26
12.63
0.57
7.199
80.71
Pin
PF
%THD
Vout
Iout
Pout Calc
Calc Pout Eff
(%)
100
10.68
0.984
17.72
18.46
0.485
8.953
83.83
120
11.39
0.985
16.25
18.56
0.51
9.466
83.10
135
12.05
0.981
16.95
18.64
0.533
9.935
82.45
Vin (RMS)
Pin
PF
%THD
Vout
Iout
Pout Calc
Calc Pout Eff
(%)
100
12.75
0.979
19.62
24.12
0.456
10.999
86.26
120
13.61
0.988
15.49
24.25
0.482
11.689
85.88
135
14.4
0.989
14.28
24.36
0.505
12.302
85.43
Vin (RMS)
Pin
PF
%THD
Vout
Iout
Pout Calc
Calc Pout Eff
(%)
100
14.58
0.974
21.94
29.43
0.435
12.802
87.81
120
15.77
0.984
17.35
29.63
0.467
13.837
87.74
135
16.24
0.988
15.68
29.67
0.478
14.182
87.33
Vin (RMS)
Pin
PF
%THD
Vout
Iout
Pout Calc
Calc Pout Eff
(%)
100
16.19
0.967
24.99
34.76
0.414
14.391
88.89
120
17.51
0.98
19.52
34.89
0.446
15.561
88.87
135
17.35
0.985
17.33
35.08
0.457
16.032
92.40
Vin (RMS)
Pin
PF
%THD
Vout
Iout
Pout Calc
Calc Pout Eff
(%)
100
17.77
0.958
28.46
40.69
0.392
15.950
89.76
120
19.32
0.974
22.24
41.04
0.423
17.360
89.85
135
19.94
0.981
19.56
41.12
0.435
17.887
89.71
Vin (RMS)
Pin
PF
%THD
Vout
Iout
Pout Calc
Calc Pout Eff
(%)
100
18.96
0.95
31.46
45.74
0.374
17.107
90.23
120
20.69
0.968
24.68
46.16
0.405
18.695
90.36
135
21.36
0.976
21.67
46.25
0.417
19.286
90.29
LED Voltage ~18V
Vin (RMS)
LED Voltage ~25V
LED Voltage ~30V
LED Voltage ~35V
LED Voltage ~40V
LED Voltage ~46V
16
Table Data – Buck Configuration. (Exchange Diode and Inductor, Reverse
Bulk Cap Polarity) Efficiency Calculated using Pout = Vout × Iout
SLVU813A – November 2012 – Revised June 2013
Submit Documentation Feedback
Copyright © 2012–2013, Texas Instruments Incorporated
www.ti.com
Appendix C Connection Snap-Shot
Figure 15 illustrates a typical dimming connection.
Remove the dimmer for a non-dimming setup.
Figure 15. Suggested Dimming Connection
SLVU813A – November 2012 – Revised June 2013
Submit Documentation Feedback
Copyright © 2012–2013, Texas Instruments Incorporated
Connection Snap-Shot
17
IMPORTANT NOTICE
Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, enhancements, improvements and other
changes to its semiconductor products and services per JESD46, latest issue, and to discontinue any product or service per JESD48, latest
issue. Buyers should obtain the latest relevant information before placing orders and should verify that such information is current and
complete. All semiconductor products (also referred to herein as “components”) are sold subject to TI’s terms and conditions of sale
supplied at the time of order acknowledgment.
TI warrants performance of its components to the specifications applicable at the time of sale, in accordance with the warranty in TI’s terms
and conditions of sale of semiconductor products. Testing and other quality control techniques are used to the extent TI deems necessary
to support this warranty. Except where mandated by applicable law, testing of all parameters of each component is not necessarily
performed.
TI assumes no liability for applications assistance or the design of Buyers’ products. Buyers are responsible for their products and
applications using TI components. To minimize the risks associated with Buyers’ products and applications, Buyers should provide
adequate design and operating safeguards.
TI does not warrant or represent that any license, either express or implied, is granted under any patent right, copyright, mask work right, or
other intellectual property right relating to any combination, machine, or process in which TI components or services are used. Information
published by TI regarding third-party products or services does not constitute a license to use such products or services or a warranty or
endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the
third party, or a license from TI under the patents or other intellectual property of TI.
Reproduction of significant portions of TI information in TI data books or data sheets is permissible only if reproduction is without alteration
and is accompanied by all associated warranties, conditions, limitations, and notices. TI is not responsible or liable for such altered
documentation. Information of third parties may be subject to additional restrictions.
Resale of TI components or services with statements different from or beyond the parameters stated by TI for that component or service
voids all express and any implied warranties for the associated TI component or service and is an unfair and deceptive business practice.
TI is not responsible or liable for any such statements.
Buyer acknowledges and agrees that it is solely responsible for compliance with all legal, regulatory and safety-related requirements
concerning its products, and any use of TI components in its applications, notwithstanding any applications-related information or support
that may be provided by TI. Buyer represents and agrees that it has all the necessary expertise to create and implement safeguards which
anticipate dangerous consequences of failures, monitor failures and their consequences, lessen the likelihood of failures that might cause
harm and take appropriate remedial actions. Buyer will fully indemnify TI and its representatives against any damages arising out of the use
of any TI components in safety-critical applications.
In some cases, TI components may be promoted specifically to facilitate safety-related applications. With such components, TI’s goal is to
help enable customers to design and create their own end-product solutions that meet applicable functional safety standards and
requirements. Nonetheless, such components are subject to these terms.
No TI components are authorized for use in FDA Class III (or similar life-critical medical equipment) unless authorized officers of the parties
have executed a special agreement specifically governing such use.
Only those TI components which TI has specifically designated as military grade or “enhanced plastic” are designed and intended for use in
military/aerospace applications or environments. Buyer acknowledges and agrees that any military or aerospace use of TI components
which have not been so designated is solely at the Buyer's risk, and that Buyer is solely responsible for compliance with all legal and
regulatory requirements in connection with such use.
TI has specifically designated certain components as meeting ISO/TS16949 requirements, mainly for automotive use. In any case of use of
non-designated products, TI will not be responsible for any failure to meet ISO/TS16949.
Products
Applications
Audio
www.ti.com/audio
Automotive and Transportation
www.ti.com/automotive
Amplifiers
amplifier.ti.com
Communications and Telecom
www.ti.com/communications
Data Converters
dataconverter.ti.com
Computers and Peripherals
www.ti.com/computers
DLP® Products
www.dlp.com
Consumer Electronics
www.ti.com/consumer-apps
DSP
dsp.ti.com
Energy and Lighting
www.ti.com/energy
Clocks and Timers
www.ti.com/clocks
Industrial
www.ti.com/industrial
Interface
interface.ti.com
Medical
www.ti.com/medical
Logic
logic.ti.com
Security
www.ti.com/security
Power Mgmt
power.ti.com
Space, Avionics and Defense
www.ti.com/space-avionics-defense
Microcontrollers
microcontroller.ti.com
Video and Imaging
www.ti.com/video
RFID
www.ti-rfid.com
OMAP Applications Processors
www.ti.com/omap
TI E2E Community
e2e.ti.com
Wireless Connectivity
www.ti.com/wirelessconnectivity
Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265
Copyright © 2013, Texas Instruments Incorporated