0
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
创作中心
发布
  • 发文章

  • 发资料

  • 发帖

  • 提问

  • 发视频

创作活动
TPS92515DGQR

TPS92515DGQR

  • 厂商:

    BURR-BROWN(德州仪器)

  • 封装:

    HVSSOP10_EP

  • 描述:

    IC LED DRVR REG PWM 10MSOP

  • 数据手册
  • 价格&库存
TPS92515DGQR 数据手册
Product Folder Order Now Support & Community Tools & Software Technical Documents TPS92515, TPS92515-Q1, TPS92515HV, TPS92515HV-Q1 SLUSBZ6A – APRIL 2016 – REVISED AUGUST 2016 TPS92515x 2-A, Buck LED Driver with Integrated N-channel FET, High-Side Current Sense, and Shunt FET PWM Dimming Capability 1 Features • • • 1 • • • • • • • AEC-Q100 Grade 1 Qualified Integrated 290-mΩ (typ) Internal N-Channel FET Input Voltage Range: – TPS92515x: 5.5 V to 42 V – TPS92515HVx: 5.5 V to 65 V – Operation Down to 5.15 V After Start-Up Low Offset High-side Peak Current Comparator Constant Average Current, up to 2 A Inherent Cycle-by-Cycle Current Limit Multiple Dimming Methods – 10,000:1 Shunt PWM Dimming Range – 1000:1 PWM Dimming Range – 200:1 Analog Dimming Range Simple Constant Off-time Control – No Loop Compensation – Fast Transient Response Thermally Enhanced HVSSOP Package Integrated Thermal Protection 2 Applications • • • • Automotive Lighting: LED Switched Matrix AFS Headlamps, DRL, High/Low Beam, Fog, Rear, Turn Signal, Side Marker, Aftermarket Industrial Lighting: Factory Automation, Time of Flight (TOF), Appliances, Retail Illumination, Machine Vision and Inspection, Emergency, Exit and/or Safety Lighting, Medical Lighting, Stage and Area Lighting Agricultural, Marine, and Heavy Industry Lighting High Contrast Shunt FET Dimming The regulator operates using a constant off-time, peak current control. The operation is simple: after an off-time based on the output voltage, an on-time begins. The on-time ends once the inductor peak current threshold is reached. The TPS92515 device can be configured to maintain a constant peak-topeak ripple during the ON and OFF periods of a shunt FET dimming cycle. This is ideal for maintaining a linear response across the entire shunt FET dimming range. Steady-state accuracy is aided by the inclusion of a low-offset, high-side comparator. LED current can be modulated using either Analog or PWM dimming, or both simultaneously. Other features include UVLO, wide input voltage operation, inherent LED Open operation and wide operating temperature range with thermal shut-down. The TPS92515 and TPS92515-Q1 devices have an operational input range up to 42 V. The TPS92515HV and TPS92515HV-Q1 offer high-voltage options with an input range up to 65 V. All are available in a thermally enhanced 10-pin HVSSOP package. Device Information(1) PART NUMBER TPS92515-Q1 TPS92515HV BODY SIZE (NOM) HVSSOP (10) 3 mm x 3 mm TPS92515HV-Q1 (1) For all available packages, see the orderable addendum at the end of the data sheet. Simplified Buck LED Driver Application TPS92515 6 DRN 7 CSN 8 VIN 9 PWM 3 Description The TPS92515 family of devices are compact monolithic switching regulators integrating a low resistance N-Channel MOSFET. The devices are intended for high-brightness LED lighting applications where efficiency, high bandwidth, PWM and/or analog dimming and small size are important. PACKAGE TPS92515 VIN 10 IADJ SW 5 BOOT 4 GND 3 VCC 2 COFF 1 VOUT PAD Copyright © 2016, Texas Instruments Incorporated 1 An IMPORTANT NOTICE at the end of this data sheet addresses availability, warranty, changes, use in safety-critical applications, intellectual property matters and other important disclaimers. PRODUCTION DATA. TPS92515, TPS92515-Q1, TPS92515HV, TPS92515HV-Q1 SLUSBZ6A – APRIL 2016 – REVISED AUGUST 2016 www.ti.com Table of Contents 1 2 3 4 5 6 7 8 Features .................................................................. Applications ........................................................... Description ............................................................. Revision History..................................................... Device Comparison Table..................................... Pin Configuration and Functions ......................... Specifications......................................................... 1 1 1 2 3 3 4 7.1 7.2 7.3 7.4 7.5 7.6 4 4 4 4 5 7 Absolute Maximum Ratings ...................................... ESD Ratings ............................................................ Recommended Operating Conditions....................... Thermal Information................................................. Electrical Characteristics........................................... Typical Characteristics .............................................. Detailed Description .............................................. 9 8.1 8.2 8.3 8.4 Overview ................................................................... 9 Functional Block Diagram ......................................... 9 Feature Description................................................. 10 Device Functional Modes........................................ 20 9 Application and Implementation ........................ 21 9.1 Application Information............................................ 21 9.2 Typical Application ................................................. 21 9.3 Dos and Don'ts ....................................................... 29 10 Power Supply Recommendations ..................... 30 10.1 Input Source Direct from Battery........................... 30 10.2 Input Source from a Boost Stage ......................... 30 11 Layout................................................................... 30 11.1 Layout Guidelines ................................................. 30 11.2 Layout Example .................................................... 31 12 Device and Documentation Support ................. 32 12.1 12.2 12.3 12.4 12.5 12.6 Documentation Support ....................................... Receiving Notification of Documentation Updates Community Resources.......................................... Trademarks ........................................................... Electrostatic Discharge Caution ............................ Glossary ................................................................ 32 32 32 32 32 32 13 Mechanical, Packaging, and Orderable Information ........................................................... 32 4 Revision History Changes from Original (April 2016) to Revision A • 2 Page Data sheet status changed from Product Preview to Production Data ................................................................................. 1 Submit Documentation Feedback Copyright © 2016, Texas Instruments Incorporated Product Folder Links: TPS92515 TPS92515-Q1 TPS92515HV TPS92515HV-Q1 TPS92515, TPS92515-Q1, TPS92515HV, TPS92515HV-Q1 www.ti.com SLUSBZ6A – APRIL 2016 – REVISED AUGUST 2016 5 Device Comparison Table MAXIMUM VOLTAGE (V) DEVICE TPS92515HV-Q1 65 TPS92515-Q1 42 TPS92515HV 65 TPS92515 42 LM3409HV-Q1 75 LM3409-Q1 42 LM3409HV 75 LM3409 42 LM3406HV-Q1 75 LM3406-Q1 42 LM3406HV 75 LM3406 42 AUTOMOTIVE QUALIFIED CONTROL METHOD Y Internal N-channel FET, constant OFF-time Y N N External P-channel FET, constant OFF-time External P-channel FET, constant OFF-time Y Y N N Y Internal N-channel FET, controlled ON-time Y N N 6 Pin Configuration and Functions DGQ Package HVSSOP 10-Pin with PowerPAD Top View COFF 1 10 IADJ VCC 2 9 PWM GND 3 8 VIN BOOT 4 7 CSN SW 5 6 DRN Thermal Pad Table 1. Pin Functions PIN I/O DESCRIPTION NAME NO. BOOT 4 I Connect a ceramic capacitor between BOOT and SW and a diode from VCC to BOOT to power the high-side FET drive circuitry. COFF 1 I Connect a resistor from VOUT, and a capacitor to GND to set the OFF-time. CSN 7 I Current sense negative input. Connect current sense resistor from VIN to CSN for high-side current sense control. DRN 6 I Internal FET drain. Connect to CSN node GND 3 G Ground IADJ 10 I Output current adjust. Connect to an external divider, reference or tie to VCC. PWM 9 I PWM dimming input. Connect to PWM control signal. Output current is pulse-width modulated (PWM) dimmed from the maximum analog controlled level. Connect to VCC if not used. SW 5 O Internal FET Source. Connect to output inductor VCC 2 O 5-V Regulator Output. Use a decoupling capacitor from VCC to ground. See section on VCC capacitor selection. VIN 8 I Connect to input voltage. VIN is also the current sense positive input. Thermal pad — Copyright © 2016, Texas Instruments Incorporated Connect to ground Submit Documentation Feedback Product Folder Links: TPS92515 TPS92515-Q1 TPS92515HV TPS92515HV-Q1 3 TPS92515, TPS92515-Q1, TPS92515HV, TPS92515HV-Q1 SLUSBZ6A – APRIL 2016 – REVISED AUGUST 2016 www.ti.com 7 Specifications 7.1 Absolute Maximum Ratings over operating free-air temperature range (unless otherwise noted) (1) VIN, DRN, CSN to GND SW to GND MIN MAX TPS92515, TPS92515-Q1 –0.3 45.0 TPS92515HV, TPS92515HV-Q1 –0.3 65.0 TPS92515, TPS92515-Q1 -1.0 45.0 TPS92515HV, TPS92515HV-Q1 -1.0 65.0 TPS92515, TPS92515-Q1 –0.3 45.0 TPS92515HV, TPS92515HV-Q1 –0.3 65.0 TPS92515, TPS92515-Q1 –0.3 50.5 TPS92515HV, TPS92515HV-Q1 –0.3 70.5 COFF, IADJ, PWM to GND –0.3 5.5 BOOT to SW –0.3 5.5 VCC to GND -0.3 5.5 –0.3 0.3 DRN to SW BOOT to GND VIN to CSN SW to GND, 10-ns transient (2) (2) V –2.0 Storage temperature, Tstg (1) UNIT -40 150 °C Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings only, which do not imply functional operation of the device at these or any other conditions beyond those indicated under Recommended Operating Conditions. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability. DRN to SW. Absolute maximum not to be exceeded. 7.2 ESD Ratings VALUE Electrostatic discharge V(ESD) (1) Human-body model (HBM), per AEC Q100-002 (1) UNIT ±2000 Charged-device model (CDM), per AEC Q100-011 V ±750 AEC Q100-002 indicates that HBM stressing shall be in accordance with the ANSI/ESDA/JEDEC JS-001 specification. 7.3 Recommended Operating Conditions over operating free-air temperature range (unless otherwise noted) MIN NOM MAX TPS92515, TPS92515-Q1 5.5 42 TPS92515HV, TPS92515HV-Q1 5.5 65 UNIT VIN Input voltage TA Operating ambient temperature 125 °C TJ Operating junction temperature 150 °C 7.4 V Thermal Information TPS92515 THERMAL METRIC (1) HVSSOP UNIT 10 PINS RθJA Junction-to-ambient thermal resistance 56.2 °C/W RθJC(top) Junction-to-case (top) thermal resistance 44.7 °C/W RθJB Junction-to-board thermal resistance 32.1 °C/W ψJT Junction-to-top characterization parameter 1.5 °C/W ψJB Junction-to-board characterization parameter 31.8 °C/W RθJC(bot) Junction-to-case (bottom) thermal resistance 5.3 °C/W (1) 4 For more information about traditional and new thermal metrics, see the Semiconductor and device Package Thermal Metrics application report, SPRA953. Submit Documentation Feedback Copyright © 2016, Texas Instruments Incorporated Product Folder Links: TPS92515 TPS92515-Q1 TPS92515HV TPS92515HV-Q1 TPS92515, TPS92515-Q1, TPS92515HV, TPS92515HV-Q1 www.ti.com SLUSBZ6A – APRIL 2016 – REVISED AUGUST 2016 7.5 Electrical Characteristics VIN = 40 V, –40°C ≤ TJ ≤ 150°C, VBOOT is referenced to SW pin, unless otherwise specified. PARAMETER TEST CONDITION MIN TYP MAX UNIT VIADJ = VCC 224 VIADJ = 2.2 V 211.5 240 251 mV 220 223.5 PEAK CURRENT COMPARATOR VCST VIN– VCSN peak current threshold AADJ VIADJ to VIN – VCSN threshold gain 0.1 ≤ VIADJ ≤ 2.2 V ICSN Current sense pin, input bias current tDEL CSN pin falling delay CSN fall to SW fall tLEB Minimum ON-time Minimum pulse width 0.1 –5 mV V/V 0 µA 75 130 ns 195 275 ns Not switching, VIADJ = VVCC 0.85 1.5 mA IDRN-SW = 200mA, VBOOT = 5 V, TJ = 25°C 290 500 IDRN-SW = 200mA, VBOOT = 5 V, TJ = 150°C 290 600 IDRN-SW = 200mA, VBOOT = 3.5 V, TJ = 25°C 310 500 IDRN-SW = 200mA, VBOOT = 3.5 V, TJ = 150°C 310 650 75 SYSTEM CURRENTS Icq Operating current INTEGRATED N-Channel MOSFET AND DRIVER RDS(on) FET ON-resistance IDRN-SW(off) FET leakage current VDRN-SW = 6 V, VSW = 0 V VBOOT-UVLO Voltage where gate drive is disabled VBOOT falling VBOOT-UVLO(hys) BOOT pin UVLO Hysteresis IPD(PWM/UVLO) Pull down from SW when PWM low. PWM low, VBOOT = 5 V , VSW = 8 V IPD(BOOT) Pull down from SW when VBOOT reaches VBOOT-UVLO PWM high, VBOOT < BOOT-UVLO, VSW =8V IBOOT_Q BOOT pin quiescent current VBOOT = 5.5 V, 0 V ≤ VSW ≤ 65 V mΩ 10 2.0 2.8 µA 3.5 125 V mV 100 130 µA 5 7 mA 60 90 µA 5.0 5.2 V 0.1 0.2 V 4.2 4.4 V VCC/REFERENCE REGULATOR VCC Regulated pin voltage IVCC(ext) ≤ 500 µA VCCDO Drop out voltage IVCC(ext) ≤ 500 µA VCCUVLO VCC undervoltage lockout Falling threshold, VIN = 10 V VCCUVLO_hys VCC undervoltage lockout hysteresis IVCC(ILIM) VCC regulator current limit VINUVLO VINUVLO_hys 4.8 4.0 0.22 VCC shorted to GND V 14 19 23 mA VIN UVLO Falling Threshold 4.65 4.90 5.15 V VIN UVLO Hysteresis 150 190 225 mV VOFT OFF-time threshold 0.95 1.00 1.05 V tD(off) COFF threshold 68 120 tOFF(max) Maximum OFF-time OFF-TIMER COFF to SW rising delay 230 ns µs PWM/UVLO (Enable) IPWM(uvlo) PWM/UVLO pin current VPWM(uvlo) = 5.5 V VPWM(uvlo) PWM/UVLO pin threshold PWM pin rising VPWM(uvlo-hys) PWM/UVLO pin hysteresis Difference between rising and falling threshold tPWM(uvlo) PWM/UVLO pin delay IPWM(uvlo-hys) PWM/UVLO hysteresis current Copyright © 2016, Texas Instruments Incorporated 10 nA 0.95 1.0 1.05 V 50 100 150 mV PWM pin rising to SW pin rising 75 130 ns PWM pin falling to SW pin falling 100 170 ns –20 –15 μA VPWM(uvlo) = 2 V –25 Submit Documentation Feedback Product Folder Links: TPS92515 TPS92515-Q1 TPS92515HV TPS92515HV-Q1 5 TPS92515, TPS92515-Q1, TPS92515HV, TPS92515HV-Q1 SLUSBZ6A – APRIL 2016 – REVISED AUGUST 2016 www.ti.com Electrical Characteristics (continued) VIN = 40 V, –40°C ≤ TJ ≤ 150°C, VBOOT is referenced to SW pin, unless otherwise specified. THERMAL SHUTDOWN TSD Thermal shutdown temperature TSD(hyst) Thermal shutdown hysteresis 6 Submit Documentation Feedback 175 10 °C Copyright © 2016, Texas Instruments Incorporated Product Folder Links: TPS92515 TPS92515-Q1 TPS92515HV TPS92515HV-Q1 TPS92515, TPS92515-Q1, TPS92515HV, TPS92515HV-Q1 www.ti.com SLUSBZ6A – APRIL 2016 – REVISED AUGUST 2016 7.6 Typical Characteristics 225 245 224 244 223 243 222 242 221 241 VCST (mV) VCST (mV) TJ = TA = 25°C unless otherwise specified. Characteristics are identical for TPS92515x and TPS92515HVx. VIN >42 V curves apply to TPS92515HVx only. 220 219 240 239 218 238 217 237 216 236 215 -40 -20 0 VIADJ = 2.2 V 20 40 60 80 100 Junction Temperature (oC) 120 140 235 -40 160 VIN = 40 V IVCC= 0mA IVCC=4mA 140 160 D009 VIN = 40 V 1.002 VOFF - COFF Threshold (V) VCC Voltage (V) 120 Figure 2. VCST vs. Junction Temperature 1 0.998 0.996 0.994 Vin=6 Vin=40 Vin=65 0.992 -20 0 20 40 60 80 100 Junction Temperature (oC) 120 140 0.99 -40 160 tD(OFF) - COFF to SW Rising Delay (ns) 84 82 80 78 76 74 72 0 20 40 60 80 100 Junction Temperature (oC) 0 120 140 20 40 60 80 100 Junction Temperature (oC) 120 140 160 D011 Figure 4. VOFF vs. Junction Temperature 86 -20 -20 D021 Figure 3. VCC vs. Junction Temperature tDEL - CSN Falling Delay (ns) 20 40 60 80 100 Junction Temperature (oC) 1.004 88 70 -40 0 VIADJ = VCC Figure 1. VCST vs. Junction Temperature 5.1 5.09 5.08 5.07 5.06 5.05 5.04 5.03 5.02 5.01 5 4.99 4.98 4.97 4.96 4.95 -40 -20 D008 160 74 73.5 73 72.5 72 71.5 71 70.5 70 69.5 69 68.5 68 67.5 67 66.5 -40 D012 -20 0 20 40 60 80 100 Junction Temperature (oC) 120 140 160 D013 VIN = 40 V VIN = 6 V Figure 5. CSN Pin Falling Delay Time vs. Junction Temperature Copyright © 2016, Texas Instruments Incorporated Figure 6. Off-Time Delay vs. Junction Temperature Submit Documentation Feedback Product Folder Links: TPS92515 TPS92515-Q1 TPS92515HV TPS92515HV-Q1 7 TPS92515, TPS92515-Q1, TPS92515HV, TPS92515HV-Q1 SLUSBZ6A – APRIL 2016 – REVISED AUGUST 2016 www.ti.com Typical Characteristics (continued) TJ = TA = 25°C unless otherwise specified. Characteristics are identical for TPS92515x and TPS92515HVx. VIN >42 V curves apply to TPS92515HVx only. 1.05 205 ILED (A) and Efficiency (X100%) 202.5 200 197.5 tLEB (ns) 195 192.5 190 187.5 185 182.5 Vin=6 Vin=40 Vin=65 180 177.5 175 -40 -20 0 20 40 60 80 100 Junction Temperature (oC) 120 140 1.03 1.01 0.99 ILED Efficiency (%) 0.97 0.95 0.93 0.91 0.89 0.87 30 160 35 60 65 D015 RSENSE = 0.196 Ω 1.04 ILED (A) and Efficiency (X100%) ILED (A) and Efficiency (X100%) 55 Figure 8. EVM Configuration Result 1.04 1.02 ILED (Amps) Efficiency 1 0.98 0.96 40 42 44 VIN (V) VIADJ=2.4 V 46 48 Submit Documentation Feedback 50 1.02 1 ILED (Amps) Efficiency 0.98 0.96 0.94 0.92 0.9 30 31 32 33 34 D016 RSENSE = 0.196 Ω Figure 9. EVM Configuration Result 8 50 VIADJ=2.4 V Figure 7. Leading-Edge Blanking Time vs. Junction Temperature VLED = 35 V 45 VIN VLED = 22 V 0.94 38 40 D014 VLED = 13 V 35 36 VIN (V) VIADJ=2.4 V 37 38 39 40 D017 RSENSE = 0.196 Ω Figure 10. EVM Configuration Result Copyright © 2016, Texas Instruments Incorporated Product Folder Links: TPS92515 TPS92515-Q1 TPS92515HV TPS92515HV-Q1 TPS92515, TPS92515-Q1, TPS92515HV, TPS92515HV-Q1 www.ti.com SLUSBZ6A – APRIL 2016 – REVISED AUGUST 2016 8 Detailed Description 8.1 Overview The TPS92515 is an internal N-channel MOSFET (monolithic NFET) hysteric control, buck regulator. Hysteretic operation allows a high control bandwidth and is ideal for shunt FET and LED matrix applications (series LED switched network). The high-side differential current sense with low adjustable threshold voltage via a 10:1 divider, provides an excellent method for regulating output current while maintaining high system efficiency. The device uses a controlled OFF-time (COFT) architecture to allow the converter to operate in both continuous conduction mode (CCM) and discontinuous conduction mode (DCM) with no external control loop compensation, and provides an inherent cycle-by-cycle current limit. The adjustable current sense threshold provides the capability for analog dimming the LED current over the full range and the PWM dimming input allows for high-frequency PWM dimming control requiring no external components. Configuration options allow for easy implementation of external shunt FET dimming. See also the OFF-Timer, Shunt FET Dimming or Shunted Output Condition section. The device does not internally limit the maximum attainable average LED current. It does have a thermal limit based on the maximum junction temperature. The maximum junction temperature is a function of the system operating points (efficiency, ambient temperature, thermal management), component choices, and switching frequency. This functionality allows the device to provide constant currents up to 1 A in a wide variety of applications and up to 2 A in a smaller sub-set of applications. This simple regulator contains all the features necessary to implement a high-efficiency, versatile, high-performance LED driver. 8.2 Functional Block Diagram R VIN + IADJ 2.4 V + + R CSN 10 R VCC Regulator VCC LEB VCCUVLO T DRN Thermal Shutdown T Thermal Shutdown Gate 20 µA Internal N-channel FET 5 NŸ PWM SW + Control Logic 1.0 V Boot UVLO BOOT COFF + 5 mA 1.0 V 100 µA Gate 250-µs (max) off-time VCCUVLO PWM GND Copyright © 2016, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: TPS92515 TPS92515-Q1 TPS92515HV TPS92515HV-Q1 9 TPS92515, TPS92515-Q1, TPS92515HV, TPS92515HV-Q1 SLUSBZ6A – APRIL 2016 – REVISED AUGUST 2016 www.ti.com 8.3 Feature Description 8.3.1 General Operation The TPS92515 operates using a peak-current, constant OFF-time as described in Figure 11. Two states dictate the high-side FET control. The switch turns on and stays on until the programmed peak current is reached. The peak current is controlled by monitoring the voltage across the sense resistor. When the voltage drop is higher than the programmed threshold, the peak current is reached, and the switch is turned OFF, which initiates the OFF-time period. A capacitor on the COFF pin is then charged through a resistor connected to the output. When the COFF pin voltage reaches the 1-V (typical) threshold, the OFF-time ends. The COFF pin capacitor resets and the main switch turns ON, and the next cycle begins. VIADJ and RSENSE adjust the peak inductor current The Inductance (L) and tOFF define 'IL-PP The average output current equals the peak minus half the peak to peak inductor ripple ûIL-PP = (VLED * tOFF ) / L ILave = ILED = IL-Peak ± (ûIL-PP / 2) IL-Peak = [ VIADJ /10 ] / RSENSE tON t tOFF Figure 11. Hysteretic Operation Although commonly referred to as constant OFF-time, the OFF-time control voltage is normally derived from the output voltage. This connection ensures constant peak-to-peak ripple. To maintain a constant ripple over various input and output voltages, the converter OFF-time becomes shorter or longer resulting in a change in frequency. If the input voltage and output voltage are relatively constant, the frequency also remains constant. If either the input voltage or the output voltage changes, the frequency changes. For a fixed input voltage, the device operates at the maximum frequency at 50% duty cycle and the frequency reduces as the duty cycle becomes shorter or longer. A graphical representation is shown in Figure 12. For a fixed output voltage (VLED), the frequency is always the maximum at the highest input voltage as shown in Figure 13. 10 Submit Documentation Feedback Copyright © 2016, Texas Instruments Incorporated Product Folder Links: TPS92515 TPS92515-Q1 TPS92515HV TPS92515HV-Q1 TPS92515, TPS92515-Q1, TPS92515HV, TPS92515HV-Q1 www.ti.com SLUSBZ6A – APRIL 2016 – REVISED AUGUST 2016 Frequency (Hz) Frequency (Hz) Feature Description (continued) 0 VIN/2 Output Voltage (V) Maximum Fixed input voltage 65 Input Voltage (V) Fixed LED voltage Figure 12. Frequency vs LED Output Voltage Figure 13. Frequency vs Input Voltage (VIN) By making the OFF-time proportional to the output voltage, it is possible to illustrate how VLED can be removed from the output current equation. When VLED >> VOFT , the output ripple can be defined as shown in Equation 1. ΔIL-PP = (VLED x dt)/L where • dt is defined by the OFF-timer (1) . dt Cdv i COFF (1V) ª VLED º «R » ¬ OFF ¼ COFFR OFF (1V) VLED (2) Substitute dt in Equation 1 to create Equation 3. 'IL ILED PP Vdt L VLEDdt L VIADJ 10 RSENSE ª C R (1V) º VLED « OFF OFF » VLED ¬ ¼ L COFFROFF (1V) L (3) COFFROFF (1V) 2L (4) When VLED >≈ 10 V, use the ILED calculation Equation 4. The Detailed Design Procedure section describes a design example that uses the more detailed equation. A VLED > 10 V ensures a linear charging ramp below 1 V. If VLED
TPS92515DGQR 价格&库存

很抱歉,暂时无法提供与“TPS92515DGQR”相匹配的价格&库存,您可以联系我们找货

免费人工找货