0
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
创作中心
发布
  • 发文章

  • 发资料

  • 发帖

  • 提问

  • 发视频

创作活动
TPSM365R6EVM

TPSM365R6EVM

  • 厂商:

    BURR-BROWN(德州仪器)

  • 封装:

  • 描述:

    TPSM365R6 - DC/DC,步降 1,非隔离 输出评估板

  • 数据手册
  • 价格&库存
TPSM365R6EVM 数据手册
www.ti.com User’s Guide TPSM365R6EVM User’s Guide ABSTRACT The Texas Instruments TPSM365R6EVM evaluation module helps designers evaluate the operation and performance of the TPSM365R6 wide-input voltage buck modules. The TPSM365R6 is an easy-to-use synchronous step-down DC/DC module capable of driving up to 0.6 A of load current from an input voltage of up to 65 V. The TPSM365R6EVM features a wide array of selectable output voltages from 1.8 V to 12 V and a selectable switching frequencies of 400 kHz to 2.2 MHz. This feature allows engineers to exercise the full capabilities of the TPSM365R6 in pulse frequency modulation (PFM) mode. See the TPSM365R6, 3-V to 65-V Input, 600-mA, 4-μA No-Load IQ Synchronous Buck Converter Power Module in a HotRod™ QFN Package data sheet for additional features, detailed descriptions, and available options. Table 1-1. Device and Package Configurations EVM U1 FREQUENCY SPREAD SPECTRUM CURRENT PIN 11 TRIM TPSM365R6EVM TPSM365R6RDNR 200 kHz – 2.2 MHz Disabled 0.6 A RT with PFM TPSM365R6EVM Board SNVU845 – DECEMBER 2022 Submit Document Feedback TPSM365R6EVM User’s Guide Copyright © 2022 Texas Instruments Incorporated 1 Table of Contents www.ti.com Table of Contents 1 Setup........................................................................................................................................................................................3 1.1 Test Points..........................................................................................................................................................................3 1.2 Jumpers..............................................................................................................................................................................5 2 Operation.................................................................................................................................................................................6 2.1 Quick Start..........................................................................................................................................................................6 3 Schematic................................................................................................................................................................................7 4 Board Layout...........................................................................................................................................................................8 5 Bill of Materials......................................................................................................................................................................11 6 Typical Characteristics.........................................................................................................................................................12 7 Application Curves............................................................................................................................................................... 14 List of Figures Figure 1-1. EVM Board Connections........................................................................................................................................... 4 Figure 1-2. Jumper Locations...................................................................................................................................................... 5 Figure 3-1. TPSM365R6EVM Schematic.................................................................................................................................... 7 Figure 4-1. Top View of EVM....................................................................................................................................................... 8 Figure 4-2. EVM Top Copper Layer............................................................................................................................................. 8 Figure 4-3. EVM Mid Layer One.................................................................................................................................................. 9 Figure 4-4. EVM Mid Layer Two.................................................................................................................................................. 9 Figure 4-5. EVM Bottom Copper Layer..................................................................................................................................... 10 Figure 6-1. Efficiency 3.3-V Output, FSW = 1 MHz, Auto Mode................................................................................................. 12 Figure 6-2. Efficiency 3.3-V Output, FSW = 1 MHz, FPWM........................................................................................................12 Figure 6-3. Efficiency 5-V Output, FSW = 1 MHz, Auto Mode.................................................................................................... 12 Figure 6-4. Efficiency 5-V Output, FSW = 1 MHz, FPWM...........................................................................................................12 Figure 6-5. Typical CISPR 11 Class B Conducted EMI 150 kHz - 30 MHz with EMI Filter (Standard EVM Layout and BOM)......................................................................................................................................................................................12 Figure 6-6. Typical CISPR 11 Class B Conducted EMI 150 kHz - 30 MHz without EMI Filter (Standard EVM Layout and BOM)......................................................................................................................................................................................12 Figure 6-7. Typical CISPR 11 Class B Radiated EMI 30 kHz - 1000 MHz (Standard EVM Layout and BOM, Input Filter Removed)...............................................................................................................................................................................13 Figure 7-1. Start-Up Waveforms................................................................................................................................................ 14 Figure 7-2. Shutdown Waveforms............................................................................................................................................. 14 Figure 7-3. Load Transient, 0 A to 0.6 A, 1 A/µs........................................................................................................................14 Figure 7-4. Load Transient, 0.3 A to 0.6 A, 1 A/µs.....................................................................................................................14 Figure 7-5. Load Transient, 0 A to 0.6 A, 1 A/µs........................................................................................................................14 Figure 7-6. Load Transient, 0.3 A to 0.6 A, 1 A/µs.....................................................................................................................14 List of Tables Table 1-1. Device and Package Configurations...........................................................................................................................1 Table 1-1. Test Point Descriptions............................................................................................................................................... 3 Table 5-1. Bill Of Materials......................................................................................................................................................... 11 Trademarks HotRod™ is a trademark of Texas Instruments. All trademarks are the property of their respective owners. 2 TPSM365R6EVM User’s Guide SNVU845 – DECEMBER 2022 Submit Document Feedback Copyright © 2022 Texas Instruments Incorporated www.ti.com Setup 1 Setup Figure 1-1 shows a typical setup with the EVM. The VIN power terminal block (J1) is used for connection to the host input supply and the VOUT power terminal block (J4) is used for connection to the load. 1.1 Test Points The test points on the top of the board can be used for connecting to the input and output of the EVM. Table 1-1 describes each test point. Table 1-1. Test Point Descriptions Test Point(1) VINS+ Sense line for measuring the input voltage. Not meant to be used to power the device. VINS- Ground test point located near the ground terminal of the high frequency bypass capacitor. Meant to be connected to the ground sense line for VIN, but can be used in place of a general ground test point. VOUTS+ Sense line test point for the output voltage. Do not connect to an output load. VOUTS- Ground test point located near the ground terminal of the output capacitors. Meant to be connected to the ground sense line for VOUT, but can be used in place of a general ground test point. GND Test points for ground connection. Not meant to be used as a ground connection for the input power supply. EN Input voltage scope monitor. Connect an oscilloscope probe to this set of points to measure input ripple voltage. PGOOD This test point is connected to the PGOOD pin from the IC. This test point is an open-drain output of the PGOOD pin. In this EVM configuration, the pin is pulled up to VOUT by R4. EN This test point is connected to the EN pin. By default, there is a pullup resistor R2 (RENT) to VIN to enable the IC. RT This test point is connected to the RT pin of the IC when the R4 (RMODE) is installed. In a MODE/ SYNC trim part, this test point is connected to the SYNC pin of the IC. This can be connected to an external clock to synchronize the IC. In a MODE/SYNC configuration, make sure J3 is left open. VCC (1) Description This test point is connected to the VCC pin. Refer to the product data sheet for absolute maximum ratings associated with the features in this table. SNVU845 – DECEMBER 2022 Submit Document Feedback TPSM365R6EVM User’s Guide Copyright © 2022 Texas Instruments Incorporated 3 Setup www.ti.com (-) Input (-) Supply (+) (+) (+) Load (-) DMM (VOUT) (+) (-) DMM (VIN) Figure 1-1. EVM Board Connections 4 TPSM365R6EVM User’s Guide SNVU845 – DECEMBER 2022 Submit Document Feedback Copyright © 2022 Texas Instruments Incorporated www.ti.com Setup 1.2 Jumpers See Figure 1-2 for jumper locations. • • • J2 EN- This jumper allows the ENABLE input to be connected to GND to disable the IC. The "ON" position is the same as an unconnected jumper as EN is pulled up by R2. The "OFF" position shorts EN to ground which disables TPSM365R6RDNR. J3 Frequency Select- This EVM is supplied with an RT trimmed version of TPSM365R6 to allow for an adjustable switching frequency. The selectable frequencies are 400 kHz, 600 kHz, 800 kHz, 1.0 MHz, and 2.2 MHz. Make sure a jumper is connected to a desired switching frequency before powering the device. If a Mode/Sync trim of TPSM365R6 is installed, then leave this jumper unpopulated. J5 VOUT Select - This header allows selection of the desired output voltage: 1.8 V, 2.5 V, 3.3 V, 5.0 V, 12.0 V. Before powering the EVM make sure the jumper is properly positioned for the intended output voltage. If no jumper is present, the output voltage defaults to 12 V. VOUT Select Frequency Select Enable Figure 1-2. Jumper Locations SNVU845 – DECEMBER 2022 Submit Document Feedback TPSM365R6EVM User’s Guide Copyright © 2022 Texas Instruments Incorporated 5 Operation www.ti.com 2 Operation 2.1 Quick Start 1. Make sure that a jumper is connected to one of the frequencies on the frequency select header. The device does not function properly if this is not connected. 2. Connect the load between the VOUT and GND points on J4. Make sure GND is connected on the top terminal, and VOUT is located on the bottom terminal. 3. Set the supply voltage at an appropriate level between 3.0 V to 65 V. Set the current limit of the supply to an appropriate level. 4. Turn on the power supply. With the default configuration, the EVM powers up and provides VOUT = 5.0 V. 5. Monitor the output voltage. The maximum load current is limited to 0.6 A with the TPSM36506 device. 6. Connect the voltage supply between the VIN and GND points on J1. 6 TPSM365R6EVM User’s Guide SNVU845 – DECEMBER 2022 Submit Document Feedback Copyright © 2022 Texas Instruments Incorporated www.ti.com Schematic 3 Schematic TP2 TP8 GND GND GND GND VIN S+ TP1 VIN Vin_emi Vin L1 1.5µH C12 100V 2.2uF J1 C11 100V 2.2uF C10 100V 2.2uF C9 100V 2.2uF C14 DNP100V 2.2uF + C3 100V 22uF C1 100V 2.2uF 2 1 DNPC15 C2 100nF 100nF 100V 100V U1 C4 1µF 16V 3 VCC R1 0 VIN 8 VIN BOOT VCC SW SW GND EN 2 PGOOD 1 RT 11 EN PGOOD RT TPSM365R6RDNR VOUT FB GND 7 BOOT TP5 VOUT S+ 5 SW 6 J4 4 VOUT 9 FB C5 25V 22uF 10 ENABLE 3 2 1 ON OFF 1 2 R9 51.0 VOUT GND GND GND TP3 TP7 VIN- TP6 VOUT S- R2 100k C13 TP9 RT R3 100k J2 C8 C7 DNP25V 50V 22uF 0.1uF GND EN VIN C6 25V 22uF CFF 10pF TP4 PGOOD Vout R17 0 R4 49.9k GND FSW SELECT 400KHz 2 600KHz 4 800KHz 6 1MHz VCC 8 2.2MHz 10 GND VOUT SELECT 1.8 R5 0 3.3 5 RT_R 1 3 5 7 9 R6 R8 R7 1.8V 2.5V 3.3V 5.0V 12V 12 2.5 2 4 6 8 10 1 3 5 7 9 J5 40.2k 27.0k 20.0k R11 R12 R13 R14 R15 8.20k 6.98k 8.06k 16.9k 69.8k R16 10.0k J3 GND Figure 3-1. TPSM365R6EVM Schematic SNVU845 – DECEMBER 2022 Submit Document Feedback TPSM365R6EVM User’s Guide Copyright © 2022 Texas Instruments Incorporated 7 Board Layout www.ti.com 4 Board Layout Figure 4-1. Top View of EVM Figure 4-2. EVM Top Copper Layer 8 TPSM365R6EVM User’s Guide SNVU845 – DECEMBER 2022 Submit Document Feedback Copyright © 2022 Texas Instruments Incorporated www.ti.com Board Layout Figure 4-3. EVM Mid Layer One Figure 4-4. EVM Mid Layer Two SNVU845 – DECEMBER 2022 Submit Document Feedback TPSM365R6EVM User’s Guide Copyright © 2022 Texas Instruments Incorporated 9 Board Layout www.ti.com Figure 4-5. EVM Bottom Copper Layer 10 TPSM365R6EVM User’s Guide SNVU845 – DECEMBER 2022 Submit Document Feedback Copyright © 2022 Texas Instruments Incorporated www.ti.com Bill of Materials 5 Bill of Materials Table 5-1. Bill Of Materials DESIGNATOR PART NUMBER C1, C9, C10, C11, C12 C3225X7R2A225K230AB Multilayer Ceramic Capacitors 2.2 uF ±10% 100 V X7R SMD 1210 DESCRIPTION C2 GRM188R72A104KA35J CAP, CERM, 0.1 uF, 100 V, +/- 10%, X7R, 0603 Cap Aluminum 22 uF 100 V 20% (8 X 10.2 mm) SMD 1.3 Ohm 70 mA 2000h 125 C T/R MANUFACTURER QUANTITY TDK 5 MuRata 1 Panasonic Electronic C3 EEE-TG2A220UP C4 C1608X7R1C105K080AC CAP, CERM, 1 uF, 16 V, +/- 10%, X7R, 0603 TDK 1 C5, C6 C3225X7R1E226M250AB Cap Ceramic 22 uF 25 V X7R 20% Pad SMD 1210 125C T/R TDK 2 C7 C1005X7R1H104K050BE CAP, CERM, 0.1 uF, 50 V,+/- 10%, X7R, 0402 TDK 1 C8 C3225X7R1E226M250AB Cap Ceramic 22 uF 25 V X7R 20% Pad SMD 1210 125C T/R TDK 0 TDK 1 TDK 0 MuRata 0 C13 CGA2B2C0G1H100D050BA CAP, CERM, 10 pF, 50 V, +/- 5%, C0G/NP0, AEC-Q200 Grade 1, 0402 C14 C3225X7R2A225K230AB Multilayer Ceramic Capacitors 2.2 uF ±10% 100 V X7R SMD 1210 C15 GRM188R72A104KA35J CAP, CERM, 0.1 uF, 100 V, +/- 10%, X7R, 0603 TERM BLOCK 2POS 5 mm, TH Components 1 J1, J4 1729018 Phoenix Contact 2 J2 PEC03SAAN Header, 100mil, 3x1, Tin, TH Sullins Connector Solutions 1 J3, J5 PEC05DAAN Header, 100mil, 5x2, Tin, TH Sullins Connector Solutions 2 L1 XGL4020-152MEC Shielded Power Inductors Coilcraft 1 R1, R5, R17 RC0603JR-070RL RES, 0, 5%, 0.1 W, 0603 Yageo 3 R2, R3 CRCW0603100KJNEAC RES, 100 k, 5%, 0.1 W, 0603 Vishay-Dale 2 R4 RC0603FR-0749K9L RES, 49.9 k, 1%, 0.1 W, 0603 Yageo 1 R6 RC0603FR-0740K2L RES, 40.2 k, 1%, 0.1 W, 0603 Yageo 1 R7 RC0603FR-0720KL RES, 20.0 k, 1%, 0.1 W, 0603 Yageo 2 R8 RC0603FR-0727KL RES, 27.0 k, 1%, 0.1 W, 0603 Yageo 1 R9 RC0603FR-0751RL RES, 51.0, 1%, 0.1 W, 0603 Yageo 1 R11 RC0201FR-078K2L RES, 8.20 k, 1%, 0.05 W, 0201 Yageo America 1 R12 CRCW04026K98FKED RES, 6.98 k, 1%, 0.063 W, AEC-Q200 Grade 0, 0402 Vishay-Dale 1 R13 CRCW04028K06FKED RES, 8.06 k, 1%, 0.063 W, AEC-Q200 Grade 0, 0402 Vishay-Dale 1 R14 CRCW040216K9FKED RES, 16.9 k, 1%, 0.063 W, AEC-Q200 Grade 0, 0402 Vishay-Dale 1 R15 CRCW040269K8FKED RES, 69.8 k, 1%, 0.063 W, AEC-Q200 Grade 0, 0402 Vishay-Dale 1 R16 RC0201FR-7D10KL Yageo America 1 SH-J1, SH-J2, SH-J3 SNT-100-BK-G Shunt, 100mil, Gold plated, Black Samtec 3 TP1, TP5 5010 Test Point, Multipurpose, Red, TH Keystone 2 TP2, TP6, TP7, TP8 5011 Test Point, Multipurpose, Black, TH Keystone 4 TP3, TP4, TP9 5012 Test Point, Multipurpose, White, TH Keystone 3 U1 TPSM365R6RDNR Texas Instruments 1 RES, 10.0 k, 1%, 0.05 W, 0201 3-V to 65-V Input, 1-V to 13-V Output, 600-mA Synchronous Buck Converter Power Module in a HotRod™ QFN Package SNVU845 – DECEMBER 2022 Submit Document Feedback TPSM365R6EVM User’s Guide Copyright © 2022 Texas Instruments Incorporated 11 Typical Characteristics www.ti.com 6 Typical Characteristics Unless otherwise specified, the following conditions apply: TA = 25°C, VIN = 24 V 100 100 VIN = 12V VIN = 24V VIN = 36V VIN = 48V VIN = 54V 90 80 80 70 Efficiency (%) Efficiency (%) 70 60 50 40 50 40 30 20 20 10 10 0.0001 0.001 0.01 Load Current (A) 0 1E-5 0.1 0.2 0.5 1 Figure 6-1. Efficiency 3.3-V Output, FSW = 1 MHz, Auto Mode 80 0.1 0.2 0.5 1 80 70 60 50 40 60 50 40 30 30 20 20 10 10 0 1E-5 0.0001 VIN = 12V VIN = 24V VIN = 36V VIN = 48V VIN = 54V 90 Efficiency (%) 70 0.001 0.01 Load Current (A) 0 1E-5 0.1 0.2 0.5 1 Figure 6-3. Efficiency 5-V Output, FSW = 1 MHz, Auto Mode 0.0001 0.001 0.01 Load Current (A) 0.1 0.2 0.5 1 Figure 6-4. Efficiency 5-V Output, FSW = 1 MHz, FPWM CISPR 11 Class B Conducted Emmissions CISPR 11 Class B Conducted Emmissions 130 130 Class B QPk Limit Class B Average Limit Qpk Amplitude Average Amplitude 110 100 110 90 80 70 60 50 40 100 90 80 70 60 50 40 30 30 20 20 10 0.15 0.3 VIN = 24 V 0.5 0.7 1 2 3 4 5 6 7 8 10 Frequency (MHz) VOUT = 5 V Class B QPk Limit Class B Average Limit Qpk Amplitude Average Amplitude 120 Amplitude dB(uVolts) 120 Amplitude dB(uVolts) 0.001 0.01 Load Current (A) 100 VIN = 12V VIN = 24V VIN = 36V VIN = 48V VIN = 54V 90 20 30 fSW = 1 MHz Load = 500 mA Figure 6-5. Typical CISPR 11 Class B Conducted EMI 150 kHz - 30 MHz with EMI Filter (Standard EVM Layout and BOM) 12 0.0001 Figure 6-2. Efficiency 3.3-V Output, FSW = 1 MHz, FPWM 100 Efficiency (%) 60 30 0 1E-5 VIN = 12V VIN = 24V VIN = 36V VIN = 48V VIN = 54V 90 10 0.15 0.3 VIN = 24 V 0.5 0.7 1 2 3 4 5 6 7 8 10 Frequency (MHz) VOUT = 5 V 20 30 fSW = 1 MHz Load = 500 mA Figure 6-6. Typical CISPR 11 Class B Conducted EMI 150 kHz - 30 MHz without EMI Filter (Standard EVM Layout and BOM) TPSM365R6EVM User’s Guide SNVU845 – DECEMBER 2022 Submit Document Feedback Copyright © 2022 Texas Instruments Incorporated www.ti.com Typical Characteristics CISPR 11 Class B QPk Radiated Emissions 3-Meter 60 Class B QPk Limit Horizontal Amplitude Vertical Amplitude 55 Amplitude (dBuV/m) 50 45 40 35 30 25 20 15 10 5 30 VIN = 24 V 40 50 6070 100 200 300 400500 700 1000 Frequency (MHz) VOUT = 5 V fSW = 1 MHz Load = 500 mA Figure 6-7. Typical CISPR 11 Class B Radiated EMI 30 kHz - 1000 MHz (Standard EVM Layout and BOM, Input Filter Removed) SNVU845 – DECEMBER 2022 Submit Document Feedback TPSM365R6EVM User’s Guide Copyright © 2022 Texas Instruments Incorporated 13 Application Curves www.ti.com 7 Application Curves Unless otherwise indicated, VIN = 24 V, VOUT = 5 V, IOUT = 0.5 A, and FSW = 1 MHz EN (5 V/DIV) EN (5 V/DIV) VOUT (5 V/DIV) VOUT (5 V/DIV) PGOOD (5 V/DIV) PGOOD (5 V/DIV) IOUT (500 mA/DIV) IOUT (500 mA/DIV) 2 ms/DIV VIN = 24 V 2 ms/DIV VOUT = 5 V VIN = 24 V Figure 7-1. Start-Up Waveforms VOUT = 5 V Figure 7-2. Shutdown Waveforms VOUT (50 mV/DIV) VOUT (100 mV/DIV) 300 mA Load Current (0.5 A/DIV) 400 s/DIV 400 s/DIV VIN = 24 V VOUT = 3.3 V Load Current (200 mA/DIV) FSW = 1 MHz COUT = 2 × 22 µF Figure 7-3. Load Transient, 0 A to 0.6 A, 1 A/µs VIN = 24 V VOUT = 3.3 V FSW = 1 MHz COUT = 2 × 22 µF Figure 7-4. Load Transient, 0.3 A to 0.6 A, 1 A/µs VOUT (50 mV/DIV) VOUT (100 mV/DIV) Load Current (200 mA/DIV) 300 mA Load Current (0.5 A/DIV) 400 s/DIV VIN = 24 V VOUT = 5 V 400 s/DIV FSW = 1 MHz COUT = 2 × 22 µF Figure 7-5. Load Transient, 0 A to 0.6 A, 1 A/µs 14 VIN = 24 V VOUT = 5 V F SW = 1 MHz COUT = 2 × 22 µF Figure 7-6. Load Transient, 0.3 A to 0.6 A, 1 A/µs TPSM365R6EVM User’s Guide SNVU845 – DECEMBER 2022 Submit Document Feedback Copyright © 2022 Texas Instruments Incorporated IMPORTANT NOTICE AND DISCLAIMER TI PROVIDES TECHNICAL AND RELIABILITY DATA (INCLUDING DATA SHEETS), DESIGN RESOURCES (INCLUDING REFERENCE DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND OTHER RESOURCES “AS IS” AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS AND IMPLIED, INCLUDING WITHOUT LIMITATION ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT OF THIRD PARTY INTELLECTUAL PROPERTY RIGHTS. These resources are intended for skilled developers designing with TI products. You are solely responsible for (1) selecting the appropriate TI products for your application, (2) designing, validating and testing your application, and (3) ensuring your application meets applicable standards, and any other safety, security, regulatory or other requirements. These resources are subject to change without notice. TI grants you permission to use these resources only for development of an application that uses the TI products described in the resource. Other reproduction and display of these resources is prohibited. No license is granted to any other TI intellectual property right or to any third party intellectual property right. TI disclaims responsibility for, and you will fully indemnify TI and its representatives against, any claims, damages, costs, losses, and liabilities arising out of your use of these resources. TI’s products are provided subject to TI’s Terms of Sale or other applicable terms available either on ti.com or provided in conjunction with such TI products. TI’s provision of these resources does not expand or otherwise alter TI’s applicable warranties or warranty disclaimers for TI products. TI objects to and rejects any additional or different terms you may have proposed. IMPORTANT NOTICE Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265 Copyright © 2022, Texas Instruments Incorporated
TPSM365R6EVM 价格&库存

很抱歉,暂时无法提供与“TPSM365R6EVM”相匹配的价格&库存,您可以联系我们找货

免费人工找货