TPS92515AHVQDGQRQ1

TPS92515AHVQDGQRQ1

  • 厂商:

    BURR-BROWN(德州仪器)

  • 封装:

    HVSSOP-10_3X3MM-EP

  • 描述:

  • 数据手册
  • 价格&库存
TPS92515AHVQDGQRQ1 数据手册
Product Folder Order Now Support & Community Tools & Software Technical Documents TPS92515AHV-Q1 SLUSDG2 – OCTOBER 2018 TPS92515AHV-Q1 2-A, Buck LED Driver with Integrated N-channel FET, High-Side Current Sense, and Shunt FET PWM Dimming Capability 1 Features • • • 1 • • • • • • • AEC-Q100 Grade 1 Qualified Integrated 290-mΩ (typ) Internal N-Channel FET Input Voltage Range – TPS92515AHVx: 5.5 V to 65 V – Operation Down to 5.15 V After Start-Up Low Offset High-side Peak Current Comparator Constant Average Current, up to 2 A Inherent Cycle-by-Cycle Current Limit Multiple Dimming Methods – 10,000:1 Shunt PWM Dimming Range – 1000:1 PWM Dimming Range – 200:1 Analog Dimming Range Simple Constant Off-time Control – No Loop Compensation – Fast Transient Response Thermally Enhanced HVSSOP Package Integrated Thermal Protection The regulator operates with constant off-time, peak current control. The operation is simple: after an offtime based on the output voltage, an on-time begins. The on-time ends once the inductor peak current threshold is reached. The TPS92515AHV-Q1 device can be configured to maintain a constant peak-topeak ripple during the ON and OFF periods of a shunt FET dimming cycle. This cycle ideal for maintaining a linear response across the entire shuntFET dimming range. The low-offset, high-side comparator helps to create steady-state accuracy. LED current can be modulated using either analog dimming or PWM dimming, or both simultaneously. Other features include UVLO, wide input voltage operation, inherent LED Open operation and wide operating temperature range with thermal shut-down. The TPS92515AHV-Q1 device offers high-voltage options with an input range up to 65 V in a thermally enhanced, 10-pin HVSSOP package. Device Information(1) PART NUMBER PACKAGE BODY SIZE (NOM) HVSSOP (10) 3 mm x 3 mm 2 Applications TPS92515AHV-Q1 • (1) For all available packages, see the orderable addendum at the end of the data sheet. • • • Automotive Lighting: LED Switched Matrix AFS Headlamps, DRL, High/Low Beam, Fog, Rear, Turn Signal, Side Marker, Aftermarket Industrial Lighting: Factory Automation, Time of Flight (TOF), Appliances, Retail Illumination, Machine Vision and Inspection, Emergency, Exit and/or Safety Lighting, Medical Lighting, Stage and Area Lighting Agricultural, Marine, and Heavy Industry Lighting High Contrast Shunt FET Dimming 3 Description The TPS92515AHV-Q1 is a compact monolithic switching regulator that includes a low resistance NChannel MOSFET. The device works in highbrightness LED lighting applications which require efficiency, high bandwidth, PWM or analog dimming and small size. Simplified Buck LED Driver Application TPS92515AHV-Q1 VIN 6 DRN 7 CSN 8 VIN 9 PWM 10 IADJ SW 5 BOOT 4 GND 3 VCC 2 COFF 1 VOUT PAD 1 An IMPORTANT NOTICE at the end of this data sheet addresses availability, warranty, changes, use in safety-critical applications, intellectual property matters and other important disclaimers. PRODUCTION DATA. TPS92515AHV-Q1 SLUSDG2 – OCTOBER 2018 www.ti.com Table of Contents 1 2 3 4 5 6 7 8 Features .................................................................. Applications ........................................................... Description ............................................................. Revision History..................................................... Device Comparison Table..................................... Pin Configuration and Functions ......................... Specifications......................................................... 1 1 1 2 3 3 4 7.1 7.2 7.3 7.4 7.5 7.6 4 4 4 4 5 7 Absolute Maximum Ratings ...................................... ESD Ratings ............................................................ Recommended Operating Conditions....................... Thermal Information................................................. Electrical Characteristics........................................... Typical Characteristics .............................................. 9 9.1 Application Information............................................ 22 9.2 Typical Application ................................................. 22 9.3 Dos and Don'ts ....................................................... 30 10 Power Supply Recommendations ..................... 31 10.1 Input Source Direct from Battery........................... 31 10.2 Input Source from a Boost Stage ......................... 31 11 Layout................................................................... 31 11.1 Layout Guidelines ................................................. 31 11.2 Layout Example .................................................... 32 12 Device and Documentation Support ................. 33 12.1 12.2 12.3 12.4 12.5 12.6 Detailed Description .............................................. 9 8.1 8.2 8.3 8.4 Application and Implementation ........................ 22 Overview ................................................................... 9 Functional Block Diagram ......................................... 9 Feature Description................................................. 10 Device Functional Modes........................................ 21 Documentation Support ....................................... Receiving Notification of Documentation Updates Community Resources.......................................... Trademarks ........................................................... Electrostatic Discharge Caution ............................ Glossary ................................................................ 33 33 33 33 33 33 13 Mechanical, Packaging, and Orderable Information ........................................................... 34 4 Revision History 2 DATE REVISION NOTES October 2018 * Initial release. Submit Documentation Feedback Copyright © 2018, Texas Instruments Incorporated Product Folder Links: TPS92515AHV-Q1 TPS92515AHV-Q1 www.ti.com SLUSDG2 – OCTOBER 2018 5 Device Comparison Table DEVICE MAXIMUM VOLTAGE (V) TPS92515AHV-Q1 65 TPS92515-Q1 42 TPS92515HV 65 TPS92515 42 LM3409HV-Q1 75 LM3409-Q1 42 LM3409HV 75 LM3409 42 LM3406HV-Q1 75 LM3406-Q1 42 LM3406HV 75 LM3406 42 AUTOMOTIVE QUALIFIED CONTROL METHOD Y Internal N-channel FET, constant OFF-time Y N N External P-channel FET, constant OFF-time External P-channel FET, constant OFF-time Y Y N N Y Internal N-channel FET, controlled ON-time Y N N 6 Pin Configuration and Functions DGQ Package HVSSOP 10-Pin with PowerPAD Top View COFF 1 10 IADJ VCC 2 9 PWM GND 3 8 VIN BOOT 4 7 CSN SW 5 6 DRN Thermal Pad Pin Functions PIN I/O DESCRIPTION 4 I Connect a ceramic capacitor between BOOT and SW and a diode from VCC to BOOT to power the highside FET drive circuitry. COFF 1 I Connect a resistor from VOUT, and a capacitor to GND to set the OFF-time. CSN 7 I Current sense negative input. Connect current sense resistor from VIN to CSN for high-side current sense control. DRN 6 I Internal FET drain. Connect to CSN node GND 3 G Ground IADJ 10 I Output current adjust. Connect to an external divider, reference or tie to VCC. PWM 9 I PWM dimming input. Connect to PWM control signal. Output current is pulse-width modulated (PWM) dimmed from the maximum analog controlled level. Connect to VCC if not used. SW 5 O Internal FET Source. Connect to output inductor VCC 2 O 5-V Regulator Output. Use a decoupling capacitor from VCC to ground. See section on VCC capacitor selection. VIN 8 I Connect to input voltage. VIN is also the current sense positive input. NAME NO. BOOT Thermal pad — Connect to ground Submit Documentation Feedback Copyright © 2018, Texas Instruments Incorporated Product Folder Links: TPS92515AHV-Q1 3 TPS92515AHV-Q1 SLUSDG2 – OCTOBER 2018 www.ti.com 7 Specifications 7.1 Absolute Maximum Ratings over operating free-air temperature range (unless otherwise noted) (1) MIN MAX VIN, DRN, CSN to GND –0.3 65.0 SW to GND –1.0 65.0 DRN to SW –0.3 65.0 BOOT to GND –0.3 70.5 COFF, IADJ, PWM to GND –0.3 5.5 BOOT to SW –0.3 5.5 VCC to GND -0.3 5.5 –0.3 0.3 VIN to CSN SW to GND, 10-ns transient (2) (2) V –2.0 Storage temperature, Tstg (1) UNIT –40 150 °C Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings only, which do not imply functional operation of the device at these or any other conditions beyond those indicated under Recommended Operating Conditions. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability. DRN to SW. Absolute maximum not to be exceeded. 7.2 ESD Ratings VALUE Electrostatic discharge V(ESD) (1) Human-body model (HBM), per AEC Q100-002 (1) ±2000 Charged-device model (CDM), per AEC Q100-011 ±750 UNIT V AEC Q100-002 indicates that HBM stressing shall be in accordance with the ANSI/ESDA/JEDEC JS-001 specification. 7.3 Recommended Operating Conditions over operating free-air temperature range (unless otherwise noted) MIN NOM MAX UNIT VIN Input voltage 5.5 65 V TA Operating ambient temperature –40 125 °C TJ Operating junction temperature –40 150 °C 7.4 Thermal Information THERMAL METRIC (1) TPS92515AHVQ1 HVSSOP UNIT 10 PINS RθJA Junction-to-ambient thermal resistance 56.2 °C/W RθJC(top) Junction-to-case (top) thermal resistance 44.7 °C/W RθJB Junction-to-board thermal resistance 32.1 °C/W ψJT Junction-to-top characterization parameter 1.5 °C/W ψJB Junction-to-board characterization parameter 31.8 °C/W RθJC(bot) Junction-to-case (bottom) thermal resistance 5.3 °C/W (1) 4 For more information about traditional and new thermal metrics, see the Semiconductor and device Package Thermal Metrics application report, SPRA953. Submit Documentation Feedback Copyright © 2018, Texas Instruments Incorporated Product Folder Links: TPS92515AHV-Q1 TPS92515AHV-Q1 www.ti.com SLUSDG2 – OCTOBER 2018 7.5 Electrical Characteristics VIN = 40 V, –40°C ≤ TJ ≤ 150°C, VBOOT is referenced to SW pin, unless otherwise specified. PARAMETER TEST CONDITION MIN TYP MAX UNIT VIADJ = VCC 222 240 257 mV VIADJ = 2.2 V 205 220 234 PEAK CURRENT COMPARATOR VCST VIN– VCSN peak current threshold AADJ VIADJ to VIN – VCSN threshold gain 0.1 ≤ VIADJ ≤ 2.2 V tDEL CSN pin falling delay CSN fall to SW fall tLEB Minimum ON-time Minimum pulse width 0.1 mV V/V 75 130 ns 195 275 ns Not switching, VIADJ = VVCC 0.85 1.5 mA IDRN-SW = 200 mA, VBOOT = 5 V, TJ = 25°C 290 500 IDRN-SW = 200 mA, VBOOT = 5 V, TJ = 150°C 290 600 IDRN-SW = 200 mA, VBOOT = 3.5 V, TJ = 25°C 310 500 IDRN-SW = 200 mA, VBOOT = 3.5 V, TJ = 150°C 310 650 75 SYSTEM CURRENTS Icq Operating current INTEGRATED N-Channel MOSFET AND DRIVER RDS(on) FET ON-resistance IDRN-SW(off) FET leakage current VDRN-SW = 6 V, VSW = 0 V VBOOT-UVLO Voltage where gate drive is disabled VBOOT falling VBOOT-UVLO(hys) BOOT pin UVLO Hysteresis IPD(PWM/UVLO) Pull down from SW when PWM low. PWM low, VBOOT = 5 V , VSW = 8 V IPD(BOOT) Pull down from SW when VBOOT reaches VBOOT-UVLO PWM high, VBOOT < BOOT-UVLO, VSW =8V IBOOT_Q BOOT pin quiescent current VBOOT = 5.5 V, 0 V ≤ VSW ≤ 65 V mΩ 10 2.0 2.8 µA 3.5 125 V mV 100 130 µA 5 7 mA 60 90 µA 5.0 5.2 V 0.1 0.2 V 4.2 4.4 V VCC/REFERENCE REGULATOR VCC Regulated pin voltage IVCC(ext) ≤ 500 µA VCCDO Drop out voltage IVCC(ext) ≤ 500 µA VCCUVLO VCC undervoltage lockout Falling threshold, VIN = 10 V VCCUVLO_hys VCC undervoltage lockout hysteresis IVCC(ILIM) VCC regulator current limit 14 19 23 VINUVLO VIN UVLO Falling Threshold 4.65 4.90 5.15 V VINUVLO_hys VIN UVLO Hysteresis 150 190 225 mV 0.95 1.00 1.05 V 68 120 ns 4.8 4.0 0.22 VCC shorted to GND V mA OFF-TIMER VOFT OFF-time threshold tD(off) COFF threshold tOFF(max) Maximum OFF-time COFF to SW rising delay 230 µs PWM/UVLO (Enable) IPWM(uvlo) PWM/UVLO pin current VPWM(uvlo) = 5.5 V VPWM(uvlo) PWM/UVLO pin threshold PWM pin rising VPWM(uvlo-hys) PWM/UVLO pin hysteresis Difference between rising and falling threshold tPWM(uvlo) PWM/UVLO pin delay IPWM(uvlo-hys) PWM/UVLO hysteresis current 10 1.0 1.05 V 50 100 150 mV 75 130 ns 100 170 ns –20 –15 μA PWM pin rising to SW pin rising PWM pin falling to SW pin falling VPWM(uvlo) = 2 V nA 0.95 –25 Submit Documentation Feedback Copyright © 2018, Texas Instruments Incorporated Product Folder Links: TPS92515AHV-Q1 5 TPS92515AHV-Q1 SLUSDG2 – OCTOBER 2018 www.ti.com Electrical Characteristics (continued) VIN = 40 V, –40°C ≤ TJ ≤ 150°C, VBOOT is referenced to SW pin, unless otherwise specified. THERMAL SHUTDOWN TSD Thermal shutdown temperature TSD(hyst) Thermal shutdown hysteresis 6 175 10 Submit Documentation Feedback °C Copyright © 2018, Texas Instruments Incorporated Product Folder Links: TPS92515AHV-Q1 TPS92515AHV-Q1 www.ti.com SLUSDG2 – OCTOBER 2018 7.6 Typical Characteristics 245 225 224 223 222 221 220 219 218 217 216 215 214 213 212 -40 Randomly sampled devices Randomly sampled devices 244 243 CST Pin Voltage (mV) CST Pin Voltage (mV) TJ = TA = 25°C unless otherwise specified. 242 241 240 239 238 237 236 -20 0 VIADJ = 2.2 V 20 40 60 80 100 Junction Temperature (qC) 120 235 -40 140 VIN = 40 V IVCC= 0mA IVCC=4mA 140 D001 VIN = 40 V 1.002 VOFF - COFF Threshold (V) VCC Voltage (V) 120 Figure 2. VCST vs. Junction Temperature 1 0.998 0.996 0.994 Vin=6 Vin=40 Vin=65 0.992 -20 0 20 40 60 80 100 Junction Temperature (oC) 120 140 0.99 -40 160 tD(OFF) - COFF to SW Rising Delay (ns) 84 82 80 78 76 74 72 0 20 40 60 80 100 Junction Temperature (oC) 0 120 140 20 40 60 80 100 Junction Temperature (oC) 120 140 160 D011 Figure 4. VOFF vs. Junction Temperature 86 -20 -20 D021 Figure 3. VCC vs. Junction Temperature tDEL - CSN Falling Delay (ns) 20 40 60 80 100 Junction Temperature (qC) 1.004 88 70 -40 0 VIADJ = VCC Figure 1. VCST vs. Junction Temperature 5.1 5.09 5.08 5.07 5.06 5.05 5.04 5.03 5.02 5.01 5 4.99 4.98 4.97 4.96 4.95 -40 -20 D001 160 74 73.5 73 72.5 72 71.5 71 70.5 70 69.5 69 68.5 68 67.5 67 66.5 -40 -20 D012 0 20 40 60 80 100 Junction Temperature (oC) 120 140 160 D013 VIN = 40 V VIN = 6 V Figure 5. CSN Pin Falling Delay Time vs. Junction Temperature Figure 6. Off-Time Delay vs. Junction Temperature Submit Documentation Feedback Copyright © 2018, Texas Instruments Incorporated Product Folder Links: TPS92515AHV-Q1 7 TPS92515AHV-Q1 SLUSDG2 – OCTOBER 2018 www.ti.com Typical Characteristics (continued) TJ = TA = 25°C unless otherwise specified. 1.05 205 ILED (A) and Efficiency (X100%) 202.5 200 197.5 tLEB (ns) 195 192.5 190 187.5 185 182.5 Vin=6 Vin=40 Vin=65 180 177.5 175 -40 -20 0 20 40 60 80 100 Junction Temperature (oC) 120 140 1.03 1.01 0.99 ILED Efficiency (%) 0.97 0.95 0.93 0.91 0.89 0.87 30 160 35 VIADJ=2.4 V Figure 7. Leading-Edge Blanking Time vs. Junction Temperature ILED (A) and Efficiency (X100%) ILED (A) and Efficiency (X100%) 55 60 65 D015 RSENSE = 0.196 Ω 1.04 1.02 ILED (Amps) Efficiency 1 0.98 0.96 40 42 44 VIN (V) VIADJ=2.4 V 46 48 50 1.02 1 ILED (Amps) Efficiency 0.98 0.96 0.94 0.92 0.9 30 31 32 33 34 D016 RSENSE = 0.196 Ω Figure 9. EVM Configuration Result 8 50 Figure 8. EVM Configuration Result 1.04 VLED = 35 V 45 VIN VLED = 22 V 0.94 38 40 D014 VLED = 13 V VIADJ=2.4 V 35 36 VIN (V) 37 38 39 40 D017 RSENSE = 0.196 Ω Figure 10. EVM Configuration Result Submit Documentation Feedback Copyright © 2018, Texas Instruments Incorporated Product Folder Links: TPS92515AHV-Q1 TPS92515AHV-Q1 www.ti.com SLUSDG2 – OCTOBER 2018 8 Detailed Description 8.1 Overview The TPS92515AHV-Q1 is an internal N-channel MOSFET (monolithic NFET) hysteric control, buck regulator. Hysteretic operation allows a high control bandwidth and is ideal for shunt FET and LED matrix applications (series LED switched network). The high-side differential current sense with low adjustable threshold voltage via a 10:1 divider, provides an excellent method for regulating output current while maintaining high system efficiency. The device uses a controlled OFF-time (COFT) architecture to allow the converter to operate in both continuous conduction mode (CCM) and discontinuous conduction mode (DCM) with no external control loop compensation, and provides an inherent cycle-by-cycle current limit. The adjustable current sense threshold provides the capability for analog dimming the LED current over the full range and the PWM dimming input allows for high-frequency PWM dimming control requiring no external components. Configuration options allow for easy implementation of external shunt FET dimming. See also the OFF-Timer, Shunt FET Dimming or Shunted Output Condition section. The device does not internally limit the maximum attainable average LED current. It does have a thermal limit based on the maximum junction temperature. The maximum junction temperature is a function of the system operating points (efficiency, ambient temperature, thermal management), component choices, and switching frequency. This functionality allows the device to provide constant currents up to 1 A in a wide variety of applications and up to 2 A in a smaller sub-set of applications. This simple regulator contains all the features necessary to implement a high-efficiency, versatile, high-performance LED driver. 8.2 Functional Block Diagram R VIN + IADJ 2.4 V + + R CSN 10 R VCC Regulator VCC LEB VCCUVLO T DRN Thermal Shutdown T Thermal Shutdown Gate 20 µA Internal N-channel FET 5 NŸ PWM SW + Control Logic 1.0 V Boot UVLO BOOT COFF + 5 mA 1.0 V 100 µA Gate 250-µs (max) off-time VCCUVLO PWM GND Submit Documentation Feedback Copyright © 2018, Texas Instruments Incorporated Product Folder Links: TPS92515AHV-Q1 9 TPS92515AHV-Q1 SLUSDG2 – OCTOBER 2018 www.ti.com 8.3 Feature Description 8.3.1 General Operation The TPS92515AHV-Q1 operates using a peak-current, constant OFF-time as described in Figure 11. Two states dictate the high-side FET control. The switch remains on until the programmed peak current is reached. The device controls the peak current by monitoring the voltage across the sense resistor. When the voltage drop is higher than the programmed threshold, the peak current is reached, and the switch is turned OFF, which begins the OFF-time period. A capacitor on the COFF pin is then charged through a resistor connected to the output. When the COFF pin voltage reaches the 1-V (typical) threshold, the OFF-time ends. The COFF pin capacitor resets and the main switch turns ON, and the next cycle begins. VIADJ and RSENSE adjust the peak inductor current The Inductance (L) and tOFF define 'IL-PP The average output current equals the peak minus half the peak to peak inductor ripple ûIL-PP = (VLED * tOFF ) / L ILave = ILED = IL-Peak ± (ûIL-PP / 2) IL-Peak = [ VIADJ /10 ] / RSENSE tON tOFF t Figure 11. Hysteretic Operation Although commonly referred to as constant OFF-time, it is the output votage that determines the OFF-time. This connection ensures constant peak-to-peak ripple. To maintain a constant ripple over various input and output voltages, the converter OFF-time becomes shorter or longer resulting in a change in frequency. If the input voltage and output voltage are relatively constant, the frequency also remains constant. If either the input voltage or the output voltage changes, the frequency changes. For a fixed input voltage, the device operates at the maximum frequency at 50% duty cycle and the frequency reduces as the duty cycle becomes shorter or longer. A graphical representation is shown in Figure 12. For a fixed output voltage (VLED), the frequency is always the maximum at the highest input voltage as shown in Figure 13. 10 Submit Documentation Feedback Copyright © 2018, Texas Instruments Incorporated Product Folder Links: TPS92515AHV-Q1 TPS92515AHV-Q1 www.ti.com SLUSDG2 – OCTOBER 2018 Frequency (Hz) Frequency (Hz) Feature Description (continued) 0 Maximum VIN/2 Output Voltage (V) 65 Input Voltage (V) Fixed input voltage Fixed LED voltage Figure 12. Frequency vs LED Output Voltage Figure 13. Frequency vs Input Voltage (VIN) Because the OFF-time is proportional to the output voltage, it is possible to illustrate how VLED can be removed from the output current equation. When VLED >> VOFT , the output ripple can be defined as shown in Equation 1. ΔIL-PP = (VLED x dt)/L where • dt is defined by the OFF-timer (1) . dt Cdv i COFF (1V) ª VLED º «R » ¬ OFF ¼ COFFR OFF (1V) VLED (2) Substitute dt in Equation 1 to create Equation 3. 'IL ILED PP Vdt L VLEDdt L VIADJ 10 RSENSE ª C R (1V) º VLED « OFF OFF » VLED ¬ ¼ L COFFROFF (1V) L (3) COFFROFF (1V) 2L (4) When VLED >≈ 10 V, use the ILED calculation Equation 4. The Detailed Design Procedure section describes a design example that uses the more detailed equation. A VLED > 10 V ensures a linear charging ramp below 1 V. If VLED
TPS92515AHVQDGQRQ1 价格&库存

很抱歉,暂时无法提供与“TPS92515AHVQDGQRQ1”相匹配的价格&库存,您可以联系我们找货

免费人工找货
TPS92515AHVQDGQRQ1
  •  国内价格
  • 1+31.82270
  • 10+21.21520
  • 30+17.67930

库存:0

TPS92515AHVQDGQRQ1
  •  国内价格 香港价格
  • 1+21.431301+2.68489
  • 10+15.8821810+1.98970
  • 25+14.4871725+1.81494
  • 100+12.95139100+1.62254
  • 250+12.21876250+1.53075
  • 500+11.77726500+1.47544
  • 1000+11.413791000+1.42991

库存:2387

TPS92515AHVQDGQRQ1
  •  国内价格 香港价格
  • 2500+11.029982500+1.38182
  • 5000+10.798675000+1.35285
  • 7500+10.682867500+1.33834

库存:2387