www.ti.com
User’s Guide
TPSM365R6EVM User’s Guide
ABSTRACT
The Texas Instruments TPSM365R6EVM evaluation module helps designers evaluate the operation and
performance of the TPSM365R6 wide-input voltage buck modules. The TPSM365R6 is an easy-to-use
synchronous step-down DC/DC module capable of driving up to 0.6 A of load current from an input voltage
of up to 65 V. The TPSM365R6EVM features a wide array of selectable output voltages from 1.8 V to 12 V
and a selectable switching frequencies of 400 kHz to 2.2 MHz. This feature allows engineers to exercise the full
capabilities of the TPSM365R6 in pulse frequency modulation (PFM) mode. See the TPSM365R6, 3-V to 65-V
Input, 600-mA, 4-μA No-Load IQ Synchronous Buck Converter Power Module in a HotRod™ QFN Package data
sheet for additional features, detailed descriptions, and available options.
Table 1-1. Device and Package Configurations
EVM
U1
FREQUENCY
SPREAD SPECTRUM
CURRENT
PIN 11 TRIM
TPSM365R6EVM
TPSM365R6RDNR
200 kHz – 2.2
MHz
Disabled
0.6 A
RT with PFM
TPSM365R6EVM Board
SNVU845 – DECEMBER 2022
Submit Document Feedback
TPSM365R6EVM User’s Guide
Copyright © 2022 Texas Instruments Incorporated
1
Table of Contents
www.ti.com
Table of Contents
1 Setup........................................................................................................................................................................................3
1.1 Test Points..........................................................................................................................................................................3
1.2 Jumpers..............................................................................................................................................................................5
2 Operation.................................................................................................................................................................................6
2.1 Quick Start..........................................................................................................................................................................6
3 Schematic................................................................................................................................................................................7
4 Board Layout...........................................................................................................................................................................8
5 Bill of Materials......................................................................................................................................................................11
6 Typical Characteristics.........................................................................................................................................................12
7 Application Curves............................................................................................................................................................... 14
List of Figures
Figure 1-1. EVM Board Connections........................................................................................................................................... 4
Figure 1-2. Jumper Locations...................................................................................................................................................... 5
Figure 3-1. TPSM365R6EVM Schematic.................................................................................................................................... 7
Figure 4-1. Top View of EVM....................................................................................................................................................... 8
Figure 4-2. EVM Top Copper Layer............................................................................................................................................. 8
Figure 4-3. EVM Mid Layer One.................................................................................................................................................. 9
Figure 4-4. EVM Mid Layer Two.................................................................................................................................................. 9
Figure 4-5. EVM Bottom Copper Layer..................................................................................................................................... 10
Figure 6-1. Efficiency 3.3-V Output, FSW = 1 MHz, Auto Mode................................................................................................. 12
Figure 6-2. Efficiency 3.3-V Output, FSW = 1 MHz, FPWM........................................................................................................12
Figure 6-3. Efficiency 5-V Output, FSW = 1 MHz, Auto Mode.................................................................................................... 12
Figure 6-4. Efficiency 5-V Output, FSW = 1 MHz, FPWM...........................................................................................................12
Figure 6-5. Typical CISPR 11 Class B Conducted EMI 150 kHz - 30 MHz with EMI Filter (Standard EVM Layout and
BOM)......................................................................................................................................................................................12
Figure 6-6. Typical CISPR 11 Class B Conducted EMI 150 kHz - 30 MHz without EMI Filter (Standard EVM Layout and
BOM)......................................................................................................................................................................................12
Figure 6-7. Typical CISPR 11 Class B Radiated EMI 30 kHz - 1000 MHz (Standard EVM Layout and BOM, Input Filter
Removed)...............................................................................................................................................................................13
Figure 7-1. Start-Up Waveforms................................................................................................................................................ 14
Figure 7-2. Shutdown Waveforms............................................................................................................................................. 14
Figure 7-3. Load Transient, 0 A to 0.6 A, 1 A/µs........................................................................................................................14
Figure 7-4. Load Transient, 0.3 A to 0.6 A, 1 A/µs.....................................................................................................................14
Figure 7-5. Load Transient, 0 A to 0.6 A, 1 A/µs........................................................................................................................14
Figure 7-6. Load Transient, 0.3 A to 0.6 A, 1 A/µs.....................................................................................................................14
List of Tables
Table 1-1. Device and Package Configurations...........................................................................................................................1
Table 1-1. Test Point Descriptions............................................................................................................................................... 3
Table 5-1. Bill Of Materials......................................................................................................................................................... 11
Trademarks
HotRod™ is a trademark of Texas Instruments.
All trademarks are the property of their respective owners.
2
TPSM365R6EVM User’s Guide
SNVU845 – DECEMBER 2022
Submit Document Feedback
Copyright © 2022 Texas Instruments Incorporated
www.ti.com
Setup
1 Setup
Figure 1-1 shows a typical setup with the EVM. The VIN power terminal block (J1) is used for connection to the
host input supply and the VOUT power terminal block (J4) is used for connection to the load.
1.1 Test Points
The test points on the top of the board can be used for connecting to the input and output of the EVM. Table 1-1
describes each test point.
Table 1-1. Test Point Descriptions
Test Point(1)
VINS+
Sense line for measuring the input voltage. Not meant to be used to power the device.
VINS-
Ground test point located near the ground terminal of the high frequency bypass capacitor. Meant
to be connected to the ground sense line for VIN, but can be used in place of a general ground test
point.
VOUTS+
Sense line test point for the output voltage. Do not connect to an output load.
VOUTS-
Ground test point located near the ground terminal of the output capacitors. Meant to be connected
to the ground sense line for VOUT, but can be used in place of a general ground test point.
GND
Test points for ground connection. Not meant to be used as a ground connection for the input
power supply.
EN
Input voltage scope monitor. Connect an oscilloscope probe to this set of points to measure input
ripple voltage.
PGOOD
This test point is connected to the PGOOD pin from the IC. This test point is an open-drain output
of the PGOOD pin. In this EVM configuration, the pin is pulled up to VOUT by R4.
EN
This test point is connected to the EN pin. By default, there is a pullup resistor R2 (RENT) to VIN to
enable the IC.
RT
This test point is connected to the RT pin of the IC when the R4 (RMODE) is installed. In a MODE/
SYNC trim part, this test point is connected to the SYNC pin of the IC. This can be connected to an
external clock to synchronize the IC. In a MODE/SYNC configuration, make sure J3 is left open.
VCC
(1)
Description
This test point is connected to the VCC pin.
Refer to the product data sheet for absolute maximum ratings associated with the features in this table.
SNVU845 – DECEMBER 2022
Submit Document Feedback
TPSM365R6EVM User’s Guide
Copyright © 2022 Texas Instruments Incorporated
3
Setup
www.ti.com
(-)
Input (-)
Supply (+)
(+)
(+)
Load
(-)
DMM (VOUT)
(+)
(-)
DMM (VIN)
Figure 1-1. EVM Board Connections
4
TPSM365R6EVM User’s Guide
SNVU845 – DECEMBER 2022
Submit Document Feedback
Copyright © 2022 Texas Instruments Incorporated
www.ti.com
Setup
1.2 Jumpers
See Figure 1-2 for jumper locations.
•
•
•
J2 EN- This jumper allows the ENABLE input to be connected to GND to disable the IC. The "ON" position is
the same as an unconnected jumper as EN is pulled up by R2. The "OFF" position shorts EN to ground which
disables TPSM365R6RDNR.
J3 Frequency Select- This EVM is supplied with an RT trimmed version of TPSM365R6 to allow for an
adjustable switching frequency. The selectable frequencies are 400 kHz, 600 kHz, 800 kHz, 1.0 MHz, and
2.2 MHz. Make sure a jumper is connected to a desired switching frequency before powering the device. If a
Mode/Sync trim of TPSM365R6 is installed, then leave this jumper unpopulated.
J5 VOUT Select - This header allows selection of the desired output voltage: 1.8 V, 2.5 V, 3.3 V, 5.0 V, 12.0
V. Before powering the EVM make sure the jumper is properly positioned for the intended output voltage. If
no jumper is present, the output voltage defaults to 12 V.
VOUT Select
Frequency
Select
Enable
Figure 1-2. Jumper Locations
SNVU845 – DECEMBER 2022
Submit Document Feedback
TPSM365R6EVM User’s Guide
Copyright © 2022 Texas Instruments Incorporated
5
Operation
www.ti.com
2 Operation
2.1 Quick Start
1. Make sure that a jumper is connected to one of the frequencies on the frequency select header. The device
does not function properly if this is not connected.
2. Connect the load between the VOUT and GND points on J4. Make sure GND is connected on the top
terminal, and VOUT is located on the bottom terminal.
3. Set the supply voltage at an appropriate level between 3.0 V to 65 V. Set the current limit of the supply to an
appropriate level.
4. Turn on the power supply. With the default configuration, the EVM powers up and provides VOUT = 5.0 V.
5. Monitor the output voltage. The maximum load current is limited to 0.6 A with the TPSM36506 device.
6. Connect the voltage supply between the VIN and GND points on J1.
6
TPSM365R6EVM User’s Guide
SNVU845 – DECEMBER 2022
Submit Document Feedback
Copyright © 2022 Texas Instruments Incorporated
www.ti.com
Schematic
3 Schematic
TP2
TP8
GND
GND
GND
GND
VIN S+
TP1
VIN
Vin_emi
Vin
L1
1.5µH
C12
100V
2.2uF
J1
C11
100V
2.2uF
C10
100V
2.2uF
C9
100V
2.2uF
C14
DNP100V
2.2uF
+
C3
100V
22uF
C1
100V
2.2uF
2
1
DNPC15
C2
100nF
100nF
100V
100V
U1
C4
1µF
16V
3
VCC
R1
0
VIN
8
VIN
BOOT
VCC
SW
SW
GND
EN
2
PGOOD
1
RT
11
EN
PGOOD
RT
TPSM365R6RDNR
VOUT
FB
GND
7 BOOT
TP5
VOUT S+
5 SW
6
J4
4
VOUT
9
FB
C5
25V
22uF
10
ENABLE
3
2
1
ON
OFF
1
2
R9
51.0
VOUT
GND
GND
GND
TP3
TP7
VIN-
TP6
VOUT S-
R2
100k
C13
TP9
RT
R3
100k
J2
C8
C7 DNP25V
50V
22uF
0.1uF
GND
EN
VIN
C6
25V
22uF
CFF
10pF
TP4
PGOOD
Vout
R17
0
R4
49.9k
GND
FSW SELECT
400KHz
2
600KHz
4
800KHz
6
1MHz VCC 8
2.2MHz
10
GND
VOUT SELECT
1.8
R5
0
3.3
5
RT_R
1
3
5
7
9
R6
R8
R7
1.8V
2.5V
3.3V
5.0V
12V
12
2.5
2
4
6
8
10
1
3
5
7
9
J5
40.2k
27.0k
20.0k
R11
R12
R13
R14
R15
8.20k
6.98k
8.06k
16.9k
69.8k
R16
10.0k
J3
GND
Figure 3-1. TPSM365R6EVM Schematic
SNVU845 – DECEMBER 2022
Submit Document Feedback
TPSM365R6EVM User’s Guide
Copyright © 2022 Texas Instruments Incorporated
7
Board Layout
www.ti.com
4 Board Layout
Figure 4-1. Top View of EVM
Figure 4-2. EVM Top Copper Layer
8
TPSM365R6EVM User’s Guide
SNVU845 – DECEMBER 2022
Submit Document Feedback
Copyright © 2022 Texas Instruments Incorporated
www.ti.com
Board Layout
Figure 4-3. EVM Mid Layer One
Figure 4-4. EVM Mid Layer Two
SNVU845 – DECEMBER 2022
Submit Document Feedback
TPSM365R6EVM User’s Guide
Copyright © 2022 Texas Instruments Incorporated
9
Board Layout
www.ti.com
Figure 4-5. EVM Bottom Copper Layer
10
TPSM365R6EVM User’s Guide
SNVU845 – DECEMBER 2022
Submit Document Feedback
Copyright © 2022 Texas Instruments Incorporated
www.ti.com
Bill of Materials
5 Bill of Materials
Table 5-1. Bill Of Materials
DESIGNATOR
PART NUMBER
C1, C9, C10, C11, C12
C3225X7R2A225K230AB
Multilayer Ceramic Capacitors 2.2 uF ±10% 100 V X7R SMD 1210
DESCRIPTION
C2
GRM188R72A104KA35J
CAP, CERM, 0.1 uF, 100 V, +/- 10%, X7R, 0603
Cap Aluminum 22 uF 100 V 20% (8 X 10.2 mm) SMD 1.3 Ohm 70 mA
2000h 125 C T/R
MANUFACTURER
QUANTITY
TDK
5
MuRata
1
Panasonic Electronic
C3
EEE-TG2A220UP
C4
C1608X7R1C105K080AC
CAP, CERM, 1 uF, 16 V, +/- 10%, X7R, 0603
TDK
1
C5, C6
C3225X7R1E226M250AB
Cap Ceramic 22 uF 25 V X7R 20% Pad SMD 1210 125C T/R
TDK
2
C7
C1005X7R1H104K050BE
CAP, CERM, 0.1 uF, 50 V,+/- 10%, X7R, 0402
TDK
1
C8
C3225X7R1E226M250AB
Cap Ceramic 22 uF 25 V X7R 20% Pad SMD 1210 125C T/R
TDK
0
TDK
1
TDK
0
MuRata
0
C13
CGA2B2C0G1H100D050BA CAP, CERM, 10 pF, 50 V, +/- 5%, C0G/NP0, AEC-Q200 Grade 1, 0402
C14
C3225X7R2A225K230AB
Multilayer Ceramic Capacitors 2.2 uF ±10% 100 V X7R SMD 1210
C15
GRM188R72A104KA35J
CAP, CERM, 0.1 uF, 100 V, +/- 10%, X7R, 0603
TERM BLOCK 2POS 5 mm, TH
Components
1
J1, J4
1729018
Phoenix Contact
2
J2
PEC03SAAN
Header, 100mil, 3x1, Tin, TH
Sullins Connector Solutions
1
J3, J5
PEC05DAAN
Header, 100mil, 5x2, Tin, TH
Sullins Connector Solutions
2
L1
XGL4020-152MEC
Shielded Power Inductors
Coilcraft
1
R1, R5, R17
RC0603JR-070RL
RES, 0, 5%, 0.1 W, 0603
Yageo
3
R2, R3
CRCW0603100KJNEAC
RES, 100 k, 5%, 0.1 W, 0603
Vishay-Dale
2
R4
RC0603FR-0749K9L
RES, 49.9 k, 1%, 0.1 W, 0603
Yageo
1
R6
RC0603FR-0740K2L
RES, 40.2 k, 1%, 0.1 W, 0603
Yageo
1
R7
RC0603FR-0720KL
RES, 20.0 k, 1%, 0.1 W, 0603
Yageo
2
R8
RC0603FR-0727KL
RES, 27.0 k, 1%, 0.1 W, 0603
Yageo
1
R9
RC0603FR-0751RL
RES, 51.0, 1%, 0.1 W, 0603
Yageo
1
R11
RC0201FR-078K2L
RES, 8.20 k, 1%, 0.05 W, 0201
Yageo America
1
R12
CRCW04026K98FKED
RES, 6.98 k, 1%, 0.063 W, AEC-Q200 Grade 0, 0402
Vishay-Dale
1
R13
CRCW04028K06FKED
RES, 8.06 k, 1%, 0.063 W, AEC-Q200 Grade 0, 0402
Vishay-Dale
1
R14
CRCW040216K9FKED
RES, 16.9 k, 1%, 0.063 W, AEC-Q200 Grade 0, 0402
Vishay-Dale
1
R15
CRCW040269K8FKED
RES, 69.8 k, 1%, 0.063 W, AEC-Q200 Grade 0, 0402
Vishay-Dale
1
R16
RC0201FR-7D10KL
Yageo America
1
SH-J1, SH-J2, SH-J3
SNT-100-BK-G
Shunt, 100mil, Gold plated, Black
Samtec
3
TP1, TP5
5010
Test Point, Multipurpose, Red, TH
Keystone
2
TP2, TP6, TP7, TP8
5011
Test Point, Multipurpose, Black, TH
Keystone
4
TP3, TP4, TP9
5012
Test Point, Multipurpose, White, TH
Keystone
3
U1
TPSM365R6RDNR
Texas Instruments
1
RES, 10.0 k, 1%, 0.05 W, 0201
3-V to 65-V Input, 1-V to 13-V Output, 600-mA Synchronous Buck
Converter Power Module in a HotRod™ QFN Package
SNVU845 – DECEMBER 2022
Submit Document Feedback
TPSM365R6EVM User’s Guide
Copyright © 2022 Texas Instruments Incorporated
11
Typical Characteristics
www.ti.com
6 Typical Characteristics
Unless otherwise specified, the following conditions apply: TA = 25°C, VIN = 24 V
100
100
VIN = 12V
VIN = 24V
VIN = 36V
VIN = 48V
VIN = 54V
90
80
80
70
Efficiency (%)
Efficiency (%)
70
60
50
40
50
40
30
20
20
10
10
0.0001
0.001
0.01
Load Current (A)
0
1E-5
0.1 0.2 0.5 1
Figure 6-1. Efficiency 3.3-V Output, FSW = 1 MHz,
Auto Mode
80
0.1 0.2 0.5 1
80
70
60
50
40
60
50
40
30
30
20
20
10
10
0
1E-5
0.0001
VIN = 12V
VIN = 24V
VIN = 36V
VIN = 48V
VIN = 54V
90
Efficiency (%)
70
0.001
0.01
Load Current (A)
0
1E-5
0.1 0.2 0.5 1
Figure 6-3. Efficiency 5-V Output, FSW = 1 MHz,
Auto Mode
0.0001
0.001
0.01
Load Current (A)
0.1 0.2 0.5 1
Figure 6-4. Efficiency 5-V Output, FSW = 1 MHz,
FPWM
CISPR 11 Class B Conducted Emmissions
CISPR 11 Class B Conducted Emmissions
130
130
Class B QPk Limit
Class B Average Limit
Qpk Amplitude
Average Amplitude
110
100
110
90
80
70
60
50
40
100
90
80
70
60
50
40
30
30
20
20
10
0.15
0.3
VIN = 24 V
0.5 0.7 1
2
3 4 5 6 7 8 10
Frequency (MHz)
VOUT = 5 V
Class B QPk Limit
Class B Average Limit
Qpk Amplitude
Average Amplitude
120
Amplitude dB(uVolts)
120
Amplitude dB(uVolts)
0.001
0.01
Load Current (A)
100
VIN = 12V
VIN = 24V
VIN = 36V
VIN = 48V
VIN = 54V
90
20 30
fSW = 1 MHz
Load = 500 mA
Figure 6-5. Typical CISPR 11 Class B Conducted
EMI 150 kHz - 30 MHz with EMI Filter (Standard
EVM Layout and BOM)
12
0.0001
Figure 6-2. Efficiency 3.3-V Output, FSW = 1 MHz,
FPWM
100
Efficiency (%)
60
30
0
1E-5
VIN = 12V
VIN = 24V
VIN = 36V
VIN = 48V
VIN = 54V
90
10
0.15
0.3
VIN = 24 V
0.5 0.7 1
2
3 4 5 6 7 8 10
Frequency (MHz)
VOUT = 5 V
20 30
fSW = 1 MHz
Load = 500 mA
Figure 6-6. Typical CISPR 11 Class B Conducted
EMI 150 kHz - 30 MHz without EMI Filter (Standard
EVM Layout and BOM)
TPSM365R6EVM User’s Guide
SNVU845 – DECEMBER 2022
Submit Document Feedback
Copyright © 2022 Texas Instruments Incorporated
www.ti.com
Typical Characteristics
CISPR 11 Class B QPk Radiated Emissions 3-Meter
60
Class B QPk Limit
Horizontal Amplitude
Vertical Amplitude
55
Amplitude (dBuV/m)
50
45
40
35
30
25
20
15
10
5
30
VIN = 24 V
40 50 6070
100
200
300 400500 700 1000
Frequency (MHz)
VOUT = 5 V
fSW = 1 MHz
Load = 500 mA
Figure 6-7. Typical CISPR 11 Class B Radiated EMI 30 kHz - 1000 MHz (Standard EVM Layout and BOM,
Input Filter Removed)
SNVU845 – DECEMBER 2022
Submit Document Feedback
TPSM365R6EVM User’s Guide
Copyright © 2022 Texas Instruments Incorporated
13
Application Curves
www.ti.com
7 Application Curves
Unless otherwise indicated, VIN = 24 V, VOUT = 5 V, IOUT = 0.5 A, and FSW = 1 MHz
EN (5 V/DIV)
EN (5 V/DIV)
VOUT (5 V/DIV)
VOUT (5 V/DIV)
PGOOD (5 V/DIV)
PGOOD (5 V/DIV)
IOUT (500 mA/DIV)
IOUT (500 mA/DIV)
2 ms/DIV
VIN = 24 V
2 ms/DIV
VOUT = 5 V
VIN = 24 V
Figure 7-1. Start-Up Waveforms
VOUT = 5 V
Figure 7-2. Shutdown Waveforms
VOUT (50 mV/DIV)
VOUT (100 mV/DIV)
300 mA
Load Current (0.5 A/DIV)
400 s/DIV
400 s/DIV
VIN = 24 V
VOUT = 3.3 V
Load Current (200 mA/DIV)
FSW = 1 MHz
COUT = 2 × 22 µF
Figure 7-3. Load Transient, 0 A to 0.6 A, 1 A/µs
VIN = 24 V
VOUT = 3.3 V
FSW = 1 MHz
COUT = 2 × 22 µF
Figure 7-4. Load Transient, 0.3 A to 0.6 A, 1 A/µs
VOUT (50 mV/DIV)
VOUT (100 mV/DIV)
Load Current (200 mA/DIV)
300 mA
Load Current (0.5 A/DIV)
400 s/DIV
VIN = 24 V
VOUT = 5 V
400 s/DIV
FSW = 1 MHz
COUT = 2 × 22 µF
Figure 7-5. Load Transient, 0 A to 0.6 A, 1 A/µs
14
VIN = 24 V
VOUT = 5 V
F SW = 1 MHz
COUT = 2 × 22 µF
Figure 7-6. Load Transient, 0.3 A to 0.6 A, 1 A/µs
TPSM365R6EVM User’s Guide
SNVU845 – DECEMBER 2022
Submit Document Feedback
Copyright © 2022 Texas Instruments Incorporated
IMPORTANT NOTICE AND DISCLAIMER
TI PROVIDES TECHNICAL AND RELIABILITY DATA (INCLUDING DATA SHEETS), DESIGN RESOURCES (INCLUDING REFERENCE
DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND OTHER RESOURCES “AS IS”
AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS AND IMPLIED, INCLUDING WITHOUT LIMITATION ANY
IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT OF THIRD
PARTY INTELLECTUAL PROPERTY RIGHTS.
These resources are intended for skilled developers designing with TI products. You are solely responsible for (1) selecting the appropriate
TI products for your application, (2) designing, validating and testing your application, and (3) ensuring your application meets applicable
standards, and any other safety, security, regulatory or other requirements.
These resources are subject to change without notice. TI grants you permission to use these resources only for development of an
application that uses the TI products described in the resource. Other reproduction and display of these resources is prohibited. No license
is granted to any other TI intellectual property right or to any third party intellectual property right. TI disclaims responsibility for, and you
will fully indemnify TI and its representatives against, any claims, damages, costs, losses, and liabilities arising out of your use of these
resources.
TI’s products are provided subject to TI’s Terms of Sale or other applicable terms available either on ti.com or provided in conjunction with
such TI products. TI’s provision of these resources does not expand or otherwise alter TI’s applicable warranties or warranty disclaimers for
TI products.
TI objects to and rejects any additional or different terms you may have proposed. IMPORTANT NOTICE
Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265
Copyright © 2022, Texas Instruments Incorporated