0
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
创作中心
发布
  • 发文章

  • 发资料

  • 发帖

  • 提问

  • 发视频

创作活动
TPS92075EVM

TPS92075EVM

  • 厂商:

    BURR-BROWN(德州仪器)

  • 封装:

    -

  • 描述:

    MODULE EVAL FOR TPS92075

  • 数据手册
  • 价格&库存
TPS92075EVM 数据手册
User's Guide SLVU813A – November 2012 – Revised June 2013 Using the TPS92075 Buck-Boost Converter The TPS92075EVM is a 17-W maximum, 120-VAC non-isolated dimmable LED driver. The TPS92075EVM implements a dimming solution using the TPS92075 integrated circuit from Texas Instruments. This user's guide provides electrical specifications, performance data, typical characteristic curves, schematics, printed-circuit board layout, and a bill of materials. Contents Introduction .................................................................................................................. 2 Description ................................................................................................................... 2 2.1 Typical Applications ................................................................................................ 2 2.2 TPS92075 Features ............................................................................................... 2 3 Electrical Performance Specifications .................................................................................... 3 4 Schematic .................................................................................................................... 3 5 Performance Data and Typical Characteristic Curves – Configured as Buck-Boost ............................... 4 5.1 Efficiency ............................................................................................................ 4 5.2 Load Regulation .................................................................................................... 5 5.3 Output Ripple ....................................................................................................... 5 5.4 Turn On Waveform ................................................................................................ 6 5.5 Turn Off Waveform ................................................................................................ 6 5.6 Dimming – Lutron Triac Dimmer at One Position .............................................................. 7 5.7 Dimming – Leviton Triac Dimmer at One Position ............................................................. 7 5.8 Thermal Scans ..................................................................................................... 8 5.9 EMI Scan – 9 LEDs ................................................................................................ 8 5.10 Dimmer Testing ................................................................................................... 10 6 Reference Design, Assembly Drawing, PCB layout, and Bill of Materials ......................................... 11 6.1 Reference Design, Assembly Drawing and PCB layout ..................................................... 11 6.2 Bill of Materials .................................................................................................... 13 Appendix A Table Data – Buck-Boost Configuration ....................................................................... 14 Appendix B Table Data – Buck Configuration. (Exchange Diode and Inductor, Reverse Bulk Cap Polarity) Efficiency Calculated using Pout = Vout × Iout ........................................................................... 16 Appendix C Connection Snap-Shot ........................................................................................... 17 1 2 List of Figures 1 2 3 4 5 6 7 8 9 10 11 12 13 ....................................................................................... 3 Dimming Wiring Diagram .................................................................................................. 4 TPS92075 Buck-Boost Efficiency (Input and Output Power Meter Used) ........................................... 4 TPS92075 Buck-Boost Regulation ....................................................................................... 5 Output Ripple (Vout: 35.5 V, Iout 375 mA, THD 18.5%)............................................................... 5 Enable Turn On Waveform – Turn On Time ~64 ms................................................................... 6 Enable Turn Off Waveform ................................................................................................ 6 Lutron Leading Edge, Output = 100 mA ................................................................................. 7 Leviton Leading Edge, Output = 20 mA.................................................................................. 7 Thermal Scans .............................................................................................................. 8 Conducted EMI Scan, 9 LEDs ............................................................................................ 8 Typical Top Overall View ................................................................................................. 11 TPS92075 Buck-Boost Top (left) and Bottom (right) Layer Assembly Drawing ................................... 11 TPS92075 Buck-Boost Schematic SLVU813A – November 2012 – Revised June 2013 Submit Documentation Feedback Using the TPS92075 Buck-Boost Converter Copyright © 2012–2013, Texas Instruments Incorporated 1 Introduction www.ti.com 14 TPS92075 Buck-Boost Bottom Copper (PCB is Single-Sided Copper) ............................................ 12 15 Suggested Dimming Connection ........................................................................................ 17 List of Tables 1 1 TPS92075 Buck-Boost REF DESIGN-001 Electrical Performance Specifications ................................. 3 2 System Scan of 27 Highest Peaks 3 Dimmer Testing ............................................................................................................ 10 4 Bill of Materials............................................................................................................. 13 ....................................................................................... 9 Introduction The TPS92075EVM is a 17-W maximum, 120-VAC non-isolated dimmable LED driver whose form factor is intended for A-15, A-19, A-21, A-23, R-20, R-25, R-27, R-30, R-40, PS-25, PS-30, PS-35, BR-30, BR38, BR-40, PAR-20, PAR-30, PAR-30L, G-25, G-30, G-40, and other LED bulbs. 2 Description The TPS92075EVM implements a dimming solution using the TPS92075 integrated circuit from Texas Instruments. The TPS92075 is a hybrid power factor controller with a built-in phase dimming decoder. Line cycles are analyzed continuously by an internal low power digital controller for shape and symmetry. An analog current reference is then generated and used by the power converter stage to regulate the output current. The analog reference is manipulated using control algorithms developed to optimize dimmer compatibility, power factor, and THD. Using constant off-time control, the solution achieves a low part count, high efficiency and inherently provides variation in the switching frequency. This variation creates an emulated spread-spectrum effect easing the converters EMI signature and allowing a smaller input filter. 2.1 Typical Applications Triac-compatible LED lighting, including forward and reverse phase compatibility. 2.2 TPS92075 Features • • • • • • • • • • • • • 2 Controlled reference derived PFC (Power Factor Correction) Integrated digital phase angle decoder Digital PLL with active 50-Hz, 60-Hz sync Phase-symmetry balancing Instant-On with safe mode Leading and trailing edge dimmer compatibility Dimming implemented via an analog reference Smooth dimming transitions Over-voltage protection Output short circuit protection Low BOM cost and small PCB footprint Patent pending digital architecture 6-pin SOT and 8-pin SOIC available Using the TPS92075 Buck-Boost Converter SLVU813A – November 2012 – Revised June 2013 Submit Documentation Feedback Copyright © 2012–2013, Texas Instruments Incorporated Electrical Performance Specifications www.ti.com 3 Electrical Performance Specifications Table 1 presents the electrical performance specifications of the TPS92075. Table 1. TPS92075 Buck-Boost REF DESIGN-001 Electrical Performance Specifications (1) Parameter Test Conditions MIN TYP MAX Units 90 120 135 V 0.140 A 50 V Input Characteristics Input Voltage range Maximum Input current Output Characteristics Output voltage, VOUT Output current will change with LED stack. Nominal output is 35V, 360mA (12.6W) Output voltage regulation Line Regulation: Input voltage = 110 to 130 ±4 Line Regulation: Input voltage = 90 to 135 ±8 % 120Hz LED Ripple, typical with 35V output 300 mApp Switching frequency 100 kHz Peak efficiency 88 % Output voltage ripple 18 % Systems Characteristics Peak Power Factor .986 Operating temperature 25 Solution Volume Solution Volume per Watt (1) 4 Based on 17W maximum 125 ºC 18.5 cm3 1.1 W/cm3 All performance results are for this design configuration only. Many opportunities exist to balance one performance factor for another in this design. Schematic Figure 1 is the EVM schematic, and Figure 2 shows suggested dimming connections. Figure 1. TPS92075 Buck-Boost Schematic SLVU813A – November 2012 – Revised June 2013 Submit Documentation Feedback Using the TPS92075 Buck-Boost Converter Copyright © 2012–2013, Texas Instruments Incorporated 3 Performance Data and Typical Characteristic Curves – Configured as Buck-Boost www.ti.com LED Load Triac Dimmer AMP Meter LED+ LEDJ6 L AC Source PWR503TPS92075EVM N J8 Figure 2. Dimming Wiring Diagram 5 Performance Data and Typical Characteristic Curves – Configured as Buck-Boost Note: 18-V stack; ~8-W, 46-V Stack; ~14-W Only LED stack voltage changed, EVM design left intact for all curves 5.1 Efficiency 90 87.5 46-V LED String Efficiency (%) 85 40-V LED String 35-V LED String 82.5 30-V LED String 80 25-V LED String 18-V LED String 77.5 75 90 100 110 120 130 Input Voltage (VAC) Figure 3. TPS92075 Buck-Boost Efficiency (Input and Output Power Meter Used) 4 Using the TPS92075 Buck-Boost Converter SLVU813A – November 2012 – Revised June 2013 Submit Documentation Feedback Copyright © 2012–2013, Texas Instruments Incorporated Performance Data and Typical Characteristic Curves – Configured as Buck-Boost www.ti.com 5.2 Load Regulation 550 Output Current (mA) 500 450 25-V LED String 400 30-V LED String 35-V LED String 350 40-V LED String 300 46-V LED String 250 200 110 115 120 Input Voltage (VAC) 125 130 Figure 4. TPS92075 Buck-Boost Regulation 5.3 Output Ripple Ch4 Ch3 Ch1 Ch1: FET Q2 Source Ch3: LED Current Ch4: Input Current Figure 5. Output Ripple (Vout: 35.5 V, Iout 375 mA, THD 18.5%) SLVU813A – November 2012 – Revised June 2013 Submit Documentation Feedback Using the TPS92075 Buck-Boost Converter Copyright © 2012–2013, Texas Instruments Incorporated 5 Performance Data and Typical Characteristic Curves – Configured as Buck-Boost 5.4 www.ti.com Turn On Waveform Ch3 Ch4 Ch3: LED Current Ch4: Input Current Figure 6. Enable Turn On Waveform – Turn On Time ~64 ms 5.5 Turn Off Waveform Ch3 Ch4 Ch3: LED Current Ch4: Input Current Figure 7. Enable Turn Off Waveform 6 Using the TPS92075 Buck-Boost Converter SLVU813A – November 2012 – Revised June 2013 Submit Documentation Feedback Copyright © 2012–2013, Texas Instruments Incorporated Performance Data and Typical Characteristic Curves – Configured as Buck-Boost www.ti.com 5.6 Dimming – Lutron Triac Dimmer at One Position Ch3 Ch4 Ch1 Ch1: FET Q2 Source Ch3: LED Current Ch4: Input Current Figure 8. Lutron Leading Edge, Output = 100 mA 5.7 Dimming – Leviton Triac Dimmer at One Position Ch3 Ch4 Ch1 Ch1: FET Q2 Source Ch3: LED Current Ch4: Input Current Figure 9. Leviton Leading Edge, Output = 20 mA SLVU813A – November 2012 – Revised June 2013 Submit Documentation Feedback Using the TPS92075 Buck-Boost Converter Copyright © 2012–2013, Texas Instruments Incorporated 7 Performance Data and Typical Characteristic Curves – Configured as Buck-Boost 5.8 www.ti.com Thermal Scans Thermal Scan 1: 20-Minute Soak, 36-V LED Stack, o Top View, Hottest Point in Box: 70.2 C Thermal Scan 2: 20-Minute Soak, 36-V LED Stack, o Top View, Hottest Point in Box: 59.5 C Figure 10. Thermal Scans 5.9 EMI Scan – 9 LEDs spacerspacerspacerspacerspacerspacerBlue Trace: Peak, Black Trace: Average Figure 11. Conducted EMI Scan, 9 LEDs 8 Using the TPS92075 Buck-Boost Converter SLVU813A – November 2012 – Revised June 2013 Submit Documentation Feedback Copyright © 2012–2013, Texas Instruments Incorporated Performance Data and Typical Characteristic Curves – Configured as Buck-Boost www.ti.com Table 2. System Scan of 27 Highest Peaks Peak # Limit Frequency (Hz) Level (dB) Margin (dB) 1 QP 262000 58.9 –2.8 2 AV 262000 48.37 –3 3 QP 394000 54.95 –3 4 AV 394000 42.69 –5.3 5 QP 526000 51.45 –4.6 6 QP 798000 42.25 –13.8 7 QP 1042000 47.07 –8.9 8 QP 1186000 48.71 –7.3 –5.8 9 QP 1326000 50.23 10 QP 1458000 48.14 –7.9 11 QP 1958000 45.66 –10.3 12 QP 2110000 46.6 –9.4 13 QP 2258000 48.92 –7.1 14 QP 2746000 44.71 –11.3 15 QP 2906000 46.93 –9.1 16 QP 3058000 49.22 –6.8 17 QP 3190000 47.93 –8.1 18 QP 3678000 44.55 –11.5 19 QP 3846000 46.77 –9.2 20 QP 3990000 48.4 –7.6 21 QP 4782000 46.62 –9.4 22 QP 28686000 46.82 –13.2 23 QP 28838000 46.86 –13.1 24 QP 29178000 47.75 –12.3 25 QP 29342000 47.72 –12.3 26 QP 29654000 48.22 –11.8 27 QP 29950000 49.31 –10.7 NOTE: When using unshielded inductors it is important that the devices sit in perpendicular planes. If the input filter inductors are not positioned at right angles conducted emissions will increase. SLVU813A – November 2012 – Revised June 2013 Submit Documentation Feedback Using the TPS92075 Buck-Boost Converter Copyright © 2012–2013, Texas Instruments Incorporated 9 Performance Data and Typical Characteristic Curves – Configured as Buck-Boost www.ti.com 5.10 Dimmer Testing Table 3. Dimmer Testing Conditions: 120 VAC, 12 LEDs in series 10 Mfg: Series: Leviton Decora Leviton Lutron Max Iout with no dimmer = 375 mA FlickerFree Steady State FlickerFree Steady State Max Iout Min Iout Max Iout Min Iout 1 Lamp 3 Lamps 1 Lamp 1 Lamp 3 Lamps 3 Lamps y y 357 0 348 R52-06161-00W y y 308 0 303 0 Skylark Contour y y 260 62 252 56 Lutron Abella y y 292 22 289 19 Lutron Maestro Duo y y 255 55 248 50 Lutron Maestro Duo y y 296 102 288 97 Lutron Skylark Contour y y 290 0 287 0 Lutron Skylark Contour y y 306 45 300 41 Lutron Toggler y y 324 37 319 34 Lutron Toggler y y 307 56 296 51 Lutron Maestro Duo y y 300 21 287 18 46 0 Lutron Skylark Contour y y 305 50 296 Leviton Decora y y 362 0 352 0 Lutron Skylark Contour y y 298 19 288 17 Leviton Decora y y 315 0 305 0 Leviton Rotary y y 370 0 356 0 Lutron Diva y y 300 78 295 73 Lutron Skylark Contour y y 276 40 275 39 Lutron Rotary y y 287 0 288 0 Leviton Sureslide y y 307 0 305 0 Using the TPS92075 Buck-Boost Converter SLVU813A – November 2012 – Revised June 2013 Submit Documentation Feedback Copyright © 2012–2013, Texas Instruments Incorporated Reference Design, Assembly Drawing, PCB layout, and Bill of Materials www.ti.com 6 Reference Design, Assembly Drawing, PCB layout, and Bill of Materials 6.1 Reference Design, Assembly Drawing and PCB layout Figure 12 to Figure 14 Figure 12. Typical Top Overall View Figure 13. TPS92075 Buck-Boost Top (left) and Bottom (right) Layer Assembly Drawing SLVU813A – November 2012 – Revised June 2013 Submit Documentation Feedback Using the TPS92075 Buck-Boost Converter Copyright © 2012–2013, Texas Instruments Incorporated 11 Reference Design, Assembly Drawing, PCB layout, and Bill of Materials www.ti.com Figure 14. TPS92075 Buck-Boost Bottom Copper (PCB is Single-Sided Copper) 12 Using the TPS92075 Buck-Boost Converter SLVU813A – November 2012 – Revised June 2013 Submit Documentation Feedback Copyright © 2012–2013, Texas Instruments Incorporated Reference Design, Assembly Drawing, PCB layout, and Bill of Materials www.ti.com 6.2 Bill of Materials Table 4. Bill of Materials Qty Designator Description Manufacturer Part Number 1 U1 Triac Dimmable Offline LED Driver Texas Instruments TPS92075 1 BR1 Diode, Switching-Bridge, 400V, 0.8A, MiniDIP Diodes Inc. HD04-T 1 C1 CAP FILM 0.022uF 250VDC RADIAL TDK/EPCOS Inc B32529C3223J 1 C2 CAP FILM 0.47uF 250VDC RADIAL TDK/EPCOS Inc B32521C3474K 1 C3 CAP ALUM 470uF 50V 7khr-105 20% RAD Nichicon UPW1H471MHD 1 C5 CAP CER 22uF 25V 20% X7R 1210 Taiyo Yuden TMK325B7226MM-TR 1 C6 CAP FILM 0.1uF 250VDC RADIAL EPCOS B32529C3104K289 1 C7 CAP CER 4700pF, 25V, +/-10%, X7R, 0603 MuRata GRM188R71E472KA01D 1 C8 CAP CER 220pF, 50V, 5%,NP0, 0603 MuRata GRM1885C1H221JA01D 1 C10 CAP CER 0.033uF 25V 20% X7R 0603 TDK Corporation C1608X7R1E333M 2 D1, D4 Diode, Zener, 15V, 500mW, SOD-123 ON Semiconductor MMSZ4702T1G 1 D2 DIODE ULT FAST 400V 1A SMB STMicroelectronics STTH1R04U 1 D3 DIODE ZENER 4.7V 500MW SOD-123 Diodes Inc BZT52C4V7-13-F 1 D5 BAW56-V-GS08CT-ND Vishay BAW56-V-GS08 1 D8 Diode, Schottky, 200V, 1A, PowerDI123 Diodes Inc. DFLS1200-7 1 F1 FUSE 500mA 125V SLOW AXL BULK MS Bel Fuse Inc MS 500 2 L1, L2 INDUCTOR 2200uH .16A 8075 RAD Wurth Electronics 7447720222 1 L4 INDUCTOR 680uH RADIAL TDK Corporation TSL1315RA-681KR99-PF 2 Q1, Q2 MOSFET N-CH 250V 4.4A DPAK Fairchild FDD6N25TM 1 R1 RES 220 OHM 1W 5% 2512 SMD Vishay Dale CRCW2512220RJNEG 1 R2 RES, 100k ohm, 1%, 0.1W, 0603 Vishay-Dale CRCW0603100KFKEA 1 R3 RES, 332k ohm, 1%, 0.25W, 1206 Vishay-Dale CRCW1206332KFKEA 1 R4 RES 10.0 OHM 1/4W 1% AXIAL Vishay Dale CMF5010R000FHEB 1 R5 RES, 243k ohm, 1%, 0.125W, 0805 Vishay-Dale CRCW0805243KFKEA 1 R6 RES, 4.99 ohm, 1%, 0.1W, 0603 Yageo America RC0603FR-074R99L 2 R7, R8 RES 1.43 OHM 1/8W 1% 0805 SMD Vishay Dale CRCW08051R43FKEA 1 R9 RES, 2.00Meg ohm, 1%, 0.25W, 1206 Vishay-Dale CRCW12062M00FKEA 1 R10 RES, 6.81k ohm, 1%, 0.1W, 0603 Vishay-Dale CRCW06036K81FKEA 1 R11 RES, 1.00k ohm, 1%, 0.125W, 0805 Vishay-Dale CRCW08051K00FKEA Hardware for EVM 4 H1, H2, H3, H4 Machine Screw, Round, #4-40 x 1/4, Nylon B&F Fastener NY PMS 440 0025 PH 4 H5, H6, H7, H8 Standoff, Hex, 0.5"L #4-40 Nylon Keystone 1902C 1 H15 RTV167 Adhesive Sealant Momentive RTV167 5 J1, J2, J3, J4, J5 Jumper 300mil spacing, Orange, 200pc 3M 923345-03-C 2 J6, J8 Conn Term Block, 2POS, 5.08mm PCB Wurth Electronics 691212710002 SLVU813A – November 2012 – Revised June 2013 Submit Documentation Feedback Using the TPS92075 Buck-Boost Converter Copyright © 2012–2013, Texas Instruments Incorporated 13 www.ti.com Appendix A Table Data – Buck-Boost Configuration Pout Eff = Efficiency Calculated using Pout = Pout reading on power meter Calc Pout Eff = Efficiency Calculated using Pout = Vout × Iout Test Data ~12V LED Load Input Measurement Load Measurement Calculation Vin (Vrms) Iin (mArms) Pin (W) PF %THD Vout (Vdc) Iout (mAdc) Pout Meas (W) Pout Eff (%) Pout Calc (W) Calc Pout Eff (%) Loss (W) 90 0.083 7.17 0.978 20.7 12.21 454 5.68 79.2 5.54 77.3 1.49 100 0.078 7.47 0.974 21.6 12.23 467 5.86 78.4 5.71 76.5 1.61 120 0.072 8.07 0.961 23.6 12.28 496 6.25 77.4 6.09 75.5 1.82 135 0.068 8.43 0.944 24.8 12.3 510 6.44 76.4 6.27 74.4 1.99 Test Data ~18V LED Load Input Measurement Load Measurement Calculation Vin (Vrms) Iin (mArms) Pin (W) PF %THD Vout (Vdc) Iout (mAdc) Pout Meas (W) Pout Eff (%) Pout Calc (W) Calc Pout Eff (%) Loss (W) 90 0.104 9.04 0.982 18.8 18.08 407 7.49 82.9 7.36 81.4 1.55 100 0.097 9.4 0.984 17.8 18.11 422 7.77 82.7 7.64 81.3 1.63 120 0.088 10.17 0.982 18.2 18.18 451 8.35 82.1 8.20 80.6 1.82 135 0.084 10.84 0.977 19.6 18.23 476 8.84 81.5 8.68 80.1 2 Test Data ~25V LED Load Input Measurement Vin (Vrms) Load Measurement Calculation Iin (mArms) Pin (W) PF %THD Vout (Vdc) Iout (mAdc) Pout Meas (W) Pout Eff (%) Pout Calc (W) Calc Pout Eff (%) Loss (W) 90 0.12 10.46 0.978 20.1 23.81 368 8.86 84.7 8.76 83.8 1.6 100 0.114 11.02 0.984 17.1 23.87 386 9.33 84.7 9.21 83.6 1.69 120 0.104 12.12 0.985 17.7 23.98 421 10.23 84.4 10.10 83.3 1.89 135 0.097 12.7 0.985 16.7 24.01 437 10.65 83.9 10.49 82.6 2.05 Test Data ~30V LED Load Input Measurement Load Measurement Calculation Vin (Vrms) Iin (mArms) Pin (W) PF %THD Vout (Vdc) Iout (mAdc) Pout Meas (W) Pout Eff (%) Pout Calc (W) Calc Pout Eff (%) Loss (W) 90 0.135 11.67 0.974 21.8 29.56 336 10.02 85.9 9.93 85.1 1.65 100 0.127 12.33 0.981 19.1 29.63 354 10.6 86.0 10.49 85.1 1.73 120 0.115 13.31 0.984 17.8 29.73 381 11.43 85.9 11.33 85.1 1.88 135 0.109 14.24 0.986 16.8 29.82 404 12.2 85.7 12.05 84.6 2.04 Test Data ~35V LED Load Input Measurement Load Measurement Calculation Vin (Vrms) Iin (mArms) Pin (W) PF %THD Vout (Vdc) Iout (mAdc) Pout Meas (W) Pout Eff (%) Pout Calc (W) Calc Pout Eff (%) Loss (W) 90 0.146 12.63 0.973 22.2 34.91 312 10.96 86.8 10.89 86.2 1.67 100 0.137 13.2 0.976 21.3 34.99 326 11.5 87.1 11.41 86.4 1.7 120 0.127 14.7 0.982 18.8 35.16 360 12.77 86.9 12.66 86.1 1.93 135 0.118 15.4 0.984 18.2 35.23 376 13.36 86.8 13.25 86.0 2.04 white text 14 Table Data – Buck-Boost Configuration SLVU813A – November 2012 – Revised June 2013 Submit Documentation Feedback Copyright © 2012–2013, Texas Instruments Incorporated Appendix A www.ti.com Test Data ~40V LED Load Input Measurement Vin (Vrms) Iin (mArms) Pin (W) PF Load Measurement Calculation %THD Vout (Vdc) Iout (mAdc) Pout Meas (W) Pout Eff (%) Pout Calc (W) Calc Pout Eff (%) Loss (W) 90 0.155 13.38 0.969 24 40.51 286 11.66 87.1 11.59 86.6 1.72 100 0.146 14 0.973 22.9 40.6 300 12.27 87.6 12.18 87.0 1.73 120 0.133 15.4 0.981 20 40.77 329 13.51 87.7 13.41 87.1 1.89 135 0.127 16.5 0.984 18.2 40.9 352 14.51 87.9 14.40 87.3 1.99 Test Data ~46V LED Load Input Measurement Load Measurement Calculation Vin (Vrms) Iin (mArms) Pin (W) PF %THD Vout (Vdc) Iout (mAdc) Pout Meas (W) Pout Eff (%) Pout Calc (W) Calc Pout Eff (%) Loss (W) 90 0.162 13.9 0.963 26.3 46.1 263 12.17 87.6 12.12 87.2 1.73 100 0.156 14.97 0.969 23.7 46.26 283 13.17 88.0 13.09 87.5 1.8 120 0.143 16.54 0.977 20.6 46.47 311 14.57 88.1 14.45 87.4 1.97 135 0.134 17.41 0.982 19.3 46.57 327 15.36 88.2 15.23 87.5 2.05 SLVU813A – November 2012 – Revised June 2013 Submit Documentation Feedback Table Data – Buck-Boost Configuration Copyright © 2012–2013, Texas Instruments Incorporated 15 www.ti.com Appendix B Table Data – Buck Configuration. (Exchange Diode and Inductor, Reverse Bulk Cap Polarity) Efficiency Calculated using Pout = Vout × Iout LED Voltage ~12V Vin (RMS) Pin PF %THD Vout Iout Pout Calc Calc Pout Eff (%) 100 8.21 0.977 20.5 12.55 0.516 6.476 78.88 120 8.87 0.965 22.53 12.58 0.547 6.881 77.58 135 8.92 0.953 24.26 12.63 0.57 7.199 80.71 Pin PF %THD Vout Iout Pout Calc Calc Pout Eff (%) 100 10.68 0.984 17.72 18.46 0.485 8.953 83.83 120 11.39 0.985 16.25 18.56 0.51 9.466 83.10 135 12.05 0.981 16.95 18.64 0.533 9.935 82.45 Vin (RMS) Pin PF %THD Vout Iout Pout Calc Calc Pout Eff (%) 100 12.75 0.979 19.62 24.12 0.456 10.999 86.26 120 13.61 0.988 15.49 24.25 0.482 11.689 85.88 135 14.4 0.989 14.28 24.36 0.505 12.302 85.43 Vin (RMS) Pin PF %THD Vout Iout Pout Calc Calc Pout Eff (%) 100 14.58 0.974 21.94 29.43 0.435 12.802 87.81 120 15.77 0.984 17.35 29.63 0.467 13.837 87.74 135 16.24 0.988 15.68 29.67 0.478 14.182 87.33 Vin (RMS) Pin PF %THD Vout Iout Pout Calc Calc Pout Eff (%) 100 16.19 0.967 24.99 34.76 0.414 14.391 88.89 120 17.51 0.98 19.52 34.89 0.446 15.561 88.87 135 17.35 0.985 17.33 35.08 0.457 16.032 92.40 Vin (RMS) Pin PF %THD Vout Iout Pout Calc Calc Pout Eff (%) 100 17.77 0.958 28.46 40.69 0.392 15.950 89.76 120 19.32 0.974 22.24 41.04 0.423 17.360 89.85 135 19.94 0.981 19.56 41.12 0.435 17.887 89.71 Vin (RMS) Pin PF %THD Vout Iout Pout Calc Calc Pout Eff (%) 100 18.96 0.95 31.46 45.74 0.374 17.107 90.23 120 20.69 0.968 24.68 46.16 0.405 18.695 90.36 135 21.36 0.976 21.67 46.25 0.417 19.286 90.29 LED Voltage ~18V Vin (RMS) LED Voltage ~25V LED Voltage ~30V LED Voltage ~35V LED Voltage ~40V LED Voltage ~46V 16 Table Data – Buck Configuration. (Exchange Diode and Inductor, Reverse Bulk Cap Polarity) Efficiency Calculated using Pout = Vout × Iout SLVU813A – November 2012 – Revised June 2013 Submit Documentation Feedback Copyright © 2012–2013, Texas Instruments Incorporated www.ti.com Appendix C Connection Snap-Shot Figure 15 illustrates a typical dimming connection. Remove the dimmer for a non-dimming setup. Figure 15. Suggested Dimming Connection SLVU813A – November 2012 – Revised June 2013 Submit Documentation Feedback Copyright © 2012–2013, Texas Instruments Incorporated Connection Snap-Shot 17 IMPORTANT NOTICE Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, enhancements, improvements and other changes to its semiconductor products and services per JESD46, latest issue, and to discontinue any product or service per JESD48, latest issue. Buyers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. All semiconductor products (also referred to herein as “components”) are sold subject to TI’s terms and conditions of sale supplied at the time of order acknowledgment. TI warrants performance of its components to the specifications applicable at the time of sale, in accordance with the warranty in TI’s terms and conditions of sale of semiconductor products. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where mandated by applicable law, testing of all parameters of each component is not necessarily performed. TI assumes no liability for applications assistance or the design of Buyers’ products. Buyers are responsible for their products and applications using TI components. To minimize the risks associated with Buyers’ products and applications, Buyers should provide adequate design and operating safeguards. TI does not warrant or represent that any license, either express or implied, is granted under any patent right, copyright, mask work right, or other intellectual property right relating to any combination, machine, or process in which TI components or services are used. Information published by TI regarding third-party products or services does not constitute a license to use such products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI. Reproduction of significant portions of TI information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. TI is not responsible or liable for such altered documentation. Information of third parties may be subject to additional restrictions. Resale of TI components or services with statements different from or beyond the parameters stated by TI for that component or service voids all express and any implied warranties for the associated TI component or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements. Buyer acknowledges and agrees that it is solely responsible for compliance with all legal, regulatory and safety-related requirements concerning its products, and any use of TI components in its applications, notwithstanding any applications-related information or support that may be provided by TI. Buyer represents and agrees that it has all the necessary expertise to create and implement safeguards which anticipate dangerous consequences of failures, monitor failures and their consequences, lessen the likelihood of failures that might cause harm and take appropriate remedial actions. Buyer will fully indemnify TI and its representatives against any damages arising out of the use of any TI components in safety-critical applications. In some cases, TI components may be promoted specifically to facilitate safety-related applications. With such components, TI’s goal is to help enable customers to design and create their own end-product solutions that meet applicable functional safety standards and requirements. Nonetheless, such components are subject to these terms. No TI components are authorized for use in FDA Class III (or similar life-critical medical equipment) unless authorized officers of the parties have executed a special agreement specifically governing such use. Only those TI components which TI has specifically designated as military grade or “enhanced plastic” are designed and intended for use in military/aerospace applications or environments. Buyer acknowledges and agrees that any military or aerospace use of TI components which have not been so designated is solely at the Buyer's risk, and that Buyer is solely responsible for compliance with all legal and regulatory requirements in connection with such use. TI has specifically designated certain components as meeting ISO/TS16949 requirements, mainly for automotive use. In any case of use of non-designated products, TI will not be responsible for any failure to meet ISO/TS16949. Products Applications Audio www.ti.com/audio Automotive and Transportation www.ti.com/automotive Amplifiers amplifier.ti.com Communications and Telecom www.ti.com/communications Data Converters dataconverter.ti.com Computers and Peripherals www.ti.com/computers DLP® Products www.dlp.com Consumer Electronics www.ti.com/consumer-apps DSP dsp.ti.com Energy and Lighting www.ti.com/energy Clocks and Timers www.ti.com/clocks Industrial www.ti.com/industrial Interface interface.ti.com Medical www.ti.com/medical Logic logic.ti.com Security www.ti.com/security Power Mgmt power.ti.com Space, Avionics and Defense www.ti.com/space-avionics-defense Microcontrollers microcontroller.ti.com Video and Imaging www.ti.com/video RFID www.ti-rfid.com OMAP Applications Processors www.ti.com/omap TI E2E Community e2e.ti.com Wireless Connectivity www.ti.com/wirelessconnectivity Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265 Copyright © 2013, Texas Instruments Incorporated
TPS92075EVM 价格&库存

很抱歉,暂时无法提供与“TPS92075EVM”相匹配的价格&库存,您可以联系我们找货

免费人工找货