0
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
创作中心
发布
  • 发文章

  • 发资料

  • 发帖

  • 提问

  • 发视频

创作活动
TRF3761-AIRHAR

TRF3761-AIRHAR

  • 厂商:

    BURR-BROWN(德州仪器)

  • 封装:

    VQFN40

  • 描述:

    IC INTEGER-N PLL W/VCO 40VQFN

  • 数据手册
  • 价格&库存
TRF3761-AIRHAR 数据手册
Product Folder Sample & Buy Support & Community Tools & Software Technical Documents TRF3761, TRF3761-A, TRF3761-B TRF3761-C, TRF3761-D, TRF3761-E, TRF3761-F TRF3761-G, TRF3761-H, TRF3761-J, TRF3761-K SLWS181K – OCTOBER 2005 – REVISED DECEMBER 2015 TRF3761-x Integer-N PLL with Integrated VCO 1 Features 3 Description • • TRF3761 is a family of high performance, highly integrated frequency synthesizers, optimized for high performance applications. The TRF3761 includes a low-noise, voltage-controlled oscillator (VCO) and an integer-N PLL. 1 • • • • • • • • • Fully Integrated VCO Low Phase Noise: –137dBc/Hz (at 600kHz, fVCO of 1.9GHz) Low Noise Floor: –158dBc/Hz at 10MHz Offset Integer-N PLL Input Reference Frequency range: 10MHz to 104MHz VCO Frequency Divided by 2-4 Output Output Buffer Enable Pin Programmable Charge Pump Current Hardware and Software Power Down 3-Wire Serial Interface Single Supply: 4.5V to 5.25V Operation TRF3761 integrates divide-by 1, 2, or 4 options for a more flexible output frequency range. It is controlled through a 3-wire serial-programming-interface (SPI) interface. For power sensitive applications the TRF3761 can be powered down by the SPI interface or externally via chip_en pin 2. Device Information(1) PART NUMBER TRF3761 TRF3761-x 2 Applications • PACKAGE BODY SIZE (NOM) VQFN (40) 6.00 mm x 6.00 mm (1) For all available packages, see the orderable addendum at the end of the datasheet. Wireless Infrastructure – WCDMA, CDMA, GSM – Wideband Transceivers – Wireless Local Loop – RFID Transceivers – Clock generation – IF LO generation REF C1 C3 R1 C4 1000 pF 36 35 34 33 32 31 30 GND AVDD 37 CPOUT AVDD_REF AVDD_CP 39 38 GND GND C2 GND R3 2.37 kΩ CHIP_EN 2 29 AVDD_BIAS CLOCK 3 28 RBIAS1 DATA 4 27 GND STROBE 5 26 VCTRL_IN DGND 6 25 AVDD_VCO DGND 7 24 AVDD_BUF DVDD1 8 23 AVDD_CAPARRAY AVDD_PRES 9 22 GND EXT_VCO_IN R5 120 Ω R6 120 Ω C5 10 pF C6 10 pF VDD 21 19 20 AVDD GND 18 RBIAS2 16 17 AVDD_VCOBUF 15 GND 14 AVDD_OUTBUF 12 13 VCO_OUTM GND 10 11 VCO_OUTP GND TRF3761 (TOP VIEW) GND To Microcontroller R2 REF_IN 40 1 PD_OUTBUF MUX_OUT DVDD2 To Microcontroller Application Schematic C7 1000 pF R4 4.75 kΩ VDD LOAD 1 An IMPORTANT NOTICE at the end of this data sheet addresses availability, warranty, changes, use in safety-critical applications, intellectual property matters and other important disclaimers. PRODUCTION DATA. TRF3761, TRF3761-A, TRF3761-B TRF3761-C, TRF3761-D, TRF3761-E, TRF3761-F TRF3761-G, TRF3761-H, TRF3761-J, TRF3761-K SLWS181K – OCTOBER 2005 – REVISED DECEMBER 2015 www.ti.com Table of Contents 1 2 3 4 5 6 7 Features .................................................................. Applications ........................................................... Description ............................................................. Revision History..................................................... Device Comparison Table..................................... Pin Configuration and Functions ......................... Specifications......................................................... 7.1 7.2 7.3 7.4 7.5 7.6 7.7 7.8 7.9 7.10 7.11 7.12 7.13 7.14 7.15 1 1 1 2 3 3 5 Absolute Maximum Ratings ...................................... 5 Recommended Operating Conditions....................... 5 Thermal Information .................................................. 5 Electrical Characteristics........................................... 6 Electrical Characteristics, TRF3761-A ..................... 7 Electrical Characteristics,TRF3761-B ...................... 8 Electrical Characteristics, TRF3761-C ..................... 9 Electrical Characteristics, TRF3761-D ................... 10 Electrical Characteristics, TRF3761-E ................... 11 Electrical Characteristics, TRF3761-F ................. 12 Electrical Characteristics, TRF3761-G ................. 13 Electrical Characteristics, TRF3761-H .................. 14 Electrical Characteristics, TRF3761-J .................. 15 Timing Requirements ............................................ 16 Typical Characteristics .......................................... 17 8 Detailed Description ............................................ 35 8.1 8.2 8.3 8.4 8.5 8.6 9 Overview ................................................................. Functional Block Diagram ....................................... Feature Description................................................. Device Functional Modes........................................ Programming........................................................... Register Maps ......................................................... 35 35 35 37 38 39 Application and Implementation ........................ 46 9.1 Application Information............................................ 46 9.2 Typical Applications ................................................ 48 10 Power Supply Recommendations ..................... 54 11 Layout................................................................... 55 11.1 Layout Guidelines ................................................. 55 11.2 Layout Example .................................................... 55 12 Device and Documentation Support ................. 56 12.1 12.2 12.3 12.4 12.5 Related Links ........................................................ Community Resources.......................................... Trademarks ........................................................... Electrostatic Discharge Caution ............................ Glossary ................................................................ 56 56 56 56 56 13 Mechanical, Packaging, and Orderable Information ........................................................... 56 4 Revision History NOTE: Page numbers for previous revisions may differ from page numbers in the current version. Changes from Revision J (August 2009) to Revision K Page • Added Pin Configuration and Functions section, ESD Rating table, Feature Description section, Device Functional Modes, Application and Implementation section, Power Supply Recommendations section, Layout section, Device and Documentation Support section, and Mechanical, Packaging, and Orderable Information section .............................. 1 • Changed High-level input voltage MIN value From: 2.5 To: VCC - 2V ................................................................................... 6 Changes from Revision I (March 2008) to Revision J Page • Changed Figure 2 ................................................................................................................................................................ 17 • Changed Figure 3................................................................................................................................................................. 17 • Changed Figure 4 ................................................................................................................................................................ 17 • Changed Figure 5 ................................................................................................................................................................ 17 • Changed Figure 6 ................................................................................................................................................................ 17 • Changed Figure 7 ................................................................................................................................................................ 17 • Changed Figure 8 ................................................................................................................................................................ 18 • Changed Figure 9 ................................................................................................................................................................ 18 • Changed Figure 10 .............................................................................................................................................................. 18 2 Submit Documentation Feedback Copyright © 2005–2015, Texas Instruments Incorporated Product Folder Links: TRF3761 TRF3761-A TRF3761-B TRF3761-C TRF3761-D TRF3761-E TRF3761-F TRF3761-G TRF3761-H TRF3761-J TRF3761-K TRF3761, TRF3761-A, TRF3761-B TRF3761-C, TRF3761-D, TRF3761-E, TRF3761-F TRF3761-G, TRF3761-H, TRF3761-J, TRF3761-K www.ti.com SLWS181K – OCTOBER 2005 – REVISED DECEMBER 2015 5 Device Comparison Table PART NUMBER Div by 1 Div by 2 Fstart Fstop Fstart TRF3761-A 1493 1608 TRF3761-B 1595 1711 TRF3761-C 1660 TRF3761-D 1740 TRF3761-E Div by 4 Fstop Fstart Fstop 746.5 804 373.25 402 797.5 855.5 398.75 427.75 1790 830 895 415 447.5 1866 870 933 435 466.5 1805 1936 902.5 968 451.25 484 TRF3761-F 1850 1984 925 992 462.5 496 TRF3761-G 1920 2059 960 1029.5 480 514.75 TRF3761-H 2028 2175 1014 1087.5 507 543.75 TRF3761-J 2140 2295 1070 1147.5 535 573.75 6 Pin Configuration and Functions GND AVDD 37 36 35 34 33 32 31 30 GND AVDD_CP CPOUT MUX_OUT 39 38 GND 40 1 AVDD_REF PD_OUTBUF REF_IN DVDD2 RHA Package 40-Pin VQFN Top View GND CHIP_EN 2 29 AVDD_BIAS CLOCK 3 28 RBIAS1 DGND 6 25 AVDD_VCO DGND 7 24 AVDD_BUF DVDD1 8 23 AVDD_CAPARRAY AVDD_PRES 9 22 GND Copyright © 2005–2015, Texas Instruments Incorporated 16 17 18 21 19 20 AVDD GND 15 RBIAS2 14 AVDD_VCOBUF 12 13 VCO_OUTP 10 11 GND GND EXT_VCO_IN VCTRL_IN GND GND 26 AVDD_OUTBUF 27 5 VCO_OUTM 4 GND DATA STROBE Submit Documentation Feedback Product Folder Links: TRF3761 TRF3761-A TRF3761-B TRF3761-C TRF3761-D TRF3761-E TRF3761-F TRF3761-G TRF3761-H TRF3761-J TRF3761-K 3 TRF3761, TRF3761-A, TRF3761-B TRF3761-C, TRF3761-D, TRF3761-E, TRF3761-F TRF3761-G, TRF3761-H, TRF3761-J, TRF3761-K SLWS181K – OCTOBER 2005 – REVISED DECEMBER 2015 www.ti.com Pin Functions PIN (1) NAME NO. I/O DESCRIPTION PD_OUTBUF 1 I Once configured in register 1, this pin will control the output buffer. Logic level 0 turns on the buffer and logic level 1 turns off the buffer. CHIP_EN 2 I This pin requires 4.5 to 5.25 V applied for normal operation. Grounding this pin will disable the chip. CLOCK 3 I Serial-programming-interface clock DATA 4 I/O STROBE 5 I Serial-programming-interface data, used for programming the frequency and other features. Serial-programming-interface strobe required to write the data to the chip DGND 6, 7 Digital ground DVDD1 8 Digital power supply, requires 4.5 to 5.25 V, Suggested decoupling, 0.1µF and 10pF capacitors in parallel. AVDD_PRES 9 Power supply for prescaler circuit, requires 4.5 to 5.25 V, Suggested decoupling, 0.1uF and 10pF capacitors in parallel. VCO_OUTP 13 O VCO output, can be used single ended matched to 50 ohms or in conjuction with VCO_OUTM (pin 14) with a balun. VCO_OUTM 14 O VCO output, can be used single ended matched to 50 ohms or in conjunction with VCO_OUTP (pin 13) with a balun. AVDD_OUTBUF 15 Power supply for output buffers, requires 4.5 to 5.25 V, Suggested decoupling, 0.1μF and 10pF capacitors in parallel. AVDD_VCOBUF 17 Power supply for VCO buffers, requires 4.5 to 5.25 V, Suggested decoupling, 0.1μF and 10pF capacitors in parallel. EXT_VCO_IN 18 I RBIAS2 19 I/O AVDD 21 Analog power supply, requires 4.5 to 5.25 V, Suggested decoupling, 0.1uF and 10μF capacitors in parallel. AVDD_CAPARRAY 23 Power supply for VCO core and buffer, requires 4.5 to 5.25 V, Suggested decoupling, 0.1μF and 10pF capacitors in parallel. AVDD_BUF 24 Power supply for VCO core and buffer, requires 4.5 to 5.25 V, Suggested decoupling, 0.1μF and 10pF capacitors in parallel. AVDD_VCO 25 Power supply for VCO core and buffer, requires 4.5 to 5.25 V, Suggested decoupling, 0.1µF and 10pF capacitors in parallel. VCTRL_IN 26 I RBIAS1 28 I/O AVDD_BIAS 29 External VCO input to prescaler, If using an external VCO instead of the internal VCO. External bias resistor for setting the internal reference current requires a 4.75K ohm resister to ground. VCO control voltage, the output of the loop filter is applied to this pin. External bias resistor for setting charge pump reference current, requires 2.37K ohm resistor to ground. Power supply for band gap current bias, requires 4.5 to 5.25 V, Suggested decoupling, 0.1μF and 10pF capacitors in parallel. GND 10, 11, 12, 16, 20, 22, 27, 30, 31, 33, 37 AVDD 32 CPOUT 34 AVDD_CP 35 Analog power supply for charge pump, requires 4.5 to 5.25 V, Suggested decoupling, 0.1μF and 10pF capacitors in parallel AVDD_REF 36 Power supply for REF_IN circuitry, requires 4.5 to 5.25 V, Suggested decoupling, 0.1μF and 10pF capacitors in parallel. REF_IN 38 I Reference signal input, reference oscillator input of 10MHz to 104MHz. MUX_OUT 39 O Generally used for digital lock detect, can be used to verify locked condition by microcontroller, high = locked, low = unlocked. DVDD2 40 (1) 4 Analog ground Power supply for FUSE cell, requires 4.5 to 5.25 V. Suggested decoupling, 0.1μF, 1nF and 1pF capacitors in parallel. O Charge pump output, connected to the input of loop filter. Power supply for the digital regulator, requires 4.5 to 5.25 V, Suggested decoupling, 0.1μF and 10pF capacitors in parallel. Power Supply=VCC=(DVDD1, AVDD1, AVDD_PRES, AVDD_VCOBUF, AVDD, AVDD_CAPARRAY, AVDD_BUF, AVDD_VCO, AVDD_BIAS, AVDD_CP, AVDD_REF, DVDD2) Submit Documentation Feedback Copyright © 2005–2015, Texas Instruments Incorporated Product Folder Links: TRF3761 TRF3761-A TRF3761-B TRF3761-C TRF3761-D TRF3761-E TRF3761-F TRF3761-G TRF3761-H TRF3761-J TRF3761-K TRF3761, TRF3761-A, TRF3761-B TRF3761-C, TRF3761-D, TRF3761-E, TRF3761-F TRF3761-G, TRF3761-H, TRF3761-J, TRF3761-K www.ti.com SLWS181K – OCTOBER 2005 – REVISED DECEMBER 2015 7 Specifications 7.1 Absolute Maximum Ratings over operating free-air temperature range (unless otherwise noted) (1) TJ MIN MAX UNIT Supply voltage range (2) –0.3 5.5 V Digital I/O voltage range –0.3 VCC +0.3 V Operating virtual junction temperature range –40 150 °C –65 150 °C Tstg Storage temperature (1) (2) Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under Recommended Operating Conditions is not implied. Exposure to absolute maximum rated conditions for extended periods may affect device reliability. All voltage values are with respect to network ground terminal. 7.2 Recommended Operating Conditions over operating free-air temperature range (unless otherwise noted) VCC Power supply voltage MIN NOM MAX UNIT 4.5 5 5.25 V 940 μVpp TA Operating free air temperature range –40 85 °C TJ Operating virtual junction temperature range –40 150 °C Power supply voltage ripple 7.3 Thermal Information TRF3761 THERMAL METRIC (1) RHA (VQFN) UNIT 40 PINS Soldered slug, no airflow 26 °C/W Soldered slug, 200-LFM airflow 20.1 °C/W Soldered slug, 400-LFM airflow 17.4 °C/W 16.4 °C/W Junction-to-board thermal resistance 4.7 °C/W ψJT Junction-to-top characterization parameter 0.2 °C/W ψJB Junction-to-board characterization parameter 4.6 °C/W RθJC(bot) Junction-to-case (bottom) thermal resistance 1 °C/W RθJA Junction-to-ambient thermal resistance RθJC(top) Junction-to-case (top) thermal resistance RθJB (1) For more information about traditional and new thermal metrics, see the Semiconductor and IC Package Thermal Metrics application report, SPRA953. Copyright © 2005–2015, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: TRF3761 TRF3761-A TRF3761-B TRF3761-C TRF3761-D TRF3761-E TRF3761-F TRF3761-G TRF3761-H TRF3761-J TRF3761-K 5 TRF3761, TRF3761-A, TRF3761-B TRF3761-C, TRF3761-D, TRF3761-E, TRF3761-F TRF3761-G, TRF3761-H, TRF3761-J, TRF3761-K SLWS181K – OCTOBER 2005 – REVISED DECEMBER 2015 www.ti.com 7.4 Electrical Characteristics Supply voltage = VCC = 4.5 V to 5.25 V, TA = –40 to 85°C (unless otherwise noted) PARAMETER TEST CONDITIONS MIN TYP MAX UNIT DC PARAMETERS ICC Total supply current TA = 25°C Divide by 1 output 130 mA Divide by 2 output 140 mA Divide by 4 output 150 mA REFERENCE OSCILLATOR PARAMETERS fref Reference frequency 10 104 MHz Reference input sensitivity (REF_IN) 0.2 2.5 VPP 6.52 pF Reference input impedance (REF_IN) Parallel capacitance Parallel resistance 5 Ω 3913 PFD CHARGE PUMP PFD frequency Charge pump current (ICP_OUT ) 30 SPI programmable 5.6 MHz mA DIGITAL INTERFACE (PD_OUTBUF, CHIP_EN, CLOCK, DATA, STROBE) VIH High-level input voltage VIL Low-level input voltage VOH High-level output voltage VOL Low-level output voltage VCC - 2 VCC V 0 0.8 V 0.8VCC V 0.2VCC V OUTPUT POWER 6 Single ended 0 dBm Differential 3 dBm Submit Documentation Feedback Copyright © 2005–2015, Texas Instruments Incorporated Product Folder Links: TRF3761 TRF3761-A TRF3761-B TRF3761-C TRF3761-D TRF3761-E TRF3761-F TRF3761-G TRF3761-H TRF3761-J TRF3761-K TRF3761, TRF3761-A, TRF3761-B TRF3761-C, TRF3761-D, TRF3761-E, TRF3761-F TRF3761-G, TRF3761-H, TRF3761-J, TRF3761-K www.ti.com SLWS181K – OCTOBER 2005 – REVISED DECEMBER 2015 7.5 Electrical Characteristics, TRF3761-A Supply voltage = VCC = 5 V, TA = –40 to 85°C (unless otherwise noted) PARAMETER TEST CONDITIONS MIN TYP MAX UNIT NOISE CHARACTERISTICS 100kHz offset 600kHz offset VCO phase noise, Free running VCO direct output fVCO = 1554MHz, fO = 1554MHz VCO phase noise, Free running VCO divide-by-2 output fVCO = 1554MHz, fO = 777MHz VCO phase noise, Free running VCO divide-by-4 output fVCO = 1554MHz, fO = 388.5MHz fVCO = 1554MHz, fO = 1554MHz (2) (3) RMS phase error Closed loop phase noise direct output(3) VCO phase noise, Closed loop phase noise divide-by-2 output (1) -141.6 6MHz offset –156.1 10MHz offset -158.1 100kHz offset -122.8 600kHz offset –142.7 1MHz offset –147.5 6MHz offset –157 10MHz offset –158.1 100kHz offset –127.7 600kHz offset -148.4 1MHz offset -151.8 6MHz offset –156.3 10MHz offset –155.9 600kHz offset (2) RMS phase error Closed loop phase noise divide-by-2 output (3) fVCO = 1554MHz, fO = 777MHz (3) 10MHz offset –158.2 fVCO = 1554MHz, fO = 388.5MHz RMS phase error Closed loop phase noise divide-by-4 output (3) 100Hz to 10MHz VCO gain, Kv VCO free running Reference spur (2) (1) (2) (3) dBc/Hz dBc/Hz dBc/Hz 0.95° 1kHz offset –90.4 600kHz offset –141 1MHz offset –146.2 10MHz offset –158.25 100Hz to 10MHz (2) –135 –140.2 dBc/Hz 0.63° 1kHz offset VCO phase noise, Closed loop phase noise divide-by-4 output (1) dBc/Hz –83.4 1MHz offset 100Hz to 10MHz (3) –136 1MHz offset 1kHz offset VCO phase noise, Closed loop phase noise direct output (1) –116.7 -95 600kHz offset –147 1MHz offset –151 10MHz offset –156 dBc/Hz 0.39° 23 MHz/V –80 dBc See Application Circuit Figure 87. PFD = 200kHz, Loop Filter BW = 15kHz, Output frequency step = 200kHz. Reference oscillator RMS phase error = 0.008250°, RMS jitter = 881.764 fs. Copyright © 2005–2015, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: TRF3761 TRF3761-A TRF3761-B TRF3761-C TRF3761-D TRF3761-E TRF3761-F TRF3761-G TRF3761-H TRF3761-J TRF3761-K 7 TRF3761, TRF3761-A, TRF3761-B TRF3761-C, TRF3761-D, TRF3761-E, TRF3761-F TRF3761-G, TRF3761-H, TRF3761-J, TRF3761-K SLWS181K – OCTOBER 2005 – REVISED DECEMBER 2015 www.ti.com 7.6 Electrical Characteristics,TRF3761-B Supply voltage = VCC = 5 V, TA = –40 to 85°C (unless otherwise noted) PARAMETER TEST CONDITIONS MIN TYP MAX UNIT NOISE CHARACTERISTICS 100kHz offset 600kHz offset VCO phase noise, Free running VCO direct output fVCO = 1651MHz, fO = 1651MHz VCO phase noise, Free running VCO divide-by-2 output fVCO = 1651MHz, fO = 825.5 MHz VCO phase noise, Free running VCO divide-by-4 output fVCO = 1651MHz, fO = 412.75 MHz fVCO = 1651MHz, fO = 1651MHz (2) (3) RMS phase error Closed loop phase noise direct output(3) VCO phase noise, Closed loop phase noise divide-by-2 output (1) -142.1 6MHz offset –156.6 10MHz offset -158.6 100kHz offset -127.8 600kHz offset –146.5 1MHz offset –149 6MHz offset –156.2 10MHz offset –158.4 100kHz offset –127.3 600kHz offset -151.4 1MHz offset -153 6MHz offset –155.5 10MHz offset –155.9 (2) RMS phase error Closed loop phase noise divide-by-2 output (3) VCO phase noise, Closed loop phase noise divide-by-4 output (1) (3) fVCO = 1651MHz, fO = 825.5 MHz (2) fVCO = 1651MHz, fO = 412.75 MHz RMS phase error Closed loop phase noise divide-by-4 output (3) 100Hz to 10MHz VCO gain, Kv VCO free running 8 dBc/Hz dBc/Hz dBc/Hz –83.5 –138 1MHz offset –141.8 10MHz offset –158.2 dBc/Hz 0.85° 1kHz offset –90.2 600kHz offset –146 1MHz offset –147.39 10MHz offset –158.25 100Hz to 10MHz Reference spur (2) (1) (2) (3) 600kHz offset 100Hz to 10MHz (3) –139 1MHz offset 1kHz offset VCO phase noise, Closed loop phase noise direct output (1) –119.34 dBc/Hz 0.53° 1kHz offset -95.7 600kHz offset –151 1MHz offset –154 10MHz offset –156 dBc/Hz 0.33° 23 MHz/V –80 dBc See Application Circuit Figure 87. PFD = 200kHz, Loop Filter BW = 15kHz, Output frequency step = 200kHz. Reference oscillator RMS phase error = 0.008250°, RMS jitter = 881.764 fs. Submit Documentation Feedback Copyright © 2005–2015, Texas Instruments Incorporated Product Folder Links: TRF3761 TRF3761-A TRF3761-B TRF3761-C TRF3761-D TRF3761-E TRF3761-F TRF3761-G TRF3761-H TRF3761-J TRF3761-K TRF3761, TRF3761-A, TRF3761-B TRF3761-C, TRF3761-D, TRF3761-E, TRF3761-F TRF3761-G, TRF3761-H, TRF3761-J, TRF3761-K www.ti.com SLWS181K – OCTOBER 2005 – REVISED DECEMBER 2015 7.7 Electrical Characteristics, TRF3761-C Supply voltage = VCC = 5 V, TA = –40 to 85°C (unless otherwise noted) PARAMETER TEST CONDITIONS MIN TYP MAX UNIT NOISE CHARACTERISTICS VCO phase noise, Free running VCO direct output fVCO = 1723MHz, fO = 1700MHz VCO phase noise, Free running VCO divide-by-2 output fVCO = 1723MHz, fO = 861.5 MHz 100kHz offset –119.5 600kHz offset –138.8 1MHz offset -143.9 6MHz offset –155.3 10MHz offset –157.5 100kHz offset –126 600kHz offset –145.2 1MHz offset –149.5 6MHz offset –157.2 10MHz offset –158 100kHz offset –133 600kHz offset VCO phase noise, Free running VCO divide-by-4 output fVCO = 1723MHz, fO = 430.75 MHz 1MHz offset 6MHz offset 10MHz offset 1kHz offset VCO phase noise, Closed loop phase noise direct output (1) fVCO = 1723MHz, fO = 1723MHz, (2) (3) RMS phase error Closed loop phase noise direct output (3) VCO phase noise, Closed loop phase noise divide-by-2 output (1) (2) (3) fVCO = 1723MHz, fO = 861.5 MHz VCO phase noise, Closed loop phase noise divide-by-4 output (1) fVCO = 1723MHz, fO = 430.75 MHz RMS phase error Closed loop phase noise divide-by-4 output (3) 100Hz to 10MHz VCO gain, Kv VCO free running Reference spur (2) (1) (2) (3) –156 –85 –138.34 –142.68 10MHz offset –157.3 dBc/Hz 0.87° 1kHz offset –90.1 600kHz offset –145 1MHz offset 100Hz to 10MHz (2) (3) dBc/Hz –156.5 1MHz offset 10MHz offset RMS phase error Closed loop phase noise divide-by-2 output (3) dBc/Hz -151 -153.8 600kHz offset 100Hz to 10MHz dBc/Hz –148.6 dBc/Hz –158 0.53° 1kHz offset –96.2 600kHz offset –151 1MHz offset –153 10MHz offset –156 dBc/Hz 0.33° 23 MHz/V –80 dBc See Application Circuit Figure 87. PFD = 200kHz, Loop Filter BW = 15kHz, Output frequency step = 200kHz. Reference oscillator RMS phase error = 0.008250°, RMS jitter = 881.764 fs. Copyright © 2005–2015, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: TRF3761 TRF3761-A TRF3761-B TRF3761-C TRF3761-D TRF3761-E TRF3761-F TRF3761-G TRF3761-H TRF3761-J TRF3761-K 9 TRF3761, TRF3761-A, TRF3761-B TRF3761-C, TRF3761-D, TRF3761-E, TRF3761-F TRF3761-G, TRF3761-H, TRF3761-J, TRF3761-K SLWS181K – OCTOBER 2005 – REVISED DECEMBER 2015 www.ti.com 7.8 Electrical Characteristics, TRF3761-D Supply voltage = VCC = 5 V, TA = –40 to 85°C (unless otherwise noted) PARAMETER TEST CONDITIONS MIN TYP MAX UNIT NOISE CHARACTERISTICS VCO phase noise, Free running VCO direct output fVCO = 1817MHz, fO = 1817MHz VCO phase noise, Free running VCO divide-by-2 output fVCO = 1817MHz, fO = 908.5MHz VCO phase noise, Free running VCO divide-by-4 output fVCO = 1817MHz, fO = 454.25MHz 100kHz offset –118 600kHz offset –138.5 1MHz offset -144 6MHz offset –156 10MHz offset –158 100kHz offset –124.8 600kHz offset –145.2 1MHz offset –148 6MHz offset –157.8 10MHz offset –158.2 100kHz offset –132 600kHz offset -151 1MHz offset -154 6MHz offset 10MHz offset 1kHz offset VCO phase noise, Closed loop phase noise direct output (1) (2) (1) RMS phase error Closed loop phase noise direct output (3) fVCO = 1817MHz, fO = 1817MHz (2) (3) RMS phase error Closed loop phase noise divide-by-2 output (3) fVCO = 1817MHz, fO = 908.5MHz (2) (3) –144 10MHz offset –159 RMS phase error Closed loop phase noise divide-by-4 output (3) 100Hz to 10MHz VCO gain, Kv VCO free running Reference spur (2) (1) (2) (3) 10 dBc/Hz 0.85° –91 600kHz offset –146 1MHz offset –149 10MHz offset –159 100Hz to 10MHz fVCO = 1817MHz, fO = 454.25MHz –85 –139 dBc/Hz 0.47° 1kHz offset VCO phase noise, Closed loop phase noise divide-by-4 output (1) dBc/Hz –157 1MHz offset 1kHz offset VCO phase noise, Closed loop phase noise divide-by-2 output (1) dBc/Hz –157.5 600kHz offset 100Hz to 10MHz dBc/Hz –97 600kHz offset –151 1MHz offset –154 10MHz offset –157 dBc/Hz 0.34° 23 MHz/V –80 dBc See Application Circuit Figure 87. PFD = 200kHz, Loop Filter BW = 15kHz, Output frequency step = 200kHz. Reference oscillator RMS phase error = 0.008250°, RMS jitter = 881.764 fs. Submit Documentation Feedback Copyright © 2005–2015, Texas Instruments Incorporated Product Folder Links: TRF3761 TRF3761-A TRF3761-B TRF3761-C TRF3761-D TRF3761-E TRF3761-F TRF3761-G TRF3761-H TRF3761-J TRF3761-K TRF3761, TRF3761-A, TRF3761-B TRF3761-C, TRF3761-D, TRF3761-E, TRF3761-F TRF3761-G, TRF3761-H, TRF3761-J, TRF3761-K www.ti.com SLWS181K – OCTOBER 2005 – REVISED DECEMBER 2015 7.9 Electrical Characteristics, TRF3761-E Supply voltage = VCC = 5 V, TA = –40 to 85°C (unless otherwise noted) PARAMETER TEST CONDITIONS MIN TYP MAX UNIT NOISE CHARACTERISTICS VCO phase noise, Free running VCO direct output fVCO = 1869MHz, fO = 1869MHz 100kHz offset –118 600kHz offset –138 1MHz offset –142 6MHz offset VCO phase noise, Free running VCO divide-by-2 output fVCO = 1869MHz, fO = 934.5MHz VCO phase noise, Free running VCO divide-by-4 output fVCO = 1869MHz, fO = 467.25MHz –157.3 100kHz offset –126 600kHz offset –144 1MHz offset –149 6MHz offset –158 10MHz offset –158.2 100kHz offset –132 600kHz offset –150 1MHz offset –154 10MHz offset 1kHz offset VCO phase noise, Closed loop phase noise direct output (1) fVCO = 1869MHz, fO = 1869MHz (2) (3) 600kHz offset 1MHz offset 10MHz offset RMS phase error Closed loop phase noise direct output (3) VCO phase noise, Closed loop phase noise divide-by-2 output (1) 100Hz to 10MHz (2) (3) fVCO = 1869MHz, fO = 934.5MHz fVCO = 1869MHz, fO = 467.25MHz RMS phase error Closed loop phase noise divide-by-4 output (3) 100Hz to 10MHz VCO gain, Kv VCO free running Reference spur (2) (1) (2) (3) -157 –84.5 –140 –143.6 dBc/Hz –157 –90.7 600kHz offset –144 1MHz offset 100Hz to 10MHz (2) (3) dBc/Hz –157.3 1kHz offset –148.5 dBc/Hz –158 0.53° 1kHz offset VCO phase noise, Closed loop phase noise divide-by-4 output (1) dBc/Hz 0.9° 10MHz offset RMS phase error Closed loop phase noise divide-by-2 output (3) –155 10MHz offset 6MHz offset dBc/Hz –95 600kHz offset –150 1MHz offset –154 10MHz offset –157 dBc/Hz 0.35° 23 MHz/V –80 dBc See Application Circuit Figure 87. PFD = 200kHz, Loop Filter BW = 15kHz, Output frequency step = 200kHz. Reference oscillator RMS phase error = 0.008250°, RMS jitter = 881.764 fs. Copyright © 2005–2015, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: TRF3761 TRF3761-A TRF3761-B TRF3761-C TRF3761-D TRF3761-E TRF3761-F TRF3761-G TRF3761-H TRF3761-J TRF3761-K 11 TRF3761, TRF3761-A, TRF3761-B TRF3761-C, TRF3761-D, TRF3761-E, TRF3761-F TRF3761-G, TRF3761-H, TRF3761-J, TRF3761-K SLWS181K – OCTOBER 2005 – REVISED DECEMBER 2015 www.ti.com 7.10 Electrical Characteristics, TRF3761-F Supply voltage = VCC = 5 V, TA = –40 to 85°C (unless otherwise noted) PARAMETER TEST CONDITIONS MIN TYP MAX UNIT NOISE CHARACTERISTICS VCO phase noise, Free running VCO direct output fVCO = 1916MHz, fO = 1916MHz 100kHz offset -116 600kHz offset -137 1MHz offset -141 6MHz offset -155 10MHz offset -157 100kHz offset -113 600kHz offset VCO phase noise, Free running VCO divide-by-2 output fVCO = 1916MHz, fO = 958MHz VCO phase noise, Free running VCO divide-by-4 output VCO phase noise, Closed loop phase noise direct output (1) fVCO = 1916MHz, fO = 479MHz fVCO = 1916MHz, fO = 1916MHz (2) (3) RMS phase error Closed loop phase noise direct output (3) -147.5 6MHz offset -155 10MHz offset -157.5 100kHz offset -128 600kHz offset -148 1MHz offset -150 6MHz offset -155 10MHz offset -156 1kHz offset -82.5 -142 10MHz offset -157 100Hz to 10MHz (2) (3) fVCO = 1916MHz, fO = 958MHz -142.6 1MHz offset -148.2 100Hz to 10MHz (2) (3) fVCO = 1916MHz, fO = 479MHz RMS phase error Closed loop phase noise divide-by-4 output (3) 100Hz to 10MHz VCO gain, Kv VCO free running 12 dBc/Hz dBc/Hz -158 0.477° -95 600kHz offset -148 1MHz offset -152 10MHz offset -156 Reference spur (2) (1) (2) (3) dBc/Hz -88.6 600kHz offset 1kHz offset VCO phase noise, Closed loop phase noise divide-by-4 output (1) dBc/Hz 0.947° 10MHz offset RMS phase error Closed loop phase noise divide-by-2 output (3) -136.7 1MHz offset 1kHz offset VCO phase noise, Closed loop phase noise divide-by-2 output (1) -136 1MHz offset 600kHz offset dBc/Hz dBc/Hz 0.231° 23 MHz/V –80 dBc See Application Circuit Figure 87. PFD = 200kHz, Loop Filter BW = 15kHz, Output frequency step = 200kHz. Reference oscillator RMS phase error = 0.008250°, RMS jitter = 881.764 fs. Submit Documentation Feedback Copyright © 2005–2015, Texas Instruments Incorporated Product Folder Links: TRF3761 TRF3761-A TRF3761-B TRF3761-C TRF3761-D TRF3761-E TRF3761-F TRF3761-G TRF3761-H TRF3761-J TRF3761-K TRF3761, TRF3761-A, TRF3761-B TRF3761-C, TRF3761-D, TRF3761-E, TRF3761-F TRF3761-G, TRF3761-H, TRF3761-J, TRF3761-K www.ti.com SLWS181K – OCTOBER 2005 – REVISED DECEMBER 2015 7.11 Electrical Characteristics, TRF3761-G Supply voltage = VCC = 5 V, TA = –40 to 85°C (unless otherwise noted) PARAMETER TEST CONDITIONS MIN TYP MAX UNIT NOISE CHARACTERISTICS 100kHz offset 600kHz offset VCO phase noise, Free running VCO direct output fVCO = 1989MHz, fO = 1989MHz VCO phase noise, Free running VCO divide-by-2 output fVCO = 1989MHz, fO = 994.5MHz VCO phase noise, Free running VCO divide-by-4 output fVCO = 1989MHz, fO = 497.25MHz -141.2 6MHz offset -155.6 10MHz offset -159 100kHz offset -121.3 600kHz offset -142.4 1MHz offset -141.5 6MHz offset -157.2 10MHz offset -158 100kHz offset -128 600kHz offset -148 1MHz offset -151 6MHz offset -156.8 1kHz offset fVCO = 1989MHz, fO = 1989MHz (2) (3) RMS phase error Closed loop phase noise direct output (3) (2) (3) fVCO = 1989MHz, fO = 994.5MHz -136 -141 10MHz offset -159 -141.9 1MHz offset -147.5 100Hz to 10MHz (2) (3) fVCO = 1989MHz, fO = 497.25MHz 100Hz to 10MHz VCO gain, Kv VCO free running -158 -95 600kHz offset -147.9 1MHz offset -151.3 Reference spur (2) (1) (2) (3) dBc/Hz 0.509° 10MHz offset RMS phase error Closed loop phase noise divide-by-4 output (3) dBc/Hz -88.7 600kHz offset 1kHz offset VCO phase noise, Closed loop phase noise divide-by-4 output (1) dBc/Hz 1° 10MHz offset RMS phase error Closed loop phase noise divide-by-2 output (3) dBc/Hz -83 1MHz offset 100Hz to 10MHz dBc/Hz -157 600kHz offset 1kHz offset VCO phase noise, Closed loop phase noise divide-by-2 output (1) -136 1MHz offset 10MHz offset VCO phase noise, Closed loop phase noise direct output (1) -115 dBc/Hz -156 0.252° 23 MHz/V –80 dBc See Application Circuit Figure 87. PFD = 200kHz, Loop Filter BW = 15kHz, Output frequency step = 200kHz. Reference oscillator RMS phase error = 0.008250°, RMS jitter = 881.764 fs. Copyright © 2005–2015, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: TRF3761 TRF3761-A TRF3761-B TRF3761-C TRF3761-D TRF3761-E TRF3761-F TRF3761-G TRF3761-H TRF3761-J TRF3761-K 13 TRF3761, TRF3761-A, TRF3761-B TRF3761-C, TRF3761-D, TRF3761-E, TRF3761-F TRF3761-G, TRF3761-H, TRF3761-J, TRF3761-K SLWS181K – OCTOBER 2005 – REVISED DECEMBER 2015 www.ti.com 7.12 Electrical Characteristics, TRF3761-H Supply voltage = VCC = 5 V, TA = –40 to 85°C (unless otherwise noted) PARAMETER TEST CONDITIONS MIN TYP MAX UNIT NOISE CHARACTERISTICS VCO phase noise, Free running VCO direct output fVCO = 2116MHz, fO = 2116MHz 100kHz offset –116 600kHz offset –136 1MHz offset -142 6MHz offset –154.2 10MHz offset –156 100kHz offset –123.3 600kHz offset VCO phase noise, Free running VCO divide-by-2 output fVCO = 2116MHz, fO = 1058 VCO phase noise, Free running VCO divide-by-4 output fVCO = 2116MHz, fO = 529MHz –147.6 6MHz offset –157 10MHz offset –158.3 100kHz offset –129.4 600kHz offset -149.8 1MHz offset -152.7 6MHz offset –157.7 1kHz offset VCO phase noise, Closed loop phase noise direct output (1) fVCO = 2116MHz, fO = 2116MHz (2) (3) RMS phase error Closed loop phase noise direct output (3) (2) (3) RMS phase error Closed loop phase noise divide-by-2 output (3) fVCO = 2116MHz, fO = 1058MHz –136 –141 10MHz offset –157 fVCO = 2116MHz, fO = 529MHz RMS phase error Closed loop phase noise divide-by-4 output (3) 100Hz to 10MHz VCO gain, Kv VCO free running Reference spur (2) (1) (2) (3) 14 -89 600kHz offset –143 1MHz offset –148 10MHz offset –159 100Hz to 10MHz (2) (3) dBc/Hz 0.99° dBc/Hz 0.54° 1kHz offset VCO phase noise, Closed loop phase noise divide-by-4 output (1) dBc/Hz –84 1MHz offset 100Hz to 10MHz dBc/Hz –158 600kHz offset 1kHz offset VCO phase noise, Closed loop phase noise divide-by-2 output (1) –143 1MHz offset 10MHz offset dBc/Hz 600kHz offset –95 –149.5 1MHz offset –153 10MHz offset –158 dBc/Hz 0.35° 23 MHz/V –80 dBc See Application Circuit Figure 87. PFD = 200kHz, Loop Filter BW = 15kHz, Output frequency step = 200kHz. Reference oscillator RMS phase error = 0.008250°, RMS jitter = 881.764 fs. Submit Documentation Feedback Copyright © 2005–2015, Texas Instruments Incorporated Product Folder Links: TRF3761 TRF3761-A TRF3761-B TRF3761-C TRF3761-D TRF3761-E TRF3761-F TRF3761-G TRF3761-H TRF3761-J TRF3761-K TRF3761, TRF3761-A, TRF3761-B TRF3761-C, TRF3761-D, TRF3761-E, TRF3761-F TRF3761-G, TRF3761-H, TRF3761-J, TRF3761-K www.ti.com SLWS181K – OCTOBER 2005 – REVISED DECEMBER 2015 7.13 Electrical Characteristics, TRF3761-J Supply voltage = VCC = 5 V, TA = –40 to 85°C (unless otherwise noted) PARAMETER TEST CONDITIONS MIN TYP MAX UNIT NOISE CHARACTERISTICS VCO phase noise, Free running VCO direct output fVCO = 2289MHz, fO = 2289MHz VCO phase noise, Free running VCO divide-by-2 output fVCO = 2289MHz, fO = 1144.5 VCO phase noise, Free running VCO divide-by-4 output fVCO = 2289MHz, fO = 572.25MHz 100kHz offset –116.7 600kHz offset –135.4 1MHz offset -141 6MHz offset –153.8 10MHz offset –156.4 100kHz offset –123 600kHz offset –142 1MHz offset –147 6MHz offset –156.2 10MHz offset –157.5 100kHz offset –129 600kHz offset -149 1MHz offset -153 6MHz offset –157.5 10MHz offset 1kHz offset VCO phase noise, Closed loop phase noise direct output (1) fVCO = 2289MHz, fO = 2289MHz (2) (3) RMS phase error Closed loop phase noise direct output (3) (2) (3) fVCO = 2289MHz, fO = 1144.5MHz –135 –140 10MHz offset –156 600kHz offset 1MHz offset 100Hz to 10MHz (2) (3) fVCO = 2289MHz, fO = 572.25MHz 100Hz to 10MHz VCO gain, Kv VCO free running dBc/Hz –158 –95 –148 1MHz offset –152 Reference spur (2) (1) (2) (3) –145.7 600kHz offset 10MHz offset RMS phase error Closed loop phase noise divide-by-4 output (3) –89 -141 0.59° 1kHz offset VCO phase noise, Closed loop phase noise divide-by-4 output (1) dBc/Hz 1.1° 10MHz offset RMS phase error Closed loop phase noise divide-by-2 output (3) dBc/Hz –83 1MHz offset 1kHz offset VCO phase noise, Closed loop phase noise divide-by-2 output (1) dBc/Hz –158 600kHz offset 100Hz to 10MHz dBc/Hz dBc/Hz –158.1 0.37° 23 MHz/V –80 dBc See Application Circuit Figure 87. PFD = 200kHz, Loop Filter BW = 15kHz, Output frequency step = 200kHz. Reference oscillator RMS phase error = 0.008250°, RMS jitter = 881.764 fs. Copyright © 2005–2015, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: TRF3761 TRF3761-A TRF3761-B TRF3761-C TRF3761-D TRF3761-E TRF3761-F TRF3761-G TRF3761-H TRF3761-J TRF3761-K 15 TRF3761, TRF3761-A, TRF3761-B TRF3761-C, TRF3761-D, TRF3761-E, TRF3761-F TRF3761-G, TRF3761-H, TRF3761-J, TRF3761-K SLWS181K – OCTOBER 2005 – REVISED DECEMBER 2015 www.ti.com 7.14 Timing Requirements Supply voltage = VCC = 4.5 V to 5.25 V, TA = –40 to 85 °C MIN TYP MAX UNIT t(CLK) Clock period 50 ns tsu1 Setup time, data 10 ns th Hold time, data 10 ns tw Pulse width, STROBE 20 ns tsu2 Setup time, STROBE 10 ns tsu1 th 1” Clock Pike t(CLK) CLOCK DATA DB0 (LSB) Address bit 1 DB1 Address bit 2 DB2 Address bit 3 DB29 Cmd bit 30 DB30 Cmd bit 31 DB31 (MSB) Cmd bit 32 tsu2 tw STROBE A. The first 4 bits, DB(3-0), of data are Address bits. The 28 remaining bits, DB(31-4), are part of the command. The command is little endian or lower bits first. Figure 1. Serial Programming Timing Diagram 16 Submit Documentation Feedback Copyright © 2005–2015, Texas Instruments Incorporated Product Folder Links: TRF3761 TRF3761-A TRF3761-B TRF3761-C TRF3761-D TRF3761-E TRF3761-F TRF3761-G TRF3761-H TRF3761-J TRF3761-K TRF3761, TRF3761-A, TRF3761-B TRF3761-C, TRF3761-D, TRF3761-E, TRF3761-F TRF3761-G, TRF3761-H, TRF3761-J, TRF3761-K www.ti.com SLWS181K – OCTOBER 2005 – REVISED DECEMBER 2015 7.15 Typical Characteristics 7.15.1 Typical Characteristics, TRF3761-A (See Figure 87) -60 -60 OL = 1554 MHz -80 -80 Phase Noise− dBc/Hz Phase Noise− dBc/Hz CL = 1554 MHz -100 -120 -140 -160 1k 10k 100k f − Frequency− Hz 1M -100 -120 -140 -160 1k 10M 10k 100k f − Frequency− Hz -60 -60 CL = 777 MHz OL = 777 MHz Phase Noise− dBc/Hz -80 Phase Noise− dBc/Hz 10M Figure 3. Open Loop VCO Phase Noise Figure 2. Closed Loop VCO Phase Noise -100 -120 -80 -100 -120 -140 -140 -160 -160 1k 10k 100k f − Frequency− Hz 1M 10M 1k Figure 4. Closed Loop VCO Phase Noise 10k 100k f − Frequency− Hz 1M 10M Figure 5. Open Loop VCO Phase Noise -60 -60 CL = 388 MHz OL = 388 MHz -80 Phase Noise− dBc/Hz Phase Noise− dBc/Hz 1M -100 -120 -80 -100 -120 -140 -140 -160 -160 1k 10k 100k f − Frequency− Hz 1M Figure 6. Closed Loop VCO Phase Noise Copyright © 2005–2015, Texas Instruments Incorporated 10M 1k 10k 100k f − Frequency− Hz 1M 10M Figure 7. Open Loop VCO Phase Noise Submit Documentation Feedback Product Folder Links: TRF3761 TRF3761-A TRF3761-B TRF3761-C TRF3761-D TRF3761-E TRF3761-F TRF3761-G TRF3761-H TRF3761-J TRF3761-K 17 TRF3761, TRF3761-A, TRF3761-B TRF3761-C, TRF3761-D, TRF3761-E, TRF3761-F TRF3761-G, TRF3761-H, TRF3761-J, TRF3761-K SLWS181K – OCTOBER 2005 – REVISED DECEMBER 2015 www.ti.com Typical Characteristics, TRF3761-A (See Figure 87) (continued) Figure 8. Direct Output: PFD Frequency Spurs Figure 9. Direct-By-2 Output: PFD Frequency Spurs Figure 10. Divide-By-4 Output: PFD Frequency Spurs 18 Submit Documentation Feedback Copyright © 2005–2015, Texas Instruments Incorporated Product Folder Links: TRF3761 TRF3761-A TRF3761-B TRF3761-C TRF3761-D TRF3761-E TRF3761-F TRF3761-G TRF3761-H TRF3761-J TRF3761-K TRF3761, TRF3761-A, TRF3761-B TRF3761-C, TRF3761-D, TRF3761-E, TRF3761-F TRF3761-G, TRF3761-H, TRF3761-J, TRF3761-K www.ti.com SLWS181K – OCTOBER 2005 – REVISED DECEMBER 2015 7.15.2 Typical Characteristics, TRF3761-B (See Figure 87) −60 −70 CL = 1651 MHz −90 −100 −110 −120 −130 −140 −150 −160 1k 10k 1M 100k −110 −120 −130 −140 10k 1M 100k f − Frequency − Hz f − Frequency − Hz Figure 12. Open Loop VCO Phase Noise 10M −60 CL = 825.5 MHz OL = 825.5 MHz −70 −90 Phase Noise − dBc/Hz Phase Noise − dBc/Hz −100 −160 1k 10M −100 −110 −120 −130 −140 −150 −80 −90 −100 −110 −120 −130 −140 −150 10k 1M 100k −160 1k 10M 10k 1M 100k f − Frequency − Hz f − Frequency − Hz Figure 13. Closed Loop VCO Phase Noise Figure 14. Open Loop VCO Phase Noise 10M −70 −70 CL = 412.75 MHz −80 OL = 412.75 MHz −80 −90 Phase Noise − dBc/Hz Phase Noise − dBc/Hz −90 Figure 11. Closed Loop VCO Phase Noise −80 −100 −110 −120 −130 −140 −90 −100 −110 −120 −130 −140 −150 −150 −160 1k −80 −150 −70 −160 1k OL = 1651 MHz −70 Phase Noise − dBc/Hz Phase Noise − dBc/Hz −80 10k 100k 1M 10M −160 1k 10k 100k 1M f − Frequency − Hz f − Frequency − Hz Figure 15. Closed Loop VCO Phase Noise Figure 16. Open Loop VCO Phase Noise Copyright © 2005–2015, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: TRF3761 TRF3761-A TRF3761-B TRF3761-C TRF3761-D TRF3761-E TRF3761-F TRF3761-G TRF3761-H TRF3761-J TRF3761-K 10M 19 TRF3761, TRF3761-A, TRF3761-B TRF3761-C, TRF3761-D, TRF3761-E, TRF3761-F TRF3761-G, TRF3761-H, TRF3761-J, TRF3761-K SLWS181K – OCTOBER 2005 – REVISED DECEMBER 2015 www.ti.com Typical Characteristics, TRF3761-B (See Figure 87) (continued) Figure 17. Direct Output: PFD Frequency Spurs Figure 18. Divide-By-2 Output: PFD Frequency Spurs Figure 19. Divide-By-4 Output: PFD Frequency Spurs 20 Submit Documentation Feedback Copyright © 2005–2015, Texas Instruments Incorporated Product Folder Links: TRF3761 TRF3761-A TRF3761-B TRF3761-C TRF3761-D TRF3761-E TRF3761-F TRF3761-G TRF3761-H TRF3761-J TRF3761-K TRF3761, TRF3761-A, TRF3761-B TRF3761-C, TRF3761-D, TRF3761-E, TRF3761-F TRF3761-G, TRF3761-H, TRF3761-J, TRF3761-K www.ti.com SLWS181K – OCTOBER 2005 – REVISED DECEMBER 2015 7.15.3 Typical Characteristics, TRF3761-C (See Figure 87) −60 −70 CL = 1723 MHz −90 −100 −110 −120 −130 −140 −150 −160 1k 10k 1M 100k −110 −120 −130 −140 10k 1M 100k f − Frequency − Hz f − Frequency − Hz Figure 21. Open Loop VCO Phase Noise 10M −60 CL = 861.5 MHz OL = 861.5 MHz −70 −90 Phase Noise − dBc/Hz Phase Noise − dBc/Hz −100 −160 1k 10M −100 −110 −120 −130 −140 −150 −80 −90 −100 −110 −120 −130 −140 −150 10k 1M 100k −160 1k 10M 10k 1M 100k f − Frequency − Hz f − Frequency − Hz Figure 22. Closed Loop VCO Phase Noise Figure 23. Open Loop VCO Phase Noise 10M −60 −70 CL = 430.75 MHz −80 OL = 430.75 MHz −70 −90 Phase Noise − dBc/Hz Phase Noise − dBc/Hz −90 Figure 20. Closed Loop VCO Phase Noise −80 −100 −110 −120 −130 −140 −150 −160 1k −80 −150 −70 −160 1k OL = 1723 MHz −70 Phase Noise − dBc/Hz Phase Noise − dBc/Hz −80 −80 −90 −100 −110 −120 −130 −140 −150 10k 100k 1M 10M −160 1k 10k 100k 1M f − Frequency − Hz f − Frequency − Hz Figure 24. Closed Loop VCO Phase Noise Figure 25. Open Loop VCO Phase Noise Copyright © 2005–2015, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: TRF3761 TRF3761-A TRF3761-B TRF3761-C TRF3761-D TRF3761-E TRF3761-F TRF3761-G TRF3761-H TRF3761-J TRF3761-K 10M 21 TRF3761, TRF3761-A, TRF3761-B TRF3761-C, TRF3761-D, TRF3761-E, TRF3761-F TRF3761-G, TRF3761-H, TRF3761-J, TRF3761-K SLWS181K – OCTOBER 2005 – REVISED DECEMBER 2015 www.ti.com Typical Characteristics, TRF3761-C (See Figure 87) (continued) Figure 26. Direct Output: PFD Frequency Spurs Figure 27. Divide-By-2 Output: PFD Frequency Spurs Figure 28. Divide-By-4 Output: PFD Frequency Spurs 22 Submit Documentation Feedback Copyright © 2005–2015, Texas Instruments Incorporated Product Folder Links: TRF3761 TRF3761-A TRF3761-B TRF3761-C TRF3761-D TRF3761-E TRF3761-F TRF3761-G TRF3761-H TRF3761-J TRF3761-K TRF3761, TRF3761-A, TRF3761-B TRF3761-C, TRF3761-D, TRF3761-E, TRF3761-F TRF3761-G, TRF3761-H, TRF3761-J, TRF3761-K www.ti.com SLWS181K – OCTOBER 2005 – REVISED DECEMBER 2015 7.15.4 Typical Characteristics, TRF3761-D (See Figure 87) −60 −70 CL = 1801 MHz −90 −100 −110 −120 −130 −140 −150 −160 1k 10k 1M 100k −110 −120 −130 −140 10k 1M 100k f − Frequency − Hz f − Frequency − Hz Figure 30. Open Loop VCO Phase Noise 10M −60 CL = 900.5 MHz OL = 900.5 MHz −70 −90 Phase Noise − dBc/Hz Phase Noise − dBc/Hz −100 −160 1k 10M −100 −110 −120 −130 −140 −150 −80 −90 −100 −110 −120 −130 −140 −150 10k 1M 100k −160 1k 10M 10k 1M 100k f − Frequency − Hz f − Frequency − Hz Figure 31. Closed Loop VCO Phase Noise Figure 32. Open Loop VCO Phase Noise 10M −60 −70 CL = 450.25 MHz −80 OL = 450.25 MHz −70 −90 Phase Noise − dBc/Hz Phase Noise − dBc/Hz −90 Figure 29. Closed Loop VCO Phase Noise −80 −100 −110 −120 −130 −140 −150 −160 1k −80 −150 −70 −160 1k OL = 1801 MHz −70 Phase Noise − dBc/Hz Phase Noise − dBc/Hz −80 −80 −90 −100 −110 −120 −130 −140 −150 10k 100k 1M 10M −160 1k 10k 100k 1M f − Frequency − Hz f − Frequency − Hz Figure 33. Closed Loop VCO Phase Noise Figure 34. Open Loop VCO Phase Noise Copyright © 2005–2015, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: TRF3761 TRF3761-A TRF3761-B TRF3761-C TRF3761-D TRF3761-E TRF3761-F TRF3761-G TRF3761-H TRF3761-J TRF3761-K 10M 23 TRF3761, TRF3761-A, TRF3761-B TRF3761-C, TRF3761-D, TRF3761-E, TRF3761-F TRF3761-G, TRF3761-H, TRF3761-J, TRF3761-K SLWS181K – OCTOBER 2005 – REVISED DECEMBER 2015 www.ti.com Typical Characteristics, TRF3761-D (See Figure 87) (continued) Figure 35. Direct Output: PFD Frequency Spurs Figure 36. Divide-By-2 Output: PFD Frequency Spur Figure 37. Divide-By-4 Output: PFD Frequency Spurs 24 Submit Documentation Feedback Copyright © 2005–2015, Texas Instruments Incorporated Product Folder Links: TRF3761 TRF3761-A TRF3761-B TRF3761-C TRF3761-D TRF3761-E TRF3761-F TRF3761-G TRF3761-H TRF3761-J TRF3761-K TRF3761, TRF3761-A, TRF3761-B TRF3761-C, TRF3761-D, TRF3761-E, TRF3761-F TRF3761-G, TRF3761-H, TRF3761-J, TRF3761-K www.ti.com SLWS181K – OCTOBER 2005 – REVISED DECEMBER 2015 7.15.5 Typical Characteristics, TRF3761-E (See Figure 87) −60 −70 CL = 1869 MHz −90 −100 −110 −120 −130 −140 −150 −160 1k 10k 1M 100k −110 −120 −130 −140 10k 1M 100k f − Frequency − Hz f − Frequency − Hz Figure 39. Open Loop VCO Phase Noise 10M −60 CL = 934.5 MHz OL = 934.5 MHz −70 −90 Phase Noise − dBc/Hz Phase Noise − dBc/Hz −100 −160 1k 10M −100 −110 −120 −130 −140 −150 −80 −90 −100 −110 −120 −130 −140 −150 10k 1M 100k −160 1k 10M 10k 1M 100k f − Frequency − Hz f − Frequency − Hz Figure 40. Closed Loop VCO Phase Noise Figure 41. Open Loop VCO Phase Noise 10M −60 −70 CL = 467.25 MHz −80 OL = 467.25 MHz −70 −90 Phase Noise − dBc/Hz Phase Noise − dBc/Hz −90 Figure 38. Closed Loop VCO Phase Noise −80 −100 −110 −120 −130 −140 −150 −160 1k −80 −150 −70 −160 1k OL = 1869 MHz −70 Phase Noise − dBc/Hz Phase Noise − dBc/Hz −80 −80 −90 −100 −110 −120 −130 −140 −150 10k 100k 1M 10M −160 1k 10k 100k 1M f − Frequency − Hz f − Frequency − Hz Figure 42. Closed Loop VCO Phase Noise Figure 43. Open Loop VCO Phase Noise Copyright © 2005–2015, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: TRF3761 TRF3761-A TRF3761-B TRF3761-C TRF3761-D TRF3761-E TRF3761-F TRF3761-G TRF3761-H TRF3761-J TRF3761-K 10M 25 TRF3761, TRF3761-A, TRF3761-B TRF3761-C, TRF3761-D, TRF3761-E, TRF3761-F TRF3761-G, TRF3761-H, TRF3761-J, TRF3761-K SLWS181K – OCTOBER 2005 – REVISED DECEMBER 2015 www.ti.com Typical Characteristics, TRF3761-E (See Figure 87) (continued) Figure 44. Direct Output: PFD Frequency Spurs Figure 45. Divide-By-2 Output: PFD Frequency Spurs Figure 46. Divide-By-4 Output: PFD Frequency Spurs 26 Submit Documentation Feedback Copyright © 2005–2015, Texas Instruments Incorporated Product Folder Links: TRF3761 TRF3761-A TRF3761-B TRF3761-C TRF3761-D TRF3761-E TRF3761-F TRF3761-G TRF3761-H TRF3761-J TRF3761-K TRF3761, TRF3761-A, TRF3761-B TRF3761-C, TRF3761-D, TRF3761-E, TRF3761-F TRF3761-G, TRF3761-H, TRF3761-J, TRF3761-K www.ti.com SLWS181K – OCTOBER 2005 – REVISED DECEMBER 2015 7.15.6 Typical Characteristics, TRF3761-F (See Figure 87) −60 −70 CL = 1916 MHz −90 −100 −110 −120 −130 −140 −150 −160 1k 10k 1M 100k −110 −120 −130 −140 10k 100k 1M f − Frequency − Hz f − Frequency − Hz Figure 48. Open Loop VCO Phase Noise 10M −60 CL = 958 MHz OL = 958 MHz −70 −90 Phase Noise − dBc/Hz Phase Noise − dBc/Hz −100 −160 1k 10M −100 −110 −120 −130 −140 −150 −80 −90 −100 −110 −120 −130 −140 −150 10k 1M 100k −160 1k 10M 10k 100k 1M f − Frequency − Hz f − Frequency − Hz Figure 49. Closed Loop VCO Phase Noise Figure 50. Open Loop VCO Phase Noise 10M −60 −70 CL = 479 MHz −80 OL = 479 MHz −70 −90 Phase Noise − dBc/Hz Phase Noise − dBc/Hz −90 Figure 47. Closed Loop VCO Phase Noise −80 −100 −110 −120 −130 −140 −150 −160 1k −80 −150 −70 −160 1k OL = 1916 MHz −70 Phase Noise − dBc/Hz Phase Noise − dBc/Hz −80 −80 −90 −100 −110 −120 −130 −140 −150 10k 100k 1M 10M −160 1k 10k 100k 1M f − Frequency − Hz f − Frequency − Hz Figure 51. Closed Loop VCO Phase Noise Figure 52. Open Loop VCO Phase Noise Copyright © 2005–2015, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: TRF3761 TRF3761-A TRF3761-B TRF3761-C TRF3761-D TRF3761-E TRF3761-F TRF3761-G TRF3761-H TRF3761-J TRF3761-K 10M 27 TRF3761, TRF3761-A, TRF3761-B TRF3761-C, TRF3761-D, TRF3761-E, TRF3761-F TRF3761-G, TRF3761-H, TRF3761-J, TRF3761-K SLWS181K – OCTOBER 2005 – REVISED DECEMBER 2015 www.ti.com Typical Characteristics, TRF3761-F (See Figure 87) (continued) Figure 53. Direct Output: PFD Frequency Spurs Figure 54. Divide-By-2 Output: PFD Frequency Spurs Figure 55. Divide-By-4 Output: PFD Frequency Spurs 28 Submit Documentation Feedback Copyright © 2005–2015, Texas Instruments Incorporated Product Folder Links: TRF3761 TRF3761-A TRF3761-B TRF3761-C TRF3761-D TRF3761-E TRF3761-F TRF3761-G TRF3761-H TRF3761-J TRF3761-K TRF3761, TRF3761-A, TRF3761-B TRF3761-C, TRF3761-D, TRF3761-E, TRF3761-F TRF3761-G, TRF3761-H, TRF3761-J, TRF3761-K www.ti.com SLWS181K – OCTOBER 2005 – REVISED DECEMBER 2015 7.15.7 Typical Characteristics, TRF3761-G (See Figure 87) −70 −60 CL = 1989 MHz −90 −100 −110 −120 −130 −140 −150 −160 1k 10k 1M 100k −110 −120 −130 −140 10k 1M 100k f − Frequency − Hz f − Frequency − Hz Figure 57. Open Loop VCO Phase Noise 10M −60 CL = 994.5 MHz OL = 994.5 MHz −70 −90 Phase Noise − dBc/Hz Phase Noise − dBc/Hz −100 −160 1k 10M −100 −110 −120 −130 −140 −150 −80 −90 −100 −110 −120 −130 −140 −150 10k 1M 100k −160 1k 10M 10k 1M 100k f − Frequency − Hz f − Frequency − Hz Figure 58. Closed Loop VCO Phase Noise Figure 59. Open Loop VCO Phase Noise 10M −60 −70 CL = 497.25 MHz −80 OL = 497.25 MHz −70 −90 Phase Noise − dBc/Hz Phase Noise − dBc/Hz −90 Figure 56. Closed Loop VCO Phase Noise −80 −100 −110 −120 −130 −140 −150 −160 1k −80 −150 −70 −160 1k OL = 1989 MHz −70 Phase Noise − dBc/Hz Phase Noise − dBc/Hz −80 −80 −90 −100 −110 −120 −130 −140 −150 10k 100k 1M 10M −160 1k 10k 100k 1M f − Frequency − Hz f − Frequency − Hz Figure 60. Closed Loop VCO Phase Noise Figure 61. Open Loop VCO Phase Noise Copyright © 2005–2015, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: TRF3761 TRF3761-A TRF3761-B TRF3761-C TRF3761-D TRF3761-E TRF3761-F TRF3761-G TRF3761-H TRF3761-J TRF3761-K 10M 29 TRF3761, TRF3761-A, TRF3761-B TRF3761-C, TRF3761-D, TRF3761-E, TRF3761-F TRF3761-G, TRF3761-H, TRF3761-J, TRF3761-K SLWS181K – OCTOBER 2005 – REVISED DECEMBER 2015 www.ti.com Typical Characteristics, TRF3761-G (See Figure 87) (continued) Figure 62. Direct Output: PFD Frequency Spurs Figure 63. Divide-By-2 Output: PFD Frequency Spurs Figure 64. Divide-By-4 Output: PFD Frequency Spurs 30 Submit Documentation Feedback Copyright © 2005–2015, Texas Instruments Incorporated Product Folder Links: TRF3761 TRF3761-A TRF3761-B TRF3761-C TRF3761-D TRF3761-E TRF3761-F TRF3761-G TRF3761-H TRF3761-J TRF3761-K TRF3761, TRF3761-A, TRF3761-B TRF3761-C, TRF3761-D, TRF3761-E, TRF3761-F TRF3761-G, TRF3761-H, TRF3761-J, TRF3761-K www.ti.com SLWS181K – OCTOBER 2005 – REVISED DECEMBER 2015 7.15.8 Typical Characteristics, TRF3761-H (See Figure 87) −60 −70 CL = 2100 MHz −90 −100 −110 −120 −130 −140 −150 −160 1k 10k 1M 100k −110 −120 −130 −140 10k 100k 1M f − Frequency − Hz f − Frequency − Hz Figure 66. Open Loop VCO Phase Noise 10M −60 CL = 1050 MHz OL = 1050 MHz −70 −90 Phase Noise − dBc/Hz Phase Noise − dBc/Hz −100 −160 1k 10M −100 −110 −120 −130 −140 −150 −80 −90 −100 −110 −120 −130 −140 −150 10k 1M 100k −160 1k 10M 10k 100k 1M f − Frequency − Hz f − Frequency − Hz Figure 67. Closed Loop VCO Phase Noise Figure 68. Open Loop VCO Phase Noise 10M −60 −70 CL = 525 MHz −80 OL = 525 MHz −70 −90 Phase Noise − dBc/Hz Phase Noise − dBc/Hz −90 Figure 65. Closed Loop VCO Phase Noise −80 −100 −110 −120 −130 −140 −150 −160 1k −80 −150 −70 −160 1k OL = 2100 MHz −70 Phase Noise − dBc/Hz Phase Noise − dBc/Hz −80 −80 −90 −100 −110 −120 −130 −140 −150 10k 100k 1M 10M −160 1k 10k 100k 1M f − Frequency − Hz f − Frequency − Hz Figure 69. Closed Loop VCO Phase Noise Figure 70. Open Loop VCO Phase Noise Copyright © 2005–2015, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: TRF3761 TRF3761-A TRF3761-B TRF3761-C TRF3761-D TRF3761-E TRF3761-F TRF3761-G TRF3761-H TRF3761-J TRF3761-K 10M 31 TRF3761, TRF3761-A, TRF3761-B TRF3761-C, TRF3761-D, TRF3761-E, TRF3761-F TRF3761-G, TRF3761-H, TRF3761-J, TRF3761-K SLWS181K – OCTOBER 2005 – REVISED DECEMBER 2015 www.ti.com Typical Characteristics, TRF3761-H (See Figure 87) (continued) Figure 71. Direct Output: PFD Frequency Spurs Figure 72. Divide-By-2 Output: PFD Frequency Spurs Figure 73. Divide-By-4 Output: PFD Frequency Spurs 32 Submit Documentation Feedback Copyright © 2005–2015, Texas Instruments Incorporated Product Folder Links: TRF3761 TRF3761-A TRF3761-B TRF3761-C TRF3761-D TRF3761-E TRF3761-F TRF3761-G TRF3761-H TRF3761-J TRF3761-K TRF3761, TRF3761-A, TRF3761-B TRF3761-C, TRF3761-D, TRF3761-E, TRF3761-F TRF3761-G, TRF3761-H, TRF3761-J, TRF3761-K www.ti.com SLWS181K – OCTOBER 2005 – REVISED DECEMBER 2015 7.15.9 Typical Characteristics, TRF3761-J (See Figure 87) −60 −70 CL = 2216 MHz −90 −100 −110 −120 −130 −140 −150 −160 1k 10k 1M 100k −110 −120 −130 −140 10k 100k 1M f − Frequency − Hz f − Frequency − Hz Figure 75. Open Loop VCO Phase Noise 10M −60 CL = 1108 MHz OL = 1108 MHz −70 −90 Phase Noise − dBc/Hz Phase Noise − dBc/Hz −100 −160 1k 10M −100 −110 −120 −130 −140 −150 −80 −90 −100 −110 −120 −130 −140 −150 10k 1M 100k −160 1k 10M 10k 100k 1M f − Frequency − Hz f − Frequency − Hz Figure 76. Closed Loop VCO Phase Noise Figure 77. Open Loop VCO Phase Noise 10M −60 −70 CL = 554 MHz −80 OL = 554 MHz −70 −90 Phase Noise − dBc/Hz Phase Noise − dBc/Hz −90 Figure 74. Closed Loop VCO Phase Noise −80 −100 −110 −120 −130 −140 −150 −160 1k −80 −150 −70 −160 1k OL = 2216 MHz −70 Phase Noise − dBc/Hz Phase Noise − dBc/Hz −80 −80 −90 −100 −110 −120 −130 −140 −150 10k 100k 1M 10M −160 1k 10k 100k 1M f − Frequency − Hz f − Frequency − Hz Figure 78. Closed Loop VCO Phase Noise Figure 79. Open Loop VCO Phase Noise Copyright © 2005–2015, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: TRF3761 TRF3761-A TRF3761-B TRF3761-C TRF3761-D TRF3761-E TRF3761-F TRF3761-G TRF3761-H TRF3761-J TRF3761-K 10M 33 TRF3761, TRF3761-A, TRF3761-B TRF3761-C, TRF3761-D, TRF3761-E, TRF3761-F TRF3761-G, TRF3761-H, TRF3761-J, TRF3761-K SLWS181K – OCTOBER 2005 – REVISED DECEMBER 2015 www.ti.com Typical Characteristics, TRF3761-J (See Figure 87) (continued) Figure 80. Direct Output: PFD Frequency Spurs Figure 81. Divide-By-2 Output: PFD Frequency Spurs Figure 82. Divide-By-4 Output: PFD Frequency Spurs 34 Submit Documentation Feedback Copyright © 2005–2015, Texas Instruments Incorporated Product Folder Links: TRF3761 TRF3761-A TRF3761-B TRF3761-C TRF3761-D TRF3761-E TRF3761-F TRF3761-G TRF3761-H TRF3761-J TRF3761-K TRF3761, TRF3761-A, TRF3761-B TRF3761-C, TRF3761-D, TRF3761-E, TRF3761-F TRF3761-G, TRF3761-H, TRF3761-J, TRF3761-K www.ti.com SLWS181K – OCTOBER 2005 – REVISED DECEMBER 2015 8 Detailed Description 8.1 Overview TRF3761 is an integrated frequency synthesizer with low-noise, voltage-controlled oscillator (VCO) and an integer-N PLL. N-Divider block supports flexible output frequency range. A 3-wire serial-programming interface (SPI) interface is used to control the device. Device also supports power down feature through SPI interface or via chip_en pin. 39 3 Lock Det STROBE DATA CLOCK MUX_OUT 8.2 Functional Block Diagram 4 5 Serial Interface 38 R Div REF_IN PFD Charge Pump 34 CPOUT N−Divider B− counter A− counter 26 Prescaler div p/p+1 SPI From SPI From 13 VCO_OUTM VCO_OUTP Power Down EXT_VCO_IN 18 1 PD_OUTBUF 2 CHIP_EN SPI From 14 Div1/2/4 VCTRL_IN 8.3 Feature Description 8.3.1 VCO The TRF3761 integrates a high-performance, LC tank, voltage-controlled oscillator (VCO). For each of the devices of the TRF3761 family, the inductance and capacitance of the tank are optimized to yield the best phasenoise performance. The VCO output is fed externally and to the prescaler through a series of very low noise buffers, that greatly reduce the effect of load pulling onto the VCO. Copyright © 2005–2015, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: TRF3761 TRF3761-A TRF3761-B TRF3761-C TRF3761-D TRF3761-E TRF3761-F TRF3761-G TRF3761-H TRF3761-J TRF3761-K 35 TRF3761, TRF3761-A, TRF3761-B TRF3761-C, TRF3761-D, TRF3761-E, TRF3761-F TRF3761-G, TRF3761-H, TRF3761-J, TRF3761-K SLWS181K – OCTOBER 2005 – REVISED DECEMBER 2015 www.ti.com Feature Description (continued) 8.3.2 Divide by 2, by 4, and Output Buffer To extend the frequency coverage, the TRF3761 integrates a divide by 2 and by 4 with a low noise floor. The VCO signal is fed externally through a final open-collector differential-output buffer. This buffer is able to provide up to 3dBm (typical) of power into a 200Ω differential resistive load. The open-collector structure gives the flexibility to choose different load configurations to meet different requirements. 8.3.3 N-Divider 8.3.3.1 Prescaler Stage This stage divides down the VCO frequency before the A and B counters. This is a dual-modulus prescaler and the user can select any of the following settings: 8/9, 16/17, 32/33, and 64/65. Prescaling is used due to the fact that the internal devices are limited in frequency operations of 200MHz. To determine the proper prescaler value, Fout which is the frequency out of the VCO is divided by the numerator of the prescaler if the answer is less than 200 MHz then that is the prescalar to use, see Equation 1. If the value is higher than 200 MHz then repeat this procedure with the next prescalar numerator until a value of 200MHz or less is achieved. Refer to Synthesizing a Selected Frequency. FOUT £ 200MHz Prescalarnum (1) 8.3.3.2 A and B Counter Stage The TRF3761 includes a 6-bit A counter and a 13-bit B counter that operate on the output of the prescaler. The A counter can take values from 0 to 63, while the B counter can take values from 3 to 8191. Also, the value for the B counter must be greater than or equal to the value for the A counter. The A and B counter with the prescaler stage create the VCO N-divider, see Equation 2 and Equation 3. Refer to Synthesizing a Selected Frequency. N= FOUT = (A COUNTER + Prescalarnum × B COUNTER ) FPFD (2) N = xinteger ´ y decimal , Þ Prescalarnum BCOUNTER = xinteger and A COUNTER = Prescalarnum × y decimal (3) 8.3.3.3 Reference Divider TRF3761 includes a 14-bit RDiv, also known as RDiv, that allows the input reference frequency to be divided down to produce the reference clock to the phase frequency detector (PFD) this clock is also known as FPFD which is also the channel step size. Division ratios from 1 to 16,383 are allowed. To determine RDiv use Equation 4. FREF_IN RDIV = FPFD (4) The output frequency (Fout) is determined using Equation 5. FREF_IN FOUT = FPFD × N = × (A COUNTER + Prescalarnum × B COUNTER ) RDIV (5) 8.3.4 Phase Frequency Detector (PFD) and Charge Pump Stage The outputs of the RDiv and the N counter are fed into the PFD stage, where the two signals are compared in frequency and phase. The TRF3761 features an anti-backlash pulse, whose width is controllable by the user through the serial programming interface. The PFD feeds the charge pump, whose output current pulses are fed into an external loop filter, which eventually produces the tuning voltage needed to control the integrated VCO to the desired frequency. 36 Submit Documentation Feedback Copyright © 2005–2015, Texas Instruments Incorporated Product Folder Links: TRF3761 TRF3761-A TRF3761-B TRF3761-C TRF3761-D TRF3761-E TRF3761-F TRF3761-G TRF3761-H TRF3761-J TRF3761-K TRF3761, TRF3761-A, TRF3761-B TRF3761-C, TRF3761-D, TRF3761-E, TRF3761-F TRF3761-G, TRF3761-H, TRF3761-J, TRF3761-K www.ti.com SLWS181K – OCTOBER 2005 – REVISED DECEMBER 2015 Feature Description (continued) 8.3.5 Mux Out MUX_OUT pin (39) provides a communication port to the microcontroller circuit. See Table 4 in the Detailed Design Procedure section. 8.3.6 Div 1/2/4 Div 1/2/4 is the frequency divider for the TRF3761. This circuit can be programmed thru the serial programming interface (SPI) to divide the output frequency of the VCO by 1, 2 or 4. This feature allows for the same loop filter design to be used for any of the 3 divide by modes, 1, 2 and 4. For example, if the VCO is running at 1499MHz to 1608MHz band then with the same exact circuit, run the output in the divide by 2 mode 749.5MHz to 804MHz band or in the divide by 4 mode 374.75MHz to 402MHz. 8.3.7 Serial interface The programming interface pins (3, 4, 5) to the chip are the serial programming interface (SPI). The interface requires a Clock, Data, and Strobe signal to operate. See timing diagram Figure 83. 8.3.8 CHIP ENABLE This feature provides a way to shut down the chip when not needed in order to conserve power. CHIP_EN Pin (2) needs to be High for normal operation. 8.3.9 Buffer Power Down PD_OUTBUFF pin (1), when enabled in software can provide a -40dB reduction in the output power while the VCO is locked and running. This feature is to help with isolation between RX and TX. 8.3.10 External VCO IN EXT_VCO_IN pin (18) allows for the use of an external VCO to use the phase lock loop circuit in the TRF3761. This feature enables higher frequencies to be synthesized. 8.4 Device Functional Modes 8.4.1 Programmable Divider Mode TRF3761 frequency range is extended by integrating a divide by 2 and by 4 options. The VCO signal is fed externally through differential-output buffer. The divider block allows to divide the output frequency of the VCO by 1, 2 or 4 by programming thru serial programming interface (SPI). These 3 divide by modes of 1, 2 and 4 enables the usage of same loop filter for wider frequency coverage. Copyright © 2005–2015, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: TRF3761 TRF3761-A TRF3761-B TRF3761-C TRF3761-D TRF3761-E TRF3761-F TRF3761-G TRF3761-H TRF3761-J TRF3761-K 37 TRF3761, TRF3761-A, TRF3761-B TRF3761-C, TRF3761-D, TRF3761-E, TRF3761-F TRF3761-G, TRF3761-H, TRF3761-J, TRF3761-K SLWS181K – OCTOBER 2005 – REVISED DECEMBER 2015 www.ti.com 8.5 Programming 8.5.1 Serial Interface Programming Registers Definition The TRF3761 features a 3-wire serial programming interface that controls an internal, 32-bit shift register. There are a total of 3 signals that need to be applied: the CLOCK (pin 3), the serial DATA (pin 4) and the STROBE (pin 5). The DATA (DB0-DB31) is loaded LSB first and is read on the rising edge of the CLOCK. The STROBE is asynchronous to the CLOCK and at its rising edge the data in the shift register gets loaded onto the selected internal register. The first four bits (DB0-DB3) is the address to select the available internal registers. tsu1 th 1” Clock Pike t(CLK) CLOCK DATA DB0 (LSB) Address bit 1 DB1 Address bit 2 DB2 Address bit 3 DB29 Cmd bit 30 DB30 Cmd bit 31 DB31 (MSB) Cmd bit 32 tsu2 tw STROBE A. The first 4 bits, DB(3-0), of data are Address bits. The 28 remaining bits, DB(31-4), are part of the command. The command is little endian or lower bits first. Figure 83. Serial Programming Timing Diagram 38 Submit Documentation Feedback Copyright © 2005–2015, Texas Instruments Incorporated Product Folder Links: TRF3761 TRF3761-A TRF3761-B TRF3761-C TRF3761-D TRF3761-E TRF3761-F TRF3761-G TRF3761-H TRF3761-J TRF3761-K TRF3761, TRF3761-A, TRF3761-B TRF3761-C, TRF3761-D, TRF3761-E, TRF3761-F TRF3761-G, TRF3761-H, TRF3761-J, TRF3761-K www.ti.com SLWS181K – OCTOBER 2005 – REVISED DECEMBER 2015 8.6 Register Maps 8.6.1 Register 1 Figure 84. Register 1: Device Setup DB31 Full Cal Req R/W DB30 CP_T EST DB29 TRIS_ CP DB28 PFD_ POL R/W R/W R/W DB27 DB26 Anti Backlash DB25 DB24 DB23 DB22 DB21 DB20 DB19 Reference Clock Divider (RDiv) R/W DB15 DB14 DB13 DB12 Reference Clock Divider (RDiv) DB11 PD BUFO UT R/W R/W DB10 OUTB UF EN_S EL R/W DB18 DB17 DB16 R/W DB9 DB8 Output Mode DB7 DB6 DB5 DB4 Charge Pump Current Select REST R/W R/W DB3 DB2 DB1 Register Address DB0 R/W LEGEND: R/W = Read/Write; R = Read only; -n = value after reset Copyright © 2005–2015, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: TRF3761 TRF3761-A TRF3761-B TRF3761-C TRF3761-D TRF3761-E TRF3761-F TRF3761-G TRF3761-H TRF3761-J TRF3761-K 39 TRF3761, TRF3761-A, TRF3761-B TRF3761-C, TRF3761-D, TRF3761-E, TRF3761-F TRF3761-G, TRF3761-H, TRF3761-J, TRF3761-K SLWS181K – OCTOBER 2005 – REVISED DECEMBER 2015 www.ti.com Table 1. Register 1: Device Setup REGISTER 1 MAPPING Data Field Address Bits DB31 FULL_CAL_REQ This is a read only bit, that indicates if a power-up cal is required 0 power-up cal is not required 1 power-up cal is required DB30 CP_TEST TI internal use only 1 test enabled DB29 TRIS_CP High-impedance state charge pump output 1 CP high-impedance state 0 for normal operation DB28 PFD_POL Selects Polarity of PFD, should match polarity of VCO gain. If using external VCO with Negative gain then set to 0 and vise versa. The internal VCO has positive gain so set to positve(1) 0 negative 1 positive DB27 ABPW1 ABPW: anti-backlash pulse width 00 1.5ns delay 01 0.9ns delay 10 3.8ns delay 11 2.7ns delay DB26 ABPW0 DB25 RDIV_13 14-bit reference clock divider DB24 RDIV_12 RDIV:00...01: divide by 1 RDIV:00...10: divide by 2 RDIV:00...11: divide by 3 DB23 RDIV_11 DB22 RDIV_10 DB21 RDIV_9 DB20 RDIV_8 DB19 RDIV_7 DB18 RDIV_6 DB17 RDIV_5 DB16 RDIV_4 DB15 RDIV_3 DB14 RDIV_2 DB13 RDIV_1 DB12 RDIV_0 DB11 PD_BUFOUT If DB10 = 0 then it controls power down of output buffer : 00 default; output buffer on 01 output buffer off 1x output buffer on/off controlled by OUTBUF_EN pin DB10 OUTBUF_EN_SEL Select Output Buffer enable control: 0 internal 1 through OUTBUF_EN pin DB9 OUT_MODE_1 DB8 OUT_MODE_0 OUTBUFMODE: Selection of RF output buffer division ratio 00 divide by 1 01 divide by 2 10 divide by4 DB7 ICP2 DB6 ICP1 DB5 ICP0 DB4 RESET DB3 ICP: select charge pump current (1 mA step). From 1.4mA to 11.2mA with Rbias set to 2.37Kohms. Registers reset 1 high 0 low for normal operation Address Bits =0000 for register 1 DB2 DB1 DB0 40 Submit Documentation Feedback Copyright © 2005–2015, Texas Instruments Incorporated Product Folder Links: TRF3761 TRF3761-A TRF3761-B TRF3761-C TRF3761-D TRF3761-E TRF3761-F TRF3761-G TRF3761-H TRF3761-J TRF3761-K TRF3761, TRF3761-A, TRF3761-B TRF3761-C, TRF3761-D, TRF3761-E, TRF3761-F TRF3761-G, TRF3761-H, TRF3761-J, TRF3761-K www.ti.com SLWS181K – OCTOBER 2005 – REVISED DECEMBER 2015 OUT_MODE: TRF3761 has an optional divide by 2 or 4 output, which is selectable by programming bits of register 1 (see Table 1). CP_TEST: By setting bit DB30 to 1 it is possible to test the PFD up or down pulses. Internal TI use only. TRIS_CP: If bit DB29 is set to 1, the charge pump output goes in tri-state. For normal operation, DB29 must be set to 0. ABPW: Bits are used to program the width of the anti-backlash pulses of the PFD. The user selects one of the following values: 0.9ns, 1.5ns, 2.7ns and 3.8ns. Backlash can occur when Fpfd becomes phase aligned with Fout of the VCO. This will cause a high impedance state on the phase detector and allow the output frequency to drift until the phase difference is enough to cause the phase detector to start sending signals to the charge pump to correct the difference. This slight variation will show up as a sub harmonic of the pfd signal in the passband of the loop filter which would result in a significant spur in the output of the VCO. It is recommended that the anti-backlash pulse be set to the 1.5ns which gives the best spur reduction for the TRF3761. PFD_POL: Bit DB28 of register 1 sets the polarity of the PFD. A Low (0) selects a negative polarity, and a High (1) selects a positive polarity. By choosing the correct polarity, the TRF3761 will works with an external VCO having both positive and negative gain (Kv). For example if an external VCO has a Kv = –23MHz/V then the PFD polarity would need to be negative, so DB28 would be set to a Low (0). When using the internal VCO with a Kv of 23MHz/V, the PDF_POL should be set to 1. RDiv: A 14-bit word programs the RDiv for the reference signal, DB25 is the MSB and DB12 is the LSB. RDiv value is determined by dividing the reference frequency by the channel step size. For example if the reference frequency is 10MHz and the channel step size is 200KHz then RDiv would be 50. This sets up the Fpfd for the phase detector, in other words the reference frequency will be divided down by a factor of RDiv which in this example is 50. ICP: Bits set the charge pump current. 1.2 V 22.168 ICP = × (N + 1) × Rbias1 8 (6) which reduces to: ICP = 3.3252 × (N + 1) Rbias1 (7) where N = decimal value of [Reg1 DB]. The range is set by N and Rbias2. It is recommended that Icp be set to 7mA or =101. OUTBUF_EN_SEL: Output buffer on/off state is controlled through serial interface or an external pin. If bit DB10 is a 0 (default state) the output buffers state is elected through bit DB11. If DB10 is a 1, the buffers on/off are directly controlled by the OUTBU_EN pin. RESET: Setting bit DB4 to 1, all registers are reset to default values. Refer to Register 1 under the Detailed Design Procedure section. Copyright © 2005–2015, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: TRF3761 TRF3761-A TRF3761-B TRF3761-C TRF3761-D TRF3761-E TRF3761-F TRF3761-G TRF3761-H TRF3761-J TRF3761-K 41 TRF3761, TRF3761-A, TRF3761-B TRF3761-C, TRF3761-D, TRF3761-E, TRF3761-F TRF3761-G, TRF3761-H, TRF3761-J, TRF3761-K SLWS181K – OCTOBER 2005 – REVISED DECEMBER 2015 www.ti.com 8.6.2 Register 2 Figure 85. Register 2: VCO Calibration DB31 STAR T_CAL DB30 DB29 DB28 DB27 DB26 R/W DB25 DB24 DB23 VCO Frequency in MHz DB22 DB21 DB20 DB19 DB9 DB8 DB7 DB6 DB5 Reference Frequency (Integer Part) R/W DB4 DB3 DB18 R/W DB15 DB14 DB13 DB12 DB11 Reference Frequency (Fractional Part) R/W DB10 DB17 DB16 Reference Frequency Continued R/W DB2 DB1 Register Address R/W DB0 LEGEND: R/W = Read/Write; R = Read only; -n = value after reset Table 2. Register 2: VCO Calibration REGISTER 2 MAPPING Data Field Address Bits 42 DB31 START_CAL DB30 FOUT12 DB29 FOUT11 DB28 FOUT10 DB27 FOUT9 DB26 FOUT8 DB25 FOUT7 DB24 FOUT6 DB23 FOUT5 DB22 FOUT4 DB21 FOUT3 DB20 FOUT2 DB19 FOUT1 DB18 FOUT0 DB17 REF_FRAC6 DB16 REF_FRAC5 DB15 REF_FRAC4 DB14 REF_FRAC3 DB13 REF_FRAC2 DB12 REF_FRAC1 DB11 REF_FRAC0 DB10 REF6 DB9 REF5 DB8 REF4 DB7 REF3 DB6 REF2 DB5 REF1 DB4 REF0 DB3 0 DB2 0 DB1 0 DB0 1 Submit Documentation Feedback 1 start calibration VCO frequency in MHz start calibration Reference frequency in MHz (fractional part) Reference frequency in MHz (integer part) 0000000 0000001 0000010 ..... 1100011 = 0.00MHz = 0.01MHz = 0.02MHz = 0.99MHz 0001010 =10MHz 0001011 =11MHz ..... 1101000 = 104MHz Address Bits =0001 for register 2 Copyright © 2005–2015, Texas Instruments Incorporated Product Folder Links: TRF3761 TRF3761-A TRF3761-B TRF3761-C TRF3761-D TRF3761-E TRF3761-F TRF3761-G TRF3761-H TRF3761-J TRF3761-K TRF3761, TRF3761-A, TRF3761-B TRF3761-C, TRF3761-D, TRF3761-E, TRF3761-F TRF3761-G, TRF3761-H, TRF3761-J, TRF3761-K www.ti.com SLWS181K – OCTOBER 2005 – REVISED DECEMBER 2015 Reference Frequency: The 14 bits are used to specify the input reference frequency as multiples of 10kHz. Bits specify the integer part of the reference frequency expressed in MHz. Bits set the fraction part. Those values are then used during the calibration of the internal VCO. For example if using a 20MHz reference oscillator then bits would be 0010100 and bits would be 0000000. If the reference oscillator is 13.1MHz then bits would be 0001101 and bits would be 0001010. Start Calibration: A 1 in DB31 starts the internal VCO calibration. When the calibration is complete, DB31 bit is internally reset to 0. FOUT: This 13-bit word specifies the VCO output frequency in MHz. If output frequency is not a integer multiple of MHz, this value must be approximated to the closest integer in MHz. Refer to Register 2 under the Detailed Design Procedure section. Copyright © 2005–2015, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: TRF3761 TRF3761-A TRF3761-B TRF3761-C TRF3761-D TRF3761-E TRF3761-F TRF3761-G TRF3761-H TRF3761-J TRF3761-K 43 TRF3761, TRF3761-A, TRF3761-B TRF3761-C, TRF3761-D, TRF3761-E, TRF3761-F TRF3761-G, TRF3761-H, TRF3761-J, TRF3761-K SLWS181K – OCTOBER 2005 – REVISED DECEMBER 2015 www.ti.com 8.6.3 Register 3 Figure 86. Register 3: A and B Counters DB31 RSRV DB30 RSRV DB28 DB27 DB26 Test MUX R/W R/W DB29 Lock PLL R/W DB15 DB14 DB13 B-Counter DB12 DB11 DB25 DB24 DB23 DB22 DB21 DB20 DB19 B-Counter DB9 DB8 A-Counter DB7 DB6 DB5 DB4 Dual-Modulus Prescalar Mode R/W R/W R/W DB18 DB17 DB16 R/W DB10 R/W DB3 DB2 DB1 Register Address DB0 R/W LEGEND: R/W = Read/Write; R = Read only; -n = value after reset Table 3. Register 3: A and B Counters REGISTER 3 MAPPING Data Field Address Bits 44 DB31 Rsrv Reserved DB30 Rsrv Reserved DB29 START_LK Lock PLL to frequency 1 active DB28 TEST_MUX_3 0001 = LOCK_DETECT enabled DB27 TEST_MUX_2 See Table 4 for descriptions and settings. DB26 TEST_MUX_1 DB25 TEST_MUX_0 DB24 B_12 DB23 B_11 DB22 B_10 DB21 B_9 DB20 B_8 DB19 B_7 DB18 B_6 DB17 B_5 DB16 B_4 DB15 B_3 DB14 B_2 DB13 B_1 DB12 B_0 DB11 A_5 DB10 A_4 DB9 A_3 DB8 A_2 DB7 A_1 DB6 A_0 DB5 PRESC_MOD1 DB4 PRESC_MOD0 DB3 0 DB2 0 DB1 1 DB0 0 Submit Documentation Feedback 13-bit B counter 6-bit A counter Dual-modulus prescaler mode :00 for :01 for :10 for :11 for 8/9 16/17 32/33 64/65 Address Bits =0010 for register 3 Copyright © 2005–2015, Texas Instruments Incorporated Product Folder Links: TRF3761 TRF3761-A TRF3761-B TRF3761-C TRF3761-D TRF3761-E TRF3761-F TRF3761-G TRF3761-H TRF3761-J TRF3761-K TRF3761, TRF3761-A, TRF3761-B TRF3761-C, TRF3761-D, TRF3761-E, TRF3761-F TRF3761-G, TRF3761-H, TRF3761-J, TRF3761-K www.ti.com SLWS181K – OCTOBER 2005 – REVISED DECEMBER 2015 B: This 13-bit word controls the value of the B counter of the N divider. The valid range is from 3 to 8191. A: These 6 bits control the value of the A counter. The valid range is from 0 to 63. PRESC_MOD: These bits define the mode of the dual-modulus prescaler according to Table 3. START_LK: TRF3761 does not load the serial interface registers values into the dividers registers until bit DB29 of register 3 is set to 1. After TRF3761 is locked to the new frequency, bit DB29 is internally reset to 0. Refer to Register 3 under the Detailed Design Procedure section. Copyright © 2005–2015, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: TRF3761 TRF3761-A TRF3761-B TRF3761-C TRF3761-D TRF3761-E TRF3761-F TRF3761-G TRF3761-H TRF3761-J TRF3761-K 45 TRF3761, TRF3761-A, TRF3761-B TRF3761-C, TRF3761-D, TRF3761-E, TRF3761-F TRF3761-G, TRF3761-H, TRF3761-J, TRF3761-K SLWS181K – OCTOBER 2005 – REVISED DECEMBER 2015 www.ti.com 9 Application and Implementation NOTE Information in the following applications sections is not part of the TI component specification, and TI does not warrant its accuracy or completeness. TI’s customers are responsible for determining suitability of components for their purposes. Customers should validate and test their design implementation to confirm system functionality. 9.1 Application Information The TRF3761 device is suited for high performance RF transmit signal chain applications such as wireless radio transmitters. 9.1.1 Loop Filter Design Numerous methodologies and design techniques exist for designing optimized loop filters for particular applications. The loop filter design can affect the stability of the loop, the lock time, the bandwidth, the extra attenuation on the reference spurs, etc. The role of the loop filter is to integrate and lowpass the pulses of the charge pump and eventually yield an output tuning voltage that drives the VCO. Several filter topologies can be implemented, including both passive and active. In this section, a third-order passive filter is used. For this example, assume these several design parameters. The internal VCO has a value of 23MHz/V, meaning that in the linear region, changing the tuning voltage of the VCO by 1V induces a change of the output frequency of about 23MHz. It is known that N = 4500 and Fpfd = 200kHz from our previous example. It is assumed that current setting in register 1 is set to 100 and sets a maximum current of 5.6mA.TI recommends an Icp of 5.6mA, which give the best spur performance, but can be changed for different application. In addition, the bandwidth of the loop filter must be determined. This is a critical consideration as it affects the lock time of the system. Assuming an approximate bandwidth of around 20kHz is required and that for stability a phase margin of about 45 degrees is desired, the following values for the components of the loop filter can be derived. There is almost an infinite number of solutions to the problem of designing the loop filter and the designer is called to make tradeoff decisions for each application. Texas Instruments has provided a loopfilter program in the product folder for the TRF3761. Some terms are interchangeable and are described and equated here: • Fcom = FPDF which identify the comparing frequency or phase detector frequency which is also equal to the system channel step size. FOUT must be a multiple of Fcom. • Fmin is the lower frequency of the design band. • Fmax is the upper frequency of the design band. • Fref is the reference frequency for the PLL. Fref must be a multiple of Fcom. • Kvco = Kv expressed in MHz per Volt (MHz/V) which is the gain of the VCO. The TRF3761 internal VCO has a Kv = 23MHz/V. • Icp is the charge pump current. The TRF3761 is typically set to 5.6mA. • Fc is the loop filter bandwidth which should be no more than 1/10 Fcom. • φ is phase margin in degrees. Values should be between 30 and 70. The higher the phase margin the better the stability of the PLL but the slower the lock time. 45 degrees is a good tradeoff. • T3/T1 in percent is the percentage of the poles in the loop filter. Usually set to 45%. The higher the value (closer to 100%) the more the spurs are attenuated, but peaking occurs in the pass band of the loop filter. FOUT = FminFmax (8) FOUT F com vc = 2πFc N= 46 Submit Documentation Feedback (9) (10) Copyright © 2005–2015, Texas Instruments Incorporated Product Folder Links: TRF3761 TRF3761-A TRF3761-B TRF3761-C TRF3761-D TRF3761-E TRF3761-F TRF3761-G TRF3761-H TRF3761-J TRF3761-K TRF3761, TRF3761-A, TRF3761-B TRF3761-C, TRF3761-D, TRF3761-E, TRF3761-F TRF3761-G, TRF3761-H, TRF3761-J, TRF3761-K www.ti.com SLWS181K – OCTOBER 2005 – REVISED DECEMBER 2015 Application Information (continued) æ 1 ö ç ÷ - tanf cosf ø è T1 = T3 ö æ vc ç 1 + T1 ÷ø è (11) æ T3 ö T3 = ç ÷ T1 è T1 ø (12) T2 = 1 vc2 (T1+T3 ) é K Kf ê T1 C1 = × VCO x ê ê T2 vc2N ê ë (13) 1 ù2 2 ú 1 + (vc T2 ) ú ú 2 2 2 2 1 + vc T1 1 + vc T3 ú û ( )( ) (14) C1 æ T2 ö C2 = C1ç - 1÷ , C3 = 10 è T1 ø (15) T2 T3 R1 = , R2 = C2 C3 (16) Copyright © 2005–2015, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: TRF3761 TRF3761-A TRF3761-B TRF3761-C TRF3761-D TRF3761-E TRF3761-F TRF3761-G TRF3761-H TRF3761-J TRF3761-K 47 TRF3761, TRF3761-A, TRF3761-B TRF3761-C, TRF3761-D, TRF3761-E, TRF3761-F TRF3761-G, TRF3761-H, TRF3761-J, TRF3761-K SLWS181K – OCTOBER 2005 – REVISED DECEMBER 2015 www.ti.com 9.2 Typical Applications Figure 87 shows a typical application schematic for the TRF3761. In this example, the output signal is taken differential using the 2 resistive pull-up resistors of the final output buffer. A single-ended and tuned load configuration is also available. To Microcontroller REF R2 C1 (See Note A) C3 R1 C4 1000 pF 36 35 34 33 32 31 30 GND AVDD 37 CPOUT AVDD_REF AVDD_CP 39 38 GND GND C2 REF_IN 40 1 PD_OUTBUF MUX_OUT DVDD2 To Microcontroller The loop filter components: C1 = 303pF, R1 = 8.87kΩ, C2 = 1650pF, R2 = 3.4kΩ, C3 = 330pF are the typical values used for the Figure 87. The values can be optimized differently according to the requirements of the different applications. GND R3 2.37 kΩ CHIP_EN 2 29 AVDD_BIAS CLOCK 3 28 RBIAS1 DATA 4 27 GND STROBE 5 26 VCTRL_IN DGND 6 25 AVDD_VCO DGND 7 24 AVDD_BUF DVDD1 8 23 AVDD_CAPARRAY AVDD_PRES 9 22 GND GND EXT_VCO_IN R5 120 Ω R6 120 Ω C5 10 pF C6 10 pF VDD AVDD GND 18 21 19 20 RBIAS2 16 17 AVDD_VCOBUF 15 AVDD_OUTBUF 14 VCO_OUTP 12 13 VCO_OUTM GND 10 11 GND GND TRF3761 (TOP VIEW) C7 1000 pF R4 4.75 kΩ VDD LOAD A. Refer to the Loop Filter Design section. Figure 87. TRF3761 Application Schematic 9.2.1 Design Requirements 9.2.1.1 Loop Filter Design Example Given these parameters which were used for the lock time plot in Figure 88: • Fmin = 2085 MHz • Fmax = 2175 MHz • Fcom = 400 KHz • Icp = 4.2mA • Kvco = 23 MHz • Fc = 20 KHz • Phase Margin = 45 degrees • T3/T1 = 45% 48 Submit Documentation Feedback Copyright © 2005–2015, Texas Instruments Incorporated Product Folder Links: TRF3761 TRF3761-A TRF3761-B TRF3761-C TRF3761-D TRF3761-E TRF3761-F TRF3761-G TRF3761-H TRF3761-J TRF3761-K TRF3761, TRF3761-A, TRF3761-B TRF3761-C, TRF3761-D, TRF3761-E, TRF3761-F TRF3761-G, TRF3761-H, TRF3761-J, TRF3761-K www.ti.com SLWS181K – OCTOBER 2005 – REVISED DECEMBER 2015 Typical Applications (continued) Calculate FOUT of design FOUT = FminFmax = 2130MHz (rounded up) (17) Next calculate N F N = OUT = 5325 F com (18) Then calculate ωc vc = 2πFc = 125.66 x 103 (19) Now calculate T1-T3 to give the RC time constants. æ 1 ö ç ÷ - tanf cosf ø T1 = è = 2.3 x 10-6 T3 ö æ vc ç 1 + T1 ÷ø è (20) Use T1 to find T3 æT ö T3 = ç 3 ÷ T1 = 1 x 10-6 è T1 ø (21) Then use T1 and T3 to find T2 1 T2 = = 19.2 x 10-6 2 v (T1 + T3 ) C (22) Now C1, C2, C3, R1, and R2 are calculated using T1, T2, and T3. 1 é ù2 2 ê ú 1 + (vc T2 ) K VCOKf T1 ê ú = 338.75pF C1 = × × ê T2 2 2 2 2 ú vc2 N 1 + vc T ú ê 1 + vc T1 3 û ë ( )( ) (23) æT ö C2 = C1ç 2 - 1÷ = 2524.14pF è T1 ø C1 C3 = = 33.87pF 10 (24) (25) Now using C2 and T2, find R2. Use C3 and T3 to find R3 T R2 = 2 = 7.61kΩ C2 (26) T R3 = 3 = 30.2kΩ C3 (27) R2 x C3 can be scaled using T3, so if C3 = 330pF, then R2 = 3.03 kΩ => 3.4 kΩ in the loop filter. R1 × C2 can be scaled using T2. Scaling these values helps to improve the lock time. The actual values used in the lock time plot were optimized for lock time as well as using real valued components. The values in figure 62 were taken from the current EVM schematic. Copyright © 2005–2015, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: TRF3761 TRF3761-A TRF3761-B TRF3761-C TRF3761-D TRF3761-E TRF3761-F TRF3761-G TRF3761-H TRF3761-J TRF3761-K 49 TRF3761, TRF3761-A, TRF3761-B TRF3761-C, TRF3761-D, TRF3761-E, TRF3761-F TRF3761-G, TRF3761-H, TRF3761-J, TRF3761-K SLWS181K – OCTOBER 2005 – REVISED DECEMBER 2015 www.ti.com Typical Applications (continued) 9.2.2 Detailed Design Procedure 9.2.2.1 Initial Calibration and Frequency Setup at Power Up The integrated high performance VCO requires an internal frequency calibration at power up. To perform such calibration the following procedure is recommended: • Apply 5V power supply to IC. • Apply an input reference frequency to pin (38) and ensure the signal is stable. • Turn on the TRF3761 using the chip enable pin (CHIP_EN, pin 2), by applying 5V. 9.2.2.1.1 Register 1 • 50 Setup the device through Register 1 referencing Table 1. a. The first 4 bits of the 32-bit code sent to the chip are set DB to 0000; which is the address of register 1. b. Bit 5, DB4, sets the soft reset for the chip. Soft reset allows for the registers to be reset without powering down the chip. If a soft reset is used then write to register 1 twice: once with DB4 set high and once with DB4 set low. Typically, this bit is only used when the chip has been powered up and registers 1, 2, and 3 have already been written to, so on power-up reset is not required, so DB4 is, by default, set low. c. DB sets the charge pump current based on the resistor value on pin 28 of the TRF3761 and the decimal value of Register 1, DB used in Equation 6. This equation reduces to Equation 7, where N = decimal value of [Reg1 DB]. d. DB sets the mode of the chip. The mode is how the device will or will not divide down the VCO’s frequency. There are 3 choices for the mode setting, divide by 1, 2 or 4 per Table 1. For example, if 393.75MHz is required from the TRF3761 which has a main frequency of 1575MHz then the divide-by-4 mode is chosen by setting DB to 10. e. DB controls the output buffer. Both of these are set to 00 by default, so the buffer is controlled internally. Refer to Table 1 for more information. f. DB sets the RDiv value. Once the calculations under the Synthesizing a Selected Frequency section have been completed the value is known, based on the external reference oscillator. The value for R is entered into the DB . For example, if the reference oscillator is at a frequency (FREF_IN) of 61.44MHz and a channel step size of 120kHz is required, which is also the frequency (FPFD) the phase frequency detector will use to compare against the VCO's output frequency (FOUT), then FREF_IN /FPFD = 512, which is entered as follows: MSB: LSB 0001000000000. g. By default, DB are set to 00 for a 1.5ns delay on the anti-backlash pulse width. Refer to Table 1 for more information. h. DB 28 is set to 1 for positive by default. Refer to Table 1 for more information. i. DB 29 is set to 0 for normal operation. Refer to Table 1 for more information. j. DB 30 is set to 0 by default. Refer to Table 1 for more information. k. DB 31 is set to 0 by default. Refer to Table 1 for more information. Submit Documentation Feedback Copyright © 2005–2015, Texas Instruments Incorporated Product Folder Links: TRF3761 TRF3761-A TRF3761-B TRF3761-C TRF3761-D TRF3761-E TRF3761-F TRF3761-G TRF3761-H TRF3761-J TRF3761-K TRF3761, TRF3761-A, TRF3761-B TRF3761-C, TRF3761-D, TRF3761-E, TRF3761-F TRF3761-G, TRF3761-H, TRF3761-J, TRF3761-K www.ti.com SLWS181K – OCTOBER 2005 – REVISED DECEMBER 2015 Typical Applications (continued) 9.2.2.1.2 Register 2 • Initiate calibration procedure by programming register 2 as follows: Reference Table 2. a. The first 4 bits of the 32-bit code sent to the chip are set DB to 0001; which is the address of register 2. b. Use bits DB of register 2 to specify the input reference frequency in MHz. The value is split into an integer and a fraction part. For example: to insert a fREF of 30.72MHz, set: – DB (integer part) equal to 0011110 (30) and – DB (fraction part) equal to 1001000 (72). c. Set DB of register 2 to the desired frequency. For example: 2200MHz would be 0100010011000 (2200). d. Set DB31of register 2 to 1 to start the calibration. The VCO calibration runs for 5ms. During the cal procedure it will not be possible to program register 2 and 3. At the end of the calibration, bit DB31 of register 2 resets to 0. e. Subsequent frequency programming requires DB31 to be set to 0. 9.2.2.1.3 Register 3 • Completion of the frequency set up, on initial calibration, cannot proceed until 5ms has elapsed, due to full calibration, then it will require that the A and B values, the prescalar ratio, be known. Refer to Synthesizing a Selected Frequency section for calculation. Reference Table 3. a. The first 4 bits of the 32-bit code sent to the chip are set DB to 0010; which is the address of register 3. b. DB sets the prescalar ratio, 8/9, 16/17, 32/33, 64/65. For example: if 16/17 are required, set the register bits DB to 01. c. DB sets the A value for the N counter. For example: if A is 4, set DB as follows: 000100 (4). d. DB sets the B value for the N counter. For example: if B is 1156, set DB as follows: 0010010000100 (4). e. DB sets the TEST_MUX. This allows the user to check via the microcontroller the state of the TRF3761 by programming it to one of 6 states. The most common state to use is the Digital lock Detect which places the pin in a logic high state with indicates the VCO is locked. Table 4. MUX-Out Settings STATE DB STATE DB 3-state o/p ( High impedance state on Pin 39) 0000 RDiv o/p (Shows R-value on Pin 39) 0100 Digital lock Detect (High when locked on Pin 39) 0001 Analog lock detect (High when locked on Pin 39) 0101 N-Divider o/p (Shows N-value on Pin 39) 0010 Read back ( read back register settings) 0110 DVDD (internal TI use) 0011 DGND (internal TI use) 0111 f. DB29 sets the START LOCK, which is set to 0, on the initial frequency setup and then set to 1 on additional frequency changes. Once all registers are written, the TRF3761 will lock to the desired frequency. In order to change the frequency once the initial calibration is complete, only registers 2 and 3 need to be reprogrammed. No calibration is required. Copyright © 2005–2015, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: TRF3761 TRF3761-A TRF3761-B TRF3761-C TRF3761-D TRF3761-E TRF3761-F TRF3761-G TRF3761-H TRF3761-J TRF3761-K 51 TRF3761, TRF3761-A, TRF3761-B TRF3761-C, TRF3761-D, TRF3761-E, TRF3761-F TRF3761-G, TRF3761-H, TRF3761-J, TRF3761-K SLWS181K – OCTOBER 2005 – REVISED DECEMBER 2015 www.ti.com 9.2.2.2 Re-Calibration After Power Up Assuming the TRF3761 is powered up and operational, a VCO calibration is also possible without powering down the IC. To perform such calibration the following procedure is recommended: • Set bit DB4 (RESET) of register 1 to 1. This performs a software reset and clears all registers of VCO calibration data. Once the reset command is issued then DB4 of register 1 will need to be set to 0. • Repeat the Initial Calibration and Frequency Setup at Power Up section, skipping the power up section and performing the register programming sequence. 9.2.2.3 Synthesizing a Selected Frequency The TRF3761 is an integer-N PLL synthesizer, and because of its flexibility (14-bit RDiv, 6-bit A counter, 13-bit B counter, and dual modulus prescaler), is ideal for synthesizing virtually any desired frequency. If synthesizing a 900MHz local oscillator, with spacing capability (minimum frequency increment) of 200kHz, as in a typical GSM application, the choice of the external reference oscillator is beyond the scope of this section. However, if a 10MHz reference is selected, the settings are calculated to yield the desired output frequency and channel spacing. There is more than one solution to a specific set of conditions, so below is one way of achieving the desired result. First, select the appropriate RDiv counter value. Since a channel spacing of 200kHz is desired, the FPFD is set to 200kHz. Calculate the RDiv value through: RDiv = FREFIN/FPFD = 10MHz/ 200kHz = 50 (28) Assume a prescaler value of 8/9 is selected. This is a valid choice, since the prescaler output is well within the 200MHz limit (900MHz / 8 = 112.5MHz). Select the appropriate A and B counter values. RFOUT = FPFD × N = (FREFIN / RDiv) × (A counter + Prescalar numerator × B counter). (29) Therefore, Equation 30 must be solved: 900MHz = 200kHz x (A + 8 × B). (30) There are many solutions to this single equation with two unknowns; there are some basic constraints on the solution, since 3 ≤ B ≤ 8191, and also B ≥ A. So, if A = 4, solving the equation yields B = 562. One complete solution would be to choose: RDiv = 50, A counter = 4, Bcounter = 562 and Prescalar = 8/9 resulting in the desired N counter value = 4500. This is how the A counter, B counter and prescalar make up the N counter. When this procedure is complete the values for the N counter , R, and the prescalar ratio should be known. Registers 2 and 3 need to be set up for operation of the chip. Refer to Table 2 and Table 3 for this procedure. Register 2 bits 12:0 set the output frequency of the device along with register 3. Refer to NDivider section under the Feature Description. 9.2.3 Application Curve +5.000k +4.000k +3.000k +2.000k Loop filter Component: C1 = 303pF R1 = 8.87kW R2 = 3.4kW C2 = 1650pF C3 = 330pF +1.000k 1.085G -1.000k -2.000k -3.000k Frequency jump from 1046MHz to 1085MHz: Locktime freq ~ 250ms -4.000k -5.000k Figure 88. Frequency Locktime 52 Submit Documentation Feedback Copyright © 2005–2015, Texas Instruments Incorporated Product Folder Links: TRF3761 TRF3761-A TRF3761-B TRF3761-C TRF3761-D TRF3761-E TRF3761-F TRF3761-G TRF3761-H TRF3761-J TRF3761-K TRF3761, TRF3761-A, TRF3761-B TRF3761-C, TRF3761-D, TRF3761-E, TRF3761-F TRF3761-G, TRF3761-H, TRF3761-J, TRF3761-K www.ti.com SLWS181K – OCTOBER 2005 – REVISED DECEMBER 2015 9.2.4 Application Example for a High Performance RF Transmit Signal Chain Much in the same way as described above, the TRF3761 is an ideal synthesizer to use in implementing a complete high performance RF transmitter chain such as the TSW3000 and TSW3003 Demonstration kits. Using a complete suite of high performance Texas Instruments components, a state-of-the-art transmitter can be implemented featuring excellent performance. Texas Instruments offers ideal solutions for the digital-to-analog conversion portion of transmitter as well as the analog and RF components needed to complete the transmitter. The baseband digital data is converted to I and Q signals through the dual DAC5687, which features a 16-bit interpolating dual digital-to-analog converter (DAC). The device incorporates a digital modulator, independent differential offset control, and I/Q amplitude control. The device is typically used in baseband mode or in low IF mode in conjunction with an analog quadrature modulator. The DAC5687, after filtering, feeds a TRF3703, which is a direct, upconversion IQ modulator. This device accepts a differential input voltage quadrature signal at baseband or low IF frequencies and outputs a modulated RF signal based on the LO drive frequency. The LO drive input of the IQ modulator is generated by the TRF3761. The TRF3761 is a family of high performance, highly integrated frequency synthesizers, optimized for wireless infrastructure applications. The TRF3761 includes an integrated VCO and integer-N PLL. Different members of the TRF3761 family can be chosen for application specific VCO frequency ranges. In addition, the CDC7005 clocking solution can be used to clock the DAC and other portions of the transmitter. A block diagram of the proposed architecture is shown in Figure 89 and Figure 90. For more details, contact Texas Instruments directly. Digital-to-RF Up Converter DAC Gain and Power Amplifier TX LPA ANT 0° 90° I/Q Modulator Diplexer I/Q Demod A/D RX LNA LO-to-Digital Conveter Low Noise Amplifier and RF-to-LO Down Converter Figure 89. Transmit Chain Block Diagram Copyright © 2005–2015, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: TRF3761 TRF3761-A TRF3761-B TRF3761-C TRF3761-D TRF3761-E TRF3761-F TRF3761-G TRF3761-H TRF3761-J TRF3761-K 53 TRF3761, TRF3761-A, TRF3761-B TRF3761-C, TRF3761-D, TRF3761-E, TRF3761-F TRF3761-G, TRF3761-H, TRF3761-J, TRF3761-K SLWS181K – OCTOBER 2005 – REVISED DECEMBER 2015 www.ti.com 16 TRF3703 I/Q Modulator DAC5687 RF Out 16 CLK1 CLK2 CDCM7005 Clock Generator VCXO TRF3761 PLL LO Generator Ref Osc Figure 90. Transmit Chain Block Diagram 10 Power Supply Recommendations TRF3761 should be supplied with a low noise 4.5-V to 5.25-V supply as required. Each supply pin should generally be isolated from the main power bus with a ferrite or other noise filtering component. 54 Submit Documentation Feedback Copyright © 2005–2015, Texas Instruments Incorporated Product Folder Links: TRF3761 TRF3761-A TRF3761-B TRF3761-C TRF3761-D TRF3761-E TRF3761-F TRF3761-G TRF3761-H TRF3761-J TRF3761-K TRF3761, TRF3761-A, TRF3761-B TRF3761-C, TRF3761-D, TRF3761-E, TRF3761-F TRF3761-G, TRF3761-H, TRF3761-J, TRF3761-K www.ti.com SLWS181K – OCTOBER 2005 – REVISED DECEMBER 2015 11 Layout 11.1 Layout Guidelines When designing the complete PLL, this section is of paramount importance in achieving the desired performance. Wherever possible, a multi-layer PCB board should be used, with at least one dedicated ground plane. A dedicated power plane (split between the supplies if necessary) is also recommended. The impedance of all RF traces (the VCO output and feedback into the PLL) should be controlled to 50Ω. All small value (10pF and 0.1µF) decoupling capacitors should be placed as close to the device pins as possible. It is also recommended that both top and bottom layers of the circuit board be flooded with ground, with plenty of ground vias dispersed as appropriate. Because the digital lines are not in use during normal operation of the device and are only used to program the device on start up and during frequency changes the analog grounds (GND) and digital grounds (DGND) are tied to the same ground plane. The most sensitive part of any PLL is the section between the charge pump output and the input to the VCO. This includes the loop filter components, and the corresponding traces. The charge pump is a precision element of the PLL and any extra leakage on its path can adversely affect performance. Extra care should be given to ensure that parasitics are minimized in the charge pump output, and that the trace runs are short and optimized. Similarly, it is also recommend that extra care is taken in ensuring that any flux residue is thoroughly cleaned and moisture baked out of the PCB. From an EMI perspective, and since the synthesizer is typically a small portion of a bigger, complex circuit board, shielding is recommended to minimize EMI effects. 11.2 Layout Example MUX_OUT Via to bottom ground BOTTOM GND TOP GND De-coupling Capacitor’s on back side of board De-coupling Capacitor’s on top side of board BOTTOM GND A. Refer to the Loop Filter Design section. Figure 91. TRF3761 Layout Copyright © 2005–2015, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: TRF3761 TRF3761-A TRF3761-B TRF3761-C TRF3761-D TRF3761-E TRF3761-F TRF3761-G TRF3761-H TRF3761-J TRF3761-K 55 TRF3761, TRF3761-A, TRF3761-B TRF3761-C, TRF3761-D, TRF3761-E, TRF3761-F TRF3761-G, TRF3761-H, TRF3761-J, TRF3761-K SLWS181K – OCTOBER 2005 – REVISED DECEMBER 2015 www.ti.com 12 Device and Documentation Support 12.1 Related Links The table below lists quick access links. Categories include technical documents, support and community resources, tools and software, and quick access to sample or buy. Table 5. Related Links PARTS PRODUCT FOLDER SAMPLE & BUY TECHNICAL DOCUMENTS TOOLS & SOFTWARE SUPPORT & COMMUNITY TRF3761 Click here Click here Click here Click here Click here TRF3761-A Click here Click here Click here Click here Click here TRF3761-B Click here Click here Click here Click here Click here TRF3761-C Click here Click here Click here Click here Click here TRF3761-D Click here Click here Click here Click here Click here TRF3761-E Click here Click here Click here Click here Click here TRF3761-F Click here Click here Click here Click here Click here TRF3761-G Click here Click here Click here Click here Click here TRF3761-H Click here Click here Click here Click here Click here TRF3761-J Click here Click here Click here Click here Click here TRF3761-K Click here Click here Click here Click here Click here 12.2 Community Resources The following links connect to TI community resources. Linked contents are provided "AS IS" by the respective contributors. They do not constitute TI specifications and do not necessarily reflect TI's views; see TI's Terms of Use. TI E2E™ Online Community TI's Engineer-to-Engineer (E2E) Community. Created to foster collaboration among engineers. At e2e.ti.com, you can ask questions, share knowledge, explore ideas and help solve problems with fellow engineers. Design Support TI's Design Support Quickly find helpful E2E forums along with design support tools and contact information for technical support. 12.3 Trademarks E2E is a trademark of Texas Instruments. All other trademarks are the property of their respective owners. 12.4 Electrostatic Discharge Caution These devices have limited built-in ESD protection. The leads should be shorted together or the device placed in conductive foam during storage or handling to prevent electrostatic damage to the MOS gates. 12.5 Glossary SLYZ022 — TI Glossary. This glossary lists and explains terms, acronyms, and definitions. 13 Mechanical, Packaging, and Orderable Information The following pages include mechanical, packaging, and orderable information. This information is the most current data available for the designated devices. This data is subject to change without notice and revision of this document. For browser-based versions of this data sheet, refer to the left-hand navigation. 56 Submit Documentation Feedback Copyright © 2005–2015, Texas Instruments Incorporated Product Folder Links: TRF3761 TRF3761-A TRF3761-B TRF3761-C TRF3761-D TRF3761-E TRF3761-F TRF3761-G TRF3761-H TRF3761-J TRF3761-K PACKAGE OPTION ADDENDUM www.ti.com 10-Dec-2020 PACKAGING INFORMATION Orderable Device Status (1) Package Type Package Pins Package Drawing Qty Eco Plan (2) Lead finish/ Ball material MSL Peak Temp Op Temp (°C) Device Marking (3) (4/5) (6) TRF3761-AIRHAR ACTIVE VQFN RHA 40 2500 RoHS & Green NIPDAUAG Level-3-260C-168 HR -40 to 85 TRF3761 -A TRF3761-AIRHAT ACTIVE VQFN RHA 40 250 RoHS & Green NIPDAUAG Level-3-260C-168 HR -40 to 85 TRF3761 -A TRF3761-BIRHAT ACTIVE VQFN RHA 40 250 RoHS & Green NIPDAUAG Level-3-260C-168 HR -40 to 85 TRF3761 -B TRF3761-CIRHAT ACTIVE VQFN RHA 40 250 RoHS & Green NIPDAUAG Level-3-260C-168 HR -40 to 85 TRF3761 -C TRF3761-EIRHAR ACTIVE VQFN RHA 40 2500 RoHS & Green NIPDAUAG Level-3-260C-168 HR -40 to 85 TRF3761 -E TRF3761-EIRHAT ACTIVE VQFN RHA 40 250 RoHS & Green NIPDAUAG Level-3-260C-168 HR -40 to 85 TRF3761 -E TRF3761-FIRHAT ACTIVE VQFN RHA 40 250 RoHS & Green NIPDAUAG Level-3-260C-168 HR -40 to 85 TRF3761 -F TRF3761-GIRHAT ACTIVE VQFN RHA 40 250 RoHS & Green NIPDAUAG Level-3-260C-168 HR -40 to 85 TRF3761 -G TRF3761-HIRHAT ACTIVE VQFN RHA 40 250 RoHS & Green NIPDAUAG Level-3-260C-168 HR -40 to 85 TRF3761 -H TRF3761-JIRHAT ACTIVE VQFN RHA 40 250 RoHS & Green NIPDAUAG Level-3-260C-168 HR -40 to 85 TRF3761 -J (1) The marketing status values are defined as follows: ACTIVE: Product device recommended for new designs. LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect. NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design. PREVIEW: Device has been announced but is not in production. Samples may or may not be available. OBSOLETE: TI has discontinued the production of the device. (2) RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may reference these types of products as "Pb-Free". RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption. Green: TI defines "Green" to mean the content of Chlorine (Cl) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of
TRF3761-AIRHAR 价格&库存

很抱歉,暂时无法提供与“TRF3761-AIRHAR”相匹配的价格&库存,您可以联系我们找货

免费人工找货